These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / drivers / of / of_reserved_mem.c
1 /*
2  * Device tree based initialization code for reserved memory.
3  *
4  * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
5  * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
6  *              http://www.samsung.com
7  * Author: Marek Szyprowski <m.szyprowski@samsung.com>
8  * Author: Josh Cartwright <joshc@codeaurora.org>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License or (at your optional) any later version of the license.
14  */
15
16 #include <linux/err.h>
17 #include <linux/of.h>
18 #include <linux/of_fdt.h>
19 #include <linux/of_platform.h>
20 #include <linux/mm.h>
21 #include <linux/sizes.h>
22 #include <linux/of_reserved_mem.h>
23 #include <linux/sort.h>
24
25 #define MAX_RESERVED_REGIONS    16
26 static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
27 static int reserved_mem_count;
28
29 #if defined(CONFIG_HAVE_MEMBLOCK)
30 #include <linux/memblock.h>
31 int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
32         phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
33         phys_addr_t *res_base)
34 {
35         /*
36          * We use __memblock_alloc_base() because memblock_alloc_base()
37          * panic()s on allocation failure.
38          */
39         phys_addr_t base = __memblock_alloc_base(size, align, end);
40         if (!base)
41                 return -ENOMEM;
42
43         /*
44          * Check if the allocated region fits in to start..end window
45          */
46         if (base < start) {
47                 memblock_free(base, size);
48                 return -ENOMEM;
49         }
50
51         *res_base = base;
52         if (nomap)
53                 return memblock_remove(base, size);
54         return 0;
55 }
56 #else
57 int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
58         phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
59         phys_addr_t *res_base)
60 {
61         pr_err("Reserved memory not supported, ignoring region 0x%llx%s\n",
62                   size, nomap ? " (nomap)" : "");
63         return -ENOSYS;
64 }
65 #endif
66
67 /**
68  * res_mem_save_node() - save fdt node for second pass initialization
69  */
70 void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
71                                       phys_addr_t base, phys_addr_t size)
72 {
73         struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
74
75         if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
76                 pr_err("Reserved memory: not enough space all defined regions.\n");
77                 return;
78         }
79
80         rmem->fdt_node = node;
81         rmem->name = uname;
82         rmem->base = base;
83         rmem->size = size;
84
85         reserved_mem_count++;
86         return;
87 }
88
89 /**
90  * res_mem_alloc_size() - allocate reserved memory described by 'size', 'align'
91  *                        and 'alloc-ranges' properties
92  */
93 static int __init __reserved_mem_alloc_size(unsigned long node,
94         const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
95 {
96         int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
97         phys_addr_t start = 0, end = 0;
98         phys_addr_t base = 0, align = 0, size;
99         int len;
100         const __be32 *prop;
101         int nomap;
102         int ret;
103
104         prop = of_get_flat_dt_prop(node, "size", &len);
105         if (!prop)
106                 return -EINVAL;
107
108         if (len != dt_root_size_cells * sizeof(__be32)) {
109                 pr_err("Reserved memory: invalid size property in '%s' node.\n",
110                                 uname);
111                 return -EINVAL;
112         }
113         size = dt_mem_next_cell(dt_root_size_cells, &prop);
114
115         nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
116
117         prop = of_get_flat_dt_prop(node, "alignment", &len);
118         if (prop) {
119                 if (len != dt_root_addr_cells * sizeof(__be32)) {
120                         pr_err("Reserved memory: invalid alignment property in '%s' node.\n",
121                                 uname);
122                         return -EINVAL;
123                 }
124                 align = dt_mem_next_cell(dt_root_addr_cells, &prop);
125         }
126
127         /* Need adjust the alignment to satisfy the CMA requirement */
128         if (IS_ENABLED(CONFIG_CMA) && of_flat_dt_is_compatible(node, "shared-dma-pool"))
129                 align = max(align, (phys_addr_t)PAGE_SIZE << max(MAX_ORDER - 1, pageblock_order));
130
131         prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
132         if (prop) {
133
134                 if (len % t_len != 0) {
135                         pr_err("Reserved memory: invalid alloc-ranges property in '%s', skipping node.\n",
136                                uname);
137                         return -EINVAL;
138                 }
139
140                 base = 0;
141
142                 while (len > 0) {
143                         start = dt_mem_next_cell(dt_root_addr_cells, &prop);
144                         end = start + dt_mem_next_cell(dt_root_size_cells,
145                                                        &prop);
146
147                         ret = early_init_dt_alloc_reserved_memory_arch(size,
148                                         align, start, end, nomap, &base);
149                         if (ret == 0) {
150                                 pr_debug("Reserved memory: allocated memory for '%s' node: base %pa, size %ld MiB\n",
151                                         uname, &base,
152                                         (unsigned long)size / SZ_1M);
153                                 break;
154                         }
155                         len -= t_len;
156                 }
157
158         } else {
159                 ret = early_init_dt_alloc_reserved_memory_arch(size, align,
160                                                         0, 0, nomap, &base);
161                 if (ret == 0)
162                         pr_debug("Reserved memory: allocated memory for '%s' node: base %pa, size %ld MiB\n",
163                                 uname, &base, (unsigned long)size / SZ_1M);
164         }
165
166         if (base == 0) {
167                 pr_info("Reserved memory: failed to allocate memory for node '%s'\n",
168                         uname);
169                 return -ENOMEM;
170         }
171
172         *res_base = base;
173         *res_size = size;
174
175         return 0;
176 }
177
178 static const struct of_device_id __rmem_of_table_sentinel
179         __used __section(__reservedmem_of_table_end);
180
181 /**
182  * res_mem_init_node() - call region specific reserved memory init code
183  */
184 static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
185 {
186         extern const struct of_device_id __reservedmem_of_table[];
187         const struct of_device_id *i;
188
189         for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
190                 reservedmem_of_init_fn initfn = i->data;
191                 const char *compat = i->compatible;
192
193                 if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
194                         continue;
195
196                 if (initfn(rmem) == 0) {
197                         pr_info("Reserved memory: initialized node %s, compatible id %s\n",
198                                 rmem->name, compat);
199                         return 0;
200                 }
201         }
202         return -ENOENT;
203 }
204
205 static int __init __rmem_cmp(const void *a, const void *b)
206 {
207         const struct reserved_mem *ra = a, *rb = b;
208
209         if (ra->base < rb->base)
210                 return -1;
211
212         if (ra->base > rb->base)
213                 return 1;
214
215         return 0;
216 }
217
218 static void __init __rmem_check_for_overlap(void)
219 {
220         int i;
221
222         if (reserved_mem_count < 2)
223                 return;
224
225         sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
226              __rmem_cmp, NULL);
227         for (i = 0; i < reserved_mem_count - 1; i++) {
228                 struct reserved_mem *this, *next;
229
230                 this = &reserved_mem[i];
231                 next = &reserved_mem[i + 1];
232                 if (!(this->base && next->base))
233                         continue;
234                 if (this->base + this->size > next->base) {
235                         phys_addr_t this_end, next_end;
236
237                         this_end = this->base + this->size;
238                         next_end = next->base + next->size;
239                         pr_err("Reserved memory: OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
240                                this->name, &this->base, &this_end,
241                                next->name, &next->base, &next_end);
242                 }
243         }
244 }
245
246 /**
247  * fdt_init_reserved_mem - allocate and init all saved reserved memory regions
248  */
249 void __init fdt_init_reserved_mem(void)
250 {
251         int i;
252
253         /* check for overlapping reserved regions */
254         __rmem_check_for_overlap();
255
256         for (i = 0; i < reserved_mem_count; i++) {
257                 struct reserved_mem *rmem = &reserved_mem[i];
258                 unsigned long node = rmem->fdt_node;
259                 int len;
260                 const __be32 *prop;
261                 int err = 0;
262
263                 prop = of_get_flat_dt_prop(node, "phandle", &len);
264                 if (!prop)
265                         prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
266                 if (prop)
267                         rmem->phandle = of_read_number(prop, len/4);
268
269                 if (rmem->size == 0)
270                         err = __reserved_mem_alloc_size(node, rmem->name,
271                                                  &rmem->base, &rmem->size);
272                 if (err == 0)
273                         __reserved_mem_init_node(rmem);
274         }
275 }
276
277 static inline struct reserved_mem *__find_rmem(struct device_node *node)
278 {
279         unsigned int i;
280
281         if (!node->phandle)
282                 return NULL;
283
284         for (i = 0; i < reserved_mem_count; i++)
285                 if (reserved_mem[i].phandle == node->phandle)
286                         return &reserved_mem[i];
287         return NULL;
288 }
289
290 /**
291  * of_reserved_mem_device_init() - assign reserved memory region to given device
292  *
293  * This function assign memory region pointed by "memory-region" device tree
294  * property to the given device.
295  */
296 int of_reserved_mem_device_init(struct device *dev)
297 {
298         struct reserved_mem *rmem;
299         struct device_node *np;
300         int ret;
301
302         np = of_parse_phandle(dev->of_node, "memory-region", 0);
303         if (!np)
304                 return -ENODEV;
305
306         rmem = __find_rmem(np);
307         of_node_put(np);
308
309         if (!rmem || !rmem->ops || !rmem->ops->device_init)
310                 return -EINVAL;
311
312         ret = rmem->ops->device_init(rmem, dev);
313         if (ret == 0)
314                 dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
315
316         return ret;
317 }
318 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init);
319
320 /**
321  * of_reserved_mem_device_release() - release reserved memory device structures
322  *
323  * This function releases structures allocated for memory region handling for
324  * the given device.
325  */
326 void of_reserved_mem_device_release(struct device *dev)
327 {
328         struct reserved_mem *rmem;
329         struct device_node *np;
330
331         np = of_parse_phandle(dev->of_node, "memory-region", 0);
332         if (!np)
333                 return;
334
335         rmem = __find_rmem(np);
336         of_node_put(np);
337
338         if (!rmem || !rmem->ops || !rmem->ops->device_release)
339                 return;
340
341         rmem->ops->device_release(rmem, dev);
342 }
343 EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);