These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / drivers / scsi / aacraid / commsup.c
1 /*
2  *      Adaptec AAC series RAID controller driver
3  *      (c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  *               2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; see the file COPYING.  If not, write to
23  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24  *
25  * Module Name:
26  *  commsup.c
27  *
28  * Abstract: Contain all routines that are required for FSA host/adapter
29  *    communication.
30  *
31  */
32
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/types.h>
36 #include <linux/sched.h>
37 #include <linux/pci.h>
38 #include <linux/spinlock.h>
39 #include <linux/slab.h>
40 #include <linux/completion.h>
41 #include <linux/blkdev.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/interrupt.h>
45 #include <linux/semaphore.h>
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_host.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_cmnd.h>
50
51 #include "aacraid.h"
52
53 /**
54  *      fib_map_alloc           -       allocate the fib objects
55  *      @dev: Adapter to allocate for
56  *
57  *      Allocate and map the shared PCI space for the FIB blocks used to
58  *      talk to the Adaptec firmware.
59  */
60
61 static int fib_map_alloc(struct aac_dev *dev)
62 {
63         dprintk((KERN_INFO
64           "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
65           dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
66           AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
67         dev->hw_fib_va = pci_alloc_consistent(dev->pdev,
68                 (dev->max_fib_size + sizeof(struct aac_fib_xporthdr))
69                 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
70                 &dev->hw_fib_pa);
71         if (dev->hw_fib_va == NULL)
72                 return -ENOMEM;
73         return 0;
74 }
75
76 /**
77  *      aac_fib_map_free                -       free the fib objects
78  *      @dev: Adapter to free
79  *
80  *      Free the PCI mappings and the memory allocated for FIB blocks
81  *      on this adapter.
82  */
83
84 void aac_fib_map_free(struct aac_dev *dev)
85 {
86         pci_free_consistent(dev->pdev,
87           dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
88           dev->hw_fib_va, dev->hw_fib_pa);
89         dev->hw_fib_va = NULL;
90         dev->hw_fib_pa = 0;
91 }
92
93 /**
94  *      aac_fib_setup   -       setup the fibs
95  *      @dev: Adapter to set up
96  *
97  *      Allocate the PCI space for the fibs, map it and then initialise the
98  *      fib area, the unmapped fib data and also the free list
99  */
100
101 int aac_fib_setup(struct aac_dev * dev)
102 {
103         struct fib *fibptr;
104         struct hw_fib *hw_fib;
105         dma_addr_t hw_fib_pa;
106         int i;
107
108         while (((i = fib_map_alloc(dev)) == -ENOMEM)
109          && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
110                 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
111                 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
112         }
113         if (i<0)
114                 return -ENOMEM;
115
116         /* 32 byte alignment for PMC */
117         hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
118         dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
119                 (hw_fib_pa - dev->hw_fib_pa));
120         dev->hw_fib_pa = hw_fib_pa;
121         memset(dev->hw_fib_va, 0,
122                 (dev->max_fib_size + sizeof(struct aac_fib_xporthdr)) *
123                 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
124
125         /* add Xport header */
126         dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
127                 sizeof(struct aac_fib_xporthdr));
128         dev->hw_fib_pa += sizeof(struct aac_fib_xporthdr);
129
130         hw_fib = dev->hw_fib_va;
131         hw_fib_pa = dev->hw_fib_pa;
132         /*
133          *      Initialise the fibs
134          */
135         for (i = 0, fibptr = &dev->fibs[i];
136                 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
137                 i++, fibptr++)
138         {
139                 fibptr->flags = 0;
140                 fibptr->dev = dev;
141                 fibptr->hw_fib_va = hw_fib;
142                 fibptr->data = (void *) fibptr->hw_fib_va->data;
143                 fibptr->next = fibptr+1;        /* Forward chain the fibs */
144                 sema_init(&fibptr->event_wait, 0);
145                 spin_lock_init(&fibptr->event_lock);
146                 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
147                 hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size);
148                 fibptr->hw_fib_pa = hw_fib_pa;
149                 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
150                         dev->max_fib_size + sizeof(struct aac_fib_xporthdr));
151                 hw_fib_pa = hw_fib_pa +
152                         dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
153         }
154         /*
155          *      Add the fib chain to the free list
156          */
157         dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
158         /*
159          *      Enable this to debug out of queue space
160          */
161         dev->free_fib = &dev->fibs[0];
162         return 0;
163 }
164
165 /**
166  *      aac_fib_alloc   -       allocate a fib
167  *      @dev: Adapter to allocate the fib for
168  *
169  *      Allocate a fib from the adapter fib pool. If the pool is empty we
170  *      return NULL.
171  */
172
173 struct fib *aac_fib_alloc(struct aac_dev *dev)
174 {
175         struct fib * fibptr;
176         unsigned long flags;
177         spin_lock_irqsave(&dev->fib_lock, flags);
178         fibptr = dev->free_fib;
179         if(!fibptr){
180                 spin_unlock_irqrestore(&dev->fib_lock, flags);
181                 return fibptr;
182         }
183         dev->free_fib = fibptr->next;
184         spin_unlock_irqrestore(&dev->fib_lock, flags);
185         /*
186          *      Set the proper node type code and node byte size
187          */
188         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
189         fibptr->size = sizeof(struct fib);
190         /*
191          *      Null out fields that depend on being zero at the start of
192          *      each I/O
193          */
194         fibptr->hw_fib_va->header.XferState = 0;
195         fibptr->flags = 0;
196         fibptr->callback = NULL;
197         fibptr->callback_data = NULL;
198
199         return fibptr;
200 }
201
202 /**
203  *      aac_fib_free    -       free a fib
204  *      @fibptr: fib to free up
205  *
206  *      Frees up a fib and places it on the appropriate queue
207  */
208
209 void aac_fib_free(struct fib *fibptr)
210 {
211         unsigned long flags;
212
213         if (fibptr->done == 2)
214                 return;
215
216         spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
217         if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
218                 aac_config.fib_timeouts++;
219         if (fibptr->hw_fib_va->header.XferState != 0) {
220                 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
221                          (void*)fibptr,
222                          le32_to_cpu(fibptr->hw_fib_va->header.XferState));
223         }
224         fibptr->next = fibptr->dev->free_fib;
225         fibptr->dev->free_fib = fibptr;
226         spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
227 }
228
229 /**
230  *      aac_fib_init    -       initialise a fib
231  *      @fibptr: The fib to initialize
232  *
233  *      Set up the generic fib fields ready for use
234  */
235
236 void aac_fib_init(struct fib *fibptr)
237 {
238         struct hw_fib *hw_fib = fibptr->hw_fib_va;
239
240         memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
241         hw_fib->header.StructType = FIB_MAGIC;
242         hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
243         hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
244         hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
245         hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
246 }
247
248 /**
249  *      fib_deallocate          -       deallocate a fib
250  *      @fibptr: fib to deallocate
251  *
252  *      Will deallocate and return to the free pool the FIB pointed to by the
253  *      caller.
254  */
255
256 static void fib_dealloc(struct fib * fibptr)
257 {
258         struct hw_fib *hw_fib = fibptr->hw_fib_va;
259         hw_fib->header.XferState = 0;
260 }
261
262 /*
263  *      Commuication primitives define and support the queuing method we use to
264  *      support host to adapter commuication. All queue accesses happen through
265  *      these routines and are the only routines which have a knowledge of the
266  *       how these queues are implemented.
267  */
268
269 /**
270  *      aac_get_entry           -       get a queue entry
271  *      @dev: Adapter
272  *      @qid: Queue Number
273  *      @entry: Entry return
274  *      @index: Index return
275  *      @nonotify: notification control
276  *
277  *      With a priority the routine returns a queue entry if the queue has free entries. If the queue
278  *      is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
279  *      returned.
280  */
281
282 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
283 {
284         struct aac_queue * q;
285         unsigned long idx;
286
287         /*
288          *      All of the queues wrap when they reach the end, so we check
289          *      to see if they have reached the end and if they have we just
290          *      set the index back to zero. This is a wrap. You could or off
291          *      the high bits in all updates but this is a bit faster I think.
292          */
293
294         q = &dev->queues->queue[qid];
295
296         idx = *index = le32_to_cpu(*(q->headers.producer));
297         /* Interrupt Moderation, only interrupt for first two entries */
298         if (idx != le32_to_cpu(*(q->headers.consumer))) {
299                 if (--idx == 0) {
300                         if (qid == AdapNormCmdQueue)
301                                 idx = ADAP_NORM_CMD_ENTRIES;
302                         else
303                                 idx = ADAP_NORM_RESP_ENTRIES;
304                 }
305                 if (idx != le32_to_cpu(*(q->headers.consumer)))
306                         *nonotify = 1;
307         }
308
309         if (qid == AdapNormCmdQueue) {
310                 if (*index >= ADAP_NORM_CMD_ENTRIES)
311                         *index = 0; /* Wrap to front of the Producer Queue. */
312         } else {
313                 if (*index >= ADAP_NORM_RESP_ENTRIES)
314                         *index = 0; /* Wrap to front of the Producer Queue. */
315         }
316
317         /* Queue is full */
318         if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
319                 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
320                                 qid, atomic_read(&q->numpending));
321                 return 0;
322         } else {
323                 *entry = q->base + *index;
324                 return 1;
325         }
326 }
327
328 /**
329  *      aac_queue_get           -       get the next free QE
330  *      @dev: Adapter
331  *      @index: Returned index
332  *      @priority: Priority of fib
333  *      @fib: Fib to associate with the queue entry
334  *      @wait: Wait if queue full
335  *      @fibptr: Driver fib object to go with fib
336  *      @nonotify: Don't notify the adapter
337  *
338  *      Gets the next free QE off the requested priorty adapter command
339  *      queue and associates the Fib with the QE. The QE represented by
340  *      index is ready to insert on the queue when this routine returns
341  *      success.
342  */
343
344 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
345 {
346         struct aac_entry * entry = NULL;
347         int map = 0;
348
349         if (qid == AdapNormCmdQueue) {
350                 /*  if no entries wait for some if caller wants to */
351                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
352                         printk(KERN_ERR "GetEntries failed\n");
353                 }
354                 /*
355                  *      Setup queue entry with a command, status and fib mapped
356                  */
357                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
358                 map = 1;
359         } else {
360                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
361                         /* if no entries wait for some if caller wants to */
362                 }
363                 /*
364                  *      Setup queue entry with command, status and fib mapped
365                  */
366                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
367                 entry->addr = hw_fib->header.SenderFibAddress;
368                         /* Restore adapters pointer to the FIB */
369                 hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress;  /* Let the adapter now where to find its data */
370                 map = 0;
371         }
372         /*
373          *      If MapFib is true than we need to map the Fib and put pointers
374          *      in the queue entry.
375          */
376         if (map)
377                 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
378         return 0;
379 }
380
381 /*
382  *      Define the highest level of host to adapter communication routines.
383  *      These routines will support host to adapter FS commuication. These
384  *      routines have no knowledge of the commuication method used. This level
385  *      sends and receives FIBs. This level has no knowledge of how these FIBs
386  *      get passed back and forth.
387  */
388
389 /**
390  *      aac_fib_send    -       send a fib to the adapter
391  *      @command: Command to send
392  *      @fibptr: The fib
393  *      @size: Size of fib data area
394  *      @priority: Priority of Fib
395  *      @wait: Async/sync select
396  *      @reply: True if a reply is wanted
397  *      @callback: Called with reply
398  *      @callback_data: Passed to callback
399  *
400  *      Sends the requested FIB to the adapter and optionally will wait for a
401  *      response FIB. If the caller does not wish to wait for a response than
402  *      an event to wait on must be supplied. This event will be set when a
403  *      response FIB is received from the adapter.
404  */
405
406 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
407                 int priority, int wait, int reply, fib_callback callback,
408                 void *callback_data)
409 {
410         struct aac_dev * dev = fibptr->dev;
411         struct hw_fib * hw_fib = fibptr->hw_fib_va;
412         unsigned long flags = 0;
413         unsigned long mflags = 0;
414         unsigned long sflags = 0;
415
416
417         if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
418                 return -EBUSY;
419         /*
420          *      There are 5 cases with the wait and response requested flags.
421          *      The only invalid cases are if the caller requests to wait and
422          *      does not request a response and if the caller does not want a
423          *      response and the Fib is not allocated from pool. If a response
424          *      is not requesed the Fib will just be deallocaed by the DPC
425          *      routine when the response comes back from the adapter. No
426          *      further processing will be done besides deleting the Fib. We
427          *      will have a debug mode where the adapter can notify the host
428          *      it had a problem and the host can log that fact.
429          */
430         fibptr->flags = 0;
431         if (wait && !reply) {
432                 return -EINVAL;
433         } else if (!wait && reply) {
434                 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
435                 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
436         } else if (!wait && !reply) {
437                 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
438                 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
439         } else if (wait && reply) {
440                 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
441                 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
442         }
443         /*
444          *      Map the fib into 32bits by using the fib number
445          */
446
447         hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
448         hw_fib->header.Handle = (u32)(fibptr - dev->fibs) + 1;
449         /*
450          *      Set FIB state to indicate where it came from and if we want a
451          *      response from the adapter. Also load the command from the
452          *      caller.
453          *
454          *      Map the hw fib pointer as a 32bit value
455          */
456         hw_fib->header.Command = cpu_to_le16(command);
457         hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
458         /*
459          *      Set the size of the Fib we want to send to the adapter
460          */
461         hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
462         if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
463                 return -EMSGSIZE;
464         }
465         /*
466          *      Get a queue entry connect the FIB to it and send an notify
467          *      the adapter a command is ready.
468          */
469         hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
470
471         /*
472          *      Fill in the Callback and CallbackContext if we are not
473          *      going to wait.
474          */
475         if (!wait) {
476                 fibptr->callback = callback;
477                 fibptr->callback_data = callback_data;
478                 fibptr->flags = FIB_CONTEXT_FLAG;
479         }
480
481         fibptr->done = 0;
482
483         FIB_COUNTER_INCREMENT(aac_config.FibsSent);
484
485         dprintk((KERN_DEBUG "Fib contents:.\n"));
486         dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
487         dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
488         dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
489         dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
490         dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
491         dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
492
493         if (!dev->queues)
494                 return -EBUSY;
495
496         if (wait) {
497
498                 spin_lock_irqsave(&dev->manage_lock, mflags);
499                 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
500                         printk(KERN_INFO "No management Fibs Available:%d\n",
501                                                 dev->management_fib_count);
502                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
503                         return -EBUSY;
504                 }
505                 dev->management_fib_count++;
506                 spin_unlock_irqrestore(&dev->manage_lock, mflags);
507                 spin_lock_irqsave(&fibptr->event_lock, flags);
508         }
509
510         if (dev->sync_mode) {
511                 if (wait)
512                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
513                 spin_lock_irqsave(&dev->sync_lock, sflags);
514                 if (dev->sync_fib) {
515                         list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
516                         spin_unlock_irqrestore(&dev->sync_lock, sflags);
517                 } else {
518                         dev->sync_fib = fibptr;
519                         spin_unlock_irqrestore(&dev->sync_lock, sflags);
520                         aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
521                                 (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
522                                 NULL, NULL, NULL, NULL, NULL);
523                 }
524                 if (wait) {
525                         fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
526                         if (down_interruptible(&fibptr->event_wait)) {
527                                 fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
528                                 return -EFAULT;
529                         }
530                         return 0;
531                 }
532                 return -EINPROGRESS;
533         }
534
535         if (aac_adapter_deliver(fibptr) != 0) {
536                 printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
537                 if (wait) {
538                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
539                         spin_lock_irqsave(&dev->manage_lock, mflags);
540                         dev->management_fib_count--;
541                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
542                 }
543                 return -EBUSY;
544         }
545
546
547         /*
548          *      If the caller wanted us to wait for response wait now.
549          */
550
551         if (wait) {
552                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
553                 /* Only set for first known interruptable command */
554                 if (wait < 0) {
555                         /*
556                          * *VERY* Dangerous to time out a command, the
557                          * assumption is made that we have no hope of
558                          * functioning because an interrupt routing or other
559                          * hardware failure has occurred.
560                          */
561                         unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
562                         while (down_trylock(&fibptr->event_wait)) {
563                                 int blink;
564                                 if (time_is_before_eq_jiffies(timeout)) {
565                                         struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
566                                         atomic_dec(&q->numpending);
567                                         if (wait == -1) {
568                                                 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
569                                                   "Usually a result of a PCI interrupt routing problem;\n"
570                                                   "update mother board BIOS or consider utilizing one of\n"
571                                                   "the SAFE mode kernel options (acpi, apic etc)\n");
572                                         }
573                                         return -ETIMEDOUT;
574                                 }
575                                 if ((blink = aac_adapter_check_health(dev)) > 0) {
576                                         if (wait == -1) {
577                                                 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
578                                                   "Usually a result of a serious unrecoverable hardware problem\n",
579                                                   blink);
580                                         }
581                                         return -EFAULT;
582                                 }
583                                 /* We used to udelay() here but that absorbed
584                                  * a CPU when a timeout occured. Not very
585                                  * useful. */
586                                 cpu_relax();
587                         }
588                 } else if (down_interruptible(&fibptr->event_wait)) {
589                         /* Do nothing ... satisfy
590                          * down_interruptible must_check */
591                 }
592
593                 spin_lock_irqsave(&fibptr->event_lock, flags);
594                 if (fibptr->done == 0) {
595                         fibptr->done = 2; /* Tell interrupt we aborted */
596                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
597                         return -ERESTARTSYS;
598                 }
599                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
600                 BUG_ON(fibptr->done == 0);
601
602                 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
603                         return -ETIMEDOUT;
604                 return 0;
605         }
606         /*
607          *      If the user does not want a response than return success otherwise
608          *      return pending
609          */
610         if (reply)
611                 return -EINPROGRESS;
612         else
613                 return 0;
614 }
615
616 /**
617  *      aac_consumer_get        -       get the top of the queue
618  *      @dev: Adapter
619  *      @q: Queue
620  *      @entry: Return entry
621  *
622  *      Will return a pointer to the entry on the top of the queue requested that
623  *      we are a consumer of, and return the address of the queue entry. It does
624  *      not change the state of the queue.
625  */
626
627 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
628 {
629         u32 index;
630         int status;
631         if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
632                 status = 0;
633         } else {
634                 /*
635                  *      The consumer index must be wrapped if we have reached
636                  *      the end of the queue, else we just use the entry
637                  *      pointed to by the header index
638                  */
639                 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
640                         index = 0;
641                 else
642                         index = le32_to_cpu(*q->headers.consumer);
643                 *entry = q->base + index;
644                 status = 1;
645         }
646         return(status);
647 }
648
649 /**
650  *      aac_consumer_free       -       free consumer entry
651  *      @dev: Adapter
652  *      @q: Queue
653  *      @qid: Queue ident
654  *
655  *      Frees up the current top of the queue we are a consumer of. If the
656  *      queue was full notify the producer that the queue is no longer full.
657  */
658
659 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
660 {
661         int wasfull = 0;
662         u32 notify;
663
664         if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
665                 wasfull = 1;
666
667         if (le32_to_cpu(*q->headers.consumer) >= q->entries)
668                 *q->headers.consumer = cpu_to_le32(1);
669         else
670                 le32_add_cpu(q->headers.consumer, 1);
671
672         if (wasfull) {
673                 switch (qid) {
674
675                 case HostNormCmdQueue:
676                         notify = HostNormCmdNotFull;
677                         break;
678                 case HostNormRespQueue:
679                         notify = HostNormRespNotFull;
680                         break;
681                 default:
682                         BUG();
683                         return;
684                 }
685                 aac_adapter_notify(dev, notify);
686         }
687 }
688
689 /**
690  *      aac_fib_adapter_complete        -       complete adapter issued fib
691  *      @fibptr: fib to complete
692  *      @size: size of fib
693  *
694  *      Will do all necessary work to complete a FIB that was sent from
695  *      the adapter.
696  */
697
698 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
699 {
700         struct hw_fib * hw_fib = fibptr->hw_fib_va;
701         struct aac_dev * dev = fibptr->dev;
702         struct aac_queue * q;
703         unsigned long nointr = 0;
704         unsigned long qflags;
705
706         if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
707             dev->comm_interface == AAC_COMM_MESSAGE_TYPE2) {
708                 kfree(hw_fib);
709                 return 0;
710         }
711
712         if (hw_fib->header.XferState == 0) {
713                 if (dev->comm_interface == AAC_COMM_MESSAGE)
714                         kfree(hw_fib);
715                 return 0;
716         }
717         /*
718          *      If we plan to do anything check the structure type first.
719          */
720         if (hw_fib->header.StructType != FIB_MAGIC &&
721             hw_fib->header.StructType != FIB_MAGIC2 &&
722             hw_fib->header.StructType != FIB_MAGIC2_64) {
723                 if (dev->comm_interface == AAC_COMM_MESSAGE)
724                         kfree(hw_fib);
725                 return -EINVAL;
726         }
727         /*
728          *      This block handles the case where the adapter had sent us a
729          *      command and we have finished processing the command. We
730          *      call completeFib when we are done processing the command
731          *      and want to send a response back to the adapter. This will
732          *      send the completed cdb to the adapter.
733          */
734         if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
735                 if (dev->comm_interface == AAC_COMM_MESSAGE) {
736                         kfree (hw_fib);
737                 } else {
738                         u32 index;
739                         hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
740                         if (size) {
741                                 size += sizeof(struct aac_fibhdr);
742                                 if (size > le16_to_cpu(hw_fib->header.SenderSize))
743                                         return -EMSGSIZE;
744                                 hw_fib->header.Size = cpu_to_le16(size);
745                         }
746                         q = &dev->queues->queue[AdapNormRespQueue];
747                         spin_lock_irqsave(q->lock, qflags);
748                         aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
749                         *(q->headers.producer) = cpu_to_le32(index + 1);
750                         spin_unlock_irqrestore(q->lock, qflags);
751                         if (!(nointr & (int)aac_config.irq_mod))
752                                 aac_adapter_notify(dev, AdapNormRespQueue);
753                 }
754         } else {
755                 printk(KERN_WARNING "aac_fib_adapter_complete: "
756                         "Unknown xferstate detected.\n");
757                 BUG();
758         }
759         return 0;
760 }
761
762 /**
763  *      aac_fib_complete        -       fib completion handler
764  *      @fib: FIB to complete
765  *
766  *      Will do all necessary work to complete a FIB.
767  */
768
769 int aac_fib_complete(struct fib *fibptr)
770 {
771         struct hw_fib * hw_fib = fibptr->hw_fib_va;
772
773         /*
774          *      Check for a fib which has already been completed
775          */
776
777         if (hw_fib->header.XferState == 0)
778                 return 0;
779         /*
780          *      If we plan to do anything check the structure type first.
781          */
782
783         if (hw_fib->header.StructType != FIB_MAGIC &&
784             hw_fib->header.StructType != FIB_MAGIC2 &&
785             hw_fib->header.StructType != FIB_MAGIC2_64)
786                 return -EINVAL;
787         /*
788          *      This block completes a cdb which orginated on the host and we
789          *      just need to deallocate the cdb or reinit it. At this point the
790          *      command is complete that we had sent to the adapter and this
791          *      cdb could be reused.
792          */
793
794         if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
795                 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
796         {
797                 fib_dealloc(fibptr);
798         }
799         else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
800         {
801                 /*
802                  *      This handles the case when the host has aborted the I/O
803                  *      to the adapter because the adapter is not responding
804                  */
805                 fib_dealloc(fibptr);
806         } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
807                 fib_dealloc(fibptr);
808         } else {
809                 BUG();
810         }
811         return 0;
812 }
813
814 /**
815  *      aac_printf      -       handle printf from firmware
816  *      @dev: Adapter
817  *      @val: Message info
818  *
819  *      Print a message passed to us by the controller firmware on the
820  *      Adaptec board
821  */
822
823 void aac_printf(struct aac_dev *dev, u32 val)
824 {
825         char *cp = dev->printfbuf;
826         if (dev->printf_enabled)
827         {
828                 int length = val & 0xffff;
829                 int level = (val >> 16) & 0xffff;
830
831                 /*
832                  *      The size of the printfbuf is set in port.c
833                  *      There is no variable or define for it
834                  */
835                 if (length > 255)
836                         length = 255;
837                 if (cp[length] != 0)
838                         cp[length] = 0;
839                 if (level == LOG_AAC_HIGH_ERROR)
840                         printk(KERN_WARNING "%s:%s", dev->name, cp);
841                 else
842                         printk(KERN_INFO "%s:%s", dev->name, cp);
843         }
844         memset(cp, 0, 256);
845 }
846
847
848 /**
849  *      aac_handle_aif          -       Handle a message from the firmware
850  *      @dev: Which adapter this fib is from
851  *      @fibptr: Pointer to fibptr from adapter
852  *
853  *      This routine handles a driver notify fib from the adapter and
854  *      dispatches it to the appropriate routine for handling.
855  */
856
857 #define AIF_SNIFF_TIMEOUT       (500*HZ)
858 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
859 {
860         struct hw_fib * hw_fib = fibptr->hw_fib_va;
861         struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
862         u32 channel, id, lun, container;
863         struct scsi_device *device;
864         enum {
865                 NOTHING,
866                 DELETE,
867                 ADD,
868                 CHANGE
869         } device_config_needed = NOTHING;
870
871         /* Sniff for container changes */
872
873         if (!dev || !dev->fsa_dev)
874                 return;
875         container = channel = id = lun = (u32)-1;
876
877         /*
878          *      We have set this up to try and minimize the number of
879          * re-configures that take place. As a result of this when
880          * certain AIF's come in we will set a flag waiting for another
881          * type of AIF before setting the re-config flag.
882          */
883         switch (le32_to_cpu(aifcmd->command)) {
884         case AifCmdDriverNotify:
885                 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
886                 case AifRawDeviceRemove:
887                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
888                         if ((container >> 28)) {
889                                 container = (u32)-1;
890                                 break;
891                         }
892                         channel = (container >> 24) & 0xF;
893                         if (channel >= dev->maximum_num_channels) {
894                                 container = (u32)-1;
895                                 break;
896                         }
897                         id = container & 0xFFFF;
898                         if (id >= dev->maximum_num_physicals) {
899                                 container = (u32)-1;
900                                 break;
901                         }
902                         lun = (container >> 16) & 0xFF;
903                         container = (u32)-1;
904                         channel = aac_phys_to_logical(channel);
905                         device_config_needed =
906                           (((__le32 *)aifcmd->data)[0] ==
907                             cpu_to_le32(AifRawDeviceRemove)) ? DELETE : ADD;
908
909                         if (device_config_needed == ADD) {
910                                 device = scsi_device_lookup(
911                                         dev->scsi_host_ptr,
912                                         channel, id, lun);
913                                 if (device) {
914                                         scsi_remove_device(device);
915                                         scsi_device_put(device);
916                                 }
917                         }
918                         break;
919                 /*
920                  *      Morph or Expand complete
921                  */
922                 case AifDenMorphComplete:
923                 case AifDenVolumeExtendComplete:
924                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
925                         if (container >= dev->maximum_num_containers)
926                                 break;
927
928                         /*
929                          *      Find the scsi_device associated with the SCSI
930                          * address. Make sure we have the right array, and if
931                          * so set the flag to initiate a new re-config once we
932                          * see an AifEnConfigChange AIF come through.
933                          */
934
935                         if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
936                                 device = scsi_device_lookup(dev->scsi_host_ptr,
937                                         CONTAINER_TO_CHANNEL(container),
938                                         CONTAINER_TO_ID(container),
939                                         CONTAINER_TO_LUN(container));
940                                 if (device) {
941                                         dev->fsa_dev[container].config_needed = CHANGE;
942                                         dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
943                                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
944                                         scsi_device_put(device);
945                                 }
946                         }
947                 }
948
949                 /*
950                  *      If we are waiting on something and this happens to be
951                  * that thing then set the re-configure flag.
952                  */
953                 if (container != (u32)-1) {
954                         if (container >= dev->maximum_num_containers)
955                                 break;
956                         if ((dev->fsa_dev[container].config_waiting_on ==
957                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
958                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
959                                 dev->fsa_dev[container].config_waiting_on = 0;
960                 } else for (container = 0;
961                     container < dev->maximum_num_containers; ++container) {
962                         if ((dev->fsa_dev[container].config_waiting_on ==
963                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
964                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
965                                 dev->fsa_dev[container].config_waiting_on = 0;
966                 }
967                 break;
968
969         case AifCmdEventNotify:
970                 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
971                 case AifEnBatteryEvent:
972                         dev->cache_protected =
973                                 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
974                         break;
975                 /*
976                  *      Add an Array.
977                  */
978                 case AifEnAddContainer:
979                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
980                         if (container >= dev->maximum_num_containers)
981                                 break;
982                         dev->fsa_dev[container].config_needed = ADD;
983                         dev->fsa_dev[container].config_waiting_on =
984                                 AifEnConfigChange;
985                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
986                         break;
987
988                 /*
989                  *      Delete an Array.
990                  */
991                 case AifEnDeleteContainer:
992                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
993                         if (container >= dev->maximum_num_containers)
994                                 break;
995                         dev->fsa_dev[container].config_needed = DELETE;
996                         dev->fsa_dev[container].config_waiting_on =
997                                 AifEnConfigChange;
998                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
999                         break;
1000
1001                 /*
1002                  *      Container change detected. If we currently are not
1003                  * waiting on something else, setup to wait on a Config Change.
1004                  */
1005                 case AifEnContainerChange:
1006                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1007                         if (container >= dev->maximum_num_containers)
1008                                 break;
1009                         if (dev->fsa_dev[container].config_waiting_on &&
1010                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1011                                 break;
1012                         dev->fsa_dev[container].config_needed = CHANGE;
1013                         dev->fsa_dev[container].config_waiting_on =
1014                                 AifEnConfigChange;
1015                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1016                         break;
1017
1018                 case AifEnConfigChange:
1019                         break;
1020
1021                 case AifEnAddJBOD:
1022                 case AifEnDeleteJBOD:
1023                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1024                         if ((container >> 28)) {
1025                                 container = (u32)-1;
1026                                 break;
1027                         }
1028                         channel = (container >> 24) & 0xF;
1029                         if (channel >= dev->maximum_num_channels) {
1030                                 container = (u32)-1;
1031                                 break;
1032                         }
1033                         id = container & 0xFFFF;
1034                         if (id >= dev->maximum_num_physicals) {
1035                                 container = (u32)-1;
1036                                 break;
1037                         }
1038                         lun = (container >> 16) & 0xFF;
1039                         container = (u32)-1;
1040                         channel = aac_phys_to_logical(channel);
1041                         device_config_needed =
1042                           (((__le32 *)aifcmd->data)[0] ==
1043                             cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1044                         if (device_config_needed == ADD) {
1045                                 device = scsi_device_lookup(dev->scsi_host_ptr,
1046                                         channel,
1047                                         id,
1048                                         lun);
1049                                 if (device) {
1050                                         scsi_remove_device(device);
1051                                         scsi_device_put(device);
1052                                 }
1053                         }
1054                         break;
1055
1056                 case AifEnEnclosureManagement:
1057                         /*
1058                          * If in JBOD mode, automatic exposure of new
1059                          * physical target to be suppressed until configured.
1060                          */
1061                         if (dev->jbod)
1062                                 break;
1063                         switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1064                         case EM_DRIVE_INSERTION:
1065                         case EM_DRIVE_REMOVAL:
1066                         case EM_SES_DRIVE_INSERTION:
1067                         case EM_SES_DRIVE_REMOVAL:
1068                                 container = le32_to_cpu(
1069                                         ((__le32 *)aifcmd->data)[2]);
1070                                 if ((container >> 28)) {
1071                                         container = (u32)-1;
1072                                         break;
1073                                 }
1074                                 channel = (container >> 24) & 0xF;
1075                                 if (channel >= dev->maximum_num_channels) {
1076                                         container = (u32)-1;
1077                                         break;
1078                                 }
1079                                 id = container & 0xFFFF;
1080                                 lun = (container >> 16) & 0xFF;
1081                                 container = (u32)-1;
1082                                 if (id >= dev->maximum_num_physicals) {
1083                                         /* legacy dev_t ? */
1084                                         if ((0x2000 <= id) || lun || channel ||
1085                                           ((channel = (id >> 7) & 0x3F) >=
1086                                           dev->maximum_num_channels))
1087                                                 break;
1088                                         lun = (id >> 4) & 7;
1089                                         id &= 0xF;
1090                                 }
1091                                 channel = aac_phys_to_logical(channel);
1092                                 device_config_needed =
1093                                   ((((__le32 *)aifcmd->data)[3]
1094                                     == cpu_to_le32(EM_DRIVE_INSERTION)) ||
1095                                     (((__le32 *)aifcmd->data)[3]
1096                                     == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
1097                                   ADD : DELETE;
1098                                 break;
1099                         }
1100                         break;
1101                 }
1102
1103                 /*
1104                  *      If we are waiting on something and this happens to be
1105                  * that thing then set the re-configure flag.
1106                  */
1107                 if (container != (u32)-1) {
1108                         if (container >= dev->maximum_num_containers)
1109                                 break;
1110                         if ((dev->fsa_dev[container].config_waiting_on ==
1111                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1112                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1113                                 dev->fsa_dev[container].config_waiting_on = 0;
1114                 } else for (container = 0;
1115                     container < dev->maximum_num_containers; ++container) {
1116                         if ((dev->fsa_dev[container].config_waiting_on ==
1117                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1118                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1119                                 dev->fsa_dev[container].config_waiting_on = 0;
1120                 }
1121                 break;
1122
1123         case AifCmdJobProgress:
1124                 /*
1125                  *      These are job progress AIF's. When a Clear is being
1126                  * done on a container it is initially created then hidden from
1127                  * the OS. When the clear completes we don't get a config
1128                  * change so we monitor the job status complete on a clear then
1129                  * wait for a container change.
1130                  */
1131
1132                 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1133                     (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1134                      ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1135                         for (container = 0;
1136                             container < dev->maximum_num_containers;
1137                             ++container) {
1138                                 /*
1139                                  * Stomp on all config sequencing for all
1140                                  * containers?
1141                                  */
1142                                 dev->fsa_dev[container].config_waiting_on =
1143                                         AifEnContainerChange;
1144                                 dev->fsa_dev[container].config_needed = ADD;
1145                                 dev->fsa_dev[container].config_waiting_stamp =
1146                                         jiffies;
1147                         }
1148                 }
1149                 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1150                     ((__le32 *)aifcmd->data)[6] == 0 &&
1151                     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1152                         for (container = 0;
1153                             container < dev->maximum_num_containers;
1154                             ++container) {
1155                                 /*
1156                                  * Stomp on all config sequencing for all
1157                                  * containers?
1158                                  */
1159                                 dev->fsa_dev[container].config_waiting_on =
1160                                         AifEnContainerChange;
1161                                 dev->fsa_dev[container].config_needed = DELETE;
1162                                 dev->fsa_dev[container].config_waiting_stamp =
1163                                         jiffies;
1164                         }
1165                 }
1166                 break;
1167         }
1168
1169         container = 0;
1170 retry_next:
1171         if (device_config_needed == NOTHING)
1172         for (; container < dev->maximum_num_containers; ++container) {
1173                 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1174                         (dev->fsa_dev[container].config_needed != NOTHING) &&
1175                         time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1176                         device_config_needed =
1177                                 dev->fsa_dev[container].config_needed;
1178                         dev->fsa_dev[container].config_needed = NOTHING;
1179                         channel = CONTAINER_TO_CHANNEL(container);
1180                         id = CONTAINER_TO_ID(container);
1181                         lun = CONTAINER_TO_LUN(container);
1182                         break;
1183                 }
1184         }
1185         if (device_config_needed == NOTHING)
1186                 return;
1187
1188         /*
1189          *      If we decided that a re-configuration needs to be done,
1190          * schedule it here on the way out the door, please close the door
1191          * behind you.
1192          */
1193
1194         /*
1195          *      Find the scsi_device associated with the SCSI address,
1196          * and mark it as changed, invalidating the cache. This deals
1197          * with changes to existing device IDs.
1198          */
1199
1200         if (!dev || !dev->scsi_host_ptr)
1201                 return;
1202         /*
1203          * force reload of disk info via aac_probe_container
1204          */
1205         if ((channel == CONTAINER_CHANNEL) &&
1206           (device_config_needed != NOTHING)) {
1207                 if (dev->fsa_dev[container].valid == 1)
1208                         dev->fsa_dev[container].valid = 2;
1209                 aac_probe_container(dev, container);
1210         }
1211         device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1212         if (device) {
1213                 switch (device_config_needed) {
1214                 case DELETE:
1215 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1216                         scsi_remove_device(device);
1217 #else
1218                         if (scsi_device_online(device)) {
1219                                 scsi_device_set_state(device, SDEV_OFFLINE);
1220                                 sdev_printk(KERN_INFO, device,
1221                                         "Device offlined - %s\n",
1222                                         (channel == CONTAINER_CHANNEL) ?
1223                                                 "array deleted" :
1224                                                 "enclosure services event");
1225                         }
1226 #endif
1227                         break;
1228                 case ADD:
1229                         if (!scsi_device_online(device)) {
1230                                 sdev_printk(KERN_INFO, device,
1231                                         "Device online - %s\n",
1232                                         (channel == CONTAINER_CHANNEL) ?
1233                                                 "array created" :
1234                                                 "enclosure services event");
1235                                 scsi_device_set_state(device, SDEV_RUNNING);
1236                         }
1237                         /* FALLTHRU */
1238                 case CHANGE:
1239                         if ((channel == CONTAINER_CHANNEL)
1240                          && (!dev->fsa_dev[container].valid)) {
1241 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1242                                 scsi_remove_device(device);
1243 #else
1244                                 if (!scsi_device_online(device))
1245                                         break;
1246                                 scsi_device_set_state(device, SDEV_OFFLINE);
1247                                 sdev_printk(KERN_INFO, device,
1248                                         "Device offlined - %s\n",
1249                                         "array failed");
1250 #endif
1251                                 break;
1252                         }
1253                         scsi_rescan_device(&device->sdev_gendev);
1254
1255                 default:
1256                         break;
1257                 }
1258                 scsi_device_put(device);
1259                 device_config_needed = NOTHING;
1260         }
1261         if (device_config_needed == ADD)
1262                 scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1263         if (channel == CONTAINER_CHANNEL) {
1264                 container++;
1265                 device_config_needed = NOTHING;
1266                 goto retry_next;
1267         }
1268 }
1269
1270 static int _aac_reset_adapter(struct aac_dev *aac, int forced)
1271 {
1272         int index, quirks;
1273         int retval;
1274         struct Scsi_Host *host;
1275         struct scsi_device *dev;
1276         struct scsi_cmnd *command;
1277         struct scsi_cmnd *command_list;
1278         int jafo = 0;
1279
1280         /*
1281          * Assumptions:
1282          *      - host is locked, unless called by the aacraid thread.
1283          *        (a matter of convenience, due to legacy issues surrounding
1284          *        eh_host_adapter_reset).
1285          *      - in_reset is asserted, so no new i/o is getting to the
1286          *        card.
1287          *      - The card is dead, or will be very shortly ;-/ so no new
1288          *        commands are completing in the interrupt service.
1289          */
1290         host = aac->scsi_host_ptr;
1291         scsi_block_requests(host);
1292         aac_adapter_disable_int(aac);
1293         if (aac->thread->pid != current->pid) {
1294                 spin_unlock_irq(host->host_lock);
1295                 kthread_stop(aac->thread);
1296                 jafo = 1;
1297         }
1298
1299         /*
1300          *      If a positive health, means in a known DEAD PANIC
1301          * state and the adapter could be reset to `try again'.
1302          */
1303         retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac));
1304
1305         if (retval)
1306                 goto out;
1307
1308         /*
1309          *      Loop through the fibs, close the synchronous FIBS
1310          */
1311         for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
1312                 struct fib *fib = &aac->fibs[index];
1313                 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1314                   (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) {
1315                         unsigned long flagv;
1316                         spin_lock_irqsave(&fib->event_lock, flagv);
1317                         up(&fib->event_wait);
1318                         spin_unlock_irqrestore(&fib->event_lock, flagv);
1319                         schedule();
1320                         retval = 0;
1321                 }
1322         }
1323         /* Give some extra time for ioctls to complete. */
1324         if (retval == 0)
1325                 ssleep(2);
1326         index = aac->cardtype;
1327
1328         /*
1329          * Re-initialize the adapter, first free resources, then carefully
1330          * apply the initialization sequence to come back again. Only risk
1331          * is a change in Firmware dropping cache, it is assumed the caller
1332          * will ensure that i/o is queisced and the card is flushed in that
1333          * case.
1334          */
1335         aac_fib_map_free(aac);
1336         pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1337         aac->comm_addr = NULL;
1338         aac->comm_phys = 0;
1339         kfree(aac->queues);
1340         aac->queues = NULL;
1341         aac_free_irq(aac);
1342         kfree(aac->fsa_dev);
1343         aac->fsa_dev = NULL;
1344         quirks = aac_get_driver_ident(index)->quirks;
1345         if (quirks & AAC_QUIRK_31BIT) {
1346                 if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(31)))) ||
1347                   ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(31)))))
1348                         goto out;
1349         } else {
1350                 if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32)))) ||
1351                   ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(32)))))
1352                         goto out;
1353         }
1354         if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1355                 goto out;
1356         if (quirks & AAC_QUIRK_31BIT)
1357                 if ((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32))))
1358                         goto out;
1359         if (jafo) {
1360                 aac->thread = kthread_run(aac_command_thread, aac, "%s",
1361                                           aac->name);
1362                 if (IS_ERR(aac->thread)) {
1363                         retval = PTR_ERR(aac->thread);
1364                         goto out;
1365                 }
1366         }
1367         (void)aac_get_adapter_info(aac);
1368         if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1369                 host->sg_tablesize = 34;
1370                 host->max_sectors = (host->sg_tablesize * 8) + 112;
1371         }
1372         if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1373                 host->sg_tablesize = 17;
1374                 host->max_sectors = (host->sg_tablesize * 8) + 112;
1375         }
1376         aac_get_config_status(aac, 1);
1377         aac_get_containers(aac);
1378         /*
1379          * This is where the assumption that the Adapter is quiesced
1380          * is important.
1381          */
1382         command_list = NULL;
1383         __shost_for_each_device(dev, host) {
1384                 unsigned long flags;
1385                 spin_lock_irqsave(&dev->list_lock, flags);
1386                 list_for_each_entry(command, &dev->cmd_list, list)
1387                         if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1388                                 command->SCp.buffer = (struct scatterlist *)command_list;
1389                                 command_list = command;
1390                         }
1391                 spin_unlock_irqrestore(&dev->list_lock, flags);
1392         }
1393         while ((command = command_list)) {
1394                 command_list = (struct scsi_cmnd *)command->SCp.buffer;
1395                 command->SCp.buffer = NULL;
1396                 command->result = DID_OK << 16
1397                   | COMMAND_COMPLETE << 8
1398                   | SAM_STAT_TASK_SET_FULL;
1399                 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1400                 command->scsi_done(command);
1401         }
1402         retval = 0;
1403
1404 out:
1405         aac->in_reset = 0;
1406         scsi_unblock_requests(host);
1407         if (jafo) {
1408                 spin_lock_irq(host->host_lock);
1409         }
1410         return retval;
1411 }
1412
1413 int aac_reset_adapter(struct aac_dev * aac, int forced)
1414 {
1415         unsigned long flagv = 0;
1416         int retval;
1417         struct Scsi_Host * host;
1418
1419         if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1420                 return -EBUSY;
1421
1422         if (aac->in_reset) {
1423                 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1424                 return -EBUSY;
1425         }
1426         aac->in_reset = 1;
1427         spin_unlock_irqrestore(&aac->fib_lock, flagv);
1428
1429         /*
1430          * Wait for all commands to complete to this specific
1431          * target (block maximum 60 seconds). Although not necessary,
1432          * it does make us a good storage citizen.
1433          */
1434         host = aac->scsi_host_ptr;
1435         scsi_block_requests(host);
1436         if (forced < 2) for (retval = 60; retval; --retval) {
1437                 struct scsi_device * dev;
1438                 struct scsi_cmnd * command;
1439                 int active = 0;
1440
1441                 __shost_for_each_device(dev, host) {
1442                         spin_lock_irqsave(&dev->list_lock, flagv);
1443                         list_for_each_entry(command, &dev->cmd_list, list) {
1444                                 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1445                                         active++;
1446                                         break;
1447                                 }
1448                         }
1449                         spin_unlock_irqrestore(&dev->list_lock, flagv);
1450                         if (active)
1451                                 break;
1452
1453                 }
1454                 /*
1455                  * We can exit If all the commands are complete
1456                  */
1457                 if (active == 0)
1458                         break;
1459                 ssleep(1);
1460         }
1461
1462         /* Quiesce build, flush cache, write through mode */
1463         if (forced < 2)
1464                 aac_send_shutdown(aac);
1465         spin_lock_irqsave(host->host_lock, flagv);
1466         retval = _aac_reset_adapter(aac, forced ? forced : ((aac_check_reset != 0) && (aac_check_reset != 1)));
1467         spin_unlock_irqrestore(host->host_lock, flagv);
1468
1469         if ((forced < 2) && (retval == -ENODEV)) {
1470                 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1471                 struct fib * fibctx = aac_fib_alloc(aac);
1472                 if (fibctx) {
1473                         struct aac_pause *cmd;
1474                         int status;
1475
1476                         aac_fib_init(fibctx);
1477
1478                         cmd = (struct aac_pause *) fib_data(fibctx);
1479
1480                         cmd->command = cpu_to_le32(VM_ContainerConfig);
1481                         cmd->type = cpu_to_le32(CT_PAUSE_IO);
1482                         cmd->timeout = cpu_to_le32(1);
1483                         cmd->min = cpu_to_le32(1);
1484                         cmd->noRescan = cpu_to_le32(1);
1485                         cmd->count = cpu_to_le32(0);
1486
1487                         status = aac_fib_send(ContainerCommand,
1488                           fibctx,
1489                           sizeof(struct aac_pause),
1490                           FsaNormal,
1491                           -2 /* Timeout silently */, 1,
1492                           NULL, NULL);
1493
1494                         if (status >= 0)
1495                                 aac_fib_complete(fibctx);
1496                         /* FIB should be freed only after getting
1497                          * the response from the F/W */
1498                         if (status != -ERESTARTSYS)
1499                                 aac_fib_free(fibctx);
1500                 }
1501         }
1502
1503         return retval;
1504 }
1505
1506 int aac_check_health(struct aac_dev * aac)
1507 {
1508         int BlinkLED;
1509         unsigned long time_now, flagv = 0;
1510         struct list_head * entry;
1511         struct Scsi_Host * host;
1512
1513         /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1514         if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1515                 return 0;
1516
1517         if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1518                 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1519                 return 0; /* OK */
1520         }
1521
1522         aac->in_reset = 1;
1523
1524         /* Fake up an AIF:
1525          *      aac_aifcmd.command = AifCmdEventNotify = 1
1526          *      aac_aifcmd.seqnum = 0xFFFFFFFF
1527          *      aac_aifcmd.data[0] = AifEnExpEvent = 23
1528          *      aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1529          *      aac.aifcmd.data[2] = AifHighPriority = 3
1530          *      aac.aifcmd.data[3] = BlinkLED
1531          */
1532
1533         time_now = jiffies/HZ;
1534         entry = aac->fib_list.next;
1535
1536         /*
1537          * For each Context that is on the
1538          * fibctxList, make a copy of the
1539          * fib, and then set the event to wake up the
1540          * thread that is waiting for it.
1541          */
1542         while (entry != &aac->fib_list) {
1543                 /*
1544                  * Extract the fibctx
1545                  */
1546                 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1547                 struct hw_fib * hw_fib;
1548                 struct fib * fib;
1549                 /*
1550                  * Check if the queue is getting
1551                  * backlogged
1552                  */
1553                 if (fibctx->count > 20) {
1554                         /*
1555                          * It's *not* jiffies folks,
1556                          * but jiffies / HZ, so do not
1557                          * panic ...
1558                          */
1559                         u32 time_last = fibctx->jiffies;
1560                         /*
1561                          * Has it been > 2 minutes
1562                          * since the last read off
1563                          * the queue?
1564                          */
1565                         if ((time_now - time_last) > aif_timeout) {
1566                                 entry = entry->next;
1567                                 aac_close_fib_context(aac, fibctx);
1568                                 continue;
1569                         }
1570                 }
1571                 /*
1572                  * Warning: no sleep allowed while
1573                  * holding spinlock
1574                  */
1575                 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1576                 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1577                 if (fib && hw_fib) {
1578                         struct aac_aifcmd * aif;
1579
1580                         fib->hw_fib_va = hw_fib;
1581                         fib->dev = aac;
1582                         aac_fib_init(fib);
1583                         fib->type = FSAFS_NTC_FIB_CONTEXT;
1584                         fib->size = sizeof (struct fib);
1585                         fib->data = hw_fib->data;
1586                         aif = (struct aac_aifcmd *)hw_fib->data;
1587                         aif->command = cpu_to_le32(AifCmdEventNotify);
1588                         aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1589                         ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1590                         ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1591                         ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1592                         ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1593
1594                         /*
1595                          * Put the FIB onto the
1596                          * fibctx's fibs
1597                          */
1598                         list_add_tail(&fib->fiblink, &fibctx->fib_list);
1599                         fibctx->count++;
1600                         /*
1601                          * Set the event to wake up the
1602                          * thread that will waiting.
1603                          */
1604                         up(&fibctx->wait_sem);
1605                 } else {
1606                         printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1607                         kfree(fib);
1608                         kfree(hw_fib);
1609                 }
1610                 entry = entry->next;
1611         }
1612
1613         spin_unlock_irqrestore(&aac->fib_lock, flagv);
1614
1615         if (BlinkLED < 0) {
1616                 printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1617                 goto out;
1618         }
1619
1620         printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1621
1622         if (!aac_check_reset || ((aac_check_reset == 1) &&
1623                 (aac->supplement_adapter_info.SupportedOptions2 &
1624                         AAC_OPTION_IGNORE_RESET)))
1625                 goto out;
1626         host = aac->scsi_host_ptr;
1627         if (aac->thread->pid != current->pid)
1628                 spin_lock_irqsave(host->host_lock, flagv);
1629         BlinkLED = _aac_reset_adapter(aac, aac_check_reset != 1);
1630         if (aac->thread->pid != current->pid)
1631                 spin_unlock_irqrestore(host->host_lock, flagv);
1632         return BlinkLED;
1633
1634 out:
1635         aac->in_reset = 0;
1636         return BlinkLED;
1637 }
1638
1639
1640 /**
1641  *      aac_command_thread      -       command processing thread
1642  *      @dev: Adapter to monitor
1643  *
1644  *      Waits on the commandready event in it's queue. When the event gets set
1645  *      it will pull FIBs off it's queue. It will continue to pull FIBs off
1646  *      until the queue is empty. When the queue is empty it will wait for
1647  *      more FIBs.
1648  */
1649
1650 int aac_command_thread(void *data)
1651 {
1652         struct aac_dev *dev = data;
1653         struct hw_fib *hw_fib, *hw_newfib;
1654         struct fib *fib, *newfib;
1655         struct aac_fib_context *fibctx;
1656         unsigned long flags;
1657         DECLARE_WAITQUEUE(wait, current);
1658         unsigned long next_jiffies = jiffies + HZ;
1659         unsigned long next_check_jiffies = next_jiffies;
1660         long difference = HZ;
1661
1662         /*
1663          *      We can only have one thread per adapter for AIF's.
1664          */
1665         if (dev->aif_thread)
1666                 return -EINVAL;
1667
1668         /*
1669          *      Let the DPC know it has a place to send the AIF's to.
1670          */
1671         dev->aif_thread = 1;
1672         add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1673         set_current_state(TASK_INTERRUPTIBLE);
1674         dprintk ((KERN_INFO "aac_command_thread start\n"));
1675         while (1) {
1676                 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1677                 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1678                         struct list_head *entry;
1679                         struct aac_aifcmd * aifcmd;
1680
1681                         set_current_state(TASK_RUNNING);
1682
1683                         entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1684                         list_del(entry);
1685
1686                         spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1687                         fib = list_entry(entry, struct fib, fiblink);
1688                         /*
1689                          *      We will process the FIB here or pass it to a
1690                          *      worker thread that is TBD. We Really can't
1691                          *      do anything at this point since we don't have
1692                          *      anything defined for this thread to do.
1693                          */
1694                         hw_fib = fib->hw_fib_va;
1695                         memset(fib, 0, sizeof(struct fib));
1696                         fib->type = FSAFS_NTC_FIB_CONTEXT;
1697                         fib->size = sizeof(struct fib);
1698                         fib->hw_fib_va = hw_fib;
1699                         fib->data = hw_fib->data;
1700                         fib->dev = dev;
1701                         /*
1702                          *      We only handle AifRequest fibs from the adapter.
1703                          */
1704                         aifcmd = (struct aac_aifcmd *) hw_fib->data;
1705                         if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1706                                 /* Handle Driver Notify Events */
1707                                 aac_handle_aif(dev, fib);
1708                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1709                                 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1710                         } else {
1711                                 /* The u32 here is important and intended. We are using
1712                                    32bit wrapping time to fit the adapter field */
1713
1714                                 u32 time_now, time_last;
1715                                 unsigned long flagv;
1716                                 unsigned num;
1717                                 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1718                                 struct fib ** fib_pool, ** fib_p;
1719
1720                                 /* Sniff events */
1721                                 if ((aifcmd->command ==
1722                                      cpu_to_le32(AifCmdEventNotify)) ||
1723                                     (aifcmd->command ==
1724                                      cpu_to_le32(AifCmdJobProgress))) {
1725                                         aac_handle_aif(dev, fib);
1726                                 }
1727
1728                                 time_now = jiffies/HZ;
1729
1730                                 /*
1731                                  * Warning: no sleep allowed while
1732                                  * holding spinlock. We take the estimate
1733                                  * and pre-allocate a set of fibs outside the
1734                                  * lock.
1735                                  */
1736                                 num = le32_to_cpu(dev->init->AdapterFibsSize)
1737                                     / sizeof(struct hw_fib); /* some extra */
1738                                 spin_lock_irqsave(&dev->fib_lock, flagv);
1739                                 entry = dev->fib_list.next;
1740                                 while (entry != &dev->fib_list) {
1741                                         entry = entry->next;
1742                                         ++num;
1743                                 }
1744                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1745                                 hw_fib_pool = NULL;
1746                                 fib_pool = NULL;
1747                                 if (num
1748                                  && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1749                                  && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1750                                         hw_fib_p = hw_fib_pool;
1751                                         fib_p = fib_pool;
1752                                         while (hw_fib_p < &hw_fib_pool[num]) {
1753                                                 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1754                                                         --hw_fib_p;
1755                                                         break;
1756                                                 }
1757                                                 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1758                                                         kfree(*(--hw_fib_p));
1759                                                         break;
1760                                                 }
1761                                         }
1762                                         if ((num = hw_fib_p - hw_fib_pool) == 0) {
1763                                                 kfree(fib_pool);
1764                                                 fib_pool = NULL;
1765                                                 kfree(hw_fib_pool);
1766                                                 hw_fib_pool = NULL;
1767                                         }
1768                                 } else {
1769                                         kfree(hw_fib_pool);
1770                                         hw_fib_pool = NULL;
1771                                 }
1772                                 spin_lock_irqsave(&dev->fib_lock, flagv);
1773                                 entry = dev->fib_list.next;
1774                                 /*
1775                                  * For each Context that is on the
1776                                  * fibctxList, make a copy of the
1777                                  * fib, and then set the event to wake up the
1778                                  * thread that is waiting for it.
1779                                  */
1780                                 hw_fib_p = hw_fib_pool;
1781                                 fib_p = fib_pool;
1782                                 while (entry != &dev->fib_list) {
1783                                         /*
1784                                          * Extract the fibctx
1785                                          */
1786                                         fibctx = list_entry(entry, struct aac_fib_context, next);
1787                                         /*
1788                                          * Check if the queue is getting
1789                                          * backlogged
1790                                          */
1791                                         if (fibctx->count > 20)
1792                                         {
1793                                                 /*
1794                                                  * It's *not* jiffies folks,
1795                                                  * but jiffies / HZ so do not
1796                                                  * panic ...
1797                                                  */
1798                                                 time_last = fibctx->jiffies;
1799                                                 /*
1800                                                  * Has it been > 2 minutes
1801                                                  * since the last read off
1802                                                  * the queue?
1803                                                  */
1804                                                 if ((time_now - time_last) > aif_timeout) {
1805                                                         entry = entry->next;
1806                                                         aac_close_fib_context(dev, fibctx);
1807                                                         continue;
1808                                                 }
1809                                         }
1810                                         /*
1811                                          * Warning: no sleep allowed while
1812                                          * holding spinlock
1813                                          */
1814                                         if (hw_fib_p < &hw_fib_pool[num]) {
1815                                                 hw_newfib = *hw_fib_p;
1816                                                 *(hw_fib_p++) = NULL;
1817                                                 newfib = *fib_p;
1818                                                 *(fib_p++) = NULL;
1819                                                 /*
1820                                                  * Make the copy of the FIB
1821                                                  */
1822                                                 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1823                                                 memcpy(newfib, fib, sizeof(struct fib));
1824                                                 newfib->hw_fib_va = hw_newfib;
1825                                                 /*
1826                                                  * Put the FIB onto the
1827                                                  * fibctx's fibs
1828                                                  */
1829                                                 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1830                                                 fibctx->count++;
1831                                                 /*
1832                                                  * Set the event to wake up the
1833                                                  * thread that is waiting.
1834                                                  */
1835                                                 up(&fibctx->wait_sem);
1836                                         } else {
1837                                                 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1838                                         }
1839                                         entry = entry->next;
1840                                 }
1841                                 /*
1842                                  *      Set the status of this FIB
1843                                  */
1844                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1845                                 aac_fib_adapter_complete(fib, sizeof(u32));
1846                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1847                                 /* Free up the remaining resources */
1848                                 hw_fib_p = hw_fib_pool;
1849                                 fib_p = fib_pool;
1850                                 while (hw_fib_p < &hw_fib_pool[num]) {
1851                                         kfree(*hw_fib_p);
1852                                         kfree(*fib_p);
1853                                         ++fib_p;
1854                                         ++hw_fib_p;
1855                                 }
1856                                 kfree(hw_fib_pool);
1857                                 kfree(fib_pool);
1858                         }
1859                         kfree(fib);
1860                         spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1861                 }
1862                 /*
1863                  *      There are no more AIF's
1864                  */
1865                 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1866
1867                 /*
1868                  *      Background activity
1869                  */
1870                 if ((time_before(next_check_jiffies,next_jiffies))
1871                  && ((difference = next_check_jiffies - jiffies) <= 0)) {
1872                         next_check_jiffies = next_jiffies;
1873                         if (aac_check_health(dev) == 0) {
1874                                 difference = ((long)(unsigned)check_interval)
1875                                            * HZ;
1876                                 next_check_jiffies = jiffies + difference;
1877                         } else if (!dev->queues)
1878                                 break;
1879                 }
1880                 if (!time_before(next_check_jiffies,next_jiffies)
1881                  && ((difference = next_jiffies - jiffies) <= 0)) {
1882                         struct timeval now;
1883                         int ret;
1884
1885                         /* Don't even try to talk to adapter if its sick */
1886                         ret = aac_check_health(dev);
1887                         if (!ret && !dev->queues)
1888                                 break;
1889                         next_check_jiffies = jiffies
1890                                            + ((long)(unsigned)check_interval)
1891                                            * HZ;
1892                         do_gettimeofday(&now);
1893
1894                         /* Synchronize our watches */
1895                         if (((1000000 - (1000000 / HZ)) > now.tv_usec)
1896                          && (now.tv_usec > (1000000 / HZ)))
1897                                 difference = (((1000000 - now.tv_usec) * HZ)
1898                                   + 500000) / 1000000;
1899                         else if (ret == 0) {
1900                                 struct fib *fibptr;
1901
1902                                 if ((fibptr = aac_fib_alloc(dev))) {
1903                                         int status;
1904                                         __le32 *info;
1905
1906                                         aac_fib_init(fibptr);
1907
1908                                         info = (__le32 *) fib_data(fibptr);
1909                                         if (now.tv_usec > 500000)
1910                                                 ++now.tv_sec;
1911
1912                                         *info = cpu_to_le32(now.tv_sec);
1913
1914                                         status = aac_fib_send(SendHostTime,
1915                                                 fibptr,
1916                                                 sizeof(*info),
1917                                                 FsaNormal,
1918                                                 1, 1,
1919                                                 NULL,
1920                                                 NULL);
1921                                         /* Do not set XferState to zero unless
1922                                          * receives a response from F/W */
1923                                         if (status >= 0)
1924                                                 aac_fib_complete(fibptr);
1925                                         /* FIB should be freed only after
1926                                          * getting the response from the F/W */
1927                                         if (status != -ERESTARTSYS)
1928                                                 aac_fib_free(fibptr);
1929                                 }
1930                                 difference = (long)(unsigned)update_interval*HZ;
1931                         } else {
1932                                 /* retry shortly */
1933                                 difference = 10 * HZ;
1934                         }
1935                         next_jiffies = jiffies + difference;
1936                         if (time_before(next_check_jiffies,next_jiffies))
1937                                 difference = next_check_jiffies - jiffies;
1938                 }
1939                 if (difference <= 0)
1940                         difference = 1;
1941                 set_current_state(TASK_INTERRUPTIBLE);
1942                 schedule_timeout(difference);
1943
1944                 if (kthread_should_stop())
1945                         break;
1946         }
1947         if (dev->queues)
1948                 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1949         dev->aif_thread = 0;
1950         return 0;
1951 }
1952
1953 int aac_acquire_irq(struct aac_dev *dev)
1954 {
1955         int i;
1956         int j;
1957         int ret = 0;
1958         int cpu;
1959
1960         cpu = cpumask_first(cpu_online_mask);
1961         if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
1962                 for (i = 0; i < dev->max_msix; i++) {
1963                         dev->aac_msix[i].vector_no = i;
1964                         dev->aac_msix[i].dev = dev;
1965                         if (request_irq(dev->msixentry[i].vector,
1966                                         dev->a_ops.adapter_intr,
1967                                         0, "aacraid", &(dev->aac_msix[i]))) {
1968                                 printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
1969                                                 dev->name, dev->id, i);
1970                                 for (j = 0 ; j < i ; j++)
1971                                         free_irq(dev->msixentry[j].vector,
1972                                                  &(dev->aac_msix[j]));
1973                                 pci_disable_msix(dev->pdev);
1974                                 ret = -1;
1975                         }
1976                         if (irq_set_affinity_hint(dev->msixentry[i].vector,
1977                                                         get_cpu_mask(cpu))) {
1978                                 printk(KERN_ERR "%s%d: Failed to set IRQ affinity for cpu %d\n",
1979                                             dev->name, dev->id, cpu);
1980                         }
1981                         cpu = cpumask_next(cpu, cpu_online_mask);
1982                 }
1983         } else {
1984                 dev->aac_msix[0].vector_no = 0;
1985                 dev->aac_msix[0].dev = dev;
1986
1987                 if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
1988                         IRQF_SHARED, "aacraid",
1989                         &(dev->aac_msix[0])) < 0) {
1990                         if (dev->msi)
1991                                 pci_disable_msi(dev->pdev);
1992                         printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
1993                                         dev->name, dev->id);
1994                         ret = -1;
1995                 }
1996         }
1997         return ret;
1998 }
1999
2000 void aac_free_irq(struct aac_dev *dev)
2001 {
2002         int i;
2003         int cpu;
2004
2005         cpu = cpumask_first(cpu_online_mask);
2006         if (dev->pdev->device == PMC_DEVICE_S6 ||
2007             dev->pdev->device == PMC_DEVICE_S7 ||
2008             dev->pdev->device == PMC_DEVICE_S8 ||
2009             dev->pdev->device == PMC_DEVICE_S9) {
2010                 if (dev->max_msix > 1) {
2011                         for (i = 0; i < dev->max_msix; i++) {
2012                                 if (irq_set_affinity_hint(
2013                                         dev->msixentry[i].vector, NULL)) {
2014                                         printk(KERN_ERR "%s%d: Failed to reset IRQ affinity for cpu %d\n",
2015                                             dev->name, dev->id, cpu);
2016                                 }
2017                                 cpu = cpumask_next(cpu, cpu_online_mask);
2018                                 free_irq(dev->msixentry[i].vector,
2019                                                 &(dev->aac_msix[i]));
2020                         }
2021                 } else {
2022                         free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
2023                 }
2024         } else {
2025                 free_irq(dev->pdev->irq, dev);
2026         }
2027         if (dev->msi)
2028                 pci_disable_msi(dev->pdev);
2029         else if (dev->max_msix > 1)
2030                 pci_disable_msix(dev->pdev);
2031 }