Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / scsi / esas2r / esas2r_ioctl.c
1 /*
2  *  linux/drivers/scsi/esas2r/esas2r_ioctl.c
3  *      For use with ATTO ExpressSAS R6xx SAS/SATA RAID controllers
4  *
5  *  Copyright (c) 2001-2013 ATTO Technology, Inc.
6  *  (mailto:linuxdrivers@attotech.com)
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version 2
11  * of the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * NO WARRANTY
19  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
20  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
21  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
22  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
23  * solely responsible for determining the appropriateness of using and
24  * distributing the Program and assumes all risks associated with its
25  * exercise of rights under this Agreement, including but not limited to
26  * the risks and costs of program errors, damage to or loss of data,
27  * programs or equipment, and unavailability or interruption of operations.
28  *
29  * DISCLAIMER OF LIABILITY
30  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
31  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
33  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
34  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
35  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
36  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
37  *
38  * You should have received a copy of the GNU General Public License
39  * along with this program; if not, write to the Free Software
40  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
41  * USA.
42  */
43
44 #include "esas2r.h"
45
46 /*
47  * Buffered ioctl handlers.  A buffered ioctl is one which requires that we
48  * allocate a DMA-able memory area to communicate with the firmware.  In
49  * order to prevent continually allocating and freeing consistent memory,
50  * we will allocate a global buffer the first time we need it and re-use
51  * it for subsequent ioctl calls that require it.
52  */
53
54 u8 *esas2r_buffered_ioctl;
55 dma_addr_t esas2r_buffered_ioctl_addr;
56 u32 esas2r_buffered_ioctl_size;
57 struct pci_dev *esas2r_buffered_ioctl_pcid;
58
59 static DEFINE_SEMAPHORE(buffered_ioctl_semaphore);
60 typedef int (*BUFFERED_IOCTL_CALLBACK)(struct esas2r_adapter *,
61                                        struct esas2r_request *,
62                                        struct esas2r_sg_context *,
63                                        void *);
64 typedef void (*BUFFERED_IOCTL_DONE_CALLBACK)(struct esas2r_adapter *,
65                                              struct esas2r_request *, void *);
66
67 struct esas2r_buffered_ioctl {
68         struct esas2r_adapter *a;
69         void *ioctl;
70         u32 length;
71         u32 control_code;
72         u32 offset;
73         BUFFERED_IOCTL_CALLBACK
74                 callback;
75         void *context;
76         BUFFERED_IOCTL_DONE_CALLBACK
77                 done_callback;
78         void *done_context;
79
80 };
81
82 static void complete_fm_api_req(struct esas2r_adapter *a,
83                                 struct esas2r_request *rq)
84 {
85         a->fm_api_command_done = 1;
86         wake_up_interruptible(&a->fm_api_waiter);
87 }
88
89 /* Callbacks for building scatter/gather lists for FM API requests */
90 static u32 get_physaddr_fm_api(struct esas2r_sg_context *sgc, u64 *addr)
91 {
92         struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
93         int offset = sgc->cur_offset - a->save_offset;
94
95         (*addr) = a->firmware.phys + offset;
96         return a->firmware.orig_len - offset;
97 }
98
99 static u32 get_physaddr_fm_api_header(struct esas2r_sg_context *sgc, u64 *addr)
100 {
101         struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
102         int offset = sgc->cur_offset - a->save_offset;
103
104         (*addr) = a->firmware.header_buff_phys + offset;
105         return sizeof(struct esas2r_flash_img) - offset;
106 }
107
108 /* Handle EXPRESS_IOCTL_RW_FIRMWARE ioctl with img_type = FW_IMG_FM_API. */
109 static void do_fm_api(struct esas2r_adapter *a, struct esas2r_flash_img *fi)
110 {
111         struct esas2r_request *rq;
112
113         if (down_interruptible(&a->fm_api_semaphore)) {
114                 fi->status = FI_STAT_BUSY;
115                 return;
116         }
117
118         rq = esas2r_alloc_request(a);
119         if (rq == NULL) {
120                 fi->status = FI_STAT_BUSY;
121                 goto free_sem;
122         }
123
124         if (fi == &a->firmware.header) {
125                 a->firmware.header_buff = dma_alloc_coherent(&a->pcid->dev,
126                                                              (size_t)sizeof(
127                                                                      struct
128                                                                      esas2r_flash_img),
129                                                              (dma_addr_t *)&a->
130                                                              firmware.
131                                                              header_buff_phys,
132                                                              GFP_KERNEL);
133
134                 if (a->firmware.header_buff == NULL) {
135                         esas2r_debug("failed to allocate header buffer!");
136                         fi->status = FI_STAT_BUSY;
137                         goto free_req;
138                 }
139
140                 memcpy(a->firmware.header_buff, fi,
141                        sizeof(struct esas2r_flash_img));
142                 a->save_offset = a->firmware.header_buff;
143                 a->fm_api_sgc.get_phys_addr =
144                         (PGETPHYSADDR)get_physaddr_fm_api_header;
145         } else {
146                 a->save_offset = (u8 *)fi;
147                 a->fm_api_sgc.get_phys_addr =
148                         (PGETPHYSADDR)get_physaddr_fm_api;
149         }
150
151         rq->comp_cb = complete_fm_api_req;
152         a->fm_api_command_done = 0;
153         a->fm_api_sgc.cur_offset = a->save_offset;
154
155         if (!esas2r_fm_api(a, (struct esas2r_flash_img *)a->save_offset, rq,
156                            &a->fm_api_sgc))
157                 goto all_done;
158
159         /* Now wait around for it to complete. */
160         while (!a->fm_api_command_done)
161                 wait_event_interruptible(a->fm_api_waiter,
162                                          a->fm_api_command_done);
163 all_done:
164         if (fi == &a->firmware.header) {
165                 memcpy(fi, a->firmware.header_buff,
166                        sizeof(struct esas2r_flash_img));
167
168                 dma_free_coherent(&a->pcid->dev,
169                                   (size_t)sizeof(struct esas2r_flash_img),
170                                   a->firmware.header_buff,
171                                   (dma_addr_t)a->firmware.header_buff_phys);
172         }
173 free_req:
174         esas2r_free_request(a, (struct esas2r_request *)rq);
175 free_sem:
176         up(&a->fm_api_semaphore);
177         return;
178
179 }
180
181 static void complete_nvr_req(struct esas2r_adapter *a,
182                              struct esas2r_request *rq)
183 {
184         a->nvram_command_done = 1;
185         wake_up_interruptible(&a->nvram_waiter);
186 }
187
188 /* Callback for building scatter/gather lists for buffered ioctls */
189 static u32 get_physaddr_buffered_ioctl(struct esas2r_sg_context *sgc,
190                                        u64 *addr)
191 {
192         int offset = (u8 *)sgc->cur_offset - esas2r_buffered_ioctl;
193
194         (*addr) = esas2r_buffered_ioctl_addr + offset;
195         return esas2r_buffered_ioctl_size - offset;
196 }
197
198 static void complete_buffered_ioctl_req(struct esas2r_adapter *a,
199                                         struct esas2r_request *rq)
200 {
201         a->buffered_ioctl_done = 1;
202         wake_up_interruptible(&a->buffered_ioctl_waiter);
203 }
204
205 static u8 handle_buffered_ioctl(struct esas2r_buffered_ioctl *bi)
206 {
207         struct esas2r_adapter *a = bi->a;
208         struct esas2r_request *rq;
209         struct esas2r_sg_context sgc;
210         u8 result = IOCTL_SUCCESS;
211
212         if (down_interruptible(&buffered_ioctl_semaphore))
213                 return IOCTL_OUT_OF_RESOURCES;
214
215         /* allocate a buffer or use the existing buffer. */
216         if (esas2r_buffered_ioctl) {
217                 if (esas2r_buffered_ioctl_size < bi->length) {
218                         /* free the too-small buffer and get a new one */
219                         dma_free_coherent(&a->pcid->dev,
220                                           (size_t)esas2r_buffered_ioctl_size,
221                                           esas2r_buffered_ioctl,
222                                           esas2r_buffered_ioctl_addr);
223
224                         goto allocate_buffer;
225                 }
226         } else {
227 allocate_buffer:
228                 esas2r_buffered_ioctl_size = bi->length;
229                 esas2r_buffered_ioctl_pcid = a->pcid;
230                 esas2r_buffered_ioctl = dma_alloc_coherent(&a->pcid->dev,
231                                                            (size_t)
232                                                            esas2r_buffered_ioctl_size,
233                                                            &
234                                                            esas2r_buffered_ioctl_addr,
235                                                            GFP_KERNEL);
236         }
237
238         if (!esas2r_buffered_ioctl) {
239                 esas2r_log(ESAS2R_LOG_CRIT,
240                            "could not allocate %d bytes of consistent memory "
241                            "for a buffered ioctl!",
242                            bi->length);
243
244                 esas2r_debug("buffered ioctl alloc failure");
245                 result = IOCTL_OUT_OF_RESOURCES;
246                 goto exit_cleanly;
247         }
248
249         memcpy(esas2r_buffered_ioctl, bi->ioctl, bi->length);
250
251         rq = esas2r_alloc_request(a);
252         if (rq == NULL) {
253                 esas2r_log(ESAS2R_LOG_CRIT,
254                            "could not allocate an internal request");
255
256                 result = IOCTL_OUT_OF_RESOURCES;
257                 esas2r_debug("buffered ioctl - no requests");
258                 goto exit_cleanly;
259         }
260
261         a->buffered_ioctl_done = 0;
262         rq->comp_cb = complete_buffered_ioctl_req;
263         sgc.cur_offset = esas2r_buffered_ioctl + bi->offset;
264         sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_buffered_ioctl;
265         sgc.length = esas2r_buffered_ioctl_size;
266
267         if (!(*bi->callback)(a, rq, &sgc, bi->context)) {
268                 /* completed immediately, no need to wait */
269                 a->buffered_ioctl_done = 0;
270                 goto free_andexit_cleanly;
271         }
272
273         /* now wait around for it to complete. */
274         while (!a->buffered_ioctl_done)
275                 wait_event_interruptible(a->buffered_ioctl_waiter,
276                                          a->buffered_ioctl_done);
277
278 free_andexit_cleanly:
279         if (result == IOCTL_SUCCESS && bi->done_callback)
280                 (*bi->done_callback)(a, rq, bi->done_context);
281
282         esas2r_free_request(a, rq);
283
284 exit_cleanly:
285         if (result == IOCTL_SUCCESS)
286                 memcpy(bi->ioctl, esas2r_buffered_ioctl, bi->length);
287
288         up(&buffered_ioctl_semaphore);
289         return result;
290 }
291
292 /* SMP ioctl support */
293 static int smp_ioctl_callback(struct esas2r_adapter *a,
294                               struct esas2r_request *rq,
295                               struct esas2r_sg_context *sgc, void *context)
296 {
297         struct atto_ioctl_smp *si =
298                 (struct atto_ioctl_smp *)esas2r_buffered_ioctl;
299
300         esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
301         esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_SMP);
302
303         if (!esas2r_build_sg_list(a, rq, sgc)) {
304                 si->status = ATTO_STS_OUT_OF_RSRC;
305                 return false;
306         }
307
308         esas2r_start_request(a, rq);
309         return true;
310 }
311
312 static u8 handle_smp_ioctl(struct esas2r_adapter *a, struct atto_ioctl_smp *si)
313 {
314         struct esas2r_buffered_ioctl bi;
315
316         memset(&bi, 0, sizeof(bi));
317
318         bi.a = a;
319         bi.ioctl = si;
320         bi.length = sizeof(struct atto_ioctl_smp)
321                     + le32_to_cpu(si->req_length)
322                     + le32_to_cpu(si->rsp_length);
323         bi.offset = 0;
324         bi.callback = smp_ioctl_callback;
325         return handle_buffered_ioctl(&bi);
326 }
327
328
329 /* CSMI ioctl support */
330 static void esas2r_csmi_ioctl_tunnel_comp_cb(struct esas2r_adapter *a,
331                                              struct esas2r_request *rq)
332 {
333         rq->target_id = le16_to_cpu(rq->func_rsp.ioctl_rsp.csmi.target_id);
334         rq->vrq->scsi.flags |= cpu_to_le32(rq->func_rsp.ioctl_rsp.csmi.lun);
335
336         /* Now call the original completion callback. */
337         (*rq->aux_req_cb)(a, rq);
338 }
339
340 /* Tunnel a CSMI IOCTL to the back end driver for processing. */
341 static bool csmi_ioctl_tunnel(struct esas2r_adapter *a,
342                               union atto_ioctl_csmi *ci,
343                               struct esas2r_request *rq,
344                               struct esas2r_sg_context *sgc,
345                               u32 ctrl_code,
346                               u16 target_id)
347 {
348         struct atto_vda_ioctl_req *ioctl = &rq->vrq->ioctl;
349
350         if (test_bit(AF_DEGRADED_MODE, &a->flags))
351                 return false;
352
353         esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
354         esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_CSMI);
355         ioctl->csmi.ctrl_code = cpu_to_le32(ctrl_code);
356         ioctl->csmi.target_id = cpu_to_le16(target_id);
357         ioctl->csmi.lun = (u8)le32_to_cpu(rq->vrq->scsi.flags);
358
359         /*
360          * Always usurp the completion callback since the interrupt callback
361          * mechanism may be used.
362          */
363         rq->aux_req_cx = ci;
364         rq->aux_req_cb = rq->comp_cb;
365         rq->comp_cb = esas2r_csmi_ioctl_tunnel_comp_cb;
366
367         if (!esas2r_build_sg_list(a, rq, sgc))
368                 return false;
369
370         esas2r_start_request(a, rq);
371         return true;
372 }
373
374 static bool check_lun(struct scsi_lun lun)
375 {
376         bool result;
377
378         result = ((lun.scsi_lun[7] == 0) &&
379                   (lun.scsi_lun[6] == 0) &&
380                   (lun.scsi_lun[5] == 0) &&
381                   (lun.scsi_lun[4] == 0) &&
382                   (lun.scsi_lun[3] == 0) &&
383                   (lun.scsi_lun[2] == 0) &&
384 /* Byte 1 is intentionally skipped */
385                   (lun.scsi_lun[0] == 0));
386
387         return result;
388 }
389
390 static int csmi_ioctl_callback(struct esas2r_adapter *a,
391                                struct esas2r_request *rq,
392                                struct esas2r_sg_context *sgc, void *context)
393 {
394         struct atto_csmi *ci = (struct atto_csmi *)context;
395         union atto_ioctl_csmi *ioctl_csmi =
396                 (union atto_ioctl_csmi *)esas2r_buffered_ioctl;
397         u8 path = 0;
398         u8 tid = 0;
399         u8 lun = 0;
400         u32 sts = CSMI_STS_SUCCESS;
401         struct esas2r_target *t;
402         unsigned long flags;
403
404         if (ci->control_code == CSMI_CC_GET_DEV_ADDR) {
405                 struct atto_csmi_get_dev_addr *gda = &ci->data.dev_addr;
406
407                 path = gda->path_id;
408                 tid = gda->target_id;
409                 lun = gda->lun;
410         } else if (ci->control_code == CSMI_CC_TASK_MGT) {
411                 struct atto_csmi_task_mgmt *tm = &ci->data.tsk_mgt;
412
413                 path = tm->path_id;
414                 tid = tm->target_id;
415                 lun = tm->lun;
416         }
417
418         if (path > 0) {
419                 rq->func_rsp.ioctl_rsp.csmi.csmi_status = cpu_to_le32(
420                         CSMI_STS_INV_PARAM);
421                 return false;
422         }
423
424         rq->target_id = tid;
425         rq->vrq->scsi.flags |= cpu_to_le32(lun);
426
427         switch (ci->control_code) {
428         case CSMI_CC_GET_DRVR_INFO:
429         {
430                 struct atto_csmi_get_driver_info *gdi = &ioctl_csmi->drvr_info;
431
432                 strcpy(gdi->description, esas2r_get_model_name(a));
433                 gdi->csmi_major_rev = CSMI_MAJOR_REV;
434                 gdi->csmi_minor_rev = CSMI_MINOR_REV;
435                 break;
436         }
437
438         case CSMI_CC_GET_CNTLR_CFG:
439         {
440                 struct atto_csmi_get_cntlr_cfg *gcc = &ioctl_csmi->cntlr_cfg;
441
442                 gcc->base_io_addr = 0;
443                 pci_read_config_dword(a->pcid, PCI_BASE_ADDRESS_2,
444                                       &gcc->base_memaddr_lo);
445                 pci_read_config_dword(a->pcid, PCI_BASE_ADDRESS_3,
446                                       &gcc->base_memaddr_hi);
447                 gcc->board_id = MAKEDWORD(a->pcid->subsystem_device,
448                                           a->pcid->subsystem_vendor);
449                 gcc->slot_num = CSMI_SLOT_NUM_UNKNOWN;
450                 gcc->cntlr_class = CSMI_CNTLR_CLASS_HBA;
451                 gcc->io_bus_type = CSMI_BUS_TYPE_PCI;
452                 gcc->pci_addr.bus_num = a->pcid->bus->number;
453                 gcc->pci_addr.device_num = PCI_SLOT(a->pcid->devfn);
454                 gcc->pci_addr.function_num = PCI_FUNC(a->pcid->devfn);
455
456                 memset(gcc->serial_num, 0, sizeof(gcc->serial_num));
457
458                 gcc->major_rev = LOBYTE(LOWORD(a->fw_version));
459                 gcc->minor_rev = HIBYTE(LOWORD(a->fw_version));
460                 gcc->build_rev = LOBYTE(HIWORD(a->fw_version));
461                 gcc->release_rev = HIBYTE(HIWORD(a->fw_version));
462                 gcc->bios_major_rev = HIBYTE(HIWORD(a->flash_ver));
463                 gcc->bios_minor_rev = LOBYTE(HIWORD(a->flash_ver));
464                 gcc->bios_build_rev = LOWORD(a->flash_ver);
465
466                 if (test_bit(AF2_THUNDERLINK, &a->flags2))
467                         gcc->cntlr_flags = CSMI_CNTLRF_SAS_HBA
468                                            | CSMI_CNTLRF_SATA_HBA;
469                 else
470                         gcc->cntlr_flags = CSMI_CNTLRF_SAS_RAID
471                                            | CSMI_CNTLRF_SATA_RAID;
472
473                 gcc->rrom_major_rev = 0;
474                 gcc->rrom_minor_rev = 0;
475                 gcc->rrom_build_rev = 0;
476                 gcc->rrom_release_rev = 0;
477                 gcc->rrom_biosmajor_rev = 0;
478                 gcc->rrom_biosminor_rev = 0;
479                 gcc->rrom_biosbuild_rev = 0;
480                 gcc->rrom_biosrelease_rev = 0;
481                 break;
482         }
483
484         case CSMI_CC_GET_CNTLR_STS:
485         {
486                 struct atto_csmi_get_cntlr_sts *gcs = &ioctl_csmi->cntlr_sts;
487
488                 if (test_bit(AF_DEGRADED_MODE, &a->flags))
489                         gcs->status = CSMI_CNTLR_STS_FAILED;
490                 else
491                         gcs->status = CSMI_CNTLR_STS_GOOD;
492
493                 gcs->offline_reason = CSMI_OFFLINE_NO_REASON;
494                 break;
495         }
496
497         case CSMI_CC_FW_DOWNLOAD:
498         case CSMI_CC_GET_RAID_INFO:
499         case CSMI_CC_GET_RAID_CFG:
500
501                 sts = CSMI_STS_BAD_CTRL_CODE;
502                 break;
503
504         case CSMI_CC_SMP_PASSTHRU:
505         case CSMI_CC_SSP_PASSTHRU:
506         case CSMI_CC_STP_PASSTHRU:
507         case CSMI_CC_GET_PHY_INFO:
508         case CSMI_CC_SET_PHY_INFO:
509         case CSMI_CC_GET_LINK_ERRORS:
510         case CSMI_CC_GET_SATA_SIG:
511         case CSMI_CC_GET_CONN_INFO:
512         case CSMI_CC_PHY_CTRL:
513
514                 if (!csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc,
515                                        ci->control_code,
516                                        ESAS2R_TARG_ID_INV)) {
517                         sts = CSMI_STS_FAILED;
518                         break;
519                 }
520
521                 return true;
522
523         case CSMI_CC_GET_SCSI_ADDR:
524         {
525                 struct atto_csmi_get_scsi_addr *gsa = &ioctl_csmi->scsi_addr;
526
527                 struct scsi_lun lun;
528
529                 memcpy(&lun, gsa->sas_lun, sizeof(struct scsi_lun));
530
531                 if (!check_lun(lun)) {
532                         sts = CSMI_STS_NO_SCSI_ADDR;
533                         break;
534                 }
535
536                 /* make sure the device is present */
537                 spin_lock_irqsave(&a->mem_lock, flags);
538                 t = esas2r_targ_db_find_by_sas_addr(a, (u64 *)gsa->sas_addr);
539                 spin_unlock_irqrestore(&a->mem_lock, flags);
540
541                 if (t == NULL) {
542                         sts = CSMI_STS_NO_SCSI_ADDR;
543                         break;
544                 }
545
546                 gsa->host_index = 0xFF;
547                 gsa->lun = gsa->sas_lun[1];
548                 rq->target_id = esas2r_targ_get_id(t, a);
549                 break;
550         }
551
552         case CSMI_CC_GET_DEV_ADDR:
553         {
554                 struct atto_csmi_get_dev_addr *gda = &ioctl_csmi->dev_addr;
555
556                 /* make sure the target is present */
557                 t = a->targetdb + rq->target_id;
558
559                 if (t >= a->targetdb_end
560                     || t->target_state != TS_PRESENT
561                     || t->sas_addr == 0) {
562                         sts = CSMI_STS_NO_DEV_ADDR;
563                         break;
564                 }
565
566                 /* fill in the result */
567                 *(u64 *)gda->sas_addr = t->sas_addr;
568                 memset(gda->sas_lun, 0, sizeof(gda->sas_lun));
569                 gda->sas_lun[1] = (u8)le32_to_cpu(rq->vrq->scsi.flags);
570                 break;
571         }
572
573         case CSMI_CC_TASK_MGT:
574
575                 /* make sure the target is present */
576                 t = a->targetdb + rq->target_id;
577
578                 if (t >= a->targetdb_end
579                     || t->target_state != TS_PRESENT
580                     || !(t->flags & TF_PASS_THRU)) {
581                         sts = CSMI_STS_NO_DEV_ADDR;
582                         break;
583                 }
584
585                 if (!csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc,
586                                        ci->control_code,
587                                        t->phys_targ_id)) {
588                         sts = CSMI_STS_FAILED;
589                         break;
590                 }
591
592                 return true;
593
594         default:
595
596                 sts = CSMI_STS_BAD_CTRL_CODE;
597                 break;
598         }
599
600         rq->func_rsp.ioctl_rsp.csmi.csmi_status = cpu_to_le32(sts);
601
602         return false;
603 }
604
605
606 static void csmi_ioctl_done_callback(struct esas2r_adapter *a,
607                                      struct esas2r_request *rq, void *context)
608 {
609         struct atto_csmi *ci = (struct atto_csmi *)context;
610         union atto_ioctl_csmi *ioctl_csmi =
611                 (union atto_ioctl_csmi *)esas2r_buffered_ioctl;
612
613         switch (ci->control_code) {
614         case CSMI_CC_GET_DRVR_INFO:
615         {
616                 struct atto_csmi_get_driver_info *gdi =
617                         &ioctl_csmi->drvr_info;
618
619                 strcpy(gdi->name, ESAS2R_VERSION_STR);
620
621                 gdi->major_rev = ESAS2R_MAJOR_REV;
622                 gdi->minor_rev = ESAS2R_MINOR_REV;
623                 gdi->build_rev = 0;
624                 gdi->release_rev = 0;
625                 break;
626         }
627
628         case CSMI_CC_GET_SCSI_ADDR:
629         {
630                 struct atto_csmi_get_scsi_addr *gsa = &ioctl_csmi->scsi_addr;
631
632                 if (le32_to_cpu(rq->func_rsp.ioctl_rsp.csmi.csmi_status) ==
633                     CSMI_STS_SUCCESS) {
634                         gsa->target_id = rq->target_id;
635                         gsa->path_id = 0;
636                 }
637
638                 break;
639         }
640         }
641
642         ci->status = le32_to_cpu(rq->func_rsp.ioctl_rsp.csmi.csmi_status);
643 }
644
645
646 static u8 handle_csmi_ioctl(struct esas2r_adapter *a, struct atto_csmi *ci)
647 {
648         struct esas2r_buffered_ioctl bi;
649
650         memset(&bi, 0, sizeof(bi));
651
652         bi.a = a;
653         bi.ioctl = &ci->data;
654         bi.length = sizeof(union atto_ioctl_csmi);
655         bi.offset = 0;
656         bi.callback = csmi_ioctl_callback;
657         bi.context = ci;
658         bi.done_callback = csmi_ioctl_done_callback;
659         bi.done_context = ci;
660
661         return handle_buffered_ioctl(&bi);
662 }
663
664 /* ATTO HBA ioctl support */
665
666 /* Tunnel an ATTO HBA IOCTL to the back end driver for processing. */
667 static bool hba_ioctl_tunnel(struct esas2r_adapter *a,
668                              struct atto_ioctl *hi,
669                              struct esas2r_request *rq,
670                              struct esas2r_sg_context *sgc)
671 {
672         esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
673
674         esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_HBA);
675
676         if (!esas2r_build_sg_list(a, rq, sgc)) {
677                 hi->status = ATTO_STS_OUT_OF_RSRC;
678
679                 return false;
680         }
681
682         esas2r_start_request(a, rq);
683
684         return true;
685 }
686
687 static void scsi_passthru_comp_cb(struct esas2r_adapter *a,
688                                   struct esas2r_request *rq)
689 {
690         struct atto_ioctl *hi = (struct atto_ioctl *)rq->aux_req_cx;
691         struct atto_hba_scsi_pass_thru *spt = &hi->data.scsi_pass_thru;
692         u8 sts = ATTO_SPT_RS_FAILED;
693
694         spt->scsi_status = rq->func_rsp.scsi_rsp.scsi_stat;
695         spt->sense_length = rq->sense_len;
696         spt->residual_length =
697                 le32_to_cpu(rq->func_rsp.scsi_rsp.residual_length);
698
699         switch (rq->req_stat) {
700         case RS_SUCCESS:
701         case RS_SCSI_ERROR:
702                 sts = ATTO_SPT_RS_SUCCESS;
703                 break;
704         case RS_UNDERRUN:
705                 sts = ATTO_SPT_RS_UNDERRUN;
706                 break;
707         case RS_OVERRUN:
708                 sts = ATTO_SPT_RS_OVERRUN;
709                 break;
710         case RS_SEL:
711         case RS_SEL2:
712                 sts = ATTO_SPT_RS_NO_DEVICE;
713                 break;
714         case RS_NO_LUN:
715                 sts = ATTO_SPT_RS_NO_LUN;
716                 break;
717         case RS_TIMEOUT:
718                 sts = ATTO_SPT_RS_TIMEOUT;
719                 break;
720         case RS_DEGRADED:
721                 sts = ATTO_SPT_RS_DEGRADED;
722                 break;
723         case RS_BUSY:
724                 sts = ATTO_SPT_RS_BUSY;
725                 break;
726         case RS_ABORTED:
727                 sts = ATTO_SPT_RS_ABORTED;
728                 break;
729         case RS_RESET:
730                 sts = ATTO_SPT_RS_BUS_RESET;
731                 break;
732         }
733
734         spt->req_status = sts;
735
736         /* Update the target ID to the next one present. */
737         spt->target_id =
738                 esas2r_targ_db_find_next_present(a, (u16)spt->target_id);
739
740         /* Done, call the completion callback. */
741         (*rq->aux_req_cb)(a, rq);
742 }
743
744 static int hba_ioctl_callback(struct esas2r_adapter *a,
745                               struct esas2r_request *rq,
746                               struct esas2r_sg_context *sgc,
747                               void *context)
748 {
749         struct atto_ioctl *hi = (struct atto_ioctl *)esas2r_buffered_ioctl;
750
751         hi->status = ATTO_STS_SUCCESS;
752
753         switch (hi->function) {
754         case ATTO_FUNC_GET_ADAP_INFO:
755         {
756                 u8 *class_code = (u8 *)&a->pcid->class;
757
758                 struct atto_hba_get_adapter_info *gai =
759                         &hi->data.get_adap_info;
760                 int pcie_cap_reg;
761
762                 if (hi->flags & HBAF_TUNNEL) {
763                         hi->status = ATTO_STS_UNSUPPORTED;
764                         break;
765                 }
766
767                 if (hi->version > ATTO_VER_GET_ADAP_INFO0) {
768                         hi->status = ATTO_STS_INV_VERSION;
769                         hi->version = ATTO_VER_GET_ADAP_INFO0;
770                         break;
771                 }
772
773                 memset(gai, 0, sizeof(*gai));
774
775                 gai->pci.vendor_id = a->pcid->vendor;
776                 gai->pci.device_id = a->pcid->device;
777                 gai->pci.ss_vendor_id = a->pcid->subsystem_vendor;
778                 gai->pci.ss_device_id = a->pcid->subsystem_device;
779                 gai->pci.class_code[0] = class_code[0];
780                 gai->pci.class_code[1] = class_code[1];
781                 gai->pci.class_code[2] = class_code[2];
782                 gai->pci.rev_id = a->pcid->revision;
783                 gai->pci.bus_num = a->pcid->bus->number;
784                 gai->pci.dev_num = PCI_SLOT(a->pcid->devfn);
785                 gai->pci.func_num = PCI_FUNC(a->pcid->devfn);
786
787                 pcie_cap_reg = pci_find_capability(a->pcid, PCI_CAP_ID_EXP);
788                 if (pcie_cap_reg) {
789                         u16 stat;
790                         u32 caps;
791
792                         pci_read_config_word(a->pcid,
793                                              pcie_cap_reg + PCI_EXP_LNKSTA,
794                                              &stat);
795                         pci_read_config_dword(a->pcid,
796                                               pcie_cap_reg + PCI_EXP_LNKCAP,
797                                               &caps);
798
799                         gai->pci.link_speed_curr =
800                                 (u8)(stat & PCI_EXP_LNKSTA_CLS);
801                         gai->pci.link_speed_max =
802                                 (u8)(caps & PCI_EXP_LNKCAP_SLS);
803                         gai->pci.link_width_curr =
804                                 (u8)((stat & PCI_EXP_LNKSTA_NLW)
805                                      >> PCI_EXP_LNKSTA_NLW_SHIFT);
806                         gai->pci.link_width_max =
807                                 (u8)((caps & PCI_EXP_LNKCAP_MLW)
808                                      >> 4);
809                 }
810
811                 gai->pci.msi_vector_cnt = 1;
812
813                 if (a->pcid->msix_enabled)
814                         gai->pci.interrupt_mode = ATTO_GAI_PCIIM_MSIX;
815                 else if (a->pcid->msi_enabled)
816                         gai->pci.interrupt_mode = ATTO_GAI_PCIIM_MSI;
817                 else
818                         gai->pci.interrupt_mode = ATTO_GAI_PCIIM_LEGACY;
819
820                 gai->adap_type = ATTO_GAI_AT_ESASRAID2;
821
822                 if (test_bit(AF2_THUNDERLINK, &a->flags2))
823                         gai->adap_type = ATTO_GAI_AT_TLSASHBA;
824
825                 if (test_bit(AF_DEGRADED_MODE, &a->flags))
826                         gai->adap_flags |= ATTO_GAI_AF_DEGRADED;
827
828                 gai->adap_flags |= ATTO_GAI_AF_SPT_SUPP |
829                                    ATTO_GAI_AF_DEVADDR_SUPP;
830
831                 if (a->pcid->subsystem_device == ATTO_ESAS_R60F
832                     || a->pcid->subsystem_device == ATTO_ESAS_R608
833                     || a->pcid->subsystem_device == ATTO_ESAS_R644
834                     || a->pcid->subsystem_device == ATTO_TSSC_3808E)
835                         gai->adap_flags |= ATTO_GAI_AF_VIRT_SES;
836
837                 gai->num_ports = ESAS2R_NUM_PHYS;
838                 gai->num_phys = ESAS2R_NUM_PHYS;
839
840                 strcpy(gai->firmware_rev, a->fw_rev);
841                 strcpy(gai->flash_rev, a->flash_rev);
842                 strcpy(gai->model_name_short, esas2r_get_model_name_short(a));
843                 strcpy(gai->model_name, esas2r_get_model_name(a));
844
845                 gai->num_targets = ESAS2R_MAX_TARGETS;
846
847                 gai->num_busses = 1;
848                 gai->num_targsper_bus = gai->num_targets;
849                 gai->num_lunsper_targ = 256;
850
851                 if (a->pcid->subsystem_device == ATTO_ESAS_R6F0
852                     || a->pcid->subsystem_device == ATTO_ESAS_R60F)
853                         gai->num_connectors = 4;
854                 else
855                         gai->num_connectors = 2;
856
857                 gai->adap_flags2 |= ATTO_GAI_AF2_ADAP_CTRL_SUPP;
858
859                 gai->num_targets_backend = a->num_targets_backend;
860
861                 gai->tunnel_flags = a->ioctl_tunnel
862                                     & (ATTO_GAI_TF_MEM_RW
863                                        | ATTO_GAI_TF_TRACE
864                                        | ATTO_GAI_TF_SCSI_PASS_THRU
865                                        | ATTO_GAI_TF_GET_DEV_ADDR
866                                        | ATTO_GAI_TF_PHY_CTRL
867                                        | ATTO_GAI_TF_CONN_CTRL
868                                        | ATTO_GAI_TF_GET_DEV_INFO);
869                 break;
870         }
871
872         case ATTO_FUNC_GET_ADAP_ADDR:
873         {
874                 struct atto_hba_get_adapter_address *gaa =
875                         &hi->data.get_adap_addr;
876
877                 if (hi->flags & HBAF_TUNNEL) {
878                         hi->status = ATTO_STS_UNSUPPORTED;
879                         break;
880                 }
881
882                 if (hi->version > ATTO_VER_GET_ADAP_ADDR0) {
883                         hi->status = ATTO_STS_INV_VERSION;
884                         hi->version = ATTO_VER_GET_ADAP_ADDR0;
885                 } else if (gaa->addr_type == ATTO_GAA_AT_PORT
886                            || gaa->addr_type == ATTO_GAA_AT_NODE) {
887                         if (gaa->addr_type == ATTO_GAA_AT_PORT
888                             && gaa->port_id >= ESAS2R_NUM_PHYS) {
889                                 hi->status = ATTO_STS_NOT_APPL;
890                         } else {
891                                 memcpy((u64 *)gaa->address,
892                                        &a->nvram->sas_addr[0], sizeof(u64));
893                                 gaa->addr_len = sizeof(u64);
894                         }
895                 } else {
896                         hi->status = ATTO_STS_INV_PARAM;
897                 }
898
899                 break;
900         }
901
902         case ATTO_FUNC_MEM_RW:
903         {
904                 if (hi->flags & HBAF_TUNNEL) {
905                         if (hba_ioctl_tunnel(a, hi, rq, sgc))
906                                 return true;
907
908                         break;
909                 }
910
911                 hi->status = ATTO_STS_UNSUPPORTED;
912
913                 break;
914         }
915
916         case ATTO_FUNC_TRACE:
917         {
918                 struct atto_hba_trace *trc = &hi->data.trace;
919
920                 if (hi->flags & HBAF_TUNNEL) {
921                         if (hba_ioctl_tunnel(a, hi, rq, sgc))
922                                 return true;
923
924                         break;
925                 }
926
927                 if (hi->version > ATTO_VER_TRACE1) {
928                         hi->status = ATTO_STS_INV_VERSION;
929                         hi->version = ATTO_VER_TRACE1;
930                         break;
931                 }
932
933                 if (trc->trace_type == ATTO_TRC_TT_FWCOREDUMP
934                     && hi->version >= ATTO_VER_TRACE1) {
935                         if (trc->trace_func == ATTO_TRC_TF_UPLOAD) {
936                                 u32 len = hi->data_length;
937                                 u32 offset = trc->current_offset;
938                                 u32 total_len = ESAS2R_FWCOREDUMP_SZ;
939
940                                 /* Size is zero if a core dump isn't present */
941                                 if (!test_bit(AF2_COREDUMP_SAVED, &a->flags2))
942                                         total_len = 0;
943
944                                 if (len > total_len)
945                                         len = total_len;
946
947                                 if (offset >= total_len
948                                     || offset + len > total_len
949                                     || len == 0) {
950                                         hi->status = ATTO_STS_INV_PARAM;
951                                         break;
952                                 }
953
954                                 memcpy(trc + 1,
955                                        a->fw_coredump_buff + offset,
956                                        len);
957
958                                 hi->data_length = len;
959                         } else if (trc->trace_func == ATTO_TRC_TF_RESET) {
960                                 memset(a->fw_coredump_buff, 0,
961                                        ESAS2R_FWCOREDUMP_SZ);
962
963                                 clear_bit(AF2_COREDUMP_SAVED, &a->flags2);
964                         } else if (trc->trace_func != ATTO_TRC_TF_GET_INFO) {
965                                 hi->status = ATTO_STS_UNSUPPORTED;
966                                 break;
967                         }
968
969                         /* Always return all the info we can. */
970                         trc->trace_mask = 0;
971                         trc->current_offset = 0;
972                         trc->total_length = ESAS2R_FWCOREDUMP_SZ;
973
974                         /* Return zero length buffer if core dump not present */
975                         if (!test_bit(AF2_COREDUMP_SAVED, &a->flags2))
976                                 trc->total_length = 0;
977                 } else {
978                         hi->status = ATTO_STS_UNSUPPORTED;
979                 }
980
981                 break;
982         }
983
984         case ATTO_FUNC_SCSI_PASS_THRU:
985         {
986                 struct atto_hba_scsi_pass_thru *spt = &hi->data.scsi_pass_thru;
987                 struct scsi_lun lun;
988
989                 memcpy(&lun, spt->lun, sizeof(struct scsi_lun));
990
991                 if (hi->flags & HBAF_TUNNEL) {
992                         if (hba_ioctl_tunnel(a, hi, rq, sgc))
993                                 return true;
994
995                         break;
996                 }
997
998                 if (hi->version > ATTO_VER_SCSI_PASS_THRU0) {
999                         hi->status = ATTO_STS_INV_VERSION;
1000                         hi->version = ATTO_VER_SCSI_PASS_THRU0;
1001                         break;
1002                 }
1003
1004                 if (spt->target_id >= ESAS2R_MAX_TARGETS || !check_lun(lun)) {
1005                         hi->status = ATTO_STS_INV_PARAM;
1006                         break;
1007                 }
1008
1009                 esas2r_sgc_init(sgc, a, rq, NULL);
1010
1011                 sgc->length = hi->data_length;
1012                 sgc->cur_offset += offsetof(struct atto_ioctl, data.byte)
1013                                    + sizeof(struct atto_hba_scsi_pass_thru);
1014
1015                 /* Finish request initialization */
1016                 rq->target_id = (u16)spt->target_id;
1017                 rq->vrq->scsi.flags |= cpu_to_le32(spt->lun[1]);
1018                 memcpy(rq->vrq->scsi.cdb, spt->cdb, 16);
1019                 rq->vrq->scsi.length = cpu_to_le32(hi->data_length);
1020                 rq->sense_len = spt->sense_length;
1021                 rq->sense_buf = (u8 *)spt->sense_data;
1022                 /* NOTE: we ignore spt->timeout */
1023
1024                 /*
1025                  * always usurp the completion callback since the interrupt
1026                  * callback mechanism may be used.
1027                  */
1028
1029                 rq->aux_req_cx = hi;
1030                 rq->aux_req_cb = rq->comp_cb;
1031                 rq->comp_cb = scsi_passthru_comp_cb;
1032
1033                 if (spt->flags & ATTO_SPTF_DATA_IN) {
1034                         rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_RDD);
1035                 } else if (spt->flags & ATTO_SPTF_DATA_OUT) {
1036                         rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_WRD);
1037                 } else {
1038                         if (sgc->length) {
1039                                 hi->status = ATTO_STS_INV_PARAM;
1040                                 break;
1041                         }
1042                 }
1043
1044                 if (spt->flags & ATTO_SPTF_ORDERED_Q)
1045                         rq->vrq->scsi.flags |=
1046                                 cpu_to_le32(FCP_CMND_TA_ORDRD_Q);
1047                 else if (spt->flags & ATTO_SPTF_HEAD_OF_Q)
1048                         rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_TA_HEAD_Q);
1049
1050
1051                 if (!esas2r_build_sg_list(a, rq, sgc)) {
1052                         hi->status = ATTO_STS_OUT_OF_RSRC;
1053                         break;
1054                 }
1055
1056                 esas2r_start_request(a, rq);
1057
1058                 return true;
1059         }
1060
1061         case ATTO_FUNC_GET_DEV_ADDR:
1062         {
1063                 struct atto_hba_get_device_address *gda =
1064                         &hi->data.get_dev_addr;
1065                 struct esas2r_target *t;
1066
1067                 if (hi->flags & HBAF_TUNNEL) {
1068                         if (hba_ioctl_tunnel(a, hi, rq, sgc))
1069                                 return true;
1070
1071                         break;
1072                 }
1073
1074                 if (hi->version > ATTO_VER_GET_DEV_ADDR0) {
1075                         hi->status = ATTO_STS_INV_VERSION;
1076                         hi->version = ATTO_VER_GET_DEV_ADDR0;
1077                         break;
1078                 }
1079
1080                 if (gda->target_id >= ESAS2R_MAX_TARGETS) {
1081                         hi->status = ATTO_STS_INV_PARAM;
1082                         break;
1083                 }
1084
1085                 t = a->targetdb + (u16)gda->target_id;
1086
1087                 if (t->target_state != TS_PRESENT) {
1088                         hi->status = ATTO_STS_FAILED;
1089                 } else if (gda->addr_type == ATTO_GDA_AT_PORT) {
1090                         if (t->sas_addr == 0) {
1091                                 hi->status = ATTO_STS_UNSUPPORTED;
1092                         } else {
1093                                 *(u64 *)gda->address = t->sas_addr;
1094
1095                                 gda->addr_len = sizeof(u64);
1096                         }
1097                 } else if (gda->addr_type == ATTO_GDA_AT_NODE) {
1098                         hi->status = ATTO_STS_NOT_APPL;
1099                 } else {
1100                         hi->status = ATTO_STS_INV_PARAM;
1101                 }
1102
1103                 /* update the target ID to the next one present. */
1104
1105                 gda->target_id =
1106                         esas2r_targ_db_find_next_present(a,
1107                                                          (u16)gda->target_id);
1108                 break;
1109         }
1110
1111         case ATTO_FUNC_PHY_CTRL:
1112         case ATTO_FUNC_CONN_CTRL:
1113         {
1114                 if (hba_ioctl_tunnel(a, hi, rq, sgc))
1115                         return true;
1116
1117                 break;
1118         }
1119
1120         case ATTO_FUNC_ADAP_CTRL:
1121         {
1122                 struct atto_hba_adap_ctrl *ac = &hi->data.adap_ctrl;
1123
1124                 if (hi->flags & HBAF_TUNNEL) {
1125                         hi->status = ATTO_STS_UNSUPPORTED;
1126                         break;
1127                 }
1128
1129                 if (hi->version > ATTO_VER_ADAP_CTRL0) {
1130                         hi->status = ATTO_STS_INV_VERSION;
1131                         hi->version = ATTO_VER_ADAP_CTRL0;
1132                         break;
1133                 }
1134
1135                 if (ac->adap_func == ATTO_AC_AF_HARD_RST) {
1136                         esas2r_reset_adapter(a);
1137                 } else if (ac->adap_func != ATTO_AC_AF_GET_STATE) {
1138                         hi->status = ATTO_STS_UNSUPPORTED;
1139                         break;
1140                 }
1141
1142                 if (test_bit(AF_CHPRST_NEEDED, &a->flags))
1143                         ac->adap_state = ATTO_AC_AS_RST_SCHED;
1144                 else if (test_bit(AF_CHPRST_PENDING, &a->flags))
1145                         ac->adap_state = ATTO_AC_AS_RST_IN_PROG;
1146                 else if (test_bit(AF_DISC_PENDING, &a->flags))
1147                         ac->adap_state = ATTO_AC_AS_RST_DISC;
1148                 else if (test_bit(AF_DISABLED, &a->flags))
1149                         ac->adap_state = ATTO_AC_AS_DISABLED;
1150                 else if (test_bit(AF_DEGRADED_MODE, &a->flags))
1151                         ac->adap_state = ATTO_AC_AS_DEGRADED;
1152                 else
1153                         ac->adap_state = ATTO_AC_AS_OK;
1154
1155                 break;
1156         }
1157
1158         case ATTO_FUNC_GET_DEV_INFO:
1159         {
1160                 struct atto_hba_get_device_info *gdi = &hi->data.get_dev_info;
1161                 struct esas2r_target *t;
1162
1163                 if (hi->flags & HBAF_TUNNEL) {
1164                         if (hba_ioctl_tunnel(a, hi, rq, sgc))
1165                                 return true;
1166
1167                         break;
1168                 }
1169
1170                 if (hi->version > ATTO_VER_GET_DEV_INFO0) {
1171                         hi->status = ATTO_STS_INV_VERSION;
1172                         hi->version = ATTO_VER_GET_DEV_INFO0;
1173                         break;
1174                 }
1175
1176                 if (gdi->target_id >= ESAS2R_MAX_TARGETS) {
1177                         hi->status = ATTO_STS_INV_PARAM;
1178                         break;
1179                 }
1180
1181                 t = a->targetdb + (u16)gdi->target_id;
1182
1183                 /* update the target ID to the next one present. */
1184
1185                 gdi->target_id =
1186                         esas2r_targ_db_find_next_present(a,
1187                                                          (u16)gdi->target_id);
1188
1189                 if (t->target_state != TS_PRESENT) {
1190                         hi->status = ATTO_STS_FAILED;
1191                         break;
1192                 }
1193
1194                 hi->status = ATTO_STS_UNSUPPORTED;
1195                 break;
1196         }
1197
1198         default:
1199
1200                 hi->status = ATTO_STS_INV_FUNC;
1201                 break;
1202         }
1203
1204         return false;
1205 }
1206
1207 static void hba_ioctl_done_callback(struct esas2r_adapter *a,
1208                                     struct esas2r_request *rq, void *context)
1209 {
1210         struct atto_ioctl *ioctl_hba =
1211                 (struct atto_ioctl *)esas2r_buffered_ioctl;
1212
1213         esas2r_debug("hba_ioctl_done_callback %d", a->index);
1214
1215         if (ioctl_hba->function == ATTO_FUNC_GET_ADAP_INFO) {
1216                 struct atto_hba_get_adapter_info *gai =
1217                         &ioctl_hba->data.get_adap_info;
1218
1219                 esas2r_debug("ATTO_FUNC_GET_ADAP_INFO");
1220
1221                 gai->drvr_rev_major = ESAS2R_MAJOR_REV;
1222                 gai->drvr_rev_minor = ESAS2R_MINOR_REV;
1223
1224                 strcpy(gai->drvr_rev_ascii, ESAS2R_VERSION_STR);
1225                 strcpy(gai->drvr_name, ESAS2R_DRVR_NAME);
1226
1227                 gai->num_busses = 1;
1228                 gai->num_targsper_bus = ESAS2R_MAX_ID + 1;
1229                 gai->num_lunsper_targ = 1;
1230         }
1231 }
1232
1233 u8 handle_hba_ioctl(struct esas2r_adapter *a,
1234                     struct atto_ioctl *ioctl_hba)
1235 {
1236         struct esas2r_buffered_ioctl bi;
1237
1238         memset(&bi, 0, sizeof(bi));
1239
1240         bi.a = a;
1241         bi.ioctl = ioctl_hba;
1242         bi.length = sizeof(struct atto_ioctl) + ioctl_hba->data_length;
1243         bi.callback = hba_ioctl_callback;
1244         bi.context = NULL;
1245         bi.done_callback = hba_ioctl_done_callback;
1246         bi.done_context = NULL;
1247         bi.offset = 0;
1248
1249         return handle_buffered_ioctl(&bi);
1250 }
1251
1252
1253 int esas2r_write_params(struct esas2r_adapter *a, struct esas2r_request *rq,
1254                         struct esas2r_sas_nvram *data)
1255 {
1256         int result = 0;
1257
1258         a->nvram_command_done = 0;
1259         rq->comp_cb = complete_nvr_req;
1260
1261         if (esas2r_nvram_write(a, rq, data)) {
1262                 /* now wait around for it to complete. */
1263                 while (!a->nvram_command_done)
1264                         wait_event_interruptible(a->nvram_waiter,
1265                                                  a->nvram_command_done);
1266                 ;
1267
1268                 /* done, check the status. */
1269                 if (rq->req_stat == RS_SUCCESS)
1270                         result = 1;
1271         }
1272         return result;
1273 }
1274
1275
1276 /* This function only cares about ATTO-specific ioctls (atto_express_ioctl) */
1277 int esas2r_ioctl_handler(void *hostdata, int cmd, void __user *arg)
1278 {
1279         struct atto_express_ioctl *ioctl = NULL;
1280         struct esas2r_adapter *a;
1281         struct esas2r_request *rq;
1282         u16 code;
1283         int err;
1284
1285         esas2r_log(ESAS2R_LOG_DEBG, "ioctl (%p, %x, %p)", hostdata, cmd, arg);
1286
1287         if ((arg == NULL)
1288             || (cmd < EXPRESS_IOCTL_MIN)
1289             || (cmd > EXPRESS_IOCTL_MAX))
1290                 return -ENOTSUPP;
1291
1292         if (!access_ok(VERIFY_WRITE, arg, sizeof(struct atto_express_ioctl))) {
1293                 esas2r_log(ESAS2R_LOG_WARN,
1294                            "ioctl_handler access_ok failed for cmd %d, "
1295                            "address %p", cmd,
1296                            arg);
1297                 return -EFAULT;
1298         }
1299
1300         /* allocate a kernel memory buffer for the IOCTL data */
1301         ioctl = kzalloc(sizeof(struct atto_express_ioctl), GFP_KERNEL);
1302         if (ioctl == NULL) {
1303                 esas2r_log(ESAS2R_LOG_WARN,
1304                            "ioctl_handler kzalloc failed for %d bytes",
1305                            sizeof(struct atto_express_ioctl));
1306                 return -ENOMEM;
1307         }
1308
1309         err = __copy_from_user(ioctl, arg, sizeof(struct atto_express_ioctl));
1310         if (err != 0) {
1311                 esas2r_log(ESAS2R_LOG_WARN,
1312                            "copy_from_user didn't copy everything (err %d, cmd %d)",
1313                            err,
1314                            cmd);
1315                 kfree(ioctl);
1316
1317                 return -EFAULT;
1318         }
1319
1320         /* verify the signature */
1321
1322         if (memcmp(ioctl->header.signature,
1323                    EXPRESS_IOCTL_SIGNATURE,
1324                    EXPRESS_IOCTL_SIGNATURE_SIZE) != 0) {
1325                 esas2r_log(ESAS2R_LOG_WARN, "invalid signature");
1326                 kfree(ioctl);
1327
1328                 return -ENOTSUPP;
1329         }
1330
1331         /* assume success */
1332
1333         ioctl->header.return_code = IOCTL_SUCCESS;
1334         err = 0;
1335
1336         /*
1337          * handle EXPRESS_IOCTL_GET_CHANNELS
1338          * without paying attention to channel
1339          */
1340
1341         if (cmd == EXPRESS_IOCTL_GET_CHANNELS) {
1342                 int i = 0, k = 0;
1343
1344                 ioctl->data.chanlist.num_channels = 0;
1345
1346                 while (i < MAX_ADAPTERS) {
1347                         if (esas2r_adapters[i]) {
1348                                 ioctl->data.chanlist.num_channels++;
1349                                 ioctl->data.chanlist.channel[k] = i;
1350                                 k++;
1351                         }
1352                         i++;
1353                 }
1354
1355                 goto ioctl_done;
1356         }
1357
1358         /* get the channel */
1359
1360         if (ioctl->header.channel == 0xFF) {
1361                 a = (struct esas2r_adapter *)hostdata;
1362         } else {
1363                 a = esas2r_adapters[ioctl->header.channel];
1364                 if (ioctl->header.channel >= MAX_ADAPTERS || (a == NULL)) {
1365                         ioctl->header.return_code = IOCTL_BAD_CHANNEL;
1366                         esas2r_log(ESAS2R_LOG_WARN, "bad channel value");
1367                         kfree(ioctl);
1368
1369                         return -ENOTSUPP;
1370                 }
1371         }
1372
1373         switch (cmd) {
1374         case EXPRESS_IOCTL_RW_FIRMWARE:
1375
1376                 if (ioctl->data.fwrw.img_type == FW_IMG_FM_API) {
1377                         err = esas2r_write_fw(a,
1378                                               (char *)ioctl->data.fwrw.image,
1379                                               0,
1380                                               sizeof(struct
1381                                                      atto_express_ioctl));
1382
1383                         if (err >= 0) {
1384                                 err = esas2r_read_fw(a,
1385                                                      (char *)ioctl->data.fwrw.
1386                                                      image,
1387                                                      0,
1388                                                      sizeof(struct
1389                                                             atto_express_ioctl));
1390                         }
1391                 } else if (ioctl->data.fwrw.img_type == FW_IMG_FS_API) {
1392                         err = esas2r_write_fs(a,
1393                                               (char *)ioctl->data.fwrw.image,
1394                                               0,
1395                                               sizeof(struct
1396                                                      atto_express_ioctl));
1397
1398                         if (err >= 0) {
1399                                 err = esas2r_read_fs(a,
1400                                                      (char *)ioctl->data.fwrw.
1401                                                      image,
1402                                                      0,
1403                                                      sizeof(struct
1404                                                             atto_express_ioctl));
1405                         }
1406                 } else {
1407                         ioctl->header.return_code = IOCTL_BAD_FLASH_IMGTYPE;
1408                 }
1409
1410                 break;
1411
1412         case EXPRESS_IOCTL_READ_PARAMS:
1413
1414                 memcpy(ioctl->data.prw.data_buffer, a->nvram,
1415                        sizeof(struct esas2r_sas_nvram));
1416                 ioctl->data.prw.code = 1;
1417                 break;
1418
1419         case EXPRESS_IOCTL_WRITE_PARAMS:
1420
1421                 rq = esas2r_alloc_request(a);
1422                 if (rq == NULL) {
1423                         kfree(ioctl);
1424                         esas2r_log(ESAS2R_LOG_WARN,
1425                            "could not allocate an internal request");
1426                         return -ENOMEM;
1427                 }
1428
1429                 code = esas2r_write_params(a, rq,
1430                                            (struct esas2r_sas_nvram *)ioctl->data.prw.data_buffer);
1431                 ioctl->data.prw.code = code;
1432
1433                 esas2r_free_request(a, rq);
1434
1435                 break;
1436
1437         case EXPRESS_IOCTL_DEFAULT_PARAMS:
1438
1439                 esas2r_nvram_get_defaults(a,
1440                                           (struct esas2r_sas_nvram *)ioctl->data.prw.data_buffer);
1441                 ioctl->data.prw.code = 1;
1442                 break;
1443
1444         case EXPRESS_IOCTL_CHAN_INFO:
1445
1446                 ioctl->data.chaninfo.major_rev = ESAS2R_MAJOR_REV;
1447                 ioctl->data.chaninfo.minor_rev = ESAS2R_MINOR_REV;
1448                 ioctl->data.chaninfo.IRQ = a->pcid->irq;
1449                 ioctl->data.chaninfo.device_id = a->pcid->device;
1450                 ioctl->data.chaninfo.vendor_id = a->pcid->vendor;
1451                 ioctl->data.chaninfo.ven_dev_id = a->pcid->subsystem_device;
1452                 ioctl->data.chaninfo.revision_id = a->pcid->revision;
1453                 ioctl->data.chaninfo.pci_bus = a->pcid->bus->number;
1454                 ioctl->data.chaninfo.pci_dev_func = a->pcid->devfn;
1455                 ioctl->data.chaninfo.core_rev = 0;
1456                 ioctl->data.chaninfo.host_no = a->host->host_no;
1457                 ioctl->data.chaninfo.hbaapi_rev = 0;
1458                 break;
1459
1460         case EXPRESS_IOCTL_SMP:
1461                 ioctl->header.return_code = handle_smp_ioctl(a,
1462                                                              &ioctl->data.
1463                                                              ioctl_smp);
1464                 break;
1465
1466         case EXPRESS_CSMI:
1467                 ioctl->header.return_code =
1468                         handle_csmi_ioctl(a, &ioctl->data.csmi);
1469                 break;
1470
1471         case EXPRESS_IOCTL_HBA:
1472                 ioctl->header.return_code = handle_hba_ioctl(a,
1473                                                              &ioctl->data.
1474                                                              ioctl_hba);
1475                 break;
1476
1477         case EXPRESS_IOCTL_VDA:
1478                 err = esas2r_write_vda(a,
1479                                        (char *)&ioctl->data.ioctl_vda,
1480                                        0,
1481                                        sizeof(struct atto_ioctl_vda) +
1482                                        ioctl->data.ioctl_vda.data_length);
1483
1484                 if (err >= 0) {
1485                         err = esas2r_read_vda(a,
1486                                               (char *)&ioctl->data.ioctl_vda,
1487                                               0,
1488                                               sizeof(struct atto_ioctl_vda) +
1489                                               ioctl->data.ioctl_vda.data_length);
1490                 }
1491
1492
1493
1494
1495                 break;
1496
1497         case EXPRESS_IOCTL_GET_MOD_INFO:
1498
1499                 ioctl->data.modinfo.adapter = a;
1500                 ioctl->data.modinfo.pci_dev = a->pcid;
1501                 ioctl->data.modinfo.scsi_host = a->host;
1502                 ioctl->data.modinfo.host_no = a->host->host_no;
1503
1504                 break;
1505
1506         default:
1507                 esas2r_debug("esas2r_ioctl invalid cmd %p!", cmd);
1508                 ioctl->header.return_code = IOCTL_ERR_INVCMD;
1509         }
1510
1511 ioctl_done:
1512
1513         if (err < 0) {
1514                 esas2r_log(ESAS2R_LOG_WARN, "err %d on ioctl cmd %d", err,
1515                            cmd);
1516
1517                 switch (err) {
1518                 case -ENOMEM:
1519                 case -EBUSY:
1520                         ioctl->header.return_code = IOCTL_OUT_OF_RESOURCES;
1521                         break;
1522
1523                 case -ENOSYS:
1524                 case -EINVAL:
1525                         ioctl->header.return_code = IOCTL_INVALID_PARAM;
1526                         break;
1527
1528                 default:
1529                         ioctl->header.return_code = IOCTL_GENERAL_ERROR;
1530                         break;
1531                 }
1532
1533         }
1534
1535         /* Always copy the buffer back, if only to pick up the status */
1536         err = __copy_to_user(arg, ioctl, sizeof(struct atto_express_ioctl));
1537         if (err != 0) {
1538                 esas2r_log(ESAS2R_LOG_WARN,
1539                            "ioctl_handler copy_to_user didn't copy "
1540                            "everything (err %d, cmd %d)", err,
1541                            cmd);
1542                 kfree(ioctl);
1543
1544                 return -EFAULT;
1545         }
1546
1547         kfree(ioctl);
1548
1549         return 0;
1550 }
1551
1552 int esas2r_ioctl(struct scsi_device *sd, int cmd, void __user *arg)
1553 {
1554         return esas2r_ioctl_handler(sd->host->hostdata, cmd, arg);
1555 }
1556
1557 static void free_fw_buffers(struct esas2r_adapter *a)
1558 {
1559         if (a->firmware.data) {
1560                 dma_free_coherent(&a->pcid->dev,
1561                                   (size_t)a->firmware.orig_len,
1562                                   a->firmware.data,
1563                                   (dma_addr_t)a->firmware.phys);
1564
1565                 a->firmware.data = NULL;
1566         }
1567 }
1568
1569 static int allocate_fw_buffers(struct esas2r_adapter *a, u32 length)
1570 {
1571         free_fw_buffers(a);
1572
1573         a->firmware.orig_len = length;
1574
1575         a->firmware.data = (u8 *)dma_alloc_coherent(&a->pcid->dev,
1576                                                     (size_t)length,
1577                                                     (dma_addr_t *)&a->firmware.
1578                                                     phys,
1579                                                     GFP_KERNEL);
1580
1581         if (!a->firmware.data) {
1582                 esas2r_debug("buffer alloc failed!");
1583                 return 0;
1584         }
1585
1586         return 1;
1587 }
1588
1589 /* Handle a call to read firmware. */
1590 int esas2r_read_fw(struct esas2r_adapter *a, char *buf, long off, int count)
1591 {
1592         esas2r_trace_enter();
1593         /* if the cached header is a status, simply copy it over and return. */
1594         if (a->firmware.state == FW_STATUS_ST) {
1595                 int size = min_t(int, count, sizeof(a->firmware.header));
1596                 esas2r_trace_exit();
1597                 memcpy(buf, &a->firmware.header, size);
1598                 esas2r_debug("esas2r_read_fw: STATUS size %d", size);
1599                 return size;
1600         }
1601
1602         /*
1603          * if the cached header is a command, do it if at
1604          * offset 0, otherwise copy the pieces.
1605          */
1606
1607         if (a->firmware.state == FW_COMMAND_ST) {
1608                 u32 length = a->firmware.header.length;
1609                 esas2r_trace_exit();
1610
1611                 esas2r_debug("esas2r_read_fw: COMMAND length %d off %d",
1612                              length,
1613                              off);
1614
1615                 if (off == 0) {
1616                         if (a->firmware.header.action == FI_ACT_UP) {
1617                                 if (!allocate_fw_buffers(a, length))
1618                                         return -ENOMEM;
1619
1620
1621                                 /* copy header over */
1622
1623                                 memcpy(a->firmware.data,
1624                                        &a->firmware.header,
1625                                        sizeof(a->firmware.header));
1626
1627                                 do_fm_api(a,
1628                                           (struct esas2r_flash_img *)a->firmware.data);
1629                         } else if (a->firmware.header.action == FI_ACT_UPSZ) {
1630                                 int size =
1631                                         min((int)count,
1632                                             (int)sizeof(a->firmware.header));
1633                                 do_fm_api(a, &a->firmware.header);
1634                                 memcpy(buf, &a->firmware.header, size);
1635                                 esas2r_debug("FI_ACT_UPSZ size %d", size);
1636                                 return size;
1637                         } else {
1638                                 esas2r_debug("invalid action %d",
1639                                              a->firmware.header.action);
1640                                 return -ENOSYS;
1641                         }
1642                 }
1643
1644                 if (count + off > length)
1645                         count = length - off;
1646
1647                 if (count < 0)
1648                         return 0;
1649
1650                 if (!a->firmware.data) {
1651                         esas2r_debug(
1652                                 "read: nonzero offset but no buffer available!");
1653                         return -ENOMEM;
1654                 }
1655
1656                 esas2r_debug("esas2r_read_fw: off %d count %d length %d ", off,
1657                              count,
1658                              length);
1659
1660                 memcpy(buf, &a->firmware.data[off], count);
1661
1662                 /* when done, release the buffer */
1663
1664                 if (length <= off + count) {
1665                         esas2r_debug("esas2r_read_fw: freeing buffer!");
1666
1667                         free_fw_buffers(a);
1668                 }
1669
1670                 return count;
1671         }
1672
1673         esas2r_trace_exit();
1674         esas2r_debug("esas2r_read_fw: invalid firmware state %d",
1675                      a->firmware.state);
1676
1677         return -EINVAL;
1678 }
1679
1680 /* Handle a call to write firmware. */
1681 int esas2r_write_fw(struct esas2r_adapter *a, const char *buf, long off,
1682                     int count)
1683 {
1684         u32 length;
1685
1686         if (off == 0) {
1687                 struct esas2r_flash_img *header =
1688                         (struct esas2r_flash_img *)buf;
1689
1690                 /* assume version 0 flash image */
1691
1692                 int min_size = sizeof(struct esas2r_flash_img_v0);
1693
1694                 a->firmware.state = FW_INVALID_ST;
1695
1696                 /* validate the version field first */
1697
1698                 if (count < 4
1699                     ||  header->fi_version > FI_VERSION_1) {
1700                         esas2r_debug(
1701                                 "esas2r_write_fw: short header or invalid version");
1702                         return -EINVAL;
1703                 }
1704
1705                 /* See if its a version 1 flash image */
1706
1707                 if (header->fi_version == FI_VERSION_1)
1708                         min_size = sizeof(struct esas2r_flash_img);
1709
1710                 /* If this is the start, the header must be full and valid. */
1711                 if (count < min_size) {
1712                         esas2r_debug("esas2r_write_fw: short header, aborting");
1713                         return -EINVAL;
1714                 }
1715
1716                 /* Make sure the size is reasonable. */
1717                 length = header->length;
1718
1719                 if (length > 1024 * 1024) {
1720                         esas2r_debug(
1721                                 "esas2r_write_fw: hosed, length %d  fi_version %d",
1722                                 length, header->fi_version);
1723                         return -EINVAL;
1724                 }
1725
1726                 /*
1727                  * If this is a write command, allocate memory because
1728                  * we have to cache everything. otherwise, just cache
1729                  * the header, because the read op will do the command.
1730                  */
1731
1732                 if (header->action == FI_ACT_DOWN) {
1733                         if (!allocate_fw_buffers(a, length))
1734                                 return -ENOMEM;
1735
1736                         /*
1737                          * Store the command, so there is context on subsequent
1738                          * calls.
1739                          */
1740                         memcpy(&a->firmware.header,
1741                                buf,
1742                                sizeof(*header));
1743                 } else if (header->action == FI_ACT_UP
1744                            ||  header->action == FI_ACT_UPSZ) {
1745                         /* Save the command, result will be picked up on read */
1746                         memcpy(&a->firmware.header,
1747                                buf,
1748                                sizeof(*header));
1749
1750                         a->firmware.state = FW_COMMAND_ST;
1751
1752                         esas2r_debug(
1753                                 "esas2r_write_fw: COMMAND, count %d, action %d ",
1754                                 count, header->action);
1755
1756                         /*
1757                          * Pretend we took the whole buffer,
1758                          * so we don't get bothered again.
1759                          */
1760
1761                         return count;
1762                 } else {
1763                         esas2r_debug("esas2r_write_fw: invalid action %d ",
1764                                      a->firmware.header.action);
1765                         return -ENOSYS;
1766                 }
1767         } else {
1768                 length = a->firmware.header.length;
1769         }
1770
1771         /*
1772          * We only get here on a download command, regardless of offset.
1773          * the chunks written by the system need to be cached, and when
1774          * the final one arrives, issue the fmapi command.
1775          */
1776
1777         if (off + count > length)
1778                 count = length - off;
1779
1780         if (count > 0) {
1781                 esas2r_debug("esas2r_write_fw: off %d count %d length %d", off,
1782                              count,
1783                              length);
1784
1785                 /*
1786                  * On a full upload, the system tries sending the whole buffer.
1787                  * there's nothing to do with it, so just drop it here, before
1788                  * trying to copy over into unallocated memory!
1789                  */
1790                 if (a->firmware.header.action == FI_ACT_UP)
1791                         return count;
1792
1793                 if (!a->firmware.data) {
1794                         esas2r_debug(
1795                                 "write: nonzero offset but no buffer available!");
1796                         return -ENOMEM;
1797                 }
1798
1799                 memcpy(&a->firmware.data[off], buf, count);
1800
1801                 if (length == off + count) {
1802                         do_fm_api(a,
1803                                   (struct esas2r_flash_img *)a->firmware.data);
1804
1805                         /*
1806                          * Now copy the header result to be picked up by the
1807                          * next read
1808                          */
1809                         memcpy(&a->firmware.header,
1810                                a->firmware.data,
1811                                sizeof(a->firmware.header));
1812
1813                         a->firmware.state = FW_STATUS_ST;
1814
1815                         esas2r_debug("write completed");
1816
1817                         /*
1818                          * Since the system has the data buffered, the only way
1819                          * this can leak is if a root user writes a program
1820                          * that writes a shorter buffer than it claims, and the
1821                          * copyin fails.
1822                          */
1823                         free_fw_buffers(a);
1824                 }
1825         }
1826
1827         return count;
1828 }
1829
1830 /* Callback for the completion of a VDA request. */
1831 static void vda_complete_req(struct esas2r_adapter *a,
1832                              struct esas2r_request *rq)
1833 {
1834         a->vda_command_done = 1;
1835         wake_up_interruptible(&a->vda_waiter);
1836 }
1837
1838 /* Scatter/gather callback for VDA requests */
1839 static u32 get_physaddr_vda(struct esas2r_sg_context *sgc, u64 *addr)
1840 {
1841         struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
1842         int offset = (u8 *)sgc->cur_offset - (u8 *)a->vda_buffer;
1843
1844         (*addr) = a->ppvda_buffer + offset;
1845         return VDA_MAX_BUFFER_SIZE - offset;
1846 }
1847
1848 /* Handle a call to read a VDA command. */
1849 int esas2r_read_vda(struct esas2r_adapter *a, char *buf, long off, int count)
1850 {
1851         if (!a->vda_buffer)
1852                 return -ENOMEM;
1853
1854         if (off == 0) {
1855                 struct esas2r_request *rq;
1856                 struct atto_ioctl_vda *vi =
1857                         (struct atto_ioctl_vda *)a->vda_buffer;
1858                 struct esas2r_sg_context sgc;
1859                 bool wait_for_completion;
1860
1861                 /*
1862                  * Presumeably, someone has already written to the vda_buffer,
1863                  * and now they are reading the node the response, so now we
1864                  * will actually issue the request to the chip and reply.
1865                  */
1866
1867                 /* allocate a request */
1868                 rq = esas2r_alloc_request(a);
1869                 if (rq == NULL) {
1870                         esas2r_debug("esas2r_read_vda: out of requestss");
1871                         return -EBUSY;
1872                 }
1873
1874                 rq->comp_cb = vda_complete_req;
1875
1876                 sgc.first_req = rq;
1877                 sgc.adapter = a;
1878                 sgc.cur_offset = a->vda_buffer + VDA_BUFFER_HEADER_SZ;
1879                 sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_vda;
1880
1881                 a->vda_command_done = 0;
1882
1883                 wait_for_completion =
1884                         esas2r_process_vda_ioctl(a, vi, rq, &sgc);
1885
1886                 if (wait_for_completion) {
1887                         /* now wait around for it to complete. */
1888
1889                         while (!a->vda_command_done)
1890                                 wait_event_interruptible(a->vda_waiter,
1891                                                          a->vda_command_done);
1892                 }
1893
1894                 esas2r_free_request(a, (struct esas2r_request *)rq);
1895         }
1896
1897         if (off > VDA_MAX_BUFFER_SIZE)
1898                 return 0;
1899
1900         if (count + off > VDA_MAX_BUFFER_SIZE)
1901                 count = VDA_MAX_BUFFER_SIZE - off;
1902
1903         if (count < 0)
1904                 return 0;
1905
1906         memcpy(buf, a->vda_buffer + off, count);
1907
1908         return count;
1909 }
1910
1911 /* Handle a call to write a VDA command. */
1912 int esas2r_write_vda(struct esas2r_adapter *a, const char *buf, long off,
1913                      int count)
1914 {
1915         /*
1916          * allocate memory for it, if not already done.  once allocated,
1917          * we will keep it around until the driver is unloaded.
1918          */
1919
1920         if (!a->vda_buffer) {
1921                 dma_addr_t dma_addr;
1922                 a->vda_buffer = (u8 *)dma_alloc_coherent(&a->pcid->dev,
1923                                                          (size_t)
1924                                                          VDA_MAX_BUFFER_SIZE,
1925                                                          &dma_addr,
1926                                                          GFP_KERNEL);
1927
1928                 a->ppvda_buffer = dma_addr;
1929         }
1930
1931         if (!a->vda_buffer)
1932                 return -ENOMEM;
1933
1934         if (off > VDA_MAX_BUFFER_SIZE)
1935                 return 0;
1936
1937         if (count + off > VDA_MAX_BUFFER_SIZE)
1938                 count = VDA_MAX_BUFFER_SIZE - off;
1939
1940         if (count < 1)
1941                 return 0;
1942
1943         memcpy(a->vda_buffer + off, buf, count);
1944
1945         return count;
1946 }
1947
1948 /* Callback for the completion of an FS_API request.*/
1949 static void fs_api_complete_req(struct esas2r_adapter *a,
1950                                 struct esas2r_request *rq)
1951 {
1952         a->fs_api_command_done = 1;
1953
1954         wake_up_interruptible(&a->fs_api_waiter);
1955 }
1956
1957 /* Scatter/gather callback for VDA requests */
1958 static u32 get_physaddr_fs_api(struct esas2r_sg_context *sgc, u64 *addr)
1959 {
1960         struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
1961         struct esas2r_ioctl_fs *fs =
1962                 (struct esas2r_ioctl_fs *)a->fs_api_buffer;
1963         u32 offset = (u8 *)sgc->cur_offset - (u8 *)fs;
1964
1965         (*addr) = a->ppfs_api_buffer + offset;
1966
1967         return a->fs_api_buffer_size - offset;
1968 }
1969
1970 /* Handle a call to read firmware via FS_API. */
1971 int esas2r_read_fs(struct esas2r_adapter *a, char *buf, long off, int count)
1972 {
1973         if (!a->fs_api_buffer)
1974                 return -ENOMEM;
1975
1976         if (off == 0) {
1977                 struct esas2r_request *rq;
1978                 struct esas2r_sg_context sgc;
1979                 struct esas2r_ioctl_fs *fs =
1980                         (struct esas2r_ioctl_fs *)a->fs_api_buffer;
1981
1982                 /* If another flash request is already in progress, return. */
1983                 if (down_interruptible(&a->fs_api_semaphore)) {
1984 busy:
1985                         fs->status = ATTO_STS_OUT_OF_RSRC;
1986                         return -EBUSY;
1987                 }
1988
1989                 /*
1990                  * Presumeably, someone has already written to the
1991                  * fs_api_buffer, and now they are reading the node the
1992                  * response, so now we will actually issue the request to the
1993                  * chip and reply. Allocate a request
1994                  */
1995
1996                 rq = esas2r_alloc_request(a);
1997                 if (rq == NULL) {
1998                         esas2r_debug("esas2r_read_fs: out of requests");
1999                         up(&a->fs_api_semaphore);
2000                         goto busy;
2001                 }
2002
2003                 rq->comp_cb = fs_api_complete_req;
2004
2005                 /* Set up the SGCONTEXT for to build the s/g table */
2006
2007                 sgc.cur_offset = fs->data;
2008                 sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_fs_api;
2009
2010                 a->fs_api_command_done = 0;
2011
2012                 if (!esas2r_process_fs_ioctl(a, fs, rq, &sgc)) {
2013                         if (fs->status == ATTO_STS_OUT_OF_RSRC)
2014                                 count = -EBUSY;
2015
2016                         goto dont_wait;
2017                 }
2018
2019                 /* Now wait around for it to complete. */
2020
2021                 while (!a->fs_api_command_done)
2022                         wait_event_interruptible(a->fs_api_waiter,
2023                                                  a->fs_api_command_done);
2024                 ;
2025 dont_wait:
2026                 /* Free the request and keep going */
2027                 up(&a->fs_api_semaphore);
2028                 esas2r_free_request(a, (struct esas2r_request *)rq);
2029
2030                 /* Pick up possible error code from above */
2031                 if (count < 0)
2032                         return count;
2033         }
2034
2035         if (off > a->fs_api_buffer_size)
2036                 return 0;
2037
2038         if (count + off > a->fs_api_buffer_size)
2039                 count = a->fs_api_buffer_size - off;
2040
2041         if (count < 0)
2042                 return 0;
2043
2044         memcpy(buf, a->fs_api_buffer + off, count);
2045
2046         return count;
2047 }
2048
2049 /* Handle a call to write firmware via FS_API. */
2050 int esas2r_write_fs(struct esas2r_adapter *a, const char *buf, long off,
2051                     int count)
2052 {
2053         if (off == 0) {
2054                 struct esas2r_ioctl_fs *fs = (struct esas2r_ioctl_fs *)buf;
2055                 u32 length = fs->command.length + offsetof(
2056                         struct esas2r_ioctl_fs,
2057                         data);
2058
2059                 /*
2060                  * Special case, for BEGIN commands, the length field
2061                  * is lying to us, so just get enough for the header.
2062                  */
2063
2064                 if (fs->command.command == ESAS2R_FS_CMD_BEGINW)
2065                         length = offsetof(struct esas2r_ioctl_fs, data);
2066
2067                 /*
2068                  * Beginning a command.  We assume we'll get at least
2069                  * enough in the first write so we can look at the
2070                  * header and see how much we need to alloc.
2071                  */
2072
2073                 if (count < offsetof(struct esas2r_ioctl_fs, data))
2074                         return -EINVAL;
2075
2076                 /* Allocate a buffer or use the existing buffer. */
2077                 if (a->fs_api_buffer) {
2078                         if (a->fs_api_buffer_size < length) {
2079                                 /* Free too-small buffer and get a new one */
2080                                 dma_free_coherent(&a->pcid->dev,
2081                                                   (size_t)a->fs_api_buffer_size,
2082                                                   a->fs_api_buffer,
2083                                                   (dma_addr_t)a->ppfs_api_buffer);
2084
2085                                 goto re_allocate_buffer;
2086                         }
2087                 } else {
2088 re_allocate_buffer:
2089                         a->fs_api_buffer_size = length;
2090
2091                         a->fs_api_buffer = (u8 *)dma_alloc_coherent(
2092                                 &a->pcid->dev,
2093                                 (size_t)a->fs_api_buffer_size,
2094                                 (dma_addr_t *)&a->ppfs_api_buffer,
2095                                 GFP_KERNEL);
2096                 }
2097         }
2098
2099         if (!a->fs_api_buffer)
2100                 return -ENOMEM;
2101
2102         if (off > a->fs_api_buffer_size)
2103                 return 0;
2104
2105         if (count + off > a->fs_api_buffer_size)
2106                 count = a->fs_api_buffer_size - off;
2107
2108         if (count < 1)
2109                 return 0;
2110
2111         memcpy(a->fs_api_buffer + off, buf, count);
2112
2113         return count;
2114 }