Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / sbus / char / bbc_envctrl.c
1 /* bbc_envctrl.c: UltraSPARC-III environment control driver.
2  *
3  * Copyright (C) 2001, 2008 David S. Miller (davem@davemloft.net)
4  */
5
6 #include <linux/kthread.h>
7 #include <linux/delay.h>
8 #include <linux/kmod.h>
9 #include <linux/reboot.h>
10 #include <linux/of.h>
11 #include <linux/slab.h>
12 #include <linux/of_device.h>
13 #include <asm/oplib.h>
14
15 #include "bbc_i2c.h"
16 #include "max1617.h"
17
18 #undef ENVCTRL_TRACE
19
20 /* WARNING: Making changes to this driver is very dangerous.
21  *          If you misprogram the sensor chips they can
22  *          cut the power on you instantly.
23  */
24
25 /* Two temperature sensors exist in the SunBLADE-1000 enclosure.
26  * Both are implemented using max1617 i2c devices.  Each max1617
27  * monitors 2 temperatures, one for one of the cpu dies and the other
28  * for the ambient temperature.
29  *
30  * The max1617 is capable of being programmed with power-off
31  * temperature values, one low limit and one high limit.  These
32  * can be controlled independently for the cpu or ambient temperature.
33  * If a limit is violated, the power is simply shut off.  The frequency
34  * with which the max1617 does temperature sampling can be controlled
35  * as well.
36  *
37  * Three fans exist inside the machine, all three are controlled with
38  * an i2c digital to analog converter.  There is a fan directed at the
39  * two processor slots, another for the rest of the enclosure, and the
40  * third is for the power supply.  The first two fans may be speed
41  * controlled by changing the voltage fed to them.  The third fan may
42  * only be completely off or on.  The third fan is meant to only be
43  * disabled/enabled when entering/exiting the lowest power-saving
44  * mode of the machine.
45  *
46  * An environmental control kernel thread periodically monitors all
47  * temperature sensors.  Based upon the samples it will adjust the
48  * fan speeds to try and keep the system within a certain temperature
49  * range (the goal being to make the fans as quiet as possible without
50  * allowing the system to get too hot).
51  *
52  * If the temperature begins to rise/fall outside of the acceptable
53  * operating range, a periodic warning will be sent to the kernel log.
54  * The fans will be put on full blast to attempt to deal with this
55  * situation.  After exceeding the acceptable operating range by a
56  * certain threshold, the kernel thread will shut down the system.
57  * Here, the thread is attempting to shut the machine down cleanly
58  * before the hardware based power-off event is triggered.
59  */
60
61 /* These settings are in Celsius.  We use these defaults only
62  * if we cannot interrogate the cpu-fru SEEPROM.
63  */
64 struct temp_limits {
65         s8 high_pwroff, high_shutdown, high_warn;
66         s8 low_warn, low_shutdown, low_pwroff;
67 };
68
69 static struct temp_limits cpu_temp_limits[2] = {
70         { 100, 85, 80, 5, -5, -10 },
71         { 100, 85, 80, 5, -5, -10 },
72 };
73
74 static struct temp_limits amb_temp_limits[2] = {
75         { 65, 55, 40, 5, -5, -10 },
76         { 65, 55, 40, 5, -5, -10 },
77 };
78
79 static LIST_HEAD(all_temps);
80 static LIST_HEAD(all_fans);
81
82 #define CPU_FAN_REG     0xf0
83 #define SYS_FAN_REG     0xf2
84 #define PSUPPLY_FAN_REG 0xf4
85
86 #define FAN_SPEED_MIN   0x0c
87 #define FAN_SPEED_MAX   0x3f
88
89 #define PSUPPLY_FAN_ON  0x1f
90 #define PSUPPLY_FAN_OFF 0x00
91
92 static void set_fan_speeds(struct bbc_fan_control *fp)
93 {
94         /* Put temperatures into range so we don't mis-program
95          * the hardware.
96          */
97         if (fp->cpu_fan_speed < FAN_SPEED_MIN)
98                 fp->cpu_fan_speed = FAN_SPEED_MIN;
99         if (fp->cpu_fan_speed > FAN_SPEED_MAX)
100                 fp->cpu_fan_speed = FAN_SPEED_MAX;
101         if (fp->system_fan_speed < FAN_SPEED_MIN)
102                 fp->system_fan_speed = FAN_SPEED_MIN;
103         if (fp->system_fan_speed > FAN_SPEED_MAX)
104                 fp->system_fan_speed = FAN_SPEED_MAX;
105 #ifdef ENVCTRL_TRACE
106         printk("fan%d: Changed fan speed to cpu(%02x) sys(%02x)\n",
107                fp->index,
108                fp->cpu_fan_speed, fp->system_fan_speed);
109 #endif
110
111         bbc_i2c_writeb(fp->client, fp->cpu_fan_speed, CPU_FAN_REG);
112         bbc_i2c_writeb(fp->client, fp->system_fan_speed, SYS_FAN_REG);
113         bbc_i2c_writeb(fp->client,
114                        (fp->psupply_fan_on ?
115                         PSUPPLY_FAN_ON : PSUPPLY_FAN_OFF),
116                        PSUPPLY_FAN_REG);
117 }
118
119 static void get_current_temps(struct bbc_cpu_temperature *tp)
120 {
121         tp->prev_amb_temp = tp->curr_amb_temp;
122         bbc_i2c_readb(tp->client,
123                       (unsigned char *) &tp->curr_amb_temp,
124                       MAX1617_AMB_TEMP);
125         tp->prev_cpu_temp = tp->curr_cpu_temp;
126         bbc_i2c_readb(tp->client,
127                       (unsigned char *) &tp->curr_cpu_temp,
128                       MAX1617_CPU_TEMP);
129 #ifdef ENVCTRL_TRACE
130         printk("temp%d: cpu(%d C) amb(%d C)\n",
131                tp->index,
132                (int) tp->curr_cpu_temp, (int) tp->curr_amb_temp);
133 #endif
134 }
135
136
137 static void do_envctrl_shutdown(struct bbc_cpu_temperature *tp)
138 {
139         static int shutting_down = 0;
140         char *type = "???";
141         s8 val = -1;
142
143         if (shutting_down != 0)
144                 return;
145
146         if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown ||
147             tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) {
148                 type = "ambient";
149                 val = tp->curr_amb_temp;
150         } else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown ||
151                    tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) {
152                 type = "CPU";
153                 val = tp->curr_cpu_temp;
154         }
155
156         printk(KERN_CRIT "temp%d: Outside of safe %s "
157                "operating temperature, %d C.\n",
158                tp->index, type, val);
159
160         printk(KERN_CRIT "kenvctrld: Shutting down the system now.\n");
161
162         shutting_down = 1;
163         orderly_poweroff(true);
164 }
165
166 #define WARN_INTERVAL   (30 * HZ)
167
168 static void analyze_ambient_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick)
169 {
170         int ret = 0;
171
172         if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) {
173                 if (tp->curr_amb_temp >=
174                     amb_temp_limits[tp->index].high_warn) {
175                         printk(KERN_WARNING "temp%d: "
176                                "Above safe ambient operating temperature, %d C.\n",
177                                tp->index, (int) tp->curr_amb_temp);
178                         ret = 1;
179                 } else if (tp->curr_amb_temp <
180                            amb_temp_limits[tp->index].low_warn) {
181                         printk(KERN_WARNING "temp%d: "
182                                "Below safe ambient operating temperature, %d C.\n",
183                                tp->index, (int) tp->curr_amb_temp);
184                         ret = 1;
185                 }
186                 if (ret)
187                         *last_warn = jiffies;
188         } else if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_warn ||
189                    tp->curr_amb_temp < amb_temp_limits[tp->index].low_warn)
190                 ret = 1;
191
192         /* Now check the shutdown limits. */
193         if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown ||
194             tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) {
195                 do_envctrl_shutdown(tp);
196                 ret = 1;
197         }
198
199         if (ret) {
200                 tp->fan_todo[FAN_AMBIENT] = FAN_FULLBLAST;
201         } else if ((tick & (8 - 1)) == 0) {
202                 s8 amb_goal_hi = amb_temp_limits[tp->index].high_warn - 10;
203                 s8 amb_goal_lo;
204
205                 amb_goal_lo = amb_goal_hi - 3;
206
207                 /* We do not try to avoid 'too cold' events.  Basically we
208                  * only try to deal with over-heating and fan noise reduction.
209                  */
210                 if (tp->avg_amb_temp < amb_goal_hi) {
211                         if (tp->avg_amb_temp >= amb_goal_lo)
212                                 tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
213                         else
214                                 tp->fan_todo[FAN_AMBIENT] = FAN_SLOWER;
215                 } else {
216                         tp->fan_todo[FAN_AMBIENT] = FAN_FASTER;
217                 }
218         } else {
219                 tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
220         }
221 }
222
223 static void analyze_cpu_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick)
224 {
225         int ret = 0;
226
227         if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) {
228                 if (tp->curr_cpu_temp >=
229                     cpu_temp_limits[tp->index].high_warn) {
230                         printk(KERN_WARNING "temp%d: "
231                                "Above safe CPU operating temperature, %d C.\n",
232                                tp->index, (int) tp->curr_cpu_temp);
233                         ret = 1;
234                 } else if (tp->curr_cpu_temp <
235                            cpu_temp_limits[tp->index].low_warn) {
236                         printk(KERN_WARNING "temp%d: "
237                                "Below safe CPU operating temperature, %d C.\n",
238                                tp->index, (int) tp->curr_cpu_temp);
239                         ret = 1;
240                 }
241                 if (ret)
242                         *last_warn = jiffies;
243         } else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_warn ||
244                    tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_warn)
245                 ret = 1;
246
247         /* Now check the shutdown limits. */
248         if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown ||
249             tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) {
250                 do_envctrl_shutdown(tp);
251                 ret = 1;
252         }
253
254         if (ret) {
255                 tp->fan_todo[FAN_CPU] = FAN_FULLBLAST;
256         } else if ((tick & (8 - 1)) == 0) {
257                 s8 cpu_goal_hi = cpu_temp_limits[tp->index].high_warn - 10;
258                 s8 cpu_goal_lo;
259
260                 cpu_goal_lo = cpu_goal_hi - 3;
261
262                 /* We do not try to avoid 'too cold' events.  Basically we
263                  * only try to deal with over-heating and fan noise reduction.
264                  */
265                 if (tp->avg_cpu_temp < cpu_goal_hi) {
266                         if (tp->avg_cpu_temp >= cpu_goal_lo)
267                                 tp->fan_todo[FAN_CPU] = FAN_SAME;
268                         else
269                                 tp->fan_todo[FAN_CPU] = FAN_SLOWER;
270                 } else {
271                         tp->fan_todo[FAN_CPU] = FAN_FASTER;
272                 }
273         } else {
274                 tp->fan_todo[FAN_CPU] = FAN_SAME;
275         }
276 }
277
278 static void analyze_temps(struct bbc_cpu_temperature *tp, unsigned long *last_warn)
279 {
280         tp->avg_amb_temp = (s8)((int)((int)tp->avg_amb_temp + (int)tp->curr_amb_temp) / 2);
281         tp->avg_cpu_temp = (s8)((int)((int)tp->avg_cpu_temp + (int)tp->curr_cpu_temp) / 2);
282
283         analyze_ambient_temp(tp, last_warn, tp->sample_tick);
284         analyze_cpu_temp(tp, last_warn, tp->sample_tick);
285
286         tp->sample_tick++;
287 }
288
289 static enum fan_action prioritize_fan_action(int which_fan)
290 {
291         struct bbc_cpu_temperature *tp;
292         enum fan_action decision = FAN_STATE_MAX;
293
294         /* Basically, prioritize what the temperature sensors
295          * recommend we do, and perform that action on all the
296          * fans.
297          */
298         list_for_each_entry(tp, &all_temps, glob_list) {
299                 if (tp->fan_todo[which_fan] == FAN_FULLBLAST) {
300                         decision = FAN_FULLBLAST;
301                         break;
302                 }
303                 if (tp->fan_todo[which_fan] == FAN_SAME &&
304                     decision != FAN_FASTER)
305                         decision = FAN_SAME;
306                 else if (tp->fan_todo[which_fan] == FAN_FASTER)
307                         decision = FAN_FASTER;
308                 else if (decision != FAN_FASTER &&
309                          decision != FAN_SAME &&
310                          tp->fan_todo[which_fan] == FAN_SLOWER)
311                         decision = FAN_SLOWER;
312         }
313         if (decision == FAN_STATE_MAX)
314                 decision = FAN_SAME;
315
316         return decision;
317 }
318
319 static int maybe_new_ambient_fan_speed(struct bbc_fan_control *fp)
320 {
321         enum fan_action decision = prioritize_fan_action(FAN_AMBIENT);
322         int ret;
323
324         if (decision == FAN_SAME)
325                 return 0;
326
327         ret = 1;
328         if (decision == FAN_FULLBLAST) {
329                 if (fp->system_fan_speed >= FAN_SPEED_MAX)
330                         ret = 0;
331                 else
332                         fp->system_fan_speed = FAN_SPEED_MAX;
333         } else {
334                 if (decision == FAN_FASTER) {
335                         if (fp->system_fan_speed >= FAN_SPEED_MAX)
336                                 ret = 0;
337                         else
338                                 fp->system_fan_speed += 2;
339                 } else {
340                         int orig_speed = fp->system_fan_speed;
341
342                         if (orig_speed <= FAN_SPEED_MIN ||
343                             orig_speed <= (fp->cpu_fan_speed - 3))
344                                 ret = 0;
345                         else
346                                 fp->system_fan_speed -= 1;
347                 }
348         }
349
350         return ret;
351 }
352
353 static int maybe_new_cpu_fan_speed(struct bbc_fan_control *fp)
354 {
355         enum fan_action decision = prioritize_fan_action(FAN_CPU);
356         int ret;
357
358         if (decision == FAN_SAME)
359                 return 0;
360
361         ret = 1;
362         if (decision == FAN_FULLBLAST) {
363                 if (fp->cpu_fan_speed >= FAN_SPEED_MAX)
364                         ret = 0;
365                 else
366                         fp->cpu_fan_speed = FAN_SPEED_MAX;
367         } else {
368                 if (decision == FAN_FASTER) {
369                         if (fp->cpu_fan_speed >= FAN_SPEED_MAX)
370                                 ret = 0;
371                         else {
372                                 fp->cpu_fan_speed += 2;
373                                 if (fp->system_fan_speed <
374                                     (fp->cpu_fan_speed - 3))
375                                         fp->system_fan_speed =
376                                                 fp->cpu_fan_speed - 3;
377                         }
378                 } else {
379                         if (fp->cpu_fan_speed <= FAN_SPEED_MIN)
380                                 ret = 0;
381                         else
382                                 fp->cpu_fan_speed -= 1;
383                 }
384         }
385
386         return ret;
387 }
388
389 static void maybe_new_fan_speeds(struct bbc_fan_control *fp)
390 {
391         int new;
392
393         new  = maybe_new_ambient_fan_speed(fp);
394         new |= maybe_new_cpu_fan_speed(fp);
395
396         if (new)
397                 set_fan_speeds(fp);
398 }
399
400 static void fans_full_blast(void)
401 {
402         struct bbc_fan_control *fp;
403
404         /* Since we will not be monitoring things anymore, put
405          * the fans on full blast.
406          */
407         list_for_each_entry(fp, &all_fans, glob_list) {
408                 fp->cpu_fan_speed = FAN_SPEED_MAX;
409                 fp->system_fan_speed = FAN_SPEED_MAX;
410                 fp->psupply_fan_on = 1;
411                 set_fan_speeds(fp);
412         }
413 }
414
415 #define POLL_INTERVAL   (5 * 1000)
416 static unsigned long last_warning_jiffies;
417 static struct task_struct *kenvctrld_task;
418
419 static int kenvctrld(void *__unused)
420 {
421         printk(KERN_INFO "bbc_envctrl: kenvctrld starting...\n");
422         last_warning_jiffies = jiffies - WARN_INTERVAL;
423         for (;;) {
424                 struct bbc_cpu_temperature *tp;
425                 struct bbc_fan_control *fp;
426
427                 msleep_interruptible(POLL_INTERVAL);
428                 if (kthread_should_stop())
429                         break;
430
431                 list_for_each_entry(tp, &all_temps, glob_list) {
432                         get_current_temps(tp);
433                         analyze_temps(tp, &last_warning_jiffies);
434                 }
435                 list_for_each_entry(fp, &all_fans, glob_list)
436                         maybe_new_fan_speeds(fp);
437         }
438         printk(KERN_INFO "bbc_envctrl: kenvctrld exiting...\n");
439
440         fans_full_blast();
441
442         return 0;
443 }
444
445 static void attach_one_temp(struct bbc_i2c_bus *bp, struct platform_device *op,
446                             int temp_idx)
447 {
448         struct bbc_cpu_temperature *tp;
449
450         tp = kzalloc(sizeof(*tp), GFP_KERNEL);
451         if (!tp)
452                 return;
453
454         INIT_LIST_HEAD(&tp->bp_list);
455         INIT_LIST_HEAD(&tp->glob_list);
456
457         tp->client = bbc_i2c_attach(bp, op);
458         if (!tp->client) {
459                 kfree(tp);
460                 return;
461         }
462
463
464         tp->index = temp_idx;
465
466         list_add(&tp->glob_list, &all_temps);
467         list_add(&tp->bp_list, &bp->temps);
468
469         /* Tell it to convert once every 5 seconds, clear all cfg
470          * bits.
471          */
472         bbc_i2c_writeb(tp->client, 0x00, MAX1617_WR_CFG_BYTE);
473         bbc_i2c_writeb(tp->client, 0x02, MAX1617_WR_CVRATE_BYTE);
474
475         /* Program the hard temperature limits into the chip. */
476         bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].high_pwroff,
477                        MAX1617_WR_AMB_HIGHLIM);
478         bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].low_pwroff,
479                        MAX1617_WR_AMB_LOWLIM);
480         bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].high_pwroff,
481                        MAX1617_WR_CPU_HIGHLIM);
482         bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].low_pwroff,
483                        MAX1617_WR_CPU_LOWLIM);
484
485         get_current_temps(tp);
486         tp->prev_cpu_temp = tp->avg_cpu_temp = tp->curr_cpu_temp;
487         tp->prev_amb_temp = tp->avg_amb_temp = tp->curr_amb_temp;
488
489         tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
490         tp->fan_todo[FAN_CPU] = FAN_SAME;
491 }
492
493 static void attach_one_fan(struct bbc_i2c_bus *bp, struct platform_device *op,
494                            int fan_idx)
495 {
496         struct bbc_fan_control *fp;
497
498         fp = kzalloc(sizeof(*fp), GFP_KERNEL);
499         if (!fp)
500                 return;
501
502         INIT_LIST_HEAD(&fp->bp_list);
503         INIT_LIST_HEAD(&fp->glob_list);
504
505         fp->client = bbc_i2c_attach(bp, op);
506         if (!fp->client) {
507                 kfree(fp);
508                 return;
509         }
510
511         fp->index = fan_idx;
512
513         list_add(&fp->glob_list, &all_fans);
514         list_add(&fp->bp_list, &bp->fans);
515
516         /* The i2c device controlling the fans is write-only.
517          * So the only way to keep track of the current power
518          * level fed to the fans is via software.  Choose half
519          * power for cpu/system and 'on' fo the powersupply fan
520          * and set it now.
521          */
522         fp->psupply_fan_on = 1;
523         fp->cpu_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2;
524         fp->cpu_fan_speed += FAN_SPEED_MIN;
525         fp->system_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2;
526         fp->system_fan_speed += FAN_SPEED_MIN;
527
528         set_fan_speeds(fp);
529 }
530
531 static void destroy_one_temp(struct bbc_cpu_temperature *tp)
532 {
533         bbc_i2c_detach(tp->client);
534         kfree(tp);
535 }
536
537 static void destroy_all_temps(struct bbc_i2c_bus *bp)
538 {
539         struct bbc_cpu_temperature *tp, *tpos;
540
541         list_for_each_entry_safe(tp, tpos, &bp->temps, bp_list) {
542                 list_del(&tp->bp_list);
543                 list_del(&tp->glob_list);
544                 destroy_one_temp(tp);
545         }
546 }
547
548 static void destroy_one_fan(struct bbc_fan_control *fp)
549 {
550         bbc_i2c_detach(fp->client);
551         kfree(fp);
552 }
553
554 static void destroy_all_fans(struct bbc_i2c_bus *bp)
555 {
556         struct bbc_fan_control *fp, *fpos;
557
558         list_for_each_entry_safe(fp, fpos, &bp->fans, bp_list) {
559                 list_del(&fp->bp_list);
560                 list_del(&fp->glob_list);
561                 destroy_one_fan(fp);
562         }
563 }
564
565 int bbc_envctrl_init(struct bbc_i2c_bus *bp)
566 {
567         struct platform_device *op;
568         int temp_index = 0;
569         int fan_index = 0;
570         int devidx = 0;
571
572         while ((op = bbc_i2c_getdev(bp, devidx++)) != NULL) {
573                 if (!strcmp(op->dev.of_node->name, "temperature"))
574                         attach_one_temp(bp, op, temp_index++);
575                 if (!strcmp(op->dev.of_node->name, "fan-control"))
576                         attach_one_fan(bp, op, fan_index++);
577         }
578         if (temp_index != 0 && fan_index != 0) {
579                 kenvctrld_task = kthread_run(kenvctrld, NULL, "kenvctrld");
580                 if (IS_ERR(kenvctrld_task)) {
581                         int err = PTR_ERR(kenvctrld_task);
582
583                         kenvctrld_task = NULL;
584                         destroy_all_temps(bp);
585                         destroy_all_fans(bp);
586                         return err;
587                 }
588         }
589
590         return 0;
591 }
592
593 void bbc_envctrl_cleanup(struct bbc_i2c_bus *bp)
594 {
595         if (kenvctrld_task)
596                 kthread_stop(kenvctrld_task);
597
598         destroy_all_temps(bp);
599         destroy_all_fans(bp);
600 }