Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...)                                       \
43         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)                                        \
45         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)                                       \
47         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)                                       \
49         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)                                        \
51         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_list);
55 static LIST_HEAD(regulator_map_list);
56 static LIST_HEAD(regulator_ena_gpio_list);
57 static LIST_HEAD(regulator_supply_alias_list);
58 static bool has_full_constraints;
59
60 static struct dentry *debugfs_root;
61
62 /*
63  * struct regulator_map
64  *
65  * Used to provide symbolic supply names to devices.
66  */
67 struct regulator_map {
68         struct list_head list;
69         const char *dev_name;   /* The dev_name() for the consumer */
70         const char *supply;
71         struct regulator_dev *regulator;
72 };
73
74 /*
75  * struct regulator_enable_gpio
76  *
77  * Management for shared enable GPIO pin
78  */
79 struct regulator_enable_gpio {
80         struct list_head list;
81         struct gpio_desc *gpiod;
82         u32 enable_count;       /* a number of enabled shared GPIO */
83         u32 request_count;      /* a number of requested shared GPIO */
84         unsigned int ena_gpio_invert:1;
85 };
86
87 /*
88  * struct regulator_supply_alias
89  *
90  * Used to map lookups for a supply onto an alternative device.
91  */
92 struct regulator_supply_alias {
93         struct list_head list;
94         struct device *src_dev;
95         const char *src_supply;
96         struct device *alias_dev;
97         const char *alias_supply;
98 };
99
100 static int _regulator_is_enabled(struct regulator_dev *rdev);
101 static int _regulator_disable(struct regulator_dev *rdev);
102 static int _regulator_get_voltage(struct regulator_dev *rdev);
103 static int _regulator_get_current_limit(struct regulator_dev *rdev);
104 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105 static int _notifier_call_chain(struct regulator_dev *rdev,
106                                   unsigned long event, void *data);
107 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
108                                      int min_uV, int max_uV);
109 static struct regulator *create_regulator(struct regulator_dev *rdev,
110                                           struct device *dev,
111                                           const char *supply_name);
112
113 static const char *rdev_get_name(struct regulator_dev *rdev)
114 {
115         if (rdev->constraints && rdev->constraints->name)
116                 return rdev->constraints->name;
117         else if (rdev->desc->name)
118                 return rdev->desc->name;
119         else
120                 return "";
121 }
122
123 static bool have_full_constraints(void)
124 {
125         return has_full_constraints || of_have_populated_dt();
126 }
127
128 /**
129  * of_get_regulator - get a regulator device node based on supply name
130  * @dev: Device pointer for the consumer (of regulator) device
131  * @supply: regulator supply name
132  *
133  * Extract the regulator device node corresponding to the supply name.
134  * returns the device node corresponding to the regulator if found, else
135  * returns NULL.
136  */
137 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
138 {
139         struct device_node *regnode = NULL;
140         char prop_name[32]; /* 32 is max size of property name */
141
142         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
143
144         snprintf(prop_name, 32, "%s-supply", supply);
145         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
146
147         if (!regnode) {
148                 dev_dbg(dev, "Looking up %s property in node %s failed",
149                                 prop_name, dev->of_node->full_name);
150                 return NULL;
151         }
152         return regnode;
153 }
154
155 static int _regulator_can_change_status(struct regulator_dev *rdev)
156 {
157         if (!rdev->constraints)
158                 return 0;
159
160         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
161                 return 1;
162         else
163                 return 0;
164 }
165
166 /* Platform voltage constraint check */
167 static int regulator_check_voltage(struct regulator_dev *rdev,
168                                    int *min_uV, int *max_uV)
169 {
170         BUG_ON(*min_uV > *max_uV);
171
172         if (!rdev->constraints) {
173                 rdev_err(rdev, "no constraints\n");
174                 return -ENODEV;
175         }
176         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
177                 rdev_err(rdev, "operation not allowed\n");
178                 return -EPERM;
179         }
180
181         if (*max_uV > rdev->constraints->max_uV)
182                 *max_uV = rdev->constraints->max_uV;
183         if (*min_uV < rdev->constraints->min_uV)
184                 *min_uV = rdev->constraints->min_uV;
185
186         if (*min_uV > *max_uV) {
187                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
188                          *min_uV, *max_uV);
189                 return -EINVAL;
190         }
191
192         return 0;
193 }
194
195 /* Make sure we select a voltage that suits the needs of all
196  * regulator consumers
197  */
198 static int regulator_check_consumers(struct regulator_dev *rdev,
199                                      int *min_uV, int *max_uV)
200 {
201         struct regulator *regulator;
202
203         list_for_each_entry(regulator, &rdev->consumer_list, list) {
204                 /*
205                  * Assume consumers that didn't say anything are OK
206                  * with anything in the constraint range.
207                  */
208                 if (!regulator->min_uV && !regulator->max_uV)
209                         continue;
210
211                 if (*max_uV > regulator->max_uV)
212                         *max_uV = regulator->max_uV;
213                 if (*min_uV < regulator->min_uV)
214                         *min_uV = regulator->min_uV;
215         }
216
217         if (*min_uV > *max_uV) {
218                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
219                         *min_uV, *max_uV);
220                 return -EINVAL;
221         }
222
223         return 0;
224 }
225
226 /* current constraint check */
227 static int regulator_check_current_limit(struct regulator_dev *rdev,
228                                         int *min_uA, int *max_uA)
229 {
230         BUG_ON(*min_uA > *max_uA);
231
232         if (!rdev->constraints) {
233                 rdev_err(rdev, "no constraints\n");
234                 return -ENODEV;
235         }
236         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
237                 rdev_err(rdev, "operation not allowed\n");
238                 return -EPERM;
239         }
240
241         if (*max_uA > rdev->constraints->max_uA)
242                 *max_uA = rdev->constraints->max_uA;
243         if (*min_uA < rdev->constraints->min_uA)
244                 *min_uA = rdev->constraints->min_uA;
245
246         if (*min_uA > *max_uA) {
247                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
248                          *min_uA, *max_uA);
249                 return -EINVAL;
250         }
251
252         return 0;
253 }
254
255 /* operating mode constraint check */
256 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
257 {
258         switch (*mode) {
259         case REGULATOR_MODE_FAST:
260         case REGULATOR_MODE_NORMAL:
261         case REGULATOR_MODE_IDLE:
262         case REGULATOR_MODE_STANDBY:
263                 break;
264         default:
265                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
266                 return -EINVAL;
267         }
268
269         if (!rdev->constraints) {
270                 rdev_err(rdev, "no constraints\n");
271                 return -ENODEV;
272         }
273         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
274                 rdev_err(rdev, "operation not allowed\n");
275                 return -EPERM;
276         }
277
278         /* The modes are bitmasks, the most power hungry modes having
279          * the lowest values. If the requested mode isn't supported
280          * try higher modes. */
281         while (*mode) {
282                 if (rdev->constraints->valid_modes_mask & *mode)
283                         return 0;
284                 *mode /= 2;
285         }
286
287         return -EINVAL;
288 }
289
290 /* dynamic regulator mode switching constraint check */
291 static int regulator_check_drms(struct regulator_dev *rdev)
292 {
293         if (!rdev->constraints) {
294                 rdev_err(rdev, "no constraints\n");
295                 return -ENODEV;
296         }
297         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
298                 rdev_err(rdev, "operation not allowed\n");
299                 return -EPERM;
300         }
301         return 0;
302 }
303
304 static ssize_t regulator_uV_show(struct device *dev,
305                                 struct device_attribute *attr, char *buf)
306 {
307         struct regulator_dev *rdev = dev_get_drvdata(dev);
308         ssize_t ret;
309
310         mutex_lock(&rdev->mutex);
311         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
312         mutex_unlock(&rdev->mutex);
313
314         return ret;
315 }
316 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
317
318 static ssize_t regulator_uA_show(struct device *dev,
319                                 struct device_attribute *attr, char *buf)
320 {
321         struct regulator_dev *rdev = dev_get_drvdata(dev);
322
323         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
324 }
325 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
326
327 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
328                          char *buf)
329 {
330         struct regulator_dev *rdev = dev_get_drvdata(dev);
331
332         return sprintf(buf, "%s\n", rdev_get_name(rdev));
333 }
334 static DEVICE_ATTR_RO(name);
335
336 static ssize_t regulator_print_opmode(char *buf, int mode)
337 {
338         switch (mode) {
339         case REGULATOR_MODE_FAST:
340                 return sprintf(buf, "fast\n");
341         case REGULATOR_MODE_NORMAL:
342                 return sprintf(buf, "normal\n");
343         case REGULATOR_MODE_IDLE:
344                 return sprintf(buf, "idle\n");
345         case REGULATOR_MODE_STANDBY:
346                 return sprintf(buf, "standby\n");
347         }
348         return sprintf(buf, "unknown\n");
349 }
350
351 static ssize_t regulator_opmode_show(struct device *dev,
352                                     struct device_attribute *attr, char *buf)
353 {
354         struct regulator_dev *rdev = dev_get_drvdata(dev);
355
356         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
357 }
358 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
359
360 static ssize_t regulator_print_state(char *buf, int state)
361 {
362         if (state > 0)
363                 return sprintf(buf, "enabled\n");
364         else if (state == 0)
365                 return sprintf(buf, "disabled\n");
366         else
367                 return sprintf(buf, "unknown\n");
368 }
369
370 static ssize_t regulator_state_show(struct device *dev,
371                                    struct device_attribute *attr, char *buf)
372 {
373         struct regulator_dev *rdev = dev_get_drvdata(dev);
374         ssize_t ret;
375
376         mutex_lock(&rdev->mutex);
377         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
378         mutex_unlock(&rdev->mutex);
379
380         return ret;
381 }
382 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
383
384 static ssize_t regulator_status_show(struct device *dev,
385                                    struct device_attribute *attr, char *buf)
386 {
387         struct regulator_dev *rdev = dev_get_drvdata(dev);
388         int status;
389         char *label;
390
391         status = rdev->desc->ops->get_status(rdev);
392         if (status < 0)
393                 return status;
394
395         switch (status) {
396         case REGULATOR_STATUS_OFF:
397                 label = "off";
398                 break;
399         case REGULATOR_STATUS_ON:
400                 label = "on";
401                 break;
402         case REGULATOR_STATUS_ERROR:
403                 label = "error";
404                 break;
405         case REGULATOR_STATUS_FAST:
406                 label = "fast";
407                 break;
408         case REGULATOR_STATUS_NORMAL:
409                 label = "normal";
410                 break;
411         case REGULATOR_STATUS_IDLE:
412                 label = "idle";
413                 break;
414         case REGULATOR_STATUS_STANDBY:
415                 label = "standby";
416                 break;
417         case REGULATOR_STATUS_BYPASS:
418                 label = "bypass";
419                 break;
420         case REGULATOR_STATUS_UNDEFINED:
421                 label = "undefined";
422                 break;
423         default:
424                 return -ERANGE;
425         }
426
427         return sprintf(buf, "%s\n", label);
428 }
429 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430
431 static ssize_t regulator_min_uA_show(struct device *dev,
432                                     struct device_attribute *attr, char *buf)
433 {
434         struct regulator_dev *rdev = dev_get_drvdata(dev);
435
436         if (!rdev->constraints)
437                 return sprintf(buf, "constraint not defined\n");
438
439         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440 }
441 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442
443 static ssize_t regulator_max_uA_show(struct device *dev,
444                                     struct device_attribute *attr, char *buf)
445 {
446         struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448         if (!rdev->constraints)
449                 return sprintf(buf, "constraint not defined\n");
450
451         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452 }
453 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454
455 static ssize_t regulator_min_uV_show(struct device *dev,
456                                     struct device_attribute *attr, char *buf)
457 {
458         struct regulator_dev *rdev = dev_get_drvdata(dev);
459
460         if (!rdev->constraints)
461                 return sprintf(buf, "constraint not defined\n");
462
463         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464 }
465 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466
467 static ssize_t regulator_max_uV_show(struct device *dev,
468                                     struct device_attribute *attr, char *buf)
469 {
470         struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472         if (!rdev->constraints)
473                 return sprintf(buf, "constraint not defined\n");
474
475         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476 }
477 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478
479 static ssize_t regulator_total_uA_show(struct device *dev,
480                                       struct device_attribute *attr, char *buf)
481 {
482         struct regulator_dev *rdev = dev_get_drvdata(dev);
483         struct regulator *regulator;
484         int uA = 0;
485
486         mutex_lock(&rdev->mutex);
487         list_for_each_entry(regulator, &rdev->consumer_list, list)
488                 uA += regulator->uA_load;
489         mutex_unlock(&rdev->mutex);
490         return sprintf(buf, "%d\n", uA);
491 }
492 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493
494 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
495                               char *buf)
496 {
497         struct regulator_dev *rdev = dev_get_drvdata(dev);
498         return sprintf(buf, "%d\n", rdev->use_count);
499 }
500 static DEVICE_ATTR_RO(num_users);
501
502 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
503                          char *buf)
504 {
505         struct regulator_dev *rdev = dev_get_drvdata(dev);
506
507         switch (rdev->desc->type) {
508         case REGULATOR_VOLTAGE:
509                 return sprintf(buf, "voltage\n");
510         case REGULATOR_CURRENT:
511                 return sprintf(buf, "current\n");
512         }
513         return sprintf(buf, "unknown\n");
514 }
515 static DEVICE_ATTR_RO(type);
516
517 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
518                                 struct device_attribute *attr, char *buf)
519 {
520         struct regulator_dev *rdev = dev_get_drvdata(dev);
521
522         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
523 }
524 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
525                 regulator_suspend_mem_uV_show, NULL);
526
527 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
528                                 struct device_attribute *attr, char *buf)
529 {
530         struct regulator_dev *rdev = dev_get_drvdata(dev);
531
532         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
533 }
534 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
535                 regulator_suspend_disk_uV_show, NULL);
536
537 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
538                                 struct device_attribute *attr, char *buf)
539 {
540         struct regulator_dev *rdev = dev_get_drvdata(dev);
541
542         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
543 }
544 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
545                 regulator_suspend_standby_uV_show, NULL);
546
547 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
548                                 struct device_attribute *attr, char *buf)
549 {
550         struct regulator_dev *rdev = dev_get_drvdata(dev);
551
552         return regulator_print_opmode(buf,
553                 rdev->constraints->state_mem.mode);
554 }
555 static DEVICE_ATTR(suspend_mem_mode, 0444,
556                 regulator_suspend_mem_mode_show, NULL);
557
558 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
559                                 struct device_attribute *attr, char *buf)
560 {
561         struct regulator_dev *rdev = dev_get_drvdata(dev);
562
563         return regulator_print_opmode(buf,
564                 rdev->constraints->state_disk.mode);
565 }
566 static DEVICE_ATTR(suspend_disk_mode, 0444,
567                 regulator_suspend_disk_mode_show, NULL);
568
569 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
570                                 struct device_attribute *attr, char *buf)
571 {
572         struct regulator_dev *rdev = dev_get_drvdata(dev);
573
574         return regulator_print_opmode(buf,
575                 rdev->constraints->state_standby.mode);
576 }
577 static DEVICE_ATTR(suspend_standby_mode, 0444,
578                 regulator_suspend_standby_mode_show, NULL);
579
580 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
581                                    struct device_attribute *attr, char *buf)
582 {
583         struct regulator_dev *rdev = dev_get_drvdata(dev);
584
585         return regulator_print_state(buf,
586                         rdev->constraints->state_mem.enabled);
587 }
588 static DEVICE_ATTR(suspend_mem_state, 0444,
589                 regulator_suspend_mem_state_show, NULL);
590
591 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
592                                    struct device_attribute *attr, char *buf)
593 {
594         struct regulator_dev *rdev = dev_get_drvdata(dev);
595
596         return regulator_print_state(buf,
597                         rdev->constraints->state_disk.enabled);
598 }
599 static DEVICE_ATTR(suspend_disk_state, 0444,
600                 regulator_suspend_disk_state_show, NULL);
601
602 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
603                                    struct device_attribute *attr, char *buf)
604 {
605         struct regulator_dev *rdev = dev_get_drvdata(dev);
606
607         return regulator_print_state(buf,
608                         rdev->constraints->state_standby.enabled);
609 }
610 static DEVICE_ATTR(suspend_standby_state, 0444,
611                 regulator_suspend_standby_state_show, NULL);
612
613 static ssize_t regulator_bypass_show(struct device *dev,
614                                      struct device_attribute *attr, char *buf)
615 {
616         struct regulator_dev *rdev = dev_get_drvdata(dev);
617         const char *report;
618         bool bypass;
619         int ret;
620
621         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
622
623         if (ret != 0)
624                 report = "unknown";
625         else if (bypass)
626                 report = "enabled";
627         else
628                 report = "disabled";
629
630         return sprintf(buf, "%s\n", report);
631 }
632 static DEVICE_ATTR(bypass, 0444,
633                    regulator_bypass_show, NULL);
634
635 /* Calculate the new optimum regulator operating mode based on the new total
636  * consumer load. All locks held by caller */
637 static int drms_uA_update(struct regulator_dev *rdev)
638 {
639         struct regulator *sibling;
640         int current_uA = 0, output_uV, input_uV, err;
641         unsigned int mode;
642
643         /*
644          * first check to see if we can set modes at all, otherwise just
645          * tell the consumer everything is OK.
646          */
647         err = regulator_check_drms(rdev);
648         if (err < 0)
649                 return 0;
650
651         if (!rdev->desc->ops->get_optimum_mode &&
652             !rdev->desc->ops->set_load)
653                 return 0;
654
655         if (!rdev->desc->ops->set_mode &&
656             !rdev->desc->ops->set_load)
657                 return -EINVAL;
658
659         /* get output voltage */
660         output_uV = _regulator_get_voltage(rdev);
661         if (output_uV <= 0) {
662                 rdev_err(rdev, "invalid output voltage found\n");
663                 return -EINVAL;
664         }
665
666         /* get input voltage */
667         input_uV = 0;
668         if (rdev->supply)
669                 input_uV = regulator_get_voltage(rdev->supply);
670         if (input_uV <= 0)
671                 input_uV = rdev->constraints->input_uV;
672         if (input_uV <= 0) {
673                 rdev_err(rdev, "invalid input voltage found\n");
674                 return -EINVAL;
675         }
676
677         /* calc total requested load */
678         list_for_each_entry(sibling, &rdev->consumer_list, list)
679                 current_uA += sibling->uA_load;
680
681         if (rdev->desc->ops->set_load) {
682                 /* set the optimum mode for our new total regulator load */
683                 err = rdev->desc->ops->set_load(rdev, current_uA);
684                 if (err < 0)
685                         rdev_err(rdev, "failed to set load %d\n", current_uA);
686         } else {
687                 /* now get the optimum mode for our new total regulator load */
688                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
689                                                          output_uV, current_uA);
690
691                 /* check the new mode is allowed */
692                 err = regulator_mode_constrain(rdev, &mode);
693                 if (err < 0) {
694                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
695                                  current_uA, input_uV, output_uV);
696                         return err;
697                 }
698
699                 err = rdev->desc->ops->set_mode(rdev, mode);
700                 if (err < 0)
701                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
702         }
703
704         return err;
705 }
706
707 static int suspend_set_state(struct regulator_dev *rdev,
708         struct regulator_state *rstate)
709 {
710         int ret = 0;
711
712         /* If we have no suspend mode configration don't set anything;
713          * only warn if the driver implements set_suspend_voltage or
714          * set_suspend_mode callback.
715          */
716         if (!rstate->enabled && !rstate->disabled) {
717                 if (rdev->desc->ops->set_suspend_voltage ||
718                     rdev->desc->ops->set_suspend_mode)
719                         rdev_warn(rdev, "No configuration\n");
720                 return 0;
721         }
722
723         if (rstate->enabled && rstate->disabled) {
724                 rdev_err(rdev, "invalid configuration\n");
725                 return -EINVAL;
726         }
727
728         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
729                 ret = rdev->desc->ops->set_suspend_enable(rdev);
730         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
731                 ret = rdev->desc->ops->set_suspend_disable(rdev);
732         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
733                 ret = 0;
734
735         if (ret < 0) {
736                 rdev_err(rdev, "failed to enabled/disable\n");
737                 return ret;
738         }
739
740         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
741                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
742                 if (ret < 0) {
743                         rdev_err(rdev, "failed to set voltage\n");
744                         return ret;
745                 }
746         }
747
748         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
749                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
750                 if (ret < 0) {
751                         rdev_err(rdev, "failed to set mode\n");
752                         return ret;
753                 }
754         }
755         return ret;
756 }
757
758 /* locks held by caller */
759 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
760 {
761         if (!rdev->constraints)
762                 return -EINVAL;
763
764         switch (state) {
765         case PM_SUSPEND_STANDBY:
766                 return suspend_set_state(rdev,
767                         &rdev->constraints->state_standby);
768         case PM_SUSPEND_MEM:
769                 return suspend_set_state(rdev,
770                         &rdev->constraints->state_mem);
771         case PM_SUSPEND_MAX:
772                 return suspend_set_state(rdev,
773                         &rdev->constraints->state_disk);
774         default:
775                 return -EINVAL;
776         }
777 }
778
779 static void print_constraints(struct regulator_dev *rdev)
780 {
781         struct regulation_constraints *constraints = rdev->constraints;
782         char buf[160] = "";
783         int count = 0;
784         int ret;
785
786         if (constraints->min_uV && constraints->max_uV) {
787                 if (constraints->min_uV == constraints->max_uV)
788                         count += sprintf(buf + count, "%d mV ",
789                                          constraints->min_uV / 1000);
790                 else
791                         count += sprintf(buf + count, "%d <--> %d mV ",
792                                          constraints->min_uV / 1000,
793                                          constraints->max_uV / 1000);
794         }
795
796         if (!constraints->min_uV ||
797             constraints->min_uV != constraints->max_uV) {
798                 ret = _regulator_get_voltage(rdev);
799                 if (ret > 0)
800                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
801         }
802
803         if (constraints->uV_offset)
804                 count += sprintf(buf, "%dmV offset ",
805                                  constraints->uV_offset / 1000);
806
807         if (constraints->min_uA && constraints->max_uA) {
808                 if (constraints->min_uA == constraints->max_uA)
809                         count += sprintf(buf + count, "%d mA ",
810                                          constraints->min_uA / 1000);
811                 else
812                         count += sprintf(buf + count, "%d <--> %d mA ",
813                                          constraints->min_uA / 1000,
814                                          constraints->max_uA / 1000);
815         }
816
817         if (!constraints->min_uA ||
818             constraints->min_uA != constraints->max_uA) {
819                 ret = _regulator_get_current_limit(rdev);
820                 if (ret > 0)
821                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
822         }
823
824         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
825                 count += sprintf(buf + count, "fast ");
826         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
827                 count += sprintf(buf + count, "normal ");
828         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
829                 count += sprintf(buf + count, "idle ");
830         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
831                 count += sprintf(buf + count, "standby");
832
833         if (!count)
834                 sprintf(buf, "no parameters");
835
836         rdev_dbg(rdev, "%s\n", buf);
837
838         if ((constraints->min_uV != constraints->max_uV) &&
839             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
840                 rdev_warn(rdev,
841                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
842 }
843
844 static int machine_constraints_voltage(struct regulator_dev *rdev,
845         struct regulation_constraints *constraints)
846 {
847         const struct regulator_ops *ops = rdev->desc->ops;
848         int ret;
849
850         /* do we need to apply the constraint voltage */
851         if (rdev->constraints->apply_uV &&
852             rdev->constraints->min_uV == rdev->constraints->max_uV) {
853                 int current_uV = _regulator_get_voltage(rdev);
854                 if (current_uV < 0) {
855                         rdev_err(rdev,
856                                  "failed to get the current voltage(%d)\n",
857                                  current_uV);
858                         return current_uV;
859                 }
860                 if (current_uV < rdev->constraints->min_uV ||
861                     current_uV > rdev->constraints->max_uV) {
862                         ret = _regulator_do_set_voltage(
863                                 rdev, rdev->constraints->min_uV,
864                                 rdev->constraints->max_uV);
865                         if (ret < 0) {
866                                 rdev_err(rdev,
867                                         "failed to apply %duV constraint(%d)\n",
868                                         rdev->constraints->min_uV, ret);
869                                 return ret;
870                         }
871                 }
872         }
873
874         /* constrain machine-level voltage specs to fit
875          * the actual range supported by this regulator.
876          */
877         if (ops->list_voltage && rdev->desc->n_voltages) {
878                 int     count = rdev->desc->n_voltages;
879                 int     i;
880                 int     min_uV = INT_MAX;
881                 int     max_uV = INT_MIN;
882                 int     cmin = constraints->min_uV;
883                 int     cmax = constraints->max_uV;
884
885                 /* it's safe to autoconfigure fixed-voltage supplies
886                    and the constraints are used by list_voltage. */
887                 if (count == 1 && !cmin) {
888                         cmin = 1;
889                         cmax = INT_MAX;
890                         constraints->min_uV = cmin;
891                         constraints->max_uV = cmax;
892                 }
893
894                 /* voltage constraints are optional */
895                 if ((cmin == 0) && (cmax == 0))
896                         return 0;
897
898                 /* else require explicit machine-level constraints */
899                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
900                         rdev_err(rdev, "invalid voltage constraints\n");
901                         return -EINVAL;
902                 }
903
904                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
905                 for (i = 0; i < count; i++) {
906                         int     value;
907
908                         value = ops->list_voltage(rdev, i);
909                         if (value <= 0)
910                                 continue;
911
912                         /* maybe adjust [min_uV..max_uV] */
913                         if (value >= cmin && value < min_uV)
914                                 min_uV = value;
915                         if (value <= cmax && value > max_uV)
916                                 max_uV = value;
917                 }
918
919                 /* final: [min_uV..max_uV] valid iff constraints valid */
920                 if (max_uV < min_uV) {
921                         rdev_err(rdev,
922                                  "unsupportable voltage constraints %u-%uuV\n",
923                                  min_uV, max_uV);
924                         return -EINVAL;
925                 }
926
927                 /* use regulator's subset of machine constraints */
928                 if (constraints->min_uV < min_uV) {
929                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
930                                  constraints->min_uV, min_uV);
931                         constraints->min_uV = min_uV;
932                 }
933                 if (constraints->max_uV > max_uV) {
934                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
935                                  constraints->max_uV, max_uV);
936                         constraints->max_uV = max_uV;
937                 }
938         }
939
940         return 0;
941 }
942
943 static int machine_constraints_current(struct regulator_dev *rdev,
944         struct regulation_constraints *constraints)
945 {
946         const struct regulator_ops *ops = rdev->desc->ops;
947         int ret;
948
949         if (!constraints->min_uA && !constraints->max_uA)
950                 return 0;
951
952         if (constraints->min_uA > constraints->max_uA) {
953                 rdev_err(rdev, "Invalid current constraints\n");
954                 return -EINVAL;
955         }
956
957         if (!ops->set_current_limit || !ops->get_current_limit) {
958                 rdev_warn(rdev, "Operation of current configuration missing\n");
959                 return 0;
960         }
961
962         /* Set regulator current in constraints range */
963         ret = ops->set_current_limit(rdev, constraints->min_uA,
964                         constraints->max_uA);
965         if (ret < 0) {
966                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
967                 return ret;
968         }
969
970         return 0;
971 }
972
973 static int _regulator_do_enable(struct regulator_dev *rdev);
974
975 /**
976  * set_machine_constraints - sets regulator constraints
977  * @rdev: regulator source
978  * @constraints: constraints to apply
979  *
980  * Allows platform initialisation code to define and constrain
981  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
982  * Constraints *must* be set by platform code in order for some
983  * regulator operations to proceed i.e. set_voltage, set_current_limit,
984  * set_mode.
985  */
986 static int set_machine_constraints(struct regulator_dev *rdev,
987         const struct regulation_constraints *constraints)
988 {
989         int ret = 0;
990         const struct regulator_ops *ops = rdev->desc->ops;
991
992         if (constraints)
993                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
994                                             GFP_KERNEL);
995         else
996                 rdev->constraints = kzalloc(sizeof(*constraints),
997                                             GFP_KERNEL);
998         if (!rdev->constraints)
999                 return -ENOMEM;
1000
1001         ret = machine_constraints_voltage(rdev, rdev->constraints);
1002         if (ret != 0)
1003                 goto out;
1004
1005         ret = machine_constraints_current(rdev, rdev->constraints);
1006         if (ret != 0)
1007                 goto out;
1008
1009         /* do we need to setup our suspend state */
1010         if (rdev->constraints->initial_state) {
1011                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1012                 if (ret < 0) {
1013                         rdev_err(rdev, "failed to set suspend state\n");
1014                         goto out;
1015                 }
1016         }
1017
1018         if (rdev->constraints->initial_mode) {
1019                 if (!ops->set_mode) {
1020                         rdev_err(rdev, "no set_mode operation\n");
1021                         ret = -EINVAL;
1022                         goto out;
1023                 }
1024
1025                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1026                 if (ret < 0) {
1027                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1028                         goto out;
1029                 }
1030         }
1031
1032         /* If the constraints say the regulator should be on at this point
1033          * and we have control then make sure it is enabled.
1034          */
1035         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1036                 ret = _regulator_do_enable(rdev);
1037                 if (ret < 0 && ret != -EINVAL) {
1038                         rdev_err(rdev, "failed to enable\n");
1039                         goto out;
1040                 }
1041         }
1042
1043         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1044                 && ops->set_ramp_delay) {
1045                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1046                 if (ret < 0) {
1047                         rdev_err(rdev, "failed to set ramp_delay\n");
1048                         goto out;
1049                 }
1050         }
1051
1052         print_constraints(rdev);
1053         return 0;
1054 out:
1055         kfree(rdev->constraints);
1056         rdev->constraints = NULL;
1057         return ret;
1058 }
1059
1060 /**
1061  * set_supply - set regulator supply regulator
1062  * @rdev: regulator name
1063  * @supply_rdev: supply regulator name
1064  *
1065  * Called by platform initialisation code to set the supply regulator for this
1066  * regulator. This ensures that a regulators supply will also be enabled by the
1067  * core if it's child is enabled.
1068  */
1069 static int set_supply(struct regulator_dev *rdev,
1070                       struct regulator_dev *supply_rdev)
1071 {
1072         int err;
1073
1074         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1075
1076         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1077         if (rdev->supply == NULL) {
1078                 err = -ENOMEM;
1079                 return err;
1080         }
1081         supply_rdev->open_count++;
1082
1083         return 0;
1084 }
1085
1086 /**
1087  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1088  * @rdev:         regulator source
1089  * @consumer_dev_name: dev_name() string for device supply applies to
1090  * @supply:       symbolic name for supply
1091  *
1092  * Allows platform initialisation code to map physical regulator
1093  * sources to symbolic names for supplies for use by devices.  Devices
1094  * should use these symbolic names to request regulators, avoiding the
1095  * need to provide board-specific regulator names as platform data.
1096  */
1097 static int set_consumer_device_supply(struct regulator_dev *rdev,
1098                                       const char *consumer_dev_name,
1099                                       const char *supply)
1100 {
1101         struct regulator_map *node;
1102         int has_dev;
1103
1104         if (supply == NULL)
1105                 return -EINVAL;
1106
1107         if (consumer_dev_name != NULL)
1108                 has_dev = 1;
1109         else
1110                 has_dev = 0;
1111
1112         list_for_each_entry(node, &regulator_map_list, list) {
1113                 if (node->dev_name && consumer_dev_name) {
1114                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1115                                 continue;
1116                 } else if (node->dev_name || consumer_dev_name) {
1117                         continue;
1118                 }
1119
1120                 if (strcmp(node->supply, supply) != 0)
1121                         continue;
1122
1123                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1124                          consumer_dev_name,
1125                          dev_name(&node->regulator->dev),
1126                          node->regulator->desc->name,
1127                          supply,
1128                          dev_name(&rdev->dev), rdev_get_name(rdev));
1129                 return -EBUSY;
1130         }
1131
1132         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1133         if (node == NULL)
1134                 return -ENOMEM;
1135
1136         node->regulator = rdev;
1137         node->supply = supply;
1138
1139         if (has_dev) {
1140                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1141                 if (node->dev_name == NULL) {
1142                         kfree(node);
1143                         return -ENOMEM;
1144                 }
1145         }
1146
1147         list_add(&node->list, &regulator_map_list);
1148         return 0;
1149 }
1150
1151 static void unset_regulator_supplies(struct regulator_dev *rdev)
1152 {
1153         struct regulator_map *node, *n;
1154
1155         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1156                 if (rdev == node->regulator) {
1157                         list_del(&node->list);
1158                         kfree(node->dev_name);
1159                         kfree(node);
1160                 }
1161         }
1162 }
1163
1164 #define REG_STR_SIZE    64
1165
1166 static struct regulator *create_regulator(struct regulator_dev *rdev,
1167                                           struct device *dev,
1168                                           const char *supply_name)
1169 {
1170         struct regulator *regulator;
1171         char buf[REG_STR_SIZE];
1172         int err, size;
1173
1174         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1175         if (regulator == NULL)
1176                 return NULL;
1177
1178         mutex_lock(&rdev->mutex);
1179         regulator->rdev = rdev;
1180         list_add(&regulator->list, &rdev->consumer_list);
1181
1182         if (dev) {
1183                 regulator->dev = dev;
1184
1185                 /* Add a link to the device sysfs entry */
1186                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1187                                  dev->kobj.name, supply_name);
1188                 if (size >= REG_STR_SIZE)
1189                         goto overflow_err;
1190
1191                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1192                 if (regulator->supply_name == NULL)
1193                         goto overflow_err;
1194
1195                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1196                                         buf);
1197                 if (err) {
1198                         rdev_warn(rdev, "could not add device link %s err %d\n",
1199                                   dev->kobj.name, err);
1200                         /* non-fatal */
1201                 }
1202         } else {
1203                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1204                 if (regulator->supply_name == NULL)
1205                         goto overflow_err;
1206         }
1207
1208         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1209                                                 rdev->debugfs);
1210         if (!regulator->debugfs) {
1211                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1212         } else {
1213                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1214                                    &regulator->uA_load);
1215                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1216                                    &regulator->min_uV);
1217                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1218                                    &regulator->max_uV);
1219         }
1220
1221         /*
1222          * Check now if the regulator is an always on regulator - if
1223          * it is then we don't need to do nearly so much work for
1224          * enable/disable calls.
1225          */
1226         if (!_regulator_can_change_status(rdev) &&
1227             _regulator_is_enabled(rdev))
1228                 regulator->always_on = true;
1229
1230         mutex_unlock(&rdev->mutex);
1231         return regulator;
1232 overflow_err:
1233         list_del(&regulator->list);
1234         kfree(regulator);
1235         mutex_unlock(&rdev->mutex);
1236         return NULL;
1237 }
1238
1239 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1240 {
1241         if (rdev->constraints && rdev->constraints->enable_time)
1242                 return rdev->constraints->enable_time;
1243         if (!rdev->desc->ops->enable_time)
1244                 return rdev->desc->enable_time;
1245         return rdev->desc->ops->enable_time(rdev);
1246 }
1247
1248 static struct regulator_supply_alias *regulator_find_supply_alias(
1249                 struct device *dev, const char *supply)
1250 {
1251         struct regulator_supply_alias *map;
1252
1253         list_for_each_entry(map, &regulator_supply_alias_list, list)
1254                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1255                         return map;
1256
1257         return NULL;
1258 }
1259
1260 static void regulator_supply_alias(struct device **dev, const char **supply)
1261 {
1262         struct regulator_supply_alias *map;
1263
1264         map = regulator_find_supply_alias(*dev, *supply);
1265         if (map) {
1266                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1267                                 *supply, map->alias_supply,
1268                                 dev_name(map->alias_dev));
1269                 *dev = map->alias_dev;
1270                 *supply = map->alias_supply;
1271         }
1272 }
1273
1274 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1275                                                   const char *supply,
1276                                                   int *ret)
1277 {
1278         struct regulator_dev *r;
1279         struct device_node *node;
1280         struct regulator_map *map;
1281         const char *devname = NULL;
1282
1283         regulator_supply_alias(&dev, &supply);
1284
1285         /* first do a dt based lookup */
1286         if (dev && dev->of_node) {
1287                 node = of_get_regulator(dev, supply);
1288                 if (node) {
1289                         list_for_each_entry(r, &regulator_list, list)
1290                                 if (r->dev.parent &&
1291                                         node == r->dev.of_node)
1292                                         return r;
1293                         *ret = -EPROBE_DEFER;
1294                         return NULL;
1295                 } else {
1296                         /*
1297                          * If we couldn't even get the node then it's
1298                          * not just that the device didn't register
1299                          * yet, there's no node and we'll never
1300                          * succeed.
1301                          */
1302                         *ret = -ENODEV;
1303                 }
1304         }
1305
1306         /* if not found, try doing it non-dt way */
1307         if (dev)
1308                 devname = dev_name(dev);
1309
1310         list_for_each_entry(r, &regulator_list, list)
1311                 if (strcmp(rdev_get_name(r), supply) == 0)
1312                         return r;
1313
1314         list_for_each_entry(map, &regulator_map_list, list) {
1315                 /* If the mapping has a device set up it must match */
1316                 if (map->dev_name &&
1317                     (!devname || strcmp(map->dev_name, devname)))
1318                         continue;
1319
1320                 if (strcmp(map->supply, supply) == 0)
1321                         return map->regulator;
1322         }
1323
1324
1325         return NULL;
1326 }
1327
1328 static int regulator_resolve_supply(struct regulator_dev *rdev)
1329 {
1330         struct regulator_dev *r;
1331         struct device *dev = rdev->dev.parent;
1332         int ret;
1333
1334         /* No supply to resovle? */
1335         if (!rdev->supply_name)
1336                 return 0;
1337
1338         /* Supply already resolved? */
1339         if (rdev->supply)
1340                 return 0;
1341
1342         r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1343         if (ret == -ENODEV) {
1344                 /*
1345                  * No supply was specified for this regulator and
1346                  * there will never be one.
1347                  */
1348                 return 0;
1349         }
1350
1351         if (!r) {
1352                 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1353                         rdev->supply_name, rdev->desc->name);
1354                 return -EPROBE_DEFER;
1355         }
1356
1357         /* Recursively resolve the supply of the supply */
1358         ret = regulator_resolve_supply(r);
1359         if (ret < 0)
1360                 return ret;
1361
1362         ret = set_supply(rdev, r);
1363         if (ret < 0)
1364                 return ret;
1365
1366         /* Cascade always-on state to supply */
1367         if (_regulator_is_enabled(rdev)) {
1368                 ret = regulator_enable(rdev->supply);
1369                 if (ret < 0)
1370                         return ret;
1371         }
1372
1373         return 0;
1374 }
1375
1376 /* Internal regulator request function */
1377 static struct regulator *_regulator_get(struct device *dev, const char *id,
1378                                         bool exclusive, bool allow_dummy)
1379 {
1380         struct regulator_dev *rdev;
1381         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1382         const char *devname = NULL;
1383         int ret;
1384
1385         if (id == NULL) {
1386                 pr_err("get() with no identifier\n");
1387                 return ERR_PTR(-EINVAL);
1388         }
1389
1390         if (dev)
1391                 devname = dev_name(dev);
1392
1393         if (have_full_constraints())
1394                 ret = -ENODEV;
1395         else
1396                 ret = -EPROBE_DEFER;
1397
1398         mutex_lock(&regulator_list_mutex);
1399
1400         rdev = regulator_dev_lookup(dev, id, &ret);
1401         if (rdev)
1402                 goto found;
1403
1404         regulator = ERR_PTR(ret);
1405
1406         /*
1407          * If we have return value from dev_lookup fail, we do not expect to
1408          * succeed, so, quit with appropriate error value
1409          */
1410         if (ret && ret != -ENODEV)
1411                 goto out;
1412
1413         if (!devname)
1414                 devname = "deviceless";
1415
1416         /*
1417          * Assume that a regulator is physically present and enabled
1418          * even if it isn't hooked up and just provide a dummy.
1419          */
1420         if (have_full_constraints() && allow_dummy) {
1421                 pr_warn("%s supply %s not found, using dummy regulator\n",
1422                         devname, id);
1423
1424                 rdev = dummy_regulator_rdev;
1425                 goto found;
1426         /* Don't log an error when called from regulator_get_optional() */
1427         } else if (!have_full_constraints() || exclusive) {
1428                 dev_warn(dev, "dummy supplies not allowed\n");
1429         }
1430
1431         mutex_unlock(&regulator_list_mutex);
1432         return regulator;
1433
1434 found:
1435         if (rdev->exclusive) {
1436                 regulator = ERR_PTR(-EPERM);
1437                 goto out;
1438         }
1439
1440         if (exclusive && rdev->open_count) {
1441                 regulator = ERR_PTR(-EBUSY);
1442                 goto out;
1443         }
1444
1445         ret = regulator_resolve_supply(rdev);
1446         if (ret < 0) {
1447                 regulator = ERR_PTR(ret);
1448                 goto out;
1449         }
1450
1451         if (!try_module_get(rdev->owner))
1452                 goto out;
1453
1454         regulator = create_regulator(rdev, dev, id);
1455         if (regulator == NULL) {
1456                 regulator = ERR_PTR(-ENOMEM);
1457                 module_put(rdev->owner);
1458                 goto out;
1459         }
1460
1461         rdev->open_count++;
1462         if (exclusive) {
1463                 rdev->exclusive = 1;
1464
1465                 ret = _regulator_is_enabled(rdev);
1466                 if (ret > 0)
1467                         rdev->use_count = 1;
1468                 else
1469                         rdev->use_count = 0;
1470         }
1471
1472 out:
1473         mutex_unlock(&regulator_list_mutex);
1474
1475         return regulator;
1476 }
1477
1478 /**
1479  * regulator_get - lookup and obtain a reference to a regulator.
1480  * @dev: device for regulator "consumer"
1481  * @id: Supply name or regulator ID.
1482  *
1483  * Returns a struct regulator corresponding to the regulator producer,
1484  * or IS_ERR() condition containing errno.
1485  *
1486  * Use of supply names configured via regulator_set_device_supply() is
1487  * strongly encouraged.  It is recommended that the supply name used
1488  * should match the name used for the supply and/or the relevant
1489  * device pins in the datasheet.
1490  */
1491 struct regulator *regulator_get(struct device *dev, const char *id)
1492 {
1493         return _regulator_get(dev, id, false, true);
1494 }
1495 EXPORT_SYMBOL_GPL(regulator_get);
1496
1497 /**
1498  * regulator_get_exclusive - obtain exclusive access to a regulator.
1499  * @dev: device for regulator "consumer"
1500  * @id: Supply name or regulator ID.
1501  *
1502  * Returns a struct regulator corresponding to the regulator producer,
1503  * or IS_ERR() condition containing errno.  Other consumers will be
1504  * unable to obtain this regulator while this reference is held and the
1505  * use count for the regulator will be initialised to reflect the current
1506  * state of the regulator.
1507  *
1508  * This is intended for use by consumers which cannot tolerate shared
1509  * use of the regulator such as those which need to force the
1510  * regulator off for correct operation of the hardware they are
1511  * controlling.
1512  *
1513  * Use of supply names configured via regulator_set_device_supply() is
1514  * strongly encouraged.  It is recommended that the supply name used
1515  * should match the name used for the supply and/or the relevant
1516  * device pins in the datasheet.
1517  */
1518 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1519 {
1520         return _regulator_get(dev, id, true, false);
1521 }
1522 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1523
1524 /**
1525  * regulator_get_optional - obtain optional access to a regulator.
1526  * @dev: device for regulator "consumer"
1527  * @id: Supply name or regulator ID.
1528  *
1529  * Returns a struct regulator corresponding to the regulator producer,
1530  * or IS_ERR() condition containing errno.
1531  *
1532  * This is intended for use by consumers for devices which can have
1533  * some supplies unconnected in normal use, such as some MMC devices.
1534  * It can allow the regulator core to provide stub supplies for other
1535  * supplies requested using normal regulator_get() calls without
1536  * disrupting the operation of drivers that can handle absent
1537  * supplies.
1538  *
1539  * Use of supply names configured via regulator_set_device_supply() is
1540  * strongly encouraged.  It is recommended that the supply name used
1541  * should match the name used for the supply and/or the relevant
1542  * device pins in the datasheet.
1543  */
1544 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1545 {
1546         return _regulator_get(dev, id, false, false);
1547 }
1548 EXPORT_SYMBOL_GPL(regulator_get_optional);
1549
1550 /* regulator_list_mutex lock held by regulator_put() */
1551 static void _regulator_put(struct regulator *regulator)
1552 {
1553         struct regulator_dev *rdev;
1554
1555         if (regulator == NULL || IS_ERR(regulator))
1556                 return;
1557
1558         rdev = regulator->rdev;
1559
1560         debugfs_remove_recursive(regulator->debugfs);
1561
1562         /* remove any sysfs entries */
1563         if (regulator->dev)
1564                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1565         mutex_lock(&rdev->mutex);
1566         kfree(regulator->supply_name);
1567         list_del(&regulator->list);
1568         kfree(regulator);
1569
1570         rdev->open_count--;
1571         rdev->exclusive = 0;
1572         mutex_unlock(&rdev->mutex);
1573
1574         module_put(rdev->owner);
1575 }
1576
1577 /**
1578  * regulator_put - "free" the regulator source
1579  * @regulator: regulator source
1580  *
1581  * Note: drivers must ensure that all regulator_enable calls made on this
1582  * regulator source are balanced by regulator_disable calls prior to calling
1583  * this function.
1584  */
1585 void regulator_put(struct regulator *regulator)
1586 {
1587         mutex_lock(&regulator_list_mutex);
1588         _regulator_put(regulator);
1589         mutex_unlock(&regulator_list_mutex);
1590 }
1591 EXPORT_SYMBOL_GPL(regulator_put);
1592
1593 /**
1594  * regulator_register_supply_alias - Provide device alias for supply lookup
1595  *
1596  * @dev: device that will be given as the regulator "consumer"
1597  * @id: Supply name or regulator ID
1598  * @alias_dev: device that should be used to lookup the supply
1599  * @alias_id: Supply name or regulator ID that should be used to lookup the
1600  * supply
1601  *
1602  * All lookups for id on dev will instead be conducted for alias_id on
1603  * alias_dev.
1604  */
1605 int regulator_register_supply_alias(struct device *dev, const char *id,
1606                                     struct device *alias_dev,
1607                                     const char *alias_id)
1608 {
1609         struct regulator_supply_alias *map;
1610
1611         map = regulator_find_supply_alias(dev, id);
1612         if (map)
1613                 return -EEXIST;
1614
1615         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1616         if (!map)
1617                 return -ENOMEM;
1618
1619         map->src_dev = dev;
1620         map->src_supply = id;
1621         map->alias_dev = alias_dev;
1622         map->alias_supply = alias_id;
1623
1624         list_add(&map->list, &regulator_supply_alias_list);
1625
1626         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1627                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1628
1629         return 0;
1630 }
1631 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1632
1633 /**
1634  * regulator_unregister_supply_alias - Remove device alias
1635  *
1636  * @dev: device that will be given as the regulator "consumer"
1637  * @id: Supply name or regulator ID
1638  *
1639  * Remove a lookup alias if one exists for id on dev.
1640  */
1641 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1642 {
1643         struct regulator_supply_alias *map;
1644
1645         map = regulator_find_supply_alias(dev, id);
1646         if (map) {
1647                 list_del(&map->list);
1648                 kfree(map);
1649         }
1650 }
1651 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1652
1653 /**
1654  * regulator_bulk_register_supply_alias - register multiple aliases
1655  *
1656  * @dev: device that will be given as the regulator "consumer"
1657  * @id: List of supply names or regulator IDs
1658  * @alias_dev: device that should be used to lookup the supply
1659  * @alias_id: List of supply names or regulator IDs that should be used to
1660  * lookup the supply
1661  * @num_id: Number of aliases to register
1662  *
1663  * @return 0 on success, an errno on failure.
1664  *
1665  * This helper function allows drivers to register several supply
1666  * aliases in one operation.  If any of the aliases cannot be
1667  * registered any aliases that were registered will be removed
1668  * before returning to the caller.
1669  */
1670 int regulator_bulk_register_supply_alias(struct device *dev,
1671                                          const char *const *id,
1672                                          struct device *alias_dev,
1673                                          const char *const *alias_id,
1674                                          int num_id)
1675 {
1676         int i;
1677         int ret;
1678
1679         for (i = 0; i < num_id; ++i) {
1680                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1681                                                       alias_id[i]);
1682                 if (ret < 0)
1683                         goto err;
1684         }
1685
1686         return 0;
1687
1688 err:
1689         dev_err(dev,
1690                 "Failed to create supply alias %s,%s -> %s,%s\n",
1691                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1692
1693         while (--i >= 0)
1694                 regulator_unregister_supply_alias(dev, id[i]);
1695
1696         return ret;
1697 }
1698 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1699
1700 /**
1701  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1702  *
1703  * @dev: device that will be given as the regulator "consumer"
1704  * @id: List of supply names or regulator IDs
1705  * @num_id: Number of aliases to unregister
1706  *
1707  * This helper function allows drivers to unregister several supply
1708  * aliases in one operation.
1709  */
1710 void regulator_bulk_unregister_supply_alias(struct device *dev,
1711                                             const char *const *id,
1712                                             int num_id)
1713 {
1714         int i;
1715
1716         for (i = 0; i < num_id; ++i)
1717                 regulator_unregister_supply_alias(dev, id[i]);
1718 }
1719 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1720
1721
1722 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1723 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1724                                 const struct regulator_config *config)
1725 {
1726         struct regulator_enable_gpio *pin;
1727         struct gpio_desc *gpiod;
1728         int ret;
1729
1730         gpiod = gpio_to_desc(config->ena_gpio);
1731
1732         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1733                 if (pin->gpiod == gpiod) {
1734                         rdev_dbg(rdev, "GPIO %d is already used\n",
1735                                 config->ena_gpio);
1736                         goto update_ena_gpio_to_rdev;
1737                 }
1738         }
1739
1740         ret = gpio_request_one(config->ena_gpio,
1741                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1742                                 rdev_get_name(rdev));
1743         if (ret)
1744                 return ret;
1745
1746         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1747         if (pin == NULL) {
1748                 gpio_free(config->ena_gpio);
1749                 return -ENOMEM;
1750         }
1751
1752         pin->gpiod = gpiod;
1753         pin->ena_gpio_invert = config->ena_gpio_invert;
1754         list_add(&pin->list, &regulator_ena_gpio_list);
1755
1756 update_ena_gpio_to_rdev:
1757         pin->request_count++;
1758         rdev->ena_pin = pin;
1759         return 0;
1760 }
1761
1762 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1763 {
1764         struct regulator_enable_gpio *pin, *n;
1765
1766         if (!rdev->ena_pin)
1767                 return;
1768
1769         /* Free the GPIO only in case of no use */
1770         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1771                 if (pin->gpiod == rdev->ena_pin->gpiod) {
1772                         if (pin->request_count <= 1) {
1773                                 pin->request_count = 0;
1774                                 gpiod_put(pin->gpiod);
1775                                 list_del(&pin->list);
1776                                 kfree(pin);
1777                                 rdev->ena_pin = NULL;
1778                                 return;
1779                         } else {
1780                                 pin->request_count--;
1781                         }
1782                 }
1783         }
1784 }
1785
1786 /**
1787  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1788  * @rdev: regulator_dev structure
1789  * @enable: enable GPIO at initial use?
1790  *
1791  * GPIO is enabled in case of initial use. (enable_count is 0)
1792  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1793  */
1794 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1795 {
1796         struct regulator_enable_gpio *pin = rdev->ena_pin;
1797
1798         if (!pin)
1799                 return -EINVAL;
1800
1801         if (enable) {
1802                 /* Enable GPIO at initial use */
1803                 if (pin->enable_count == 0)
1804                         gpiod_set_value_cansleep(pin->gpiod,
1805                                                  !pin->ena_gpio_invert);
1806
1807                 pin->enable_count++;
1808         } else {
1809                 if (pin->enable_count > 1) {
1810                         pin->enable_count--;
1811                         return 0;
1812                 }
1813
1814                 /* Disable GPIO if not used */
1815                 if (pin->enable_count <= 1) {
1816                         gpiod_set_value_cansleep(pin->gpiod,
1817                                                  pin->ena_gpio_invert);
1818                         pin->enable_count = 0;
1819                 }
1820         }
1821
1822         return 0;
1823 }
1824
1825 /**
1826  * _regulator_enable_delay - a delay helper function
1827  * @delay: time to delay in microseconds
1828  *
1829  * Delay for the requested amount of time as per the guidelines in:
1830  *
1831  *     Documentation/timers/timers-howto.txt
1832  *
1833  * The assumption here is that regulators will never be enabled in
1834  * atomic context and therefore sleeping functions can be used.
1835  */
1836 static void _regulator_enable_delay(unsigned int delay)
1837 {
1838         unsigned int ms = delay / 1000;
1839         unsigned int us = delay % 1000;
1840
1841         if (ms > 0) {
1842                 /*
1843                  * For small enough values, handle super-millisecond
1844                  * delays in the usleep_range() call below.
1845                  */
1846                 if (ms < 20)
1847                         us += ms * 1000;
1848                 else
1849                         msleep(ms);
1850         }
1851
1852         /*
1853          * Give the scheduler some room to coalesce with any other
1854          * wakeup sources. For delays shorter than 10 us, don't even
1855          * bother setting up high-resolution timers and just busy-
1856          * loop.
1857          */
1858         if (us >= 10)
1859                 usleep_range(us, us + 100);
1860         else
1861                 udelay(us);
1862 }
1863
1864 static int _regulator_do_enable(struct regulator_dev *rdev)
1865 {
1866         int ret, delay;
1867
1868         /* Query before enabling in case configuration dependent.  */
1869         ret = _regulator_get_enable_time(rdev);
1870         if (ret >= 0) {
1871                 delay = ret;
1872         } else {
1873                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1874                 delay = 0;
1875         }
1876
1877         trace_regulator_enable(rdev_get_name(rdev));
1878
1879         if (rdev->desc->off_on_delay) {
1880                 /* if needed, keep a distance of off_on_delay from last time
1881                  * this regulator was disabled.
1882                  */
1883                 unsigned long start_jiffy = jiffies;
1884                 unsigned long intended, max_delay, remaining;
1885
1886                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
1887                 intended = rdev->last_off_jiffy + max_delay;
1888
1889                 if (time_before(start_jiffy, intended)) {
1890                         /* calc remaining jiffies to deal with one-time
1891                          * timer wrapping.
1892                          * in case of multiple timer wrapping, either it can be
1893                          * detected by out-of-range remaining, or it cannot be
1894                          * detected and we gets a panelty of
1895                          * _regulator_enable_delay().
1896                          */
1897                         remaining = intended - start_jiffy;
1898                         if (remaining <= max_delay)
1899                                 _regulator_enable_delay(
1900                                                 jiffies_to_usecs(remaining));
1901                 }
1902         }
1903
1904         if (rdev->ena_pin) {
1905                 if (!rdev->ena_gpio_state) {
1906                         ret = regulator_ena_gpio_ctrl(rdev, true);
1907                         if (ret < 0)
1908                                 return ret;
1909                         rdev->ena_gpio_state = 1;
1910                 }
1911         } else if (rdev->desc->ops->enable) {
1912                 ret = rdev->desc->ops->enable(rdev);
1913                 if (ret < 0)
1914                         return ret;
1915         } else {
1916                 return -EINVAL;
1917         }
1918
1919         /* Allow the regulator to ramp; it would be useful to extend
1920          * this for bulk operations so that the regulators can ramp
1921          * together.  */
1922         trace_regulator_enable_delay(rdev_get_name(rdev));
1923
1924         _regulator_enable_delay(delay);
1925
1926         trace_regulator_enable_complete(rdev_get_name(rdev));
1927
1928         return 0;
1929 }
1930
1931 /* locks held by regulator_enable() */
1932 static int _regulator_enable(struct regulator_dev *rdev)
1933 {
1934         int ret;
1935
1936         /* check voltage and requested load before enabling */
1937         if (rdev->constraints &&
1938             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1939                 drms_uA_update(rdev);
1940
1941         if (rdev->use_count == 0) {
1942                 /* The regulator may on if it's not switchable or left on */
1943                 ret = _regulator_is_enabled(rdev);
1944                 if (ret == -EINVAL || ret == 0) {
1945                         if (!_regulator_can_change_status(rdev))
1946                                 return -EPERM;
1947
1948                         ret = _regulator_do_enable(rdev);
1949                         if (ret < 0)
1950                                 return ret;
1951
1952                 } else if (ret < 0) {
1953                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1954                         return ret;
1955                 }
1956                 /* Fallthrough on positive return values - already enabled */
1957         }
1958
1959         rdev->use_count++;
1960
1961         return 0;
1962 }
1963
1964 /**
1965  * regulator_enable - enable regulator output
1966  * @regulator: regulator source
1967  *
1968  * Request that the regulator be enabled with the regulator output at
1969  * the predefined voltage or current value.  Calls to regulator_enable()
1970  * must be balanced with calls to regulator_disable().
1971  *
1972  * NOTE: the output value can be set by other drivers, boot loader or may be
1973  * hardwired in the regulator.
1974  */
1975 int regulator_enable(struct regulator *regulator)
1976 {
1977         struct regulator_dev *rdev = regulator->rdev;
1978         int ret = 0;
1979
1980         if (regulator->always_on)
1981                 return 0;
1982
1983         if (rdev->supply) {
1984                 ret = regulator_enable(rdev->supply);
1985                 if (ret != 0)
1986                         return ret;
1987         }
1988
1989         mutex_lock(&rdev->mutex);
1990         ret = _regulator_enable(rdev);
1991         mutex_unlock(&rdev->mutex);
1992
1993         if (ret != 0 && rdev->supply)
1994                 regulator_disable(rdev->supply);
1995
1996         return ret;
1997 }
1998 EXPORT_SYMBOL_GPL(regulator_enable);
1999
2000 static int _regulator_do_disable(struct regulator_dev *rdev)
2001 {
2002         int ret;
2003
2004         trace_regulator_disable(rdev_get_name(rdev));
2005
2006         if (rdev->ena_pin) {
2007                 if (rdev->ena_gpio_state) {
2008                         ret = regulator_ena_gpio_ctrl(rdev, false);
2009                         if (ret < 0)
2010                                 return ret;
2011                         rdev->ena_gpio_state = 0;
2012                 }
2013
2014         } else if (rdev->desc->ops->disable) {
2015                 ret = rdev->desc->ops->disable(rdev);
2016                 if (ret != 0)
2017                         return ret;
2018         }
2019
2020         /* cares about last_off_jiffy only if off_on_delay is required by
2021          * device.
2022          */
2023         if (rdev->desc->off_on_delay)
2024                 rdev->last_off_jiffy = jiffies;
2025
2026         trace_regulator_disable_complete(rdev_get_name(rdev));
2027
2028         return 0;
2029 }
2030
2031 /* locks held by regulator_disable() */
2032 static int _regulator_disable(struct regulator_dev *rdev)
2033 {
2034         int ret = 0;
2035
2036         if (WARN(rdev->use_count <= 0,
2037                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2038                 return -EIO;
2039
2040         /* are we the last user and permitted to disable ? */
2041         if (rdev->use_count == 1 &&
2042             (rdev->constraints && !rdev->constraints->always_on)) {
2043
2044                 /* we are last user */
2045                 if (_regulator_can_change_status(rdev)) {
2046                         ret = _notifier_call_chain(rdev,
2047                                                    REGULATOR_EVENT_PRE_DISABLE,
2048                                                    NULL);
2049                         if (ret & NOTIFY_STOP_MASK)
2050                                 return -EINVAL;
2051
2052                         ret = _regulator_do_disable(rdev);
2053                         if (ret < 0) {
2054                                 rdev_err(rdev, "failed to disable\n");
2055                                 _notifier_call_chain(rdev,
2056                                                 REGULATOR_EVENT_ABORT_DISABLE,
2057                                                 NULL);
2058                                 return ret;
2059                         }
2060                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2061                                         NULL);
2062                 }
2063
2064                 rdev->use_count = 0;
2065         } else if (rdev->use_count > 1) {
2066
2067                 if (rdev->constraints &&
2068                         (rdev->constraints->valid_ops_mask &
2069                         REGULATOR_CHANGE_DRMS))
2070                         drms_uA_update(rdev);
2071
2072                 rdev->use_count--;
2073         }
2074
2075         return ret;
2076 }
2077
2078 /**
2079  * regulator_disable - disable regulator output
2080  * @regulator: regulator source
2081  *
2082  * Disable the regulator output voltage or current.  Calls to
2083  * regulator_enable() must be balanced with calls to
2084  * regulator_disable().
2085  *
2086  * NOTE: this will only disable the regulator output if no other consumer
2087  * devices have it enabled, the regulator device supports disabling and
2088  * machine constraints permit this operation.
2089  */
2090 int regulator_disable(struct regulator *regulator)
2091 {
2092         struct regulator_dev *rdev = regulator->rdev;
2093         int ret = 0;
2094
2095         if (regulator->always_on)
2096                 return 0;
2097
2098         mutex_lock(&rdev->mutex);
2099         ret = _regulator_disable(rdev);
2100         mutex_unlock(&rdev->mutex);
2101
2102         if (ret == 0 && rdev->supply)
2103                 regulator_disable(rdev->supply);
2104
2105         return ret;
2106 }
2107 EXPORT_SYMBOL_GPL(regulator_disable);
2108
2109 /* locks held by regulator_force_disable() */
2110 static int _regulator_force_disable(struct regulator_dev *rdev)
2111 {
2112         int ret = 0;
2113
2114         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2115                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2116         if (ret & NOTIFY_STOP_MASK)
2117                 return -EINVAL;
2118
2119         ret = _regulator_do_disable(rdev);
2120         if (ret < 0) {
2121                 rdev_err(rdev, "failed to force disable\n");
2122                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2123                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2124                 return ret;
2125         }
2126
2127         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2128                         REGULATOR_EVENT_DISABLE, NULL);
2129
2130         return 0;
2131 }
2132
2133 /**
2134  * regulator_force_disable - force disable regulator output
2135  * @regulator: regulator source
2136  *
2137  * Forcibly disable the regulator output voltage or current.
2138  * NOTE: this *will* disable the regulator output even if other consumer
2139  * devices have it enabled. This should be used for situations when device
2140  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2141  */
2142 int regulator_force_disable(struct regulator *regulator)
2143 {
2144         struct regulator_dev *rdev = regulator->rdev;
2145         int ret;
2146
2147         mutex_lock(&rdev->mutex);
2148         regulator->uA_load = 0;
2149         ret = _regulator_force_disable(regulator->rdev);
2150         mutex_unlock(&rdev->mutex);
2151
2152         if (rdev->supply)
2153                 while (rdev->open_count--)
2154                         regulator_disable(rdev->supply);
2155
2156         return ret;
2157 }
2158 EXPORT_SYMBOL_GPL(regulator_force_disable);
2159
2160 static void regulator_disable_work(struct work_struct *work)
2161 {
2162         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2163                                                   disable_work.work);
2164         int count, i, ret;
2165
2166         mutex_lock(&rdev->mutex);
2167
2168         BUG_ON(!rdev->deferred_disables);
2169
2170         count = rdev->deferred_disables;
2171         rdev->deferred_disables = 0;
2172
2173         for (i = 0; i < count; i++) {
2174                 ret = _regulator_disable(rdev);
2175                 if (ret != 0)
2176                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2177         }
2178
2179         mutex_unlock(&rdev->mutex);
2180
2181         if (rdev->supply) {
2182                 for (i = 0; i < count; i++) {
2183                         ret = regulator_disable(rdev->supply);
2184                         if (ret != 0) {
2185                                 rdev_err(rdev,
2186                                          "Supply disable failed: %d\n", ret);
2187                         }
2188                 }
2189         }
2190 }
2191
2192 /**
2193  * regulator_disable_deferred - disable regulator output with delay
2194  * @regulator: regulator source
2195  * @ms: miliseconds until the regulator is disabled
2196  *
2197  * Execute regulator_disable() on the regulator after a delay.  This
2198  * is intended for use with devices that require some time to quiesce.
2199  *
2200  * NOTE: this will only disable the regulator output if no other consumer
2201  * devices have it enabled, the regulator device supports disabling and
2202  * machine constraints permit this operation.
2203  */
2204 int regulator_disable_deferred(struct regulator *regulator, int ms)
2205 {
2206         struct regulator_dev *rdev = regulator->rdev;
2207         int ret;
2208
2209         if (regulator->always_on)
2210                 return 0;
2211
2212         if (!ms)
2213                 return regulator_disable(regulator);
2214
2215         mutex_lock(&rdev->mutex);
2216         rdev->deferred_disables++;
2217         mutex_unlock(&rdev->mutex);
2218
2219         ret = queue_delayed_work(system_power_efficient_wq,
2220                                  &rdev->disable_work,
2221                                  msecs_to_jiffies(ms));
2222         if (ret < 0)
2223                 return ret;
2224         else
2225                 return 0;
2226 }
2227 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2228
2229 static int _regulator_is_enabled(struct regulator_dev *rdev)
2230 {
2231         /* A GPIO control always takes precedence */
2232         if (rdev->ena_pin)
2233                 return rdev->ena_gpio_state;
2234
2235         /* If we don't know then assume that the regulator is always on */
2236         if (!rdev->desc->ops->is_enabled)
2237                 return 1;
2238
2239         return rdev->desc->ops->is_enabled(rdev);
2240 }
2241
2242 /**
2243  * regulator_is_enabled - is the regulator output enabled
2244  * @regulator: regulator source
2245  *
2246  * Returns positive if the regulator driver backing the source/client
2247  * has requested that the device be enabled, zero if it hasn't, else a
2248  * negative errno code.
2249  *
2250  * Note that the device backing this regulator handle can have multiple
2251  * users, so it might be enabled even if regulator_enable() was never
2252  * called for this particular source.
2253  */
2254 int regulator_is_enabled(struct regulator *regulator)
2255 {
2256         int ret;
2257
2258         if (regulator->always_on)
2259                 return 1;
2260
2261         mutex_lock(&regulator->rdev->mutex);
2262         ret = _regulator_is_enabled(regulator->rdev);
2263         mutex_unlock(&regulator->rdev->mutex);
2264
2265         return ret;
2266 }
2267 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2268
2269 /**
2270  * regulator_can_change_voltage - check if regulator can change voltage
2271  * @regulator: regulator source
2272  *
2273  * Returns positive if the regulator driver backing the source/client
2274  * can change its voltage, false otherwise. Useful for detecting fixed
2275  * or dummy regulators and disabling voltage change logic in the client
2276  * driver.
2277  */
2278 int regulator_can_change_voltage(struct regulator *regulator)
2279 {
2280         struct regulator_dev    *rdev = regulator->rdev;
2281
2282         if (rdev->constraints &&
2283             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2284                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2285                         return 1;
2286
2287                 if (rdev->desc->continuous_voltage_range &&
2288                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
2289                     rdev->constraints->min_uV != rdev->constraints->max_uV)
2290                         return 1;
2291         }
2292
2293         return 0;
2294 }
2295 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2296
2297 /**
2298  * regulator_count_voltages - count regulator_list_voltage() selectors
2299  * @regulator: regulator source
2300  *
2301  * Returns number of selectors, or negative errno.  Selectors are
2302  * numbered starting at zero, and typically correspond to bitfields
2303  * in hardware registers.
2304  */
2305 int regulator_count_voltages(struct regulator *regulator)
2306 {
2307         struct regulator_dev    *rdev = regulator->rdev;
2308
2309         if (rdev->desc->n_voltages)
2310                 return rdev->desc->n_voltages;
2311
2312         if (!rdev->supply)
2313                 return -EINVAL;
2314
2315         return regulator_count_voltages(rdev->supply);
2316 }
2317 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2318
2319 /**
2320  * regulator_list_voltage - enumerate supported voltages
2321  * @regulator: regulator source
2322  * @selector: identify voltage to list
2323  * Context: can sleep
2324  *
2325  * Returns a voltage that can be passed to @regulator_set_voltage(),
2326  * zero if this selector code can't be used on this system, or a
2327  * negative errno.
2328  */
2329 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2330 {
2331         struct regulator_dev *rdev = regulator->rdev;
2332         const struct regulator_ops *ops = rdev->desc->ops;
2333         int ret;
2334
2335         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2336                 return rdev->desc->fixed_uV;
2337
2338         if (ops->list_voltage) {
2339                 if (selector >= rdev->desc->n_voltages)
2340                         return -EINVAL;
2341                 mutex_lock(&rdev->mutex);
2342                 ret = ops->list_voltage(rdev, selector);
2343                 mutex_unlock(&rdev->mutex);
2344         } else if (rdev->supply) {
2345                 ret = regulator_list_voltage(rdev->supply, selector);
2346         } else {
2347                 return -EINVAL;
2348         }
2349
2350         if (ret > 0) {
2351                 if (ret < rdev->constraints->min_uV)
2352                         ret = 0;
2353                 else if (ret > rdev->constraints->max_uV)
2354                         ret = 0;
2355         }
2356
2357         return ret;
2358 }
2359 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2360
2361 /**
2362  * regulator_get_regmap - get the regulator's register map
2363  * @regulator: regulator source
2364  *
2365  * Returns the register map for the given regulator, or an ERR_PTR value
2366  * if the regulator doesn't use regmap.
2367  */
2368 struct regmap *regulator_get_regmap(struct regulator *regulator)
2369 {
2370         struct regmap *map = regulator->rdev->regmap;
2371
2372         return map ? map : ERR_PTR(-EOPNOTSUPP);
2373 }
2374
2375 /**
2376  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2377  * @regulator: regulator source
2378  * @vsel_reg: voltage selector register, output parameter
2379  * @vsel_mask: mask for voltage selector bitfield, output parameter
2380  *
2381  * Returns the hardware register offset and bitmask used for setting the
2382  * regulator voltage. This might be useful when configuring voltage-scaling
2383  * hardware or firmware that can make I2C requests behind the kernel's back,
2384  * for example.
2385  *
2386  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2387  * and 0 is returned, otherwise a negative errno is returned.
2388  */
2389 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2390                                          unsigned *vsel_reg,
2391                                          unsigned *vsel_mask)
2392 {
2393         struct regulator_dev *rdev = regulator->rdev;
2394         const struct regulator_ops *ops = rdev->desc->ops;
2395
2396         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2397                 return -EOPNOTSUPP;
2398
2399          *vsel_reg = rdev->desc->vsel_reg;
2400          *vsel_mask = rdev->desc->vsel_mask;
2401
2402          return 0;
2403 }
2404 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2405
2406 /**
2407  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2408  * @regulator: regulator source
2409  * @selector: identify voltage to list
2410  *
2411  * Converts the selector to a hardware-specific voltage selector that can be
2412  * directly written to the regulator registers. The address of the voltage
2413  * register can be determined by calling @regulator_get_hardware_vsel_register.
2414  *
2415  * On error a negative errno is returned.
2416  */
2417 int regulator_list_hardware_vsel(struct regulator *regulator,
2418                                  unsigned selector)
2419 {
2420         struct regulator_dev *rdev = regulator->rdev;
2421         const struct regulator_ops *ops = rdev->desc->ops;
2422
2423         if (selector >= rdev->desc->n_voltages)
2424                 return -EINVAL;
2425         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2426                 return -EOPNOTSUPP;
2427
2428         return selector;
2429 }
2430 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2431
2432 /**
2433  * regulator_get_linear_step - return the voltage step size between VSEL values
2434  * @regulator: regulator source
2435  *
2436  * Returns the voltage step size between VSEL values for linear
2437  * regulators, or return 0 if the regulator isn't a linear regulator.
2438  */
2439 unsigned int regulator_get_linear_step(struct regulator *regulator)
2440 {
2441         struct regulator_dev *rdev = regulator->rdev;
2442
2443         return rdev->desc->uV_step;
2444 }
2445 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2446
2447 /**
2448  * regulator_is_supported_voltage - check if a voltage range can be supported
2449  *
2450  * @regulator: Regulator to check.
2451  * @min_uV: Minimum required voltage in uV.
2452  * @max_uV: Maximum required voltage in uV.
2453  *
2454  * Returns a boolean or a negative error code.
2455  */
2456 int regulator_is_supported_voltage(struct regulator *regulator,
2457                                    int min_uV, int max_uV)
2458 {
2459         struct regulator_dev *rdev = regulator->rdev;
2460         int i, voltages, ret;
2461
2462         /* If we can't change voltage check the current voltage */
2463         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2464                 ret = regulator_get_voltage(regulator);
2465                 if (ret >= 0)
2466                         return min_uV <= ret && ret <= max_uV;
2467                 else
2468                         return ret;
2469         }
2470
2471         /* Any voltage within constrains range is fine? */
2472         if (rdev->desc->continuous_voltage_range)
2473                 return min_uV >= rdev->constraints->min_uV &&
2474                                 max_uV <= rdev->constraints->max_uV;
2475
2476         ret = regulator_count_voltages(regulator);
2477         if (ret < 0)
2478                 return ret;
2479         voltages = ret;
2480
2481         for (i = 0; i < voltages; i++) {
2482                 ret = regulator_list_voltage(regulator, i);
2483
2484                 if (ret >= min_uV && ret <= max_uV)
2485                         return 1;
2486         }
2487
2488         return 0;
2489 }
2490 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2491
2492 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2493                                        int min_uV, int max_uV,
2494                                        unsigned *selector)
2495 {
2496         struct pre_voltage_change_data data;
2497         int ret;
2498
2499         data.old_uV = _regulator_get_voltage(rdev);
2500         data.min_uV = min_uV;
2501         data.max_uV = max_uV;
2502         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2503                                    &data);
2504         if (ret & NOTIFY_STOP_MASK)
2505                 return -EINVAL;
2506
2507         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2508         if (ret >= 0)
2509                 return ret;
2510
2511         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2512                              (void *)data.old_uV);
2513
2514         return ret;
2515 }
2516
2517 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2518                                            int uV, unsigned selector)
2519 {
2520         struct pre_voltage_change_data data;
2521         int ret;
2522
2523         data.old_uV = _regulator_get_voltage(rdev);
2524         data.min_uV = uV;
2525         data.max_uV = uV;
2526         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2527                                    &data);
2528         if (ret & NOTIFY_STOP_MASK)
2529                 return -EINVAL;
2530
2531         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2532         if (ret >= 0)
2533                 return ret;
2534
2535         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2536                              (void *)data.old_uV);
2537
2538         return ret;
2539 }
2540
2541 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2542                                      int min_uV, int max_uV)
2543 {
2544         int ret;
2545         int delay = 0;
2546         int best_val = 0;
2547         unsigned int selector;
2548         int old_selector = -1;
2549
2550         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2551
2552         min_uV += rdev->constraints->uV_offset;
2553         max_uV += rdev->constraints->uV_offset;
2554
2555         /*
2556          * If we can't obtain the old selector there is not enough
2557          * info to call set_voltage_time_sel().
2558          */
2559         if (_regulator_is_enabled(rdev) &&
2560             rdev->desc->ops->set_voltage_time_sel &&
2561             rdev->desc->ops->get_voltage_sel) {
2562                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2563                 if (old_selector < 0)
2564                         return old_selector;
2565         }
2566
2567         if (rdev->desc->ops->set_voltage) {
2568                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2569                                                   &selector);
2570
2571                 if (ret >= 0) {
2572                         if (rdev->desc->ops->list_voltage)
2573                                 best_val = rdev->desc->ops->list_voltage(rdev,
2574                                                                          selector);
2575                         else
2576                                 best_val = _regulator_get_voltage(rdev);
2577                 }
2578
2579         } else if (rdev->desc->ops->set_voltage_sel) {
2580                 if (rdev->desc->ops->map_voltage) {
2581                         ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2582                                                            max_uV);
2583                 } else {
2584                         if (rdev->desc->ops->list_voltage ==
2585                             regulator_list_voltage_linear)
2586                                 ret = regulator_map_voltage_linear(rdev,
2587                                                                 min_uV, max_uV);
2588                         else if (rdev->desc->ops->list_voltage ==
2589                                  regulator_list_voltage_linear_range)
2590                                 ret = regulator_map_voltage_linear_range(rdev,
2591                                                                 min_uV, max_uV);
2592                         else
2593                                 ret = regulator_map_voltage_iterate(rdev,
2594                                                                 min_uV, max_uV);
2595                 }
2596
2597                 if (ret >= 0) {
2598                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2599                         if (min_uV <= best_val && max_uV >= best_val) {
2600                                 selector = ret;
2601                                 if (old_selector == selector)
2602                                         ret = 0;
2603                                 else
2604                                         ret = _regulator_call_set_voltage_sel(
2605                                                 rdev, best_val, selector);
2606                         } else {
2607                                 ret = -EINVAL;
2608                         }
2609                 }
2610         } else {
2611                 ret = -EINVAL;
2612         }
2613
2614         /* Call set_voltage_time_sel if successfully obtained old_selector */
2615         if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2616                 && old_selector != selector) {
2617
2618                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2619                                                 old_selector, selector);
2620                 if (delay < 0) {
2621                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2622                                   delay);
2623                         delay = 0;
2624                 }
2625
2626                 /* Insert any necessary delays */
2627                 if (delay >= 1000) {
2628                         mdelay(delay / 1000);
2629                         udelay(delay % 1000);
2630                 } else if (delay) {
2631                         udelay(delay);
2632                 }
2633         }
2634
2635         if (ret == 0 && best_val >= 0) {
2636                 unsigned long data = best_val;
2637
2638                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2639                                      (void *)data);
2640         }
2641
2642         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2643
2644         return ret;
2645 }
2646
2647 /**
2648  * regulator_set_voltage - set regulator output voltage
2649  * @regulator: regulator source
2650  * @min_uV: Minimum required voltage in uV
2651  * @max_uV: Maximum acceptable voltage in uV
2652  *
2653  * Sets a voltage regulator to the desired output voltage. This can be set
2654  * during any regulator state. IOW, regulator can be disabled or enabled.
2655  *
2656  * If the regulator is enabled then the voltage will change to the new value
2657  * immediately otherwise if the regulator is disabled the regulator will
2658  * output at the new voltage when enabled.
2659  *
2660  * NOTE: If the regulator is shared between several devices then the lowest
2661  * request voltage that meets the system constraints will be used.
2662  * Regulator system constraints must be set for this regulator before
2663  * calling this function otherwise this call will fail.
2664  */
2665 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2666 {
2667         struct regulator_dev *rdev = regulator->rdev;
2668         int ret = 0;
2669         int old_min_uV, old_max_uV;
2670         int current_uV;
2671
2672         mutex_lock(&rdev->mutex);
2673
2674         /* If we're setting the same range as last time the change
2675          * should be a noop (some cpufreq implementations use the same
2676          * voltage for multiple frequencies, for example).
2677          */
2678         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2679                 goto out;
2680
2681         /* If we're trying to set a range that overlaps the current voltage,
2682          * return succesfully even though the regulator does not support
2683          * changing the voltage.
2684          */
2685         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2686                 current_uV = _regulator_get_voltage(rdev);
2687                 if (min_uV <= current_uV && current_uV <= max_uV) {
2688                         regulator->min_uV = min_uV;
2689                         regulator->max_uV = max_uV;
2690                         goto out;
2691                 }
2692         }
2693
2694         /* sanity check */
2695         if (!rdev->desc->ops->set_voltage &&
2696             !rdev->desc->ops->set_voltage_sel) {
2697                 ret = -EINVAL;
2698                 goto out;
2699         }
2700
2701         /* constraints check */
2702         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2703         if (ret < 0)
2704                 goto out;
2705
2706         /* restore original values in case of error */
2707         old_min_uV = regulator->min_uV;
2708         old_max_uV = regulator->max_uV;
2709         regulator->min_uV = min_uV;
2710         regulator->max_uV = max_uV;
2711
2712         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2713         if (ret < 0)
2714                 goto out2;
2715
2716         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2717         if (ret < 0)
2718                 goto out2;
2719
2720 out:
2721         mutex_unlock(&rdev->mutex);
2722         return ret;
2723 out2:
2724         regulator->min_uV = old_min_uV;
2725         regulator->max_uV = old_max_uV;
2726         mutex_unlock(&rdev->mutex);
2727         return ret;
2728 }
2729 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2730
2731 /**
2732  * regulator_set_voltage_time - get raise/fall time
2733  * @regulator: regulator source
2734  * @old_uV: starting voltage in microvolts
2735  * @new_uV: target voltage in microvolts
2736  *
2737  * Provided with the starting and ending voltage, this function attempts to
2738  * calculate the time in microseconds required to rise or fall to this new
2739  * voltage.
2740  */
2741 int regulator_set_voltage_time(struct regulator *regulator,
2742                                int old_uV, int new_uV)
2743 {
2744         struct regulator_dev *rdev = regulator->rdev;
2745         const struct regulator_ops *ops = rdev->desc->ops;
2746         int old_sel = -1;
2747         int new_sel = -1;
2748         int voltage;
2749         int i;
2750
2751         /* Currently requires operations to do this */
2752         if (!ops->list_voltage || !ops->set_voltage_time_sel
2753             || !rdev->desc->n_voltages)
2754                 return -EINVAL;
2755
2756         for (i = 0; i < rdev->desc->n_voltages; i++) {
2757                 /* We only look for exact voltage matches here */
2758                 voltage = regulator_list_voltage(regulator, i);
2759                 if (voltage < 0)
2760                         return -EINVAL;
2761                 if (voltage == 0)
2762                         continue;
2763                 if (voltage == old_uV)
2764                         old_sel = i;
2765                 if (voltage == new_uV)
2766                         new_sel = i;
2767         }
2768
2769         if (old_sel < 0 || new_sel < 0)
2770                 return -EINVAL;
2771
2772         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2773 }
2774 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2775
2776 /**
2777  * regulator_set_voltage_time_sel - get raise/fall time
2778  * @rdev: regulator source device
2779  * @old_selector: selector for starting voltage
2780  * @new_selector: selector for target voltage
2781  *
2782  * Provided with the starting and target voltage selectors, this function
2783  * returns time in microseconds required to rise or fall to this new voltage
2784  *
2785  * Drivers providing ramp_delay in regulation_constraints can use this as their
2786  * set_voltage_time_sel() operation.
2787  */
2788 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2789                                    unsigned int old_selector,
2790                                    unsigned int new_selector)
2791 {
2792         unsigned int ramp_delay = 0;
2793         int old_volt, new_volt;
2794
2795         if (rdev->constraints->ramp_delay)
2796                 ramp_delay = rdev->constraints->ramp_delay;
2797         else if (rdev->desc->ramp_delay)
2798                 ramp_delay = rdev->desc->ramp_delay;
2799
2800         if (ramp_delay == 0) {
2801                 rdev_warn(rdev, "ramp_delay not set\n");
2802                 return 0;
2803         }
2804
2805         /* sanity check */
2806         if (!rdev->desc->ops->list_voltage)
2807                 return -EINVAL;
2808
2809         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2810         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2811
2812         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2813 }
2814 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2815
2816 /**
2817  * regulator_sync_voltage - re-apply last regulator output voltage
2818  * @regulator: regulator source
2819  *
2820  * Re-apply the last configured voltage.  This is intended to be used
2821  * where some external control source the consumer is cooperating with
2822  * has caused the configured voltage to change.
2823  */
2824 int regulator_sync_voltage(struct regulator *regulator)
2825 {
2826         struct regulator_dev *rdev = regulator->rdev;
2827         int ret, min_uV, max_uV;
2828
2829         mutex_lock(&rdev->mutex);
2830
2831         if (!rdev->desc->ops->set_voltage &&
2832             !rdev->desc->ops->set_voltage_sel) {
2833                 ret = -EINVAL;
2834                 goto out;
2835         }
2836
2837         /* This is only going to work if we've had a voltage configured. */
2838         if (!regulator->min_uV && !regulator->max_uV) {
2839                 ret = -EINVAL;
2840                 goto out;
2841         }
2842
2843         min_uV = regulator->min_uV;
2844         max_uV = regulator->max_uV;
2845
2846         /* This should be a paranoia check... */
2847         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2848         if (ret < 0)
2849                 goto out;
2850
2851         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2852         if (ret < 0)
2853                 goto out;
2854
2855         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2856
2857 out:
2858         mutex_unlock(&rdev->mutex);
2859         return ret;
2860 }
2861 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2862
2863 static int _regulator_get_voltage(struct regulator_dev *rdev)
2864 {
2865         int sel, ret;
2866
2867         if (rdev->desc->ops->get_voltage_sel) {
2868                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2869                 if (sel < 0)
2870                         return sel;
2871                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2872         } else if (rdev->desc->ops->get_voltage) {
2873                 ret = rdev->desc->ops->get_voltage(rdev);
2874         } else if (rdev->desc->ops->list_voltage) {
2875                 ret = rdev->desc->ops->list_voltage(rdev, 0);
2876         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2877                 ret = rdev->desc->fixed_uV;
2878         } else if (rdev->supply) {
2879                 ret = regulator_get_voltage(rdev->supply);
2880         } else {
2881                 return -EINVAL;
2882         }
2883
2884         if (ret < 0)
2885                 return ret;
2886         return ret - rdev->constraints->uV_offset;
2887 }
2888
2889 /**
2890  * regulator_get_voltage - get regulator output voltage
2891  * @regulator: regulator source
2892  *
2893  * This returns the current regulator voltage in uV.
2894  *
2895  * NOTE: If the regulator is disabled it will return the voltage value. This
2896  * function should not be used to determine regulator state.
2897  */
2898 int regulator_get_voltage(struct regulator *regulator)
2899 {
2900         int ret;
2901
2902         mutex_lock(&regulator->rdev->mutex);
2903
2904         ret = _regulator_get_voltage(regulator->rdev);
2905
2906         mutex_unlock(&regulator->rdev->mutex);
2907
2908         return ret;
2909 }
2910 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2911
2912 /**
2913  * regulator_set_current_limit - set regulator output current limit
2914  * @regulator: regulator source
2915  * @min_uA: Minimum supported current in uA
2916  * @max_uA: Maximum supported current in uA
2917  *
2918  * Sets current sink to the desired output current. This can be set during
2919  * any regulator state. IOW, regulator can be disabled or enabled.
2920  *
2921  * If the regulator is enabled then the current will change to the new value
2922  * immediately otherwise if the regulator is disabled the regulator will
2923  * output at the new current when enabled.
2924  *
2925  * NOTE: Regulator system constraints must be set for this regulator before
2926  * calling this function otherwise this call will fail.
2927  */
2928 int regulator_set_current_limit(struct regulator *regulator,
2929                                int min_uA, int max_uA)
2930 {
2931         struct regulator_dev *rdev = regulator->rdev;
2932         int ret;
2933
2934         mutex_lock(&rdev->mutex);
2935
2936         /* sanity check */
2937         if (!rdev->desc->ops->set_current_limit) {
2938                 ret = -EINVAL;
2939                 goto out;
2940         }
2941
2942         /* constraints check */
2943         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2944         if (ret < 0)
2945                 goto out;
2946
2947         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2948 out:
2949         mutex_unlock(&rdev->mutex);
2950         return ret;
2951 }
2952 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2953
2954 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2955 {
2956         int ret;
2957
2958         mutex_lock(&rdev->mutex);
2959
2960         /* sanity check */
2961         if (!rdev->desc->ops->get_current_limit) {
2962                 ret = -EINVAL;
2963                 goto out;
2964         }
2965
2966         ret = rdev->desc->ops->get_current_limit(rdev);
2967 out:
2968         mutex_unlock(&rdev->mutex);
2969         return ret;
2970 }
2971
2972 /**
2973  * regulator_get_current_limit - get regulator output current
2974  * @regulator: regulator source
2975  *
2976  * This returns the current supplied by the specified current sink in uA.
2977  *
2978  * NOTE: If the regulator is disabled it will return the current value. This
2979  * function should not be used to determine regulator state.
2980  */
2981 int regulator_get_current_limit(struct regulator *regulator)
2982 {
2983         return _regulator_get_current_limit(regulator->rdev);
2984 }
2985 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2986
2987 /**
2988  * regulator_set_mode - set regulator operating mode
2989  * @regulator: regulator source
2990  * @mode: operating mode - one of the REGULATOR_MODE constants
2991  *
2992  * Set regulator operating mode to increase regulator efficiency or improve
2993  * regulation performance.
2994  *
2995  * NOTE: Regulator system constraints must be set for this regulator before
2996  * calling this function otherwise this call will fail.
2997  */
2998 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2999 {
3000         struct regulator_dev *rdev = regulator->rdev;
3001         int ret;
3002         int regulator_curr_mode;
3003
3004         mutex_lock(&rdev->mutex);
3005
3006         /* sanity check */
3007         if (!rdev->desc->ops->set_mode) {
3008                 ret = -EINVAL;
3009                 goto out;
3010         }
3011
3012         /* return if the same mode is requested */
3013         if (rdev->desc->ops->get_mode) {
3014                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3015                 if (regulator_curr_mode == mode) {
3016                         ret = 0;
3017                         goto out;
3018                 }
3019         }
3020
3021         /* constraints check */
3022         ret = regulator_mode_constrain(rdev, &mode);
3023         if (ret < 0)
3024                 goto out;
3025
3026         ret = rdev->desc->ops->set_mode(rdev, mode);
3027 out:
3028         mutex_unlock(&rdev->mutex);
3029         return ret;
3030 }
3031 EXPORT_SYMBOL_GPL(regulator_set_mode);
3032
3033 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3034 {
3035         int ret;
3036
3037         mutex_lock(&rdev->mutex);
3038
3039         /* sanity check */
3040         if (!rdev->desc->ops->get_mode) {
3041                 ret = -EINVAL;
3042                 goto out;
3043         }
3044
3045         ret = rdev->desc->ops->get_mode(rdev);
3046 out:
3047         mutex_unlock(&rdev->mutex);
3048         return ret;
3049 }
3050
3051 /**
3052  * regulator_get_mode - get regulator operating mode
3053  * @regulator: regulator source
3054  *
3055  * Get the current regulator operating mode.
3056  */
3057 unsigned int regulator_get_mode(struct regulator *regulator)
3058 {
3059         return _regulator_get_mode(regulator->rdev);
3060 }
3061 EXPORT_SYMBOL_GPL(regulator_get_mode);
3062
3063 /**
3064  * regulator_set_load - set regulator load
3065  * @regulator: regulator source
3066  * @uA_load: load current
3067  *
3068  * Notifies the regulator core of a new device load. This is then used by
3069  * DRMS (if enabled by constraints) to set the most efficient regulator
3070  * operating mode for the new regulator loading.
3071  *
3072  * Consumer devices notify their supply regulator of the maximum power
3073  * they will require (can be taken from device datasheet in the power
3074  * consumption tables) when they change operational status and hence power
3075  * state. Examples of operational state changes that can affect power
3076  * consumption are :-
3077  *
3078  *    o Device is opened / closed.
3079  *    o Device I/O is about to begin or has just finished.
3080  *    o Device is idling in between work.
3081  *
3082  * This information is also exported via sysfs to userspace.
3083  *
3084  * DRMS will sum the total requested load on the regulator and change
3085  * to the most efficient operating mode if platform constraints allow.
3086  *
3087  * On error a negative errno is returned.
3088  */
3089 int regulator_set_load(struct regulator *regulator, int uA_load)
3090 {
3091         struct regulator_dev *rdev = regulator->rdev;
3092         int ret;
3093
3094         mutex_lock(&rdev->mutex);
3095         regulator->uA_load = uA_load;
3096         ret = drms_uA_update(rdev);
3097         mutex_unlock(&rdev->mutex);
3098
3099         return ret;
3100 }
3101 EXPORT_SYMBOL_GPL(regulator_set_load);
3102
3103 /**
3104  * regulator_allow_bypass - allow the regulator to go into bypass mode
3105  *
3106  * @regulator: Regulator to configure
3107  * @enable: enable or disable bypass mode
3108  *
3109  * Allow the regulator to go into bypass mode if all other consumers
3110  * for the regulator also enable bypass mode and the machine
3111  * constraints allow this.  Bypass mode means that the regulator is
3112  * simply passing the input directly to the output with no regulation.
3113  */
3114 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3115 {
3116         struct regulator_dev *rdev = regulator->rdev;
3117         int ret = 0;
3118
3119         if (!rdev->desc->ops->set_bypass)
3120                 return 0;
3121
3122         if (rdev->constraints &&
3123             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3124                 return 0;
3125
3126         mutex_lock(&rdev->mutex);
3127
3128         if (enable && !regulator->bypass) {
3129                 rdev->bypass_count++;
3130
3131                 if (rdev->bypass_count == rdev->open_count) {
3132                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3133                         if (ret != 0)
3134                                 rdev->bypass_count--;
3135                 }
3136
3137         } else if (!enable && regulator->bypass) {
3138                 rdev->bypass_count--;
3139
3140                 if (rdev->bypass_count != rdev->open_count) {
3141                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3142                         if (ret != 0)
3143                                 rdev->bypass_count++;
3144                 }
3145         }
3146
3147         if (ret == 0)
3148                 regulator->bypass = enable;
3149
3150         mutex_unlock(&rdev->mutex);
3151
3152         return ret;
3153 }
3154 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3155
3156 /**
3157  * regulator_register_notifier - register regulator event notifier
3158  * @regulator: regulator source
3159  * @nb: notifier block
3160  *
3161  * Register notifier block to receive regulator events.
3162  */
3163 int regulator_register_notifier(struct regulator *regulator,
3164                               struct notifier_block *nb)
3165 {
3166         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3167                                                 nb);
3168 }
3169 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3170
3171 /**
3172  * regulator_unregister_notifier - unregister regulator event notifier
3173  * @regulator: regulator source
3174  * @nb: notifier block
3175  *
3176  * Unregister regulator event notifier block.
3177  */
3178 int regulator_unregister_notifier(struct regulator *regulator,
3179                                 struct notifier_block *nb)
3180 {
3181         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3182                                                   nb);
3183 }
3184 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3185
3186 /* notify regulator consumers and downstream regulator consumers.
3187  * Note mutex must be held by caller.
3188  */
3189 static int _notifier_call_chain(struct regulator_dev *rdev,
3190                                   unsigned long event, void *data)
3191 {
3192         /* call rdev chain first */
3193         return blocking_notifier_call_chain(&rdev->notifier, event, data);
3194 }
3195
3196 /**
3197  * regulator_bulk_get - get multiple regulator consumers
3198  *
3199  * @dev:           Device to supply
3200  * @num_consumers: Number of consumers to register
3201  * @consumers:     Configuration of consumers; clients are stored here.
3202  *
3203  * @return 0 on success, an errno on failure.
3204  *
3205  * This helper function allows drivers to get several regulator
3206  * consumers in one operation.  If any of the regulators cannot be
3207  * acquired then any regulators that were allocated will be freed
3208  * before returning to the caller.
3209  */
3210 int regulator_bulk_get(struct device *dev, int num_consumers,
3211                        struct regulator_bulk_data *consumers)
3212 {
3213         int i;
3214         int ret;
3215
3216         for (i = 0; i < num_consumers; i++)
3217                 consumers[i].consumer = NULL;
3218
3219         for (i = 0; i < num_consumers; i++) {
3220                 consumers[i].consumer = regulator_get(dev,
3221                                                       consumers[i].supply);
3222                 if (IS_ERR(consumers[i].consumer)) {
3223                         ret = PTR_ERR(consumers[i].consumer);
3224                         dev_err(dev, "Failed to get supply '%s': %d\n",
3225                                 consumers[i].supply, ret);
3226                         consumers[i].consumer = NULL;
3227                         goto err;
3228                 }
3229         }
3230
3231         return 0;
3232
3233 err:
3234         while (--i >= 0)
3235                 regulator_put(consumers[i].consumer);
3236
3237         return ret;
3238 }
3239 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3240
3241 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3242 {
3243         struct regulator_bulk_data *bulk = data;
3244
3245         bulk->ret = regulator_enable(bulk->consumer);
3246 }
3247
3248 /**
3249  * regulator_bulk_enable - enable multiple regulator consumers
3250  *
3251  * @num_consumers: Number of consumers
3252  * @consumers:     Consumer data; clients are stored here.
3253  * @return         0 on success, an errno on failure
3254  *
3255  * This convenience API allows consumers to enable multiple regulator
3256  * clients in a single API call.  If any consumers cannot be enabled
3257  * then any others that were enabled will be disabled again prior to
3258  * return.
3259  */
3260 int regulator_bulk_enable(int num_consumers,
3261                           struct regulator_bulk_data *consumers)
3262 {
3263         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3264         int i;
3265         int ret = 0;
3266
3267         for (i = 0; i < num_consumers; i++) {
3268                 if (consumers[i].consumer->always_on)
3269                         consumers[i].ret = 0;
3270                 else
3271                         async_schedule_domain(regulator_bulk_enable_async,
3272                                               &consumers[i], &async_domain);
3273         }
3274
3275         async_synchronize_full_domain(&async_domain);
3276
3277         /* If any consumer failed we need to unwind any that succeeded */
3278         for (i = 0; i < num_consumers; i++) {
3279                 if (consumers[i].ret != 0) {
3280                         ret = consumers[i].ret;
3281                         goto err;
3282                 }
3283         }
3284
3285         return 0;
3286
3287 err:
3288         for (i = 0; i < num_consumers; i++) {
3289                 if (consumers[i].ret < 0)
3290                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3291                                consumers[i].ret);
3292                 else
3293                         regulator_disable(consumers[i].consumer);
3294         }
3295
3296         return ret;
3297 }
3298 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3299
3300 /**
3301  * regulator_bulk_disable - disable multiple regulator consumers
3302  *
3303  * @num_consumers: Number of consumers
3304  * @consumers:     Consumer data; clients are stored here.
3305  * @return         0 on success, an errno on failure
3306  *
3307  * This convenience API allows consumers to disable multiple regulator
3308  * clients in a single API call.  If any consumers cannot be disabled
3309  * then any others that were disabled will be enabled again prior to
3310  * return.
3311  */
3312 int regulator_bulk_disable(int num_consumers,
3313                            struct regulator_bulk_data *consumers)
3314 {
3315         int i;
3316         int ret, r;
3317
3318         for (i = num_consumers - 1; i >= 0; --i) {
3319                 ret = regulator_disable(consumers[i].consumer);
3320                 if (ret != 0)
3321                         goto err;
3322         }
3323
3324         return 0;
3325
3326 err:
3327         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3328         for (++i; i < num_consumers; ++i) {
3329                 r = regulator_enable(consumers[i].consumer);
3330                 if (r != 0)
3331                         pr_err("Failed to reename %s: %d\n",
3332                                consumers[i].supply, r);
3333         }
3334
3335         return ret;
3336 }
3337 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3338
3339 /**
3340  * regulator_bulk_force_disable - force disable multiple regulator consumers
3341  *
3342  * @num_consumers: Number of consumers
3343  * @consumers:     Consumer data; clients are stored here.
3344  * @return         0 on success, an errno on failure
3345  *
3346  * This convenience API allows consumers to forcibly disable multiple regulator
3347  * clients in a single API call.
3348  * NOTE: This should be used for situations when device damage will
3349  * likely occur if the regulators are not disabled (e.g. over temp).
3350  * Although regulator_force_disable function call for some consumers can
3351  * return error numbers, the function is called for all consumers.
3352  */
3353 int regulator_bulk_force_disable(int num_consumers,
3354                            struct regulator_bulk_data *consumers)
3355 {
3356         int i;
3357         int ret;
3358
3359         for (i = 0; i < num_consumers; i++)
3360                 consumers[i].ret =
3361                             regulator_force_disable(consumers[i].consumer);
3362
3363         for (i = 0; i < num_consumers; i++) {
3364                 if (consumers[i].ret != 0) {
3365                         ret = consumers[i].ret;
3366                         goto out;
3367                 }
3368         }
3369
3370         return 0;
3371 out:
3372         return ret;
3373 }
3374 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3375
3376 /**
3377  * regulator_bulk_free - free multiple regulator consumers
3378  *
3379  * @num_consumers: Number of consumers
3380  * @consumers:     Consumer data; clients are stored here.
3381  *
3382  * This convenience API allows consumers to free multiple regulator
3383  * clients in a single API call.
3384  */
3385 void regulator_bulk_free(int num_consumers,
3386                          struct regulator_bulk_data *consumers)
3387 {
3388         int i;
3389
3390         for (i = 0; i < num_consumers; i++) {
3391                 regulator_put(consumers[i].consumer);
3392                 consumers[i].consumer = NULL;
3393         }
3394 }
3395 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3396
3397 /**
3398  * regulator_notifier_call_chain - call regulator event notifier
3399  * @rdev: regulator source
3400  * @event: notifier block
3401  * @data: callback-specific data.
3402  *
3403  * Called by regulator drivers to notify clients a regulator event has
3404  * occurred. We also notify regulator clients downstream.
3405  * Note lock must be held by caller.
3406  */
3407 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3408                                   unsigned long event, void *data)
3409 {
3410         _notifier_call_chain(rdev, event, data);
3411         return NOTIFY_DONE;
3412
3413 }
3414 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3415
3416 /**
3417  * regulator_mode_to_status - convert a regulator mode into a status
3418  *
3419  * @mode: Mode to convert
3420  *
3421  * Convert a regulator mode into a status.
3422  */
3423 int regulator_mode_to_status(unsigned int mode)
3424 {
3425         switch (mode) {
3426         case REGULATOR_MODE_FAST:
3427                 return REGULATOR_STATUS_FAST;
3428         case REGULATOR_MODE_NORMAL:
3429                 return REGULATOR_STATUS_NORMAL;
3430         case REGULATOR_MODE_IDLE:
3431                 return REGULATOR_STATUS_IDLE;
3432         case REGULATOR_MODE_STANDBY:
3433                 return REGULATOR_STATUS_STANDBY;
3434         default:
3435                 return REGULATOR_STATUS_UNDEFINED;
3436         }
3437 }
3438 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3439
3440 static struct attribute *regulator_dev_attrs[] = {
3441         &dev_attr_name.attr,
3442         &dev_attr_num_users.attr,
3443         &dev_attr_type.attr,
3444         &dev_attr_microvolts.attr,
3445         &dev_attr_microamps.attr,
3446         &dev_attr_opmode.attr,
3447         &dev_attr_state.attr,
3448         &dev_attr_status.attr,
3449         &dev_attr_bypass.attr,
3450         &dev_attr_requested_microamps.attr,
3451         &dev_attr_min_microvolts.attr,
3452         &dev_attr_max_microvolts.attr,
3453         &dev_attr_min_microamps.attr,
3454         &dev_attr_max_microamps.attr,
3455         &dev_attr_suspend_standby_state.attr,
3456         &dev_attr_suspend_mem_state.attr,
3457         &dev_attr_suspend_disk_state.attr,
3458         &dev_attr_suspend_standby_microvolts.attr,
3459         &dev_attr_suspend_mem_microvolts.attr,
3460         &dev_attr_suspend_disk_microvolts.attr,
3461         &dev_attr_suspend_standby_mode.attr,
3462         &dev_attr_suspend_mem_mode.attr,
3463         &dev_attr_suspend_disk_mode.attr,
3464         NULL
3465 };
3466
3467 /*
3468  * To avoid cluttering sysfs (and memory) with useless state, only
3469  * create attributes that can be meaningfully displayed.
3470  */
3471 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3472                                          struct attribute *attr, int idx)
3473 {
3474         struct device *dev = kobj_to_dev(kobj);
3475         struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev);
3476         const struct regulator_ops *ops = rdev->desc->ops;
3477         umode_t mode = attr->mode;
3478
3479         /* these three are always present */
3480         if (attr == &dev_attr_name.attr ||
3481             attr == &dev_attr_num_users.attr ||
3482             attr == &dev_attr_type.attr)
3483                 return mode;
3484
3485         /* some attributes need specific methods to be displayed */
3486         if (attr == &dev_attr_microvolts.attr) {
3487                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3488                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3489                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3490                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3491                         return mode;
3492                 return 0;
3493         }
3494
3495         if (attr == &dev_attr_microamps.attr)
3496                 return ops->get_current_limit ? mode : 0;
3497
3498         if (attr == &dev_attr_opmode.attr)
3499                 return ops->get_mode ? mode : 0;
3500
3501         if (attr == &dev_attr_state.attr)
3502                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3503
3504         if (attr == &dev_attr_status.attr)
3505                 return ops->get_status ? mode : 0;
3506
3507         if (attr == &dev_attr_bypass.attr)
3508                 return ops->get_bypass ? mode : 0;
3509
3510         /* some attributes are type-specific */
3511         if (attr == &dev_attr_requested_microamps.attr)
3512                 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3513
3514         /* constraints need specific supporting methods */
3515         if (attr == &dev_attr_min_microvolts.attr ||
3516             attr == &dev_attr_max_microvolts.attr)
3517                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3518
3519         if (attr == &dev_attr_min_microamps.attr ||
3520             attr == &dev_attr_max_microamps.attr)
3521                 return ops->set_current_limit ? mode : 0;
3522
3523         if (attr == &dev_attr_suspend_standby_state.attr ||
3524             attr == &dev_attr_suspend_mem_state.attr ||
3525             attr == &dev_attr_suspend_disk_state.attr)
3526                 return mode;
3527
3528         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3529             attr == &dev_attr_suspend_mem_microvolts.attr ||
3530             attr == &dev_attr_suspend_disk_microvolts.attr)
3531                 return ops->set_suspend_voltage ? mode : 0;
3532
3533         if (attr == &dev_attr_suspend_standby_mode.attr ||
3534             attr == &dev_attr_suspend_mem_mode.attr ||
3535             attr == &dev_attr_suspend_disk_mode.attr)
3536                 return ops->set_suspend_mode ? mode : 0;
3537
3538         return mode;
3539 }
3540
3541 static const struct attribute_group regulator_dev_group = {
3542         .attrs = regulator_dev_attrs,
3543         .is_visible = regulator_attr_is_visible,
3544 };
3545
3546 static const struct attribute_group *regulator_dev_groups[] = {
3547         &regulator_dev_group,
3548         NULL
3549 };
3550
3551 static void regulator_dev_release(struct device *dev)
3552 {
3553         struct regulator_dev *rdev = dev_get_drvdata(dev);
3554         kfree(rdev);
3555 }
3556
3557 static struct class regulator_class = {
3558         .name = "regulator",
3559         .dev_release = regulator_dev_release,
3560         .dev_groups = regulator_dev_groups,
3561 };
3562
3563 static void rdev_init_debugfs(struct regulator_dev *rdev)
3564 {
3565         struct device *parent = rdev->dev.parent;
3566         const char *rname = rdev_get_name(rdev);
3567         char name[NAME_MAX];
3568
3569         /* Avoid duplicate debugfs directory names */
3570         if (parent && rname == rdev->desc->name) {
3571                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3572                          rname);
3573                 rname = name;
3574         }
3575
3576         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3577         if (!rdev->debugfs) {
3578                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3579                 return;
3580         }
3581
3582         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3583                            &rdev->use_count);
3584         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3585                            &rdev->open_count);
3586         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3587                            &rdev->bypass_count);
3588 }
3589
3590 /**
3591  * regulator_register - register regulator
3592  * @regulator_desc: regulator to register
3593  * @cfg: runtime configuration for regulator
3594  *
3595  * Called by regulator drivers to register a regulator.
3596  * Returns a valid pointer to struct regulator_dev on success
3597  * or an ERR_PTR() on error.
3598  */
3599 struct regulator_dev *
3600 regulator_register(const struct regulator_desc *regulator_desc,
3601                    const struct regulator_config *cfg)
3602 {
3603         const struct regulation_constraints *constraints = NULL;
3604         const struct regulator_init_data *init_data;
3605         struct regulator_config *config = NULL;
3606         static atomic_t regulator_no = ATOMIC_INIT(-1);
3607         struct regulator_dev *rdev;
3608         struct device *dev;
3609         int ret, i;
3610
3611         if (regulator_desc == NULL || cfg == NULL)
3612                 return ERR_PTR(-EINVAL);
3613
3614         dev = cfg->dev;
3615         WARN_ON(!dev);
3616
3617         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3618                 return ERR_PTR(-EINVAL);
3619
3620         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3621             regulator_desc->type != REGULATOR_CURRENT)
3622                 return ERR_PTR(-EINVAL);
3623
3624         /* Only one of each should be implemented */
3625         WARN_ON(regulator_desc->ops->get_voltage &&
3626                 regulator_desc->ops->get_voltage_sel);
3627         WARN_ON(regulator_desc->ops->set_voltage &&
3628                 regulator_desc->ops->set_voltage_sel);
3629
3630         /* If we're using selectors we must implement list_voltage. */
3631         if (regulator_desc->ops->get_voltage_sel &&
3632             !regulator_desc->ops->list_voltage) {
3633                 return ERR_PTR(-EINVAL);
3634         }
3635         if (regulator_desc->ops->set_voltage_sel &&
3636             !regulator_desc->ops->list_voltage) {
3637                 return ERR_PTR(-EINVAL);
3638         }
3639
3640         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3641         if (rdev == NULL)
3642                 return ERR_PTR(-ENOMEM);
3643
3644         /*
3645          * Duplicate the config so the driver could override it after
3646          * parsing init data.
3647          */
3648         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3649         if (config == NULL) {
3650                 kfree(rdev);
3651                 return ERR_PTR(-ENOMEM);
3652         }
3653
3654         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3655                                                &rdev->dev.of_node);
3656         if (!init_data) {
3657                 init_data = config->init_data;
3658                 rdev->dev.of_node = of_node_get(config->of_node);
3659         }
3660
3661         mutex_lock(&regulator_list_mutex);
3662
3663         mutex_init(&rdev->mutex);
3664         rdev->reg_data = config->driver_data;
3665         rdev->owner = regulator_desc->owner;
3666         rdev->desc = regulator_desc;
3667         if (config->regmap)
3668                 rdev->regmap = config->regmap;
3669         else if (dev_get_regmap(dev, NULL))
3670                 rdev->regmap = dev_get_regmap(dev, NULL);
3671         else if (dev->parent)
3672                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3673         INIT_LIST_HEAD(&rdev->consumer_list);
3674         INIT_LIST_HEAD(&rdev->list);
3675         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3676         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3677
3678         /* preform any regulator specific init */
3679         if (init_data && init_data->regulator_init) {
3680                 ret = init_data->regulator_init(rdev->reg_data);
3681                 if (ret < 0)
3682                         goto clean;
3683         }
3684
3685         /* register with sysfs */
3686         rdev->dev.class = &regulator_class;
3687         rdev->dev.parent = dev;
3688         dev_set_name(&rdev->dev, "regulator.%lu",
3689                     (unsigned long) atomic_inc_return(&regulator_no));
3690         ret = device_register(&rdev->dev);
3691         if (ret != 0) {
3692                 put_device(&rdev->dev);
3693                 goto clean;
3694         }
3695
3696         dev_set_drvdata(&rdev->dev, rdev);
3697
3698         if ((config->ena_gpio || config->ena_gpio_initialized) &&
3699             gpio_is_valid(config->ena_gpio)) {
3700                 ret = regulator_ena_gpio_request(rdev, config);
3701                 if (ret != 0) {
3702                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3703                                  config->ena_gpio, ret);
3704                         goto wash;
3705                 }
3706         }
3707
3708         /* set regulator constraints */
3709         if (init_data)
3710                 constraints = &init_data->constraints;
3711
3712         ret = set_machine_constraints(rdev, constraints);
3713         if (ret < 0)
3714                 goto scrub;
3715
3716         if (init_data && init_data->supply_regulator)
3717                 rdev->supply_name = init_data->supply_regulator;
3718         else if (regulator_desc->supply_name)
3719                 rdev->supply_name = regulator_desc->supply_name;
3720
3721         /* add consumers devices */
3722         if (init_data) {
3723                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3724                         ret = set_consumer_device_supply(rdev,
3725                                 init_data->consumer_supplies[i].dev_name,
3726                                 init_data->consumer_supplies[i].supply);
3727                         if (ret < 0) {
3728                                 dev_err(dev, "Failed to set supply %s\n",
3729                                         init_data->consumer_supplies[i].supply);
3730                                 goto unset_supplies;
3731                         }
3732                 }
3733         }
3734
3735         list_add(&rdev->list, &regulator_list);
3736
3737         rdev_init_debugfs(rdev);
3738 out:
3739         mutex_unlock(&regulator_list_mutex);
3740         kfree(config);
3741         return rdev;
3742
3743 unset_supplies:
3744         unset_regulator_supplies(rdev);
3745
3746 scrub:
3747         regulator_ena_gpio_free(rdev);
3748         kfree(rdev->constraints);
3749 wash:
3750         device_unregister(&rdev->dev);
3751         /* device core frees rdev */
3752         rdev = ERR_PTR(ret);
3753         goto out;
3754
3755 clean:
3756         kfree(rdev);
3757         rdev = ERR_PTR(ret);
3758         goto out;
3759 }
3760 EXPORT_SYMBOL_GPL(regulator_register);
3761
3762 /**
3763  * regulator_unregister - unregister regulator
3764  * @rdev: regulator to unregister
3765  *
3766  * Called by regulator drivers to unregister a regulator.
3767  */
3768 void regulator_unregister(struct regulator_dev *rdev)
3769 {
3770         if (rdev == NULL)
3771                 return;
3772
3773         if (rdev->supply) {
3774                 while (rdev->use_count--)
3775                         regulator_disable(rdev->supply);
3776                 regulator_put(rdev->supply);
3777         }
3778         mutex_lock(&regulator_list_mutex);
3779         debugfs_remove_recursive(rdev->debugfs);
3780         flush_work(&rdev->disable_work.work);
3781         WARN_ON(rdev->open_count);
3782         unset_regulator_supplies(rdev);
3783         list_del(&rdev->list);
3784         kfree(rdev->constraints);
3785         regulator_ena_gpio_free(rdev);
3786         of_node_put(rdev->dev.of_node);
3787         device_unregister(&rdev->dev);
3788         mutex_unlock(&regulator_list_mutex);
3789 }
3790 EXPORT_SYMBOL_GPL(regulator_unregister);
3791
3792 /**
3793  * regulator_suspend_prepare - prepare regulators for system wide suspend
3794  * @state: system suspend state
3795  *
3796  * Configure each regulator with it's suspend operating parameters for state.
3797  * This will usually be called by machine suspend code prior to supending.
3798  */
3799 int regulator_suspend_prepare(suspend_state_t state)
3800 {
3801         struct regulator_dev *rdev;
3802         int ret = 0;
3803
3804         /* ON is handled by regulator active state */
3805         if (state == PM_SUSPEND_ON)
3806                 return -EINVAL;
3807
3808         mutex_lock(&regulator_list_mutex);
3809         list_for_each_entry(rdev, &regulator_list, list) {
3810
3811                 mutex_lock(&rdev->mutex);
3812                 ret = suspend_prepare(rdev, state);
3813                 mutex_unlock(&rdev->mutex);
3814
3815                 if (ret < 0) {
3816                         rdev_err(rdev, "failed to prepare\n");
3817                         goto out;
3818                 }
3819         }
3820 out:
3821         mutex_unlock(&regulator_list_mutex);
3822         return ret;
3823 }
3824 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3825
3826 /**
3827  * regulator_suspend_finish - resume regulators from system wide suspend
3828  *
3829  * Turn on regulators that might be turned off by regulator_suspend_prepare
3830  * and that should be turned on according to the regulators properties.
3831  */
3832 int regulator_suspend_finish(void)
3833 {
3834         struct regulator_dev *rdev;
3835         int ret = 0, error;
3836
3837         mutex_lock(&regulator_list_mutex);
3838         list_for_each_entry(rdev, &regulator_list, list) {
3839                 mutex_lock(&rdev->mutex);
3840                 if (rdev->use_count > 0  || rdev->constraints->always_on) {
3841                         if (!_regulator_is_enabled(rdev)) {
3842                                 error = _regulator_do_enable(rdev);
3843                                 if (error)
3844                                         ret = error;
3845                         }
3846                 } else {
3847                         if (!have_full_constraints())
3848                                 goto unlock;
3849                         if (!_regulator_is_enabled(rdev))
3850                                 goto unlock;
3851
3852                         error = _regulator_do_disable(rdev);
3853                         if (error)
3854                                 ret = error;
3855                 }
3856 unlock:
3857                 mutex_unlock(&rdev->mutex);
3858         }
3859         mutex_unlock(&regulator_list_mutex);
3860         return ret;
3861 }
3862 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3863
3864 /**
3865  * regulator_has_full_constraints - the system has fully specified constraints
3866  *
3867  * Calling this function will cause the regulator API to disable all
3868  * regulators which have a zero use count and don't have an always_on
3869  * constraint in a late_initcall.
3870  *
3871  * The intention is that this will become the default behaviour in a
3872  * future kernel release so users are encouraged to use this facility
3873  * now.
3874  */
3875 void regulator_has_full_constraints(void)
3876 {
3877         has_full_constraints = 1;
3878 }
3879 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3880
3881 /**
3882  * rdev_get_drvdata - get rdev regulator driver data
3883  * @rdev: regulator
3884  *
3885  * Get rdev regulator driver private data. This call can be used in the
3886  * regulator driver context.
3887  */
3888 void *rdev_get_drvdata(struct regulator_dev *rdev)
3889 {
3890         return rdev->reg_data;
3891 }
3892 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3893
3894 /**
3895  * regulator_get_drvdata - get regulator driver data
3896  * @regulator: regulator
3897  *
3898  * Get regulator driver private data. This call can be used in the consumer
3899  * driver context when non API regulator specific functions need to be called.
3900  */
3901 void *regulator_get_drvdata(struct regulator *regulator)
3902 {
3903         return regulator->rdev->reg_data;
3904 }
3905 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3906
3907 /**
3908  * regulator_set_drvdata - set regulator driver data
3909  * @regulator: regulator
3910  * @data: data
3911  */
3912 void regulator_set_drvdata(struct regulator *regulator, void *data)
3913 {
3914         regulator->rdev->reg_data = data;
3915 }
3916 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3917
3918 /**
3919  * regulator_get_id - get regulator ID
3920  * @rdev: regulator
3921  */
3922 int rdev_get_id(struct regulator_dev *rdev)
3923 {
3924         return rdev->desc->id;
3925 }
3926 EXPORT_SYMBOL_GPL(rdev_get_id);
3927
3928 struct device *rdev_get_dev(struct regulator_dev *rdev)
3929 {
3930         return &rdev->dev;
3931 }
3932 EXPORT_SYMBOL_GPL(rdev_get_dev);
3933
3934 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3935 {
3936         return reg_init_data->driver_data;
3937 }
3938 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3939
3940 #ifdef CONFIG_DEBUG_FS
3941 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3942                                     size_t count, loff_t *ppos)
3943 {
3944         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3945         ssize_t len, ret = 0;
3946         struct regulator_map *map;
3947
3948         if (!buf)
3949                 return -ENOMEM;
3950
3951         list_for_each_entry(map, &regulator_map_list, list) {
3952                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3953                                "%s -> %s.%s\n",
3954                                rdev_get_name(map->regulator), map->dev_name,
3955                                map->supply);
3956                 if (len >= 0)
3957                         ret += len;
3958                 if (ret > PAGE_SIZE) {
3959                         ret = PAGE_SIZE;
3960                         break;
3961                 }
3962         }
3963
3964         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3965
3966         kfree(buf);
3967
3968         return ret;
3969 }
3970 #endif
3971
3972 static const struct file_operations supply_map_fops = {
3973 #ifdef CONFIG_DEBUG_FS
3974         .read = supply_map_read_file,
3975         .llseek = default_llseek,
3976 #endif
3977 };
3978
3979 #ifdef CONFIG_DEBUG_FS
3980 static void regulator_summary_show_subtree(struct seq_file *s,
3981                                            struct regulator_dev *rdev,
3982                                            int level)
3983 {
3984         struct list_head *list = s->private;
3985         struct regulator_dev *child;
3986         struct regulation_constraints *c;
3987         struct regulator *consumer;
3988
3989         if (!rdev)
3990                 return;
3991
3992         seq_printf(s, "%*s%-*s %3d %4d %6d ",
3993                    level * 3 + 1, "",
3994                    30 - level * 3, rdev_get_name(rdev),
3995                    rdev->use_count, rdev->open_count, rdev->bypass_count);
3996
3997         seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
3998         seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
3999
4000         c = rdev->constraints;
4001         if (c) {
4002                 switch (rdev->desc->type) {
4003                 case REGULATOR_VOLTAGE:
4004                         seq_printf(s, "%5dmV %5dmV ",
4005                                    c->min_uV / 1000, c->max_uV / 1000);
4006                         break;
4007                 case REGULATOR_CURRENT:
4008                         seq_printf(s, "%5dmA %5dmA ",
4009                                    c->min_uA / 1000, c->max_uA / 1000);
4010                         break;
4011                 }
4012         }
4013
4014         seq_puts(s, "\n");
4015
4016         list_for_each_entry(consumer, &rdev->consumer_list, list) {
4017                 if (consumer->dev->class == &regulator_class)
4018                         continue;
4019
4020                 seq_printf(s, "%*s%-*s ",
4021                            (level + 1) * 3 + 1, "",
4022                            30 - (level + 1) * 3, dev_name(consumer->dev));
4023
4024                 switch (rdev->desc->type) {
4025                 case REGULATOR_VOLTAGE:
4026                         seq_printf(s, "%37dmV %5dmV",
4027                                    consumer->min_uV / 1000,
4028                                    consumer->max_uV / 1000);
4029                         break;
4030                 case REGULATOR_CURRENT:
4031                         break;
4032                 }
4033
4034                 seq_puts(s, "\n");
4035         }
4036
4037         list_for_each_entry(child, list, list) {
4038                 /* handle only non-root regulators supplied by current rdev */
4039                 if (!child->supply || child->supply->rdev != rdev)
4040                         continue;
4041
4042                 regulator_summary_show_subtree(s, child, level + 1);
4043         }
4044 }
4045
4046 static int regulator_summary_show(struct seq_file *s, void *data)
4047 {
4048         struct list_head *list = s->private;
4049         struct regulator_dev *rdev;
4050
4051         seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4052         seq_puts(s, "-------------------------------------------------------------------------------\n");
4053
4054         mutex_lock(&regulator_list_mutex);
4055
4056         list_for_each_entry(rdev, list, list) {
4057                 if (rdev->supply)
4058                         continue;
4059
4060                 regulator_summary_show_subtree(s, rdev, 0);
4061         }
4062
4063         mutex_unlock(&regulator_list_mutex);
4064
4065         return 0;
4066 }
4067
4068 static int regulator_summary_open(struct inode *inode, struct file *file)
4069 {
4070         return single_open(file, regulator_summary_show, inode->i_private);
4071 }
4072 #endif
4073
4074 static const struct file_operations regulator_summary_fops = {
4075 #ifdef CONFIG_DEBUG_FS
4076         .open           = regulator_summary_open,
4077         .read           = seq_read,
4078         .llseek         = seq_lseek,
4079         .release        = single_release,
4080 #endif
4081 };
4082
4083 static int __init regulator_init(void)
4084 {
4085         int ret;
4086
4087         ret = class_register(&regulator_class);
4088
4089         debugfs_root = debugfs_create_dir("regulator", NULL);
4090         if (!debugfs_root)
4091                 pr_warn("regulator: Failed to create debugfs directory\n");
4092
4093         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4094                             &supply_map_fops);
4095
4096         debugfs_create_file("regulator_summary", 0444, debugfs_root,
4097                             &regulator_list, &regulator_summary_fops);
4098
4099         regulator_dummy_init();
4100
4101         return ret;
4102 }
4103
4104 /* init early to allow our consumers to complete system booting */
4105 core_initcall(regulator_init);
4106
4107 static int __init regulator_init_complete(void)
4108 {
4109         struct regulator_dev *rdev;
4110         const struct regulator_ops *ops;
4111         struct regulation_constraints *c;
4112         int enabled, ret;
4113
4114         /*
4115          * Since DT doesn't provide an idiomatic mechanism for
4116          * enabling full constraints and since it's much more natural
4117          * with DT to provide them just assume that a DT enabled
4118          * system has full constraints.
4119          */
4120         if (of_have_populated_dt())
4121                 has_full_constraints = true;
4122
4123         mutex_lock(&regulator_list_mutex);
4124
4125         /* If we have a full configuration then disable any regulators
4126          * we have permission to change the status for and which are
4127          * not in use or always_on.  This is effectively the default
4128          * for DT and ACPI as they have full constraints.
4129          */
4130         list_for_each_entry(rdev, &regulator_list, list) {
4131                 ops = rdev->desc->ops;
4132                 c = rdev->constraints;
4133
4134                 if (c && c->always_on)
4135                         continue;
4136
4137                 if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4138                         continue;
4139
4140                 mutex_lock(&rdev->mutex);
4141
4142                 if (rdev->use_count)
4143                         goto unlock;
4144
4145                 /* If we can't read the status assume it's on. */
4146                 if (ops->is_enabled)
4147                         enabled = ops->is_enabled(rdev);
4148                 else
4149                         enabled = 1;
4150
4151                 if (!enabled)
4152                         goto unlock;
4153
4154                 if (have_full_constraints()) {
4155                         /* We log since this may kill the system if it
4156                          * goes wrong. */
4157                         rdev_info(rdev, "disabling\n");
4158                         ret = _regulator_do_disable(rdev);
4159                         if (ret != 0)
4160                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
4161                 } else {
4162                         /* The intention is that in future we will
4163                          * assume that full constraints are provided
4164                          * so warn even if we aren't going to do
4165                          * anything here.
4166                          */
4167                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
4168                 }
4169
4170 unlock:
4171                 mutex_unlock(&rdev->mutex);
4172         }
4173
4174         mutex_unlock(&regulator_list_mutex);
4175
4176         return 0;
4177 }
4178 late_initcall_sync(regulator_init_complete);