Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / net / wan / farsync.c
1 /*
2  *      FarSync WAN driver for Linux (2.6.x kernel version)
3  *
4  *      Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
5  *
6  *      Copyright (C) 2001-2004 FarSite Communications Ltd.
7  *      www.farsite.co.uk
8  *
9  *      This program is free software; you can redistribute it and/or
10  *      modify it under the terms of the GNU General Public License
11  *      as published by the Free Software Foundation; either version
12  *      2 of the License, or (at your option) any later version.
13  *
14  *      Author:      R.J.Dunlop    <bob.dunlop@farsite.co.uk>
15  *      Maintainer:  Kevin Curtis  <kevin.curtis@farsite.co.uk>
16  */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/version.h>
23 #include <linux/pci.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/ioport.h>
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/delay.h>
30 #include <linux/if.h>
31 #include <linux/hdlc.h>
32 #include <asm/io.h>
33 #include <asm/uaccess.h>
34
35 #include "farsync.h"
36
37 /*
38  *      Module info
39  */
40 MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>");
41 MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
42 MODULE_LICENSE("GPL");
43
44 /*      Driver configuration and global parameters
45  *      ==========================================
46  */
47
48 /*      Number of ports (per card) and cards supported
49  */
50 #define FST_MAX_PORTS           4
51 #define FST_MAX_CARDS           32
52
53 /*      Default parameters for the link
54  */
55 #define FST_TX_QUEUE_LEN        100     /* At 8Mbps a longer queue length is
56                                          * useful */
57 #define FST_TXQ_DEPTH           16      /* This one is for the buffering
58                                          * of frames on the way down to the card
59                                          * so that we can keep the card busy
60                                          * and maximise throughput
61                                          */
62 #define FST_HIGH_WATER_MARK     12      /* Point at which we flow control
63                                          * network layer */
64 #define FST_LOW_WATER_MARK      8       /* Point at which we remove flow
65                                          * control from network layer */
66 #define FST_MAX_MTU             8000    /* Huge but possible */
67 #define FST_DEF_MTU             1500    /* Common sane value */
68
69 #define FST_TX_TIMEOUT          (2*HZ)
70
71 #ifdef ARPHRD_RAWHDLC
72 #define ARPHRD_MYTYPE   ARPHRD_RAWHDLC  /* Raw frames */
73 #else
74 #define ARPHRD_MYTYPE   ARPHRD_HDLC     /* Cisco-HDLC (keepalives etc) */
75 #endif
76
77 /*
78  * Modules parameters and associated variables
79  */
80 static int fst_txq_low = FST_LOW_WATER_MARK;
81 static int fst_txq_high = FST_HIGH_WATER_MARK;
82 static int fst_max_reads = 7;
83 static int fst_excluded_cards = 0;
84 static int fst_excluded_list[FST_MAX_CARDS];
85
86 module_param(fst_txq_low, int, 0);
87 module_param(fst_txq_high, int, 0);
88 module_param(fst_max_reads, int, 0);
89 module_param(fst_excluded_cards, int, 0);
90 module_param_array(fst_excluded_list, int, NULL, 0);
91
92 /*      Card shared memory layout
93  *      =========================
94  */
95 #pragma pack(1)
96
97 /*      This information is derived in part from the FarSite FarSync Smc.h
98  *      file. Unfortunately various name clashes and the non-portability of the
99  *      bit field declarations in that file have meant that I have chosen to
100  *      recreate the information here.
101  *
102  *      The SMC (Shared Memory Configuration) has a version number that is
103  *      incremented every time there is a significant change. This number can
104  *      be used to check that we have not got out of step with the firmware
105  *      contained in the .CDE files.
106  */
107 #define SMC_VERSION 24
108
109 #define FST_MEMSIZE 0x100000    /* Size of card memory (1Mb) */
110
111 #define SMC_BASE 0x00002000L    /* Base offset of the shared memory window main
112                                  * configuration structure */
113 #define BFM_BASE 0x00010000L    /* Base offset of the shared memory window DMA
114                                  * buffers */
115
116 #define LEN_TX_BUFFER 8192      /* Size of packet buffers */
117 #define LEN_RX_BUFFER 8192
118
119 #define LEN_SMALL_TX_BUFFER 256 /* Size of obsolete buffs used for DOS diags */
120 #define LEN_SMALL_RX_BUFFER 256
121
122 #define NUM_TX_BUFFER 2         /* Must be power of 2. Fixed by firmware */
123 #define NUM_RX_BUFFER 8
124
125 /* Interrupt retry time in milliseconds */
126 #define INT_RETRY_TIME 2
127
128 /*      The Am186CH/CC processors support a SmartDMA mode using circular pools
129  *      of buffer descriptors. The structure is almost identical to that used
130  *      in the LANCE Ethernet controllers. Details available as PDF from the
131  *      AMD web site: http://www.amd.com/products/epd/processors/\
132  *                    2.16bitcont/3.am186cxfa/a21914/21914.pdf
133  */
134 struct txdesc {                 /* Transmit descriptor */
135         volatile u16 ladr;      /* Low order address of packet. This is a
136                                  * linear address in the Am186 memory space
137                                  */
138         volatile u8 hadr;       /* High order address. Low 4 bits only, high 4
139                                  * bits must be zero
140                                  */
141         volatile u8 bits;       /* Status and config */
142         volatile u16 bcnt;      /* 2s complement of packet size in low 15 bits.
143                                  * Transmit terminal count interrupt enable in
144                                  * top bit.
145                                  */
146         u16 unused;             /* Not used in Tx */
147 };
148
149 struct rxdesc {                 /* Receive descriptor */
150         volatile u16 ladr;      /* Low order address of packet */
151         volatile u8 hadr;       /* High order address */
152         volatile u8 bits;       /* Status and config */
153         volatile u16 bcnt;      /* 2s complement of buffer size in low 15 bits.
154                                  * Receive terminal count interrupt enable in
155                                  * top bit.
156                                  */
157         volatile u16 mcnt;      /* Message byte count (15 bits) */
158 };
159
160 /* Convert a length into the 15 bit 2's complement */
161 /* #define cnv_bcnt(len)   (( ~(len) + 1 ) & 0x7FFF ) */
162 /* Since we need to set the high bit to enable the completion interrupt this
163  * can be made a lot simpler
164  */
165 #define cnv_bcnt(len)   (-(len))
166
167 /* Status and config bits for the above */
168 #define DMA_OWN         0x80    /* SmartDMA owns the descriptor */
169 #define TX_STP          0x02    /* Tx: start of packet */
170 #define TX_ENP          0x01    /* Tx: end of packet */
171 #define RX_ERR          0x40    /* Rx: error (OR of next 4 bits) */
172 #define RX_FRAM         0x20    /* Rx: framing error */
173 #define RX_OFLO         0x10    /* Rx: overflow error */
174 #define RX_CRC          0x08    /* Rx: CRC error */
175 #define RX_HBUF         0x04    /* Rx: buffer error */
176 #define RX_STP          0x02    /* Rx: start of packet */
177 #define RX_ENP          0x01    /* Rx: end of packet */
178
179 /* Interrupts from the card are caused by various events which are presented
180  * in a circular buffer as several events may be processed on one physical int
181  */
182 #define MAX_CIRBUFF     32
183
184 struct cirbuff {
185         u8 rdindex;             /* read, then increment and wrap */
186         u8 wrindex;             /* write, then increment and wrap */
187         u8 evntbuff[MAX_CIRBUFF];
188 };
189
190 /* Interrupt event codes.
191  * Where appropriate the two low order bits indicate the port number
192  */
193 #define CTLA_CHG        0x18    /* Control signal changed */
194 #define CTLB_CHG        0x19
195 #define CTLC_CHG        0x1A
196 #define CTLD_CHG        0x1B
197
198 #define INIT_CPLT       0x20    /* Initialisation complete */
199 #define INIT_FAIL       0x21    /* Initialisation failed */
200
201 #define ABTA_SENT       0x24    /* Abort sent */
202 #define ABTB_SENT       0x25
203 #define ABTC_SENT       0x26
204 #define ABTD_SENT       0x27
205
206 #define TXA_UNDF        0x28    /* Transmission underflow */
207 #define TXB_UNDF        0x29
208 #define TXC_UNDF        0x2A
209 #define TXD_UNDF        0x2B
210
211 #define F56_INT         0x2C
212 #define M32_INT         0x2D
213
214 #define TE1_ALMA        0x30
215
216 /* Port physical configuration. See farsync.h for field values */
217 struct port_cfg {
218         u16 lineInterface;      /* Physical interface type */
219         u8 x25op;               /* Unused at present */
220         u8 internalClock;       /* 1 => internal clock, 0 => external */
221         u8 transparentMode;     /* 1 => on, 0 => off */
222         u8 invertClock;         /* 0 => normal, 1 => inverted */
223         u8 padBytes[6];         /* Padding */
224         u32 lineSpeed;          /* Speed in bps */
225 };
226
227 /* TE1 port physical configuration */
228 struct su_config {
229         u32 dataRate;
230         u8 clocking;
231         u8 framing;
232         u8 structure;
233         u8 interface;
234         u8 coding;
235         u8 lineBuildOut;
236         u8 equalizer;
237         u8 transparentMode;
238         u8 loopMode;
239         u8 range;
240         u8 txBufferMode;
241         u8 rxBufferMode;
242         u8 startingSlot;
243         u8 losThreshold;
244         u8 enableIdleCode;
245         u8 idleCode;
246         u8 spare[44];
247 };
248
249 /* TE1 Status */
250 struct su_status {
251         u32 receiveBufferDelay;
252         u32 framingErrorCount;
253         u32 codeViolationCount;
254         u32 crcErrorCount;
255         u32 lineAttenuation;
256         u8 portStarted;
257         u8 lossOfSignal;
258         u8 receiveRemoteAlarm;
259         u8 alarmIndicationSignal;
260         u8 spare[40];
261 };
262
263 /* Finally sling all the above together into the shared memory structure.
264  * Sorry it's a hodge podge of arrays, structures and unused bits, it's been
265  * evolving under NT for some time so I guess we're stuck with it.
266  * The structure starts at offset SMC_BASE.
267  * See farsync.h for some field values.
268  */
269 struct fst_shared {
270         /* DMA descriptor rings */
271         struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER];
272         struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER];
273
274         /* Obsolete small buffers */
275         u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER];
276         u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER];
277
278         u8 taskStatus;          /* 0x00 => initialising, 0x01 => running,
279                                  * 0xFF => halted
280                                  */
281
282         u8 interruptHandshake;  /* Set to 0x01 by adapter to signal interrupt,
283                                  * set to 0xEE by host to acknowledge interrupt
284                                  */
285
286         u16 smcVersion;         /* Must match SMC_VERSION */
287
288         u32 smcFirmwareVersion; /* 0xIIVVRRBB where II = product ID, VV = major
289                                  * version, RR = revision and BB = build
290                                  */
291
292         u16 txa_done;           /* Obsolete completion flags */
293         u16 rxa_done;
294         u16 txb_done;
295         u16 rxb_done;
296         u16 txc_done;
297         u16 rxc_done;
298         u16 txd_done;
299         u16 rxd_done;
300
301         u16 mailbox[4];         /* Diagnostics mailbox. Not used */
302
303         struct cirbuff interruptEvent;  /* interrupt causes */
304
305         u32 v24IpSts[FST_MAX_PORTS];    /* V.24 control input status */
306         u32 v24OpSts[FST_MAX_PORTS];    /* V.24 control output status */
307
308         struct port_cfg portConfig[FST_MAX_PORTS];
309
310         u16 clockStatus[FST_MAX_PORTS]; /* lsb: 0=> present, 1=> absent */
311
312         u16 cableStatus;        /* lsb: 0=> present, 1=> absent */
313
314         u16 txDescrIndex[FST_MAX_PORTS];        /* transmit descriptor ring index */
315         u16 rxDescrIndex[FST_MAX_PORTS];        /* receive descriptor ring index */
316
317         u16 portMailbox[FST_MAX_PORTS][2];      /* command, modifier */
318         u16 cardMailbox[4];     /* Not used */
319
320         /* Number of times the card thinks the host has
321          * missed an interrupt by not acknowledging
322          * within 2mS (I guess NT has problems)
323          */
324         u32 interruptRetryCount;
325
326         /* Driver private data used as an ID. We'll not
327          * use this as I'd rather keep such things
328          * in main memory rather than on the PCI bus
329          */
330         u32 portHandle[FST_MAX_PORTS];
331
332         /* Count of Tx underflows for stats */
333         u32 transmitBufferUnderflow[FST_MAX_PORTS];
334
335         /* Debounced V.24 control input status */
336         u32 v24DebouncedSts[FST_MAX_PORTS];
337
338         /* Adapter debounce timers. Don't touch */
339         u32 ctsTimer[FST_MAX_PORTS];
340         u32 ctsTimerRun[FST_MAX_PORTS];
341         u32 dcdTimer[FST_MAX_PORTS];
342         u32 dcdTimerRun[FST_MAX_PORTS];
343
344         u32 numberOfPorts;      /* Number of ports detected at startup */
345
346         u16 _reserved[64];
347
348         u16 cardMode;           /* Bit-mask to enable features:
349                                  * Bit 0: 1 enables LED identify mode
350                                  */
351
352         u16 portScheduleOffset;
353
354         struct su_config suConfig;      /* TE1 Bits */
355         struct su_status suStatus;
356
357         u32 endOfSmcSignature;  /* endOfSmcSignature MUST be the last member of
358                                  * the structure and marks the end of shared
359                                  * memory. Adapter code initializes it as
360                                  * END_SIG.
361                                  */
362 };
363
364 /* endOfSmcSignature value */
365 #define END_SIG                 0x12345678
366
367 /* Mailbox values. (portMailbox) */
368 #define NOP             0       /* No operation */
369 #define ACK             1       /* Positive acknowledgement to PC driver */
370 #define NAK             2       /* Negative acknowledgement to PC driver */
371 #define STARTPORT       3       /* Start an HDLC port */
372 #define STOPPORT        4       /* Stop an HDLC port */
373 #define ABORTTX         5       /* Abort the transmitter for a port */
374 #define SETV24O         6       /* Set V24 outputs */
375
376 /* PLX Chip Register Offsets */
377 #define CNTRL_9052      0x50    /* Control Register */
378 #define CNTRL_9054      0x6c    /* Control Register */
379
380 #define INTCSR_9052     0x4c    /* Interrupt control/status register */
381 #define INTCSR_9054     0x68    /* Interrupt control/status register */
382
383 /* 9054 DMA Registers */
384 /*
385  * Note that we will be using DMA Channel 0 for copying rx data
386  * and Channel 1 for copying tx data
387  */
388 #define DMAMODE0        0x80
389 #define DMAPADR0        0x84
390 #define DMALADR0        0x88
391 #define DMASIZ0         0x8c
392 #define DMADPR0         0x90
393 #define DMAMODE1        0x94
394 #define DMAPADR1        0x98
395 #define DMALADR1        0x9c
396 #define DMASIZ1         0xa0
397 #define DMADPR1         0xa4
398 #define DMACSR0         0xa8
399 #define DMACSR1         0xa9
400 #define DMAARB          0xac
401 #define DMATHR          0xb0
402 #define DMADAC0         0xb4
403 #define DMADAC1         0xb8
404 #define DMAMARBR        0xac
405
406 #define FST_MIN_DMA_LEN 64
407 #define FST_RX_DMA_INT  0x01
408 #define FST_TX_DMA_INT  0x02
409 #define FST_CARD_INT    0x04
410
411 /* Larger buffers are positioned in memory at offset BFM_BASE */
412 struct buf_window {
413         u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER];
414         u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER];
415 };
416
417 /* Calculate offset of a buffer object within the shared memory window */
418 #define BUF_OFFSET(X)   (BFM_BASE + offsetof(struct buf_window, X))
419
420 #pragma pack()
421
422 /*      Device driver private information
423  *      =================================
424  */
425 /*      Per port (line or channel) information
426  */
427 struct fst_port_info {
428         struct net_device *dev; /* Device struct - must be first */
429         struct fst_card_info *card;     /* Card we're associated with */
430         int index;              /* Port index on the card */
431         int hwif;               /* Line hardware (lineInterface copy) */
432         int run;                /* Port is running */
433         int mode;               /* Normal or FarSync raw */
434         int rxpos;              /* Next Rx buffer to use */
435         int txpos;              /* Next Tx buffer to use */
436         int txipos;             /* Next Tx buffer to check for free */
437         int start;              /* Indication of start/stop to network */
438         /*
439          * A sixteen entry transmit queue
440          */
441         int txqs;               /* index to get next buffer to tx */
442         int txqe;               /* index to queue next packet */
443         struct sk_buff *txq[FST_TXQ_DEPTH];     /* The queue */
444         int rxqdepth;
445 };
446
447 /*      Per card information
448  */
449 struct fst_card_info {
450         char __iomem *mem;      /* Card memory mapped to kernel space */
451         char __iomem *ctlmem;   /* Control memory for PCI cards */
452         unsigned int phys_mem;  /* Physical memory window address */
453         unsigned int phys_ctlmem;       /* Physical control memory address */
454         unsigned int irq;       /* Interrupt request line number */
455         unsigned int nports;    /* Number of serial ports */
456         unsigned int type;      /* Type index of card */
457         unsigned int state;     /* State of card */
458         spinlock_t card_lock;   /* Lock for SMP access */
459         unsigned short pci_conf;        /* PCI card config in I/O space */
460         /* Per port info */
461         struct fst_port_info ports[FST_MAX_PORTS];
462         struct pci_dev *device; /* Information about the pci device */
463         int card_no;            /* Inst of the card on the system */
464         int family;             /* TxP or TxU */
465         int dmarx_in_progress;
466         int dmatx_in_progress;
467         unsigned long int_count;
468         unsigned long int_time_ave;
469         void *rx_dma_handle_host;
470         dma_addr_t rx_dma_handle_card;
471         void *tx_dma_handle_host;
472         dma_addr_t tx_dma_handle_card;
473         struct sk_buff *dma_skb_rx;
474         struct fst_port_info *dma_port_rx;
475         struct fst_port_info *dma_port_tx;
476         int dma_len_rx;
477         int dma_len_tx;
478         int dma_txpos;
479         int dma_rxpos;
480 };
481
482 /* Convert an HDLC device pointer into a port info pointer and similar */
483 #define dev_to_port(D)  (dev_to_hdlc(D)->priv)
484 #define port_to_dev(P)  ((P)->dev)
485
486
487 /*
488  *      Shared memory window access macros
489  *
490  *      We have a nice memory based structure above, which could be directly
491  *      mapped on i386 but might not work on other architectures unless we use
492  *      the readb,w,l and writeb,w,l macros. Unfortunately these macros take
493  *      physical offsets so we have to convert. The only saving grace is that
494  *      this should all collapse back to a simple indirection eventually.
495  */
496 #define WIN_OFFSET(X)   ((long)&(((struct fst_shared *)SMC_BASE)->X))
497
498 #define FST_RDB(C,E)    readb ((C)->mem + WIN_OFFSET(E))
499 #define FST_RDW(C,E)    readw ((C)->mem + WIN_OFFSET(E))
500 #define FST_RDL(C,E)    readl ((C)->mem + WIN_OFFSET(E))
501
502 #define FST_WRB(C,E,B)  writeb ((B), (C)->mem + WIN_OFFSET(E))
503 #define FST_WRW(C,E,W)  writew ((W), (C)->mem + WIN_OFFSET(E))
504 #define FST_WRL(C,E,L)  writel ((L), (C)->mem + WIN_OFFSET(E))
505
506 /*
507  *      Debug support
508  */
509 #if FST_DEBUG
510
511 static int fst_debug_mask = { FST_DEBUG };
512
513 /* Most common debug activity is to print something if the corresponding bit
514  * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to
515  * support variable numbers of macro parameters. The inverted if prevents us
516  * eating someone else's else clause.
517  */
518 #define dbg(F, fmt, args...)                                    \
519 do {                                                            \
520         if (fst_debug_mask & (F))                               \
521                 printk(KERN_DEBUG pr_fmt(fmt), ##args);         \
522 } while (0)
523 #else
524 #define dbg(F, fmt, args...)                                    \
525 do {                                                            \
526         if (0)                                                  \
527                 printk(KERN_DEBUG pr_fmt(fmt), ##args);         \
528 } while (0)
529 #endif
530
531 /*
532  *      PCI ID lookup table
533  */
534 static const struct pci_device_id fst_pci_dev_id[] = {
535         {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID, 
536          PCI_ANY_ID, 0, 0, FST_TYPE_T2P},
537
538         {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID, 
539          PCI_ANY_ID, 0, 0, FST_TYPE_T4P},
540
541         {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID, 
542          PCI_ANY_ID, 0, 0, FST_TYPE_T1U},
543
544         {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID, 
545          PCI_ANY_ID, 0, 0, FST_TYPE_T2U},
546
547         {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID, 
548          PCI_ANY_ID, 0, 0, FST_TYPE_T4U},
549
550         {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID, 
551          PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
552
553         {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID, 
554          PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
555         {0,}                    /* End */
556 };
557
558 MODULE_DEVICE_TABLE(pci, fst_pci_dev_id);
559
560 /*
561  *      Device Driver Work Queues
562  *
563  *      So that we don't spend too much time processing events in the 
564  *      Interrupt Service routine, we will declare a work queue per Card 
565  *      and make the ISR schedule a task in the queue for later execution.
566  *      In the 2.4 Kernel we used to use the immediate queue for BH's
567  *      Now that they are gone, tasklets seem to be much better than work 
568  *      queues.
569  */
570
571 static void do_bottom_half_tx(struct fst_card_info *card);
572 static void do_bottom_half_rx(struct fst_card_info *card);
573 static void fst_process_tx_work_q(unsigned long work_q);
574 static void fst_process_int_work_q(unsigned long work_q);
575
576 static DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q, 0);
577 static DECLARE_TASKLET(fst_int_task, fst_process_int_work_q, 0);
578
579 static struct fst_card_info *fst_card_array[FST_MAX_CARDS];
580 static spinlock_t fst_work_q_lock;
581 static u64 fst_work_txq;
582 static u64 fst_work_intq;
583
584 static void
585 fst_q_work_item(u64 * queue, int card_index)
586 {
587         unsigned long flags;
588         u64 mask;
589
590         /*
591          * Grab the queue exclusively
592          */
593         spin_lock_irqsave(&fst_work_q_lock, flags);
594
595         /*
596          * Making an entry in the queue is simply a matter of setting
597          * a bit for the card indicating that there is work to do in the
598          * bottom half for the card.  Note the limitation of 64 cards.
599          * That ought to be enough
600          */
601         mask = (u64)1 << card_index;
602         *queue |= mask;
603         spin_unlock_irqrestore(&fst_work_q_lock, flags);
604 }
605
606 static void
607 fst_process_tx_work_q(unsigned long /*void **/work_q)
608 {
609         unsigned long flags;
610         u64 work_txq;
611         int i;
612
613         /*
614          * Grab the queue exclusively
615          */
616         dbg(DBG_TX, "fst_process_tx_work_q\n");
617         spin_lock_irqsave(&fst_work_q_lock, flags);
618         work_txq = fst_work_txq;
619         fst_work_txq = 0;
620         spin_unlock_irqrestore(&fst_work_q_lock, flags);
621
622         /*
623          * Call the bottom half for each card with work waiting
624          */
625         for (i = 0; i < FST_MAX_CARDS; i++) {
626                 if (work_txq & 0x01) {
627                         if (fst_card_array[i] != NULL) {
628                                 dbg(DBG_TX, "Calling tx bh for card %d\n", i);
629                                 do_bottom_half_tx(fst_card_array[i]);
630                         }
631                 }
632                 work_txq = work_txq >> 1;
633         }
634 }
635
636 static void
637 fst_process_int_work_q(unsigned long /*void **/work_q)
638 {
639         unsigned long flags;
640         u64 work_intq;
641         int i;
642
643         /*
644          * Grab the queue exclusively
645          */
646         dbg(DBG_INTR, "fst_process_int_work_q\n");
647         spin_lock_irqsave(&fst_work_q_lock, flags);
648         work_intq = fst_work_intq;
649         fst_work_intq = 0;
650         spin_unlock_irqrestore(&fst_work_q_lock, flags);
651
652         /*
653          * Call the bottom half for each card with work waiting
654          */
655         for (i = 0; i < FST_MAX_CARDS; i++) {
656                 if (work_intq & 0x01) {
657                         if (fst_card_array[i] != NULL) {
658                                 dbg(DBG_INTR,
659                                     "Calling rx & tx bh for card %d\n", i);
660                                 do_bottom_half_rx(fst_card_array[i]);
661                                 do_bottom_half_tx(fst_card_array[i]);
662                         }
663                 }
664                 work_intq = work_intq >> 1;
665         }
666 }
667
668 /*      Card control functions
669  *      ======================
670  */
671 /*      Place the processor in reset state
672  *
673  * Used to be a simple write to card control space but a glitch in the latest
674  * AMD Am186CH processor means that we now have to do it by asserting and de-
675  * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
676  * at offset 9052_CNTRL.  Note the updates for the TXU.
677  */
678 static inline void
679 fst_cpureset(struct fst_card_info *card)
680 {
681         unsigned char interrupt_line_register;
682         unsigned int regval;
683
684         if (card->family == FST_FAMILY_TXU) {
685                 if (pci_read_config_byte
686                     (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) {
687                         dbg(DBG_ASS,
688                             "Error in reading interrupt line register\n");
689                 }
690                 /*
691                  * Assert PLX software reset and Am186 hardware reset
692                  * and then deassert the PLX software reset but 186 still in reset
693                  */
694                 outw(0x440f, card->pci_conf + CNTRL_9054 + 2);
695                 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
696                 /*
697                  * We are delaying here to allow the 9054 to reset itself
698                  */
699                 usleep_range(10, 20);
700                 outw(0x240f, card->pci_conf + CNTRL_9054 + 2);
701                 /*
702                  * We are delaying here to allow the 9054 to reload its eeprom
703                  */
704                 usleep_range(10, 20);
705                 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
706
707                 if (pci_write_config_byte
708                     (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) {
709                         dbg(DBG_ASS,
710                             "Error in writing interrupt line register\n");
711                 }
712
713         } else {
714                 regval = inl(card->pci_conf + CNTRL_9052);
715
716                 outl(regval | 0x40000000, card->pci_conf + CNTRL_9052);
717                 outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052);
718         }
719 }
720
721 /*      Release the processor from reset
722  */
723 static inline void
724 fst_cpurelease(struct fst_card_info *card)
725 {
726         if (card->family == FST_FAMILY_TXU) {
727                 /*
728                  * Force posted writes to complete
729                  */
730                 (void) readb(card->mem);
731
732                 /*
733                  * Release LRESET DO = 1
734                  * Then release Local Hold, DO = 1
735                  */
736                 outw(0x040e, card->pci_conf + CNTRL_9054 + 2);
737                 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
738         } else {
739                 (void) readb(card->ctlmem);
740         }
741 }
742
743 /*      Clear the cards interrupt flag
744  */
745 static inline void
746 fst_clear_intr(struct fst_card_info *card)
747 {
748         if (card->family == FST_FAMILY_TXU) {
749                 (void) readb(card->ctlmem);
750         } else {
751                 /* Poke the appropriate PLX chip register (same as enabling interrupts)
752                  */
753                 outw(0x0543, card->pci_conf + INTCSR_9052);
754         }
755 }
756
757 /*      Enable card interrupts
758  */
759 static inline void
760 fst_enable_intr(struct fst_card_info *card)
761 {
762         if (card->family == FST_FAMILY_TXU) {
763                 outl(0x0f0c0900, card->pci_conf + INTCSR_9054);
764         } else {
765                 outw(0x0543, card->pci_conf + INTCSR_9052);
766         }
767 }
768
769 /*      Disable card interrupts
770  */
771 static inline void
772 fst_disable_intr(struct fst_card_info *card)
773 {
774         if (card->family == FST_FAMILY_TXU) {
775                 outl(0x00000000, card->pci_conf + INTCSR_9054);
776         } else {
777                 outw(0x0000, card->pci_conf + INTCSR_9052);
778         }
779 }
780
781 /*      Process the result of trying to pass a received frame up the stack
782  */
783 static void
784 fst_process_rx_status(int rx_status, char *name)
785 {
786         switch (rx_status) {
787         case NET_RX_SUCCESS:
788                 {
789                         /*
790                          * Nothing to do here
791                          */
792                         break;
793                 }
794         case NET_RX_DROP:
795                 {
796                         dbg(DBG_ASS, "%s: Received packet dropped\n", name);
797                         break;
798                 }
799         }
800 }
801
802 /*      Initilaise DMA for PLX 9054
803  */
804 static inline void
805 fst_init_dma(struct fst_card_info *card)
806 {
807         /*
808          * This is only required for the PLX 9054
809          */
810         if (card->family == FST_FAMILY_TXU) {
811                 pci_set_master(card->device);
812                 outl(0x00020441, card->pci_conf + DMAMODE0);
813                 outl(0x00020441, card->pci_conf + DMAMODE1);
814                 outl(0x0, card->pci_conf + DMATHR);
815         }
816 }
817
818 /*      Tx dma complete interrupt
819  */
820 static void
821 fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
822                     int len, int txpos)
823 {
824         struct net_device *dev = port_to_dev(port);
825
826         /*
827          * Everything is now set, just tell the card to go
828          */
829         dbg(DBG_TX, "fst_tx_dma_complete\n");
830         FST_WRB(card, txDescrRing[port->index][txpos].bits,
831                 DMA_OWN | TX_STP | TX_ENP);
832         dev->stats.tx_packets++;
833         dev->stats.tx_bytes += len;
834         dev->trans_start = jiffies;
835 }
836
837 /*
838  * Mark it for our own raw sockets interface
839  */
840 static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev)
841 {
842         skb->dev = dev;
843         skb_reset_mac_header(skb);
844         skb->pkt_type = PACKET_HOST;
845         return htons(ETH_P_CUST);
846 }
847
848 /*      Rx dma complete interrupt
849  */
850 static void
851 fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
852                     int len, struct sk_buff *skb, int rxp)
853 {
854         struct net_device *dev = port_to_dev(port);
855         int pi;
856         int rx_status;
857
858         dbg(DBG_TX, "fst_rx_dma_complete\n");
859         pi = port->index;
860         memcpy(skb_put(skb, len), card->rx_dma_handle_host, len);
861
862         /* Reset buffer descriptor */
863         FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
864
865         /* Update stats */
866         dev->stats.rx_packets++;
867         dev->stats.rx_bytes += len;
868
869         /* Push upstream */
870         dbg(DBG_RX, "Pushing the frame up the stack\n");
871         if (port->mode == FST_RAW)
872                 skb->protocol = farsync_type_trans(skb, dev);
873         else
874                 skb->protocol = hdlc_type_trans(skb, dev);
875         rx_status = netif_rx(skb);
876         fst_process_rx_status(rx_status, port_to_dev(port)->name);
877         if (rx_status == NET_RX_DROP)
878                 dev->stats.rx_dropped++;
879 }
880
881 /*
882  *      Receive a frame through the DMA
883  */
884 static inline void
885 fst_rx_dma(struct fst_card_info *card, dma_addr_t dma, u32 mem, int len)
886 {
887         /*
888          * This routine will setup the DMA and start it
889          */
890
891         dbg(DBG_RX, "In fst_rx_dma %x %x %d\n", (u32)dma, mem, len);
892         if (card->dmarx_in_progress) {
893                 dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n");
894         }
895
896         outl(dma, card->pci_conf + DMAPADR0);   /* Copy to here */
897         outl(mem, card->pci_conf + DMALADR0);   /* from here */
898         outl(len, card->pci_conf + DMASIZ0);    /* for this length */
899         outl(0x00000000c, card->pci_conf + DMADPR0);    /* In this direction */
900
901         /*
902          * We use the dmarx_in_progress flag to flag the channel as busy
903          */
904         card->dmarx_in_progress = 1;
905         outb(0x03, card->pci_conf + DMACSR0);   /* Start the transfer */
906 }
907
908 /*
909  *      Send a frame through the DMA
910  */
911 static inline void
912 fst_tx_dma(struct fst_card_info *card, dma_addr_t dma, u32 mem, int len)
913 {
914         /*
915          * This routine will setup the DMA and start it.
916          */
917
918         dbg(DBG_TX, "In fst_tx_dma %x %x %d\n", (u32)dma, mem, len);
919         if (card->dmatx_in_progress) {
920                 dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n");
921         }
922
923         outl(dma, card->pci_conf + DMAPADR1);   /* Copy from here */
924         outl(mem, card->pci_conf + DMALADR1);   /* to here */
925         outl(len, card->pci_conf + DMASIZ1);    /* for this length */
926         outl(0x000000004, card->pci_conf + DMADPR1);    /* In this direction */
927
928         /*
929          * We use the dmatx_in_progress to flag the channel as busy
930          */
931         card->dmatx_in_progress = 1;
932         outb(0x03, card->pci_conf + DMACSR1);   /* Start the transfer */
933 }
934
935 /*      Issue a Mailbox command for a port.
936  *      Note we issue them on a fire and forget basis, not expecting to see an
937  *      error and not waiting for completion.
938  */
939 static void
940 fst_issue_cmd(struct fst_port_info *port, unsigned short cmd)
941 {
942         struct fst_card_info *card;
943         unsigned short mbval;
944         unsigned long flags;
945         int safety;
946
947         card = port->card;
948         spin_lock_irqsave(&card->card_lock, flags);
949         mbval = FST_RDW(card, portMailbox[port->index][0]);
950
951         safety = 0;
952         /* Wait for any previous command to complete */
953         while (mbval > NAK) {
954                 spin_unlock_irqrestore(&card->card_lock, flags);
955                 schedule_timeout_uninterruptible(1);
956                 spin_lock_irqsave(&card->card_lock, flags);
957
958                 if (++safety > 2000) {
959                         pr_err("Mailbox safety timeout\n");
960                         break;
961                 }
962
963                 mbval = FST_RDW(card, portMailbox[port->index][0]);
964         }
965         if (safety > 0) {
966                 dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety);
967         }
968         if (mbval == NAK) {
969                 dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n");
970         }
971
972         FST_WRW(card, portMailbox[port->index][0], cmd);
973
974         if (cmd == ABORTTX || cmd == STARTPORT) {
975                 port->txpos = 0;
976                 port->txipos = 0;
977                 port->start = 0;
978         }
979
980         spin_unlock_irqrestore(&card->card_lock, flags);
981 }
982
983 /*      Port output signals control
984  */
985 static inline void
986 fst_op_raise(struct fst_port_info *port, unsigned int outputs)
987 {
988         outputs |= FST_RDL(port->card, v24OpSts[port->index]);
989         FST_WRL(port->card, v24OpSts[port->index], outputs);
990
991         if (port->run)
992                 fst_issue_cmd(port, SETV24O);
993 }
994
995 static inline void
996 fst_op_lower(struct fst_port_info *port, unsigned int outputs)
997 {
998         outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]);
999         FST_WRL(port->card, v24OpSts[port->index], outputs);
1000
1001         if (port->run)
1002                 fst_issue_cmd(port, SETV24O);
1003 }
1004
1005 /*
1006  *      Setup port Rx buffers
1007  */
1008 static void
1009 fst_rx_config(struct fst_port_info *port)
1010 {
1011         int i;
1012         int pi;
1013         unsigned int offset;
1014         unsigned long flags;
1015         struct fst_card_info *card;
1016
1017         pi = port->index;
1018         card = port->card;
1019         spin_lock_irqsave(&card->card_lock, flags);
1020         for (i = 0; i < NUM_RX_BUFFER; i++) {
1021                 offset = BUF_OFFSET(rxBuffer[pi][i][0]);
1022
1023                 FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset);
1024                 FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16));
1025                 FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER));
1026                 FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER);
1027                 FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN);
1028         }
1029         port->rxpos = 0;
1030         spin_unlock_irqrestore(&card->card_lock, flags);
1031 }
1032
1033 /*
1034  *      Setup port Tx buffers
1035  */
1036 static void
1037 fst_tx_config(struct fst_port_info *port)
1038 {
1039         int i;
1040         int pi;
1041         unsigned int offset;
1042         unsigned long flags;
1043         struct fst_card_info *card;
1044
1045         pi = port->index;
1046         card = port->card;
1047         spin_lock_irqsave(&card->card_lock, flags);
1048         for (i = 0; i < NUM_TX_BUFFER; i++) {
1049                 offset = BUF_OFFSET(txBuffer[pi][i][0]);
1050
1051                 FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset);
1052                 FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16));
1053                 FST_WRW(card, txDescrRing[pi][i].bcnt, 0);
1054                 FST_WRB(card, txDescrRing[pi][i].bits, 0);
1055         }
1056         port->txpos = 0;
1057         port->txipos = 0;
1058         port->start = 0;
1059         spin_unlock_irqrestore(&card->card_lock, flags);
1060 }
1061
1062 /*      TE1 Alarm change interrupt event
1063  */
1064 static void
1065 fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port)
1066 {
1067         u8 los;
1068         u8 rra;
1069         u8 ais;
1070
1071         los = FST_RDB(card, suStatus.lossOfSignal);
1072         rra = FST_RDB(card, suStatus.receiveRemoteAlarm);
1073         ais = FST_RDB(card, suStatus.alarmIndicationSignal);
1074
1075         if (los) {
1076                 /*
1077                  * Lost the link
1078                  */
1079                 if (netif_carrier_ok(port_to_dev(port))) {
1080                         dbg(DBG_INTR, "Net carrier off\n");
1081                         netif_carrier_off(port_to_dev(port));
1082                 }
1083         } else {
1084                 /*
1085                  * Link available
1086                  */
1087                 if (!netif_carrier_ok(port_to_dev(port))) {
1088                         dbg(DBG_INTR, "Net carrier on\n");
1089                         netif_carrier_on(port_to_dev(port));
1090                 }
1091         }
1092
1093         if (los)
1094                 dbg(DBG_INTR, "Assert LOS Alarm\n");
1095         else
1096                 dbg(DBG_INTR, "De-assert LOS Alarm\n");
1097         if (rra)
1098                 dbg(DBG_INTR, "Assert RRA Alarm\n");
1099         else
1100                 dbg(DBG_INTR, "De-assert RRA Alarm\n");
1101
1102         if (ais)
1103                 dbg(DBG_INTR, "Assert AIS Alarm\n");
1104         else
1105                 dbg(DBG_INTR, "De-assert AIS Alarm\n");
1106 }
1107
1108 /*      Control signal change interrupt event
1109  */
1110 static void
1111 fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port)
1112 {
1113         int signals;
1114
1115         signals = FST_RDL(card, v24DebouncedSts[port->index]);
1116
1117         if (signals & (((port->hwif == X21) || (port->hwif == X21D))
1118                        ? IPSTS_INDICATE : IPSTS_DCD)) {
1119                 if (!netif_carrier_ok(port_to_dev(port))) {
1120                         dbg(DBG_INTR, "DCD active\n");
1121                         netif_carrier_on(port_to_dev(port));
1122                 }
1123         } else {
1124                 if (netif_carrier_ok(port_to_dev(port))) {
1125                         dbg(DBG_INTR, "DCD lost\n");
1126                         netif_carrier_off(port_to_dev(port));
1127                 }
1128         }
1129 }
1130
1131 /*      Log Rx Errors
1132  */
1133 static void
1134 fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1135                  unsigned char dmabits, int rxp, unsigned short len)
1136 {
1137         struct net_device *dev = port_to_dev(port);
1138
1139         /*
1140          * Increment the appropriate error counter
1141          */
1142         dev->stats.rx_errors++;
1143         if (dmabits & RX_OFLO) {
1144                 dev->stats.rx_fifo_errors++;
1145                 dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n",
1146                     card->card_no, port->index, rxp);
1147         }
1148         if (dmabits & RX_CRC) {
1149                 dev->stats.rx_crc_errors++;
1150                 dbg(DBG_ASS, "Rx crc error on card %d port %d\n",
1151                     card->card_no, port->index);
1152         }
1153         if (dmabits & RX_FRAM) {
1154                 dev->stats.rx_frame_errors++;
1155                 dbg(DBG_ASS, "Rx frame error on card %d port %d\n",
1156                     card->card_no, port->index);
1157         }
1158         if (dmabits == (RX_STP | RX_ENP)) {
1159                 dev->stats.rx_length_errors++;
1160                 dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n",
1161                     len, card->card_no, port->index);
1162         }
1163 }
1164
1165 /*      Rx Error Recovery
1166  */
1167 static void
1168 fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1169                      unsigned char dmabits, int rxp, unsigned short len)
1170 {
1171         int i;
1172         int pi;
1173
1174         pi = port->index;
1175         /* 
1176          * Discard buffer descriptors until we see the start of the
1177          * next frame.  Note that for long frames this could be in
1178          * a subsequent interrupt. 
1179          */
1180         i = 0;
1181         while ((dmabits & (DMA_OWN | RX_STP)) == 0) {
1182                 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1183                 rxp = (rxp+1) % NUM_RX_BUFFER;
1184                 if (++i > NUM_RX_BUFFER) {
1185                         dbg(DBG_ASS, "intr_rx: Discarding more bufs"
1186                             " than we have\n");
1187                         break;
1188                 }
1189                 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1190                 dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits);
1191         }
1192         dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i);
1193
1194         /* Discard the terminal buffer */
1195         if (!(dmabits & DMA_OWN)) {
1196                 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1197                 rxp = (rxp+1) % NUM_RX_BUFFER;
1198         }
1199         port->rxpos = rxp;
1200         return;
1201
1202 }
1203
1204 /*      Rx complete interrupt
1205  */
1206 static void
1207 fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
1208 {
1209         unsigned char dmabits;
1210         int pi;
1211         int rxp;
1212         int rx_status;
1213         unsigned short len;
1214         struct sk_buff *skb;
1215         struct net_device *dev = port_to_dev(port);
1216
1217         /* Check we have a buffer to process */
1218         pi = port->index;
1219         rxp = port->rxpos;
1220         dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1221         if (dmabits & DMA_OWN) {
1222                 dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n",
1223                     pi, rxp);
1224                 return;
1225         }
1226         if (card->dmarx_in_progress) {
1227                 return;
1228         }
1229
1230         /* Get buffer length */
1231         len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt);
1232         /* Discard the CRC */
1233         len -= 2;
1234         if (len == 0) {
1235                 /*
1236                  * This seems to happen on the TE1 interface sometimes
1237                  * so throw the frame away and log the event.
1238                  */
1239                 pr_err("Frame received with 0 length. Card %d Port %d\n",
1240                        card->card_no, port->index);
1241                 /* Return descriptor to card */
1242                 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1243
1244                 rxp = (rxp+1) % NUM_RX_BUFFER;
1245                 port->rxpos = rxp;
1246                 return;
1247         }
1248
1249         /* Check buffer length and for other errors. We insist on one packet
1250          * in one buffer. This simplifies things greatly and since we've
1251          * allocated 8K it shouldn't be a real world limitation
1252          */
1253         dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len);
1254         if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) {
1255                 fst_log_rx_error(card, port, dmabits, rxp, len);
1256                 fst_recover_rx_error(card, port, dmabits, rxp, len);
1257                 return;
1258         }
1259
1260         /* Allocate SKB */
1261         if ((skb = dev_alloc_skb(len)) == NULL) {
1262                 dbg(DBG_RX, "intr_rx: can't allocate buffer\n");
1263
1264                 dev->stats.rx_dropped++;
1265
1266                 /* Return descriptor to card */
1267                 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1268
1269                 rxp = (rxp+1) % NUM_RX_BUFFER;
1270                 port->rxpos = rxp;
1271                 return;
1272         }
1273
1274         /*
1275          * We know the length we need to receive, len.
1276          * It's not worth using the DMA for reads of less than
1277          * FST_MIN_DMA_LEN
1278          */
1279
1280         if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) {
1281                 memcpy_fromio(skb_put(skb, len),
1282                               card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]),
1283                               len);
1284
1285                 /* Reset buffer descriptor */
1286                 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1287
1288                 /* Update stats */
1289                 dev->stats.rx_packets++;
1290                 dev->stats.rx_bytes += len;
1291
1292                 /* Push upstream */
1293                 dbg(DBG_RX, "Pushing frame up the stack\n");
1294                 if (port->mode == FST_RAW)
1295                         skb->protocol = farsync_type_trans(skb, dev);
1296                 else
1297                         skb->protocol = hdlc_type_trans(skb, dev);
1298                 rx_status = netif_rx(skb);
1299                 fst_process_rx_status(rx_status, port_to_dev(port)->name);
1300                 if (rx_status == NET_RX_DROP)
1301                         dev->stats.rx_dropped++;
1302         } else {
1303                 card->dma_skb_rx = skb;
1304                 card->dma_port_rx = port;
1305                 card->dma_len_rx = len;
1306                 card->dma_rxpos = rxp;
1307                 fst_rx_dma(card, card->rx_dma_handle_card,
1308                            BUF_OFFSET(rxBuffer[pi][rxp][0]), len);
1309         }
1310         if (rxp != port->rxpos) {
1311                 dbg(DBG_ASS, "About to increment rxpos by more than 1\n");
1312                 dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos);
1313         }
1314         rxp = (rxp+1) % NUM_RX_BUFFER;
1315         port->rxpos = rxp;
1316 }
1317
1318 /*
1319  *      The bottom halfs to the ISR
1320  *
1321  */
1322
1323 static void
1324 do_bottom_half_tx(struct fst_card_info *card)
1325 {
1326         struct fst_port_info *port;
1327         int pi;
1328         int txq_length;
1329         struct sk_buff *skb;
1330         unsigned long flags;
1331         struct net_device *dev;
1332
1333         /*
1334          *  Find a free buffer for the transmit
1335          *  Step through each port on this card
1336          */
1337
1338         dbg(DBG_TX, "do_bottom_half_tx\n");
1339         for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1340                 if (!port->run)
1341                         continue;
1342
1343                 dev = port_to_dev(port);
1344                 while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) &
1345                          DMA_OWN) &&
1346                        !(card->dmatx_in_progress)) {
1347                         /*
1348                          * There doesn't seem to be a txdone event per-se
1349                          * We seem to have to deduce it, by checking the DMA_OWN
1350                          * bit on the next buffer we think we can use
1351                          */
1352                         spin_lock_irqsave(&card->card_lock, flags);
1353                         if ((txq_length = port->txqe - port->txqs) < 0) {
1354                                 /*
1355                                  * This is the case where one has wrapped and the
1356                                  * maths gives us a negative number
1357                                  */
1358                                 txq_length = txq_length + FST_TXQ_DEPTH;
1359                         }
1360                         spin_unlock_irqrestore(&card->card_lock, flags);
1361                         if (txq_length > 0) {
1362                                 /*
1363                                  * There is something to send
1364                                  */
1365                                 spin_lock_irqsave(&card->card_lock, flags);
1366                                 skb = port->txq[port->txqs];
1367                                 port->txqs++;
1368                                 if (port->txqs == FST_TXQ_DEPTH) {
1369                                         port->txqs = 0;
1370                                 }
1371                                 spin_unlock_irqrestore(&card->card_lock, flags);
1372                                 /*
1373                                  * copy the data and set the required indicators on the
1374                                  * card.
1375                                  */
1376                                 FST_WRW(card, txDescrRing[pi][port->txpos].bcnt,
1377                                         cnv_bcnt(skb->len));
1378                                 if ((skb->len < FST_MIN_DMA_LEN) ||
1379                                     (card->family == FST_FAMILY_TXP)) {
1380                                         /* Enqueue the packet with normal io */
1381                                         memcpy_toio(card->mem +
1382                                                     BUF_OFFSET(txBuffer[pi]
1383                                                                [port->
1384                                                                 txpos][0]),
1385                                                     skb->data, skb->len);
1386                                         FST_WRB(card,
1387                                                 txDescrRing[pi][port->txpos].
1388                                                 bits,
1389                                                 DMA_OWN | TX_STP | TX_ENP);
1390                                         dev->stats.tx_packets++;
1391                                         dev->stats.tx_bytes += skb->len;
1392                                         dev->trans_start = jiffies;
1393                                 } else {
1394                                         /* Or do it through dma */
1395                                         memcpy(card->tx_dma_handle_host,
1396                                                skb->data, skb->len);
1397                                         card->dma_port_tx = port;
1398                                         card->dma_len_tx = skb->len;
1399                                         card->dma_txpos = port->txpos;
1400                                         fst_tx_dma(card,
1401                                                    card->tx_dma_handle_card,
1402                                                    BUF_OFFSET(txBuffer[pi]
1403                                                               [port->txpos][0]),
1404                                                    skb->len);
1405                                 }
1406                                 if (++port->txpos >= NUM_TX_BUFFER)
1407                                         port->txpos = 0;
1408                                 /*
1409                                  * If we have flow control on, can we now release it?
1410                                  */
1411                                 if (port->start) {
1412                                         if (txq_length < fst_txq_low) {
1413                                                 netif_wake_queue(port_to_dev
1414                                                                  (port));
1415                                                 port->start = 0;
1416                                         }
1417                                 }
1418                                 dev_kfree_skb(skb);
1419                         } else {
1420                                 /*
1421                                  * Nothing to send so break out of the while loop
1422                                  */
1423                                 break;
1424                         }
1425                 }
1426         }
1427 }
1428
1429 static void
1430 do_bottom_half_rx(struct fst_card_info *card)
1431 {
1432         struct fst_port_info *port;
1433         int pi;
1434         int rx_count = 0;
1435
1436         /* Check for rx completions on all ports on this card */
1437         dbg(DBG_RX, "do_bottom_half_rx\n");
1438         for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1439                 if (!port->run)
1440                         continue;
1441
1442                 while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits)
1443                          & DMA_OWN) && !(card->dmarx_in_progress)) {
1444                         if (rx_count > fst_max_reads) {
1445                                 /*
1446                                  * Don't spend forever in receive processing
1447                                  * Schedule another event
1448                                  */
1449                                 fst_q_work_item(&fst_work_intq, card->card_no);
1450                                 tasklet_schedule(&fst_int_task);
1451                                 break;  /* Leave the loop */
1452                         }
1453                         fst_intr_rx(card, port);
1454                         rx_count++;
1455                 }
1456         }
1457 }
1458
1459 /*
1460  *      The interrupt service routine
1461  *      Dev_id is our fst_card_info pointer
1462  */
1463 static irqreturn_t
1464 fst_intr(int dummy, void *dev_id)
1465 {
1466         struct fst_card_info *card = dev_id;
1467         struct fst_port_info *port;
1468         int rdidx;              /* Event buffer indices */
1469         int wridx;
1470         int event;              /* Actual event for processing */
1471         unsigned int dma_intcsr = 0;
1472         unsigned int do_card_interrupt;
1473         unsigned int int_retry_count;
1474
1475         /*
1476          * Check to see if the interrupt was for this card
1477          * return if not
1478          * Note that the call to clear the interrupt is important
1479          */
1480         dbg(DBG_INTR, "intr: %d %p\n", card->irq, card);
1481         if (card->state != FST_RUNNING) {
1482                 pr_err("Interrupt received for card %d in a non running state (%d)\n",
1483                        card->card_no, card->state);
1484
1485                 /* 
1486                  * It is possible to really be running, i.e. we have re-loaded
1487                  * a running card
1488                  * Clear and reprime the interrupt source 
1489                  */
1490                 fst_clear_intr(card);
1491                 return IRQ_HANDLED;
1492         }
1493
1494         /* Clear and reprime the interrupt source */
1495         fst_clear_intr(card);
1496
1497         /*
1498          * Is the interrupt for this card (handshake == 1)
1499          */
1500         do_card_interrupt = 0;
1501         if (FST_RDB(card, interruptHandshake) == 1) {
1502                 do_card_interrupt += FST_CARD_INT;
1503                 /* Set the software acknowledge */
1504                 FST_WRB(card, interruptHandshake, 0xEE);
1505         }
1506         if (card->family == FST_FAMILY_TXU) {
1507                 /*
1508                  * Is it a DMA Interrupt
1509                  */
1510                 dma_intcsr = inl(card->pci_conf + INTCSR_9054);
1511                 if (dma_intcsr & 0x00200000) {
1512                         /*
1513                          * DMA Channel 0 (Rx transfer complete)
1514                          */
1515                         dbg(DBG_RX, "DMA Rx xfer complete\n");
1516                         outb(0x8, card->pci_conf + DMACSR0);
1517                         fst_rx_dma_complete(card, card->dma_port_rx,
1518                                             card->dma_len_rx, card->dma_skb_rx,
1519                                             card->dma_rxpos);
1520                         card->dmarx_in_progress = 0;
1521                         do_card_interrupt += FST_RX_DMA_INT;
1522                 }
1523                 if (dma_intcsr & 0x00400000) {
1524                         /*
1525                          * DMA Channel 1 (Tx transfer complete)
1526                          */
1527                         dbg(DBG_TX, "DMA Tx xfer complete\n");
1528                         outb(0x8, card->pci_conf + DMACSR1);
1529                         fst_tx_dma_complete(card, card->dma_port_tx,
1530                                             card->dma_len_tx, card->dma_txpos);
1531                         card->dmatx_in_progress = 0;
1532                         do_card_interrupt += FST_TX_DMA_INT;
1533                 }
1534         }
1535
1536         /*
1537          * Have we been missing Interrupts
1538          */
1539         int_retry_count = FST_RDL(card, interruptRetryCount);
1540         if (int_retry_count) {
1541                 dbg(DBG_ASS, "Card %d int_retry_count is  %d\n",
1542                     card->card_no, int_retry_count);
1543                 FST_WRL(card, interruptRetryCount, 0);
1544         }
1545
1546         if (!do_card_interrupt) {
1547                 return IRQ_HANDLED;
1548         }
1549
1550         /* Scehdule the bottom half of the ISR */
1551         fst_q_work_item(&fst_work_intq, card->card_no);
1552         tasklet_schedule(&fst_int_task);
1553
1554         /* Drain the event queue */
1555         rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f;
1556         wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f;
1557         while (rdidx != wridx) {
1558                 event = FST_RDB(card, interruptEvent.evntbuff[rdidx]);
1559                 port = &card->ports[event & 0x03];
1560
1561                 dbg(DBG_INTR, "Processing Interrupt event: %x\n", event);
1562
1563                 switch (event) {
1564                 case TE1_ALMA:
1565                         dbg(DBG_INTR, "TE1 Alarm intr\n");
1566                         if (port->run)
1567                                 fst_intr_te1_alarm(card, port);
1568                         break;
1569
1570                 case CTLA_CHG:
1571                 case CTLB_CHG:
1572                 case CTLC_CHG:
1573                 case CTLD_CHG:
1574                         if (port->run)
1575                                 fst_intr_ctlchg(card, port);
1576                         break;
1577
1578                 case ABTA_SENT:
1579                 case ABTB_SENT:
1580                 case ABTC_SENT:
1581                 case ABTD_SENT:
1582                         dbg(DBG_TX, "Abort complete port %d\n", port->index);
1583                         break;
1584
1585                 case TXA_UNDF:
1586                 case TXB_UNDF:
1587                 case TXC_UNDF:
1588                 case TXD_UNDF:
1589                         /* Difficult to see how we'd get this given that we
1590                          * always load up the entire packet for DMA.
1591                          */
1592                         dbg(DBG_TX, "Tx underflow port %d\n", port->index);
1593                         port_to_dev(port)->stats.tx_errors++;
1594                         port_to_dev(port)->stats.tx_fifo_errors++;
1595                         dbg(DBG_ASS, "Tx underflow on card %d port %d\n",
1596                             card->card_no, port->index);
1597                         break;
1598
1599                 case INIT_CPLT:
1600                         dbg(DBG_INIT, "Card init OK intr\n");
1601                         break;
1602
1603                 case INIT_FAIL:
1604                         dbg(DBG_INIT, "Card init FAILED intr\n");
1605                         card->state = FST_IFAILED;
1606                         break;
1607
1608                 default:
1609                         pr_err("intr: unknown card event %d. ignored\n", event);
1610                         break;
1611                 }
1612
1613                 /* Bump and wrap the index */
1614                 if (++rdidx >= MAX_CIRBUFF)
1615                         rdidx = 0;
1616         }
1617         FST_WRB(card, interruptEvent.rdindex, rdidx);
1618         return IRQ_HANDLED;
1619 }
1620
1621 /*      Check that the shared memory configuration is one that we can handle
1622  *      and that some basic parameters are correct
1623  */
1624 static void
1625 check_started_ok(struct fst_card_info *card)
1626 {
1627         int i;
1628
1629         /* Check structure version and end marker */
1630         if (FST_RDW(card, smcVersion) != SMC_VERSION) {
1631                 pr_err("Bad shared memory version %d expected %d\n",
1632                        FST_RDW(card, smcVersion), SMC_VERSION);
1633                 card->state = FST_BADVERSION;
1634                 return;
1635         }
1636         if (FST_RDL(card, endOfSmcSignature) != END_SIG) {
1637                 pr_err("Missing shared memory signature\n");
1638                 card->state = FST_BADVERSION;
1639                 return;
1640         }
1641         /* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
1642         if ((i = FST_RDB(card, taskStatus)) == 0x01) {
1643                 card->state = FST_RUNNING;
1644         } else if (i == 0xFF) {
1645                 pr_err("Firmware initialisation failed. Card halted\n");
1646                 card->state = FST_HALTED;
1647                 return;
1648         } else if (i != 0x00) {
1649                 pr_err("Unknown firmware status 0x%x\n", i);
1650                 card->state = FST_HALTED;
1651                 return;
1652         }
1653
1654         /* Finally check the number of ports reported by firmware against the
1655          * number we assumed at card detection. Should never happen with
1656          * existing firmware etc so we just report it for the moment.
1657          */
1658         if (FST_RDL(card, numberOfPorts) != card->nports) {
1659                 pr_warn("Port count mismatch on card %d.  Firmware thinks %d we say %d\n",
1660                         card->card_no,
1661                         FST_RDL(card, numberOfPorts), card->nports);
1662         }
1663 }
1664
1665 static int
1666 set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port,
1667                    struct fstioc_info *info)
1668 {
1669         int err;
1670         unsigned char my_framing;
1671
1672         /* Set things according to the user set valid flags 
1673          * Several of the old options have been invalidated/replaced by the 
1674          * generic hdlc package.
1675          */
1676         err = 0;
1677         if (info->valid & FSTVAL_PROTO) {
1678                 if (info->proto == FST_RAW)
1679                         port->mode = FST_RAW;
1680                 else
1681                         port->mode = FST_GEN_HDLC;
1682         }
1683
1684         if (info->valid & FSTVAL_CABLE)
1685                 err = -EINVAL;
1686
1687         if (info->valid & FSTVAL_SPEED)
1688                 err = -EINVAL;
1689
1690         if (info->valid & FSTVAL_PHASE)
1691                 FST_WRB(card, portConfig[port->index].invertClock,
1692                         info->invertClock);
1693         if (info->valid & FSTVAL_MODE)
1694                 FST_WRW(card, cardMode, info->cardMode);
1695         if (info->valid & FSTVAL_TE1) {
1696                 FST_WRL(card, suConfig.dataRate, info->lineSpeed);
1697                 FST_WRB(card, suConfig.clocking, info->clockSource);
1698                 my_framing = FRAMING_E1;
1699                 if (info->framing == E1)
1700                         my_framing = FRAMING_E1;
1701                 if (info->framing == T1)
1702                         my_framing = FRAMING_T1;
1703                 if (info->framing == J1)
1704                         my_framing = FRAMING_J1;
1705                 FST_WRB(card, suConfig.framing, my_framing);
1706                 FST_WRB(card, suConfig.structure, info->structure);
1707                 FST_WRB(card, suConfig.interface, info->interface);
1708                 FST_WRB(card, suConfig.coding, info->coding);
1709                 FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut);
1710                 FST_WRB(card, suConfig.equalizer, info->equalizer);
1711                 FST_WRB(card, suConfig.transparentMode, info->transparentMode);
1712                 FST_WRB(card, suConfig.loopMode, info->loopMode);
1713                 FST_WRB(card, suConfig.range, info->range);
1714                 FST_WRB(card, suConfig.txBufferMode, info->txBufferMode);
1715                 FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode);
1716                 FST_WRB(card, suConfig.startingSlot, info->startingSlot);
1717                 FST_WRB(card, suConfig.losThreshold, info->losThreshold);
1718                 if (info->idleCode)
1719                         FST_WRB(card, suConfig.enableIdleCode, 1);
1720                 else
1721                         FST_WRB(card, suConfig.enableIdleCode, 0);
1722                 FST_WRB(card, suConfig.idleCode, info->idleCode);
1723 #if FST_DEBUG
1724                 if (info->valid & FSTVAL_TE1) {
1725                         printk("Setting TE1 data\n");
1726                         printk("Line Speed = %d\n", info->lineSpeed);
1727                         printk("Start slot = %d\n", info->startingSlot);
1728                         printk("Clock source = %d\n", info->clockSource);
1729                         printk("Framing = %d\n", my_framing);
1730                         printk("Structure = %d\n", info->structure);
1731                         printk("interface = %d\n", info->interface);
1732                         printk("Coding = %d\n", info->coding);
1733                         printk("Line build out = %d\n", info->lineBuildOut);
1734                         printk("Equaliser = %d\n", info->equalizer);
1735                         printk("Transparent mode = %d\n",
1736                                info->transparentMode);
1737                         printk("Loop mode = %d\n", info->loopMode);
1738                         printk("Range = %d\n", info->range);
1739                         printk("Tx Buffer mode = %d\n", info->txBufferMode);
1740                         printk("Rx Buffer mode = %d\n", info->rxBufferMode);
1741                         printk("LOS Threshold = %d\n", info->losThreshold);
1742                         printk("Idle Code = %d\n", info->idleCode);
1743                 }
1744 #endif
1745         }
1746 #if FST_DEBUG
1747         if (info->valid & FSTVAL_DEBUG) {
1748                 fst_debug_mask = info->debug;
1749         }
1750 #endif
1751
1752         return err;
1753 }
1754
1755 static void
1756 gather_conf_info(struct fst_card_info *card, struct fst_port_info *port,
1757                  struct fstioc_info *info)
1758 {
1759         int i;
1760
1761         memset(info, 0, sizeof (struct fstioc_info));
1762
1763         i = port->index;
1764         info->kernelVersion = LINUX_VERSION_CODE;
1765         info->nports = card->nports;
1766         info->type = card->type;
1767         info->state = card->state;
1768         info->proto = FST_GEN_HDLC;
1769         info->index = i;
1770 #if FST_DEBUG
1771         info->debug = fst_debug_mask;
1772 #endif
1773
1774         /* Only mark information as valid if card is running.
1775          * Copy the data anyway in case it is useful for diagnostics
1776          */
1777         info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD)
1778 #if FST_DEBUG
1779             | FSTVAL_DEBUG
1780 #endif
1781             ;
1782
1783         info->lineInterface = FST_RDW(card, portConfig[i].lineInterface);
1784         info->internalClock = FST_RDB(card, portConfig[i].internalClock);
1785         info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed);
1786         info->invertClock = FST_RDB(card, portConfig[i].invertClock);
1787         info->v24IpSts = FST_RDL(card, v24IpSts[i]);
1788         info->v24OpSts = FST_RDL(card, v24OpSts[i]);
1789         info->clockStatus = FST_RDW(card, clockStatus[i]);
1790         info->cableStatus = FST_RDW(card, cableStatus);
1791         info->cardMode = FST_RDW(card, cardMode);
1792         info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion);
1793
1794         /*
1795          * The T2U can report cable presence for both A or B
1796          * in bits 0 and 1 of cableStatus.  See which port we are and 
1797          * do the mapping.
1798          */
1799         if (card->family == FST_FAMILY_TXU) {
1800                 if (port->index == 0) {
1801                         /*
1802                          * Port A
1803                          */
1804                         info->cableStatus = info->cableStatus & 1;
1805                 } else {
1806                         /*
1807                          * Port B
1808                          */
1809                         info->cableStatus = info->cableStatus >> 1;
1810                         info->cableStatus = info->cableStatus & 1;
1811                 }
1812         }
1813         /*
1814          * Some additional bits if we are TE1
1815          */
1816         if (card->type == FST_TYPE_TE1) {
1817                 info->lineSpeed = FST_RDL(card, suConfig.dataRate);
1818                 info->clockSource = FST_RDB(card, suConfig.clocking);
1819                 info->framing = FST_RDB(card, suConfig.framing);
1820                 info->structure = FST_RDB(card, suConfig.structure);
1821                 info->interface = FST_RDB(card, suConfig.interface);
1822                 info->coding = FST_RDB(card, suConfig.coding);
1823                 info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut);
1824                 info->equalizer = FST_RDB(card, suConfig.equalizer);
1825                 info->loopMode = FST_RDB(card, suConfig.loopMode);
1826                 info->range = FST_RDB(card, suConfig.range);
1827                 info->txBufferMode = FST_RDB(card, suConfig.txBufferMode);
1828                 info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode);
1829                 info->startingSlot = FST_RDB(card, suConfig.startingSlot);
1830                 info->losThreshold = FST_RDB(card, suConfig.losThreshold);
1831                 if (FST_RDB(card, suConfig.enableIdleCode))
1832                         info->idleCode = FST_RDB(card, suConfig.idleCode);
1833                 else
1834                         info->idleCode = 0;
1835                 info->receiveBufferDelay =
1836                     FST_RDL(card, suStatus.receiveBufferDelay);
1837                 info->framingErrorCount =
1838                     FST_RDL(card, suStatus.framingErrorCount);
1839                 info->codeViolationCount =
1840                     FST_RDL(card, suStatus.codeViolationCount);
1841                 info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount);
1842                 info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation);
1843                 info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal);
1844                 info->receiveRemoteAlarm =
1845                     FST_RDB(card, suStatus.receiveRemoteAlarm);
1846                 info->alarmIndicationSignal =
1847                     FST_RDB(card, suStatus.alarmIndicationSignal);
1848         }
1849 }
1850
1851 static int
1852 fst_set_iface(struct fst_card_info *card, struct fst_port_info *port,
1853               struct ifreq *ifr)
1854 {
1855         sync_serial_settings sync;
1856         int i;
1857
1858         if (ifr->ifr_settings.size != sizeof (sync)) {
1859                 return -ENOMEM;
1860         }
1861
1862         if (copy_from_user
1863             (&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) {
1864                 return -EFAULT;
1865         }
1866
1867         if (sync.loopback)
1868                 return -EINVAL;
1869
1870         i = port->index;
1871
1872         switch (ifr->ifr_settings.type) {
1873         case IF_IFACE_V35:
1874                 FST_WRW(card, portConfig[i].lineInterface, V35);
1875                 port->hwif = V35;
1876                 break;
1877
1878         case IF_IFACE_V24:
1879                 FST_WRW(card, portConfig[i].lineInterface, V24);
1880                 port->hwif = V24;
1881                 break;
1882
1883         case IF_IFACE_X21:
1884                 FST_WRW(card, portConfig[i].lineInterface, X21);
1885                 port->hwif = X21;
1886                 break;
1887
1888         case IF_IFACE_X21D:
1889                 FST_WRW(card, portConfig[i].lineInterface, X21D);
1890                 port->hwif = X21D;
1891                 break;
1892
1893         case IF_IFACE_T1:
1894                 FST_WRW(card, portConfig[i].lineInterface, T1);
1895                 port->hwif = T1;
1896                 break;
1897
1898         case IF_IFACE_E1:
1899                 FST_WRW(card, portConfig[i].lineInterface, E1);
1900                 port->hwif = E1;
1901                 break;
1902
1903         case IF_IFACE_SYNC_SERIAL:
1904                 break;
1905
1906         default:
1907                 return -EINVAL;
1908         }
1909
1910         switch (sync.clock_type) {
1911         case CLOCK_EXT:
1912                 FST_WRB(card, portConfig[i].internalClock, EXTCLK);
1913                 break;
1914
1915         case CLOCK_INT:
1916                 FST_WRB(card, portConfig[i].internalClock, INTCLK);
1917                 break;
1918
1919         default:
1920                 return -EINVAL;
1921         }
1922         FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate);
1923         return 0;
1924 }
1925
1926 static int
1927 fst_get_iface(struct fst_card_info *card, struct fst_port_info *port,
1928               struct ifreq *ifr)
1929 {
1930         sync_serial_settings sync;
1931         int i;
1932
1933         /* First check what line type is set, we'll default to reporting X.21
1934          * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
1935          * changed
1936          */
1937         switch (port->hwif) {
1938         case E1:
1939                 ifr->ifr_settings.type = IF_IFACE_E1;
1940                 break;
1941         case T1:
1942                 ifr->ifr_settings.type = IF_IFACE_T1;
1943                 break;
1944         case V35:
1945                 ifr->ifr_settings.type = IF_IFACE_V35;
1946                 break;
1947         case V24:
1948                 ifr->ifr_settings.type = IF_IFACE_V24;
1949                 break;
1950         case X21D:
1951                 ifr->ifr_settings.type = IF_IFACE_X21D;
1952                 break;
1953         case X21:
1954         default:
1955                 ifr->ifr_settings.type = IF_IFACE_X21;
1956                 break;
1957         }
1958         if (ifr->ifr_settings.size == 0) {
1959                 return 0;       /* only type requested */
1960         }
1961         if (ifr->ifr_settings.size < sizeof (sync)) {
1962                 return -ENOMEM;
1963         }
1964
1965         i = port->index;
1966         memset(&sync, 0, sizeof(sync));
1967         sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed);
1968         /* Lucky card and linux use same encoding here */
1969         sync.clock_type = FST_RDB(card, portConfig[i].internalClock) ==
1970             INTCLK ? CLOCK_INT : CLOCK_EXT;
1971         sync.loopback = 0;
1972
1973         if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) {
1974                 return -EFAULT;
1975         }
1976
1977         ifr->ifr_settings.size = sizeof (sync);
1978         return 0;
1979 }
1980
1981 static int
1982 fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1983 {
1984         struct fst_card_info *card;
1985         struct fst_port_info *port;
1986         struct fstioc_write wrthdr;
1987         struct fstioc_info info;
1988         unsigned long flags;
1989         void *buf;
1990
1991         dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data);
1992
1993         port = dev_to_port(dev);
1994         card = port->card;
1995
1996         if (!capable(CAP_NET_ADMIN))
1997                 return -EPERM;
1998
1999         switch (cmd) {
2000         case FSTCPURESET:
2001                 fst_cpureset(card);
2002                 card->state = FST_RESET;
2003                 return 0;
2004
2005         case FSTCPURELEASE:
2006                 fst_cpurelease(card);
2007                 card->state = FST_STARTING;
2008                 return 0;
2009
2010         case FSTWRITE:          /* Code write (download) */
2011
2012                 /* First copy in the header with the length and offset of data
2013                  * to write
2014                  */
2015                 if (ifr->ifr_data == NULL) {
2016                         return -EINVAL;
2017                 }
2018                 if (copy_from_user(&wrthdr, ifr->ifr_data,
2019                                    sizeof (struct fstioc_write))) {
2020                         return -EFAULT;
2021                 }
2022
2023                 /* Sanity check the parameters. We don't support partial writes
2024                  * when going over the top
2025                  */
2026                 if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE ||
2027                     wrthdr.size + wrthdr.offset > FST_MEMSIZE) {
2028                         return -ENXIO;
2029                 }
2030
2031                 /* Now copy the data to the card. */
2032
2033                 buf = memdup_user(ifr->ifr_data + sizeof(struct fstioc_write),
2034                                   wrthdr.size);
2035                 if (IS_ERR(buf))
2036                         return PTR_ERR(buf);
2037
2038                 memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size);
2039                 kfree(buf);
2040
2041                 /* Writes to the memory of a card in the reset state constitute
2042                  * a download
2043                  */
2044                 if (card->state == FST_RESET) {
2045                         card->state = FST_DOWNLOAD;
2046                 }
2047                 return 0;
2048
2049         case FSTGETCONF:
2050
2051                 /* If card has just been started check the shared memory config
2052                  * version and marker
2053                  */
2054                 if (card->state == FST_STARTING) {
2055                         check_started_ok(card);
2056
2057                         /* If everything checked out enable card interrupts */
2058                         if (card->state == FST_RUNNING) {
2059                                 spin_lock_irqsave(&card->card_lock, flags);
2060                                 fst_enable_intr(card);
2061                                 FST_WRB(card, interruptHandshake, 0xEE);
2062                                 spin_unlock_irqrestore(&card->card_lock, flags);
2063                         }
2064                 }
2065
2066                 if (ifr->ifr_data == NULL) {
2067                         return -EINVAL;
2068                 }
2069
2070                 gather_conf_info(card, port, &info);
2071
2072                 if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) {
2073                         return -EFAULT;
2074                 }
2075                 return 0;
2076
2077         case FSTSETCONF:
2078
2079                 /*
2080                  * Most of the settings have been moved to the generic ioctls
2081                  * this just covers debug and board ident now
2082                  */
2083
2084                 if (card->state != FST_RUNNING) {
2085                         pr_err("Attempt to configure card %d in non-running state (%d)\n",
2086                                card->card_no, card->state);
2087                         return -EIO;
2088                 }
2089                 if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) {
2090                         return -EFAULT;
2091                 }
2092
2093                 return set_conf_from_info(card, port, &info);
2094
2095         case SIOCWANDEV:
2096                 switch (ifr->ifr_settings.type) {
2097                 case IF_GET_IFACE:
2098                         return fst_get_iface(card, port, ifr);
2099
2100                 case IF_IFACE_SYNC_SERIAL:
2101                 case IF_IFACE_V35:
2102                 case IF_IFACE_V24:
2103                 case IF_IFACE_X21:
2104                 case IF_IFACE_X21D:
2105                 case IF_IFACE_T1:
2106                 case IF_IFACE_E1:
2107                         return fst_set_iface(card, port, ifr);
2108
2109                 case IF_PROTO_RAW:
2110                         port->mode = FST_RAW;
2111                         return 0;
2112
2113                 case IF_GET_PROTO:
2114                         if (port->mode == FST_RAW) {
2115                                 ifr->ifr_settings.type = IF_PROTO_RAW;
2116                                 return 0;
2117                         }
2118                         return hdlc_ioctl(dev, ifr, cmd);
2119
2120                 default:
2121                         port->mode = FST_GEN_HDLC;
2122                         dbg(DBG_IOCTL, "Passing this type to hdlc %x\n",
2123                             ifr->ifr_settings.type);
2124                         return hdlc_ioctl(dev, ifr, cmd);
2125                 }
2126
2127         default:
2128                 /* Not one of ours. Pass through to HDLC package */
2129                 return hdlc_ioctl(dev, ifr, cmd);
2130         }
2131 }
2132
2133 static void
2134 fst_openport(struct fst_port_info *port)
2135 {
2136         int signals;
2137         int txq_length;
2138
2139         /* Only init things if card is actually running. This allows open to
2140          * succeed for downloads etc.
2141          */
2142         if (port->card->state == FST_RUNNING) {
2143                 if (port->run) {
2144                         dbg(DBG_OPEN, "open: found port already running\n");
2145
2146                         fst_issue_cmd(port, STOPPORT);
2147                         port->run = 0;
2148                 }
2149
2150                 fst_rx_config(port);
2151                 fst_tx_config(port);
2152                 fst_op_raise(port, OPSTS_RTS | OPSTS_DTR);
2153
2154                 fst_issue_cmd(port, STARTPORT);
2155                 port->run = 1;
2156
2157                 signals = FST_RDL(port->card, v24DebouncedSts[port->index]);
2158                 if (signals & (((port->hwif == X21) || (port->hwif == X21D))
2159                                ? IPSTS_INDICATE : IPSTS_DCD))
2160                         netif_carrier_on(port_to_dev(port));
2161                 else
2162                         netif_carrier_off(port_to_dev(port));
2163
2164                 txq_length = port->txqe - port->txqs;
2165                 port->txqe = 0;
2166                 port->txqs = 0;
2167         }
2168
2169 }
2170
2171 static void
2172 fst_closeport(struct fst_port_info *port)
2173 {
2174         if (port->card->state == FST_RUNNING) {
2175                 if (port->run) {
2176                         port->run = 0;
2177                         fst_op_lower(port, OPSTS_RTS | OPSTS_DTR);
2178
2179                         fst_issue_cmd(port, STOPPORT);
2180                 } else {
2181                         dbg(DBG_OPEN, "close: port not running\n");
2182                 }
2183         }
2184 }
2185
2186 static int
2187 fst_open(struct net_device *dev)
2188 {
2189         int err;
2190         struct fst_port_info *port;
2191
2192         port = dev_to_port(dev);
2193         if (!try_module_get(THIS_MODULE))
2194           return -EBUSY;
2195
2196         if (port->mode != FST_RAW) {
2197                 err = hdlc_open(dev);
2198                 if (err) {
2199                         module_put(THIS_MODULE);
2200                         return err;
2201                 }
2202         }
2203
2204         fst_openport(port);
2205         netif_wake_queue(dev);
2206         return 0;
2207 }
2208
2209 static int
2210 fst_close(struct net_device *dev)
2211 {
2212         struct fst_port_info *port;
2213         struct fst_card_info *card;
2214         unsigned char tx_dma_done;
2215         unsigned char rx_dma_done;
2216
2217         port = dev_to_port(dev);
2218         card = port->card;
2219
2220         tx_dma_done = inb(card->pci_conf + DMACSR1);
2221         rx_dma_done = inb(card->pci_conf + DMACSR0);
2222         dbg(DBG_OPEN,
2223             "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
2224             card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress,
2225             rx_dma_done);
2226
2227         netif_stop_queue(dev);
2228         fst_closeport(dev_to_port(dev));
2229         if (port->mode != FST_RAW) {
2230                 hdlc_close(dev);
2231         }
2232         module_put(THIS_MODULE);
2233         return 0;
2234 }
2235
2236 static int
2237 fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity)
2238 {
2239         /*
2240          * Setting currently fixed in FarSync card so we check and forget
2241          */
2242         if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT)
2243                 return -EINVAL;
2244         return 0;
2245 }
2246
2247 static void
2248 fst_tx_timeout(struct net_device *dev)
2249 {
2250         struct fst_port_info *port;
2251         struct fst_card_info *card;
2252
2253         port = dev_to_port(dev);
2254         card = port->card;
2255         dev->stats.tx_errors++;
2256         dev->stats.tx_aborted_errors++;
2257         dbg(DBG_ASS, "Tx timeout card %d port %d\n",
2258             card->card_no, port->index);
2259         fst_issue_cmd(port, ABORTTX);
2260
2261         dev->trans_start = jiffies;
2262         netif_wake_queue(dev);
2263         port->start = 0;
2264 }
2265
2266 static netdev_tx_t
2267 fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
2268 {
2269         struct fst_card_info *card;
2270         struct fst_port_info *port;
2271         unsigned long flags;
2272         int txq_length;
2273
2274         port = dev_to_port(dev);
2275         card = port->card;
2276         dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len);
2277
2278         /* Drop packet with error if we don't have carrier */
2279         if (!netif_carrier_ok(dev)) {
2280                 dev_kfree_skb(skb);
2281                 dev->stats.tx_errors++;
2282                 dev->stats.tx_carrier_errors++;
2283                 dbg(DBG_ASS,
2284                     "Tried to transmit but no carrier on card %d port %d\n",
2285                     card->card_no, port->index);
2286                 return NETDEV_TX_OK;
2287         }
2288
2289         /* Drop it if it's too big! MTU failure ? */
2290         if (skb->len > LEN_TX_BUFFER) {
2291                 dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len,
2292                     LEN_TX_BUFFER);
2293                 dev_kfree_skb(skb);
2294                 dev->stats.tx_errors++;
2295                 return NETDEV_TX_OK;
2296         }
2297
2298         /*
2299          * We are always going to queue the packet
2300          * so that the bottom half is the only place we tx from
2301          * Check there is room in the port txq
2302          */
2303         spin_lock_irqsave(&card->card_lock, flags);
2304         if ((txq_length = port->txqe - port->txqs) < 0) {
2305                 /*
2306                  * This is the case where the next free has wrapped but the
2307                  * last used hasn't
2308                  */
2309                 txq_length = txq_length + FST_TXQ_DEPTH;
2310         }
2311         spin_unlock_irqrestore(&card->card_lock, flags);
2312         if (txq_length > fst_txq_high) {
2313                 /*
2314                  * We have got enough buffers in the pipeline.  Ask the network
2315                  * layer to stop sending frames down
2316                  */
2317                 netif_stop_queue(dev);
2318                 port->start = 1;        /* I'm using this to signal stop sent up */
2319         }
2320
2321         if (txq_length == FST_TXQ_DEPTH - 1) {
2322                 /*
2323                  * This shouldn't have happened but such is life
2324                  */
2325                 dev_kfree_skb(skb);
2326                 dev->stats.tx_errors++;
2327                 dbg(DBG_ASS, "Tx queue overflow card %d port %d\n",
2328                     card->card_no, port->index);
2329                 return NETDEV_TX_OK;
2330         }
2331
2332         /*
2333          * queue the buffer
2334          */
2335         spin_lock_irqsave(&card->card_lock, flags);
2336         port->txq[port->txqe] = skb;
2337         port->txqe++;
2338         if (port->txqe == FST_TXQ_DEPTH)
2339                 port->txqe = 0;
2340         spin_unlock_irqrestore(&card->card_lock, flags);
2341
2342         /* Scehdule the bottom half which now does transmit processing */
2343         fst_q_work_item(&fst_work_txq, card->card_no);
2344         tasklet_schedule(&fst_tx_task);
2345
2346         return NETDEV_TX_OK;
2347 }
2348
2349 /*
2350  *      Card setup having checked hardware resources.
2351  *      Should be pretty bizarre if we get an error here (kernel memory
2352  *      exhaustion is one possibility). If we do see a problem we report it
2353  *      via a printk and leave the corresponding interface and all that follow
2354  *      disabled.
2355  */
2356 static char *type_strings[] = {
2357         "no hardware",          /* Should never be seen */
2358         "FarSync T2P",
2359         "FarSync T4P",
2360         "FarSync T1U",
2361         "FarSync T2U",
2362         "FarSync T4U",
2363         "FarSync TE1"
2364 };
2365
2366 static int
2367 fst_init_card(struct fst_card_info *card)
2368 {
2369         int i;
2370         int err;
2371
2372         /* We're working on a number of ports based on the card ID. If the
2373          * firmware detects something different later (should never happen)
2374          * we'll have to revise it in some way then.
2375          */
2376         for (i = 0; i < card->nports; i++) {
2377                 err = register_hdlc_device(card->ports[i].dev);
2378                 if (err < 0) {
2379                         pr_err("Cannot register HDLC device for port %d (errno %d)\n",
2380                                 i, -err);
2381                         while (i--)
2382                                 unregister_hdlc_device(card->ports[i].dev);
2383                         return err;
2384                 }
2385         }
2386
2387         pr_info("%s-%s: %s IRQ%d, %d ports\n",
2388                 port_to_dev(&card->ports[0])->name,
2389                 port_to_dev(&card->ports[card->nports - 1])->name,
2390                 type_strings[card->type], card->irq, card->nports);
2391         return 0;
2392 }
2393
2394 static const struct net_device_ops fst_ops = {
2395         .ndo_open       = fst_open,
2396         .ndo_stop       = fst_close,
2397         .ndo_change_mtu = hdlc_change_mtu,
2398         .ndo_start_xmit = hdlc_start_xmit,
2399         .ndo_do_ioctl   = fst_ioctl,
2400         .ndo_tx_timeout = fst_tx_timeout,
2401 };
2402
2403 /*
2404  *      Initialise card when detected.
2405  *      Returns 0 to indicate success, or errno otherwise.
2406  */
2407 static int
2408 fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2409 {
2410         static int no_of_cards_added = 0;
2411         struct fst_card_info *card;
2412         int err = 0;
2413         int i;
2414
2415         printk_once(KERN_INFO
2416                     pr_fmt("FarSync WAN driver " FST_USER_VERSION
2417                            " (c) 2001-2004 FarSite Communications Ltd.\n"));
2418 #if FST_DEBUG
2419         dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask);
2420 #endif
2421         /*
2422          * We are going to be clever and allow certain cards not to be
2423          * configured.  An exclude list can be provided in /etc/modules.conf
2424          */
2425         if (fst_excluded_cards != 0) {
2426                 /*
2427                  * There are cards to exclude
2428                  *
2429                  */
2430                 for (i = 0; i < fst_excluded_cards; i++) {
2431                         if ((pdev->devfn) >> 3 == fst_excluded_list[i]) {
2432                                 pr_info("FarSync PCI device %d not assigned\n",
2433                                         (pdev->devfn) >> 3);
2434                                 return -EBUSY;
2435                         }
2436                 }
2437         }
2438
2439         /* Allocate driver private data */
2440         card = kzalloc(sizeof(struct fst_card_info), GFP_KERNEL);
2441         if (card == NULL)
2442                 return -ENOMEM;
2443
2444         /* Try to enable the device */
2445         if ((err = pci_enable_device(pdev)) != 0) {
2446                 pr_err("Failed to enable card. Err %d\n", -err);
2447                 goto enable_fail;
2448         }
2449
2450         if ((err = pci_request_regions(pdev, "FarSync")) !=0) {
2451                 pr_err("Failed to allocate regions. Err %d\n", -err);
2452                 goto regions_fail;
2453         }
2454
2455         /* Get virtual addresses of memory regions */
2456         card->pci_conf = pci_resource_start(pdev, 1);
2457         card->phys_mem = pci_resource_start(pdev, 2);
2458         card->phys_ctlmem = pci_resource_start(pdev, 3);
2459         if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) {
2460                 pr_err("Physical memory remap failed\n");
2461                 err = -ENODEV;
2462                 goto ioremap_physmem_fail;
2463         }
2464         if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) {
2465                 pr_err("Control memory remap failed\n");
2466                 err = -ENODEV;
2467                 goto ioremap_ctlmem_fail;
2468         }
2469         dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem);
2470
2471         /* Register the interrupt handler */
2472         if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) {
2473                 pr_err("Unable to register interrupt %d\n", card->irq);
2474                 err = -ENODEV;
2475                 goto irq_fail;
2476         }
2477
2478         /* Record info we need */
2479         card->irq = pdev->irq;
2480         card->type = ent->driver_data;
2481         card->family = ((ent->driver_data == FST_TYPE_T2P) ||
2482                         (ent->driver_data == FST_TYPE_T4P))
2483             ? FST_FAMILY_TXP : FST_FAMILY_TXU;
2484         if ((ent->driver_data == FST_TYPE_T1U) ||
2485             (ent->driver_data == FST_TYPE_TE1))
2486                 card->nports = 1;
2487         else
2488                 card->nports = ((ent->driver_data == FST_TYPE_T2P) ||
2489                                 (ent->driver_data == FST_TYPE_T2U)) ? 2 : 4;
2490
2491         card->state = FST_UNINIT;
2492         spin_lock_init ( &card->card_lock );
2493
2494         for ( i = 0 ; i < card->nports ; i++ ) {
2495                 struct net_device *dev = alloc_hdlcdev(&card->ports[i]);
2496                 hdlc_device *hdlc;
2497                 if (!dev) {
2498                         while (i--)
2499                                 free_netdev(card->ports[i].dev);
2500                         pr_err("FarSync: out of memory\n");
2501                         err = -ENOMEM;
2502                         goto hdlcdev_fail;
2503                 }
2504                 card->ports[i].dev    = dev;
2505                 card->ports[i].card   = card;
2506                 card->ports[i].index  = i;
2507                 card->ports[i].run    = 0;
2508
2509                 hdlc = dev_to_hdlc(dev);
2510
2511                 /* Fill in the net device info */
2512                 /* Since this is a PCI setup this is purely
2513                  * informational. Give them the buffer addresses
2514                  * and basic card I/O.
2515                  */
2516                 dev->mem_start   = card->phys_mem
2517                                  + BUF_OFFSET ( txBuffer[i][0][0]);
2518                 dev->mem_end     = card->phys_mem
2519                                  + BUF_OFFSET ( txBuffer[i][NUM_TX_BUFFER][0]);
2520                 dev->base_addr   = card->pci_conf;
2521                 dev->irq         = card->irq;
2522
2523                 dev->netdev_ops = &fst_ops;
2524                 dev->tx_queue_len = FST_TX_QUEUE_LEN;
2525                 dev->watchdog_timeo = FST_TX_TIMEOUT;
2526                 hdlc->attach = fst_attach;
2527                 hdlc->xmit   = fst_start_xmit;
2528         }
2529
2530         card->device = pdev;
2531
2532         dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type,
2533             card->nports, card->irq);
2534         dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n",
2535             card->pci_conf, card->phys_mem, card->phys_ctlmem);
2536
2537         /* Reset the card's processor */
2538         fst_cpureset(card);
2539         card->state = FST_RESET;
2540
2541         /* Initialise DMA (if required) */
2542         fst_init_dma(card);
2543
2544         /* Record driver data for later use */
2545         pci_set_drvdata(pdev, card);
2546
2547         /* Remainder of card setup */
2548         if (no_of_cards_added >= FST_MAX_CARDS) {
2549                 pr_err("FarSync: too many cards\n");
2550                 err = -ENOMEM;
2551                 goto card_array_fail;
2552         }
2553         fst_card_array[no_of_cards_added] = card;
2554         card->card_no = no_of_cards_added++;    /* Record instance and bump it */
2555         err = fst_init_card(card);
2556         if (err)
2557                 goto init_card_fail;
2558         if (card->family == FST_FAMILY_TXU) {
2559                 /*
2560                  * Allocate a dma buffer for transmit and receives
2561                  */
2562                 card->rx_dma_handle_host =
2563                     pci_alloc_consistent(card->device, FST_MAX_MTU,
2564                                          &card->rx_dma_handle_card);
2565                 if (card->rx_dma_handle_host == NULL) {
2566                         pr_err("Could not allocate rx dma buffer\n");
2567                         err = -ENOMEM;
2568                         goto rx_dma_fail;
2569                 }
2570                 card->tx_dma_handle_host =
2571                     pci_alloc_consistent(card->device, FST_MAX_MTU,
2572                                          &card->tx_dma_handle_card);
2573                 if (card->tx_dma_handle_host == NULL) {
2574                         pr_err("Could not allocate tx dma buffer\n");
2575                         err = -ENOMEM;
2576                         goto tx_dma_fail;
2577                 }
2578         }
2579         return 0;               /* Success */
2580
2581 tx_dma_fail:
2582         pci_free_consistent(card->device, FST_MAX_MTU,
2583                             card->rx_dma_handle_host,
2584                             card->rx_dma_handle_card);
2585 rx_dma_fail:
2586         fst_disable_intr(card);
2587         for (i = 0 ; i < card->nports ; i++)
2588                 unregister_hdlc_device(card->ports[i].dev);
2589 init_card_fail:
2590         fst_card_array[card->card_no] = NULL;
2591 card_array_fail:
2592         for (i = 0 ; i < card->nports ; i++)
2593                 free_netdev(card->ports[i].dev);
2594 hdlcdev_fail:
2595         free_irq(card->irq, card);
2596 irq_fail:
2597         iounmap(card->ctlmem);
2598 ioremap_ctlmem_fail:
2599         iounmap(card->mem);
2600 ioremap_physmem_fail:
2601         pci_release_regions(pdev);
2602 regions_fail:
2603         pci_disable_device(pdev);
2604 enable_fail:
2605         kfree(card);
2606         return err;
2607 }
2608
2609 /*
2610  *      Cleanup and close down a card
2611  */
2612 static void
2613 fst_remove_one(struct pci_dev *pdev)
2614 {
2615         struct fst_card_info *card;
2616         int i;
2617
2618         card = pci_get_drvdata(pdev);
2619
2620         for (i = 0; i < card->nports; i++) {
2621                 struct net_device *dev = port_to_dev(&card->ports[i]);
2622                 unregister_hdlc_device(dev);
2623         }
2624
2625         fst_disable_intr(card);
2626         free_irq(card->irq, card);
2627
2628         iounmap(card->ctlmem);
2629         iounmap(card->mem);
2630         pci_release_regions(pdev);
2631         if (card->family == FST_FAMILY_TXU) {
2632                 /*
2633                  * Free dma buffers
2634                  */
2635                 pci_free_consistent(card->device, FST_MAX_MTU,
2636                                     card->rx_dma_handle_host,
2637                                     card->rx_dma_handle_card);
2638                 pci_free_consistent(card->device, FST_MAX_MTU,
2639                                     card->tx_dma_handle_host,
2640                                     card->tx_dma_handle_card);
2641         }
2642         fst_card_array[card->card_no] = NULL;
2643 }
2644
2645 static struct pci_driver fst_driver = {
2646         .name           = FST_NAME,
2647         .id_table       = fst_pci_dev_id,
2648         .probe          = fst_add_one,
2649         .remove = fst_remove_one,
2650         .suspend        = NULL,
2651         .resume = NULL,
2652 };
2653
2654 static int __init
2655 fst_init(void)
2656 {
2657         int i;
2658
2659         for (i = 0; i < FST_MAX_CARDS; i++)
2660                 fst_card_array[i] = NULL;
2661         spin_lock_init(&fst_work_q_lock);
2662         return pci_register_driver(&fst_driver);
2663 }
2664
2665 static void __exit
2666 fst_cleanup_module(void)
2667 {
2668         pr_info("FarSync WAN driver unloading\n");
2669         pci_unregister_driver(&fst_driver);
2670 }
2671
2672 module_init(fst_init);
2673 module_exit(fst_cleanup_module);