Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / scsi / mpt3sas / mpt3sas_base.c
1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/kthread.h>
61 #include <linux/aer.h>
62
63
64 #include "mpt3sas_base.h"
65
66 static MPT_CALLBACK     mpt_callbacks[MPT_MAX_CALLBACKS];
67
68
69 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
70
71  /* maximum controller queue depth */
72 #define MAX_HBA_QUEUE_DEPTH     30000
73 #define MAX_CHAIN_DEPTH         100000
74 static int max_queue_depth = -1;
75 module_param(max_queue_depth, int, 0);
76 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
77
78 static int max_sgl_entries = -1;
79 module_param(max_sgl_entries, int, 0);
80 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
81
82 static int msix_disable = -1;
83 module_param(msix_disable, int, 0);
84 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
85
86 static int max_msix_vectors = 8;
87 module_param(max_msix_vectors, int, 0);
88 MODULE_PARM_DESC(max_msix_vectors,
89         " max msix vectors - (default=8)");
90
91 static int mpt3sas_fwfault_debug;
92 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
93         " enable detection of firmware fault and halt firmware - (default=0)");
94
95 static int
96 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag);
97
98 /**
99  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
100  *
101  */
102 static int
103 _scsih_set_fwfault_debug(const char *val, struct kernel_param *kp)
104 {
105         int ret = param_set_int(val, kp);
106         struct MPT3SAS_ADAPTER *ioc;
107
108         if (ret)
109                 return ret;
110
111         pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
112         list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
113                 ioc->fwfault_debug = mpt3sas_fwfault_debug;
114         return 0;
115 }
116 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
117         param_get_int, &mpt3sas_fwfault_debug, 0644);
118
119 /**
120  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
121  * @arg: input argument, used to derive ioc
122  *
123  * Return 0 if controller is removed from pci subsystem.
124  * Return -1 for other case.
125  */
126 static int mpt3sas_remove_dead_ioc_func(void *arg)
127 {
128         struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
129         struct pci_dev *pdev;
130
131         if ((ioc == NULL))
132                 return -1;
133
134         pdev = ioc->pdev;
135         if ((pdev == NULL))
136                 return -1;
137         pci_stop_and_remove_bus_device_locked(pdev);
138         return 0;
139 }
140
141 /**
142  * _base_fault_reset_work - workq handling ioc fault conditions
143  * @work: input argument, used to derive ioc
144  * Context: sleep.
145  *
146  * Return nothing.
147  */
148 static void
149 _base_fault_reset_work(struct work_struct *work)
150 {
151         struct MPT3SAS_ADAPTER *ioc =
152             container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
153         unsigned long    flags;
154         u32 doorbell;
155         int rc;
156         struct task_struct *p;
157
158
159         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
160         if (ioc->shost_recovery)
161                 goto rearm_timer;
162         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
163
164         doorbell = mpt3sas_base_get_iocstate(ioc, 0);
165         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
166                 pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
167                     ioc->name);
168
169                 /*
170                  * Call _scsih_flush_pending_cmds callback so that we flush all
171                  * pending commands back to OS. This call is required to aovid
172                  * deadlock at block layer. Dead IOC will fail to do diag reset,
173                  * and this call is safe since dead ioc will never return any
174                  * command back from HW.
175                  */
176                 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
177                 /*
178                  * Set remove_host flag early since kernel thread will
179                  * take some time to execute.
180                  */
181                 ioc->remove_host = 1;
182                 /*Remove the Dead Host */
183                 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
184                     "mpt3sas_dead_ioc_%d", ioc->id);
185                 if (IS_ERR(p))
186                         pr_err(MPT3SAS_FMT
187                         "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
188                         ioc->name, __func__);
189                 else
190                         pr_err(MPT3SAS_FMT
191                         "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
192                         ioc->name, __func__);
193                 return; /* don't rearm timer */
194         }
195
196         if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
197                 rc = mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
198                     FORCE_BIG_HAMMER);
199                 pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
200                     __func__, (rc == 0) ? "success" : "failed");
201                 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
202                 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
203                         mpt3sas_base_fault_info(ioc, doorbell &
204                             MPI2_DOORBELL_DATA_MASK);
205                 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
206                     MPI2_IOC_STATE_OPERATIONAL)
207                         return; /* don't rearm timer */
208         }
209
210         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
211  rearm_timer:
212         if (ioc->fault_reset_work_q)
213                 queue_delayed_work(ioc->fault_reset_work_q,
214                     &ioc->fault_reset_work,
215                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
216         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
217 }
218
219 /**
220  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
221  * @ioc: per adapter object
222  * Context: sleep.
223  *
224  * Return nothing.
225  */
226 void
227 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
228 {
229         unsigned long    flags;
230
231         if (ioc->fault_reset_work_q)
232                 return;
233
234         /* initialize fault polling */
235
236         INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
237         snprintf(ioc->fault_reset_work_q_name,
238             sizeof(ioc->fault_reset_work_q_name), "poll_%d_status", ioc->id);
239         ioc->fault_reset_work_q =
240                 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
241         if (!ioc->fault_reset_work_q) {
242                 pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
243                     ioc->name, __func__, __LINE__);
244                         return;
245         }
246         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
247         if (ioc->fault_reset_work_q)
248                 queue_delayed_work(ioc->fault_reset_work_q,
249                     &ioc->fault_reset_work,
250                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
251         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
252 }
253
254 /**
255  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
256  * @ioc: per adapter object
257  * Context: sleep.
258  *
259  * Return nothing.
260  */
261 void
262 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
263 {
264         unsigned long flags;
265         struct workqueue_struct *wq;
266
267         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
268         wq = ioc->fault_reset_work_q;
269         ioc->fault_reset_work_q = NULL;
270         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
271         if (wq) {
272                 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
273                         flush_workqueue(wq);
274                 destroy_workqueue(wq);
275         }
276 }
277
278 /**
279  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
280  * @ioc: per adapter object
281  * @fault_code: fault code
282  *
283  * Return nothing.
284  */
285 void
286 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
287 {
288         pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
289             ioc->name, fault_code);
290 }
291
292 /**
293  * mpt3sas_halt_firmware - halt's mpt controller firmware
294  * @ioc: per adapter object
295  *
296  * For debugging timeout related issues.  Writing 0xCOFFEE00
297  * to the doorbell register will halt controller firmware. With
298  * the purpose to stop both driver and firmware, the enduser can
299  * obtain a ring buffer from controller UART.
300  */
301 void
302 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
303 {
304         u32 doorbell;
305
306         if (!ioc->fwfault_debug)
307                 return;
308
309         dump_stack();
310
311         doorbell = readl(&ioc->chip->Doorbell);
312         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
313                 mpt3sas_base_fault_info(ioc , doorbell);
314         else {
315                 writel(0xC0FFEE00, &ioc->chip->Doorbell);
316                 pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
317                         ioc->name);
318         }
319
320         if (ioc->fwfault_debug == 2)
321                 for (;;)
322                         ;
323         else
324                 panic("panic in %s\n", __func__);
325 }
326
327 #ifdef CONFIG_SCSI_MPT3SAS_LOGGING
328 /**
329  * _base_sas_ioc_info - verbose translation of the ioc status
330  * @ioc: per adapter object
331  * @mpi_reply: reply mf payload returned from firmware
332  * @request_hdr: request mf
333  *
334  * Return nothing.
335  */
336 static void
337 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
338         MPI2RequestHeader_t *request_hdr)
339 {
340         u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
341             MPI2_IOCSTATUS_MASK;
342         char *desc = NULL;
343         u16 frame_sz;
344         char *func_str = NULL;
345
346         /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
347         if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
348             request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
349             request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
350                 return;
351
352         if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
353                 return;
354
355         switch (ioc_status) {
356
357 /****************************************************************************
358 *  Common IOCStatus values for all replies
359 ****************************************************************************/
360
361         case MPI2_IOCSTATUS_INVALID_FUNCTION:
362                 desc = "invalid function";
363                 break;
364         case MPI2_IOCSTATUS_BUSY:
365                 desc = "busy";
366                 break;
367         case MPI2_IOCSTATUS_INVALID_SGL:
368                 desc = "invalid sgl";
369                 break;
370         case MPI2_IOCSTATUS_INTERNAL_ERROR:
371                 desc = "internal error";
372                 break;
373         case MPI2_IOCSTATUS_INVALID_VPID:
374                 desc = "invalid vpid";
375                 break;
376         case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
377                 desc = "insufficient resources";
378                 break;
379         case MPI2_IOCSTATUS_INVALID_FIELD:
380                 desc = "invalid field";
381                 break;
382         case MPI2_IOCSTATUS_INVALID_STATE:
383                 desc = "invalid state";
384                 break;
385         case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
386                 desc = "op state not supported";
387                 break;
388
389 /****************************************************************************
390 *  Config IOCStatus values
391 ****************************************************************************/
392
393         case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
394                 desc = "config invalid action";
395                 break;
396         case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
397                 desc = "config invalid type";
398                 break;
399         case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
400                 desc = "config invalid page";
401                 break;
402         case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
403                 desc = "config invalid data";
404                 break;
405         case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
406                 desc = "config no defaults";
407                 break;
408         case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
409                 desc = "config cant commit";
410                 break;
411
412 /****************************************************************************
413 *  SCSI IO Reply
414 ****************************************************************************/
415
416         case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
417         case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
418         case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
419         case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
420         case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
421         case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
422         case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
423         case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
424         case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
425         case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
426         case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
427         case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
428                 break;
429
430 /****************************************************************************
431 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
432 ****************************************************************************/
433
434         case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
435                 desc = "eedp guard error";
436                 break;
437         case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
438                 desc = "eedp ref tag error";
439                 break;
440         case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
441                 desc = "eedp app tag error";
442                 break;
443
444 /****************************************************************************
445 *  SCSI Target values
446 ****************************************************************************/
447
448         case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
449                 desc = "target invalid io index";
450                 break;
451         case MPI2_IOCSTATUS_TARGET_ABORTED:
452                 desc = "target aborted";
453                 break;
454         case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
455                 desc = "target no conn retryable";
456                 break;
457         case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
458                 desc = "target no connection";
459                 break;
460         case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
461                 desc = "target xfer count mismatch";
462                 break;
463         case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
464                 desc = "target data offset error";
465                 break;
466         case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
467                 desc = "target too much write data";
468                 break;
469         case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
470                 desc = "target iu too short";
471                 break;
472         case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
473                 desc = "target ack nak timeout";
474                 break;
475         case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
476                 desc = "target nak received";
477                 break;
478
479 /****************************************************************************
480 *  Serial Attached SCSI values
481 ****************************************************************************/
482
483         case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
484                 desc = "smp request failed";
485                 break;
486         case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
487                 desc = "smp data overrun";
488                 break;
489
490 /****************************************************************************
491 *  Diagnostic Buffer Post / Diagnostic Release values
492 ****************************************************************************/
493
494         case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
495                 desc = "diagnostic released";
496                 break;
497         default:
498                 break;
499         }
500
501         if (!desc)
502                 return;
503
504         switch (request_hdr->Function) {
505         case MPI2_FUNCTION_CONFIG:
506                 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
507                 func_str = "config_page";
508                 break;
509         case MPI2_FUNCTION_SCSI_TASK_MGMT:
510                 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
511                 func_str = "task_mgmt";
512                 break;
513         case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
514                 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
515                 func_str = "sas_iounit_ctl";
516                 break;
517         case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
518                 frame_sz = sizeof(Mpi2SepRequest_t);
519                 func_str = "enclosure";
520                 break;
521         case MPI2_FUNCTION_IOC_INIT:
522                 frame_sz = sizeof(Mpi2IOCInitRequest_t);
523                 func_str = "ioc_init";
524                 break;
525         case MPI2_FUNCTION_PORT_ENABLE:
526                 frame_sz = sizeof(Mpi2PortEnableRequest_t);
527                 func_str = "port_enable";
528                 break;
529         case MPI2_FUNCTION_SMP_PASSTHROUGH:
530                 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
531                 func_str = "smp_passthru";
532                 break;
533         default:
534                 frame_sz = 32;
535                 func_str = "unknown";
536                 break;
537         }
538
539         pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
540                 ioc->name, desc, ioc_status, request_hdr, func_str);
541
542         _debug_dump_mf(request_hdr, frame_sz/4);
543 }
544
545 /**
546  * _base_display_event_data - verbose translation of firmware asyn events
547  * @ioc: per adapter object
548  * @mpi_reply: reply mf payload returned from firmware
549  *
550  * Return nothing.
551  */
552 static void
553 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
554         Mpi2EventNotificationReply_t *mpi_reply)
555 {
556         char *desc = NULL;
557         u16 event;
558
559         if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
560                 return;
561
562         event = le16_to_cpu(mpi_reply->Event);
563
564         switch (event) {
565         case MPI2_EVENT_LOG_DATA:
566                 desc = "Log Data";
567                 break;
568         case MPI2_EVENT_STATE_CHANGE:
569                 desc = "Status Change";
570                 break;
571         case MPI2_EVENT_HARD_RESET_RECEIVED:
572                 desc = "Hard Reset Received";
573                 break;
574         case MPI2_EVENT_EVENT_CHANGE:
575                 desc = "Event Change";
576                 break;
577         case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
578                 desc = "Device Status Change";
579                 break;
580         case MPI2_EVENT_IR_OPERATION_STATUS:
581                 desc = "IR Operation Status";
582                 break;
583         case MPI2_EVENT_SAS_DISCOVERY:
584         {
585                 Mpi2EventDataSasDiscovery_t *event_data =
586                     (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
587                 pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
588                     (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
589                     "start" : "stop");
590                 if (event_data->DiscoveryStatus)
591                         pr_info("discovery_status(0x%08x)",
592                             le32_to_cpu(event_data->DiscoveryStatus));
593                         pr_info("\n");
594                 return;
595         }
596         case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
597                 desc = "SAS Broadcast Primitive";
598                 break;
599         case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
600                 desc = "SAS Init Device Status Change";
601                 break;
602         case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
603                 desc = "SAS Init Table Overflow";
604                 break;
605         case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
606                 desc = "SAS Topology Change List";
607                 break;
608         case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
609                 desc = "SAS Enclosure Device Status Change";
610                 break;
611         case MPI2_EVENT_IR_VOLUME:
612                 desc = "IR Volume";
613                 break;
614         case MPI2_EVENT_IR_PHYSICAL_DISK:
615                 desc = "IR Physical Disk";
616                 break;
617         case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
618                 desc = "IR Configuration Change List";
619                 break;
620         case MPI2_EVENT_LOG_ENTRY_ADDED:
621                 desc = "Log Entry Added";
622                 break;
623         case MPI2_EVENT_TEMP_THRESHOLD:
624                 desc = "Temperature Threshold";
625                 break;
626         }
627
628         if (!desc)
629                 return;
630
631         pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
632 }
633 #endif
634
635 /**
636  * _base_sas_log_info - verbose translation of firmware log info
637  * @ioc: per adapter object
638  * @log_info: log info
639  *
640  * Return nothing.
641  */
642 static void
643 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
644 {
645         union loginfo_type {
646                 u32     loginfo;
647                 struct {
648                         u32     subcode:16;
649                         u32     code:8;
650                         u32     originator:4;
651                         u32     bus_type:4;
652                 } dw;
653         };
654         union loginfo_type sas_loginfo;
655         char *originator_str = NULL;
656
657         sas_loginfo.loginfo = log_info;
658         if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
659                 return;
660
661         /* each nexus loss loginfo */
662         if (log_info == 0x31170000)
663                 return;
664
665         /* eat the loginfos associated with task aborts */
666         if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
667             0x31140000 || log_info == 0x31130000))
668                 return;
669
670         switch (sas_loginfo.dw.originator) {
671         case 0:
672                 originator_str = "IOP";
673                 break;
674         case 1:
675                 originator_str = "PL";
676                 break;
677         case 2:
678                 originator_str = "IR";
679                 break;
680         }
681
682         pr_warn(MPT3SAS_FMT
683                 "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
684                 ioc->name, log_info,
685              originator_str, sas_loginfo.dw.code,
686              sas_loginfo.dw.subcode);
687 }
688
689 /**
690  * _base_display_reply_info -
691  * @ioc: per adapter object
692  * @smid: system request message index
693  * @msix_index: MSIX table index supplied by the OS
694  * @reply: reply message frame(lower 32bit addr)
695  *
696  * Return nothing.
697  */
698 static void
699 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
700         u32 reply)
701 {
702         MPI2DefaultReply_t *mpi_reply;
703         u16 ioc_status;
704         u32 loginfo = 0;
705
706         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
707         if (unlikely(!mpi_reply)) {
708                 pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
709                     ioc->name, __FILE__, __LINE__, __func__);
710                 return;
711         }
712         ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
713 #ifdef CONFIG_SCSI_MPT3SAS_LOGGING
714         if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
715             (ioc->logging_level & MPT_DEBUG_REPLY)) {
716                 _base_sas_ioc_info(ioc , mpi_reply,
717                    mpt3sas_base_get_msg_frame(ioc, smid));
718         }
719 #endif
720         if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
721                 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
722                 _base_sas_log_info(ioc, loginfo);
723         }
724
725         if (ioc_status || loginfo) {
726                 ioc_status &= MPI2_IOCSTATUS_MASK;
727                 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
728         }
729 }
730
731 /**
732  * mpt3sas_base_done - base internal command completion routine
733  * @ioc: per adapter object
734  * @smid: system request message index
735  * @msix_index: MSIX table index supplied by the OS
736  * @reply: reply message frame(lower 32bit addr)
737  *
738  * Return 1 meaning mf should be freed from _base_interrupt
739  *        0 means the mf is freed from this function.
740  */
741 u8
742 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
743         u32 reply)
744 {
745         MPI2DefaultReply_t *mpi_reply;
746
747         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
748         if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
749                 return 1;
750
751         if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
752                 return 1;
753
754         ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
755         if (mpi_reply) {
756                 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
757                 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
758         }
759         ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
760
761         complete(&ioc->base_cmds.done);
762         return 1;
763 }
764
765 /**
766  * _base_async_event - main callback handler for firmware asyn events
767  * @ioc: per adapter object
768  * @msix_index: MSIX table index supplied by the OS
769  * @reply: reply message frame(lower 32bit addr)
770  *
771  * Return 1 meaning mf should be freed from _base_interrupt
772  *        0 means the mf is freed from this function.
773  */
774 static u8
775 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
776 {
777         Mpi2EventNotificationReply_t *mpi_reply;
778         Mpi2EventAckRequest_t *ack_request;
779         u16 smid;
780
781         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
782         if (!mpi_reply)
783                 return 1;
784         if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
785                 return 1;
786 #ifdef CONFIG_SCSI_MPT3SAS_LOGGING
787         _base_display_event_data(ioc, mpi_reply);
788 #endif
789         if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
790                 goto out;
791         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
792         if (!smid) {
793                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
794                     ioc->name, __func__);
795                 goto out;
796         }
797
798         ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
799         memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
800         ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
801         ack_request->Event = mpi_reply->Event;
802         ack_request->EventContext = mpi_reply->EventContext;
803         ack_request->VF_ID = 0;  /* TODO */
804         ack_request->VP_ID = 0;
805         mpt3sas_base_put_smid_default(ioc, smid);
806
807  out:
808
809         /* scsih callback handler */
810         mpt3sas_scsih_event_callback(ioc, msix_index, reply);
811
812         /* ctl callback handler */
813         mpt3sas_ctl_event_callback(ioc, msix_index, reply);
814
815         return 1;
816 }
817
818 /**
819  * _base_get_cb_idx - obtain the callback index
820  * @ioc: per adapter object
821  * @smid: system request message index
822  *
823  * Return callback index.
824  */
825 static u8
826 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
827 {
828         int i;
829         u8 cb_idx;
830
831         if (smid < ioc->hi_priority_smid) {
832                 i = smid - 1;
833                 cb_idx = ioc->scsi_lookup[i].cb_idx;
834         } else if (smid < ioc->internal_smid) {
835                 i = smid - ioc->hi_priority_smid;
836                 cb_idx = ioc->hpr_lookup[i].cb_idx;
837         } else if (smid <= ioc->hba_queue_depth) {
838                 i = smid - ioc->internal_smid;
839                 cb_idx = ioc->internal_lookup[i].cb_idx;
840         } else
841                 cb_idx = 0xFF;
842         return cb_idx;
843 }
844
845 /**
846  * _base_mask_interrupts - disable interrupts
847  * @ioc: per adapter object
848  *
849  * Disabling ResetIRQ, Reply and Doorbell Interrupts
850  *
851  * Return nothing.
852  */
853 static void
854 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
855 {
856         u32 him_register;
857
858         ioc->mask_interrupts = 1;
859         him_register = readl(&ioc->chip->HostInterruptMask);
860         him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
861         writel(him_register, &ioc->chip->HostInterruptMask);
862         readl(&ioc->chip->HostInterruptMask);
863 }
864
865 /**
866  * _base_unmask_interrupts - enable interrupts
867  * @ioc: per adapter object
868  *
869  * Enabling only Reply Interrupts
870  *
871  * Return nothing.
872  */
873 static void
874 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
875 {
876         u32 him_register;
877
878         him_register = readl(&ioc->chip->HostInterruptMask);
879         him_register &= ~MPI2_HIM_RIM;
880         writel(him_register, &ioc->chip->HostInterruptMask);
881         ioc->mask_interrupts = 0;
882 }
883
884 union reply_descriptor {
885         u64 word;
886         struct {
887                 u32 low;
888                 u32 high;
889         } u;
890 };
891
892 /**
893  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
894  * @irq: irq number (not used)
895  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
896  * @r: pt_regs pointer (not used)
897  *
898  * Return IRQ_HANDLE if processed, else IRQ_NONE.
899  */
900 static irqreturn_t
901 _base_interrupt(int irq, void *bus_id)
902 {
903         struct adapter_reply_queue *reply_q = bus_id;
904         union reply_descriptor rd;
905         u32 completed_cmds;
906         u8 request_desript_type;
907         u16 smid;
908         u8 cb_idx;
909         u32 reply;
910         u8 msix_index = reply_q->msix_index;
911         struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
912         Mpi2ReplyDescriptorsUnion_t *rpf;
913         u8 rc;
914
915         if (ioc->mask_interrupts)
916                 return IRQ_NONE;
917
918         if (!atomic_add_unless(&reply_q->busy, 1, 1))
919                 return IRQ_NONE;
920
921         rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
922         request_desript_type = rpf->Default.ReplyFlags
923              & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
924         if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
925                 atomic_dec(&reply_q->busy);
926                 return IRQ_NONE;
927         }
928
929         completed_cmds = 0;
930         cb_idx = 0xFF;
931         do {
932                 rd.word = le64_to_cpu(rpf->Words);
933                 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
934                         goto out;
935                 reply = 0;
936                 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
937                 if (request_desript_type ==
938                     MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
939                     request_desript_type ==
940                     MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS) {
941                         cb_idx = _base_get_cb_idx(ioc, smid);
942                         if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
943                             (likely(mpt_callbacks[cb_idx] != NULL))) {
944                                 rc = mpt_callbacks[cb_idx](ioc, smid,
945                                     msix_index, 0);
946                                 if (rc)
947                                         mpt3sas_base_free_smid(ioc, smid);
948                         }
949                 } else if (request_desript_type ==
950                     MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
951                         reply = le32_to_cpu(
952                             rpf->AddressReply.ReplyFrameAddress);
953                         if (reply > ioc->reply_dma_max_address ||
954                             reply < ioc->reply_dma_min_address)
955                                 reply = 0;
956                         if (smid) {
957                                 cb_idx = _base_get_cb_idx(ioc, smid);
958                                 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
959                                     (likely(mpt_callbacks[cb_idx] != NULL))) {
960                                         rc = mpt_callbacks[cb_idx](ioc, smid,
961                                             msix_index, reply);
962                                         if (reply)
963                                                 _base_display_reply_info(ioc,
964                                                     smid, msix_index, reply);
965                                         if (rc)
966                                                 mpt3sas_base_free_smid(ioc,
967                                                     smid);
968                                 }
969                         } else {
970                                 _base_async_event(ioc, msix_index, reply);
971                         }
972
973                         /* reply free queue handling */
974                         if (reply) {
975                                 ioc->reply_free_host_index =
976                                     (ioc->reply_free_host_index ==
977                                     (ioc->reply_free_queue_depth - 1)) ?
978                                     0 : ioc->reply_free_host_index + 1;
979                                 ioc->reply_free[ioc->reply_free_host_index] =
980                                     cpu_to_le32(reply);
981                                 wmb();
982                                 writel(ioc->reply_free_host_index,
983                                     &ioc->chip->ReplyFreeHostIndex);
984                         }
985                 }
986
987                 rpf->Words = cpu_to_le64(ULLONG_MAX);
988                 reply_q->reply_post_host_index =
989                     (reply_q->reply_post_host_index ==
990                     (ioc->reply_post_queue_depth - 1)) ? 0 :
991                     reply_q->reply_post_host_index + 1;
992                 request_desript_type =
993                     reply_q->reply_post_free[reply_q->reply_post_host_index].
994                     Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
995                 completed_cmds++;
996                 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
997                         goto out;
998                 if (!reply_q->reply_post_host_index)
999                         rpf = reply_q->reply_post_free;
1000                 else
1001                         rpf++;
1002         } while (1);
1003
1004  out:
1005
1006         if (!completed_cmds) {
1007                 atomic_dec(&reply_q->busy);
1008                 return IRQ_NONE;
1009         }
1010
1011         wmb();
1012         writel(reply_q->reply_post_host_index | (msix_index <<
1013             MPI2_RPHI_MSIX_INDEX_SHIFT), &ioc->chip->ReplyPostHostIndex);
1014         atomic_dec(&reply_q->busy);
1015         return IRQ_HANDLED;
1016 }
1017
1018 /**
1019  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1020  * @ioc: per adapter object
1021  *
1022  */
1023 static inline int
1024 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1025 {
1026         return (ioc->facts.IOCCapabilities &
1027             MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1028 }
1029
1030 /**
1031  * mpt3sas_base_flush_reply_queues - flushing the MSIX reply queues
1032  * @ioc: per adapter object
1033  * Context: ISR conext
1034  *
1035  * Called when a Task Management request has completed. We want
1036  * to flush the other reply queues so all the outstanding IO has been
1037  * completed back to OS before we process the TM completetion.
1038  *
1039  * Return nothing.
1040  */
1041 void
1042 mpt3sas_base_flush_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1043 {
1044         struct adapter_reply_queue *reply_q;
1045
1046         /* If MSIX capability is turned off
1047          * then multi-queues are not enabled
1048          */
1049         if (!_base_is_controller_msix_enabled(ioc))
1050                 return;
1051
1052         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1053                 if (ioc->shost_recovery)
1054                         return;
1055                 /* TMs are on msix_index == 0 */
1056                 if (reply_q->msix_index == 0)
1057                         continue;
1058                 _base_interrupt(reply_q->vector, (void *)reply_q);
1059         }
1060 }
1061
1062 /**
1063  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1064  * @cb_idx: callback index
1065  *
1066  * Return nothing.
1067  */
1068 void
1069 mpt3sas_base_release_callback_handler(u8 cb_idx)
1070 {
1071         mpt_callbacks[cb_idx] = NULL;
1072 }
1073
1074 /**
1075  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1076  * @cb_func: callback function
1077  *
1078  * Returns cb_func.
1079  */
1080 u8
1081 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1082 {
1083         u8 cb_idx;
1084
1085         for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1086                 if (mpt_callbacks[cb_idx] == NULL)
1087                         break;
1088
1089         mpt_callbacks[cb_idx] = cb_func;
1090         return cb_idx;
1091 }
1092
1093 /**
1094  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1095  *
1096  * Return nothing.
1097  */
1098 void
1099 mpt3sas_base_initialize_callback_handler(void)
1100 {
1101         u8 cb_idx;
1102
1103         for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1104                 mpt3sas_base_release_callback_handler(cb_idx);
1105 }
1106
1107
1108 /**
1109  * _base_build_zero_len_sge - build zero length sg entry
1110  * @ioc: per adapter object
1111  * @paddr: virtual address for SGE
1112  *
1113  * Create a zero length scatter gather entry to insure the IOCs hardware has
1114  * something to use if the target device goes brain dead and tries
1115  * to send data even when none is asked for.
1116  *
1117  * Return nothing.
1118  */
1119 static void
1120 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1121 {
1122         u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1123             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1124             MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1125             MPI2_SGE_FLAGS_SHIFT);
1126         ioc->base_add_sg_single(paddr, flags_length, -1);
1127 }
1128
1129 /**
1130  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1131  * @paddr: virtual address for SGE
1132  * @flags_length: SGE flags and data transfer length
1133  * @dma_addr: Physical address
1134  *
1135  * Return nothing.
1136  */
1137 static void
1138 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1139 {
1140         Mpi2SGESimple32_t *sgel = paddr;
1141
1142         flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1143             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1144         sgel->FlagsLength = cpu_to_le32(flags_length);
1145         sgel->Address = cpu_to_le32(dma_addr);
1146 }
1147
1148
1149 /**
1150  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1151  * @paddr: virtual address for SGE
1152  * @flags_length: SGE flags and data transfer length
1153  * @dma_addr: Physical address
1154  *
1155  * Return nothing.
1156  */
1157 static void
1158 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1159 {
1160         Mpi2SGESimple64_t *sgel = paddr;
1161
1162         flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1163             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1164         sgel->FlagsLength = cpu_to_le32(flags_length);
1165         sgel->Address = cpu_to_le64(dma_addr);
1166 }
1167
1168 /**
1169  * _base_get_chain_buffer_tracker - obtain chain tracker
1170  * @ioc: per adapter object
1171  * @smid: smid associated to an IO request
1172  *
1173  * Returns chain tracker(from ioc->free_chain_list)
1174  */
1175 static struct chain_tracker *
1176 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1177 {
1178         struct chain_tracker *chain_req;
1179         unsigned long flags;
1180
1181         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1182         if (list_empty(&ioc->free_chain_list)) {
1183                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1184                 dfailprintk(ioc, pr_warn(MPT3SAS_FMT
1185                         "chain buffers not available\n", ioc->name));
1186                 return NULL;
1187         }
1188         chain_req = list_entry(ioc->free_chain_list.next,
1189             struct chain_tracker, tracker_list);
1190         list_del_init(&chain_req->tracker_list);
1191         list_add_tail(&chain_req->tracker_list,
1192             &ioc->scsi_lookup[smid - 1].chain_list);
1193         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1194         return chain_req;
1195 }
1196
1197
1198 /**
1199  * _base_build_sg - build generic sg
1200  * @ioc: per adapter object
1201  * @psge: virtual address for SGE
1202  * @data_out_dma: physical address for WRITES
1203  * @data_out_sz: data xfer size for WRITES
1204  * @data_in_dma: physical address for READS
1205  * @data_in_sz: data xfer size for READS
1206  *
1207  * Return nothing.
1208  */
1209 static void
1210 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1211         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1212         size_t data_in_sz)
1213 {
1214         u32 sgl_flags;
1215
1216         if (!data_out_sz && !data_in_sz) {
1217                 _base_build_zero_len_sge(ioc, psge);
1218                 return;
1219         }
1220
1221         if (data_out_sz && data_in_sz) {
1222                 /* WRITE sgel first */
1223                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1224                     MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1225                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1226                 ioc->base_add_sg_single(psge, sgl_flags |
1227                     data_out_sz, data_out_dma);
1228
1229                 /* incr sgel */
1230                 psge += ioc->sge_size;
1231
1232                 /* READ sgel last */
1233                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1234                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1235                     MPI2_SGE_FLAGS_END_OF_LIST);
1236                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1237                 ioc->base_add_sg_single(psge, sgl_flags |
1238                     data_in_sz, data_in_dma);
1239         } else if (data_out_sz) /* WRITE */ {
1240                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1241                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1242                     MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1243                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1244                 ioc->base_add_sg_single(psge, sgl_flags |
1245                     data_out_sz, data_out_dma);
1246         } else if (data_in_sz) /* READ */ {
1247                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1248                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1249                     MPI2_SGE_FLAGS_END_OF_LIST);
1250                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1251                 ioc->base_add_sg_single(psge, sgl_flags |
1252                     data_in_sz, data_in_dma);
1253         }
1254 }
1255
1256 /* IEEE format sgls */
1257
1258 /**
1259  * _base_add_sg_single_ieee - add sg element for IEEE format
1260  * @paddr: virtual address for SGE
1261  * @flags: SGE flags
1262  * @chain_offset: number of 128 byte elements from start of segment
1263  * @length: data transfer length
1264  * @dma_addr: Physical address
1265  *
1266  * Return nothing.
1267  */
1268 static void
1269 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
1270         dma_addr_t dma_addr)
1271 {
1272         Mpi25IeeeSgeChain64_t *sgel = paddr;
1273
1274         sgel->Flags = flags;
1275         sgel->NextChainOffset = chain_offset;
1276         sgel->Length = cpu_to_le32(length);
1277         sgel->Address = cpu_to_le64(dma_addr);
1278 }
1279
1280 /**
1281  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
1282  * @ioc: per adapter object
1283  * @paddr: virtual address for SGE
1284  *
1285  * Create a zero length scatter gather entry to insure the IOCs hardware has
1286  * something to use if the target device goes brain dead and tries
1287  * to send data even when none is asked for.
1288  *
1289  * Return nothing.
1290  */
1291 static void
1292 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1293 {
1294         u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1295                 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
1296                 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
1297         _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
1298 }
1299
1300 /**
1301  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
1302  * @ioc: per adapter object
1303  * @scmd: scsi command
1304  * @smid: system request message index
1305  * Context: none.
1306  *
1307  * The main routine that builds scatter gather table from a given
1308  * scsi request sent via the .queuecommand main handler.
1309  *
1310  * Returns 0 success, anything else error
1311  */
1312 static int
1313 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
1314         struct scsi_cmnd *scmd, u16 smid)
1315 {
1316         Mpi2SCSIIORequest_t *mpi_request;
1317         dma_addr_t chain_dma;
1318         struct scatterlist *sg_scmd;
1319         void *sg_local, *chain;
1320         u32 chain_offset;
1321         u32 chain_length;
1322         int sges_left;
1323         u32 sges_in_segment;
1324         u8 simple_sgl_flags;
1325         u8 simple_sgl_flags_last;
1326         u8 chain_sgl_flags;
1327         struct chain_tracker *chain_req;
1328
1329         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1330
1331         /* init scatter gather flags */
1332         simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1333             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1334         simple_sgl_flags_last = simple_sgl_flags |
1335             MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1336         chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
1337             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1338
1339         sg_scmd = scsi_sglist(scmd);
1340         sges_left = scsi_dma_map(scmd);
1341         if (!sges_left) {
1342                 sdev_printk(KERN_ERR, scmd->device,
1343                         "pci_map_sg failed: request for %d bytes!\n",
1344                         scsi_bufflen(scmd));
1345                 return -ENOMEM;
1346         }
1347
1348         sg_local = &mpi_request->SGL;
1349         sges_in_segment = (ioc->request_sz -
1350             offsetof(Mpi2SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
1351         if (sges_left <= sges_in_segment)
1352                 goto fill_in_last_segment;
1353
1354         mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
1355             (offsetof(Mpi2SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
1356
1357         /* fill in main message segment when there is a chain following */
1358         while (sges_in_segment > 1) {
1359                 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1360                     sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1361                 sg_scmd = sg_next(sg_scmd);
1362                 sg_local += ioc->sge_size_ieee;
1363                 sges_left--;
1364                 sges_in_segment--;
1365         }
1366
1367         /* initializing the pointers */
1368         chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1369         if (!chain_req)
1370                 return -1;
1371         chain = chain_req->chain_buffer;
1372         chain_dma = chain_req->chain_buffer_dma;
1373         do {
1374                 sges_in_segment = (sges_left <=
1375                     ioc->max_sges_in_chain_message) ? sges_left :
1376                     ioc->max_sges_in_chain_message;
1377                 chain_offset = (sges_left == sges_in_segment) ?
1378                     0 : sges_in_segment;
1379                 chain_length = sges_in_segment * ioc->sge_size_ieee;
1380                 if (chain_offset)
1381                         chain_length += ioc->sge_size_ieee;
1382                 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
1383                     chain_offset, chain_length, chain_dma);
1384
1385                 sg_local = chain;
1386                 if (!chain_offset)
1387                         goto fill_in_last_segment;
1388
1389                 /* fill in chain segments */
1390                 while (sges_in_segment) {
1391                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1392                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1393                         sg_scmd = sg_next(sg_scmd);
1394                         sg_local += ioc->sge_size_ieee;
1395                         sges_left--;
1396                         sges_in_segment--;
1397                 }
1398
1399                 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1400                 if (!chain_req)
1401                         return -1;
1402                 chain = chain_req->chain_buffer;
1403                 chain_dma = chain_req->chain_buffer_dma;
1404         } while (1);
1405
1406
1407  fill_in_last_segment:
1408
1409         /* fill the last segment */
1410         while (sges_left) {
1411                 if (sges_left == 1)
1412                         _base_add_sg_single_ieee(sg_local,
1413                             simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
1414                             sg_dma_address(sg_scmd));
1415                 else
1416                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1417                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1418                 sg_scmd = sg_next(sg_scmd);
1419                 sg_local += ioc->sge_size_ieee;
1420                 sges_left--;
1421         }
1422
1423         return 0;
1424 }
1425
1426 /**
1427  * _base_build_sg_ieee - build generic sg for IEEE format
1428  * @ioc: per adapter object
1429  * @psge: virtual address for SGE
1430  * @data_out_dma: physical address for WRITES
1431  * @data_out_sz: data xfer size for WRITES
1432  * @data_in_dma: physical address for READS
1433  * @data_in_sz: data xfer size for READS
1434  *
1435  * Return nothing.
1436  */
1437 static void
1438 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
1439         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1440         size_t data_in_sz)
1441 {
1442         u8 sgl_flags;
1443
1444         if (!data_out_sz && !data_in_sz) {
1445                 _base_build_zero_len_sge_ieee(ioc, psge);
1446                 return;
1447         }
1448
1449         if (data_out_sz && data_in_sz) {
1450                 /* WRITE sgel first */
1451                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1452                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1453                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1454                     data_out_dma);
1455
1456                 /* incr sgel */
1457                 psge += ioc->sge_size_ieee;
1458
1459                 /* READ sgel last */
1460                 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1461                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1462                     data_in_dma);
1463         } else if (data_out_sz) /* WRITE */ {
1464                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1465                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1466                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1467                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1468                     data_out_dma);
1469         } else if (data_in_sz) /* READ */ {
1470                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1471                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1472                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1473                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1474                     data_in_dma);
1475         }
1476 }
1477
1478 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
1479
1480 /**
1481  * _base_config_dma_addressing - set dma addressing
1482  * @ioc: per adapter object
1483  * @pdev: PCI device struct
1484  *
1485  * Returns 0 for success, non-zero for failure.
1486  */
1487 static int
1488 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
1489 {
1490         struct sysinfo s;
1491         u64 consistent_dma_mask;
1492
1493         if (ioc->dma_mask)
1494                 consistent_dma_mask = DMA_BIT_MASK(64);
1495         else
1496                 consistent_dma_mask = DMA_BIT_MASK(32);
1497
1498         if (sizeof(dma_addr_t) > 4) {
1499                 const uint64_t required_mask =
1500                     dma_get_required_mask(&pdev->dev);
1501                 if ((required_mask > DMA_BIT_MASK(32)) &&
1502                     !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1503                     !pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) {
1504                         ioc->base_add_sg_single = &_base_add_sg_single_64;
1505                         ioc->sge_size = sizeof(Mpi2SGESimple64_t);
1506                         ioc->dma_mask = 64;
1507                         goto out;
1508                 }
1509         }
1510
1511         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
1512             && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
1513                 ioc->base_add_sg_single = &_base_add_sg_single_32;
1514                 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
1515                 ioc->dma_mask = 32;
1516         } else
1517                 return -ENODEV;
1518
1519  out:
1520         si_meminfo(&s);
1521         pr_info(MPT3SAS_FMT
1522                 "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
1523                 ioc->name, ioc->dma_mask, convert_to_kb(s.totalram));
1524
1525         return 0;
1526 }
1527
1528 static int
1529 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
1530                                       struct pci_dev *pdev)
1531 {
1532         if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
1533                 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
1534                         return -ENODEV;
1535         }
1536         return 0;
1537 }
1538
1539 /**
1540  * _base_check_enable_msix - checks MSIX capabable.
1541  * @ioc: per adapter object
1542  *
1543  * Check to see if card is capable of MSIX, and set number
1544  * of available msix vectors
1545  */
1546 static int
1547 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1548 {
1549         int base;
1550         u16 message_control;
1551
1552         base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
1553         if (!base) {
1554                 dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
1555                         ioc->name));
1556                 return -EINVAL;
1557         }
1558
1559         /* get msix vector count */
1560
1561         pci_read_config_word(ioc->pdev, base + 2, &message_control);
1562         ioc->msix_vector_count = (message_control & 0x3FF) + 1;
1563         if (ioc->msix_vector_count > 8)
1564                 ioc->msix_vector_count = 8;
1565         dinitprintk(ioc, pr_info(MPT3SAS_FMT
1566                 "msix is supported, vector_count(%d)\n",
1567                 ioc->name, ioc->msix_vector_count));
1568         return 0;
1569 }
1570
1571 /**
1572  * _base_free_irq - free irq
1573  * @ioc: per adapter object
1574  *
1575  * Freeing respective reply_queue from the list.
1576  */
1577 static void
1578 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
1579 {
1580         struct adapter_reply_queue *reply_q, *next;
1581
1582         if (list_empty(&ioc->reply_queue_list))
1583                 return;
1584
1585         list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1586                 list_del(&reply_q->list);
1587                 irq_set_affinity_hint(reply_q->vector, NULL);
1588                 free_cpumask_var(reply_q->affinity_hint);
1589                 synchronize_irq(reply_q->vector);
1590                 free_irq(reply_q->vector, reply_q);
1591                 kfree(reply_q);
1592         }
1593 }
1594
1595 /**
1596  * _base_request_irq - request irq
1597  * @ioc: per adapter object
1598  * @index: msix index into vector table
1599  * @vector: irq vector
1600  *
1601  * Inserting respective reply_queue into the list.
1602  */
1603 static int
1604 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index, u32 vector)
1605 {
1606         struct adapter_reply_queue *reply_q;
1607         int r;
1608
1609         reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
1610         if (!reply_q) {
1611                 pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
1612                     ioc->name, (int)sizeof(struct adapter_reply_queue));
1613                 return -ENOMEM;
1614         }
1615         reply_q->ioc = ioc;
1616         reply_q->msix_index = index;
1617         reply_q->vector = vector;
1618
1619         if (!alloc_cpumask_var(&reply_q->affinity_hint, GFP_KERNEL))
1620                 return -ENOMEM;
1621         cpumask_clear(reply_q->affinity_hint);
1622
1623         atomic_set(&reply_q->busy, 0);
1624         if (ioc->msix_enable)
1625                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
1626                     MPT3SAS_DRIVER_NAME, ioc->id, index);
1627         else
1628                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
1629                     MPT3SAS_DRIVER_NAME, ioc->id);
1630         r = request_irq(vector, _base_interrupt, IRQF_SHARED, reply_q->name,
1631             reply_q);
1632         if (r) {
1633                 pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
1634                     reply_q->name, vector);
1635                 kfree(reply_q);
1636                 return -EBUSY;
1637         }
1638
1639         INIT_LIST_HEAD(&reply_q->list);
1640         list_add_tail(&reply_q->list, &ioc->reply_queue_list);
1641         return 0;
1642 }
1643
1644 /**
1645  * _base_assign_reply_queues - assigning msix index for each cpu
1646  * @ioc: per adapter object
1647  *
1648  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
1649  *
1650  * It would nice if we could call irq_set_affinity, however it is not
1651  * an exported symbol
1652  */
1653 static void
1654 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1655 {
1656         unsigned int cpu, nr_cpus, nr_msix, index = 0;
1657         struct adapter_reply_queue *reply_q;
1658
1659         if (!_base_is_controller_msix_enabled(ioc))
1660                 return;
1661
1662         memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
1663
1664         nr_cpus = num_online_cpus();
1665         nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
1666                                                ioc->facts.MaxMSIxVectors);
1667         if (!nr_msix)
1668                 return;
1669
1670         cpu = cpumask_first(cpu_online_mask);
1671
1672         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1673
1674                 unsigned int i, group = nr_cpus / nr_msix;
1675
1676                 if (cpu >= nr_cpus)
1677                         break;
1678
1679                 if (index < nr_cpus % nr_msix)
1680                         group++;
1681
1682                 for (i = 0 ; i < group ; i++) {
1683                         ioc->cpu_msix_table[cpu] = index;
1684                         cpumask_or(reply_q->affinity_hint,
1685                                    reply_q->affinity_hint, get_cpu_mask(cpu));
1686                         cpu = cpumask_next(cpu, cpu_online_mask);
1687                 }
1688
1689                 if (irq_set_affinity_hint(reply_q->vector,
1690                                            reply_q->affinity_hint))
1691                         dinitprintk(ioc, pr_info(MPT3SAS_FMT
1692                             "error setting affinity hint for irq vector %d\n",
1693                             ioc->name, reply_q->vector));
1694                 index++;
1695         }
1696 }
1697
1698 /**
1699  * _base_disable_msix - disables msix
1700  * @ioc: per adapter object
1701  *
1702  */
1703 static void
1704 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
1705 {
1706         if (!ioc->msix_enable)
1707                 return;
1708         pci_disable_msix(ioc->pdev);
1709         ioc->msix_enable = 0;
1710 }
1711
1712 /**
1713  * _base_enable_msix - enables msix, failback to io_apic
1714  * @ioc: per adapter object
1715  *
1716  */
1717 static int
1718 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1719 {
1720         struct msix_entry *entries, *a;
1721         int r;
1722         int i;
1723         u8 try_msix = 0;
1724
1725         if (msix_disable == -1 || msix_disable == 0)
1726                 try_msix = 1;
1727
1728         if (!try_msix)
1729                 goto try_ioapic;
1730
1731         if (_base_check_enable_msix(ioc) != 0)
1732                 goto try_ioapic;
1733
1734         ioc->reply_queue_count = min_t(int, ioc->cpu_count,
1735             ioc->msix_vector_count);
1736
1737         printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores"
1738           ": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count,
1739           ioc->cpu_count, max_msix_vectors);
1740
1741         if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
1742                 max_msix_vectors = 8;
1743
1744         if (max_msix_vectors > 0) {
1745                 ioc->reply_queue_count = min_t(int, max_msix_vectors,
1746                         ioc->reply_queue_count);
1747                 ioc->msix_vector_count = ioc->reply_queue_count;
1748         } else if (max_msix_vectors == 0)
1749                 goto try_ioapic;
1750
1751         entries = kcalloc(ioc->reply_queue_count, sizeof(struct msix_entry),
1752             GFP_KERNEL);
1753         if (!entries) {
1754                 dfailprintk(ioc, pr_info(MPT3SAS_FMT
1755                         "kcalloc failed @ at %s:%d/%s() !!!\n",
1756                         ioc->name, __FILE__, __LINE__, __func__));
1757                 goto try_ioapic;
1758         }
1759
1760         for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++)
1761                 a->entry = i;
1762
1763         r = pci_enable_msix_exact(ioc->pdev, entries, ioc->reply_queue_count);
1764         if (r) {
1765                 dfailprintk(ioc, pr_info(MPT3SAS_FMT
1766                         "pci_enable_msix_exact failed (r=%d) !!!\n",
1767                         ioc->name, r));
1768                 kfree(entries);
1769                 goto try_ioapic;
1770         }
1771
1772         ioc->msix_enable = 1;
1773         for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++) {
1774                 r = _base_request_irq(ioc, i, a->vector);
1775                 if (r) {
1776                         _base_free_irq(ioc);
1777                         _base_disable_msix(ioc);
1778                         kfree(entries);
1779                         goto try_ioapic;
1780                 }
1781         }
1782
1783         kfree(entries);
1784         return 0;
1785
1786 /* failback to io_apic interrupt routing */
1787  try_ioapic:
1788
1789         ioc->reply_queue_count = 1;
1790         r = _base_request_irq(ioc, 0, ioc->pdev->irq);
1791
1792         return r;
1793 }
1794
1795 /**
1796  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
1797  * @ioc: per adapter object
1798  *
1799  * Returns 0 for success, non-zero for failure.
1800  */
1801 int
1802 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
1803 {
1804         struct pci_dev *pdev = ioc->pdev;
1805         u32 memap_sz;
1806         u32 pio_sz;
1807         int i, r = 0;
1808         u64 pio_chip = 0;
1809         u64 chip_phys = 0;
1810         struct adapter_reply_queue *reply_q;
1811
1812         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
1813             ioc->name, __func__));
1814
1815         ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
1816         if (pci_enable_device_mem(pdev)) {
1817                 pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
1818                         ioc->name);
1819                 ioc->bars = 0;
1820                 return -ENODEV;
1821         }
1822
1823
1824         if (pci_request_selected_regions(pdev, ioc->bars,
1825             MPT3SAS_DRIVER_NAME)) {
1826                 pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
1827                         ioc->name);
1828                 ioc->bars = 0;
1829                 r = -ENODEV;
1830                 goto out_fail;
1831         }
1832
1833 /* AER (Advanced Error Reporting) hooks */
1834         pci_enable_pcie_error_reporting(pdev);
1835
1836         pci_set_master(pdev);
1837
1838
1839         if (_base_config_dma_addressing(ioc, pdev) != 0) {
1840                 pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
1841                     ioc->name, pci_name(pdev));
1842                 r = -ENODEV;
1843                 goto out_fail;
1844         }
1845
1846         for (i = 0, memap_sz = 0, pio_sz = 0 ; i < DEVICE_COUNT_RESOURCE; i++) {
1847                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1848                         if (pio_sz)
1849                                 continue;
1850                         pio_chip = (u64)pci_resource_start(pdev, i);
1851                         pio_sz = pci_resource_len(pdev, i);
1852                 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
1853                         if (memap_sz)
1854                                 continue;
1855                         ioc->chip_phys = pci_resource_start(pdev, i);
1856                         chip_phys = (u64)ioc->chip_phys;
1857                         memap_sz = pci_resource_len(pdev, i);
1858                         ioc->chip = ioremap(ioc->chip_phys, memap_sz);
1859                         if (ioc->chip == NULL) {
1860                                 pr_err(MPT3SAS_FMT "unable to map adapter memory!\n",
1861                                         ioc->name);
1862                                 r = -EINVAL;
1863                                 goto out_fail;
1864                         }
1865                 }
1866         }
1867
1868         _base_mask_interrupts(ioc);
1869
1870         r = _base_get_ioc_facts(ioc, CAN_SLEEP);
1871         if (r)
1872                 goto out_fail;
1873
1874         if (!ioc->rdpq_array_enable_assigned) {
1875                 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
1876                 ioc->rdpq_array_enable_assigned = 1;
1877         }
1878
1879         r = _base_enable_msix(ioc);
1880         if (r)
1881                 goto out_fail;
1882
1883         list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
1884                 pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
1885                     reply_q->name,  ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
1886                     "IO-APIC enabled"), reply_q->vector);
1887
1888         pr_info(MPT3SAS_FMT "iomem(0x%016llx), mapped(0x%p), size(%d)\n",
1889             ioc->name, (unsigned long long)chip_phys, ioc->chip, memap_sz);
1890         pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
1891             ioc->name, (unsigned long long)pio_chip, pio_sz);
1892
1893         /* Save PCI configuration state for recovery from PCI AER/EEH errors */
1894         pci_save_state(pdev);
1895         return 0;
1896
1897  out_fail:
1898         if (ioc->chip_phys)
1899                 iounmap(ioc->chip);
1900         ioc->chip_phys = 0;
1901         pci_release_selected_regions(ioc->pdev, ioc->bars);
1902         pci_disable_pcie_error_reporting(pdev);
1903         pci_disable_device(pdev);
1904         return r;
1905 }
1906
1907 /**
1908  * mpt3sas_base_get_msg_frame - obtain request mf pointer
1909  * @ioc: per adapter object
1910  * @smid: system request message index(smid zero is invalid)
1911  *
1912  * Returns virt pointer to message frame.
1913  */
1914 void *
1915 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1916 {
1917         return (void *)(ioc->request + (smid * ioc->request_sz));
1918 }
1919
1920 /**
1921  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
1922  * @ioc: per adapter object
1923  * @smid: system request message index
1924  *
1925  * Returns virt pointer to sense buffer.
1926  */
1927 void *
1928 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1929 {
1930         return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
1931 }
1932
1933 /**
1934  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
1935  * @ioc: per adapter object
1936  * @smid: system request message index
1937  *
1938  * Returns phys pointer to the low 32bit address of the sense buffer.
1939  */
1940 __le32
1941 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1942 {
1943         return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
1944             SCSI_SENSE_BUFFERSIZE));
1945 }
1946
1947 /**
1948  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
1949  * @ioc: per adapter object
1950  * @phys_addr: lower 32 physical addr of the reply
1951  *
1952  * Converts 32bit lower physical addr into a virt address.
1953  */
1954 void *
1955 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
1956 {
1957         if (!phys_addr)
1958                 return NULL;
1959         return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
1960 }
1961
1962 /**
1963  * mpt3sas_base_get_smid - obtain a free smid from internal queue
1964  * @ioc: per adapter object
1965  * @cb_idx: callback index
1966  *
1967  * Returns smid (zero is invalid)
1968  */
1969 u16
1970 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
1971 {
1972         unsigned long flags;
1973         struct request_tracker *request;
1974         u16 smid;
1975
1976         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1977         if (list_empty(&ioc->internal_free_list)) {
1978                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1979                 pr_err(MPT3SAS_FMT "%s: smid not available\n",
1980                     ioc->name, __func__);
1981                 return 0;
1982         }
1983
1984         request = list_entry(ioc->internal_free_list.next,
1985             struct request_tracker, tracker_list);
1986         request->cb_idx = cb_idx;
1987         smid = request->smid;
1988         list_del(&request->tracker_list);
1989         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1990         return smid;
1991 }
1992
1993 /**
1994  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
1995  * @ioc: per adapter object
1996  * @cb_idx: callback index
1997  * @scmd: pointer to scsi command object
1998  *
1999  * Returns smid (zero is invalid)
2000  */
2001 u16
2002 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
2003         struct scsi_cmnd *scmd)
2004 {
2005         unsigned long flags;
2006         struct scsiio_tracker *request;
2007         u16 smid;
2008
2009         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2010         if (list_empty(&ioc->free_list)) {
2011                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2012                 pr_err(MPT3SAS_FMT "%s: smid not available\n",
2013                     ioc->name, __func__);
2014                 return 0;
2015         }
2016
2017         request = list_entry(ioc->free_list.next,
2018             struct scsiio_tracker, tracker_list);
2019         request->scmd = scmd;
2020         request->cb_idx = cb_idx;
2021         smid = request->smid;
2022         list_del(&request->tracker_list);
2023         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2024         return smid;
2025 }
2026
2027 /**
2028  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
2029  * @ioc: per adapter object
2030  * @cb_idx: callback index
2031  *
2032  * Returns smid (zero is invalid)
2033  */
2034 u16
2035 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2036 {
2037         unsigned long flags;
2038         struct request_tracker *request;
2039         u16 smid;
2040
2041         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2042         if (list_empty(&ioc->hpr_free_list)) {
2043                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2044                 return 0;
2045         }
2046
2047         request = list_entry(ioc->hpr_free_list.next,
2048             struct request_tracker, tracker_list);
2049         request->cb_idx = cb_idx;
2050         smid = request->smid;
2051         list_del(&request->tracker_list);
2052         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2053         return smid;
2054 }
2055
2056 /**
2057  * mpt3sas_base_free_smid - put smid back on free_list
2058  * @ioc: per adapter object
2059  * @smid: system request message index
2060  *
2061  * Return nothing.
2062  */
2063 void
2064 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2065 {
2066         unsigned long flags;
2067         int i;
2068         struct chain_tracker *chain_req, *next;
2069
2070         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2071         if (smid < ioc->hi_priority_smid) {
2072                 /* scsiio queue */
2073                 i = smid - 1;
2074                 if (!list_empty(&ioc->scsi_lookup[i].chain_list)) {
2075                         list_for_each_entry_safe(chain_req, next,
2076                             &ioc->scsi_lookup[i].chain_list, tracker_list) {
2077                                 list_del_init(&chain_req->tracker_list);
2078                                 list_add(&chain_req->tracker_list,
2079                                     &ioc->free_chain_list);
2080                         }
2081                 }
2082                 ioc->scsi_lookup[i].cb_idx = 0xFF;
2083                 ioc->scsi_lookup[i].scmd = NULL;
2084                 list_add(&ioc->scsi_lookup[i].tracker_list, &ioc->free_list);
2085                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2086
2087                 /*
2088                  * See _wait_for_commands_to_complete() call with regards
2089                  * to this code.
2090                  */
2091                 if (ioc->shost_recovery && ioc->pending_io_count) {
2092                         if (ioc->pending_io_count == 1)
2093                                 wake_up(&ioc->reset_wq);
2094                         ioc->pending_io_count--;
2095                 }
2096                 return;
2097         } else if (smid < ioc->internal_smid) {
2098                 /* hi-priority */
2099                 i = smid - ioc->hi_priority_smid;
2100                 ioc->hpr_lookup[i].cb_idx = 0xFF;
2101                 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
2102         } else if (smid <= ioc->hba_queue_depth) {
2103                 /* internal queue */
2104                 i = smid - ioc->internal_smid;
2105                 ioc->internal_lookup[i].cb_idx = 0xFF;
2106                 list_add(&ioc->internal_lookup[i].tracker_list,
2107                     &ioc->internal_free_list);
2108         }
2109         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2110 }
2111
2112 /**
2113  * _base_writeq - 64 bit write to MMIO
2114  * @ioc: per adapter object
2115  * @b: data payload
2116  * @addr: address in MMIO space
2117  * @writeq_lock: spin lock
2118  *
2119  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
2120  * care of 32 bit environment where its not quarenteed to send the entire word
2121  * in one transfer.
2122  */
2123 #if defined(writeq) && defined(CONFIG_64BIT)
2124 static inline void
2125 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2126 {
2127         writeq(cpu_to_le64(b), addr);
2128 }
2129 #else
2130 static inline void
2131 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2132 {
2133         unsigned long flags;
2134         __u64 data_out = cpu_to_le64(b);
2135
2136         spin_lock_irqsave(writeq_lock, flags);
2137         writel((u32)(data_out), addr);
2138         writel((u32)(data_out >> 32), (addr + 4));
2139         spin_unlock_irqrestore(writeq_lock, flags);
2140 }
2141 #endif
2142
2143 static inline u8
2144 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
2145 {
2146         return ioc->cpu_msix_table[raw_smp_processor_id()];
2147 }
2148
2149 /**
2150  * mpt3sas_base_put_smid_scsi_io - send SCSI_IO request to firmware
2151  * @ioc: per adapter object
2152  * @smid: system request message index
2153  * @handle: device handle
2154  *
2155  * Return nothing.
2156  */
2157 void
2158 mpt3sas_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
2159 {
2160         Mpi2RequestDescriptorUnion_t descriptor;
2161         u64 *request = (u64 *)&descriptor;
2162
2163
2164         descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
2165         descriptor.SCSIIO.MSIxIndex =  _base_get_msix_index(ioc);
2166         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2167         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2168         descriptor.SCSIIO.LMID = 0;
2169         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2170             &ioc->scsi_lookup_lock);
2171 }
2172
2173 /**
2174  * mpt3sas_base_put_smid_fast_path - send fast path request to firmware
2175  * @ioc: per adapter object
2176  * @smid: system request message index
2177  * @handle: device handle
2178  *
2179  * Return nothing.
2180  */
2181 void
2182 mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2183         u16 handle)
2184 {
2185         Mpi2RequestDescriptorUnion_t descriptor;
2186         u64 *request = (u64 *)&descriptor;
2187
2188         descriptor.SCSIIO.RequestFlags =
2189             MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
2190         descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2191         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2192         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2193         descriptor.SCSIIO.LMID = 0;
2194         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2195             &ioc->scsi_lookup_lock);
2196 }
2197
2198 /**
2199  * mpt3sas_base_put_smid_hi_priority - send Task Managment request to firmware
2200  * @ioc: per adapter object
2201  * @smid: system request message index
2202  *
2203  * Return nothing.
2204  */
2205 void
2206 mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2207 {
2208         Mpi2RequestDescriptorUnion_t descriptor;
2209         u64 *request = (u64 *)&descriptor;
2210
2211         descriptor.HighPriority.RequestFlags =
2212             MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
2213         descriptor.HighPriority.MSIxIndex =  0;
2214         descriptor.HighPriority.SMID = cpu_to_le16(smid);
2215         descriptor.HighPriority.LMID = 0;
2216         descriptor.HighPriority.Reserved1 = 0;
2217         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2218             &ioc->scsi_lookup_lock);
2219 }
2220
2221 /**
2222  * mpt3sas_base_put_smid_default - Default, primarily used for config pages
2223  * @ioc: per adapter object
2224  * @smid: system request message index
2225  *
2226  * Return nothing.
2227  */
2228 void
2229 mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2230 {
2231         Mpi2RequestDescriptorUnion_t descriptor;
2232         u64 *request = (u64 *)&descriptor;
2233
2234         descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2235         descriptor.Default.MSIxIndex =  _base_get_msix_index(ioc);
2236         descriptor.Default.SMID = cpu_to_le16(smid);
2237         descriptor.Default.LMID = 0;
2238         descriptor.Default.DescriptorTypeDependent = 0;
2239         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2240             &ioc->scsi_lookup_lock);
2241 }
2242
2243 /**
2244  * _base_display_intel_branding - Display branding string
2245  * @ioc: per adapter object
2246  *
2247  * Return nothing.
2248  */
2249 static void
2250 _base_display_intel_branding(struct MPT3SAS_ADAPTER *ioc)
2251 {
2252         if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
2253                 return;
2254
2255         switch (ioc->pdev->device) {
2256         case MPI25_MFGPAGE_DEVID_SAS3008:
2257                 switch (ioc->pdev->subsystem_device) {
2258                 case MPT3SAS_INTEL_RMS3JC080_SSDID:
2259                         pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2260                                 MPT3SAS_INTEL_RMS3JC080_BRANDING);
2261                         break;
2262
2263                 case MPT3SAS_INTEL_RS3GC008_SSDID:
2264                         pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2265                                 MPT3SAS_INTEL_RS3GC008_BRANDING);
2266                         break;
2267                 case MPT3SAS_INTEL_RS3FC044_SSDID:
2268                         pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2269                                 MPT3SAS_INTEL_RS3FC044_BRANDING);
2270                         break;
2271                 case MPT3SAS_INTEL_RS3UC080_SSDID:
2272                         pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2273                                 MPT3SAS_INTEL_RS3UC080_BRANDING);
2274                         break;
2275                 default:
2276                         pr_info(MPT3SAS_FMT
2277                                 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2278                                 ioc->name, ioc->pdev->subsystem_device);
2279                         break;
2280                 }
2281                 break;
2282         default:
2283                 pr_info(MPT3SAS_FMT
2284                         "Intel(R) Controller: Subsystem ID: 0x%X\n",
2285                         ioc->name, ioc->pdev->subsystem_device);
2286                 break;
2287         }
2288 }
2289
2290
2291
2292 /**
2293  * _base_display_ioc_capabilities - Disply IOC's capabilities.
2294  * @ioc: per adapter object
2295  *
2296  * Return nothing.
2297  */
2298 static void
2299 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
2300 {
2301         int i = 0;
2302         char desc[16];
2303         u32 iounit_pg1_flags;
2304         u32 bios_version;
2305
2306         bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
2307         strncpy(desc, ioc->manu_pg0.ChipName, 16);
2308         pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
2309            "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
2310             ioc->name, desc,
2311            (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
2312            (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
2313            (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
2314            ioc->facts.FWVersion.Word & 0x000000FF,
2315            ioc->pdev->revision,
2316            (bios_version & 0xFF000000) >> 24,
2317            (bios_version & 0x00FF0000) >> 16,
2318            (bios_version & 0x0000FF00) >> 8,
2319             bios_version & 0x000000FF);
2320
2321         _base_display_intel_branding(ioc);
2322
2323         pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
2324
2325         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
2326                 pr_info("Initiator");
2327                 i++;
2328         }
2329
2330         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
2331                 pr_info("%sTarget", i ? "," : "");
2332                 i++;
2333         }
2334
2335         i = 0;
2336         pr_info("), ");
2337         pr_info("Capabilities=(");
2338
2339         if (ioc->facts.IOCCapabilities &
2340                     MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
2341                         pr_info("Raid");
2342                         i++;
2343         }
2344
2345         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
2346                 pr_info("%sTLR", i ? "," : "");
2347                 i++;
2348         }
2349
2350         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
2351                 pr_info("%sMulticast", i ? "," : "");
2352                 i++;
2353         }
2354
2355         if (ioc->facts.IOCCapabilities &
2356             MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
2357                 pr_info("%sBIDI Target", i ? "," : "");
2358                 i++;
2359         }
2360
2361         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
2362                 pr_info("%sEEDP", i ? "," : "");
2363                 i++;
2364         }
2365
2366         if (ioc->facts.IOCCapabilities &
2367             MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
2368                 pr_info("%sSnapshot Buffer", i ? "," : "");
2369                 i++;
2370         }
2371
2372         if (ioc->facts.IOCCapabilities &
2373             MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
2374                 pr_info("%sDiag Trace Buffer", i ? "," : "");
2375                 i++;
2376         }
2377
2378         if (ioc->facts.IOCCapabilities &
2379             MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
2380                 pr_info("%sDiag Extended Buffer", i ? "," : "");
2381                 i++;
2382         }
2383
2384         if (ioc->facts.IOCCapabilities &
2385             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
2386                 pr_info("%sTask Set Full", i ? "," : "");
2387                 i++;
2388         }
2389
2390         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
2391         if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
2392                 pr_info("%sNCQ", i ? "," : "");
2393                 i++;
2394         }
2395
2396         pr_info(")\n");
2397 }
2398
2399 /**
2400  * mpt3sas_base_update_missing_delay - change the missing delay timers
2401  * @ioc: per adapter object
2402  * @device_missing_delay: amount of time till device is reported missing
2403  * @io_missing_delay: interval IO is returned when there is a missing device
2404  *
2405  * Return nothing.
2406  *
2407  * Passed on the command line, this function will modify the device missing
2408  * delay, as well as the io missing delay. This should be called at driver
2409  * load time.
2410  */
2411 void
2412 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
2413         u16 device_missing_delay, u8 io_missing_delay)
2414 {
2415         u16 dmd, dmd_new, dmd_orignal;
2416         u8 io_missing_delay_original;
2417         u16 sz;
2418         Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
2419         Mpi2ConfigReply_t mpi_reply;
2420         u8 num_phys = 0;
2421         u16 ioc_status;
2422
2423         mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
2424         if (!num_phys)
2425                 return;
2426
2427         sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
2428             sizeof(Mpi2SasIOUnit1PhyData_t));
2429         sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
2430         if (!sas_iounit_pg1) {
2431                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2432                     ioc->name, __FILE__, __LINE__, __func__);
2433                 goto out;
2434         }
2435         if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
2436             sas_iounit_pg1, sz))) {
2437                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2438                     ioc->name, __FILE__, __LINE__, __func__);
2439                 goto out;
2440         }
2441         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
2442             MPI2_IOCSTATUS_MASK;
2443         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
2444                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2445                     ioc->name, __FILE__, __LINE__, __func__);
2446                 goto out;
2447         }
2448
2449         /* device missing delay */
2450         dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
2451         if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2452                 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2453         else
2454                 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2455         dmd_orignal = dmd;
2456         if (device_missing_delay > 0x7F) {
2457                 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
2458                     device_missing_delay;
2459                 dmd = dmd / 16;
2460                 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
2461         } else
2462                 dmd = device_missing_delay;
2463         sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
2464
2465         /* io missing delay */
2466         io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
2467         sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
2468
2469         if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
2470             sz)) {
2471                 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2472                         dmd_new = (dmd &
2473                             MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2474                 else
2475                         dmd_new =
2476                     dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2477                 pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
2478                         ioc->name, dmd_orignal, dmd_new);
2479                 pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
2480                         ioc->name, io_missing_delay_original,
2481                     io_missing_delay);
2482                 ioc->device_missing_delay = dmd_new;
2483                 ioc->io_missing_delay = io_missing_delay;
2484         }
2485
2486 out:
2487         kfree(sas_iounit_pg1);
2488 }
2489 /**
2490  * _base_static_config_pages - static start of day config pages
2491  * @ioc: per adapter object
2492  *
2493  * Return nothing.
2494  */
2495 static void
2496 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
2497 {
2498         Mpi2ConfigReply_t mpi_reply;
2499         u32 iounit_pg1_flags;
2500
2501         mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
2502         if (ioc->ir_firmware)
2503                 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
2504                     &ioc->manu_pg10);
2505
2506         /*
2507          * Ensure correct T10 PI operation if vendor left EEDPTagMode
2508          * flag unset in NVDATA.
2509          */
2510         mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
2511         if (ioc->manu_pg11.EEDPTagMode == 0) {
2512                 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
2513                     ioc->name);
2514                 ioc->manu_pg11.EEDPTagMode &= ~0x3;
2515                 ioc->manu_pg11.EEDPTagMode |= 0x1;
2516                 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
2517                     &ioc->manu_pg11);
2518         }
2519
2520         mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
2521         mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
2522         mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
2523         mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
2524         mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
2525         mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
2526         _base_display_ioc_capabilities(ioc);
2527
2528         /*
2529          * Enable task_set_full handling in iounit_pg1 when the
2530          * facts capabilities indicate that its supported.
2531          */
2532         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
2533         if ((ioc->facts.IOCCapabilities &
2534             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
2535                 iounit_pg1_flags &=
2536                     ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
2537         else
2538                 iounit_pg1_flags |=
2539                     MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
2540         ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
2541         mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
2542
2543         if (ioc->iounit_pg8.NumSensors)
2544                 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
2545 }
2546
2547 /**
2548  * _base_release_memory_pools - release memory
2549  * @ioc: per adapter object
2550  *
2551  * Free memory allocated from _base_allocate_memory_pools.
2552  *
2553  * Return nothing.
2554  */
2555 static void
2556 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
2557 {
2558         int i = 0;
2559         struct reply_post_struct *rps;
2560
2561         dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2562             __func__));
2563
2564         if (ioc->request) {
2565                 pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
2566                     ioc->request,  ioc->request_dma);
2567                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2568                         "request_pool(0x%p): free\n",
2569                         ioc->name, ioc->request));
2570                 ioc->request = NULL;
2571         }
2572
2573         if (ioc->sense) {
2574                 pci_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
2575                 if (ioc->sense_dma_pool)
2576                         pci_pool_destroy(ioc->sense_dma_pool);
2577                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2578                         "sense_pool(0x%p): free\n",
2579                         ioc->name, ioc->sense));
2580                 ioc->sense = NULL;
2581         }
2582
2583         if (ioc->reply) {
2584                 pci_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
2585                 if (ioc->reply_dma_pool)
2586                         pci_pool_destroy(ioc->reply_dma_pool);
2587                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2588                         "reply_pool(0x%p): free\n",
2589                         ioc->name, ioc->reply));
2590                 ioc->reply = NULL;
2591         }
2592
2593         if (ioc->reply_free) {
2594                 pci_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
2595                     ioc->reply_free_dma);
2596                 if (ioc->reply_free_dma_pool)
2597                         pci_pool_destroy(ioc->reply_free_dma_pool);
2598                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2599                         "reply_free_pool(0x%p): free\n",
2600                         ioc->name, ioc->reply_free));
2601                 ioc->reply_free = NULL;
2602         }
2603
2604         if (ioc->reply_post) {
2605                 do {
2606                         rps = &ioc->reply_post[i];
2607                         if (rps->reply_post_free) {
2608                                 pci_pool_free(
2609                                     ioc->reply_post_free_dma_pool,
2610                                     rps->reply_post_free,
2611                                     rps->reply_post_free_dma);
2612                                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2613                                     "reply_post_free_pool(0x%p): free\n",
2614                                     ioc->name, rps->reply_post_free));
2615                                 rps->reply_post_free = NULL;
2616                         }
2617                 } while (ioc->rdpq_array_enable &&
2618                            (++i < ioc->reply_queue_count));
2619
2620                 if (ioc->reply_post_free_dma_pool)
2621                         pci_pool_destroy(ioc->reply_post_free_dma_pool);
2622                 kfree(ioc->reply_post);
2623         }
2624
2625         if (ioc->config_page) {
2626                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2627                     "config_page(0x%p): free\n", ioc->name,
2628                     ioc->config_page));
2629                 pci_free_consistent(ioc->pdev, ioc->config_page_sz,
2630                     ioc->config_page, ioc->config_page_dma);
2631         }
2632
2633         if (ioc->scsi_lookup) {
2634                 free_pages((ulong)ioc->scsi_lookup, ioc->scsi_lookup_pages);
2635                 ioc->scsi_lookup = NULL;
2636         }
2637         kfree(ioc->hpr_lookup);
2638         kfree(ioc->internal_lookup);
2639         if (ioc->chain_lookup) {
2640                 for (i = 0; i < ioc->chain_depth; i++) {
2641                         if (ioc->chain_lookup[i].chain_buffer)
2642                                 pci_pool_free(ioc->chain_dma_pool,
2643                                     ioc->chain_lookup[i].chain_buffer,
2644                                     ioc->chain_lookup[i].chain_buffer_dma);
2645                 }
2646                 if (ioc->chain_dma_pool)
2647                         pci_pool_destroy(ioc->chain_dma_pool);
2648                 free_pages((ulong)ioc->chain_lookup, ioc->chain_pages);
2649                 ioc->chain_lookup = NULL;
2650         }
2651 }
2652
2653 /**
2654  * _base_allocate_memory_pools - allocate start of day memory pools
2655  * @ioc: per adapter object
2656  * @sleep_flag: CAN_SLEEP or NO_SLEEP
2657  *
2658  * Returns 0 success, anything else error
2659  */
2660 static int
2661 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc,  int sleep_flag)
2662 {
2663         struct mpt3sas_facts *facts;
2664         u16 max_sge_elements;
2665         u16 chains_needed_per_io;
2666         u32 sz, total_sz, reply_post_free_sz;
2667         u32 retry_sz;
2668         u16 max_request_credit;
2669         unsigned short sg_tablesize;
2670         u16 sge_size;
2671         int i;
2672
2673         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2674             __func__));
2675
2676
2677         retry_sz = 0;
2678         facts = &ioc->facts;
2679
2680         /* command line tunables for max sgl entries */
2681         if (max_sgl_entries != -1)
2682                 sg_tablesize = max_sgl_entries;
2683         else
2684                 sg_tablesize = MPT3SAS_SG_DEPTH;
2685
2686         if (sg_tablesize < MPT3SAS_MIN_PHYS_SEGMENTS)
2687                 sg_tablesize = MPT3SAS_MIN_PHYS_SEGMENTS;
2688         else if (sg_tablesize > MPT3SAS_MAX_PHYS_SEGMENTS) {
2689                 sg_tablesize = min_t(unsigned short, sg_tablesize,
2690                                       SCSI_MAX_SG_CHAIN_SEGMENTS);
2691                 pr_warn(MPT3SAS_FMT
2692                  "sg_tablesize(%u) is bigger than kernel"
2693                  " defined SCSI_MAX_SG_SEGMENTS(%u)\n", ioc->name,
2694                  sg_tablesize, MPT3SAS_MAX_PHYS_SEGMENTS);
2695         }
2696         ioc->shost->sg_tablesize = sg_tablesize;
2697
2698         ioc->hi_priority_depth = facts->HighPriorityCredit;
2699         ioc->internal_depth = ioc->hi_priority_depth + (5);
2700         /* command line tunables  for max controller queue depth */
2701         if (max_queue_depth != -1 && max_queue_depth != 0) {
2702                 max_request_credit = min_t(u16, max_queue_depth +
2703                     ioc->hi_priority_depth + ioc->internal_depth,
2704                     facts->RequestCredit);
2705                 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
2706                         max_request_credit =  MAX_HBA_QUEUE_DEPTH;
2707         } else
2708                 max_request_credit = min_t(u16, facts->RequestCredit,
2709                     MAX_HBA_QUEUE_DEPTH);
2710
2711         ioc->hba_queue_depth = max_request_credit;
2712
2713         /* request frame size */
2714         ioc->request_sz = facts->IOCRequestFrameSize * 4;
2715
2716         /* reply frame size */
2717         ioc->reply_sz = facts->ReplyFrameSize * 4;
2718
2719         /* calculate the max scatter element size */
2720         sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
2721
2722  retry_allocation:
2723         total_sz = 0;
2724         /* calculate number of sg elements left over in the 1st frame */
2725         max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
2726             sizeof(Mpi2SGEIOUnion_t)) + sge_size);
2727         ioc->max_sges_in_main_message = max_sge_elements/sge_size;
2728
2729         /* now do the same for a chain buffer */
2730         max_sge_elements = ioc->request_sz - sge_size;
2731         ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
2732
2733         /*
2734          *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
2735          */
2736         chains_needed_per_io = ((ioc->shost->sg_tablesize -
2737            ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
2738             + 1;
2739         if (chains_needed_per_io > facts->MaxChainDepth) {
2740                 chains_needed_per_io = facts->MaxChainDepth;
2741                 ioc->shost->sg_tablesize = min_t(u16,
2742                 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
2743                 * chains_needed_per_io), ioc->shost->sg_tablesize);
2744         }
2745         ioc->chains_needed_per_io = chains_needed_per_io;
2746
2747         /* reply free queue sizing - taking into account for 64 FW events */
2748         ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
2749
2750         /* calculate reply descriptor post queue depth */
2751         ioc->reply_post_queue_depth = ioc->hba_queue_depth +
2752                                 ioc->reply_free_queue_depth +  1 ;
2753         /* align the reply post queue on the next 16 count boundary */
2754         if (ioc->reply_post_queue_depth % 16)
2755                 ioc->reply_post_queue_depth += 16 -
2756                 (ioc->reply_post_queue_depth % 16);
2757
2758
2759         if (ioc->reply_post_queue_depth >
2760             facts->MaxReplyDescriptorPostQueueDepth) {
2761                 ioc->reply_post_queue_depth =
2762                                 facts->MaxReplyDescriptorPostQueueDepth -
2763                     (facts->MaxReplyDescriptorPostQueueDepth % 16);
2764                 ioc->hba_queue_depth =
2765                                 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
2766                 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
2767         }
2768
2769         dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \
2770             "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
2771             "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
2772             ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
2773             ioc->chains_needed_per_io));
2774
2775         /* reply post queue, 16 byte align */
2776         reply_post_free_sz = ioc->reply_post_queue_depth *
2777             sizeof(Mpi2DefaultReplyDescriptor_t);
2778
2779         sz = reply_post_free_sz;
2780         if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
2781                 sz *= ioc->reply_queue_count;
2782
2783         ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
2784             (ioc->reply_queue_count):1,
2785             sizeof(struct reply_post_struct), GFP_KERNEL);
2786
2787         if (!ioc->reply_post) {
2788                 pr_err(MPT3SAS_FMT "reply_post_free pool: kcalloc failed\n",
2789                         ioc->name);
2790                 goto out;
2791         }
2792         ioc->reply_post_free_dma_pool = pci_pool_create("reply_post_free pool",
2793             ioc->pdev, sz, 16, 0);
2794         if (!ioc->reply_post_free_dma_pool) {
2795                 pr_err(MPT3SAS_FMT
2796                  "reply_post_free pool: pci_pool_create failed\n",
2797                  ioc->name);
2798                 goto out;
2799         }
2800         i = 0;
2801         do {
2802                 ioc->reply_post[i].reply_post_free =
2803                     pci_pool_alloc(ioc->reply_post_free_dma_pool,
2804                     GFP_KERNEL,
2805                     &ioc->reply_post[i].reply_post_free_dma);
2806                 if (!ioc->reply_post[i].reply_post_free) {
2807                         pr_err(MPT3SAS_FMT
2808                         "reply_post_free pool: pci_pool_alloc failed\n",
2809                         ioc->name);
2810                         goto out;
2811                 }
2812                 memset(ioc->reply_post[i].reply_post_free, 0, sz);
2813                 dinitprintk(ioc, pr_info(MPT3SAS_FMT
2814                     "reply post free pool (0x%p): depth(%d),"
2815                     "element_size(%d), pool_size(%d kB)\n", ioc->name,
2816                     ioc->reply_post[i].reply_post_free,
2817                     ioc->reply_post_queue_depth, 8, sz/1024));
2818                 dinitprintk(ioc, pr_info(MPT3SAS_FMT
2819                     "reply_post_free_dma = (0x%llx)\n", ioc->name,
2820                     (unsigned long long)
2821                     ioc->reply_post[i].reply_post_free_dma));
2822                 total_sz += sz;
2823         } while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
2824
2825         if (ioc->dma_mask == 64) {
2826                 if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
2827                         pr_warn(MPT3SAS_FMT
2828                             "no suitable consistent DMA mask for %s\n",
2829                             ioc->name, pci_name(ioc->pdev));
2830                         goto out;
2831                 }
2832         }
2833
2834         ioc->scsiio_depth = ioc->hba_queue_depth -
2835             ioc->hi_priority_depth - ioc->internal_depth;
2836
2837         /* set the scsi host can_queue depth
2838          * with some internal commands that could be outstanding
2839          */
2840         ioc->shost->can_queue = ioc->scsiio_depth;
2841         dinitprintk(ioc, pr_info(MPT3SAS_FMT
2842                 "scsi host: can_queue depth (%d)\n",
2843                 ioc->name, ioc->shost->can_queue));
2844
2845
2846         /* contiguous pool for request and chains, 16 byte align, one extra "
2847          * "frame for smid=0
2848          */
2849         ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
2850         sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
2851
2852         /* hi-priority queue */
2853         sz += (ioc->hi_priority_depth * ioc->request_sz);
2854
2855         /* internal queue */
2856         sz += (ioc->internal_depth * ioc->request_sz);
2857
2858         ioc->request_dma_sz = sz;
2859         ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
2860         if (!ioc->request) {
2861                 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
2862                     "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
2863                     "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
2864                     ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
2865                 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
2866                         goto out;
2867                 retry_sz += 64;
2868                 ioc->hba_queue_depth = max_request_credit - retry_sz;
2869                 goto retry_allocation;
2870         }
2871
2872         if (retry_sz)
2873                 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
2874                     "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
2875                     "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
2876                     ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
2877
2878         /* hi-priority queue */
2879         ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
2880             ioc->request_sz);
2881         ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
2882             ioc->request_sz);
2883
2884         /* internal queue */
2885         ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
2886             ioc->request_sz);
2887         ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
2888             ioc->request_sz);
2889
2890         dinitprintk(ioc, pr_info(MPT3SAS_FMT
2891                 "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
2892                 ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz,
2893             (ioc->hba_queue_depth * ioc->request_sz)/1024));
2894
2895         dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n",
2896             ioc->name, (unsigned long long) ioc->request_dma));
2897         total_sz += sz;
2898
2899         sz = ioc->scsiio_depth * sizeof(struct scsiio_tracker);
2900         ioc->scsi_lookup_pages = get_order(sz);
2901         ioc->scsi_lookup = (struct scsiio_tracker *)__get_free_pages(
2902             GFP_KERNEL, ioc->scsi_lookup_pages);
2903         if (!ioc->scsi_lookup) {
2904                 pr_err(MPT3SAS_FMT "scsi_lookup: get_free_pages failed, sz(%d)\n",
2905                         ioc->name, (int)sz);
2906                 goto out;
2907         }
2908
2909         dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n",
2910                 ioc->name, ioc->request, ioc->scsiio_depth));
2911
2912         ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
2913         sz = ioc->chain_depth * sizeof(struct chain_tracker);
2914         ioc->chain_pages = get_order(sz);
2915         ioc->chain_lookup = (struct chain_tracker *)__get_free_pages(
2916             GFP_KERNEL, ioc->chain_pages);
2917         if (!ioc->chain_lookup) {
2918                 pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages failed\n",
2919                         ioc->name);
2920                 goto out;
2921         }
2922         ioc->chain_dma_pool = pci_pool_create("chain pool", ioc->pdev,
2923             ioc->request_sz, 16, 0);
2924         if (!ioc->chain_dma_pool) {
2925                 pr_err(MPT3SAS_FMT "chain_dma_pool: pci_pool_create failed\n",
2926                         ioc->name);
2927                 goto out;
2928         }
2929         for (i = 0; i < ioc->chain_depth; i++) {
2930                 ioc->chain_lookup[i].chain_buffer = pci_pool_alloc(
2931                     ioc->chain_dma_pool , GFP_KERNEL,
2932                     &ioc->chain_lookup[i].chain_buffer_dma);
2933                 if (!ioc->chain_lookup[i].chain_buffer) {
2934                         ioc->chain_depth = i;
2935                         goto chain_done;
2936                 }
2937                 total_sz += ioc->request_sz;
2938         }
2939  chain_done:
2940         dinitprintk(ioc, pr_info(MPT3SAS_FMT
2941                 "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
2942                 ioc->name, ioc->chain_depth, ioc->request_sz,
2943                 ((ioc->chain_depth *  ioc->request_sz))/1024));
2944
2945         /* initialize hi-priority queue smid's */
2946         ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
2947             sizeof(struct request_tracker), GFP_KERNEL);
2948         if (!ioc->hpr_lookup) {
2949                 pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n",
2950                     ioc->name);
2951                 goto out;
2952         }
2953         ioc->hi_priority_smid = ioc->scsiio_depth + 1;
2954         dinitprintk(ioc, pr_info(MPT3SAS_FMT
2955                 "hi_priority(0x%p): depth(%d), start smid(%d)\n",
2956                 ioc->name, ioc->hi_priority,
2957             ioc->hi_priority_depth, ioc->hi_priority_smid));
2958
2959         /* initialize internal queue smid's */
2960         ioc->internal_lookup = kcalloc(ioc->internal_depth,
2961             sizeof(struct request_tracker), GFP_KERNEL);
2962         if (!ioc->internal_lookup) {
2963                 pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n",
2964                     ioc->name);
2965                 goto out;
2966         }
2967         ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
2968         dinitprintk(ioc, pr_info(MPT3SAS_FMT
2969                 "internal(0x%p): depth(%d), start smid(%d)\n",
2970                 ioc->name, ioc->internal,
2971             ioc->internal_depth, ioc->internal_smid));
2972
2973         /* sense buffers, 4 byte align */
2974         sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
2975         ioc->sense_dma_pool = pci_pool_create("sense pool", ioc->pdev, sz, 4,
2976             0);
2977         if (!ioc->sense_dma_pool) {
2978                 pr_err(MPT3SAS_FMT "sense pool: pci_pool_create failed\n",
2979                     ioc->name);
2980                 goto out;
2981         }
2982         ioc->sense = pci_pool_alloc(ioc->sense_dma_pool , GFP_KERNEL,
2983             &ioc->sense_dma);
2984         if (!ioc->sense) {
2985                 pr_err(MPT3SAS_FMT "sense pool: pci_pool_alloc failed\n",
2986                     ioc->name);
2987                 goto out;
2988         }
2989         dinitprintk(ioc, pr_info(MPT3SAS_FMT
2990             "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
2991             "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
2992             SCSI_SENSE_BUFFERSIZE, sz/1024));
2993         dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n",
2994             ioc->name, (unsigned long long)ioc->sense_dma));
2995         total_sz += sz;
2996
2997         /* reply pool, 4 byte align */
2998         sz = ioc->reply_free_queue_depth * ioc->reply_sz;
2999         ioc->reply_dma_pool = pci_pool_create("reply pool", ioc->pdev, sz, 4,
3000             0);
3001         if (!ioc->reply_dma_pool) {
3002                 pr_err(MPT3SAS_FMT "reply pool: pci_pool_create failed\n",
3003                     ioc->name);
3004                 goto out;
3005         }
3006         ioc->reply = pci_pool_alloc(ioc->reply_dma_pool , GFP_KERNEL,
3007             &ioc->reply_dma);
3008         if (!ioc->reply) {
3009                 pr_err(MPT3SAS_FMT "reply pool: pci_pool_alloc failed\n",
3010                     ioc->name);
3011                 goto out;
3012         }
3013         ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
3014         ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
3015         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3016                 "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3017                 ioc->name, ioc->reply,
3018             ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
3019         dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n",
3020             ioc->name, (unsigned long long)ioc->reply_dma));
3021         total_sz += sz;
3022
3023         /* reply free queue, 16 byte align */
3024         sz = ioc->reply_free_queue_depth * 4;
3025         ioc->reply_free_dma_pool = pci_pool_create("reply_free pool",
3026             ioc->pdev, sz, 16, 0);
3027         if (!ioc->reply_free_dma_pool) {
3028                 pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_create failed\n",
3029                         ioc->name);
3030                 goto out;
3031         }
3032         ioc->reply_free = pci_pool_alloc(ioc->reply_free_dma_pool , GFP_KERNEL,
3033             &ioc->reply_free_dma);
3034         if (!ioc->reply_free) {
3035                 pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_alloc failed\n",
3036                         ioc->name);
3037                 goto out;
3038         }
3039         memset(ioc->reply_free, 0, sz);
3040         dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \
3041             "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
3042             ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
3043         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3044                 "reply_free_dma (0x%llx)\n",
3045                 ioc->name, (unsigned long long)ioc->reply_free_dma));
3046         total_sz += sz;
3047
3048         ioc->config_page_sz = 512;
3049         ioc->config_page = pci_alloc_consistent(ioc->pdev,
3050             ioc->config_page_sz, &ioc->config_page_dma);
3051         if (!ioc->config_page) {
3052                 pr_err(MPT3SAS_FMT
3053                         "config page: pci_pool_alloc failed\n",
3054                         ioc->name);
3055                 goto out;
3056         }
3057         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3058                 "config page(0x%p): size(%d)\n",
3059                 ioc->name, ioc->config_page, ioc->config_page_sz));
3060         dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n",
3061                 ioc->name, (unsigned long long)ioc->config_page_dma));
3062         total_sz += ioc->config_page_sz;
3063
3064         pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n",
3065             ioc->name, total_sz/1024);
3066         pr_info(MPT3SAS_FMT
3067                 "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
3068             ioc->name, ioc->shost->can_queue, facts->RequestCredit);
3069         pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n",
3070             ioc->name, ioc->shost->sg_tablesize);
3071         return 0;
3072
3073  out:
3074         return -ENOMEM;
3075 }
3076
3077 /**
3078  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
3079  * @ioc: Pointer to MPT_ADAPTER structure
3080  * @cooked: Request raw or cooked IOC state
3081  *
3082  * Returns all IOC Doorbell register bits if cooked==0, else just the
3083  * Doorbell bits in MPI_IOC_STATE_MASK.
3084  */
3085 u32
3086 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
3087 {
3088         u32 s, sc;
3089
3090         s = readl(&ioc->chip->Doorbell);
3091         sc = s & MPI2_IOC_STATE_MASK;
3092         return cooked ? sc : s;
3093 }
3094
3095 /**
3096  * _base_wait_on_iocstate - waiting on a particular ioc state
3097  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
3098  * @timeout: timeout in second
3099  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3100  *
3101  * Returns 0 for success, non-zero for failure.
3102  */
3103 static int
3104 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout,
3105         int sleep_flag)
3106 {
3107         u32 count, cntdn;
3108         u32 current_state;
3109
3110         count = 0;
3111         cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3112         do {
3113                 current_state = mpt3sas_base_get_iocstate(ioc, 1);
3114                 if (current_state == ioc_state)
3115                         return 0;
3116                 if (count && current_state == MPI2_IOC_STATE_FAULT)
3117                         break;
3118                 if (sleep_flag == CAN_SLEEP)
3119                         usleep_range(1000, 1500);
3120                 else
3121                         udelay(500);
3122                 count++;
3123         } while (--cntdn);
3124
3125         return current_state;
3126 }
3127
3128 /**
3129  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
3130  * a write to the doorbell)
3131  * @ioc: per adapter object
3132  * @timeout: timeout in second
3133  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3134  *
3135  * Returns 0 for success, non-zero for failure.
3136  *
3137  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
3138  */
3139 static int
3140 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout,
3141         int sleep_flag)
3142 {
3143         u32 cntdn, count;
3144         u32 int_status;
3145
3146         count = 0;
3147         cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3148         do {
3149                 int_status = readl(&ioc->chip->HostInterruptStatus);
3150                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3151                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
3152                                 "%s: successful count(%d), timeout(%d)\n",
3153                                 ioc->name, __func__, count, timeout));
3154                         return 0;
3155                 }
3156                 if (sleep_flag == CAN_SLEEP)
3157                         usleep_range(1000, 1500);
3158                 else
3159                         udelay(500);
3160                 count++;
3161         } while (--cntdn);
3162
3163         pr_err(MPT3SAS_FMT
3164                 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3165                 ioc->name, __func__, count, int_status);
3166         return -EFAULT;
3167 }
3168
3169 /**
3170  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
3171  * @ioc: per adapter object
3172  * @timeout: timeout in second
3173  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3174  *
3175  * Returns 0 for success, non-zero for failure.
3176  *
3177  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
3178  * doorbell.
3179  */
3180 static int
3181 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout,
3182         int sleep_flag)
3183 {
3184         u32 cntdn, count;
3185         u32 int_status;
3186         u32 doorbell;
3187
3188         count = 0;
3189         cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3190         do {
3191                 int_status = readl(&ioc->chip->HostInterruptStatus);
3192                 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
3193                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
3194                                 "%s: successful count(%d), timeout(%d)\n",
3195                                 ioc->name, __func__, count, timeout));
3196                         return 0;
3197                 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3198                         doorbell = readl(&ioc->chip->Doorbell);
3199                         if ((doorbell & MPI2_IOC_STATE_MASK) ==
3200                             MPI2_IOC_STATE_FAULT) {
3201                                 mpt3sas_base_fault_info(ioc , doorbell);
3202                                 return -EFAULT;
3203                         }
3204                 } else if (int_status == 0xFFFFFFFF)
3205                         goto out;
3206
3207                 if (sleep_flag == CAN_SLEEP)
3208                         usleep_range(1000, 1500);
3209                 else
3210                         udelay(500);
3211                 count++;
3212         } while (--cntdn);
3213
3214  out:
3215         pr_err(MPT3SAS_FMT
3216          "%s: failed due to timeout count(%d), int_status(%x)!\n",
3217          ioc->name, __func__, count, int_status);
3218         return -EFAULT;
3219 }
3220
3221 /**
3222  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
3223  * @ioc: per adapter object
3224  * @timeout: timeout in second
3225  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3226  *
3227  * Returns 0 for success, non-zero for failure.
3228  *
3229  */
3230 static int
3231 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout,
3232         int sleep_flag)
3233 {
3234         u32 cntdn, count;
3235         u32 doorbell_reg;
3236
3237         count = 0;
3238         cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3239         do {
3240                 doorbell_reg = readl(&ioc->chip->Doorbell);
3241                 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
3242                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
3243                                 "%s: successful count(%d), timeout(%d)\n",
3244                                 ioc->name, __func__, count, timeout));
3245                         return 0;
3246                 }
3247                 if (sleep_flag == CAN_SLEEP)
3248                         usleep_range(1000, 1500);
3249                 else
3250                         udelay(500);
3251                 count++;
3252         } while (--cntdn);
3253
3254         pr_err(MPT3SAS_FMT
3255                 "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
3256                 ioc->name, __func__, count, doorbell_reg);
3257         return -EFAULT;
3258 }
3259
3260 /**
3261  * _base_send_ioc_reset - send doorbell reset
3262  * @ioc: per adapter object
3263  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
3264  * @timeout: timeout in second
3265  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3266  *
3267  * Returns 0 for success, non-zero for failure.
3268  */
3269 static int
3270 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout,
3271         int sleep_flag)
3272 {
3273         u32 ioc_state;
3274         int r = 0;
3275
3276         if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
3277                 pr_err(MPT3SAS_FMT "%s: unknown reset_type\n",
3278                     ioc->name, __func__);
3279                 return -EFAULT;
3280         }
3281
3282         if (!(ioc->facts.IOCCapabilities &
3283            MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
3284                 return -EFAULT;
3285
3286         pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name);
3287
3288         writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
3289             &ioc->chip->Doorbell);
3290         if ((_base_wait_for_doorbell_ack(ioc, 15, sleep_flag))) {
3291                 r = -EFAULT;
3292                 goto out;
3293         }
3294         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY,
3295             timeout, sleep_flag);
3296         if (ioc_state) {
3297                 pr_err(MPT3SAS_FMT
3298                         "%s: failed going to ready state (ioc_state=0x%x)\n",
3299                         ioc->name, __func__, ioc_state);
3300                 r = -EFAULT;
3301                 goto out;
3302         }
3303  out:
3304         pr_info(MPT3SAS_FMT "message unit reset: %s\n",
3305             ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
3306         return r;
3307 }
3308
3309 /**
3310  * _base_handshake_req_reply_wait - send request thru doorbell interface
3311  * @ioc: per adapter object
3312  * @request_bytes: request length
3313  * @request: pointer having request payload
3314  * @reply_bytes: reply length
3315  * @reply: pointer to reply payload
3316  * @timeout: timeout in second
3317  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3318  *
3319  * Returns 0 for success, non-zero for failure.
3320  */
3321 static int
3322 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
3323         u32 *request, int reply_bytes, u16 *reply, int timeout, int sleep_flag)
3324 {
3325         MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
3326         int i;
3327         u8 failed;
3328         u16 dummy;
3329         __le32 *mfp;
3330
3331         /* make sure doorbell is not in use */
3332         if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
3333                 pr_err(MPT3SAS_FMT
3334                         "doorbell is in use (line=%d)\n",
3335                         ioc->name, __LINE__);
3336                 return -EFAULT;
3337         }
3338
3339         /* clear pending doorbell interrupts from previous state changes */
3340         if (readl(&ioc->chip->HostInterruptStatus) &
3341             MPI2_HIS_IOC2SYS_DB_STATUS)
3342                 writel(0, &ioc->chip->HostInterruptStatus);
3343
3344         /* send message to ioc */
3345         writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
3346             ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
3347             &ioc->chip->Doorbell);
3348
3349         if ((_base_wait_for_doorbell_int(ioc, 5, NO_SLEEP))) {
3350                 pr_err(MPT3SAS_FMT
3351                         "doorbell handshake int failed (line=%d)\n",
3352                         ioc->name, __LINE__);
3353                 return -EFAULT;
3354         }
3355         writel(0, &ioc->chip->HostInterruptStatus);
3356
3357         if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag))) {
3358                 pr_err(MPT3SAS_FMT
3359                         "doorbell handshake ack failed (line=%d)\n",
3360                         ioc->name, __LINE__);
3361                 return -EFAULT;
3362         }
3363
3364         /* send message 32-bits at a time */
3365         for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
3366                 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
3367                 if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag)))
3368                         failed = 1;
3369         }
3370
3371         if (failed) {
3372                 pr_err(MPT3SAS_FMT
3373                         "doorbell handshake sending request failed (line=%d)\n",
3374                         ioc->name, __LINE__);
3375                 return -EFAULT;
3376         }
3377
3378         /* now wait for the reply */
3379         if ((_base_wait_for_doorbell_int(ioc, timeout, sleep_flag))) {
3380                 pr_err(MPT3SAS_FMT
3381                         "doorbell handshake int failed (line=%d)\n",
3382                         ioc->name, __LINE__);
3383                 return -EFAULT;
3384         }
3385
3386         /* read the first two 16-bits, it gives the total length of the reply */
3387         reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3388             & MPI2_DOORBELL_DATA_MASK);
3389         writel(0, &ioc->chip->HostInterruptStatus);
3390         if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3391                 pr_err(MPT3SAS_FMT
3392                         "doorbell handshake int failed (line=%d)\n",
3393                         ioc->name, __LINE__);
3394                 return -EFAULT;
3395         }
3396         reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3397             & MPI2_DOORBELL_DATA_MASK);
3398         writel(0, &ioc->chip->HostInterruptStatus);
3399
3400         for (i = 2; i < default_reply->MsgLength * 2; i++)  {
3401                 if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3402                         pr_err(MPT3SAS_FMT
3403                                 "doorbell handshake int failed (line=%d)\n",
3404                                 ioc->name, __LINE__);
3405                         return -EFAULT;
3406                 }
3407                 if (i >=  reply_bytes/2) /* overflow case */
3408                         dummy = readl(&ioc->chip->Doorbell);
3409                 else
3410                         reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3411                             & MPI2_DOORBELL_DATA_MASK);
3412                 writel(0, &ioc->chip->HostInterruptStatus);
3413         }
3414
3415         _base_wait_for_doorbell_int(ioc, 5, sleep_flag);
3416         if (_base_wait_for_doorbell_not_used(ioc, 5, sleep_flag) != 0) {
3417                 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3418                         "doorbell is in use (line=%d)\n", ioc->name, __LINE__));
3419         }
3420         writel(0, &ioc->chip->HostInterruptStatus);
3421
3422         if (ioc->logging_level & MPT_DEBUG_INIT) {
3423                 mfp = (__le32 *)reply;
3424                 pr_info("\toffset:data\n");
3425                 for (i = 0; i < reply_bytes/4; i++)
3426                         pr_info("\t[0x%02x]:%08x\n", i*4,
3427                             le32_to_cpu(mfp[i]));
3428         }
3429         return 0;
3430 }
3431
3432 /**
3433  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
3434  * @ioc: per adapter object
3435  * @mpi_reply: the reply payload from FW
3436  * @mpi_request: the request payload sent to FW
3437  *
3438  * The SAS IO Unit Control Request message allows the host to perform low-level
3439  * operations, such as resets on the PHYs of the IO Unit, also allows the host
3440  * to obtain the IOC assigned device handles for a device if it has other
3441  * identifying information about the device, in addition allows the host to
3442  * remove IOC resources associated with the device.
3443  *
3444  * Returns 0 for success, non-zero for failure.
3445  */
3446 int
3447 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
3448         Mpi2SasIoUnitControlReply_t *mpi_reply,
3449         Mpi2SasIoUnitControlRequest_t *mpi_request)
3450 {
3451         u16 smid;
3452         u32 ioc_state;
3453         unsigned long timeleft;
3454         bool issue_reset = false;
3455         int rc;
3456         void *request;
3457         u16 wait_state_count;
3458
3459         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3460             __func__));
3461
3462         mutex_lock(&ioc->base_cmds.mutex);
3463
3464         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
3465                 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
3466                     ioc->name, __func__);
3467                 rc = -EAGAIN;
3468                 goto out;
3469         }
3470
3471         wait_state_count = 0;
3472         ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3473         while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
3474                 if (wait_state_count++ == 10) {
3475                         pr_err(MPT3SAS_FMT
3476                             "%s: failed due to ioc not operational\n",
3477                             ioc->name, __func__);
3478                         rc = -EFAULT;
3479                         goto out;
3480                 }
3481                 ssleep(1);
3482                 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3483                 pr_info(MPT3SAS_FMT
3484                         "%s: waiting for operational state(count=%d)\n",
3485                         ioc->name, __func__, wait_state_count);
3486         }
3487
3488         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
3489         if (!smid) {
3490                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3491                     ioc->name, __func__);
3492                 rc = -EAGAIN;
3493                 goto out;
3494         }
3495
3496         rc = 0;
3497         ioc->base_cmds.status = MPT3_CMD_PENDING;
3498         request = mpt3sas_base_get_msg_frame(ioc, smid);
3499         ioc->base_cmds.smid = smid;
3500         memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
3501         if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
3502             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
3503                 ioc->ioc_link_reset_in_progress = 1;
3504         init_completion(&ioc->base_cmds.done);
3505         mpt3sas_base_put_smid_default(ioc, smid);
3506         timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
3507             msecs_to_jiffies(10000));
3508         if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
3509             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
3510             ioc->ioc_link_reset_in_progress)
3511                 ioc->ioc_link_reset_in_progress = 0;
3512         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
3513                 pr_err(MPT3SAS_FMT "%s: timeout\n",
3514                     ioc->name, __func__);
3515                 _debug_dump_mf(mpi_request,
3516                     sizeof(Mpi2SasIoUnitControlRequest_t)/4);
3517                 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
3518                         issue_reset = true;
3519                 goto issue_host_reset;
3520         }
3521         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
3522                 memcpy(mpi_reply, ioc->base_cmds.reply,
3523                     sizeof(Mpi2SasIoUnitControlReply_t));
3524         else
3525                 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
3526         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3527         goto out;
3528
3529  issue_host_reset:
3530         if (issue_reset)
3531                 mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
3532                     FORCE_BIG_HAMMER);
3533         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3534         rc = -EFAULT;
3535  out:
3536         mutex_unlock(&ioc->base_cmds.mutex);
3537         return rc;
3538 }
3539
3540 /**
3541  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
3542  * @ioc: per adapter object
3543  * @mpi_reply: the reply payload from FW
3544  * @mpi_request: the request payload sent to FW
3545  *
3546  * The SCSI Enclosure Processor request message causes the IOC to
3547  * communicate with SES devices to control LED status signals.
3548  *
3549  * Returns 0 for success, non-zero for failure.
3550  */
3551 int
3552 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
3553         Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
3554 {
3555         u16 smid;
3556         u32 ioc_state;
3557         unsigned long timeleft;
3558         bool issue_reset = false;
3559         int rc;
3560         void *request;
3561         u16 wait_state_count;
3562
3563         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3564             __func__));
3565
3566         mutex_lock(&ioc->base_cmds.mutex);
3567
3568         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
3569                 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
3570                     ioc->name, __func__);
3571                 rc = -EAGAIN;
3572                 goto out;
3573         }
3574
3575         wait_state_count = 0;
3576         ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3577         while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
3578                 if (wait_state_count++ == 10) {
3579                         pr_err(MPT3SAS_FMT
3580                             "%s: failed due to ioc not operational\n",
3581                             ioc->name, __func__);
3582                         rc = -EFAULT;
3583                         goto out;
3584                 }
3585                 ssleep(1);
3586                 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3587                 pr_info(MPT3SAS_FMT
3588                         "%s: waiting for operational state(count=%d)\n",
3589                         ioc->name,
3590                     __func__, wait_state_count);
3591         }
3592
3593         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
3594         if (!smid) {
3595                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3596                     ioc->name, __func__);
3597                 rc = -EAGAIN;
3598                 goto out;
3599         }
3600
3601         rc = 0;
3602         ioc->base_cmds.status = MPT3_CMD_PENDING;
3603         request = mpt3sas_base_get_msg_frame(ioc, smid);
3604         ioc->base_cmds.smid = smid;
3605         memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
3606         init_completion(&ioc->base_cmds.done);
3607         mpt3sas_base_put_smid_default(ioc, smid);
3608         timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
3609             msecs_to_jiffies(10000));
3610         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
3611                 pr_err(MPT3SAS_FMT "%s: timeout\n",
3612                     ioc->name, __func__);
3613                 _debug_dump_mf(mpi_request,
3614                     sizeof(Mpi2SepRequest_t)/4);
3615                 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
3616                         issue_reset = false;
3617                 goto issue_host_reset;
3618         }
3619         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
3620                 memcpy(mpi_reply, ioc->base_cmds.reply,
3621                     sizeof(Mpi2SepReply_t));
3622         else
3623                 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
3624         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3625         goto out;
3626
3627  issue_host_reset:
3628         if (issue_reset)
3629                 mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
3630                     FORCE_BIG_HAMMER);
3631         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3632         rc = -EFAULT;
3633  out:
3634         mutex_unlock(&ioc->base_cmds.mutex);
3635         return rc;
3636 }
3637
3638 /**
3639  * _base_get_port_facts - obtain port facts reply and save in ioc
3640  * @ioc: per adapter object
3641  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3642  *
3643  * Returns 0 for success, non-zero for failure.
3644  */
3645 static int
3646 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port, int sleep_flag)
3647 {
3648         Mpi2PortFactsRequest_t mpi_request;
3649         Mpi2PortFactsReply_t mpi_reply;
3650         struct mpt3sas_port_facts *pfacts;
3651         int mpi_reply_sz, mpi_request_sz, r;
3652
3653         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3654             __func__));
3655
3656         mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
3657         mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
3658         memset(&mpi_request, 0, mpi_request_sz);
3659         mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
3660         mpi_request.PortNumber = port;
3661         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
3662             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
3663
3664         if (r != 0) {
3665                 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
3666                     ioc->name, __func__, r);
3667                 return r;
3668         }
3669
3670         pfacts = &ioc->pfacts[port];
3671         memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
3672         pfacts->PortNumber = mpi_reply.PortNumber;
3673         pfacts->VP_ID = mpi_reply.VP_ID;
3674         pfacts->VF_ID = mpi_reply.VF_ID;
3675         pfacts->MaxPostedCmdBuffers =
3676             le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
3677
3678         return 0;
3679 }
3680
3681 /**
3682  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
3683  * @ioc: per adapter object
3684  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3685  *
3686  * Returns 0 for success, non-zero for failure.
3687  */
3688 static int
3689 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
3690 {
3691         Mpi2IOCFactsRequest_t mpi_request;
3692         Mpi2IOCFactsReply_t mpi_reply;
3693         struct mpt3sas_facts *facts;
3694         int mpi_reply_sz, mpi_request_sz, r;
3695
3696         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3697             __func__));
3698
3699         mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
3700         mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
3701         memset(&mpi_request, 0, mpi_request_sz);
3702         mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
3703         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
3704             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
3705
3706         if (r != 0) {
3707                 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
3708                     ioc->name, __func__, r);
3709                 return r;
3710         }
3711
3712         facts = &ioc->facts;
3713         memset(facts, 0, sizeof(struct mpt3sas_facts));
3714         facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
3715         facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
3716         facts->VP_ID = mpi_reply.VP_ID;
3717         facts->VF_ID = mpi_reply.VF_ID;
3718         facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
3719         facts->MaxChainDepth = mpi_reply.MaxChainDepth;
3720         facts->WhoInit = mpi_reply.WhoInit;
3721         facts->NumberOfPorts = mpi_reply.NumberOfPorts;
3722         facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
3723         facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
3724         facts->MaxReplyDescriptorPostQueueDepth =
3725             le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
3726         facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
3727         facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
3728         if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
3729                 ioc->ir_firmware = 1;
3730         if ((facts->IOCCapabilities &
3731               MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE))
3732                 ioc->rdpq_array_capable = 1;
3733         facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
3734         facts->IOCRequestFrameSize =
3735             le16_to_cpu(mpi_reply.IOCRequestFrameSize);
3736         facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
3737         facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
3738         ioc->shost->max_id = -1;
3739         facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
3740         facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
3741         facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
3742         facts->HighPriorityCredit =
3743             le16_to_cpu(mpi_reply.HighPriorityCredit);
3744         facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
3745         facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
3746
3747         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3748                 "hba queue depth(%d), max chains per io(%d)\n",
3749                 ioc->name, facts->RequestCredit,
3750             facts->MaxChainDepth));
3751         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3752                 "request frame size(%d), reply frame size(%d)\n", ioc->name,
3753             facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
3754         return 0;
3755 }
3756
3757 /**
3758  * _base_send_ioc_init - send ioc_init to firmware
3759  * @ioc: per adapter object
3760  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3761  *
3762  * Returns 0 for success, non-zero for failure.
3763  */
3764 static int
3765 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
3766 {
3767         Mpi2IOCInitRequest_t mpi_request;
3768         Mpi2IOCInitReply_t mpi_reply;
3769         int i, r = 0;
3770         struct timeval current_time;
3771         u16 ioc_status;
3772         u32 reply_post_free_array_sz = 0;
3773         Mpi2IOCInitRDPQArrayEntry *reply_post_free_array = NULL;
3774         dma_addr_t reply_post_free_array_dma;
3775
3776         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3777             __func__));
3778
3779         memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
3780         mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
3781         mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
3782         mpi_request.VF_ID = 0; /* TODO */
3783         mpi_request.VP_ID = 0;
3784         mpi_request.MsgVersion = cpu_to_le16(MPI2_VERSION);
3785         mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
3786
3787         if (_base_is_controller_msix_enabled(ioc))
3788                 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
3789         mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
3790         mpi_request.ReplyDescriptorPostQueueDepth =
3791             cpu_to_le16(ioc->reply_post_queue_depth);
3792         mpi_request.ReplyFreeQueueDepth =
3793             cpu_to_le16(ioc->reply_free_queue_depth);
3794
3795         mpi_request.SenseBufferAddressHigh =
3796             cpu_to_le32((u64)ioc->sense_dma >> 32);
3797         mpi_request.SystemReplyAddressHigh =
3798             cpu_to_le32((u64)ioc->reply_dma >> 32);
3799         mpi_request.SystemRequestFrameBaseAddress =
3800             cpu_to_le64((u64)ioc->request_dma);
3801         mpi_request.ReplyFreeQueueAddress =
3802             cpu_to_le64((u64)ioc->reply_free_dma);
3803
3804         if (ioc->rdpq_array_enable) {
3805                 reply_post_free_array_sz = ioc->reply_queue_count *
3806                     sizeof(Mpi2IOCInitRDPQArrayEntry);
3807                 reply_post_free_array = pci_alloc_consistent(ioc->pdev,
3808                         reply_post_free_array_sz, &reply_post_free_array_dma);
3809                 if (!reply_post_free_array) {
3810                         pr_err(MPT3SAS_FMT
3811                         "reply_post_free_array: pci_alloc_consistent failed\n",
3812                         ioc->name);
3813                         r = -ENOMEM;
3814                         goto out;
3815                 }
3816                 memset(reply_post_free_array, 0, reply_post_free_array_sz);
3817                 for (i = 0; i < ioc->reply_queue_count; i++)
3818                         reply_post_free_array[i].RDPQBaseAddress =
3819                             cpu_to_le64(
3820                                 (u64)ioc->reply_post[i].reply_post_free_dma);
3821                 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
3822                 mpi_request.ReplyDescriptorPostQueueAddress =
3823                     cpu_to_le64((u64)reply_post_free_array_dma);
3824         } else {
3825                 mpi_request.ReplyDescriptorPostQueueAddress =
3826                     cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
3827         }
3828
3829         /* This time stamp specifies number of milliseconds
3830          * since epoch ~ midnight January 1, 1970.
3831          */
3832         do_gettimeofday(&current_time);
3833         mpi_request.TimeStamp = cpu_to_le64((u64)current_time.tv_sec * 1000 +
3834             (current_time.tv_usec / 1000));
3835
3836         if (ioc->logging_level & MPT_DEBUG_INIT) {
3837                 __le32 *mfp;
3838                 int i;
3839
3840                 mfp = (__le32 *)&mpi_request;
3841                 pr_info("\toffset:data\n");
3842                 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
3843                         pr_info("\t[0x%02x]:%08x\n", i*4,
3844                             le32_to_cpu(mfp[i]));
3845         }
3846
3847         r = _base_handshake_req_reply_wait(ioc,
3848             sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
3849             sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10,
3850             sleep_flag);
3851
3852         if (r != 0) {
3853                 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
3854                     ioc->name, __func__, r);
3855                 goto out;
3856         }
3857
3858         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
3859         if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
3860             mpi_reply.IOCLogInfo) {
3861                 pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__);
3862                 r = -EIO;
3863         }
3864
3865 out:
3866         if (reply_post_free_array)
3867                 pci_free_consistent(ioc->pdev, reply_post_free_array_sz,
3868                                     reply_post_free_array,
3869                                     reply_post_free_array_dma);
3870         return r;
3871 }
3872
3873 /**
3874  * mpt3sas_port_enable_done - command completion routine for port enable
3875  * @ioc: per adapter object
3876  * @smid: system request message index
3877  * @msix_index: MSIX table index supplied by the OS
3878  * @reply: reply message frame(lower 32bit addr)
3879  *
3880  * Return 1 meaning mf should be freed from _base_interrupt
3881  *        0 means the mf is freed from this function.
3882  */
3883 u8
3884 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
3885         u32 reply)
3886 {
3887         MPI2DefaultReply_t *mpi_reply;
3888         u16 ioc_status;
3889
3890         if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
3891                 return 1;
3892
3893         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
3894         if (!mpi_reply)
3895                 return 1;
3896
3897         if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
3898                 return 1;
3899
3900         ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
3901         ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
3902         ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
3903         memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
3904         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
3905         if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
3906                 ioc->port_enable_failed = 1;
3907
3908         if (ioc->is_driver_loading) {
3909                 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
3910                         mpt3sas_port_enable_complete(ioc);
3911                         return 1;
3912                 } else {
3913                         ioc->start_scan_failed = ioc_status;
3914                         ioc->start_scan = 0;
3915                         return 1;
3916                 }
3917         }
3918         complete(&ioc->port_enable_cmds.done);
3919         return 1;
3920 }
3921
3922 /**
3923  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
3924  * @ioc: per adapter object
3925  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3926  *
3927  * Returns 0 for success, non-zero for failure.
3928  */
3929 static int
3930 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
3931 {
3932         Mpi2PortEnableRequest_t *mpi_request;
3933         Mpi2PortEnableReply_t *mpi_reply;
3934         unsigned long timeleft;
3935         int r = 0;
3936         u16 smid;
3937         u16 ioc_status;
3938
3939         pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
3940
3941         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
3942                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
3943                     ioc->name, __func__);
3944                 return -EAGAIN;
3945         }
3946
3947         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
3948         if (!smid) {
3949                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3950                     ioc->name, __func__);
3951                 return -EAGAIN;
3952         }
3953
3954         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
3955         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
3956         ioc->port_enable_cmds.smid = smid;
3957         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
3958         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
3959
3960         init_completion(&ioc->port_enable_cmds.done);
3961         mpt3sas_base_put_smid_default(ioc, smid);
3962         timeleft = wait_for_completion_timeout(&ioc->port_enable_cmds.done,
3963             300*HZ);
3964         if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
3965                 pr_err(MPT3SAS_FMT "%s: timeout\n",
3966                     ioc->name, __func__);
3967                 _debug_dump_mf(mpi_request,
3968                     sizeof(Mpi2PortEnableRequest_t)/4);
3969                 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
3970                         r = -EFAULT;
3971                 else
3972                         r = -ETIME;
3973                 goto out;
3974         }
3975
3976         mpi_reply = ioc->port_enable_cmds.reply;
3977         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
3978         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
3979                 pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n",
3980                     ioc->name, __func__, ioc_status);
3981                 r = -EFAULT;
3982                 goto out;
3983         }
3984
3985  out:
3986         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
3987         pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
3988             "SUCCESS" : "FAILED"));
3989         return r;
3990 }
3991
3992 /**
3993  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
3994  * @ioc: per adapter object
3995  *
3996  * Returns 0 for success, non-zero for failure.
3997  */
3998 int
3999 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
4000 {
4001         Mpi2PortEnableRequest_t *mpi_request;
4002         u16 smid;
4003
4004         pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4005
4006         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4007                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4008                     ioc->name, __func__);
4009                 return -EAGAIN;
4010         }
4011
4012         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4013         if (!smid) {
4014                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4015                     ioc->name, __func__);
4016                 return -EAGAIN;
4017         }
4018
4019         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4020         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4021         ioc->port_enable_cmds.smid = smid;
4022         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4023         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4024
4025         mpt3sas_base_put_smid_default(ioc, smid);
4026         return 0;
4027 }
4028
4029 /**
4030  * _base_determine_wait_on_discovery - desposition
4031  * @ioc: per adapter object
4032  *
4033  * Decide whether to wait on discovery to complete. Used to either
4034  * locate boot device, or report volumes ahead of physical devices.
4035  *
4036  * Returns 1 for wait, 0 for don't wait
4037  */
4038 static int
4039 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
4040 {
4041         /* We wait for discovery to complete if IR firmware is loaded.
4042          * The sas topology events arrive before PD events, so we need time to
4043          * turn on the bit in ioc->pd_handles to indicate PD
4044          * Also, it maybe required to report Volumes ahead of physical
4045          * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
4046          */
4047         if (ioc->ir_firmware)
4048                 return 1;
4049
4050         /* if no Bios, then we don't need to wait */
4051         if (!ioc->bios_pg3.BiosVersion)
4052                 return 0;
4053
4054         /* Bios is present, then we drop down here.
4055          *
4056          * If there any entries in the Bios Page 2, then we wait
4057          * for discovery to complete.
4058          */
4059
4060         /* Current Boot Device */
4061         if ((ioc->bios_pg2.CurrentBootDeviceForm &
4062             MPI2_BIOSPAGE2_FORM_MASK) ==
4063             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4064         /* Request Boot Device */
4065            (ioc->bios_pg2.ReqBootDeviceForm &
4066             MPI2_BIOSPAGE2_FORM_MASK) ==
4067             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4068         /* Alternate Request Boot Device */
4069            (ioc->bios_pg2.ReqAltBootDeviceForm &
4070             MPI2_BIOSPAGE2_FORM_MASK) ==
4071             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
4072                 return 0;
4073
4074         return 1;
4075 }
4076
4077 /**
4078  * _base_unmask_events - turn on notification for this event
4079  * @ioc: per adapter object
4080  * @event: firmware event
4081  *
4082  * The mask is stored in ioc->event_masks.
4083  */
4084 static void
4085 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
4086 {
4087         u32 desired_event;
4088
4089         if (event >= 128)
4090                 return;
4091
4092         desired_event = (1 << (event % 32));
4093
4094         if (event < 32)
4095                 ioc->event_masks[0] &= ~desired_event;
4096         else if (event < 64)
4097                 ioc->event_masks[1] &= ~desired_event;
4098         else if (event < 96)
4099                 ioc->event_masks[2] &= ~desired_event;
4100         else if (event < 128)
4101                 ioc->event_masks[3] &= ~desired_event;
4102 }
4103
4104 /**
4105  * _base_event_notification - send event notification
4106  * @ioc: per adapter object
4107  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4108  *
4109  * Returns 0 for success, non-zero for failure.
4110  */
4111 static int
4112 _base_event_notification(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4113 {
4114         Mpi2EventNotificationRequest_t *mpi_request;
4115         unsigned long timeleft;
4116         u16 smid;
4117         int r = 0;
4118         int i;
4119
4120         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4121             __func__));
4122
4123         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4124                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4125                     ioc->name, __func__);
4126                 return -EAGAIN;
4127         }
4128
4129         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4130         if (!smid) {
4131                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4132                     ioc->name, __func__);
4133                 return -EAGAIN;
4134         }
4135         ioc->base_cmds.status = MPT3_CMD_PENDING;
4136         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4137         ioc->base_cmds.smid = smid;
4138         memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
4139         mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
4140         mpi_request->VF_ID = 0; /* TODO */
4141         mpi_request->VP_ID = 0;
4142         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
4143                 mpi_request->EventMasks[i] =
4144                     cpu_to_le32(ioc->event_masks[i]);
4145         init_completion(&ioc->base_cmds.done);
4146         mpt3sas_base_put_smid_default(ioc, smid);
4147         timeleft = wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
4148         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4149                 pr_err(MPT3SAS_FMT "%s: timeout\n",
4150                     ioc->name, __func__);
4151                 _debug_dump_mf(mpi_request,
4152                     sizeof(Mpi2EventNotificationRequest_t)/4);
4153                 if (ioc->base_cmds.status & MPT3_CMD_RESET)
4154                         r = -EFAULT;
4155                 else
4156                         r = -ETIME;
4157         } else
4158                 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n",
4159                     ioc->name, __func__));
4160         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4161         return r;
4162 }
4163
4164 /**
4165  * mpt3sas_base_validate_event_type - validating event types
4166  * @ioc: per adapter object
4167  * @event: firmware event
4168  *
4169  * This will turn on firmware event notification when application
4170  * ask for that event. We don't mask events that are already enabled.
4171  */
4172 void
4173 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
4174 {
4175         int i, j;
4176         u32 event_mask, desired_event;
4177         u8 send_update_to_fw;
4178
4179         for (i = 0, send_update_to_fw = 0; i <
4180             MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
4181                 event_mask = ~event_type[i];
4182                 desired_event = 1;
4183                 for (j = 0; j < 32; j++) {
4184                         if (!(event_mask & desired_event) &&
4185                             (ioc->event_masks[i] & desired_event)) {
4186                                 ioc->event_masks[i] &= ~desired_event;
4187                                 send_update_to_fw = 1;
4188                         }
4189                         desired_event = (desired_event << 1);
4190                 }
4191         }
4192
4193         if (!send_update_to_fw)
4194                 return;
4195
4196         mutex_lock(&ioc->base_cmds.mutex);
4197         _base_event_notification(ioc, CAN_SLEEP);
4198         mutex_unlock(&ioc->base_cmds.mutex);
4199 }
4200
4201 /**
4202  * _base_diag_reset - the "big hammer" start of day reset
4203  * @ioc: per adapter object
4204  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4205  *
4206  * Returns 0 for success, non-zero for failure.
4207  */
4208 static int
4209 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4210 {
4211         u32 host_diagnostic;
4212         u32 ioc_state;
4213         u32 count;
4214         u32 hcb_size;
4215
4216         pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name);
4217
4218         drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n",
4219             ioc->name));
4220
4221         count = 0;
4222         do {
4223                 /* Write magic sequence to WriteSequence register
4224                  * Loop until in diagnostic mode
4225                  */
4226                 drsprintk(ioc, pr_info(MPT3SAS_FMT
4227                         "write magic sequence\n", ioc->name));
4228                 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4229                 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
4230                 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
4231                 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
4232                 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
4233                 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
4234                 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
4235
4236                 /* wait 100 msec */
4237                 if (sleep_flag == CAN_SLEEP)
4238                         msleep(100);
4239                 else
4240                         mdelay(100);
4241
4242                 if (count++ > 20)
4243                         goto out;
4244
4245                 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4246                 drsprintk(ioc, pr_info(MPT3SAS_FMT
4247                         "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
4248                     ioc->name, count, host_diagnostic));
4249
4250         } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
4251
4252         hcb_size = readl(&ioc->chip->HCBSize);
4253
4254         drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n",
4255             ioc->name));
4256         writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
4257              &ioc->chip->HostDiagnostic);
4258
4259         /*This delay allows the chip PCIe hardware time to finish reset tasks*/
4260         if (sleep_flag == CAN_SLEEP)
4261                 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4262         else
4263                 mdelay(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4264
4265         /* Approximately 300 second max wait */
4266         for (count = 0; count < (300000000 /
4267                 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
4268
4269                 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4270
4271                 if (host_diagnostic == 0xFFFFFFFF)
4272                         goto out;
4273                 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
4274                         break;
4275
4276                 /* Wait to pass the second read delay window */
4277                 if (sleep_flag == CAN_SLEEP)
4278                         msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
4279                                                                 / 1000);
4280                 else
4281                         mdelay(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
4282                                                                 / 1000);
4283         }
4284
4285         if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
4286
4287                 drsprintk(ioc, pr_info(MPT3SAS_FMT
4288                 "restart the adapter assuming the HCB Address points to good F/W\n",
4289                     ioc->name));
4290                 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
4291                 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
4292                 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
4293
4294                 drsprintk(ioc, pr_info(MPT3SAS_FMT
4295                     "re-enable the HCDW\n", ioc->name));
4296                 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
4297                     &ioc->chip->HCBSize);
4298         }
4299
4300         drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n",
4301             ioc->name));
4302         writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
4303             &ioc->chip->HostDiagnostic);
4304
4305         drsprintk(ioc, pr_info(MPT3SAS_FMT
4306                 "disable writes to the diagnostic register\n", ioc->name));
4307         writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4308
4309         drsprintk(ioc, pr_info(MPT3SAS_FMT
4310                 "Wait for FW to go to the READY state\n", ioc->name));
4311         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20,
4312             sleep_flag);
4313         if (ioc_state) {
4314                 pr_err(MPT3SAS_FMT
4315                         "%s: failed going to ready state (ioc_state=0x%x)\n",
4316                         ioc->name, __func__, ioc_state);
4317                 goto out;
4318         }
4319
4320         pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name);
4321         return 0;
4322
4323  out:
4324         pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name);
4325         return -EFAULT;
4326 }
4327
4328 /**
4329  * _base_make_ioc_ready - put controller in READY state
4330  * @ioc: per adapter object
4331  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4332  * @type: FORCE_BIG_HAMMER or SOFT_RESET
4333  *
4334  * Returns 0 for success, non-zero for failure.
4335  */
4336 static int
4337 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
4338         enum reset_type type)
4339 {
4340         u32 ioc_state;
4341         int rc;
4342         int count;
4343
4344         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4345             __func__));
4346
4347         if (ioc->pci_error_recovery)
4348                 return 0;
4349
4350         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4351         dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4352             ioc->name, __func__, ioc_state));
4353
4354         /* if in RESET state, it should move to READY state shortly */
4355         count = 0;
4356         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
4357                 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
4358                     MPI2_IOC_STATE_READY) {
4359                         if (count++ == 10) {
4360                                 pr_err(MPT3SAS_FMT
4361                                         "%s: failed going to ready state (ioc_state=0x%x)\n",
4362                                     ioc->name, __func__, ioc_state);
4363                                 return -EFAULT;
4364                         }
4365                         if (sleep_flag == CAN_SLEEP)
4366                                 ssleep(1);
4367                         else
4368                                 mdelay(1000);
4369                         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4370                 }
4371         }
4372
4373         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
4374                 return 0;
4375
4376         if (ioc_state & MPI2_DOORBELL_USED) {
4377                 dhsprintk(ioc, pr_info(MPT3SAS_FMT
4378                         "unexpected doorbell active!\n",
4379                         ioc->name));
4380                 goto issue_diag_reset;
4381         }
4382
4383         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4384                 mpt3sas_base_fault_info(ioc, ioc_state &
4385                     MPI2_DOORBELL_DATA_MASK);
4386                 goto issue_diag_reset;
4387         }
4388
4389         if (type == FORCE_BIG_HAMMER)
4390                 goto issue_diag_reset;
4391
4392         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4393                 if (!(_base_send_ioc_reset(ioc,
4394                     MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15, CAN_SLEEP))) {
4395                         return 0;
4396         }
4397
4398  issue_diag_reset:
4399         rc = _base_diag_reset(ioc, CAN_SLEEP);
4400         return rc;
4401 }
4402
4403 /**
4404  * _base_make_ioc_operational - put controller in OPERATIONAL state
4405  * @ioc: per adapter object
4406  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4407  *
4408  * Returns 0 for success, non-zero for failure.
4409  */
4410 static int
4411 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4412 {
4413         int r, i;
4414         unsigned long   flags;
4415         u32 reply_address;
4416         u16 smid;
4417         struct _tr_list *delayed_tr, *delayed_tr_next;
4418         struct adapter_reply_queue *reply_q;
4419         long reply_post_free;
4420         u32 reply_post_free_sz, index = 0;
4421
4422         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4423             __func__));
4424
4425         /* clean the delayed target reset list */
4426         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
4427             &ioc->delayed_tr_list, list) {
4428                 list_del(&delayed_tr->list);
4429                 kfree(delayed_tr);
4430         }
4431
4432
4433         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
4434             &ioc->delayed_tr_volume_list, list) {
4435                 list_del(&delayed_tr->list);
4436                 kfree(delayed_tr);
4437         }
4438
4439         /* initialize the scsi lookup free list */
4440         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4441         INIT_LIST_HEAD(&ioc->free_list);
4442         smid = 1;
4443         for (i = 0; i < ioc->scsiio_depth; i++, smid++) {
4444                 INIT_LIST_HEAD(&ioc->scsi_lookup[i].chain_list);
4445                 ioc->scsi_lookup[i].cb_idx = 0xFF;
4446                 ioc->scsi_lookup[i].smid = smid;
4447                 ioc->scsi_lookup[i].scmd = NULL;
4448                 list_add_tail(&ioc->scsi_lookup[i].tracker_list,
4449                     &ioc->free_list);
4450         }
4451
4452         /* hi-priority queue */
4453         INIT_LIST_HEAD(&ioc->hpr_free_list);
4454         smid = ioc->hi_priority_smid;
4455         for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
4456                 ioc->hpr_lookup[i].cb_idx = 0xFF;
4457                 ioc->hpr_lookup[i].smid = smid;
4458                 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
4459                     &ioc->hpr_free_list);
4460         }
4461
4462         /* internal queue */
4463         INIT_LIST_HEAD(&ioc->internal_free_list);
4464         smid = ioc->internal_smid;
4465         for (i = 0; i < ioc->internal_depth; i++, smid++) {
4466                 ioc->internal_lookup[i].cb_idx = 0xFF;
4467                 ioc->internal_lookup[i].smid = smid;
4468                 list_add_tail(&ioc->internal_lookup[i].tracker_list,
4469                     &ioc->internal_free_list);
4470         }
4471
4472         /* chain pool */
4473         INIT_LIST_HEAD(&ioc->free_chain_list);
4474         for (i = 0; i < ioc->chain_depth; i++)
4475                 list_add_tail(&ioc->chain_lookup[i].tracker_list,
4476                     &ioc->free_chain_list);
4477
4478         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4479
4480         /* initialize Reply Free Queue */
4481         for (i = 0, reply_address = (u32)ioc->reply_dma ;
4482             i < ioc->reply_free_queue_depth ; i++, reply_address +=
4483             ioc->reply_sz)
4484                 ioc->reply_free[i] = cpu_to_le32(reply_address);
4485
4486         /* initialize reply queues */
4487         if (ioc->is_driver_loading)
4488                 _base_assign_reply_queues(ioc);
4489
4490         /* initialize Reply Post Free Queue */
4491         reply_post_free_sz = ioc->reply_post_queue_depth *
4492             sizeof(Mpi2DefaultReplyDescriptor_t);
4493         reply_post_free = (long)ioc->reply_post[index].reply_post_free;
4494         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
4495                 reply_q->reply_post_host_index = 0;
4496                 reply_q->reply_post_free = (Mpi2ReplyDescriptorsUnion_t *)
4497                     reply_post_free;
4498                 for (i = 0; i < ioc->reply_post_queue_depth; i++)
4499                         reply_q->reply_post_free[i].Words =
4500                             cpu_to_le64(ULLONG_MAX);
4501                 if (!_base_is_controller_msix_enabled(ioc))
4502                         goto skip_init_reply_post_free_queue;
4503                 /*
4504                  * If RDPQ is enabled, switch to the next allocation.
4505                  * Otherwise advance within the contiguous region.
4506                  */
4507                 if (ioc->rdpq_array_enable)
4508                         reply_post_free = (long)
4509                             ioc->reply_post[++index].reply_post_free;
4510                 else
4511                         reply_post_free += reply_post_free_sz;
4512         }
4513  skip_init_reply_post_free_queue:
4514
4515         r = _base_send_ioc_init(ioc, sleep_flag);
4516         if (r)
4517                 return r;
4518
4519         /* initialize reply free host index */
4520         ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
4521         writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
4522
4523         /* initialize reply post host index */
4524         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
4525                 writel(reply_q->msix_index << MPI2_RPHI_MSIX_INDEX_SHIFT,
4526                     &ioc->chip->ReplyPostHostIndex);
4527                 if (!_base_is_controller_msix_enabled(ioc))
4528                         goto skip_init_reply_post_host_index;
4529         }
4530
4531  skip_init_reply_post_host_index:
4532
4533         _base_unmask_interrupts(ioc);
4534         r = _base_event_notification(ioc, sleep_flag);
4535         if (r)
4536                 return r;
4537
4538         if (sleep_flag == CAN_SLEEP)
4539                 _base_static_config_pages(ioc);
4540
4541
4542         if (ioc->is_driver_loading) {
4543                 ioc->wait_for_discovery_to_complete =
4544                     _base_determine_wait_on_discovery(ioc);
4545
4546                 return r; /* scan_start and scan_finished support */
4547         }
4548
4549         r = _base_send_port_enable(ioc, sleep_flag);
4550         if (r)
4551                 return r;
4552
4553         return r;
4554 }
4555
4556 /**
4557  * mpt3sas_base_free_resources - free resources controller resources
4558  * @ioc: per adapter object
4559  *
4560  * Return nothing.
4561  */
4562 void
4563 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
4564 {
4565         struct pci_dev *pdev = ioc->pdev;
4566
4567         dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4568             __func__));
4569
4570         if (ioc->chip_phys && ioc->chip) {
4571                 _base_mask_interrupts(ioc);
4572                 ioc->shost_recovery = 1;
4573                 _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
4574                 ioc->shost_recovery = 0;
4575         }
4576
4577         _base_free_irq(ioc);
4578         _base_disable_msix(ioc);
4579
4580         if (ioc->chip_phys && ioc->chip)
4581                 iounmap(ioc->chip);
4582         ioc->chip_phys = 0;
4583
4584         if (pci_is_enabled(pdev)) {
4585                 pci_release_selected_regions(ioc->pdev, ioc->bars);
4586                 pci_disable_pcie_error_reporting(pdev);
4587                 pci_disable_device(pdev);
4588         }
4589         return;
4590 }
4591
4592 /**
4593  * mpt3sas_base_attach - attach controller instance
4594  * @ioc: per adapter object
4595  *
4596  * Returns 0 for success, non-zero for failure.
4597  */
4598 int
4599 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
4600 {
4601         int r, i;
4602         int cpu_id, last_cpu_id = 0;
4603
4604         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4605             __func__));
4606
4607         /* setup cpu_msix_table */
4608         ioc->cpu_count = num_online_cpus();
4609         for_each_online_cpu(cpu_id)
4610                 last_cpu_id = cpu_id;
4611         ioc->cpu_msix_table_sz = last_cpu_id + 1;
4612         ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
4613         ioc->reply_queue_count = 1;
4614         if (!ioc->cpu_msix_table) {
4615                 dfailprintk(ioc, pr_info(MPT3SAS_FMT
4616                         "allocation for cpu_msix_table failed!!!\n",
4617                         ioc->name));
4618                 r = -ENOMEM;
4619                 goto out_free_resources;
4620         }
4621
4622         ioc->rdpq_array_enable_assigned = 0;
4623         ioc->dma_mask = 0;
4624         r = mpt3sas_base_map_resources(ioc);
4625         if (r)
4626                 goto out_free_resources;
4627
4628
4629         pci_set_drvdata(ioc->pdev, ioc->shost);
4630         r = _base_get_ioc_facts(ioc, CAN_SLEEP);
4631         if (r)
4632                 goto out_free_resources;
4633
4634         /*
4635          * In SAS3.0,
4636          * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
4637          * Target Status - all require the IEEE formated scatter gather
4638          * elements.
4639          */
4640
4641         ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
4642         ioc->build_sg = &_base_build_sg_ieee;
4643         ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
4644         ioc->mpi25 = 1;
4645         ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
4646
4647         /*
4648          * These function pointers for other requests that don't
4649          * the require IEEE scatter gather elements.
4650          *
4651          * For example Configuration Pages and SAS IOUNIT Control don't.
4652          */
4653         ioc->build_sg_mpi = &_base_build_sg;
4654         ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
4655
4656         r = _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
4657         if (r)
4658                 goto out_free_resources;
4659
4660         ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
4661             sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
4662         if (!ioc->pfacts) {
4663                 r = -ENOMEM;
4664                 goto out_free_resources;
4665         }
4666
4667         for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
4668                 r = _base_get_port_facts(ioc, i, CAN_SLEEP);
4669                 if (r)
4670                         goto out_free_resources;
4671         }
4672
4673         r = _base_allocate_memory_pools(ioc, CAN_SLEEP);
4674         if (r)
4675                 goto out_free_resources;
4676
4677         init_waitqueue_head(&ioc->reset_wq);
4678
4679         /* allocate memory pd handle bitmask list */
4680         ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
4681         if (ioc->facts.MaxDevHandle % 8)
4682                 ioc->pd_handles_sz++;
4683         ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
4684             GFP_KERNEL);
4685         if (!ioc->pd_handles) {
4686                 r = -ENOMEM;
4687                 goto out_free_resources;
4688         }
4689         ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
4690             GFP_KERNEL);
4691         if (!ioc->blocking_handles) {
4692                 r = -ENOMEM;
4693                 goto out_free_resources;
4694         }
4695
4696         ioc->fwfault_debug = mpt3sas_fwfault_debug;
4697
4698         /* base internal command bits */
4699         mutex_init(&ioc->base_cmds.mutex);
4700         ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4701         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4702
4703         /* port_enable command bits */
4704         ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4705         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
4706
4707         /* transport internal command bits */
4708         ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4709         ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
4710         mutex_init(&ioc->transport_cmds.mutex);
4711
4712         /* scsih internal command bits */
4713         ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4714         ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
4715         mutex_init(&ioc->scsih_cmds.mutex);
4716
4717         /* task management internal command bits */
4718         ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4719         ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
4720         mutex_init(&ioc->tm_cmds.mutex);
4721
4722         /* config page internal command bits */
4723         ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4724         ioc->config_cmds.status = MPT3_CMD_NOT_USED;
4725         mutex_init(&ioc->config_cmds.mutex);
4726
4727         /* ctl module internal command bits */
4728         ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4729         ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
4730         ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
4731         mutex_init(&ioc->ctl_cmds.mutex);
4732
4733         if (!ioc->base_cmds.reply || !ioc->transport_cmds.reply ||
4734             !ioc->scsih_cmds.reply || !ioc->tm_cmds.reply ||
4735             !ioc->config_cmds.reply || !ioc->ctl_cmds.reply ||
4736             !ioc->ctl_cmds.sense) {
4737                 r = -ENOMEM;
4738                 goto out_free_resources;
4739         }
4740
4741         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
4742                 ioc->event_masks[i] = -1;
4743
4744         /* here we enable the events we care about */
4745         _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
4746         _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
4747         _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
4748         _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
4749         _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
4750         _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
4751         _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
4752         _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
4753         _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
4754         _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
4755         _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
4756
4757         r = _base_make_ioc_operational(ioc, CAN_SLEEP);
4758         if (r)
4759                 goto out_free_resources;
4760
4761         return 0;
4762
4763  out_free_resources:
4764
4765         ioc->remove_host = 1;
4766
4767         mpt3sas_base_free_resources(ioc);
4768         _base_release_memory_pools(ioc);
4769         pci_set_drvdata(ioc->pdev, NULL);
4770         kfree(ioc->cpu_msix_table);
4771         kfree(ioc->pd_handles);
4772         kfree(ioc->blocking_handles);
4773         kfree(ioc->tm_cmds.reply);
4774         kfree(ioc->transport_cmds.reply);
4775         kfree(ioc->scsih_cmds.reply);
4776         kfree(ioc->config_cmds.reply);
4777         kfree(ioc->base_cmds.reply);
4778         kfree(ioc->port_enable_cmds.reply);
4779         kfree(ioc->ctl_cmds.reply);
4780         kfree(ioc->ctl_cmds.sense);
4781         kfree(ioc->pfacts);
4782         ioc->ctl_cmds.reply = NULL;
4783         ioc->base_cmds.reply = NULL;
4784         ioc->tm_cmds.reply = NULL;
4785         ioc->scsih_cmds.reply = NULL;
4786         ioc->transport_cmds.reply = NULL;
4787         ioc->config_cmds.reply = NULL;
4788         ioc->pfacts = NULL;
4789         return r;
4790 }
4791
4792
4793 /**
4794  * mpt3sas_base_detach - remove controller instance
4795  * @ioc: per adapter object
4796  *
4797  * Return nothing.
4798  */
4799 void
4800 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
4801 {
4802         dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4803             __func__));
4804
4805         mpt3sas_base_stop_watchdog(ioc);
4806         mpt3sas_base_free_resources(ioc);
4807         _base_release_memory_pools(ioc);
4808         pci_set_drvdata(ioc->pdev, NULL);
4809         kfree(ioc->cpu_msix_table);
4810         kfree(ioc->pd_handles);
4811         kfree(ioc->blocking_handles);
4812         kfree(ioc->pfacts);
4813         kfree(ioc->ctl_cmds.reply);
4814         kfree(ioc->ctl_cmds.sense);
4815         kfree(ioc->base_cmds.reply);
4816         kfree(ioc->port_enable_cmds.reply);
4817         kfree(ioc->tm_cmds.reply);
4818         kfree(ioc->transport_cmds.reply);
4819         kfree(ioc->scsih_cmds.reply);
4820         kfree(ioc->config_cmds.reply);
4821 }
4822
4823 /**
4824  * _base_reset_handler - reset callback handler (for base)
4825  * @ioc: per adapter object
4826  * @reset_phase: phase
4827  *
4828  * The handler for doing any required cleanup or initialization.
4829  *
4830  * The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET,
4831  * MPT3_IOC_DONE_RESET
4832  *
4833  * Return nothing.
4834  */
4835 static void
4836 _base_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase)
4837 {
4838         mpt3sas_scsih_reset_handler(ioc, reset_phase);
4839         mpt3sas_ctl_reset_handler(ioc, reset_phase);
4840         switch (reset_phase) {
4841         case MPT3_IOC_PRE_RESET:
4842                 dtmprintk(ioc, pr_info(MPT3SAS_FMT
4843                 "%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
4844                 break;
4845         case MPT3_IOC_AFTER_RESET:
4846                 dtmprintk(ioc, pr_info(MPT3SAS_FMT
4847                 "%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
4848                 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
4849                         ioc->transport_cmds.status |= MPT3_CMD_RESET;
4850                         mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
4851                         complete(&ioc->transport_cmds.done);
4852                 }
4853                 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4854                         ioc->base_cmds.status |= MPT3_CMD_RESET;
4855                         mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
4856                         complete(&ioc->base_cmds.done);
4857                 }
4858                 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4859                         ioc->port_enable_failed = 1;
4860                         ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
4861                         mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
4862                         if (ioc->is_driver_loading) {
4863                                 ioc->start_scan_failed =
4864                                     MPI2_IOCSTATUS_INTERNAL_ERROR;
4865                                 ioc->start_scan = 0;
4866                                 ioc->port_enable_cmds.status =
4867                                     MPT3_CMD_NOT_USED;
4868                         } else
4869                                 complete(&ioc->port_enable_cmds.done);
4870                 }
4871                 if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
4872                         ioc->config_cmds.status |= MPT3_CMD_RESET;
4873                         mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
4874                         ioc->config_cmds.smid = USHRT_MAX;
4875                         complete(&ioc->config_cmds.done);
4876                 }
4877                 break;
4878         case MPT3_IOC_DONE_RESET:
4879                 dtmprintk(ioc, pr_info(MPT3SAS_FMT
4880                         "%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
4881                 break;
4882         }
4883 }
4884
4885 /**
4886  * _wait_for_commands_to_complete - reset controller
4887  * @ioc: Pointer to MPT_ADAPTER structure
4888  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4889  *
4890  * This function waiting(3s) for all pending commands to complete
4891  * prior to putting controller in reset.
4892  */
4893 static void
4894 _wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4895 {
4896         u32 ioc_state;
4897         unsigned long flags;
4898         u16 i;
4899
4900         ioc->pending_io_count = 0;
4901         if (sleep_flag != CAN_SLEEP)
4902                 return;
4903
4904         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4905         if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
4906                 return;
4907
4908         /* pending command count */
4909         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4910         for (i = 0; i < ioc->scsiio_depth; i++)
4911                 if (ioc->scsi_lookup[i].cb_idx != 0xFF)
4912                         ioc->pending_io_count++;
4913         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4914
4915         if (!ioc->pending_io_count)
4916                 return;
4917
4918         /* wait for pending commands to complete */
4919         wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
4920 }
4921
4922 /**
4923  * mpt3sas_base_hard_reset_handler - reset controller
4924  * @ioc: Pointer to MPT_ADAPTER structure
4925  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4926  * @type: FORCE_BIG_HAMMER or SOFT_RESET
4927  *
4928  * Returns 0 for success, non-zero for failure.
4929  */
4930 int
4931 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
4932         enum reset_type type)
4933 {
4934         int r;
4935         unsigned long flags;
4936         u32 ioc_state;
4937         u8 is_fault = 0, is_trigger = 0;
4938
4939         dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name,
4940             __func__));
4941
4942         if (ioc->pci_error_recovery) {
4943                 pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n",
4944                     ioc->name, __func__);
4945                 r = 0;
4946                 goto out_unlocked;
4947         }
4948
4949         if (mpt3sas_fwfault_debug)
4950                 mpt3sas_halt_firmware(ioc);
4951
4952         /* TODO - What we really should be doing is pulling
4953          * out all the code associated with NO_SLEEP; its never used.
4954          * That is legacy code from mpt fusion driver, ported over.
4955          * I will leave this BUG_ON here for now till its been resolved.
4956          */
4957         BUG_ON(sleep_flag == NO_SLEEP);
4958
4959         /* wait for an active reset in progress to complete */
4960         if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
4961                 do {
4962                         ssleep(1);
4963                 } while (ioc->shost_recovery == 1);
4964                 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
4965                     __func__));
4966                 return ioc->ioc_reset_in_progress_status;
4967         }
4968
4969         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
4970         ioc->shost_recovery = 1;
4971         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
4972
4973         if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
4974             MPT3_DIAG_BUFFER_IS_REGISTERED) &&
4975             (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
4976             MPT3_DIAG_BUFFER_IS_RELEASED))) {
4977                 is_trigger = 1;
4978                 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4979                 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
4980                         is_fault = 1;
4981         }
4982         _base_reset_handler(ioc, MPT3_IOC_PRE_RESET);
4983         _wait_for_commands_to_complete(ioc, sleep_flag);
4984         _base_mask_interrupts(ioc);
4985         r = _base_make_ioc_ready(ioc, sleep_flag, type);
4986         if (r)
4987                 goto out;
4988         _base_reset_handler(ioc, MPT3_IOC_AFTER_RESET);
4989
4990         /* If this hard reset is called while port enable is active, then
4991          * there is no reason to call make_ioc_operational
4992          */
4993         if (ioc->is_driver_loading && ioc->port_enable_failed) {
4994                 ioc->remove_host = 1;
4995                 r = -EFAULT;
4996                 goto out;
4997         }
4998         r = _base_get_ioc_facts(ioc, CAN_SLEEP);
4999         if (r)
5000                 goto out;
5001
5002         if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
5003                 panic("%s: Issue occurred with flashing controller firmware."
5004                       "Please reboot the system and ensure that the correct"
5005                       " firmware version is running\n", ioc->name);
5006
5007         r = _base_make_ioc_operational(ioc, sleep_flag);
5008         if (!r)
5009                 _base_reset_handler(ioc, MPT3_IOC_DONE_RESET);
5010
5011  out:
5012         dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n",
5013             ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
5014
5015         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5016         ioc->ioc_reset_in_progress_status = r;
5017         ioc->shost_recovery = 0;
5018         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5019         ioc->ioc_reset_count++;
5020         mutex_unlock(&ioc->reset_in_progress_mutex);
5021
5022  out_unlocked:
5023         if ((r == 0) && is_trigger) {
5024                 if (is_fault)
5025                         mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
5026                 else
5027                         mpt3sas_trigger_master(ioc,
5028                             MASTER_TRIGGER_ADAPTER_RESET);
5029         }
5030         dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5031             __func__));
5032         return r;
5033 }