Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / net / wireless / ath / hw.c
1 /*
2  * Copyright (c) 2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/export.h>
18 #include <asm/unaligned.h>
19
20 #include "ath.h"
21 #include "reg.h"
22
23 #define REG_READ                        (common->ops->read)
24 #define REG_WRITE(_ah, _reg, _val)      (common->ops->write)(_ah, _val, _reg)
25
26 /**
27  * ath_hw_set_bssid_mask - filter out bssids we listen
28  *
29  * @common: the ath_common struct for the device.
30  *
31  * BSSID masking is a method used by AR5212 and newer hardware to inform PCU
32  * which bits of the interface's MAC address should be looked at when trying
33  * to decide which packets to ACK. In station mode and AP mode with a single
34  * BSS every bit matters since we lock to only one BSS. In AP mode with
35  * multiple BSSes (virtual interfaces) not every bit matters because hw must
36  * accept frames for all BSSes and so we tweak some bits of our mac address
37  * in order to have multiple BSSes.
38  *
39  * NOTE: This is a simple filter and does *not* filter out all
40  * relevant frames. Some frames that are not for us might get ACKed from us
41  * by PCU because they just match the mask.
42  *
43  * When handling multiple BSSes you can get the BSSID mask by computing the
44  * set of  ~ ( MAC XOR BSSID ) for all bssids we handle.
45  *
46  * When you do this you are essentially computing the common bits of all your
47  * BSSes. Later it is assumed the hardware will "and" (&) the BSSID mask with
48  * the MAC address to obtain the relevant bits and compare the result with
49  * (frame's BSSID & mask) to see if they match.
50  *
51  * Simple example: on your card you have have two BSSes you have created with
52  * BSSID-01 and BSSID-02. Lets assume BSSID-01 will not use the MAC address.
53  * There is another BSSID-03 but you are not part of it. For simplicity's sake,
54  * assuming only 4 bits for a mac address and for BSSIDs you can then have:
55  *
56  *                  \
57  * MAC:        0001 |
58  * BSSID-01:   0100 | --> Belongs to us
59  * BSSID-02:   1001 |
60  *                  /
61  * -------------------
62  * BSSID-03:   0110  | --> External
63  * -------------------
64  *
65  * Our bssid_mask would then be:
66  *
67  *             On loop iteration for BSSID-01:
68  *             ~(0001 ^ 0100)  -> ~(0101)
69  *                             ->   1010
70  *             bssid_mask      =    1010
71  *
72  *             On loop iteration for BSSID-02:
73  *             bssid_mask &= ~(0001   ^   1001)
74  *             bssid_mask =   (1010)  & ~(0001 ^ 1001)
75  *             bssid_mask =   (1010)  & ~(1000)
76  *             bssid_mask =   (1010)  &  (0111)
77  *             bssid_mask =   0010
78  *
79  * A bssid_mask of 0010 means "only pay attention to the second least
80  * significant bit". This is because its the only bit common
81  * amongst the MAC and all BSSIDs we support. To findout what the real
82  * common bit is we can simply "&" the bssid_mask now with any BSSID we have
83  * or our MAC address (we assume the hardware uses the MAC address).
84  *
85  * Now, suppose there's an incoming frame for BSSID-03:
86  *
87  * IFRAME-01:  0110
88  *
89  * An easy eye-inspeciton of this already should tell you that this frame
90  * will not pass our check. This is because the bssid_mask tells the
91  * hardware to only look at the second least significant bit and the
92  * common bit amongst the MAC and BSSIDs is 0, this frame has the 2nd LSB
93  * as 1, which does not match 0.
94  *
95  * So with IFRAME-01 we *assume* the hardware will do:
96  *
97  *     allow = (IFRAME-01 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0;
98  *  --> allow = (0110 & 0010) == (0010 & 0001) ? 1 : 0;
99  *  --> allow = (0010) == 0000 ? 1 : 0;
100  *  --> allow = 0
101  *
102  *  Lets now test a frame that should work:
103  *
104  * IFRAME-02:  0001 (we should allow)
105  *
106  *     allow = (IFRAME-02 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0;
107  *  --> allow = (0001 & 0010) ==  (0010 & 0001) ? 1 :0;
108  *  --> allow = (0000) == (0000)
109  *  --> allow = 1
110  *
111  * Other examples:
112  *
113  * IFRAME-03:  0100 --> allowed
114  * IFRAME-04:  1001 --> allowed
115  * IFRAME-05:  1101 --> allowed but its not for us!!!
116  *
117  */
118 void ath_hw_setbssidmask(struct ath_common *common)
119 {
120         void *ah = common->ah;
121         u32 id1;
122
123         REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
124         id1 = REG_READ(ah, AR_STA_ID1) & ~AR_STA_ID1_SADH_MASK;
125         id1 |= get_unaligned_le16(common->macaddr + 4);
126         REG_WRITE(ah, AR_STA_ID1, id1);
127
128         REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(common->bssidmask));
129         REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(common->bssidmask + 4));
130 }
131 EXPORT_SYMBOL(ath_hw_setbssidmask);
132
133
134 /**
135  * ath_hw_cycle_counters_update - common function to update cycle counters
136  *
137  * @common: the ath_common struct for the device.
138  *
139  * This function is used to update all cycle counters in one place.
140  * It has to be called while holding common->cc_lock!
141  */
142 void ath_hw_cycle_counters_update(struct ath_common *common)
143 {
144         u32 cycles, busy, rx, tx;
145         void *ah = common->ah;
146
147         /* freeze */
148         REG_WRITE(ah, AR_MIBC, AR_MIBC_FMC);
149
150         /* read */
151         cycles = REG_READ(ah, AR_CCCNT);
152         busy = REG_READ(ah, AR_RCCNT);
153         rx = REG_READ(ah, AR_RFCNT);
154         tx = REG_READ(ah, AR_TFCNT);
155
156         /* clear */
157         REG_WRITE(ah, AR_CCCNT, 0);
158         REG_WRITE(ah, AR_RFCNT, 0);
159         REG_WRITE(ah, AR_RCCNT, 0);
160         REG_WRITE(ah, AR_TFCNT, 0);
161
162         /* unfreeze */
163         REG_WRITE(ah, AR_MIBC, 0);
164
165         /* update all cycle counters here */
166         common->cc_ani.cycles += cycles;
167         common->cc_ani.rx_busy += busy;
168         common->cc_ani.rx_frame += rx;
169         common->cc_ani.tx_frame += tx;
170
171         common->cc_survey.cycles += cycles;
172         common->cc_survey.rx_busy += busy;
173         common->cc_survey.rx_frame += rx;
174         common->cc_survey.tx_frame += tx;
175 }
176 EXPORT_SYMBOL(ath_hw_cycle_counters_update);
177
178 int32_t ath_hw_get_listen_time(struct ath_common *common)
179 {
180         struct ath_cycle_counters *cc = &common->cc_ani;
181         int32_t listen_time;
182
183         listen_time = (cc->cycles - cc->rx_frame - cc->tx_frame) /
184                       (common->clockrate * 1000);
185
186         memset(cc, 0, sizeof(*cc));
187
188         return listen_time;
189 }
190 EXPORT_SYMBOL(ath_hw_get_listen_time);