Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / rtc / rtc-imxdi.c
1 /*
2  * Copyright 2008-2009 Freescale Semiconductor, Inc. All Rights Reserved.
3  * Copyright 2010 Orex Computed Radiography
4  */
5
6 /*
7  * The code contained herein is licensed under the GNU General Public
8  * License. You may obtain a copy of the GNU General Public License
9  * Version 2 or later at the following locations:
10  *
11  * http://www.opensource.org/licenses/gpl-license.html
12  * http://www.gnu.org/copyleft/gpl.html
13  */
14
15 /* based on rtc-mc13892.c */
16
17 /*
18  * This driver uses the 47-bit 32 kHz counter in the Freescale DryIce block
19  * to implement a Linux RTC. Times and alarms are truncated to seconds.
20  * Since the RTC framework performs API locking via rtc->ops_lock the
21  * only simultaneous accesses we need to deal with is updating DryIce
22  * registers while servicing an alarm.
23  *
24  * Note that reading the DSR (DryIce Status Register) automatically clears
25  * the WCF (Write Complete Flag). All DryIce writes are synchronized to the
26  * LP (Low Power) domain and set the WCF upon completion. Writes to the
27  * DIER (DryIce Interrupt Enable Register) are the only exception. These
28  * occur at normal bus speeds and do not set WCF.  Periodic interrupts are
29  * not supported by the hardware.
30  */
31
32 #include <linux/io.h>
33 #include <linux/clk.h>
34 #include <linux/delay.h>
35 #include <linux/module.h>
36 #include <linux/platform_device.h>
37 #include <linux/rtc.h>
38 #include <linux/sched.h>
39 #include <linux/spinlock.h>
40 #include <linux/workqueue.h>
41 #include <linux/of.h>
42
43 /* DryIce Register Definitions */
44
45 #define DTCMR     0x00           /* Time Counter MSB Reg */
46 #define DTCLR     0x04           /* Time Counter LSB Reg */
47
48 #define DCAMR     0x08           /* Clock Alarm MSB Reg */
49 #define DCALR     0x0c           /* Clock Alarm LSB Reg */
50 #define DCAMR_UNSET  0xFFFFFFFF  /* doomsday - 1 sec */
51
52 #define DCR       0x10           /* Control Reg */
53 #define DCR_TDCHL (1 << 30)      /* Tamper-detect configuration hard lock */
54 #define DCR_TDCSL (1 << 29)      /* Tamper-detect configuration soft lock */
55 #define DCR_KSSL  (1 << 27)      /* Key-select soft lock */
56 #define DCR_MCHL  (1 << 20)      /* Monotonic-counter hard lock */
57 #define DCR_MCSL  (1 << 19)      /* Monotonic-counter soft lock */
58 #define DCR_TCHL  (1 << 18)      /* Timer-counter hard lock */
59 #define DCR_TCSL  (1 << 17)      /* Timer-counter soft lock */
60 #define DCR_FSHL  (1 << 16)      /* Failure state hard lock */
61 #define DCR_TCE   (1 << 3)       /* Time Counter Enable */
62 #define DCR_MCE   (1 << 2)       /* Monotonic Counter Enable */
63
64 #define DSR       0x14           /* Status Reg */
65 #define DSR_WTD   (1 << 23)      /* Wire-mesh tamper detected */
66 #define DSR_ETBD  (1 << 22)      /* External tamper B detected */
67 #define DSR_ETAD  (1 << 21)      /* External tamper A detected */
68 #define DSR_EBD   (1 << 20)      /* External boot detected */
69 #define DSR_SAD   (1 << 19)      /* SCC alarm detected */
70 #define DSR_TTD   (1 << 18)      /* Temperatur tamper detected */
71 #define DSR_CTD   (1 << 17)      /* Clock tamper detected */
72 #define DSR_VTD   (1 << 16)      /* Voltage tamper detected */
73 #define DSR_WBF   (1 << 10)      /* Write Busy Flag (synchronous) */
74 #define DSR_WNF   (1 << 9)       /* Write Next Flag (synchronous) */
75 #define DSR_WCF   (1 << 8)       /* Write Complete Flag (synchronous)*/
76 #define DSR_WEF   (1 << 7)       /* Write Error Flag */
77 #define DSR_CAF   (1 << 4)       /* Clock Alarm Flag */
78 #define DSR_MCO   (1 << 3)       /* monotonic counter overflow */
79 #define DSR_TCO   (1 << 2)       /* time counter overflow */
80 #define DSR_NVF   (1 << 1)       /* Non-Valid Flag */
81 #define DSR_SVF   (1 << 0)       /* Security Violation Flag */
82
83 #define DIER      0x18           /* Interrupt Enable Reg (synchronous) */
84 #define DIER_WNIE (1 << 9)       /* Write Next Interrupt Enable */
85 #define DIER_WCIE (1 << 8)       /* Write Complete Interrupt Enable */
86 #define DIER_WEIE (1 << 7)       /* Write Error Interrupt Enable */
87 #define DIER_CAIE (1 << 4)       /* Clock Alarm Interrupt Enable */
88 #define DIER_SVIE (1 << 0)       /* Security-violation Interrupt Enable */
89
90 #define DMCR      0x1c           /* DryIce Monotonic Counter Reg */
91
92 #define DTCR      0x28           /* DryIce Tamper Configuration Reg */
93 #define DTCR_MOE  (1 << 9)       /* monotonic overflow enabled */
94 #define DTCR_TOE  (1 << 8)       /* time overflow enabled */
95 #define DTCR_WTE  (1 << 7)       /* wire-mesh tamper enabled */
96 #define DTCR_ETBE (1 << 6)       /* external B tamper enabled */
97 #define DTCR_ETAE (1 << 5)       /* external A tamper enabled */
98 #define DTCR_EBE  (1 << 4)       /* external boot tamper enabled */
99 #define DTCR_SAIE (1 << 3)       /* SCC enabled */
100 #define DTCR_TTE  (1 << 2)       /* temperature tamper enabled */
101 #define DTCR_CTE  (1 << 1)       /* clock tamper enabled */
102 #define DTCR_VTE  (1 << 0)       /* voltage tamper enabled */
103
104 #define DGPR      0x3c           /* DryIce General Purpose Reg */
105
106 /**
107  * struct imxdi_dev - private imxdi rtc data
108  * @pdev: pionter to platform dev
109  * @rtc: pointer to rtc struct
110  * @ioaddr: IO registers pointer
111  * @irq: dryice normal interrupt
112  * @clk: input reference clock
113  * @dsr: copy of the DSR register
114  * @irq_lock: interrupt enable register (DIER) lock
115  * @write_wait: registers write complete queue
116  * @write_mutex: serialize registers write
117  * @work: schedule alarm work
118  */
119 struct imxdi_dev {
120         struct platform_device *pdev;
121         struct rtc_device *rtc;
122         void __iomem *ioaddr;
123         int irq;
124         struct clk *clk;
125         u32 dsr;
126         spinlock_t irq_lock;
127         wait_queue_head_t write_wait;
128         struct mutex write_mutex;
129         struct work_struct work;
130 };
131
132 /*
133  * enable a dryice interrupt
134  */
135 static void di_int_enable(struct imxdi_dev *imxdi, u32 intr)
136 {
137         unsigned long flags;
138
139         spin_lock_irqsave(&imxdi->irq_lock, flags);
140         __raw_writel(__raw_readl(imxdi->ioaddr + DIER) | intr,
141                         imxdi->ioaddr + DIER);
142         spin_unlock_irqrestore(&imxdi->irq_lock, flags);
143 }
144
145 /*
146  * disable a dryice interrupt
147  */
148 static void di_int_disable(struct imxdi_dev *imxdi, u32 intr)
149 {
150         unsigned long flags;
151
152         spin_lock_irqsave(&imxdi->irq_lock, flags);
153         __raw_writel(__raw_readl(imxdi->ioaddr + DIER) & ~intr,
154                         imxdi->ioaddr + DIER);
155         spin_unlock_irqrestore(&imxdi->irq_lock, flags);
156 }
157
158 /*
159  * This function attempts to clear the dryice write-error flag.
160  *
161  * A dryice write error is similar to a bus fault and should not occur in
162  * normal operation.  Clearing the flag requires another write, so the root
163  * cause of the problem may need to be fixed before the flag can be cleared.
164  */
165 static void clear_write_error(struct imxdi_dev *imxdi)
166 {
167         int cnt;
168
169         dev_warn(&imxdi->pdev->dev, "WARNING: Register write error!\n");
170
171         /* clear the write error flag */
172         __raw_writel(DSR_WEF, imxdi->ioaddr + DSR);
173
174         /* wait for it to take effect */
175         for (cnt = 0; cnt < 1000; cnt++) {
176                 if ((__raw_readl(imxdi->ioaddr + DSR) & DSR_WEF) == 0)
177                         return;
178                 udelay(10);
179         }
180         dev_err(&imxdi->pdev->dev,
181                         "ERROR: Cannot clear write-error flag!\n");
182 }
183
184 /*
185  * Write a dryice register and wait until it completes.
186  *
187  * This function uses interrupts to determine when the
188  * write has completed.
189  */
190 static int di_write_wait(struct imxdi_dev *imxdi, u32 val, int reg)
191 {
192         int ret;
193         int rc = 0;
194
195         /* serialize register writes */
196         mutex_lock(&imxdi->write_mutex);
197
198         /* enable the write-complete interrupt */
199         di_int_enable(imxdi, DIER_WCIE);
200
201         imxdi->dsr = 0;
202
203         /* do the register write */
204         __raw_writel(val, imxdi->ioaddr + reg);
205
206         /* wait for the write to finish */
207         ret = wait_event_interruptible_timeout(imxdi->write_wait,
208                         imxdi->dsr & (DSR_WCF | DSR_WEF), msecs_to_jiffies(1));
209         if (ret < 0) {
210                 rc = ret;
211                 goto out;
212         } else if (ret == 0) {
213                 dev_warn(&imxdi->pdev->dev,
214                                 "Write-wait timeout "
215                                 "val = 0x%08x reg = 0x%08x\n", val, reg);
216         }
217
218         /* check for write error */
219         if (imxdi->dsr & DSR_WEF) {
220                 clear_write_error(imxdi);
221                 rc = -EIO;
222         }
223
224 out:
225         mutex_unlock(&imxdi->write_mutex);
226
227         return rc;
228 }
229
230 /*
231  * read the seconds portion of the current time from the dryice time counter
232  */
233 static int dryice_rtc_read_time(struct device *dev, struct rtc_time *tm)
234 {
235         struct imxdi_dev *imxdi = dev_get_drvdata(dev);
236         unsigned long now;
237
238         now = __raw_readl(imxdi->ioaddr + DTCMR);
239         rtc_time_to_tm(now, tm);
240
241         return 0;
242 }
243
244 /*
245  * set the seconds portion of dryice time counter and clear the
246  * fractional part.
247  */
248 static int dryice_rtc_set_mmss(struct device *dev, unsigned long secs)
249 {
250         struct imxdi_dev *imxdi = dev_get_drvdata(dev);
251         int rc;
252
253         /* zero the fractional part first */
254         rc = di_write_wait(imxdi, 0, DTCLR);
255         if (rc == 0)
256                 rc = di_write_wait(imxdi, secs, DTCMR);
257
258         return rc;
259 }
260
261 static int dryice_rtc_alarm_irq_enable(struct device *dev,
262                 unsigned int enabled)
263 {
264         struct imxdi_dev *imxdi = dev_get_drvdata(dev);
265
266         if (enabled)
267                 di_int_enable(imxdi, DIER_CAIE);
268         else
269                 di_int_disable(imxdi, DIER_CAIE);
270
271         return 0;
272 }
273
274 /*
275  * read the seconds portion of the alarm register.
276  * the fractional part of the alarm register is always zero.
277  */
278 static int dryice_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
279 {
280         struct imxdi_dev *imxdi = dev_get_drvdata(dev);
281         u32 dcamr;
282
283         dcamr = __raw_readl(imxdi->ioaddr + DCAMR);
284         rtc_time_to_tm(dcamr, &alarm->time);
285
286         /* alarm is enabled if the interrupt is enabled */
287         alarm->enabled = (__raw_readl(imxdi->ioaddr + DIER) & DIER_CAIE) != 0;
288
289         /* don't allow the DSR read to mess up DSR_WCF */
290         mutex_lock(&imxdi->write_mutex);
291
292         /* alarm is pending if the alarm flag is set */
293         alarm->pending = (__raw_readl(imxdi->ioaddr + DSR) & DSR_CAF) != 0;
294
295         mutex_unlock(&imxdi->write_mutex);
296
297         return 0;
298 }
299
300 /*
301  * set the seconds portion of dryice alarm register
302  */
303 static int dryice_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
304 {
305         struct imxdi_dev *imxdi = dev_get_drvdata(dev);
306         unsigned long now;
307         unsigned long alarm_time;
308         int rc;
309
310         rc = rtc_tm_to_time(&alarm->time, &alarm_time);
311         if (rc)
312                 return rc;
313
314         /* don't allow setting alarm in the past */
315         now = __raw_readl(imxdi->ioaddr + DTCMR);
316         if (alarm_time < now)
317                 return -EINVAL;
318
319         /* write the new alarm time */
320         rc = di_write_wait(imxdi, (u32)alarm_time, DCAMR);
321         if (rc)
322                 return rc;
323
324         if (alarm->enabled)
325                 di_int_enable(imxdi, DIER_CAIE);  /* enable alarm intr */
326         else
327                 di_int_disable(imxdi, DIER_CAIE); /* disable alarm intr */
328
329         return 0;
330 }
331
332 static struct rtc_class_ops dryice_rtc_ops = {
333         .read_time              = dryice_rtc_read_time,
334         .set_mmss               = dryice_rtc_set_mmss,
335         .alarm_irq_enable       = dryice_rtc_alarm_irq_enable,
336         .read_alarm             = dryice_rtc_read_alarm,
337         .set_alarm              = dryice_rtc_set_alarm,
338 };
339
340 /*
341  * dryice "normal" interrupt handler
342  */
343 static irqreturn_t dryice_norm_irq(int irq, void *dev_id)
344 {
345         struct imxdi_dev *imxdi = dev_id;
346         u32 dsr, dier;
347         irqreturn_t rc = IRQ_NONE;
348
349         dier = __raw_readl(imxdi->ioaddr + DIER);
350
351         /* handle write complete and write error cases */
352         if (dier & DIER_WCIE) {
353                 /*If the write wait queue is empty then there is no pending
354                   operations. It means the interrupt is for DryIce -Security.
355                   IRQ must be returned as none.*/
356                 if (list_empty_careful(&imxdi->write_wait.task_list))
357                         return rc;
358
359                 /* DSR_WCF clears itself on DSR read */
360                 dsr = __raw_readl(imxdi->ioaddr + DSR);
361                 if (dsr & (DSR_WCF | DSR_WEF)) {
362                         /* mask the interrupt */
363                         di_int_disable(imxdi, DIER_WCIE);
364
365                         /* save the dsr value for the wait queue */
366                         imxdi->dsr |= dsr;
367
368                         wake_up_interruptible(&imxdi->write_wait);
369                         rc = IRQ_HANDLED;
370                 }
371         }
372
373         /* handle the alarm case */
374         if (dier & DIER_CAIE) {
375                 /* DSR_WCF clears itself on DSR read */
376                 dsr = __raw_readl(imxdi->ioaddr + DSR);
377                 if (dsr & DSR_CAF) {
378                         /* mask the interrupt */
379                         di_int_disable(imxdi, DIER_CAIE);
380
381                         /* finish alarm in user context */
382                         schedule_work(&imxdi->work);
383                         rc = IRQ_HANDLED;
384                 }
385         }
386         return rc;
387 }
388
389 /*
390  * post the alarm event from user context so it can sleep
391  * on the write completion.
392  */
393 static void dryice_work(struct work_struct *work)
394 {
395         struct imxdi_dev *imxdi = container_of(work,
396                         struct imxdi_dev, work);
397
398         /* dismiss the interrupt (ignore error) */
399         di_write_wait(imxdi, DSR_CAF, DSR);
400
401         /* pass the alarm event to the rtc framework. */
402         rtc_update_irq(imxdi->rtc, 1, RTC_AF | RTC_IRQF);
403 }
404
405 /*
406  * probe for dryice rtc device
407  */
408 static int __init dryice_rtc_probe(struct platform_device *pdev)
409 {
410         struct resource *res;
411         struct imxdi_dev *imxdi;
412         int rc;
413
414         imxdi = devm_kzalloc(&pdev->dev, sizeof(*imxdi), GFP_KERNEL);
415         if (!imxdi)
416                 return -ENOMEM;
417
418         imxdi->pdev = pdev;
419
420         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
421         imxdi->ioaddr = devm_ioremap_resource(&pdev->dev, res);
422         if (IS_ERR(imxdi->ioaddr))
423                 return PTR_ERR(imxdi->ioaddr);
424
425         spin_lock_init(&imxdi->irq_lock);
426
427         imxdi->irq = platform_get_irq(pdev, 0);
428         if (imxdi->irq < 0)
429                 return imxdi->irq;
430
431         init_waitqueue_head(&imxdi->write_wait);
432
433         INIT_WORK(&imxdi->work, dryice_work);
434
435         mutex_init(&imxdi->write_mutex);
436
437         imxdi->clk = devm_clk_get(&pdev->dev, NULL);
438         if (IS_ERR(imxdi->clk))
439                 return PTR_ERR(imxdi->clk);
440         rc = clk_prepare_enable(imxdi->clk);
441         if (rc)
442                 return rc;
443
444         /*
445          * Initialize dryice hardware
446          */
447
448         /* mask all interrupts */
449         __raw_writel(0, imxdi->ioaddr + DIER);
450
451         rc = devm_request_irq(&pdev->dev, imxdi->irq, dryice_norm_irq,
452                         IRQF_SHARED, pdev->name, imxdi);
453         if (rc) {
454                 dev_warn(&pdev->dev, "interrupt not available.\n");
455                 goto err;
456         }
457
458         /* put dryice into valid state */
459         if (__raw_readl(imxdi->ioaddr + DSR) & DSR_NVF) {
460                 rc = di_write_wait(imxdi, DSR_NVF | DSR_SVF, DSR);
461                 if (rc)
462                         goto err;
463         }
464
465         /* initialize alarm */
466         rc = di_write_wait(imxdi, DCAMR_UNSET, DCAMR);
467         if (rc)
468                 goto err;
469         rc = di_write_wait(imxdi, 0, DCALR);
470         if (rc)
471                 goto err;
472
473         /* clear alarm flag */
474         if (__raw_readl(imxdi->ioaddr + DSR) & DSR_CAF) {
475                 rc = di_write_wait(imxdi, DSR_CAF, DSR);
476                 if (rc)
477                         goto err;
478         }
479
480         /* the timer won't count if it has never been written to */
481         if (__raw_readl(imxdi->ioaddr + DTCMR) == 0) {
482                 rc = di_write_wait(imxdi, 0, DTCMR);
483                 if (rc)
484                         goto err;
485         }
486
487         /* start keeping time */
488         if (!(__raw_readl(imxdi->ioaddr + DCR) & DCR_TCE)) {
489                 rc = di_write_wait(imxdi,
490                                 __raw_readl(imxdi->ioaddr + DCR) | DCR_TCE,
491                                 DCR);
492                 if (rc)
493                         goto err;
494         }
495
496         platform_set_drvdata(pdev, imxdi);
497         imxdi->rtc = devm_rtc_device_register(&pdev->dev, pdev->name,
498                                   &dryice_rtc_ops, THIS_MODULE);
499         if (IS_ERR(imxdi->rtc)) {
500                 rc = PTR_ERR(imxdi->rtc);
501                 goto err;
502         }
503
504         return 0;
505
506 err:
507         clk_disable_unprepare(imxdi->clk);
508
509         return rc;
510 }
511
512 static int __exit dryice_rtc_remove(struct platform_device *pdev)
513 {
514         struct imxdi_dev *imxdi = platform_get_drvdata(pdev);
515
516         flush_work(&imxdi->work);
517
518         /* mask all interrupts */
519         __raw_writel(0, imxdi->ioaddr + DIER);
520
521         clk_disable_unprepare(imxdi->clk);
522
523         return 0;
524 }
525
526 #ifdef CONFIG_OF
527 static const struct of_device_id dryice_dt_ids[] = {
528         { .compatible = "fsl,imx25-rtc" },
529         { /* sentinel */ }
530 };
531
532 MODULE_DEVICE_TABLE(of, dryice_dt_ids);
533 #endif
534
535 static struct platform_driver dryice_rtc_driver = {
536         .driver = {
537                    .name = "imxdi_rtc",
538                    .of_match_table = of_match_ptr(dryice_dt_ids),
539                    },
540         .remove = __exit_p(dryice_rtc_remove),
541 };
542
543 module_platform_driver_probe(dryice_rtc_driver, dryice_rtc_probe);
544
545 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
546 MODULE_AUTHOR("Baruch Siach <baruch@tkos.co.il>");
547 MODULE_DESCRIPTION("IMX DryIce Realtime Clock Driver (RTC)");
548 MODULE_LICENSE("GPL");