Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / net / wireless / iwlwifi / dvm / calib.c
1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22  * USA
23  *
24  * The full GNU General Public License is included in this distribution
25  * in the file called COPYING.
26  *
27  * Contact Information:
28  *  Intel Linux Wireless <ilw@linux.intel.com>
29  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30  *
31  * BSD LICENSE
32  *
33  * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  *
40  *  * Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  *  * Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in
44  *    the documentation and/or other materials provided with the
45  *    distribution.
46  *  * Neither the name Intel Corporation nor the names of its
47  *    contributors may be used to endorse or promote products derived
48  *    from this software without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61  *****************************************************************************/
62
63 #include <linux/slab.h>
64 #include <net/mac80211.h>
65
66 #include "iwl-trans.h"
67
68 #include "dev.h"
69 #include "calib.h"
70 #include "agn.h"
71
72 /*****************************************************************************
73  * INIT calibrations framework
74  *****************************************************************************/
75
76 /* Opaque calibration results */
77 struct iwl_calib_result {
78         struct list_head list;
79         size_t cmd_len;
80         struct iwl_calib_hdr hdr;
81         /* data follows */
82 };
83
84 struct statistics_general_data {
85         u32 beacon_silence_rssi_a;
86         u32 beacon_silence_rssi_b;
87         u32 beacon_silence_rssi_c;
88         u32 beacon_energy_a;
89         u32 beacon_energy_b;
90         u32 beacon_energy_c;
91 };
92
93 int iwl_send_calib_results(struct iwl_priv *priv)
94 {
95         struct iwl_host_cmd hcmd = {
96                 .id = REPLY_PHY_CALIBRATION_CMD,
97         };
98         struct iwl_calib_result *res;
99
100         list_for_each_entry(res, &priv->calib_results, list) {
101                 int ret;
102
103                 hcmd.len[0] = res->cmd_len;
104                 hcmd.data[0] = &res->hdr;
105                 hcmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY;
106                 ret = iwl_dvm_send_cmd(priv, &hcmd);
107                 if (ret) {
108                         IWL_ERR(priv, "Error %d on calib cmd %d\n",
109                                 ret, res->hdr.op_code);
110                         return ret;
111                 }
112         }
113
114         return 0;
115 }
116
117 int iwl_calib_set(struct iwl_priv *priv,
118                   const struct iwl_calib_hdr *cmd, int len)
119 {
120         struct iwl_calib_result *res, *tmp;
121
122         res = kmalloc(sizeof(*res) + len - sizeof(struct iwl_calib_hdr),
123                       GFP_ATOMIC);
124         if (!res)
125                 return -ENOMEM;
126         memcpy(&res->hdr, cmd, len);
127         res->cmd_len = len;
128
129         list_for_each_entry(tmp, &priv->calib_results, list) {
130                 if (tmp->hdr.op_code == res->hdr.op_code) {
131                         list_replace(&tmp->list, &res->list);
132                         kfree(tmp);
133                         return 0;
134                 }
135         }
136
137         /* wasn't in list already */
138         list_add_tail(&res->list, &priv->calib_results);
139
140         return 0;
141 }
142
143 void iwl_calib_free_results(struct iwl_priv *priv)
144 {
145         struct iwl_calib_result *res, *tmp;
146
147         list_for_each_entry_safe(res, tmp, &priv->calib_results, list) {
148                 list_del(&res->list);
149                 kfree(res);
150         }
151 }
152
153 /*****************************************************************************
154  * RUNTIME calibrations framework
155  *****************************************************************************/
156
157 /* "false alarms" are signals that our DSP tries to lock onto,
158  *   but then determines that they are either noise, or transmissions
159  *   from a distant wireless network (also "noise", really) that get
160  *   "stepped on" by stronger transmissions within our own network.
161  * This algorithm attempts to set a sensitivity level that is high
162  *   enough to receive all of our own network traffic, but not so
163  *   high that our DSP gets too busy trying to lock onto non-network
164  *   activity/noise. */
165 static int iwl_sens_energy_cck(struct iwl_priv *priv,
166                                    u32 norm_fa,
167                                    u32 rx_enable_time,
168                                    struct statistics_general_data *rx_info)
169 {
170         u32 max_nrg_cck = 0;
171         int i = 0;
172         u8 max_silence_rssi = 0;
173         u32 silence_ref = 0;
174         u8 silence_rssi_a = 0;
175         u8 silence_rssi_b = 0;
176         u8 silence_rssi_c = 0;
177         u32 val;
178
179         /* "false_alarms" values below are cross-multiplications to assess the
180          *   numbers of false alarms within the measured period of actual Rx
181          *   (Rx is off when we're txing), vs the min/max expected false alarms
182          *   (some should be expected if rx is sensitive enough) in a
183          *   hypothetical listening period of 200 time units (TU), 204.8 msec:
184          *
185          * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
186          *
187          * */
188         u32 false_alarms = norm_fa * 200 * 1024;
189         u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
190         u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
191         struct iwl_sensitivity_data *data = NULL;
192         const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
193
194         data = &(priv->sensitivity_data);
195
196         data->nrg_auto_corr_silence_diff = 0;
197
198         /* Find max silence rssi among all 3 receivers.
199          * This is background noise, which may include transmissions from other
200          *    networks, measured during silence before our network's beacon */
201         silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
202                             ALL_BAND_FILTER) >> 8);
203         silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
204                             ALL_BAND_FILTER) >> 8);
205         silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
206                             ALL_BAND_FILTER) >> 8);
207
208         val = max(silence_rssi_b, silence_rssi_c);
209         max_silence_rssi = max(silence_rssi_a, (u8) val);
210
211         /* Store silence rssi in 20-beacon history table */
212         data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
213         data->nrg_silence_idx++;
214         if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
215                 data->nrg_silence_idx = 0;
216
217         /* Find max silence rssi across 20 beacon history */
218         for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
219                 val = data->nrg_silence_rssi[i];
220                 silence_ref = max(silence_ref, val);
221         }
222         IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n",
223                         silence_rssi_a, silence_rssi_b, silence_rssi_c,
224                         silence_ref);
225
226         /* Find max rx energy (min value!) among all 3 receivers,
227          *   measured during beacon frame.
228          * Save it in 10-beacon history table. */
229         i = data->nrg_energy_idx;
230         val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
231         data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
232
233         data->nrg_energy_idx++;
234         if (data->nrg_energy_idx >= 10)
235                 data->nrg_energy_idx = 0;
236
237         /* Find min rx energy (max value) across 10 beacon history.
238          * This is the minimum signal level that we want to receive well.
239          * Add backoff (margin so we don't miss slightly lower energy frames).
240          * This establishes an upper bound (min value) for energy threshold. */
241         max_nrg_cck = data->nrg_value[0];
242         for (i = 1; i < 10; i++)
243                 max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
244         max_nrg_cck += 6;
245
246         IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
247                         rx_info->beacon_energy_a, rx_info->beacon_energy_b,
248                         rx_info->beacon_energy_c, max_nrg_cck - 6);
249
250         /* Count number of consecutive beacons with fewer-than-desired
251          *   false alarms. */
252         if (false_alarms < min_false_alarms)
253                 data->num_in_cck_no_fa++;
254         else
255                 data->num_in_cck_no_fa = 0;
256         IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n",
257                         data->num_in_cck_no_fa);
258
259         /* If we got too many false alarms this time, reduce sensitivity */
260         if ((false_alarms > max_false_alarms) &&
261                 (data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) {
262                 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n",
263                      false_alarms, max_false_alarms);
264                 IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n");
265                 data->nrg_curr_state = IWL_FA_TOO_MANY;
266                 /* Store for "fewer than desired" on later beacon */
267                 data->nrg_silence_ref = silence_ref;
268
269                 /* increase energy threshold (reduce nrg value)
270                  *   to decrease sensitivity */
271                 data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
272         /* Else if we got fewer than desired, increase sensitivity */
273         } else if (false_alarms < min_false_alarms) {
274                 data->nrg_curr_state = IWL_FA_TOO_FEW;
275
276                 /* Compare silence level with silence level for most recent
277                  *   healthy number or too many false alarms */
278                 data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
279                                                    (s32)silence_ref;
280
281                 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n",
282                          false_alarms, min_false_alarms,
283                          data->nrg_auto_corr_silence_diff);
284
285                 /* Increase value to increase sensitivity, but only if:
286                  * 1a) previous beacon did *not* have *too many* false alarms
287                  * 1b) AND there's a significant difference in Rx levels
288                  *      from a previous beacon with too many, or healthy # FAs
289                  * OR 2) We've seen a lot of beacons (100) with too few
290                  *       false alarms */
291                 if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
292                         ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
293                         (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
294
295                         IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n");
296                         /* Increase nrg value to increase sensitivity */
297                         val = data->nrg_th_cck + NRG_STEP_CCK;
298                         data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
299                 } else {
300                         IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n");
301                 }
302
303         /* Else we got a healthy number of false alarms, keep status quo */
304         } else {
305                 IWL_DEBUG_CALIB(priv, " FA in safe zone\n");
306                 data->nrg_curr_state = IWL_FA_GOOD_RANGE;
307
308                 /* Store for use in "fewer than desired" with later beacon */
309                 data->nrg_silence_ref = silence_ref;
310
311                 /* If previous beacon had too many false alarms,
312                  *   give it some extra margin by reducing sensitivity again
313                  *   (but don't go below measured energy of desired Rx) */
314                 if (IWL_FA_TOO_MANY == data->nrg_prev_state) {
315                         IWL_DEBUG_CALIB(priv, "... increasing margin\n");
316                         if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
317                                 data->nrg_th_cck -= NRG_MARGIN;
318                         else
319                                 data->nrg_th_cck = max_nrg_cck;
320                 }
321         }
322
323         /* Make sure the energy threshold does not go above the measured
324          * energy of the desired Rx signals (reduced by backoff margin),
325          * or else we might start missing Rx frames.
326          * Lower value is higher energy, so we use max()!
327          */
328         data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
329         IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck);
330
331         data->nrg_prev_state = data->nrg_curr_state;
332
333         /* Auto-correlation CCK algorithm */
334         if (false_alarms > min_false_alarms) {
335
336                 /* increase auto_corr values to decrease sensitivity
337                  * so the DSP won't be disturbed by the noise
338                  */
339                 if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
340                         data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
341                 else {
342                         val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
343                         data->auto_corr_cck =
344                                 min((u32)ranges->auto_corr_max_cck, val);
345                 }
346                 val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
347                 data->auto_corr_cck_mrc =
348                         min((u32)ranges->auto_corr_max_cck_mrc, val);
349         } else if ((false_alarms < min_false_alarms) &&
350            ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
351            (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
352
353                 /* Decrease auto_corr values to increase sensitivity */
354                 val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
355                 data->auto_corr_cck =
356                         max((u32)ranges->auto_corr_min_cck, val);
357                 val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
358                 data->auto_corr_cck_mrc =
359                         max((u32)ranges->auto_corr_min_cck_mrc, val);
360         }
361
362         return 0;
363 }
364
365
366 static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv,
367                                        u32 norm_fa,
368                                        u32 rx_enable_time)
369 {
370         u32 val;
371         u32 false_alarms = norm_fa * 200 * 1024;
372         u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
373         u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
374         struct iwl_sensitivity_data *data = NULL;
375         const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
376
377         data = &(priv->sensitivity_data);
378
379         /* If we got too many false alarms this time, reduce sensitivity */
380         if (false_alarms > max_false_alarms) {
381
382                 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n",
383                              false_alarms, max_false_alarms);
384
385                 val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
386                 data->auto_corr_ofdm =
387                         min((u32)ranges->auto_corr_max_ofdm, val);
388
389                 val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
390                 data->auto_corr_ofdm_mrc =
391                         min((u32)ranges->auto_corr_max_ofdm_mrc, val);
392
393                 val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
394                 data->auto_corr_ofdm_x1 =
395                         min((u32)ranges->auto_corr_max_ofdm_x1, val);
396
397                 val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
398                 data->auto_corr_ofdm_mrc_x1 =
399                         min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
400         }
401
402         /* Else if we got fewer than desired, increase sensitivity */
403         else if (false_alarms < min_false_alarms) {
404
405                 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n",
406                              false_alarms, min_false_alarms);
407
408                 val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
409                 data->auto_corr_ofdm =
410                         max((u32)ranges->auto_corr_min_ofdm, val);
411
412                 val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
413                 data->auto_corr_ofdm_mrc =
414                         max((u32)ranges->auto_corr_min_ofdm_mrc, val);
415
416                 val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
417                 data->auto_corr_ofdm_x1 =
418                         max((u32)ranges->auto_corr_min_ofdm_x1, val);
419
420                 val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
421                 data->auto_corr_ofdm_mrc_x1 =
422                         max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
423         } else {
424                 IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n",
425                          min_false_alarms, false_alarms, max_false_alarms);
426         }
427         return 0;
428 }
429
430 static void iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv *priv,
431                                 struct iwl_sensitivity_data *data,
432                                 __le16 *tbl)
433 {
434         tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] =
435                                 cpu_to_le16((u16)data->auto_corr_ofdm);
436         tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] =
437                                 cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
438         tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] =
439                                 cpu_to_le16((u16)data->auto_corr_ofdm_x1);
440         tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] =
441                                 cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);
442
443         tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] =
444                                 cpu_to_le16((u16)data->auto_corr_cck);
445         tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] =
446                                 cpu_to_le16((u16)data->auto_corr_cck_mrc);
447
448         tbl[HD_MIN_ENERGY_CCK_DET_INDEX] =
449                                 cpu_to_le16((u16)data->nrg_th_cck);
450         tbl[HD_MIN_ENERGY_OFDM_DET_INDEX] =
451                                 cpu_to_le16((u16)data->nrg_th_ofdm);
452
453         tbl[HD_BARKER_CORR_TH_ADD_MIN_INDEX] =
454                                 cpu_to_le16(data->barker_corr_th_min);
455         tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] =
456                                 cpu_to_le16(data->barker_corr_th_min_mrc);
457         tbl[HD_OFDM_ENERGY_TH_IN_INDEX] =
458                                 cpu_to_le16(data->nrg_th_cca);
459
460         IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
461                         data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
462                         data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
463                         data->nrg_th_ofdm);
464
465         IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n",
466                         data->auto_corr_cck, data->auto_corr_cck_mrc,
467                         data->nrg_th_cck);
468 }
469
470 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
471 static int iwl_sensitivity_write(struct iwl_priv *priv)
472 {
473         struct iwl_sensitivity_cmd cmd;
474         struct iwl_sensitivity_data *data = NULL;
475         struct iwl_host_cmd cmd_out = {
476                 .id = SENSITIVITY_CMD,
477                 .len = { sizeof(struct iwl_sensitivity_cmd), },
478                 .flags = CMD_ASYNC,
479                 .data = { &cmd, },
480         };
481
482         data = &(priv->sensitivity_data);
483
484         memset(&cmd, 0, sizeof(cmd));
485
486         iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.table[0]);
487
488         /* Update uCode's "work" table, and copy it to DSP */
489         cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
490
491         /* Don't send command to uCode if nothing has changed */
492         if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
493                     sizeof(u16)*HD_TABLE_SIZE)) {
494                 IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
495                 return 0;
496         }
497
498         /* Copy table for comparison next time */
499         memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
500                sizeof(u16)*HD_TABLE_SIZE);
501
502         return iwl_dvm_send_cmd(priv, &cmd_out);
503 }
504
505 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
506 static int iwl_enhance_sensitivity_write(struct iwl_priv *priv)
507 {
508         struct iwl_enhance_sensitivity_cmd cmd;
509         struct iwl_sensitivity_data *data = NULL;
510         struct iwl_host_cmd cmd_out = {
511                 .id = SENSITIVITY_CMD,
512                 .len = { sizeof(struct iwl_enhance_sensitivity_cmd), },
513                 .flags = CMD_ASYNC,
514                 .data = { &cmd, },
515         };
516
517         data = &(priv->sensitivity_data);
518
519         memset(&cmd, 0, sizeof(cmd));
520
521         iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.enhance_table[0]);
522
523         if (priv->lib->hd_v2) {
524                 cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
525                         HD_INA_NON_SQUARE_DET_OFDM_DATA_V2;
526                 cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
527                         HD_INA_NON_SQUARE_DET_CCK_DATA_V2;
528                 cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
529                         HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2;
530                 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
531                         HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
532                 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
533                         HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
534                 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
535                         HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2;
536                 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
537                         HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2;
538                 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
539                         HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
540                 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
541                         HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
542                 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
543                         HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2;
544                 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
545                         HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2;
546         } else {
547                 cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
548                         HD_INA_NON_SQUARE_DET_OFDM_DATA_V1;
549                 cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
550                         HD_INA_NON_SQUARE_DET_CCK_DATA_V1;
551                 cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
552                         HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1;
553                 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
554                         HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
555                 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
556                         HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
557                 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
558                         HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1;
559                 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
560                         HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1;
561                 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
562                         HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
563                 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
564                         HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
565                 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
566                         HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1;
567                 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
568                         HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1;
569         }
570
571         /* Update uCode's "work" table, and copy it to DSP */
572         cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
573
574         /* Don't send command to uCode if nothing has changed */
575         if (!memcmp(&cmd.enhance_table[0], &(priv->sensitivity_tbl[0]),
576                     sizeof(u16)*HD_TABLE_SIZE) &&
577             !memcmp(&cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX],
578                     &(priv->enhance_sensitivity_tbl[0]),
579                     sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES)) {
580                 IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
581                 return 0;
582         }
583
584         /* Copy table for comparison next time */
585         memcpy(&(priv->sensitivity_tbl[0]), &(cmd.enhance_table[0]),
586                sizeof(u16)*HD_TABLE_SIZE);
587         memcpy(&(priv->enhance_sensitivity_tbl[0]),
588                &(cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX]),
589                sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES);
590
591         return iwl_dvm_send_cmd(priv, &cmd_out);
592 }
593
594 void iwl_init_sensitivity(struct iwl_priv *priv)
595 {
596         int ret = 0;
597         int i;
598         struct iwl_sensitivity_data *data = NULL;
599         const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
600
601         if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED)
602                 return;
603
604         IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n");
605
606         /* Clear driver's sensitivity algo data */
607         data = &(priv->sensitivity_data);
608
609         if (ranges == NULL)
610                 return;
611
612         memset(data, 0, sizeof(struct iwl_sensitivity_data));
613
614         data->num_in_cck_no_fa = 0;
615         data->nrg_curr_state = IWL_FA_TOO_MANY;
616         data->nrg_prev_state = IWL_FA_TOO_MANY;
617         data->nrg_silence_ref = 0;
618         data->nrg_silence_idx = 0;
619         data->nrg_energy_idx = 0;
620
621         for (i = 0; i < 10; i++)
622                 data->nrg_value[i] = 0;
623
624         for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
625                 data->nrg_silence_rssi[i] = 0;
626
627         data->auto_corr_ofdm =  ranges->auto_corr_min_ofdm;
628         data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
629         data->auto_corr_ofdm_x1  = ranges->auto_corr_min_ofdm_x1;
630         data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
631         data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
632         data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
633         data->nrg_th_cck = ranges->nrg_th_cck;
634         data->nrg_th_ofdm = ranges->nrg_th_ofdm;
635         data->barker_corr_th_min = ranges->barker_corr_th_min;
636         data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc;
637         data->nrg_th_cca = ranges->nrg_th_cca;
638
639         data->last_bad_plcp_cnt_ofdm = 0;
640         data->last_fa_cnt_ofdm = 0;
641         data->last_bad_plcp_cnt_cck = 0;
642         data->last_fa_cnt_cck = 0;
643
644         if (priv->fw->enhance_sensitivity_table)
645                 ret |= iwl_enhance_sensitivity_write(priv);
646         else
647                 ret |= iwl_sensitivity_write(priv);
648         IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret);
649 }
650
651 void iwl_sensitivity_calibration(struct iwl_priv *priv)
652 {
653         u32 rx_enable_time;
654         u32 fa_cck;
655         u32 fa_ofdm;
656         u32 bad_plcp_cck;
657         u32 bad_plcp_ofdm;
658         u32 norm_fa_ofdm;
659         u32 norm_fa_cck;
660         struct iwl_sensitivity_data *data = NULL;
661         struct statistics_rx_non_phy *rx_info;
662         struct statistics_rx_phy *ofdm, *cck;
663         struct statistics_general_data statis;
664
665         if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED)
666                 return;
667
668         data = &(priv->sensitivity_data);
669
670         if (!iwl_is_any_associated(priv)) {
671                 IWL_DEBUG_CALIB(priv, "<< - not associated\n");
672                 return;
673         }
674
675         spin_lock_bh(&priv->statistics.lock);
676         rx_info = &priv->statistics.rx_non_phy;
677         ofdm = &priv->statistics.rx_ofdm;
678         cck = &priv->statistics.rx_cck;
679         if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
680                 IWL_DEBUG_CALIB(priv, "<< invalid data.\n");
681                 spin_unlock_bh(&priv->statistics.lock);
682                 return;
683         }
684
685         /* Extract Statistics: */
686         rx_enable_time = le32_to_cpu(rx_info->channel_load);
687         fa_cck = le32_to_cpu(cck->false_alarm_cnt);
688         fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt);
689         bad_plcp_cck = le32_to_cpu(cck->plcp_err);
690         bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err);
691
692         statis.beacon_silence_rssi_a =
693                         le32_to_cpu(rx_info->beacon_silence_rssi_a);
694         statis.beacon_silence_rssi_b =
695                         le32_to_cpu(rx_info->beacon_silence_rssi_b);
696         statis.beacon_silence_rssi_c =
697                         le32_to_cpu(rx_info->beacon_silence_rssi_c);
698         statis.beacon_energy_a =
699                         le32_to_cpu(rx_info->beacon_energy_a);
700         statis.beacon_energy_b =
701                         le32_to_cpu(rx_info->beacon_energy_b);
702         statis.beacon_energy_c =
703                         le32_to_cpu(rx_info->beacon_energy_c);
704
705         spin_unlock_bh(&priv->statistics.lock);
706
707         IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time);
708
709         if (!rx_enable_time) {
710                 IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0!\n");
711                 return;
712         }
713
714         /* These statistics increase monotonically, and do not reset
715          *   at each beacon.  Calculate difference from last value, or just
716          *   use the new statistics value if it has reset or wrapped around. */
717         if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
718                 data->last_bad_plcp_cnt_cck = bad_plcp_cck;
719         else {
720                 bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
721                 data->last_bad_plcp_cnt_cck += bad_plcp_cck;
722         }
723
724         if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
725                 data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
726         else {
727                 bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
728                 data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
729         }
730
731         if (data->last_fa_cnt_ofdm > fa_ofdm)
732                 data->last_fa_cnt_ofdm = fa_ofdm;
733         else {
734                 fa_ofdm -= data->last_fa_cnt_ofdm;
735                 data->last_fa_cnt_ofdm += fa_ofdm;
736         }
737
738         if (data->last_fa_cnt_cck > fa_cck)
739                 data->last_fa_cnt_cck = fa_cck;
740         else {
741                 fa_cck -= data->last_fa_cnt_cck;
742                 data->last_fa_cnt_cck += fa_cck;
743         }
744
745         /* Total aborted signal locks */
746         norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
747         norm_fa_cck = fa_cck + bad_plcp_cck;
748
749         IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u  ofdm: fa %u badp %u\n", fa_cck,
750                         bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
751
752         iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
753         iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
754         if (priv->fw->enhance_sensitivity_table)
755                 iwl_enhance_sensitivity_write(priv);
756         else
757                 iwl_sensitivity_write(priv);
758 }
759
760 static inline u8 find_first_chain(u8 mask)
761 {
762         if (mask & ANT_A)
763                 return CHAIN_A;
764         if (mask & ANT_B)
765                 return CHAIN_B;
766         return CHAIN_C;
767 }
768
769 /**
770  * Run disconnected antenna algorithm to find out which antennas are
771  * disconnected.
772  */
773 static void iwl_find_disconn_antenna(struct iwl_priv *priv, u32* average_sig,
774                                      struct iwl_chain_noise_data *data)
775 {
776         u32 active_chains = 0;
777         u32 max_average_sig;
778         u16 max_average_sig_antenna_i;
779         u8 num_tx_chains;
780         u8 first_chain;
781         u16 i = 0;
782
783         average_sig[0] = data->chain_signal_a / IWL_CAL_NUM_BEACONS;
784         average_sig[1] = data->chain_signal_b / IWL_CAL_NUM_BEACONS;
785         average_sig[2] = data->chain_signal_c / IWL_CAL_NUM_BEACONS;
786
787         if (average_sig[0] >= average_sig[1]) {
788                 max_average_sig = average_sig[0];
789                 max_average_sig_antenna_i = 0;
790                 active_chains = (1 << max_average_sig_antenna_i);
791         } else {
792                 max_average_sig = average_sig[1];
793                 max_average_sig_antenna_i = 1;
794                 active_chains = (1 << max_average_sig_antenna_i);
795         }
796
797         if (average_sig[2] >= max_average_sig) {
798                 max_average_sig = average_sig[2];
799                 max_average_sig_antenna_i = 2;
800                 active_chains = (1 << max_average_sig_antenna_i);
801         }
802
803         IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n",
804                      average_sig[0], average_sig[1], average_sig[2]);
805         IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n",
806                      max_average_sig, max_average_sig_antenna_i);
807
808         /* Compare signal strengths for all 3 receivers. */
809         for (i = 0; i < NUM_RX_CHAINS; i++) {
810                 if (i != max_average_sig_antenna_i) {
811                         s32 rssi_delta = (max_average_sig - average_sig[i]);
812
813                         /* If signal is very weak, compared with
814                          * strongest, mark it as disconnected. */
815                         if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
816                                 data->disconn_array[i] = 1;
817                         else
818                                 active_chains |= (1 << i);
819                         IWL_DEBUG_CALIB(priv, "i = %d  rssiDelta = %d  "
820                              "disconn_array[i] = %d\n",
821                              i, rssi_delta, data->disconn_array[i]);
822                 }
823         }
824
825         /*
826          * The above algorithm sometimes fails when the ucode
827          * reports 0 for all chains. It's not clear why that
828          * happens to start with, but it is then causing trouble
829          * because this can make us enable more chains than the
830          * hardware really has.
831          *
832          * To be safe, simply mask out any chains that we know
833          * are not on the device.
834          */
835         active_chains &= priv->nvm_data->valid_rx_ant;
836
837         num_tx_chains = 0;
838         for (i = 0; i < NUM_RX_CHAINS; i++) {
839                 /* loops on all the bits of
840                  * priv->hw_setting.valid_tx_ant */
841                 u8 ant_msk = (1 << i);
842                 if (!(priv->nvm_data->valid_tx_ant & ant_msk))
843                         continue;
844
845                 num_tx_chains++;
846                 if (data->disconn_array[i] == 0)
847                         /* there is a Tx antenna connected */
848                         break;
849                 if (num_tx_chains == priv->hw_params.tx_chains_num &&
850                     data->disconn_array[i]) {
851                         /*
852                          * If all chains are disconnected
853                          * connect the first valid tx chain
854                          */
855                         first_chain =
856                                 find_first_chain(priv->nvm_data->valid_tx_ant);
857                         data->disconn_array[first_chain] = 0;
858                         active_chains |= BIT(first_chain);
859                         IWL_DEBUG_CALIB(priv,
860                                         "All Tx chains are disconnected W/A - declare %d as connected\n",
861                                         first_chain);
862                         break;
863                 }
864         }
865
866         if (active_chains != priv->nvm_data->valid_rx_ant &&
867             active_chains != priv->chain_noise_data.active_chains)
868                 IWL_DEBUG_CALIB(priv,
869                                 "Detected that not all antennas are connected! "
870                                 "Connected: %#x, valid: %#x.\n",
871                                 active_chains,
872                                 priv->nvm_data->valid_rx_ant);
873
874         /* Save for use within RXON, TX, SCAN commands, etc. */
875         data->active_chains = active_chains;
876         IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n",
877                         active_chains);
878 }
879
880 static void iwlagn_gain_computation(struct iwl_priv *priv,
881                                     u32 average_noise[NUM_RX_CHAINS],
882                                     u8 default_chain)
883 {
884         int i;
885         s32 delta_g;
886         struct iwl_chain_noise_data *data = &priv->chain_noise_data;
887
888         /*
889          * Find Gain Code for the chains based on "default chain"
890          */
891         for (i = default_chain + 1; i < NUM_RX_CHAINS; i++) {
892                 if ((data->disconn_array[i])) {
893                         data->delta_gain_code[i] = 0;
894                         continue;
895                 }
896
897                 delta_g = (priv->lib->chain_noise_scale *
898                         ((s32)average_noise[default_chain] -
899                         (s32)average_noise[i])) / 1500;
900
901                 /* bound gain by 2 bits value max, 3rd bit is sign */
902                 data->delta_gain_code[i] =
903                         min(abs(delta_g),
904                         (long) CHAIN_NOISE_MAX_DELTA_GAIN_CODE);
905
906                 if (delta_g < 0)
907                         /*
908                          * set negative sign ...
909                          * note to Intel developers:  This is uCode API format,
910                          *   not the format of any internal device registers.
911                          *   Do not change this format for e.g. 6050 or similar
912                          *   devices.  Change format only if more resolution
913                          *   (i.e. more than 2 bits magnitude) is needed.
914                          */
915                         data->delta_gain_code[i] |= (1 << 2);
916         }
917
918         IWL_DEBUG_CALIB(priv, "Delta gains: ANT_B = %d  ANT_C = %d\n",
919                         data->delta_gain_code[1], data->delta_gain_code[2]);
920
921         if (!data->radio_write) {
922                 struct iwl_calib_chain_noise_gain_cmd cmd;
923
924                 memset(&cmd, 0, sizeof(cmd));
925
926                 iwl_set_calib_hdr(&cmd.hdr,
927                         priv->phy_calib_chain_noise_gain_cmd);
928                 cmd.delta_gain_1 = data->delta_gain_code[1];
929                 cmd.delta_gain_2 = data->delta_gain_code[2];
930                 iwl_dvm_send_cmd_pdu(priv, REPLY_PHY_CALIBRATION_CMD,
931                         CMD_ASYNC, sizeof(cmd), &cmd);
932
933                 data->radio_write = 1;
934                 data->state = IWL_CHAIN_NOISE_CALIBRATED;
935         }
936 }
937
938 /*
939  * Accumulate 16 beacons of signal and noise statistics for each of
940  *   3 receivers/antennas/rx-chains, then figure out:
941  * 1)  Which antennas are connected.
942  * 2)  Differential rx gain settings to balance the 3 receivers.
943  */
944 void iwl_chain_noise_calibration(struct iwl_priv *priv)
945 {
946         struct iwl_chain_noise_data *data = NULL;
947
948         u32 chain_noise_a;
949         u32 chain_noise_b;
950         u32 chain_noise_c;
951         u32 chain_sig_a;
952         u32 chain_sig_b;
953         u32 chain_sig_c;
954         u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
955         u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
956         u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
957         u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
958         u16 i = 0;
959         u16 rxon_chnum = INITIALIZATION_VALUE;
960         u16 stat_chnum = INITIALIZATION_VALUE;
961         u8 rxon_band24;
962         u8 stat_band24;
963         struct statistics_rx_non_phy *rx_info;
964
965         /*
966          * MULTI-FIXME:
967          * When we support multiple interfaces on different channels,
968          * this must be modified/fixed.
969          */
970         struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
971
972         if (priv->calib_disabled & IWL_CHAIN_NOISE_CALIB_DISABLED)
973                 return;
974
975         data = &(priv->chain_noise_data);
976
977         /*
978          * Accumulate just the first "chain_noise_num_beacons" after
979          * the first association, then we're done forever.
980          */
981         if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
982                 if (data->state == IWL_CHAIN_NOISE_ALIVE)
983                         IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n");
984                 return;
985         }
986
987         spin_lock_bh(&priv->statistics.lock);
988
989         rx_info = &priv->statistics.rx_non_phy;
990
991         if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
992                 IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n");
993                 spin_unlock_bh(&priv->statistics.lock);
994                 return;
995         }
996
997         rxon_band24 = !!(ctx->staging.flags & RXON_FLG_BAND_24G_MSK);
998         rxon_chnum = le16_to_cpu(ctx->staging.channel);
999         stat_band24 =
1000                 !!(priv->statistics.flag & STATISTICS_REPLY_FLG_BAND_24G_MSK);
1001         stat_chnum = le32_to_cpu(priv->statistics.flag) >> 16;
1002
1003         /* Make sure we accumulate data for just the associated channel
1004          *   (even if scanning). */
1005         if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) {
1006                 IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n",
1007                                 rxon_chnum, rxon_band24);
1008                 spin_unlock_bh(&priv->statistics.lock);
1009                 return;
1010         }
1011
1012         /*
1013          *  Accumulate beacon statistics values across
1014          * "chain_noise_num_beacons"
1015          */
1016         chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
1017                                 IN_BAND_FILTER;
1018         chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
1019                                 IN_BAND_FILTER;
1020         chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
1021                                 IN_BAND_FILTER;
1022
1023         chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
1024         chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
1025         chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
1026
1027         spin_unlock_bh(&priv->statistics.lock);
1028
1029         data->beacon_count++;
1030
1031         data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
1032         data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
1033         data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
1034
1035         data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
1036         data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
1037         data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
1038
1039         IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n",
1040                         rxon_chnum, rxon_band24, data->beacon_count);
1041         IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n",
1042                         chain_sig_a, chain_sig_b, chain_sig_c);
1043         IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n",
1044                         chain_noise_a, chain_noise_b, chain_noise_c);
1045
1046         /* If this is the "chain_noise_num_beacons", determine:
1047          * 1)  Disconnected antennas (using signal strengths)
1048          * 2)  Differential gain (using silence noise) to balance receivers */
1049         if (data->beacon_count != IWL_CAL_NUM_BEACONS)
1050                 return;
1051
1052         /* Analyze signal for disconnected antenna */
1053         if (priv->lib->bt_params &&
1054             priv->lib->bt_params->advanced_bt_coexist) {
1055                 /* Disable disconnected antenna algorithm for advanced
1056                    bt coex, assuming valid antennas are connected */
1057                 data->active_chains = priv->nvm_data->valid_rx_ant;
1058                 for (i = 0; i < NUM_RX_CHAINS; i++)
1059                         if (!(data->active_chains & (1<<i)))
1060                                 data->disconn_array[i] = 1;
1061         } else
1062                 iwl_find_disconn_antenna(priv, average_sig, data);
1063
1064         /* Analyze noise for rx balance */
1065         average_noise[0] = data->chain_noise_a / IWL_CAL_NUM_BEACONS;
1066         average_noise[1] = data->chain_noise_b / IWL_CAL_NUM_BEACONS;
1067         average_noise[2] = data->chain_noise_c / IWL_CAL_NUM_BEACONS;
1068
1069         for (i = 0; i < NUM_RX_CHAINS; i++) {
1070                 if (!(data->disconn_array[i]) &&
1071                    (average_noise[i] <= min_average_noise)) {
1072                         /* This means that chain i is active and has
1073                          * lower noise values so far: */
1074                         min_average_noise = average_noise[i];
1075                         min_average_noise_antenna_i = i;
1076                 }
1077         }
1078
1079         IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n",
1080                         average_noise[0], average_noise[1],
1081                         average_noise[2]);
1082
1083         IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n",
1084                         min_average_noise, min_average_noise_antenna_i);
1085
1086         iwlagn_gain_computation(
1087                 priv, average_noise,
1088                 find_first_chain(priv->nvm_data->valid_rx_ant));
1089
1090         /* Some power changes may have been made during the calibration.
1091          * Update and commit the RXON
1092          */
1093         iwl_update_chain_flags(priv);
1094
1095         data->state = IWL_CHAIN_NOISE_DONE;
1096         iwl_power_update_mode(priv, false);
1097 }
1098
1099 void iwl_reset_run_time_calib(struct iwl_priv *priv)
1100 {
1101         int i;
1102         memset(&(priv->sensitivity_data), 0,
1103                sizeof(struct iwl_sensitivity_data));
1104         memset(&(priv->chain_noise_data), 0,
1105                sizeof(struct iwl_chain_noise_data));
1106         for (i = 0; i < NUM_RX_CHAINS; i++)
1107                 priv->chain_noise_data.delta_gain_code[i] =
1108                                 CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
1109
1110         /* Ask for statistics now, the uCode will send notification
1111          * periodically after association */
1112         iwl_send_statistics_request(priv, CMD_ASYNC, true);
1113 }