These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / drivers / net / wireless / ath / ath9k / ar9002_phy.c
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 /**
18  * DOC: Programming Atheros 802.11n analog front end radios
19  *
20  * AR5416 MAC based PCI devices and AR518 MAC based PCI-Express
21  * devices have either an external AR2133 analog front end radio for single
22  * band 2.4 GHz communication or an AR5133 analog front end radio for dual
23  * band 2.4 GHz / 5 GHz communication.
24  *
25  * All devices after the AR5416 and AR5418 family starting with the AR9280
26  * have their analog front radios, MAC/BB and host PCIe/USB interface embedded
27  * into a single-chip and require less programming.
28  *
29  * The following single-chips exist with a respective embedded radio:
30  *
31  * AR9280 - 11n dual-band 2x2 MIMO for PCIe
32  * AR9281 - 11n single-band 1x2 MIMO for PCIe
33  * AR9285 - 11n single-band 1x1 for PCIe
34  * AR9287 - 11n single-band 2x2 MIMO for PCIe
35  *
36  * AR9220 - 11n dual-band 2x2 MIMO for PCI
37  * AR9223 - 11n single-band 2x2 MIMO for PCI
38  *
39  * AR9287 - 11n single-band 1x1 MIMO for USB
40  */
41
42 #include "hw.h"
43 #include "ar9002_phy.h"
44
45 /**
46  * ar9002_hw_set_channel - set channel on single-chip device
47  * @ah: atheros hardware structure
48  * @chan:
49  *
50  * This is the function to change channel on single-chip devices, that is
51  * all devices after ar9280.
52  *
53  * This function takes the channel value in MHz and sets
54  * hardware channel value. Assumes writes have been enabled to analog bus.
55  *
56  * Actual Expression,
57  *
58  * For 2GHz channel,
59  * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
60  * (freq_ref = 40MHz)
61  *
62  * For 5GHz channel,
63  * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
64  * (freq_ref = 40MHz/(24>>amodeRefSel))
65  */
66 static int ar9002_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
67 {
68         u16 bMode, fracMode, aModeRefSel = 0;
69         u32 freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
70         struct chan_centers centers;
71         u32 refDivA = 24;
72
73         ath9k_hw_get_channel_centers(ah, chan, &centers);
74         freq = centers.synth_center;
75
76         reg32 = REG_READ(ah, AR_PHY_SYNTH_CONTROL);
77         reg32 &= 0xc0000000;
78
79         if (freq < 4800) { /* 2 GHz, fractional mode */
80                 u32 txctl;
81                 int regWrites = 0;
82
83                 bMode = 1;
84                 fracMode = 1;
85                 aModeRefSel = 0;
86                 channelSel = CHANSEL_2G(freq);
87
88                 if (AR_SREV_9287_11_OR_LATER(ah)) {
89                         if (freq == 2484) {
90                                 /* Enable channel spreading for channel 14 */
91                                 REG_WRITE_ARRAY(&ah->iniCckfirJapan2484,
92                                                 1, regWrites);
93                         } else {
94                                 REG_WRITE_ARRAY(&ah->iniCckfirNormal,
95                                                 1, regWrites);
96                         }
97                 } else {
98                         txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
99                         if (freq == 2484) {
100                                 /* Enable channel spreading for channel 14 */
101                                 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
102                                           txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
103                         } else {
104                                 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
105                                           txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
106                         }
107                 }
108         } else {
109                 bMode = 0;
110                 fracMode = 0;
111
112                 switch (ah->eep_ops->get_eeprom(ah, EEP_FRAC_N_5G)) {
113                 case 0:
114                         if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan))
115                                 aModeRefSel = 0;
116                         else if ((freq % 20) == 0)
117                                 aModeRefSel = 3;
118                         else if ((freq % 10) == 0)
119                                 aModeRefSel = 2;
120                         if (aModeRefSel)
121                                 break;
122                 case 1:
123                 default:
124                         aModeRefSel = 0;
125                         /*
126                          * Enable 2G (fractional) mode for channels
127                          * which are 5MHz spaced.
128                          */
129                         fracMode = 1;
130                         refDivA = 1;
131                         channelSel = CHANSEL_5G(freq);
132
133                         /* RefDivA setting */
134                         ath9k_hw_analog_shift_rmw(ah, AR_AN_SYNTH9,
135                                       AR_AN_SYNTH9_REFDIVA,
136                                       AR_AN_SYNTH9_REFDIVA_S, refDivA);
137
138                 }
139
140                 if (!fracMode) {
141                         ndiv = (freq * (refDivA >> aModeRefSel)) / 60;
142                         channelSel = ndiv & 0x1ff;
143                         channelFrac = (ndiv & 0xfffffe00) * 2;
144                         channelSel = (channelSel << 17) | channelFrac;
145                 }
146         }
147
148         reg32 = reg32 |
149             (bMode << 29) |
150             (fracMode << 28) | (aModeRefSel << 26) | (channelSel);
151
152         REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
153
154         ah->curchan = chan;
155
156         return 0;
157 }
158
159 /**
160  * ar9002_hw_spur_mitigate - convert baseband spur frequency
161  * @ah: atheros hardware structure
162  * @chan:
163  *
164  * For single-chip solutions. Converts to baseband spur frequency given the
165  * input channel frequency and compute register settings below.
166  */
167 static void ar9002_hw_spur_mitigate(struct ath_hw *ah,
168                                     struct ath9k_channel *chan)
169 {
170         int bb_spur = AR_NO_SPUR;
171         int freq;
172         int bin;
173         int bb_spur_off, spur_subchannel_sd;
174         int spur_freq_sd;
175         int spur_delta_phase;
176         int denominator;
177         int tmp, newVal;
178         int i;
179         struct chan_centers centers;
180
181         int8_t mask_m[123];
182         int8_t mask_p[123];
183         int cur_bb_spur;
184         bool is2GHz = IS_CHAN_2GHZ(chan);
185
186         memset(&mask_m, 0, sizeof(int8_t) * 123);
187         memset(&mask_p, 0, sizeof(int8_t) * 123);
188
189         ath9k_hw_get_channel_centers(ah, chan, &centers);
190         freq = centers.synth_center;
191
192         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
193                 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
194
195                 if (AR_NO_SPUR == cur_bb_spur)
196                         break;
197
198                 if (is2GHz)
199                         cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
200                 else
201                         cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
202
203                 cur_bb_spur = cur_bb_spur - freq;
204
205                 if (IS_CHAN_HT40(chan)) {
206                         if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
207                             (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
208                                 bb_spur = cur_bb_spur;
209                                 break;
210                         }
211                 } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
212                            (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
213                         bb_spur = cur_bb_spur;
214                         break;
215                 }
216         }
217
218         if (AR_NO_SPUR == bb_spur) {
219                 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
220                             AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
221                 return;
222         } else {
223                 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
224                             AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
225         }
226
227         bin = bb_spur * 320;
228
229         tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
230
231         ENABLE_REGWRITE_BUFFER(ah);
232
233         newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
234                         AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
235                         AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
236                         AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
237         REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
238
239         newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
240                   AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
241                   AR_PHY_SPUR_REG_MASK_RATE_SELECT |
242                   AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
243                   SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
244         REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
245
246         if (IS_CHAN_HT40(chan)) {
247                 if (bb_spur < 0) {
248                         spur_subchannel_sd = 1;
249                         bb_spur_off = bb_spur + 10;
250                 } else {
251                         spur_subchannel_sd = 0;
252                         bb_spur_off = bb_spur - 10;
253                 }
254         } else {
255                 spur_subchannel_sd = 0;
256                 bb_spur_off = bb_spur;
257         }
258
259         if (IS_CHAN_HT40(chan))
260                 spur_delta_phase =
261                         ((bb_spur * 262144) /
262                          10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
263         else
264                 spur_delta_phase =
265                         ((bb_spur * 524288) /
266                          10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
267
268         denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
269         spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
270
271         newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
272                   SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
273                   SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
274         REG_WRITE(ah, AR_PHY_TIMING11, newVal);
275
276         newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
277         REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
278
279         ar5008_hw_cmn_spur_mitigate(ah, chan, bin);
280
281         REGWRITE_BUFFER_FLUSH(ah);
282 }
283
284 static void ar9002_olc_init(struct ath_hw *ah)
285 {
286         u32 i;
287
288         if (!OLC_FOR_AR9280_20_LATER)
289                 return;
290
291         if (OLC_FOR_AR9287_10_LATER) {
292                 REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
293                                 AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
294                 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
295                                 AR9287_AN_TXPC0_TXPCMODE,
296                                 AR9287_AN_TXPC0_TXPCMODE_S,
297                                 AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
298                 udelay(100);
299         } else {
300                 for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
301                         ah->originalGain[i] =
302                                 MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
303                                                 AR_PHY_TX_GAIN);
304                 ah->PDADCdelta = 0;
305         }
306 }
307
308 static u32 ar9002_hw_compute_pll_control(struct ath_hw *ah,
309                                          struct ath9k_channel *chan)
310 {
311         int ref_div = 5;
312         int pll_div = 0x2c;
313         u32 pll;
314
315         if (chan && IS_CHAN_5GHZ(chan) && !IS_CHAN_A_FAST_CLOCK(ah, chan)) {
316                 if (AR_SREV_9280_20(ah)) {
317                         ref_div = 10;
318                         pll_div = 0x50;
319                 } else {
320                         pll_div = 0x28;
321                 }
322         }
323
324         pll = SM(ref_div, AR_RTC_9160_PLL_REFDIV);
325         pll |= SM(pll_div, AR_RTC_9160_PLL_DIV);
326
327         if (chan && IS_CHAN_HALF_RATE(chan))
328                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
329         else if (chan && IS_CHAN_QUARTER_RATE(chan))
330                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
331
332         return pll;
333 }
334
335 static void ar9002_hw_do_getnf(struct ath_hw *ah,
336                               int16_t nfarray[NUM_NF_READINGS])
337 {
338         int16_t nf;
339
340         nf = MS(REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR);
341         nfarray[0] = sign_extend32(nf, 8);
342
343         nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR9280_PHY_EXT_MINCCA_PWR);
344         if (IS_CHAN_HT40(ah->curchan))
345                 nfarray[3] = sign_extend32(nf, 8);
346
347         if (!(ah->rxchainmask & BIT(1)))
348                 return;
349
350         nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR9280_PHY_CH1_MINCCA_PWR);
351         nfarray[1] = sign_extend32(nf, 8);
352
353         nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR9280_PHY_CH1_EXT_MINCCA_PWR);
354         if (IS_CHAN_HT40(ah->curchan))
355                 nfarray[4] = sign_extend32(nf, 8);
356 }
357
358 static void ar9002_hw_set_nf_limits(struct ath_hw *ah)
359 {
360         if (AR_SREV_9285(ah)) {
361                 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9285_2GHZ;
362                 ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9285_2GHZ;
363                 ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9285_2GHZ;
364         } else if (AR_SREV_9287(ah)) {
365                 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9287_2GHZ;
366                 ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9287_2GHZ;
367                 ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9287_2GHZ;
368         } else if (AR_SREV_9271(ah)) {
369                 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9271_2GHZ;
370                 ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9271_2GHZ;
371                 ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9271_2GHZ;
372         } else {
373                 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_2GHZ;
374                 ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_2GHZ;
375                 ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9280_2GHZ;
376                 ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_5GHZ;
377                 ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_5GHZ;
378                 ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9280_5GHZ;
379         }
380 }
381
382 static void ar9002_hw_antdiv_comb_conf_get(struct ath_hw *ah,
383                                    struct ath_hw_antcomb_conf *antconf)
384 {
385         u32 regval;
386
387         regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
388         antconf->main_lna_conf = (regval & AR_PHY_9285_ANT_DIV_MAIN_LNACONF) >>
389                                   AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S;
390         antconf->alt_lna_conf = (regval & AR_PHY_9285_ANT_DIV_ALT_LNACONF) >>
391                                  AR_PHY_9285_ANT_DIV_ALT_LNACONF_S;
392         antconf->fast_div_bias = (regval & AR_PHY_9285_FAST_DIV_BIAS) >>
393                                   AR_PHY_9285_FAST_DIV_BIAS_S;
394         antconf->lna1_lna2_switch_delta = -1;
395         antconf->lna1_lna2_delta = -3;
396         antconf->div_group = 0;
397 }
398
399 static void ar9002_hw_antdiv_comb_conf_set(struct ath_hw *ah,
400                                    struct ath_hw_antcomb_conf *antconf)
401 {
402         u32 regval;
403
404         regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
405         regval &= ~(AR_PHY_9285_ANT_DIV_MAIN_LNACONF |
406                     AR_PHY_9285_ANT_DIV_ALT_LNACONF |
407                     AR_PHY_9285_FAST_DIV_BIAS);
408         regval |= ((antconf->main_lna_conf << AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S)
409                    & AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
410         regval |= ((antconf->alt_lna_conf << AR_PHY_9285_ANT_DIV_ALT_LNACONF_S)
411                    & AR_PHY_9285_ANT_DIV_ALT_LNACONF);
412         regval |= ((antconf->fast_div_bias << AR_PHY_9285_FAST_DIV_BIAS_S)
413                    & AR_PHY_9285_FAST_DIV_BIAS);
414
415         REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regval);
416 }
417
418 #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT
419
420 static void ar9002_hw_set_bt_ant_diversity(struct ath_hw *ah, bool enable)
421 {
422         struct ath_btcoex_hw *btcoex = &ah->btcoex_hw;
423         u8 antdiv_ctrl1, antdiv_ctrl2;
424         u32 regval;
425
426         if (enable) {
427                 antdiv_ctrl1 = ATH_BT_COEX_ANTDIV_CONTROL1_ENABLE;
428                 antdiv_ctrl2 = ATH_BT_COEX_ANTDIV_CONTROL2_ENABLE;
429
430                 /*
431                  * Don't disable BT ant to allow BB to control SWCOM.
432                  */
433                 btcoex->bt_coex_mode2 &= (~(AR_BT_DISABLE_BT_ANT));
434                 REG_WRITE(ah, AR_BT_COEX_MODE2, btcoex->bt_coex_mode2);
435
436                 REG_WRITE(ah, AR_PHY_SWITCH_COM, ATH_BT_COEX_ANT_DIV_SWITCH_COM);
437                 REG_RMW(ah, AR_PHY_SWITCH_CHAIN_0, 0, 0xf0000000);
438         } else {
439                 /*
440                  * Disable antenna diversity, use LNA1 only.
441                  */
442                 antdiv_ctrl1 = ATH_BT_COEX_ANTDIV_CONTROL1_FIXED_A;
443                 antdiv_ctrl2 = ATH_BT_COEX_ANTDIV_CONTROL2_FIXED_A;
444
445                 /*
446                  * Disable BT Ant. to allow concurrent BT and WLAN receive.
447                  */
448                 btcoex->bt_coex_mode2 |= AR_BT_DISABLE_BT_ANT;
449                 REG_WRITE(ah, AR_BT_COEX_MODE2, btcoex->bt_coex_mode2);
450
451                 /*
452                  * Program SWCOM table to make sure RF switch always parks
453                  * at BT side.
454                  */
455                 REG_WRITE(ah, AR_PHY_SWITCH_COM, 0);
456                 REG_RMW(ah, AR_PHY_SWITCH_CHAIN_0, 0, 0xf0000000);
457         }
458
459         regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
460         regval &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
461         /*
462          * Clear ant_fast_div_bias [14:9] since for WB195,
463          * the main LNA is always LNA1.
464          */
465         regval &= (~(AR_PHY_9285_FAST_DIV_BIAS));
466         regval |= SM(antdiv_ctrl1, AR_PHY_9285_ANT_DIV_CTL);
467         regval |= SM(antdiv_ctrl2, AR_PHY_9285_ANT_DIV_ALT_LNACONF);
468         regval |= SM((antdiv_ctrl2 >> 2), AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
469         regval |= SM((antdiv_ctrl1 >> 1), AR_PHY_9285_ANT_DIV_ALT_GAINTB);
470         regval |= SM((antdiv_ctrl1 >> 2), AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
471         REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regval);
472
473         regval = REG_READ(ah, AR_PHY_CCK_DETECT);
474         regval &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
475         regval |= SM((antdiv_ctrl1 >> 3), AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
476         REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
477 }
478
479 #endif
480
481 static void ar9002_hw_spectral_scan_config(struct ath_hw *ah,
482                                     struct ath_spec_scan *param)
483 {
484         u8 count;
485
486         if (!param->enabled) {
487                 REG_CLR_BIT(ah, AR_PHY_SPECTRAL_SCAN,
488                             AR_PHY_SPECTRAL_SCAN_ENABLE);
489                 return;
490         }
491         REG_SET_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_FFT_ENA);
492         REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENABLE);
493
494         if (param->short_repeat)
495                 REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN,
496                             AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT);
497         else
498                 REG_CLR_BIT(ah, AR_PHY_SPECTRAL_SCAN,
499                             AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT);
500
501         /* on AR92xx, the highest bit of count will make the the chip send
502          * spectral samples endlessly. Check if this really was intended,
503          * and fix otherwise.
504          */
505         count = param->count;
506         if (param->endless) {
507                 if (AR_SREV_9271(ah))
508                         count = 0;
509                 else
510                         count = 0x80;
511         } else if (count & 0x80)
512                 count = 0x7f;
513
514         REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
515                       AR_PHY_SPECTRAL_SCAN_COUNT, count);
516         REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
517                       AR_PHY_SPECTRAL_SCAN_PERIOD, param->period);
518         REG_RMW_FIELD(ah, AR_PHY_SPECTRAL_SCAN,
519                       AR_PHY_SPECTRAL_SCAN_FFT_PERIOD, param->fft_period);
520
521         return;
522 }
523
524 static void ar9002_hw_spectral_scan_trigger(struct ath_hw *ah)
525 {
526         REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENABLE);
527         /* Activate spectral scan */
528         REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN,
529                     AR_PHY_SPECTRAL_SCAN_ACTIVE);
530 }
531
532 static void ar9002_hw_spectral_scan_wait(struct ath_hw *ah)
533 {
534         struct ath_common *common = ath9k_hw_common(ah);
535
536         /* Poll for spectral scan complete */
537         if (!ath9k_hw_wait(ah, AR_PHY_SPECTRAL_SCAN,
538                            AR_PHY_SPECTRAL_SCAN_ACTIVE,
539                            0, AH_WAIT_TIMEOUT)) {
540                 ath_err(common, "spectral scan wait failed\n");
541                 return;
542         }
543 }
544
545 static void ar9002_hw_tx99_start(struct ath_hw *ah, u32 qnum)
546 {
547         REG_SET_BIT(ah, 0x9864, 0x7f000);
548         REG_SET_BIT(ah, 0x9924, 0x7f00fe);
549         REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_DIS);
550         REG_WRITE(ah, AR_CR, AR_CR_RXD);
551         REG_WRITE(ah, AR_DLCL_IFS(qnum), 0);
552         REG_WRITE(ah, AR_D_GBL_IFS_SIFS, 20);
553         REG_WRITE(ah, AR_D_GBL_IFS_EIFS, 20);
554         REG_WRITE(ah, AR_D_FPCTL, 0x10|qnum);
555         REG_WRITE(ah, AR_TIME_OUT, 0x00000400);
556         REG_WRITE(ah, AR_DRETRY_LIMIT(qnum), 0xffffffff);
557         REG_SET_BIT(ah, AR_QMISC(qnum), AR_Q_MISC_DCU_EARLY_TERM_REQ);
558 }
559
560 static void ar9002_hw_tx99_stop(struct ath_hw *ah)
561 {
562         REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_DIS);
563 }
564
565 void ar9002_hw_attach_phy_ops(struct ath_hw *ah)
566 {
567         struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
568         struct ath_hw_ops *ops = ath9k_hw_ops(ah);
569
570         priv_ops->set_rf_regs = NULL;
571         priv_ops->rf_set_freq = ar9002_hw_set_channel;
572         priv_ops->spur_mitigate_freq = ar9002_hw_spur_mitigate;
573         priv_ops->olc_init = ar9002_olc_init;
574         priv_ops->compute_pll_control = ar9002_hw_compute_pll_control;
575         priv_ops->do_getnf = ar9002_hw_do_getnf;
576
577         ops->antdiv_comb_conf_get = ar9002_hw_antdiv_comb_conf_get;
578         ops->antdiv_comb_conf_set = ar9002_hw_antdiv_comb_conf_set;
579         ops->spectral_scan_config = ar9002_hw_spectral_scan_config;
580         ops->spectral_scan_trigger = ar9002_hw_spectral_scan_trigger;
581         ops->spectral_scan_wait = ar9002_hw_spectral_scan_wait;
582
583 #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT
584         ops->set_bt_ant_diversity = ar9002_hw_set_bt_ant_diversity;
585 #endif
586         ops->tx99_start = ar9002_hw_tx99_start;
587         ops->tx99_stop = ar9002_hw_tx99_stop;
588
589         ar9002_hw_set_nf_limits(ah);
590 }