Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / net / wireless / ath / key.c
1 /*
2  * Copyright (c) 2009 Atheros Communications Inc.
3  * Copyright (c) 2010 Bruno Randolf <br1@einfach.org>
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17
18 #include <linux/export.h>
19 #include <asm/unaligned.h>
20 #include <net/mac80211.h>
21
22 #include "ath.h"
23 #include "reg.h"
24
25 #define REG_READ                        (common->ops->read)
26 #define REG_WRITE(_ah, _reg, _val)      (common->ops->write)(_ah, _val, _reg)
27 #define ENABLE_REGWRITE_BUFFER(_ah)                     \
28         if (common->ops->enable_write_buffer)           \
29                 common->ops->enable_write_buffer((_ah));
30
31 #define REGWRITE_BUFFER_FLUSH(_ah)                      \
32         if (common->ops->write_flush)                   \
33                 common->ops->write_flush((_ah));
34
35
36 #define IEEE80211_WEP_NKID      4       /* number of key ids */
37
38 /************************/
39 /* Key Cache Management */
40 /************************/
41
42 bool ath_hw_keyreset(struct ath_common *common, u16 entry)
43 {
44         u32 keyType;
45         void *ah = common->ah;
46
47         if (entry >= common->keymax) {
48                 ath_err(common, "keyreset: keycache entry %u out of range\n",
49                         entry);
50                 return false;
51         }
52
53         keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
54
55         ENABLE_REGWRITE_BUFFER(ah);
56
57         REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
58         REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
59         REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
60         REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
61         REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
62         REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
63         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
64         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
65
66         if (keyType == AR_KEYTABLE_TYPE_TKIP) {
67                 u16 micentry = entry + 64;
68
69                 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
70                 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
71                 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
72                 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
73                 if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
74                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
75                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
76                                   AR_KEYTABLE_TYPE_CLR);
77                 }
78
79         }
80
81         REGWRITE_BUFFER_FLUSH(ah);
82
83         return true;
84 }
85 EXPORT_SYMBOL(ath_hw_keyreset);
86
87 static bool ath_hw_keysetmac(struct ath_common *common,
88                              u16 entry, const u8 *mac)
89 {
90         u32 macHi, macLo;
91         u32 unicast_flag = AR_KEYTABLE_VALID;
92         void *ah = common->ah;
93
94         if (entry >= common->keymax) {
95                 ath_err(common, "keysetmac: keycache entry %u out of range\n",
96                         entry);
97                 return false;
98         }
99
100         if (mac != NULL) {
101                 /*
102                  * AR_KEYTABLE_VALID indicates that the address is a unicast
103                  * address, which must match the transmitter address for
104                  * decrypting frames.
105                  * Not setting this bit allows the hardware to use the key
106                  * for multicast frame decryption.
107                  */
108                 if (mac[0] & 0x01)
109                         unicast_flag = 0;
110
111                 macLo = get_unaligned_le32(mac);
112                 macHi = get_unaligned_le16(mac + 4);
113                 macLo >>= 1;
114                 macLo |= (macHi & 1) << 31;
115                 macHi >>= 1;
116         } else {
117                 macLo = macHi = 0;
118         }
119         ENABLE_REGWRITE_BUFFER(ah);
120
121         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
122         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | unicast_flag);
123
124         REGWRITE_BUFFER_FLUSH(ah);
125
126         return true;
127 }
128
129 static bool ath_hw_set_keycache_entry(struct ath_common *common, u16 entry,
130                                       const struct ath_keyval *k,
131                                       const u8 *mac)
132 {
133         void *ah = common->ah;
134         u32 key0, key1, key2, key3, key4;
135         u32 keyType;
136
137         if (entry >= common->keymax) {
138                 ath_err(common, "set-entry: keycache entry %u out of range\n",
139                         entry);
140                 return false;
141         }
142
143         switch (k->kv_type) {
144         case ATH_CIPHER_AES_OCB:
145                 keyType = AR_KEYTABLE_TYPE_AES;
146                 break;
147         case ATH_CIPHER_AES_CCM:
148                 if (!(common->crypt_caps & ATH_CRYPT_CAP_CIPHER_AESCCM)) {
149                         ath_dbg(common, ANY,
150                                 "AES-CCM not supported by this mac rev\n");
151                         return false;
152                 }
153                 keyType = AR_KEYTABLE_TYPE_CCM;
154                 break;
155         case ATH_CIPHER_TKIP:
156                 keyType = AR_KEYTABLE_TYPE_TKIP;
157                 if (entry + 64 >= common->keymax) {
158                         ath_dbg(common, ANY,
159                                 "entry %u inappropriate for TKIP\n", entry);
160                         return false;
161                 }
162                 break;
163         case ATH_CIPHER_WEP:
164                 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
165                         ath_dbg(common, ANY, "WEP key length %u too small\n",
166                                 k->kv_len);
167                         return false;
168                 }
169                 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
170                         keyType = AR_KEYTABLE_TYPE_40;
171                 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
172                         keyType = AR_KEYTABLE_TYPE_104;
173                 else
174                         keyType = AR_KEYTABLE_TYPE_128;
175                 break;
176         case ATH_CIPHER_CLR:
177                 keyType = AR_KEYTABLE_TYPE_CLR;
178                 break;
179         default:
180                 ath_err(common, "cipher %u not supported\n", k->kv_type);
181                 return false;
182         }
183
184         key0 = get_unaligned_le32(k->kv_val + 0);
185         key1 = get_unaligned_le16(k->kv_val + 4);
186         key2 = get_unaligned_le32(k->kv_val + 6);
187         key3 = get_unaligned_le16(k->kv_val + 10);
188         key4 = get_unaligned_le32(k->kv_val + 12);
189         if (k->kv_len <= WLAN_KEY_LEN_WEP104)
190                 key4 &= 0xff;
191
192         /*
193          * Note: Key cache registers access special memory area that requires
194          * two 32-bit writes to actually update the values in the internal
195          * memory. Consequently, the exact order and pairs used here must be
196          * maintained.
197          */
198
199         if (keyType == AR_KEYTABLE_TYPE_TKIP) {
200                 u16 micentry = entry + 64;
201
202                 /*
203                  * Write inverted key[47:0] first to avoid Michael MIC errors
204                  * on frames that could be sent or received at the same time.
205                  * The correct key will be written in the end once everything
206                  * else is ready.
207                  */
208                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
209                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
210
211                 /* Write key[95:48] */
212                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
213                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
214
215                 /* Write key[127:96] and key type */
216                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
217                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
218
219                 /* Write MAC address for the entry */
220                 (void) ath_hw_keysetmac(common, entry, mac);
221
222                 if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
223                         /*
224                          * TKIP uses two key cache entries:
225                          * Michael MIC TX/RX keys in the same key cache entry
226                          * (idx = main index + 64):
227                          * key0 [31:0] = RX key [31:0]
228                          * key1 [15:0] = TX key [31:16]
229                          * key1 [31:16] = reserved
230                          * key2 [31:0] = RX key [63:32]
231                          * key3 [15:0] = TX key [15:0]
232                          * key3 [31:16] = reserved
233                          * key4 [31:0] = TX key [63:32]
234                          */
235                         u32 mic0, mic1, mic2, mic3, mic4;
236
237                         mic0 = get_unaligned_le32(k->kv_mic + 0);
238                         mic2 = get_unaligned_le32(k->kv_mic + 4);
239                         mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
240                         mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
241                         mic4 = get_unaligned_le32(k->kv_txmic + 4);
242
243                         ENABLE_REGWRITE_BUFFER(ah);
244
245                         /* Write RX[31:0] and TX[31:16] */
246                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
247                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
248
249                         /* Write RX[63:32] and TX[15:0] */
250                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
251                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
252
253                         /* Write TX[63:32] and keyType(reserved) */
254                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
255                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
256                                   AR_KEYTABLE_TYPE_CLR);
257
258                         REGWRITE_BUFFER_FLUSH(ah);
259
260                 } else {
261                         /*
262                          * TKIP uses four key cache entries (two for group
263                          * keys):
264                          * Michael MIC TX/RX keys are in different key cache
265                          * entries (idx = main index + 64 for TX and
266                          * main index + 32 + 96 for RX):
267                          * key0 [31:0] = TX/RX MIC key [31:0]
268                          * key1 [31:0] = reserved
269                          * key2 [31:0] = TX/RX MIC key [63:32]
270                          * key3 [31:0] = reserved
271                          * key4 [31:0] = reserved
272                          *
273                          * Upper layer code will call this function separately
274                          * for TX and RX keys when these registers offsets are
275                          * used.
276                          */
277                         u32 mic0, mic2;
278
279                         mic0 = get_unaligned_le32(k->kv_mic + 0);
280                         mic2 = get_unaligned_le32(k->kv_mic + 4);
281
282                         ENABLE_REGWRITE_BUFFER(ah);
283
284                         /* Write MIC key[31:0] */
285                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
286                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
287
288                         /* Write MIC key[63:32] */
289                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
290                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
291
292                         /* Write TX[63:32] and keyType(reserved) */
293                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
294                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
295                                   AR_KEYTABLE_TYPE_CLR);
296
297                         REGWRITE_BUFFER_FLUSH(ah);
298                 }
299
300                 ENABLE_REGWRITE_BUFFER(ah);
301
302                 /* MAC address registers are reserved for the MIC entry */
303                 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
304                 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
305
306                 /*
307                  * Write the correct (un-inverted) key[47:0] last to enable
308                  * TKIP now that all other registers are set with correct
309                  * values.
310                  */
311                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
312                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
313
314                 REGWRITE_BUFFER_FLUSH(ah);
315         } else {
316                 ENABLE_REGWRITE_BUFFER(ah);
317
318                 /* Write key[47:0] */
319                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
320                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
321
322                 /* Write key[95:48] */
323                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
324                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
325
326                 /* Write key[127:96] and key type */
327                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
328                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
329
330                 REGWRITE_BUFFER_FLUSH(ah);
331
332                 /* Write MAC address for the entry */
333                 (void) ath_hw_keysetmac(common, entry, mac);
334         }
335
336         return true;
337 }
338
339 static int ath_setkey_tkip(struct ath_common *common, u16 keyix, const u8 *key,
340                            struct ath_keyval *hk, const u8 *addr,
341                            bool authenticator)
342 {
343         const u8 *key_rxmic;
344         const u8 *key_txmic;
345
346         key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
347         key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
348
349         if (addr == NULL) {
350                 /*
351                  * Group key installation - only two key cache entries are used
352                  * regardless of splitmic capability since group key is only
353                  * used either for TX or RX.
354                  */
355                 if (authenticator) {
356                         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
357                         memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
358                 } else {
359                         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
360                         memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
361                 }
362                 return ath_hw_set_keycache_entry(common, keyix, hk, addr);
363         }
364         if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
365                 /* TX and RX keys share the same key cache entry. */
366                 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
367                 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
368                 return ath_hw_set_keycache_entry(common, keyix, hk, addr);
369         }
370
371         /* Separate key cache entries for TX and RX */
372
373         /* TX key goes at first index, RX key at +32. */
374         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
375         if (!ath_hw_set_keycache_entry(common, keyix, hk, NULL)) {
376                 /* TX MIC entry failed. No need to proceed further */
377                 ath_err(common, "Setting TX MIC Key Failed\n");
378                 return 0;
379         }
380
381         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
382         /* XXX delete tx key on failure? */
383         return ath_hw_set_keycache_entry(common, keyix + 32, hk, addr);
384 }
385
386 static int ath_reserve_key_cache_slot_tkip(struct ath_common *common)
387 {
388         int i;
389
390         for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
391                 if (test_bit(i, common->keymap) ||
392                     test_bit(i + 64, common->keymap))
393                         continue; /* At least one part of TKIP key allocated */
394                 if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) &&
395                     (test_bit(i + 32, common->keymap) ||
396                      test_bit(i + 64 + 32, common->keymap)))
397                         continue; /* At least one part of TKIP key allocated */
398
399                 /* Found a free slot for a TKIP key */
400                 return i;
401         }
402         return -1;
403 }
404
405 static int ath_reserve_key_cache_slot(struct ath_common *common,
406                                       u32 cipher)
407 {
408         int i;
409
410         if (cipher == WLAN_CIPHER_SUITE_TKIP)
411                 return ath_reserve_key_cache_slot_tkip(common);
412
413         /* First, try to find slots that would not be available for TKIP. */
414         if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
415                 for (i = IEEE80211_WEP_NKID; i < common->keymax / 4; i++) {
416                         if (!test_bit(i, common->keymap) &&
417                             (test_bit(i + 32, common->keymap) ||
418                              test_bit(i + 64, common->keymap) ||
419                              test_bit(i + 64 + 32, common->keymap)))
420                                 return i;
421                         if (!test_bit(i + 32, common->keymap) &&
422                             (test_bit(i, common->keymap) ||
423                              test_bit(i + 64, common->keymap) ||
424                              test_bit(i + 64 + 32, common->keymap)))
425                                 return i + 32;
426                         if (!test_bit(i + 64, common->keymap) &&
427                             (test_bit(i , common->keymap) ||
428                              test_bit(i + 32, common->keymap) ||
429                              test_bit(i + 64 + 32, common->keymap)))
430                                 return i + 64;
431                         if (!test_bit(i + 64 + 32, common->keymap) &&
432                             (test_bit(i, common->keymap) ||
433                              test_bit(i + 32, common->keymap) ||
434                              test_bit(i + 64, common->keymap)))
435                                 return i + 64 + 32;
436                 }
437         } else {
438                 for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
439                         if (!test_bit(i, common->keymap) &&
440                             test_bit(i + 64, common->keymap))
441                                 return i;
442                         if (test_bit(i, common->keymap) &&
443                             !test_bit(i + 64, common->keymap))
444                                 return i + 64;
445                 }
446         }
447
448         /* No partially used TKIP slots, pick any available slot */
449         for (i = IEEE80211_WEP_NKID; i < common->keymax; i++) {
450                 /* Do not allow slots that could be needed for TKIP group keys
451                  * to be used. This limitation could be removed if we know that
452                  * TKIP will not be used. */
453                 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
454                         continue;
455                 if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
456                         if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
457                                 continue;
458                         if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
459                                 continue;
460                 }
461
462                 if (!test_bit(i, common->keymap))
463                         return i; /* Found a free slot for a key */
464         }
465
466         /* No free slot found */
467         return -1;
468 }
469
470 /*
471  * Configure encryption in the HW.
472  */
473 int ath_key_config(struct ath_common *common,
474                           struct ieee80211_vif *vif,
475                           struct ieee80211_sta *sta,
476                           struct ieee80211_key_conf *key)
477 {
478         struct ath_keyval hk;
479         const u8 *mac = NULL;
480         u8 gmac[ETH_ALEN];
481         int ret = 0;
482         int idx;
483
484         memset(&hk, 0, sizeof(hk));
485
486         switch (key->cipher) {
487         case 0:
488                 hk.kv_type = ATH_CIPHER_CLR;
489                 break;
490         case WLAN_CIPHER_SUITE_WEP40:
491         case WLAN_CIPHER_SUITE_WEP104:
492                 hk.kv_type = ATH_CIPHER_WEP;
493                 break;
494         case WLAN_CIPHER_SUITE_TKIP:
495                 hk.kv_type = ATH_CIPHER_TKIP;
496                 break;
497         case WLAN_CIPHER_SUITE_CCMP:
498                 hk.kv_type = ATH_CIPHER_AES_CCM;
499                 break;
500         default:
501                 return -EOPNOTSUPP;
502         }
503
504         hk.kv_len = key->keylen;
505         if (key->keylen)
506                 memcpy(hk.kv_val, key->key, key->keylen);
507
508         if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
509                 switch (vif->type) {
510                 case NL80211_IFTYPE_AP:
511                         memcpy(gmac, vif->addr, ETH_ALEN);
512                         gmac[0] |= 0x01;
513                         mac = gmac;
514                         idx = ath_reserve_key_cache_slot(common, key->cipher);
515                         break;
516                 case NL80211_IFTYPE_ADHOC:
517                         if (!sta) {
518                                 idx = key->keyidx;
519                                 break;
520                         }
521                         memcpy(gmac, sta->addr, ETH_ALEN);
522                         gmac[0] |= 0x01;
523                         mac = gmac;
524                         idx = ath_reserve_key_cache_slot(common, key->cipher);
525                         break;
526                 default:
527                         idx = key->keyidx;
528                         break;
529                 }
530         } else if (key->keyidx) {
531                 if (WARN_ON(!sta))
532                         return -EOPNOTSUPP;
533                 mac = sta->addr;
534
535                 if (vif->type != NL80211_IFTYPE_AP) {
536                         /* Only keyidx 0 should be used with unicast key, but
537                          * allow this for client mode for now. */
538                         idx = key->keyidx;
539                 } else
540                         return -EIO;
541         } else {
542                 if (WARN_ON(!sta))
543                         return -EOPNOTSUPP;
544                 mac = sta->addr;
545
546                 idx = ath_reserve_key_cache_slot(common, key->cipher);
547         }
548
549         if (idx < 0)
550                 return -ENOSPC; /* no free key cache entries */
551
552         if (key->cipher == WLAN_CIPHER_SUITE_TKIP)
553                 ret = ath_setkey_tkip(common, idx, key->key, &hk, mac,
554                                       vif->type == NL80211_IFTYPE_AP);
555         else
556                 ret = ath_hw_set_keycache_entry(common, idx, &hk, mac);
557
558         if (!ret)
559                 return -EIO;
560
561         set_bit(idx, common->keymap);
562         if (key->cipher == WLAN_CIPHER_SUITE_CCMP)
563                 set_bit(idx, common->ccmp_keymap);
564
565         if (key->cipher == WLAN_CIPHER_SUITE_TKIP) {
566                 set_bit(idx + 64, common->keymap);
567                 set_bit(idx, common->tkip_keymap);
568                 set_bit(idx + 64, common->tkip_keymap);
569                 if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
570                         set_bit(idx + 32, common->keymap);
571                         set_bit(idx + 64 + 32, common->keymap);
572                         set_bit(idx + 32, common->tkip_keymap);
573                         set_bit(idx + 64 + 32, common->tkip_keymap);
574                 }
575         }
576
577         return idx;
578 }
579 EXPORT_SYMBOL(ath_key_config);
580
581 /*
582  * Delete Key.
583  */
584 void ath_key_delete(struct ath_common *common, struct ieee80211_key_conf *key)
585 {
586         ath_hw_keyreset(common, key->hw_key_idx);
587         if (key->hw_key_idx < IEEE80211_WEP_NKID)
588                 return;
589
590         clear_bit(key->hw_key_idx, common->keymap);
591         clear_bit(key->hw_key_idx, common->ccmp_keymap);
592         if (key->cipher != WLAN_CIPHER_SUITE_TKIP)
593                 return;
594
595         clear_bit(key->hw_key_idx + 64, common->keymap);
596
597         clear_bit(key->hw_key_idx, common->tkip_keymap);
598         clear_bit(key->hw_key_idx + 64, common->tkip_keymap);
599
600         if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
601                 ath_hw_keyreset(common, key->hw_key_idx + 32);
602                 clear_bit(key->hw_key_idx + 32, common->keymap);
603                 clear_bit(key->hw_key_idx + 64 + 32, common->keymap);
604
605                 clear_bit(key->hw_key_idx + 32, common->tkip_keymap);
606                 clear_bit(key->hw_key_idx + 64 + 32, common->tkip_keymap);
607         }
608 }
609 EXPORT_SYMBOL(ath_key_delete);