Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / net / hippi / rrunner.c
1 /*
2  * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
3  *
4  * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
5  *
6  * Thanks to Essential Communication for providing us with hardware
7  * and very comprehensive documentation without which I would not have
8  * been able to write this driver. A special thank you to John Gibbon
9  * for sorting out the legal issues, with the NDA, allowing the code to
10  * be released under the GPL.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
18  * stupid bugs in my code.
19  *
20  * Softnet support and various other patches from Val Henson of
21  * ODS/Essential.
22  *
23  * PCI DMA mapping code partly based on work by Francois Romieu.
24  */
25
26
27 #define DEBUG 1
28 #define RX_DMA_SKBUFF 1
29 #define PKT_COPY_THRESHOLD 512
30
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/errno.h>
34 #include <linux/ioport.h>
35 #include <linux/pci.h>
36 #include <linux/kernel.h>
37 #include <linux/netdevice.h>
38 #include <linux/hippidevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/delay.h>
41 #include <linux/mm.h>
42 #include <linux/slab.h>
43 #include <net/sock.h>
44
45 #include <asm/cache.h>
46 #include <asm/byteorder.h>
47 #include <asm/io.h>
48 #include <asm/irq.h>
49 #include <asm/uaccess.h>
50
51 #define rr_if_busy(dev)     netif_queue_stopped(dev)
52 #define rr_if_running(dev)  netif_running(dev)
53
54 #include "rrunner.h"
55
56 #define RUN_AT(x) (jiffies + (x))
57
58
59 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
60 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
61 MODULE_LICENSE("GPL");
62
63 static char version[] = "rrunner.c: v0.50 11/11/2002  Jes Sorensen (jes@wildopensource.com)\n";
64
65
66 static const struct net_device_ops rr_netdev_ops = {
67         .ndo_open               = rr_open,
68         .ndo_stop               = rr_close,
69         .ndo_do_ioctl           = rr_ioctl,
70         .ndo_start_xmit         = rr_start_xmit,
71         .ndo_change_mtu         = hippi_change_mtu,
72         .ndo_set_mac_address    = hippi_mac_addr,
73 };
74
75 /*
76  * Implementation notes:
77  *
78  * The DMA engine only allows for DMA within physical 64KB chunks of
79  * memory. The current approach of the driver (and stack) is to use
80  * linear blocks of memory for the skbuffs. However, as the data block
81  * is always the first part of the skb and skbs are 2^n aligned so we
82  * are guarantted to get the whole block within one 64KB align 64KB
83  * chunk.
84  *
85  * On the long term, relying on being able to allocate 64KB linear
86  * chunks of memory is not feasible and the skb handling code and the
87  * stack will need to know about I/O vectors or something similar.
88  */
89
90 static int rr_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
91 {
92         struct net_device *dev;
93         static int version_disp;
94         u8 pci_latency;
95         struct rr_private *rrpriv;
96         void *tmpptr;
97         dma_addr_t ring_dma;
98         int ret = -ENOMEM;
99
100         dev = alloc_hippi_dev(sizeof(struct rr_private));
101         if (!dev)
102                 goto out3;
103
104         ret = pci_enable_device(pdev);
105         if (ret) {
106                 ret = -ENODEV;
107                 goto out2;
108         }
109
110         rrpriv = netdev_priv(dev);
111
112         SET_NETDEV_DEV(dev, &pdev->dev);
113
114         ret = pci_request_regions(pdev, "rrunner");
115         if (ret < 0)
116                 goto out;
117
118         pci_set_drvdata(pdev, dev);
119
120         rrpriv->pci_dev = pdev;
121
122         spin_lock_init(&rrpriv->lock);
123
124         dev->netdev_ops = &rr_netdev_ops;
125
126         /* display version info if adapter is found */
127         if (!version_disp) {
128                 /* set display flag to TRUE so that */
129                 /* we only display this string ONCE */
130                 version_disp = 1;
131                 printk(version);
132         }
133
134         pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
135         if (pci_latency <= 0x58){
136                 pci_latency = 0x58;
137                 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
138         }
139
140         pci_set_master(pdev);
141
142         printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
143                "at 0x%llx, irq %i, PCI latency %i\n", dev->name,
144                (unsigned long long)pci_resource_start(pdev, 0),
145                pdev->irq, pci_latency);
146
147         /*
148          * Remap the MMIO regs into kernel space.
149          */
150         rrpriv->regs = pci_iomap(pdev, 0, 0x1000);
151         if (!rrpriv->regs) {
152                 printk(KERN_ERR "%s:  Unable to map I/O register, "
153                         "RoadRunner will be disabled.\n", dev->name);
154                 ret = -EIO;
155                 goto out;
156         }
157
158         tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
159         rrpriv->tx_ring = tmpptr;
160         rrpriv->tx_ring_dma = ring_dma;
161
162         if (!tmpptr) {
163                 ret = -ENOMEM;
164                 goto out;
165         }
166
167         tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
168         rrpriv->rx_ring = tmpptr;
169         rrpriv->rx_ring_dma = ring_dma;
170
171         if (!tmpptr) {
172                 ret = -ENOMEM;
173                 goto out;
174         }
175
176         tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
177         rrpriv->evt_ring = tmpptr;
178         rrpriv->evt_ring_dma = ring_dma;
179
180         if (!tmpptr) {
181                 ret = -ENOMEM;
182                 goto out;
183         }
184
185         /*
186          * Don't access any register before this point!
187          */
188 #ifdef __BIG_ENDIAN
189         writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
190                 &rrpriv->regs->HostCtrl);
191 #endif
192         /*
193          * Need to add a case for little-endian 64-bit hosts here.
194          */
195
196         rr_init(dev);
197
198         ret = register_netdev(dev);
199         if (ret)
200                 goto out;
201         return 0;
202
203  out:
204         if (rrpriv->evt_ring)
205                 pci_free_consistent(pdev, EVT_RING_SIZE, rrpriv->evt_ring,
206                                     rrpriv->evt_ring_dma);
207         if (rrpriv->rx_ring)
208                 pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
209                                     rrpriv->rx_ring_dma);
210         if (rrpriv->tx_ring)
211                 pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
212                                     rrpriv->tx_ring_dma);
213         if (rrpriv->regs)
214                 pci_iounmap(pdev, rrpriv->regs);
215         if (pdev)
216                 pci_release_regions(pdev);
217  out2:
218         free_netdev(dev);
219  out3:
220         return ret;
221 }
222
223 static void rr_remove_one(struct pci_dev *pdev)
224 {
225         struct net_device *dev = pci_get_drvdata(pdev);
226         struct rr_private *rr = netdev_priv(dev);
227
228         if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)) {
229                 printk(KERN_ERR "%s: trying to unload running NIC\n",
230                        dev->name);
231                 writel(HALT_NIC, &rr->regs->HostCtrl);
232         }
233
234         unregister_netdev(dev);
235         pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
236                             rr->evt_ring_dma);
237         pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
238                             rr->rx_ring_dma);
239         pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
240                             rr->tx_ring_dma);
241         pci_iounmap(pdev, rr->regs);
242         pci_release_regions(pdev);
243         pci_disable_device(pdev);
244         free_netdev(dev);
245 }
246
247
248 /*
249  * Commands are considered to be slow, thus there is no reason to
250  * inline this.
251  */
252 static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
253 {
254         struct rr_regs __iomem *regs;
255         u32 idx;
256
257         regs = rrpriv->regs;
258         /*
259          * This is temporary - it will go away in the final version.
260          * We probably also want to make this function inline.
261          */
262         if (readl(&regs->HostCtrl) & NIC_HALTED){
263                 printk("issuing command for halted NIC, code 0x%x, "
264                        "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
265                 if (readl(&regs->Mode) & FATAL_ERR)
266                         printk("error codes Fail1 %02x, Fail2 %02x\n",
267                                readl(&regs->Fail1), readl(&regs->Fail2));
268         }
269
270         idx = rrpriv->info->cmd_ctrl.pi;
271
272         writel(*(u32*)(cmd), &regs->CmdRing[idx]);
273         wmb();
274
275         idx = (idx - 1) % CMD_RING_ENTRIES;
276         rrpriv->info->cmd_ctrl.pi = idx;
277         wmb();
278
279         if (readl(&regs->Mode) & FATAL_ERR)
280                 printk("error code %02x\n", readl(&regs->Fail1));
281 }
282
283
284 /*
285  * Reset the board in a sensible manner. The NIC is already halted
286  * when we get here and a spin-lock is held.
287  */
288 static int rr_reset(struct net_device *dev)
289 {
290         struct rr_private *rrpriv;
291         struct rr_regs __iomem *regs;
292         u32 start_pc;
293         int i;
294
295         rrpriv = netdev_priv(dev);
296         regs = rrpriv->regs;
297
298         rr_load_firmware(dev);
299
300         writel(0x01000000, &regs->TX_state);
301         writel(0xff800000, &regs->RX_state);
302         writel(0, &regs->AssistState);
303         writel(CLEAR_INTA, &regs->LocalCtrl);
304         writel(0x01, &regs->BrkPt);
305         writel(0, &regs->Timer);
306         writel(0, &regs->TimerRef);
307         writel(RESET_DMA, &regs->DmaReadState);
308         writel(RESET_DMA, &regs->DmaWriteState);
309         writel(0, &regs->DmaWriteHostHi);
310         writel(0, &regs->DmaWriteHostLo);
311         writel(0, &regs->DmaReadHostHi);
312         writel(0, &regs->DmaReadHostLo);
313         writel(0, &regs->DmaReadLen);
314         writel(0, &regs->DmaWriteLen);
315         writel(0, &regs->DmaWriteLcl);
316         writel(0, &regs->DmaWriteIPchecksum);
317         writel(0, &regs->DmaReadLcl);
318         writel(0, &regs->DmaReadIPchecksum);
319         writel(0, &regs->PciState);
320 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
321         writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
322 #elif (BITS_PER_LONG == 64)
323         writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
324 #else
325         writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
326 #endif
327
328 #if 0
329         /*
330          * Don't worry, this is just black magic.
331          */
332         writel(0xdf000, &regs->RxBase);
333         writel(0xdf000, &regs->RxPrd);
334         writel(0xdf000, &regs->RxCon);
335         writel(0xce000, &regs->TxBase);
336         writel(0xce000, &regs->TxPrd);
337         writel(0xce000, &regs->TxCon);
338         writel(0, &regs->RxIndPro);
339         writel(0, &regs->RxIndCon);
340         writel(0, &regs->RxIndRef);
341         writel(0, &regs->TxIndPro);
342         writel(0, &regs->TxIndCon);
343         writel(0, &regs->TxIndRef);
344         writel(0xcc000, &regs->pad10[0]);
345         writel(0, &regs->DrCmndPro);
346         writel(0, &regs->DrCmndCon);
347         writel(0, &regs->DwCmndPro);
348         writel(0, &regs->DwCmndCon);
349         writel(0, &regs->DwCmndRef);
350         writel(0, &regs->DrDataPro);
351         writel(0, &regs->DrDataCon);
352         writel(0, &regs->DrDataRef);
353         writel(0, &regs->DwDataPro);
354         writel(0, &regs->DwDataCon);
355         writel(0, &regs->DwDataRef);
356 #endif
357
358         writel(0xffffffff, &regs->MbEvent);
359         writel(0, &regs->Event);
360
361         writel(0, &regs->TxPi);
362         writel(0, &regs->IpRxPi);
363
364         writel(0, &regs->EvtCon);
365         writel(0, &regs->EvtPrd);
366
367         rrpriv->info->evt_ctrl.pi = 0;
368
369         for (i = 0; i < CMD_RING_ENTRIES; i++)
370                 writel(0, &regs->CmdRing[i]);
371
372 /*
373  * Why 32 ? is this not cache line size dependent?
374  */
375         writel(RBURST_64|WBURST_64, &regs->PciState);
376         wmb();
377
378         start_pc = rr_read_eeprom_word(rrpriv,
379                         offsetof(struct eeprom, rncd_info.FwStart));
380
381 #if (DEBUG > 1)
382         printk("%s: Executing firmware at address 0x%06x\n",
383                dev->name, start_pc);
384 #endif
385
386         writel(start_pc + 0x800, &regs->Pc);
387         wmb();
388         udelay(5);
389
390         writel(start_pc, &regs->Pc);
391         wmb();
392
393         return 0;
394 }
395
396
397 /*
398  * Read a string from the EEPROM.
399  */
400 static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
401                                 unsigned long offset,
402                                 unsigned char *buf,
403                                 unsigned long length)
404 {
405         struct rr_regs __iomem *regs = rrpriv->regs;
406         u32 misc, io, host, i;
407
408         io = readl(&regs->ExtIo);
409         writel(0, &regs->ExtIo);
410         misc = readl(&regs->LocalCtrl);
411         writel(0, &regs->LocalCtrl);
412         host = readl(&regs->HostCtrl);
413         writel(host | HALT_NIC, &regs->HostCtrl);
414         mb();
415
416         for (i = 0; i < length; i++){
417                 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
418                 mb();
419                 buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
420                 mb();
421         }
422
423         writel(host, &regs->HostCtrl);
424         writel(misc, &regs->LocalCtrl);
425         writel(io, &regs->ExtIo);
426         mb();
427         return i;
428 }
429
430
431 /*
432  * Shortcut to read one word (4 bytes) out of the EEPROM and convert
433  * it to our CPU byte-order.
434  */
435 static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
436                             size_t offset)
437 {
438         __be32 word;
439
440         if ((rr_read_eeprom(rrpriv, offset,
441                             (unsigned char *)&word, 4) == 4))
442                 return be32_to_cpu(word);
443         return 0;
444 }
445
446
447 /*
448  * Write a string to the EEPROM.
449  *
450  * This is only called when the firmware is not running.
451  */
452 static unsigned int write_eeprom(struct rr_private *rrpriv,
453                                  unsigned long offset,
454                                  unsigned char *buf,
455                                  unsigned long length)
456 {
457         struct rr_regs __iomem *regs = rrpriv->regs;
458         u32 misc, io, data, i, j, ready, error = 0;
459
460         io = readl(&regs->ExtIo);
461         writel(0, &regs->ExtIo);
462         misc = readl(&regs->LocalCtrl);
463         writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
464         mb();
465
466         for (i = 0; i < length; i++){
467                 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
468                 mb();
469                 data = buf[i] << 24;
470                 /*
471                  * Only try to write the data if it is not the same
472                  * value already.
473                  */
474                 if ((readl(&regs->WinData) & 0xff000000) != data){
475                         writel(data, &regs->WinData);
476                         ready = 0;
477                         j = 0;
478                         mb();
479                         while(!ready){
480                                 udelay(20);
481                                 if ((readl(&regs->WinData) & 0xff000000) ==
482                                     data)
483                                         ready = 1;
484                                 mb();
485                                 if (j++ > 5000){
486                                         printk("data mismatch: %08x, "
487                                                "WinData %08x\n", data,
488                                                readl(&regs->WinData));
489                                         ready = 1;
490                                         error = 1;
491                                 }
492                         }
493                 }
494         }
495
496         writel(misc, &regs->LocalCtrl);
497         writel(io, &regs->ExtIo);
498         mb();
499
500         return error;
501 }
502
503
504 static int rr_init(struct net_device *dev)
505 {
506         struct rr_private *rrpriv;
507         struct rr_regs __iomem *regs;
508         u32 sram_size, rev;
509
510         rrpriv = netdev_priv(dev);
511         regs = rrpriv->regs;
512
513         rev = readl(&regs->FwRev);
514         rrpriv->fw_rev = rev;
515         if (rev > 0x00020024)
516                 printk("  Firmware revision: %i.%i.%i\n", (rev >> 16),
517                        ((rev >> 8) & 0xff), (rev & 0xff));
518         else if (rev >= 0x00020000) {
519                 printk("  Firmware revision: %i.%i.%i (2.0.37 or "
520                        "later is recommended)\n", (rev >> 16),
521                        ((rev >> 8) & 0xff), (rev & 0xff));
522         }else{
523                 printk("  Firmware revision too old: %i.%i.%i, please "
524                        "upgrade to 2.0.37 or later.\n",
525                        (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
526         }
527
528 #if (DEBUG > 2)
529         printk("  Maximum receive rings %i\n", readl(&regs->MaxRxRng));
530 #endif
531
532         /*
533          * Read the hardware address from the eeprom.  The HW address
534          * is not really necessary for HIPPI but awfully convenient.
535          * The pointer arithmetic to put it in dev_addr is ugly, but
536          * Donald Becker does it this way for the GigE version of this
537          * card and it's shorter and more portable than any
538          * other method I've seen.  -VAL
539          */
540
541         *(__be16 *)(dev->dev_addr) =
542           htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
543         *(__be32 *)(dev->dev_addr+2) =
544           htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
545
546         printk("  MAC: %pM\n", dev->dev_addr);
547
548         sram_size = rr_read_eeprom_word(rrpriv, 8);
549         printk("  SRAM size 0x%06x\n", sram_size);
550
551         return 0;
552 }
553
554
555 static int rr_init1(struct net_device *dev)
556 {
557         struct rr_private *rrpriv;
558         struct rr_regs __iomem *regs;
559         unsigned long myjif, flags;
560         struct cmd cmd;
561         u32 hostctrl;
562         int ecode = 0;
563         short i;
564
565         rrpriv = netdev_priv(dev);
566         regs = rrpriv->regs;
567
568         spin_lock_irqsave(&rrpriv->lock, flags);
569
570         hostctrl = readl(&regs->HostCtrl);
571         writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
572         wmb();
573
574         if (hostctrl & PARITY_ERR){
575                 printk("%s: Parity error halting NIC - this is serious!\n",
576                        dev->name);
577                 spin_unlock_irqrestore(&rrpriv->lock, flags);
578                 ecode = -EFAULT;
579                 goto error;
580         }
581
582         set_rxaddr(regs, rrpriv->rx_ctrl_dma);
583         set_infoaddr(regs, rrpriv->info_dma);
584
585         rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
586         rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
587         rrpriv->info->evt_ctrl.mode = 0;
588         rrpriv->info->evt_ctrl.pi = 0;
589         set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
590
591         rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
592         rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
593         rrpriv->info->cmd_ctrl.mode = 0;
594         rrpriv->info->cmd_ctrl.pi = 15;
595
596         for (i = 0; i < CMD_RING_ENTRIES; i++) {
597                 writel(0, &regs->CmdRing[i]);
598         }
599
600         for (i = 0; i < TX_RING_ENTRIES; i++) {
601                 rrpriv->tx_ring[i].size = 0;
602                 set_rraddr(&rrpriv->tx_ring[i].addr, 0);
603                 rrpriv->tx_skbuff[i] = NULL;
604         }
605         rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
606         rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
607         rrpriv->info->tx_ctrl.mode = 0;
608         rrpriv->info->tx_ctrl.pi = 0;
609         set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
610
611         /*
612          * Set dirty_tx before we start receiving interrupts, otherwise
613          * the interrupt handler might think it is supposed to process
614          * tx ints before we are up and running, which may cause a null
615          * pointer access in the int handler.
616          */
617         rrpriv->tx_full = 0;
618         rrpriv->cur_rx = 0;
619         rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
620
621         rr_reset(dev);
622
623         /* Tuning values */
624         writel(0x5000, &regs->ConRetry);
625         writel(0x100, &regs->ConRetryTmr);
626         writel(0x500000, &regs->ConTmout);
627         writel(0x60, &regs->IntrTmr);
628         writel(0x500000, &regs->TxDataMvTimeout);
629         writel(0x200000, &regs->RxDataMvTimeout);
630         writel(0x80, &regs->WriteDmaThresh);
631         writel(0x80, &regs->ReadDmaThresh);
632
633         rrpriv->fw_running = 0;
634         wmb();
635
636         hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
637         writel(hostctrl, &regs->HostCtrl);
638         wmb();
639
640         spin_unlock_irqrestore(&rrpriv->lock, flags);
641
642         for (i = 0; i < RX_RING_ENTRIES; i++) {
643                 struct sk_buff *skb;
644                 dma_addr_t addr;
645
646                 rrpriv->rx_ring[i].mode = 0;
647                 skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
648                 if (!skb) {
649                         printk(KERN_WARNING "%s: Unable to allocate memory "
650                                "for receive ring - halting NIC\n", dev->name);
651                         ecode = -ENOMEM;
652                         goto error;
653                 }
654                 rrpriv->rx_skbuff[i] = skb;
655                 addr = pci_map_single(rrpriv->pci_dev, skb->data,
656                         dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
657                 /*
658                  * Sanity test to see if we conflict with the DMA
659                  * limitations of the Roadrunner.
660                  */
661                 if ((((unsigned long)skb->data) & 0xfff) > ~65320)
662                         printk("skb alloc error\n");
663
664                 set_rraddr(&rrpriv->rx_ring[i].addr, addr);
665                 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
666         }
667
668         rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
669         rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
670         rrpriv->rx_ctrl[4].mode = 8;
671         rrpriv->rx_ctrl[4].pi = 0;
672         wmb();
673         set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
674
675         udelay(1000);
676
677         /*
678          * Now start the FirmWare.
679          */
680         cmd.code = C_START_FW;
681         cmd.ring = 0;
682         cmd.index = 0;
683
684         rr_issue_cmd(rrpriv, &cmd);
685
686         /*
687          * Give the FirmWare time to chew on the `get running' command.
688          */
689         myjif = jiffies + 5 * HZ;
690         while (time_before(jiffies, myjif) && !rrpriv->fw_running)
691                 cpu_relax();
692
693         netif_start_queue(dev);
694
695         return ecode;
696
697  error:
698         /*
699          * We might have gotten here because we are out of memory,
700          * make sure we release everything we allocated before failing
701          */
702         for (i = 0; i < RX_RING_ENTRIES; i++) {
703                 struct sk_buff *skb = rrpriv->rx_skbuff[i];
704
705                 if (skb) {
706                         pci_unmap_single(rrpriv->pci_dev,
707                                          rrpriv->rx_ring[i].addr.addrlo,
708                                          dev->mtu + HIPPI_HLEN,
709                                          PCI_DMA_FROMDEVICE);
710                         rrpriv->rx_ring[i].size = 0;
711                         set_rraddr(&rrpriv->rx_ring[i].addr, 0);
712                         dev_kfree_skb(skb);
713                         rrpriv->rx_skbuff[i] = NULL;
714                 }
715         }
716         return ecode;
717 }
718
719
720 /*
721  * All events are considered to be slow (RX/TX ints do not generate
722  * events) and are handled here, outside the main interrupt handler,
723  * to reduce the size of the handler.
724  */
725 static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
726 {
727         struct rr_private *rrpriv;
728         struct rr_regs __iomem *regs;
729         u32 tmp;
730
731         rrpriv = netdev_priv(dev);
732         regs = rrpriv->regs;
733
734         while (prodidx != eidx){
735                 switch (rrpriv->evt_ring[eidx].code){
736                 case E_NIC_UP:
737                         tmp = readl(&regs->FwRev);
738                         printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
739                                "up and running\n", dev->name,
740                                (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
741                         rrpriv->fw_running = 1;
742                         writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
743                         wmb();
744                         break;
745                 case E_LINK_ON:
746                         printk(KERN_INFO "%s: Optical link ON\n", dev->name);
747                         break;
748                 case E_LINK_OFF:
749                         printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
750                         break;
751                 case E_RX_IDLE:
752                         printk(KERN_WARNING "%s: RX data not moving\n",
753                                dev->name);
754                         goto drop;
755                 case E_WATCHDOG:
756                         printk(KERN_INFO "%s: The watchdog is here to see "
757                                "us\n", dev->name);
758                         break;
759                 case E_INTERN_ERR:
760                         printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
761                                dev->name);
762                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
763                                &regs->HostCtrl);
764                         wmb();
765                         break;
766                 case E_HOST_ERR:
767                         printk(KERN_ERR "%s: Host software error\n",
768                                dev->name);
769                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
770                                &regs->HostCtrl);
771                         wmb();
772                         break;
773                 /*
774                  * TX events.
775                  */
776                 case E_CON_REJ:
777                         printk(KERN_WARNING "%s: Connection rejected\n",
778                                dev->name);
779                         dev->stats.tx_aborted_errors++;
780                         break;
781                 case E_CON_TMOUT:
782                         printk(KERN_WARNING "%s: Connection timeout\n",
783                                dev->name);
784                         break;
785                 case E_DISC_ERR:
786                         printk(KERN_WARNING "%s: HIPPI disconnect error\n",
787                                dev->name);
788                         dev->stats.tx_aborted_errors++;
789                         break;
790                 case E_INT_PRTY:
791                         printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
792                                dev->name);
793                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
794                                &regs->HostCtrl);
795                         wmb();
796                         break;
797                 case E_TX_IDLE:
798                         printk(KERN_WARNING "%s: Transmitter idle\n",
799                                dev->name);
800                         break;
801                 case E_TX_LINK_DROP:
802                         printk(KERN_WARNING "%s: Link lost during transmit\n",
803                                dev->name);
804                         dev->stats.tx_aborted_errors++;
805                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
806                                &regs->HostCtrl);
807                         wmb();
808                         break;
809                 case E_TX_INV_RNG:
810                         printk(KERN_ERR "%s: Invalid send ring block\n",
811                                dev->name);
812                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
813                                &regs->HostCtrl);
814                         wmb();
815                         break;
816                 case E_TX_INV_BUF:
817                         printk(KERN_ERR "%s: Invalid send buffer address\n",
818                                dev->name);
819                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
820                                &regs->HostCtrl);
821                         wmb();
822                         break;
823                 case E_TX_INV_DSC:
824                         printk(KERN_ERR "%s: Invalid descriptor address\n",
825                                dev->name);
826                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
827                                &regs->HostCtrl);
828                         wmb();
829                         break;
830                 /*
831                  * RX events.
832                  */
833                 case E_RX_RNG_OUT:
834                         printk(KERN_INFO "%s: Receive ring full\n", dev->name);
835                         break;
836
837                 case E_RX_PAR_ERR:
838                         printk(KERN_WARNING "%s: Receive parity error\n",
839                                dev->name);
840                         goto drop;
841                 case E_RX_LLRC_ERR:
842                         printk(KERN_WARNING "%s: Receive LLRC error\n",
843                                dev->name);
844                         goto drop;
845                 case E_PKT_LN_ERR:
846                         printk(KERN_WARNING "%s: Receive packet length "
847                                "error\n", dev->name);
848                         goto drop;
849                 case E_DTA_CKSM_ERR:
850                         printk(KERN_WARNING "%s: Data checksum error\n",
851                                dev->name);
852                         goto drop;
853                 case E_SHT_BST:
854                         printk(KERN_WARNING "%s: Unexpected short burst "
855                                "error\n", dev->name);
856                         goto drop;
857                 case E_STATE_ERR:
858                         printk(KERN_WARNING "%s: Recv. state transition"
859                                " error\n", dev->name);
860                         goto drop;
861                 case E_UNEXP_DATA:
862                         printk(KERN_WARNING "%s: Unexpected data error\n",
863                                dev->name);
864                         goto drop;
865                 case E_LST_LNK_ERR:
866                         printk(KERN_WARNING "%s: Link lost error\n",
867                                dev->name);
868                         goto drop;
869                 case E_FRM_ERR:
870                         printk(KERN_WARNING "%s: Framming Error\n",
871                                dev->name);
872                         goto drop;
873                 case E_FLG_SYN_ERR:
874                         printk(KERN_WARNING "%s: Flag sync. lost during "
875                                "packet\n", dev->name);
876                         goto drop;
877                 case E_RX_INV_BUF:
878                         printk(KERN_ERR "%s: Invalid receive buffer "
879                                "address\n", dev->name);
880                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
881                                &regs->HostCtrl);
882                         wmb();
883                         break;
884                 case E_RX_INV_DSC:
885                         printk(KERN_ERR "%s: Invalid receive descriptor "
886                                "address\n", dev->name);
887                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
888                                &regs->HostCtrl);
889                         wmb();
890                         break;
891                 case E_RNG_BLK:
892                         printk(KERN_ERR "%s: Invalid ring block\n",
893                                dev->name);
894                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
895                                &regs->HostCtrl);
896                         wmb();
897                         break;
898                 drop:
899                         /* Label packet to be dropped.
900                          * Actual dropping occurs in rx
901                          * handling.
902                          *
903                          * The index of packet we get to drop is
904                          * the index of the packet following
905                          * the bad packet. -kbf
906                          */
907                         {
908                                 u16 index = rrpriv->evt_ring[eidx].index;
909                                 index = (index + (RX_RING_ENTRIES - 1)) %
910                                         RX_RING_ENTRIES;
911                                 rrpriv->rx_ring[index].mode |=
912                                         (PACKET_BAD | PACKET_END);
913                         }
914                         break;
915                 default:
916                         printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
917                                dev->name, rrpriv->evt_ring[eidx].code);
918                 }
919                 eidx = (eidx + 1) % EVT_RING_ENTRIES;
920         }
921
922         rrpriv->info->evt_ctrl.pi = eidx;
923         wmb();
924         return eidx;
925 }
926
927
928 static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
929 {
930         struct rr_private *rrpriv = netdev_priv(dev);
931         struct rr_regs __iomem *regs = rrpriv->regs;
932
933         do {
934                 struct rx_desc *desc;
935                 u32 pkt_len;
936
937                 desc = &(rrpriv->rx_ring[index]);
938                 pkt_len = desc->size;
939 #if (DEBUG > 2)
940                 printk("index %i, rxlimit %i\n", index, rxlimit);
941                 printk("len %x, mode %x\n", pkt_len, desc->mode);
942 #endif
943                 if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
944                         dev->stats.rx_dropped++;
945                         goto defer;
946                 }
947
948                 if (pkt_len > 0){
949                         struct sk_buff *skb, *rx_skb;
950
951                         rx_skb = rrpriv->rx_skbuff[index];
952
953                         if (pkt_len < PKT_COPY_THRESHOLD) {
954                                 skb = alloc_skb(pkt_len, GFP_ATOMIC);
955                                 if (skb == NULL){
956                                         printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
957                                         dev->stats.rx_dropped++;
958                                         goto defer;
959                                 } else {
960                                         pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
961                                                                     desc->addr.addrlo,
962                                                                     pkt_len,
963                                                                     PCI_DMA_FROMDEVICE);
964
965                                         memcpy(skb_put(skb, pkt_len),
966                                                rx_skb->data, pkt_len);
967
968                                         pci_dma_sync_single_for_device(rrpriv->pci_dev,
969                                                                        desc->addr.addrlo,
970                                                                        pkt_len,
971                                                                        PCI_DMA_FROMDEVICE);
972                                 }
973                         }else{
974                                 struct sk_buff *newskb;
975
976                                 newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
977                                         GFP_ATOMIC);
978                                 if (newskb){
979                                         dma_addr_t addr;
980
981                                         pci_unmap_single(rrpriv->pci_dev,
982                                                 desc->addr.addrlo, dev->mtu +
983                                                 HIPPI_HLEN, PCI_DMA_FROMDEVICE);
984                                         skb = rx_skb;
985                                         skb_put(skb, pkt_len);
986                                         rrpriv->rx_skbuff[index] = newskb;
987                                         addr = pci_map_single(rrpriv->pci_dev,
988                                                 newskb->data,
989                                                 dev->mtu + HIPPI_HLEN,
990                                                 PCI_DMA_FROMDEVICE);
991                                         set_rraddr(&desc->addr, addr);
992                                 } else {
993                                         printk("%s: Out of memory, deferring "
994                                                "packet\n", dev->name);
995                                         dev->stats.rx_dropped++;
996                                         goto defer;
997                                 }
998                         }
999                         skb->protocol = hippi_type_trans(skb, dev);
1000
1001                         netif_rx(skb);          /* send it up */
1002
1003                         dev->stats.rx_packets++;
1004                         dev->stats.rx_bytes += pkt_len;
1005                 }
1006         defer:
1007                 desc->mode = 0;
1008                 desc->size = dev->mtu + HIPPI_HLEN;
1009
1010                 if ((index & 7) == 7)
1011                         writel(index, &regs->IpRxPi);
1012
1013                 index = (index + 1) % RX_RING_ENTRIES;
1014         } while(index != rxlimit);
1015
1016         rrpriv->cur_rx = index;
1017         wmb();
1018 }
1019
1020
1021 static irqreturn_t rr_interrupt(int irq, void *dev_id)
1022 {
1023         struct rr_private *rrpriv;
1024         struct rr_regs __iomem *regs;
1025         struct net_device *dev = (struct net_device *)dev_id;
1026         u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1027
1028         rrpriv = netdev_priv(dev);
1029         regs = rrpriv->regs;
1030
1031         if (!(readl(&regs->HostCtrl) & RR_INT))
1032                 return IRQ_NONE;
1033
1034         spin_lock(&rrpriv->lock);
1035
1036         prodidx = readl(&regs->EvtPrd);
1037         txcsmr = (prodidx >> 8) & 0xff;
1038         rxlimit = (prodidx >> 16) & 0xff;
1039         prodidx &= 0xff;
1040
1041 #if (DEBUG > 2)
1042         printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1043                prodidx, rrpriv->info->evt_ctrl.pi);
1044 #endif
1045         /*
1046          * Order here is important.  We must handle events
1047          * before doing anything else in order to catch
1048          * such things as LLRC errors, etc -kbf
1049          */
1050
1051         eidx = rrpriv->info->evt_ctrl.pi;
1052         if (prodidx != eidx)
1053                 eidx = rr_handle_event(dev, prodidx, eidx);
1054
1055         rxindex = rrpriv->cur_rx;
1056         if (rxindex != rxlimit)
1057                 rx_int(dev, rxlimit, rxindex);
1058
1059         txcon = rrpriv->dirty_tx;
1060         if (txcsmr != txcon) {
1061                 do {
1062                         /* Due to occational firmware TX producer/consumer out
1063                          * of sync. error need to check entry in ring -kbf
1064                          */
1065                         if(rrpriv->tx_skbuff[txcon]){
1066                                 struct tx_desc *desc;
1067                                 struct sk_buff *skb;
1068
1069                                 desc = &(rrpriv->tx_ring[txcon]);
1070                                 skb = rrpriv->tx_skbuff[txcon];
1071
1072                                 dev->stats.tx_packets++;
1073                                 dev->stats.tx_bytes += skb->len;
1074
1075                                 pci_unmap_single(rrpriv->pci_dev,
1076                                                  desc->addr.addrlo, skb->len,
1077                                                  PCI_DMA_TODEVICE);
1078                                 dev_kfree_skb_irq(skb);
1079
1080                                 rrpriv->tx_skbuff[txcon] = NULL;
1081                                 desc->size = 0;
1082                                 set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1083                                 desc->mode = 0;
1084                         }
1085                         txcon = (txcon + 1) % TX_RING_ENTRIES;
1086                 } while (txcsmr != txcon);
1087                 wmb();
1088
1089                 rrpriv->dirty_tx = txcon;
1090                 if (rrpriv->tx_full && rr_if_busy(dev) &&
1091                     (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1092                      != rrpriv->dirty_tx)){
1093                         rrpriv->tx_full = 0;
1094                         netif_wake_queue(dev);
1095                 }
1096         }
1097
1098         eidx |= ((txcsmr << 8) | (rxlimit << 16));
1099         writel(eidx, &regs->EvtCon);
1100         wmb();
1101
1102         spin_unlock(&rrpriv->lock);
1103         return IRQ_HANDLED;
1104 }
1105
1106 static inline void rr_raz_tx(struct rr_private *rrpriv,
1107                              struct net_device *dev)
1108 {
1109         int i;
1110
1111         for (i = 0; i < TX_RING_ENTRIES; i++) {
1112                 struct sk_buff *skb = rrpriv->tx_skbuff[i];
1113
1114                 if (skb) {
1115                         struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1116
1117                         pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1118                                 skb->len, PCI_DMA_TODEVICE);
1119                         desc->size = 0;
1120                         set_rraddr(&desc->addr, 0);
1121                         dev_kfree_skb(skb);
1122                         rrpriv->tx_skbuff[i] = NULL;
1123                 }
1124         }
1125 }
1126
1127
1128 static inline void rr_raz_rx(struct rr_private *rrpriv,
1129                              struct net_device *dev)
1130 {
1131         int i;
1132
1133         for (i = 0; i < RX_RING_ENTRIES; i++) {
1134                 struct sk_buff *skb = rrpriv->rx_skbuff[i];
1135
1136                 if (skb) {
1137                         struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1138
1139                         pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1140                                 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1141                         desc->size = 0;
1142                         set_rraddr(&desc->addr, 0);
1143                         dev_kfree_skb(skb);
1144                         rrpriv->rx_skbuff[i] = NULL;
1145                 }
1146         }
1147 }
1148
1149 static void rr_timer(unsigned long data)
1150 {
1151         struct net_device *dev = (struct net_device *)data;
1152         struct rr_private *rrpriv = netdev_priv(dev);
1153         struct rr_regs __iomem *regs = rrpriv->regs;
1154         unsigned long flags;
1155
1156         if (readl(&regs->HostCtrl) & NIC_HALTED){
1157                 printk("%s: Restarting nic\n", dev->name);
1158                 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1159                 memset(rrpriv->info, 0, sizeof(struct rr_info));
1160                 wmb();
1161
1162                 rr_raz_tx(rrpriv, dev);
1163                 rr_raz_rx(rrpriv, dev);
1164
1165                 if (rr_init1(dev)) {
1166                         spin_lock_irqsave(&rrpriv->lock, flags);
1167                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1168                                &regs->HostCtrl);
1169                         spin_unlock_irqrestore(&rrpriv->lock, flags);
1170                 }
1171         }
1172         rrpriv->timer.expires = RUN_AT(5*HZ);
1173         add_timer(&rrpriv->timer);
1174 }
1175
1176
1177 static int rr_open(struct net_device *dev)
1178 {
1179         struct rr_private *rrpriv = netdev_priv(dev);
1180         struct pci_dev *pdev = rrpriv->pci_dev;
1181         struct rr_regs __iomem *regs;
1182         int ecode = 0;
1183         unsigned long flags;
1184         dma_addr_t dma_addr;
1185
1186         regs = rrpriv->regs;
1187
1188         if (rrpriv->fw_rev < 0x00020000) {
1189                 printk(KERN_WARNING "%s: trying to configure device with "
1190                        "obsolete firmware\n", dev->name);
1191                 ecode = -EBUSY;
1192                 goto error;
1193         }
1194
1195         rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
1196                                                256 * sizeof(struct ring_ctrl),
1197                                                &dma_addr);
1198         if (!rrpriv->rx_ctrl) {
1199                 ecode = -ENOMEM;
1200                 goto error;
1201         }
1202         rrpriv->rx_ctrl_dma = dma_addr;
1203         memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
1204
1205         rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
1206                                             &dma_addr);
1207         if (!rrpriv->info) {
1208                 ecode = -ENOMEM;
1209                 goto error;
1210         }
1211         rrpriv->info_dma = dma_addr;
1212         memset(rrpriv->info, 0, sizeof(struct rr_info));
1213         wmb();
1214
1215         spin_lock_irqsave(&rrpriv->lock, flags);
1216         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1217         readl(&regs->HostCtrl);
1218         spin_unlock_irqrestore(&rrpriv->lock, flags);
1219
1220         if (request_irq(pdev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1221                 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1222                        dev->name, pdev->irq);
1223                 ecode = -EAGAIN;
1224                 goto error;
1225         }
1226
1227         if ((ecode = rr_init1(dev)))
1228                 goto error;
1229
1230         /* Set the timer to switch to check for link beat and perhaps switch
1231            to an alternate media type. */
1232         init_timer(&rrpriv->timer);
1233         rrpriv->timer.expires = RUN_AT(5*HZ);           /* 5 sec. watchdog */
1234         rrpriv->timer.data = (unsigned long)dev;
1235         rrpriv->timer.function = rr_timer;               /* timer handler */
1236         add_timer(&rrpriv->timer);
1237
1238         netif_start_queue(dev);
1239
1240         return ecode;
1241
1242  error:
1243         spin_lock_irqsave(&rrpriv->lock, flags);
1244         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1245         spin_unlock_irqrestore(&rrpriv->lock, flags);
1246
1247         if (rrpriv->info) {
1248                 pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1249                                     rrpriv->info_dma);
1250                 rrpriv->info = NULL;
1251         }
1252         if (rrpriv->rx_ctrl) {
1253                 pci_free_consistent(pdev, sizeof(struct ring_ctrl),
1254                                     rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1255                 rrpriv->rx_ctrl = NULL;
1256         }
1257
1258         netif_stop_queue(dev);
1259
1260         return ecode;
1261 }
1262
1263
1264 static void rr_dump(struct net_device *dev)
1265 {
1266         struct rr_private *rrpriv;
1267         struct rr_regs __iomem *regs;
1268         u32 index, cons;
1269         short i;
1270         int len;
1271
1272         rrpriv = netdev_priv(dev);
1273         regs = rrpriv->regs;
1274
1275         printk("%s: dumping NIC TX rings\n", dev->name);
1276
1277         printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1278                readl(&regs->RxPrd), readl(&regs->TxPrd),
1279                readl(&regs->EvtPrd), readl(&regs->TxPi),
1280                rrpriv->info->tx_ctrl.pi);
1281
1282         printk("Error code 0x%x\n", readl(&regs->Fail1));
1283
1284         index = (((readl(&regs->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES;
1285         cons = rrpriv->dirty_tx;
1286         printk("TX ring index %i, TX consumer %i\n",
1287                index, cons);
1288
1289         if (rrpriv->tx_skbuff[index]){
1290                 len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1291                 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1292                 for (i = 0; i < len; i++){
1293                         if (!(i & 7))
1294                                 printk("\n");
1295                         printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1296                 }
1297                 printk("\n");
1298         }
1299
1300         if (rrpriv->tx_skbuff[cons]){
1301                 len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1302                 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1303                 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1304                        rrpriv->tx_ring[cons].mode,
1305                        rrpriv->tx_ring[cons].size,
1306                        (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1307                        (unsigned long)rrpriv->tx_skbuff[cons]->data,
1308                        (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1309                 for (i = 0; i < len; i++){
1310                         if (!(i & 7))
1311                                 printk("\n");
1312                         printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1313                 }
1314                 printk("\n");
1315         }
1316
1317         printk("dumping TX ring info:\n");
1318         for (i = 0; i < TX_RING_ENTRIES; i++)
1319                 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1320                        rrpriv->tx_ring[i].mode,
1321                        rrpriv->tx_ring[i].size,
1322                        (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1323
1324 }
1325
1326
1327 static int rr_close(struct net_device *dev)
1328 {
1329         struct rr_private *rrpriv = netdev_priv(dev);
1330         struct rr_regs __iomem *regs = rrpriv->regs;
1331         struct pci_dev *pdev = rrpriv->pci_dev;
1332         unsigned long flags;
1333         u32 tmp;
1334         short i;
1335
1336         netif_stop_queue(dev);
1337
1338
1339         /*
1340          * Lock to make sure we are not cleaning up while another CPU
1341          * is handling interrupts.
1342          */
1343         spin_lock_irqsave(&rrpriv->lock, flags);
1344
1345         tmp = readl(&regs->HostCtrl);
1346         if (tmp & NIC_HALTED){
1347                 printk("%s: NIC already halted\n", dev->name);
1348                 rr_dump(dev);
1349         }else{
1350                 tmp |= HALT_NIC | RR_CLEAR_INT;
1351                 writel(tmp, &regs->HostCtrl);
1352                 readl(&regs->HostCtrl);
1353         }
1354
1355         rrpriv->fw_running = 0;
1356
1357         del_timer_sync(&rrpriv->timer);
1358
1359         writel(0, &regs->TxPi);
1360         writel(0, &regs->IpRxPi);
1361
1362         writel(0, &regs->EvtCon);
1363         writel(0, &regs->EvtPrd);
1364
1365         for (i = 0; i < CMD_RING_ENTRIES; i++)
1366                 writel(0, &regs->CmdRing[i]);
1367
1368         rrpriv->info->tx_ctrl.entries = 0;
1369         rrpriv->info->cmd_ctrl.pi = 0;
1370         rrpriv->info->evt_ctrl.pi = 0;
1371         rrpriv->rx_ctrl[4].entries = 0;
1372
1373         rr_raz_tx(rrpriv, dev);
1374         rr_raz_rx(rrpriv, dev);
1375
1376         pci_free_consistent(pdev, 256 * sizeof(struct ring_ctrl),
1377                             rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1378         rrpriv->rx_ctrl = NULL;
1379
1380         pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1381                             rrpriv->info_dma);
1382         rrpriv->info = NULL;
1383
1384         free_irq(pdev->irq, dev);
1385         spin_unlock_irqrestore(&rrpriv->lock, flags);
1386
1387         return 0;
1388 }
1389
1390
1391 static netdev_tx_t rr_start_xmit(struct sk_buff *skb,
1392                                  struct net_device *dev)
1393 {
1394         struct rr_private *rrpriv = netdev_priv(dev);
1395         struct rr_regs __iomem *regs = rrpriv->regs;
1396         struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1397         struct ring_ctrl *txctrl;
1398         unsigned long flags;
1399         u32 index, len = skb->len;
1400         u32 *ifield;
1401         struct sk_buff *new_skb;
1402
1403         if (readl(&regs->Mode) & FATAL_ERR)
1404                 printk("error codes Fail1 %02x, Fail2 %02x\n",
1405                        readl(&regs->Fail1), readl(&regs->Fail2));
1406
1407         /*
1408          * We probably need to deal with tbusy here to prevent overruns.
1409          */
1410
1411         if (skb_headroom(skb) < 8){
1412                 printk("incoming skb too small - reallocating\n");
1413                 if (!(new_skb = dev_alloc_skb(len + 8))) {
1414                         dev_kfree_skb(skb);
1415                         netif_wake_queue(dev);
1416                         return NETDEV_TX_OK;
1417                 }
1418                 skb_reserve(new_skb, 8);
1419                 skb_put(new_skb, len);
1420                 skb_copy_from_linear_data(skb, new_skb->data, len);
1421                 dev_kfree_skb(skb);
1422                 skb = new_skb;
1423         }
1424
1425         ifield = (u32 *)skb_push(skb, 8);
1426
1427         ifield[0] = 0;
1428         ifield[1] = hcb->ifield;
1429
1430         /*
1431          * We don't need the lock before we are actually going to start
1432          * fiddling with the control blocks.
1433          */
1434         spin_lock_irqsave(&rrpriv->lock, flags);
1435
1436         txctrl = &rrpriv->info->tx_ctrl;
1437
1438         index = txctrl->pi;
1439
1440         rrpriv->tx_skbuff[index] = skb;
1441         set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
1442                 rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
1443         rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1444         rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1445         txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1446         wmb();
1447         writel(txctrl->pi, &regs->TxPi);
1448
1449         if (txctrl->pi == rrpriv->dirty_tx){
1450                 rrpriv->tx_full = 1;
1451                 netif_stop_queue(dev);
1452         }
1453
1454         spin_unlock_irqrestore(&rrpriv->lock, flags);
1455
1456         return NETDEV_TX_OK;
1457 }
1458
1459
1460 /*
1461  * Read the firmware out of the EEPROM and put it into the SRAM
1462  * (or from user space - later)
1463  *
1464  * This operation requires the NIC to be halted and is performed with
1465  * interrupts disabled and with the spinlock hold.
1466  */
1467 static int rr_load_firmware(struct net_device *dev)
1468 {
1469         struct rr_private *rrpriv;
1470         struct rr_regs __iomem *regs;
1471         size_t eptr, segptr;
1472         int i, j;
1473         u32 localctrl, sptr, len, tmp;
1474         u32 p2len, p2size, nr_seg, revision, io, sram_size;
1475
1476         rrpriv = netdev_priv(dev);
1477         regs = rrpriv->regs;
1478
1479         if (dev->flags & IFF_UP)
1480                 return -EBUSY;
1481
1482         if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1483                 printk("%s: Trying to load firmware to a running NIC.\n",
1484                        dev->name);
1485                 return -EBUSY;
1486         }
1487
1488         localctrl = readl(&regs->LocalCtrl);
1489         writel(0, &regs->LocalCtrl);
1490
1491         writel(0, &regs->EvtPrd);
1492         writel(0, &regs->RxPrd);
1493         writel(0, &regs->TxPrd);
1494
1495         /*
1496          * First wipe the entire SRAM, otherwise we might run into all
1497          * kinds of trouble ... sigh, this took almost all afternoon
1498          * to track down ;-(
1499          */
1500         io = readl(&regs->ExtIo);
1501         writel(0, &regs->ExtIo);
1502         sram_size = rr_read_eeprom_word(rrpriv, 8);
1503
1504         for (i = 200; i < sram_size / 4; i++){
1505                 writel(i * 4, &regs->WinBase);
1506                 mb();
1507                 writel(0, &regs->WinData);
1508                 mb();
1509         }
1510         writel(io, &regs->ExtIo);
1511         mb();
1512
1513         eptr = rr_read_eeprom_word(rrpriv,
1514                        offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1515         eptr = ((eptr & 0x1fffff) >> 3);
1516
1517         p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1518         p2len = (p2len << 2);
1519         p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1520         p2size = ((p2size & 0x1fffff) >> 3);
1521
1522         if ((eptr < p2size) || (eptr > (p2size + p2len))){
1523                 printk("%s: eptr is invalid\n", dev->name);
1524                 goto out;
1525         }
1526
1527         revision = rr_read_eeprom_word(rrpriv,
1528                         offsetof(struct eeprom, manf.HeaderFmt));
1529
1530         if (revision != 1){
1531                 printk("%s: invalid firmware format (%i)\n",
1532                        dev->name, revision);
1533                 goto out;
1534         }
1535
1536         nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1537         eptr +=4;
1538 #if (DEBUG > 1)
1539         printk("%s: nr_seg %i\n", dev->name, nr_seg);
1540 #endif
1541
1542         for (i = 0; i < nr_seg; i++){
1543                 sptr = rr_read_eeprom_word(rrpriv, eptr);
1544                 eptr += 4;
1545                 len = rr_read_eeprom_word(rrpriv, eptr);
1546                 eptr += 4;
1547                 segptr = rr_read_eeprom_word(rrpriv, eptr);
1548                 segptr = ((segptr & 0x1fffff) >> 3);
1549                 eptr += 4;
1550 #if (DEBUG > 1)
1551                 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1552                        dev->name, i, sptr, len, segptr);
1553 #endif
1554                 for (j = 0; j < len; j++){
1555                         tmp = rr_read_eeprom_word(rrpriv, segptr);
1556                         writel(sptr, &regs->WinBase);
1557                         mb();
1558                         writel(tmp, &regs->WinData);
1559                         mb();
1560                         segptr += 4;
1561                         sptr += 4;
1562                 }
1563         }
1564
1565 out:
1566         writel(localctrl, &regs->LocalCtrl);
1567         mb();
1568         return 0;
1569 }
1570
1571
1572 static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1573 {
1574         struct rr_private *rrpriv;
1575         unsigned char *image, *oldimage;
1576         unsigned long flags;
1577         unsigned int i;
1578         int error = -EOPNOTSUPP;
1579
1580         rrpriv = netdev_priv(dev);
1581
1582         switch(cmd){
1583         case SIOCRRGFW:
1584                 if (!capable(CAP_SYS_RAWIO)){
1585                         return -EPERM;
1586                 }
1587
1588                 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1589                 if (!image)
1590                         return -ENOMEM;
1591
1592                 if (rrpriv->fw_running){
1593                         printk("%s: Firmware already running\n", dev->name);
1594                         error = -EPERM;
1595                         goto gf_out;
1596                 }
1597
1598                 spin_lock_irqsave(&rrpriv->lock, flags);
1599                 i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1600                 spin_unlock_irqrestore(&rrpriv->lock, flags);
1601                 if (i != EEPROM_BYTES){
1602                         printk(KERN_ERR "%s: Error reading EEPROM\n",
1603                                dev->name);
1604                         error = -EFAULT;
1605                         goto gf_out;
1606                 }
1607                 error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1608                 if (error)
1609                         error = -EFAULT;
1610         gf_out:
1611                 kfree(image);
1612                 return error;
1613
1614         case SIOCRRPFW:
1615                 if (!capable(CAP_SYS_RAWIO)){
1616                         return -EPERM;
1617                 }
1618
1619                 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1620                 oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1621                 if (!image || !oldimage) {
1622                         error = -ENOMEM;
1623                         goto wf_out;
1624                 }
1625
1626                 error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES);
1627                 if (error) {
1628                         error = -EFAULT;
1629                         goto wf_out;
1630                 }
1631
1632                 if (rrpriv->fw_running){
1633                         printk("%s: Firmware already running\n", dev->name);
1634                         error = -EPERM;
1635                         goto wf_out;
1636                 }
1637
1638                 printk("%s: Updating EEPROM firmware\n", dev->name);
1639
1640                 spin_lock_irqsave(&rrpriv->lock, flags);
1641                 error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1642                 if (error)
1643                         printk(KERN_ERR "%s: Error writing EEPROM\n",
1644                                dev->name);
1645
1646                 i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1647                 spin_unlock_irqrestore(&rrpriv->lock, flags);
1648
1649                 if (i != EEPROM_BYTES)
1650                         printk(KERN_ERR "%s: Error reading back EEPROM "
1651                                "image\n", dev->name);
1652
1653                 error = memcmp(image, oldimage, EEPROM_BYTES);
1654                 if (error){
1655                         printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1656                                dev->name);
1657                         error = -EFAULT;
1658                 }
1659         wf_out:
1660                 kfree(oldimage);
1661                 kfree(image);
1662                 return error;
1663
1664         case SIOCRRID:
1665                 return put_user(0x52523032, (int __user *)rq->ifr_data);
1666         default:
1667                 return error;
1668         }
1669 }
1670
1671 static const struct pci_device_id rr_pci_tbl[] = {
1672         { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1673                 PCI_ANY_ID, PCI_ANY_ID, },
1674         { 0,}
1675 };
1676 MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1677
1678 static struct pci_driver rr_driver = {
1679         .name           = "rrunner",
1680         .id_table       = rr_pci_tbl,
1681         .probe          = rr_init_one,
1682         .remove         = rr_remove_one,
1683 };
1684
1685 module_pci_driver(rr_driver);