Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / net / wireless / ath / ath9k / eeprom.c
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include "hw.h"
18
19 void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
20 {
21         REG_WRITE(ah, reg, val);
22
23         if (ah->config.analog_shiftreg)
24                 udelay(100);
25 }
26
27 void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
28                                u32 shift, u32 val)
29 {
30         REG_RMW(ah, reg, ((val << shift) & mask), mask);
31
32         if (ah->config.analog_shiftreg)
33                 udelay(100);
34 }
35
36 int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
37                              int16_t targetLeft, int16_t targetRight)
38 {
39         int16_t rv;
40
41         if (srcRight == srcLeft) {
42                 rv = targetLeft;
43         } else {
44                 rv = (int16_t) (((target - srcLeft) * targetRight +
45                                  (srcRight - target) * targetLeft) /
46                                 (srcRight - srcLeft));
47         }
48         return rv;
49 }
50
51 bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
52                                     u16 *indexL, u16 *indexR)
53 {
54         u16 i;
55
56         if (target <= pList[0]) {
57                 *indexL = *indexR = 0;
58                 return true;
59         }
60         if (target >= pList[listSize - 1]) {
61                 *indexL = *indexR = (u16) (listSize - 1);
62                 return true;
63         }
64
65         for (i = 0; i < listSize - 1; i++) {
66                 if (pList[i] == target) {
67                         *indexL = *indexR = i;
68                         return true;
69                 }
70                 if (target < pList[i + 1]) {
71                         *indexL = i;
72                         *indexR = (u16) (i + 1);
73                         return false;
74                 }
75         }
76         return false;
77 }
78
79 void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
80                                   int eep_start_loc, int size)
81 {
82         int i = 0, j, addr;
83         u32 addrdata[8];
84         u32 data[8];
85
86         for (addr = 0; addr < size; addr++) {
87                 addrdata[i] = AR5416_EEPROM_OFFSET +
88                         ((addr + eep_start_loc) << AR5416_EEPROM_S);
89                 i++;
90                 if (i == 8) {
91                         REG_READ_MULTI(ah, addrdata, data, i);
92
93                         for (j = 0; j < i; j++) {
94                                 *eep_data = data[j];
95                                 eep_data++;
96                         }
97                         i = 0;
98                 }
99         }
100
101         if (i != 0) {
102                 REG_READ_MULTI(ah, addrdata, data, i);
103
104                 for (j = 0; j < i; j++) {
105                         *eep_data = data[j];
106                         eep_data++;
107                 }
108         }
109 }
110
111 static bool ath9k_hw_nvram_read_blob(struct ath_hw *ah, u32 off,
112                                      u16 *data)
113 {
114         u16 *blob_data;
115
116         if (off * sizeof(u16) > ah->eeprom_blob->size)
117                 return false;
118
119         blob_data = (u16 *)ah->eeprom_blob->data;
120         *data =  blob_data[off];
121         return true;
122 }
123
124 bool ath9k_hw_nvram_read(struct ath_hw *ah, u32 off, u16 *data)
125 {
126         struct ath_common *common = ath9k_hw_common(ah);
127         bool ret;
128
129         if (ah->eeprom_blob)
130                 ret = ath9k_hw_nvram_read_blob(ah, off, data);
131         else
132                 ret = common->bus_ops->eeprom_read(common, off, data);
133
134         if (!ret)
135                 ath_dbg(common, EEPROM,
136                         "unable to read eeprom region at offset %u\n", off);
137
138         return ret;
139 }
140
141 void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
142                              u8 *pVpdList, u16 numIntercepts,
143                              u8 *pRetVpdList)
144 {
145         u16 i, k;
146         u8 currPwr = pwrMin;
147         u16 idxL = 0, idxR = 0;
148
149         for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
150                 ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
151                                                numIntercepts, &(idxL),
152                                                &(idxR));
153                 if (idxR < 1)
154                         idxR = 1;
155                 if (idxL == numIntercepts - 1)
156                         idxL = (u16) (numIntercepts - 2);
157                 if (pPwrList[idxL] == pPwrList[idxR])
158                         k = pVpdList[idxL];
159                 else
160                         k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
161                                    (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
162                                   (pPwrList[idxR] - pPwrList[idxL]));
163                 pRetVpdList[i] = (u8) k;
164                 currPwr += 2;
165         }
166 }
167
168 void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
169                                        struct ath9k_channel *chan,
170                                        struct cal_target_power_leg *powInfo,
171                                        u16 numChannels,
172                                        struct cal_target_power_leg *pNewPower,
173                                        u16 numRates, bool isExtTarget)
174 {
175         struct chan_centers centers;
176         u16 clo, chi;
177         int i;
178         int matchIndex = -1, lowIndex = -1;
179         u16 freq;
180
181         ath9k_hw_get_channel_centers(ah, chan, &centers);
182         freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
183
184         if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
185                                        IS_CHAN_2GHZ(chan))) {
186                 matchIndex = 0;
187         } else {
188                 for (i = 0; (i < numChannels) &&
189                              (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
190                         if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
191                                                        IS_CHAN_2GHZ(chan))) {
192                                 matchIndex = i;
193                                 break;
194                         } else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
195                                                 IS_CHAN_2GHZ(chan)) && i > 0 &&
196                                    freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
197                                                 IS_CHAN_2GHZ(chan))) {
198                                 lowIndex = i - 1;
199                                 break;
200                         }
201                 }
202                 if ((matchIndex == -1) && (lowIndex == -1))
203                         matchIndex = i - 1;
204         }
205
206         if (matchIndex != -1) {
207                 *pNewPower = powInfo[matchIndex];
208         } else {
209                 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
210                                          IS_CHAN_2GHZ(chan));
211                 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
212                                          IS_CHAN_2GHZ(chan));
213
214                 for (i = 0; i < numRates; i++) {
215                         pNewPower->tPow2x[i] =
216                                 (u8)ath9k_hw_interpolate(freq, clo, chi,
217                                                 powInfo[lowIndex].tPow2x[i],
218                                                 powInfo[lowIndex + 1].tPow2x[i]);
219                 }
220         }
221 }
222
223 void ath9k_hw_get_target_powers(struct ath_hw *ah,
224                                 struct ath9k_channel *chan,
225                                 struct cal_target_power_ht *powInfo,
226                                 u16 numChannels,
227                                 struct cal_target_power_ht *pNewPower,
228                                 u16 numRates, bool isHt40Target)
229 {
230         struct chan_centers centers;
231         u16 clo, chi;
232         int i;
233         int matchIndex = -1, lowIndex = -1;
234         u16 freq;
235
236         ath9k_hw_get_channel_centers(ah, chan, &centers);
237         freq = isHt40Target ? centers.synth_center : centers.ctl_center;
238
239         if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
240                 matchIndex = 0;
241         } else {
242                 for (i = 0; (i < numChannels) &&
243                              (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
244                         if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
245                                                        IS_CHAN_2GHZ(chan))) {
246                                 matchIndex = i;
247                                 break;
248                         } else
249                                 if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
250                                                 IS_CHAN_2GHZ(chan)) && i > 0 &&
251                                     freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
252                                                 IS_CHAN_2GHZ(chan))) {
253                                         lowIndex = i - 1;
254                                         break;
255                                 }
256                 }
257                 if ((matchIndex == -1) && (lowIndex == -1))
258                         matchIndex = i - 1;
259         }
260
261         if (matchIndex != -1) {
262                 *pNewPower = powInfo[matchIndex];
263         } else {
264                 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
265                                          IS_CHAN_2GHZ(chan));
266                 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
267                                          IS_CHAN_2GHZ(chan));
268
269                 for (i = 0; i < numRates; i++) {
270                         pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
271                                                 clo, chi,
272                                                 powInfo[lowIndex].tPow2x[i],
273                                                 powInfo[lowIndex + 1].tPow2x[i]);
274                 }
275         }
276 }
277
278 u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
279                                 bool is2GHz, int num_band_edges)
280 {
281         u16 twiceMaxEdgePower = MAX_RATE_POWER;
282         int i;
283
284         for (i = 0; (i < num_band_edges) &&
285                      (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
286                 if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
287                         twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
288                         break;
289                 } else if ((i > 0) &&
290                            (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
291                                                       is2GHz))) {
292                         if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
293                                                is2GHz) < freq &&
294                             CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
295                                 twiceMaxEdgePower =
296                                         CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
297                         }
298                         break;
299                 }
300         }
301
302         return twiceMaxEdgePower;
303 }
304
305 u16 ath9k_hw_get_scaled_power(struct ath_hw *ah, u16 power_limit,
306                               u8 antenna_reduction)
307 {
308         u16 reduction = antenna_reduction;
309
310         /*
311          * Reduce scaled Power by number of chains active
312          * to get the per chain tx power level.
313          */
314         switch (ar5416_get_ntxchains(ah->txchainmask)) {
315         case 1:
316                 break;
317         case 2:
318                 reduction += POWER_CORRECTION_FOR_TWO_CHAIN;
319                 break;
320         case 3:
321                 reduction += POWER_CORRECTION_FOR_THREE_CHAIN;
322                 break;
323         }
324
325         if (power_limit > reduction)
326                 power_limit -= reduction;
327         else
328                 power_limit = 0;
329
330         return power_limit;
331 }
332
333 void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
334 {
335         struct ath_common *common = ath9k_hw_common(ah);
336         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
337
338         switch (ar5416_get_ntxchains(ah->txchainmask)) {
339         case 1:
340                 break;
341         case 2:
342                 regulatory->max_power_level += POWER_CORRECTION_FOR_TWO_CHAIN;
343                 break;
344         case 3:
345                 regulatory->max_power_level += POWER_CORRECTION_FOR_THREE_CHAIN;
346                 break;
347         default:
348                 ath_dbg(common, EEPROM, "Invalid chainmask configuration\n");
349                 break;
350         }
351 }
352
353 void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
354                                 struct ath9k_channel *chan,
355                                 void *pRawDataSet,
356                                 u8 *bChans, u16 availPiers,
357                                 u16 tPdGainOverlap,
358                                 u16 *pPdGainBoundaries, u8 *pPDADCValues,
359                                 u16 numXpdGains)
360 {
361         int i, j, k;
362         int16_t ss;
363         u16 idxL = 0, idxR = 0, numPiers;
364         static u8 vpdTableL[AR5416_NUM_PD_GAINS]
365                 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
366         static u8 vpdTableR[AR5416_NUM_PD_GAINS]
367                 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
368         static u8 vpdTableI[AR5416_NUM_PD_GAINS]
369                 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
370
371         u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
372         u8 minPwrT4[AR5416_NUM_PD_GAINS];
373         u8 maxPwrT4[AR5416_NUM_PD_GAINS];
374         int16_t vpdStep;
375         int16_t tmpVal;
376         u16 sizeCurrVpdTable, maxIndex, tgtIndex;
377         bool match;
378         int16_t minDelta = 0;
379         struct chan_centers centers;
380         int pdgain_boundary_default;
381         struct cal_data_per_freq *data_def = pRawDataSet;
382         struct cal_data_per_freq_4k *data_4k = pRawDataSet;
383         struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
384         bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
385         int intercepts;
386
387         if (AR_SREV_9287(ah))
388                 intercepts = AR9287_PD_GAIN_ICEPTS;
389         else
390                 intercepts = AR5416_PD_GAIN_ICEPTS;
391
392         memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
393         ath9k_hw_get_channel_centers(ah, chan, &centers);
394
395         for (numPiers = 0; numPiers < availPiers; numPiers++) {
396                 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
397                         break;
398         }
399
400         match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
401                                                              IS_CHAN_2GHZ(chan)),
402                                                bChans, numPiers, &idxL, &idxR);
403
404         if (match) {
405                 if (AR_SREV_9287(ah)) {
406                         /* FIXME: array overrun? */
407                         for (i = 0; i < numXpdGains; i++) {
408                                 minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
409                                 maxPwrT4[i] = data_9287[idxL].pwrPdg[i][4];
410                                 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
411                                                 data_9287[idxL].pwrPdg[i],
412                                                 data_9287[idxL].vpdPdg[i],
413                                                 intercepts,
414                                                 vpdTableI[i]);
415                         }
416                 } else if (eeprom_4k) {
417                         for (i = 0; i < numXpdGains; i++) {
418                                 minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
419                                 maxPwrT4[i] = data_4k[idxL].pwrPdg[i][4];
420                                 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
421                                                 data_4k[idxL].pwrPdg[i],
422                                                 data_4k[idxL].vpdPdg[i],
423                                                 intercepts,
424                                                 vpdTableI[i]);
425                         }
426                 } else {
427                         for (i = 0; i < numXpdGains; i++) {
428                                 minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
429                                 maxPwrT4[i] = data_def[idxL].pwrPdg[i][4];
430                                 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
431                                                 data_def[idxL].pwrPdg[i],
432                                                 data_def[idxL].vpdPdg[i],
433                                                 intercepts,
434                                                 vpdTableI[i]);
435                         }
436                 }
437         } else {
438                 for (i = 0; i < numXpdGains; i++) {
439                         if (AR_SREV_9287(ah)) {
440                                 pVpdL = data_9287[idxL].vpdPdg[i];
441                                 pPwrL = data_9287[idxL].pwrPdg[i];
442                                 pVpdR = data_9287[idxR].vpdPdg[i];
443                                 pPwrR = data_9287[idxR].pwrPdg[i];
444                         } else if (eeprom_4k) {
445                                 pVpdL = data_4k[idxL].vpdPdg[i];
446                                 pPwrL = data_4k[idxL].pwrPdg[i];
447                                 pVpdR = data_4k[idxR].vpdPdg[i];
448                                 pPwrR = data_4k[idxR].pwrPdg[i];
449                         } else {
450                                 pVpdL = data_def[idxL].vpdPdg[i];
451                                 pPwrL = data_def[idxL].pwrPdg[i];
452                                 pVpdR = data_def[idxR].vpdPdg[i];
453                                 pPwrR = data_def[idxR].pwrPdg[i];
454                         }
455
456                         minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
457
458                         maxPwrT4[i] =
459                                 min(pPwrL[intercepts - 1],
460                                     pPwrR[intercepts - 1]);
461
462
463                         ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
464                                                 pPwrL, pVpdL,
465                                                 intercepts,
466                                                 vpdTableL[i]);
467                         ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
468                                                 pPwrR, pVpdR,
469                                                 intercepts,
470                                                 vpdTableR[i]);
471
472                         for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
473                                 vpdTableI[i][j] =
474                                         (u8)(ath9k_hw_interpolate((u16)
475                                              FREQ2FBIN(centers.
476                                                        synth_center,
477                                                        IS_CHAN_2GHZ
478                                                        (chan)),
479                                              bChans[idxL], bChans[idxR],
480                                              vpdTableL[i][j], vpdTableR[i][j]));
481                         }
482                 }
483         }
484
485         k = 0;
486
487         for (i = 0; i < numXpdGains; i++) {
488                 if (i == (numXpdGains - 1))
489                         pPdGainBoundaries[i] =
490                                 (u16)(maxPwrT4[i] / 2);
491                 else
492                         pPdGainBoundaries[i] =
493                                 (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
494
495                 pPdGainBoundaries[i] =
496                         min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);
497
498                 minDelta = 0;
499
500                 if (i == 0) {
501                         if (AR_SREV_9280_20_OR_LATER(ah))
502                                 ss = (int16_t)(0 - (minPwrT4[i] / 2));
503                         else
504                                 ss = 0;
505                 } else {
506                         ss = (int16_t)((pPdGainBoundaries[i - 1] -
507                                         (minPwrT4[i] / 2)) -
508                                        tPdGainOverlap + 1 + minDelta);
509                 }
510                 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
511                 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
512
513                 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
514                         tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
515                         pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
516                         ss++;
517                 }
518
519                 sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
520                 tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
521                                 (minPwrT4[i] / 2));
522                 maxIndex = (tgtIndex < sizeCurrVpdTable) ?
523                         tgtIndex : sizeCurrVpdTable;
524
525                 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
526                         pPDADCValues[k++] = vpdTableI[i][ss++];
527                 }
528
529                 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
530                                     vpdTableI[i][sizeCurrVpdTable - 2]);
531                 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
532
533                 if (tgtIndex >= maxIndex) {
534                         while ((ss <= tgtIndex) &&
535                                (k < (AR5416_NUM_PDADC_VALUES - 1))) {
536                                 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
537                                                     (ss - maxIndex + 1) * vpdStep));
538                                 pPDADCValues[k++] = (u8)((tmpVal > 255) ?
539                                                          255 : tmpVal);
540                                 ss++;
541                         }
542                 }
543         }
544
545         if (eeprom_4k)
546                 pdgain_boundary_default = 58;
547         else
548                 pdgain_boundary_default = pPdGainBoundaries[i - 1];
549
550         while (i < AR5416_PD_GAINS_IN_MASK) {
551                 pPdGainBoundaries[i] = pdgain_boundary_default;
552                 i++;
553         }
554
555         while (k < AR5416_NUM_PDADC_VALUES) {
556                 pPDADCValues[k] = pPDADCValues[k - 1];
557                 k++;
558         }
559 }
560
561 int ath9k_hw_eeprom_init(struct ath_hw *ah)
562 {
563         int status;
564
565         if (AR_SREV_9300_20_OR_LATER(ah))
566                 ah->eep_ops = &eep_ar9300_ops;
567         else if (AR_SREV_9287(ah)) {
568                 ah->eep_ops = &eep_ar9287_ops;
569         } else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
570                 ah->eep_ops = &eep_4k_ops;
571         } else {
572                 ah->eep_ops = &eep_def_ops;
573         }
574
575         if (!ah->eep_ops->fill_eeprom(ah))
576                 return -EIO;
577
578         status = ah->eep_ops->check_eeprom(ah);
579
580         return status;
581 }