Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / net / ethernet / tundra / tsi108_eth.c
1 /*******************************************************************************
2
3   Copyright(c) 2006 Tundra Semiconductor Corporation.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of the GNU General Public License as published by the Free
7   Software Foundation; either version 2 of the License, or (at your option)
8   any later version.
9
10   This program is distributed in the hope that it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc., 59
17   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18
19 *******************************************************************************/
20
21 /* This driver is based on the driver code originally developed
22  * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
23  * scott.wood@timesys.com  * Copyright (C) 2003 TimeSys Corporation
24  *
25  * Currently changes from original version are:
26  * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
27  * - modifications to handle two ports independently and support for
28  *   additional PHY devices (alexandre.bounine@tundra.com)
29  * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
30  *
31  */
32
33 #include <linux/module.h>
34 #include <linux/types.h>
35 #include <linux/interrupt.h>
36 #include <linux/net.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/ethtool.h>
40 #include <linux/skbuff.h>
41 #include <linux/spinlock.h>
42 #include <linux/delay.h>
43 #include <linux/crc32.h>
44 #include <linux/mii.h>
45 #include <linux/device.h>
46 #include <linux/pci.h>
47 #include <linux/rtnetlink.h>
48 #include <linux/timer.h>
49 #include <linux/platform_device.h>
50 #include <linux/gfp.h>
51
52 #include <asm/io.h>
53 #include <asm/tsi108.h>
54
55 #include "tsi108_eth.h"
56
57 #define MII_READ_DELAY 10000    /* max link wait time in msec */
58
59 #define TSI108_RXRING_LEN     256
60
61 /* NOTE: The driver currently does not support receiving packets
62  * larger than the buffer size, so don't decrease this (unless you
63  * want to add such support).
64  */
65 #define TSI108_RXBUF_SIZE     1536
66
67 #define TSI108_TXRING_LEN     256
68
69 #define TSI108_TX_INT_FREQ    64
70
71 /* Check the phy status every half a second. */
72 #define CHECK_PHY_INTERVAL (HZ/2)
73
74 static int tsi108_init_one(struct platform_device *pdev);
75 static int tsi108_ether_remove(struct platform_device *pdev);
76
77 struct tsi108_prv_data {
78         void  __iomem *regs;    /* Base of normal regs */
79         void  __iomem *phyregs; /* Base of register bank used for PHY access */
80
81         struct net_device *dev;
82         struct napi_struct napi;
83
84         unsigned int phy;               /* Index of PHY for this interface */
85         unsigned int irq_num;
86         unsigned int id;
87         unsigned int phy_type;
88
89         struct timer_list timer;/* Timer that triggers the check phy function */
90         unsigned int rxtail;    /* Next entry in rxring to read */
91         unsigned int rxhead;    /* Next entry in rxring to give a new buffer */
92         unsigned int rxfree;    /* Number of free, allocated RX buffers */
93
94         unsigned int rxpending; /* Non-zero if there are still descriptors
95                                  * to be processed from a previous descriptor
96                                  * interrupt condition that has been cleared */
97
98         unsigned int txtail;    /* Next TX descriptor to check status on */
99         unsigned int txhead;    /* Next TX descriptor to use */
100
101         /* Number of free TX descriptors.  This could be calculated from
102          * rxhead and rxtail if one descriptor were left unused to disambiguate
103          * full and empty conditions, but it's simpler to just keep track
104          * explicitly. */
105
106         unsigned int txfree;
107
108         unsigned int phy_ok;            /* The PHY is currently powered on. */
109
110         /* PHY status (duplex is 1 for half, 2 for full,
111          * so that the default 0 indicates that neither has
112          * yet been configured). */
113
114         unsigned int link_up;
115         unsigned int speed;
116         unsigned int duplex;
117
118         tx_desc *txring;
119         rx_desc *rxring;
120         struct sk_buff *txskbs[TSI108_TXRING_LEN];
121         struct sk_buff *rxskbs[TSI108_RXRING_LEN];
122
123         dma_addr_t txdma, rxdma;
124
125         /* txlock nests in misclock and phy_lock */
126
127         spinlock_t txlock, misclock;
128
129         /* stats is used to hold the upper bits of each hardware counter,
130          * and tmpstats is used to hold the full values for returning
131          * to the caller of get_stats().  They must be separate in case
132          * an overflow interrupt occurs before the stats are consumed.
133          */
134
135         struct net_device_stats stats;
136         struct net_device_stats tmpstats;
137
138         /* These stats are kept separate in hardware, thus require individual
139          * fields for handling carry.  They are combined in get_stats.
140          */
141
142         unsigned long rx_fcs;   /* Add to rx_frame_errors */
143         unsigned long rx_short_fcs;     /* Add to rx_frame_errors */
144         unsigned long rx_long_fcs;      /* Add to rx_frame_errors */
145         unsigned long rx_underruns;     /* Add to rx_length_errors */
146         unsigned long rx_overruns;      /* Add to rx_length_errors */
147
148         unsigned long tx_coll_abort;    /* Add to tx_aborted_errors/collisions */
149         unsigned long tx_pause_drop;    /* Add to tx_aborted_errors */
150
151         unsigned long mc_hash[16];
152         u32 msg_enable;                 /* debug message level */
153         struct mii_if_info mii_if;
154         unsigned int init_media;
155 };
156
157 /* Structure for a device driver */
158
159 static struct platform_driver tsi_eth_driver = {
160         .probe = tsi108_init_one,
161         .remove = tsi108_ether_remove,
162         .driver = {
163                 .name = "tsi-ethernet",
164         },
165 };
166
167 static void tsi108_timed_checker(unsigned long dev_ptr);
168
169 static void dump_eth_one(struct net_device *dev)
170 {
171         struct tsi108_prv_data *data = netdev_priv(dev);
172
173         printk("Dumping %s...\n", dev->name);
174         printk("intstat %x intmask %x phy_ok %d"
175                " link %d speed %d duplex %d\n",
176                TSI_READ(TSI108_EC_INTSTAT),
177                TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
178                data->link_up, data->speed, data->duplex);
179
180         printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
181                data->txhead, data->txtail, data->txfree,
182                TSI_READ(TSI108_EC_TXSTAT),
183                TSI_READ(TSI108_EC_TXESTAT),
184                TSI_READ(TSI108_EC_TXERR));
185
186         printk("RX: head %d, tail %d, free %d, stat %x,"
187                " estat %x, err %x, pending %d\n\n",
188                data->rxhead, data->rxtail, data->rxfree,
189                TSI_READ(TSI108_EC_RXSTAT),
190                TSI_READ(TSI108_EC_RXESTAT),
191                TSI_READ(TSI108_EC_RXERR), data->rxpending);
192 }
193
194 /* Synchronization is needed between the thread and up/down events.
195  * Note that the PHY is accessed through the same registers for both
196  * interfaces, so this can't be made interface-specific.
197  */
198
199 static DEFINE_SPINLOCK(phy_lock);
200
201 static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
202 {
203         unsigned i;
204
205         TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
206                                 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
207                                 (reg << TSI108_MAC_MII_ADDR_REG));
208         TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
209         TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
210         for (i = 0; i < 100; i++) {
211                 if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
212                       (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
213                         break;
214                 udelay(10);
215         }
216
217         if (i == 100)
218                 return 0xffff;
219         else
220                 return TSI_READ_PHY(TSI108_MAC_MII_DATAIN);
221 }
222
223 static void tsi108_write_mii(struct tsi108_prv_data *data,
224                                 int reg, u16 val)
225 {
226         unsigned i = 100;
227         TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
228                                 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
229                                 (reg << TSI108_MAC_MII_ADDR_REG));
230         TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
231         while (i--) {
232                 if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
233                         TSI108_MAC_MII_IND_BUSY))
234                         break;
235                 udelay(10);
236         }
237 }
238
239 static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
240 {
241         struct tsi108_prv_data *data = netdev_priv(dev);
242         return tsi108_read_mii(data, reg);
243 }
244
245 static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
246 {
247         struct tsi108_prv_data *data = netdev_priv(dev);
248         tsi108_write_mii(data, reg, val);
249 }
250
251 static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
252                                         int reg, u16 val)
253 {
254         unsigned i = 1000;
255         TSI_WRITE(TSI108_MAC_MII_ADDR,
256                              (0x1e << TSI108_MAC_MII_ADDR_PHY)
257                              | (reg << TSI108_MAC_MII_ADDR_REG));
258         TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
259         while(i--) {
260                 if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
261                         return;
262                 udelay(10);
263         }
264         printk(KERN_ERR "%s function time out\n", __func__);
265 }
266
267 static int mii_speed(struct mii_if_info *mii)
268 {
269         int advert, lpa, val, media;
270         int lpa2 = 0;
271         int speed;
272
273         if (!mii_link_ok(mii))
274                 return 0;
275
276         val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
277         if ((val & BMSR_ANEGCOMPLETE) == 0)
278                 return 0;
279
280         advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
281         lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
282         media = mii_nway_result(advert & lpa);
283
284         if (mii->supports_gmii)
285                 lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
286
287         speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
288                         (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
289         return speed;
290 }
291
292 static void tsi108_check_phy(struct net_device *dev)
293 {
294         struct tsi108_prv_data *data = netdev_priv(dev);
295         u32 mac_cfg2_reg, portctrl_reg;
296         u32 duplex;
297         u32 speed;
298         unsigned long flags;
299
300         spin_lock_irqsave(&phy_lock, flags);
301
302         if (!data->phy_ok)
303                 goto out;
304
305         duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
306         data->init_media = 0;
307
308         if (netif_carrier_ok(dev)) {
309
310                 speed = mii_speed(&data->mii_if);
311
312                 if ((speed != data->speed) || duplex) {
313
314                         mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
315                         portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
316
317                         mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
318
319                         if (speed == 1000) {
320                                 mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
321                                 portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
322                         } else {
323                                 mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
324                                 portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
325                         }
326
327                         data->speed = speed;
328
329                         if (data->mii_if.full_duplex) {
330                                 mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
331                                 portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
332                                 data->duplex = 2;
333                         } else {
334                                 mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
335                                 portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
336                                 data->duplex = 1;
337                         }
338
339                         TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
340                         TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
341                 }
342
343                 if (data->link_up == 0) {
344                         /* The manual says it can take 3-4 usecs for the speed change
345                          * to take effect.
346                          */
347                         udelay(5);
348
349                         spin_lock(&data->txlock);
350                         if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
351                                 netif_wake_queue(dev);
352
353                         data->link_up = 1;
354                         spin_unlock(&data->txlock);
355                 }
356         } else {
357                 if (data->link_up == 1) {
358                         netif_stop_queue(dev);
359                         data->link_up = 0;
360                         printk(KERN_NOTICE "%s : link is down\n", dev->name);
361                 }
362
363                 goto out;
364         }
365
366
367 out:
368         spin_unlock_irqrestore(&phy_lock, flags);
369 }
370
371 static inline void
372 tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
373                       unsigned long *upper)
374 {
375         if (carry & carry_bit)
376                 *upper += carry_shift;
377 }
378
379 static void tsi108_stat_carry(struct net_device *dev)
380 {
381         struct tsi108_prv_data *data = netdev_priv(dev);
382         u32 carry1, carry2;
383
384         spin_lock_irq(&data->misclock);
385
386         carry1 = TSI_READ(TSI108_STAT_CARRY1);
387         carry2 = TSI_READ(TSI108_STAT_CARRY2);
388
389         TSI_WRITE(TSI108_STAT_CARRY1, carry1);
390         TSI_WRITE(TSI108_STAT_CARRY2, carry2);
391
392         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
393                               TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
394
395         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
396                               TSI108_STAT_RXPKTS_CARRY,
397                               &data->stats.rx_packets);
398
399         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
400                               TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
401
402         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
403                               TSI108_STAT_RXMCAST_CARRY,
404                               &data->stats.multicast);
405
406         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
407                               TSI108_STAT_RXALIGN_CARRY,
408                               &data->stats.rx_frame_errors);
409
410         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
411                               TSI108_STAT_RXLENGTH_CARRY,
412                               &data->stats.rx_length_errors);
413
414         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
415                               TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
416
417         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
418                               TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
419
420         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
421                               TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
422
423         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
424                               TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
425
426         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
427                               TSI108_STAT_RXDROP_CARRY,
428                               &data->stats.rx_missed_errors);
429
430         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
431                               TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
432
433         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
434                               TSI108_STAT_TXPKTS_CARRY,
435                               &data->stats.tx_packets);
436
437         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
438                               TSI108_STAT_TXEXDEF_CARRY,
439                               &data->stats.tx_aborted_errors);
440
441         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
442                               TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
443
444         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
445                               TSI108_STAT_TXTCOL_CARRY,
446                               &data->stats.collisions);
447
448         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
449                               TSI108_STAT_TXPAUSEDROP_CARRY,
450                               &data->tx_pause_drop);
451
452         spin_unlock_irq(&data->misclock);
453 }
454
455 /* Read a stat counter atomically with respect to carries.
456  * data->misclock must be held.
457  */
458 static inline unsigned long
459 tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
460                  int carry_shift, unsigned long *upper)
461 {
462         int carryreg;
463         unsigned long val;
464
465         if (reg < 0xb0)
466                 carryreg = TSI108_STAT_CARRY1;
467         else
468                 carryreg = TSI108_STAT_CARRY2;
469
470       again:
471         val = TSI_READ(reg) | *upper;
472
473         /* Check to see if it overflowed, but the interrupt hasn't
474          * been serviced yet.  If so, handle the carry here, and
475          * try again.
476          */
477
478         if (unlikely(TSI_READ(carryreg) & carry_bit)) {
479                 *upper += carry_shift;
480                 TSI_WRITE(carryreg, carry_bit);
481                 goto again;
482         }
483
484         return val;
485 }
486
487 static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
488 {
489         unsigned long excol;
490
491         struct tsi108_prv_data *data = netdev_priv(dev);
492         spin_lock_irq(&data->misclock);
493
494         data->tmpstats.rx_packets =
495             tsi108_read_stat(data, TSI108_STAT_RXPKTS,
496                              TSI108_STAT_CARRY1_RXPKTS,
497                              TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
498
499         data->tmpstats.tx_packets =
500             tsi108_read_stat(data, TSI108_STAT_TXPKTS,
501                              TSI108_STAT_CARRY2_TXPKTS,
502                              TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
503
504         data->tmpstats.rx_bytes =
505             tsi108_read_stat(data, TSI108_STAT_RXBYTES,
506                              TSI108_STAT_CARRY1_RXBYTES,
507                              TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
508
509         data->tmpstats.tx_bytes =
510             tsi108_read_stat(data, TSI108_STAT_TXBYTES,
511                              TSI108_STAT_CARRY2_TXBYTES,
512                              TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
513
514         data->tmpstats.multicast =
515             tsi108_read_stat(data, TSI108_STAT_RXMCAST,
516                              TSI108_STAT_CARRY1_RXMCAST,
517                              TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
518
519         excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
520                                  TSI108_STAT_CARRY2_TXEXCOL,
521                                  TSI108_STAT_TXEXCOL_CARRY,
522                                  &data->tx_coll_abort);
523
524         data->tmpstats.collisions =
525             tsi108_read_stat(data, TSI108_STAT_TXTCOL,
526                              TSI108_STAT_CARRY2_TXTCOL,
527                              TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
528
529         data->tmpstats.collisions += excol;
530
531         data->tmpstats.rx_length_errors =
532             tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
533                              TSI108_STAT_CARRY1_RXLENGTH,
534                              TSI108_STAT_RXLENGTH_CARRY,
535                              &data->stats.rx_length_errors);
536
537         data->tmpstats.rx_length_errors +=
538             tsi108_read_stat(data, TSI108_STAT_RXRUNT,
539                              TSI108_STAT_CARRY1_RXRUNT,
540                              TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
541
542         data->tmpstats.rx_length_errors +=
543             tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
544                              TSI108_STAT_CARRY1_RXJUMBO,
545                              TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
546
547         data->tmpstats.rx_frame_errors =
548             tsi108_read_stat(data, TSI108_STAT_RXALIGN,
549                              TSI108_STAT_CARRY1_RXALIGN,
550                              TSI108_STAT_RXALIGN_CARRY,
551                              &data->stats.rx_frame_errors);
552
553         data->tmpstats.rx_frame_errors +=
554             tsi108_read_stat(data, TSI108_STAT_RXFCS,
555                              TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
556                              &data->rx_fcs);
557
558         data->tmpstats.rx_frame_errors +=
559             tsi108_read_stat(data, TSI108_STAT_RXFRAG,
560                              TSI108_STAT_CARRY1_RXFRAG,
561                              TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
562
563         data->tmpstats.rx_missed_errors =
564             tsi108_read_stat(data, TSI108_STAT_RXDROP,
565                              TSI108_STAT_CARRY1_RXDROP,
566                              TSI108_STAT_RXDROP_CARRY,
567                              &data->stats.rx_missed_errors);
568
569         /* These three are maintained by software. */
570         data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
571         data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
572
573         data->tmpstats.tx_aborted_errors =
574             tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
575                              TSI108_STAT_CARRY2_TXEXDEF,
576                              TSI108_STAT_TXEXDEF_CARRY,
577                              &data->stats.tx_aborted_errors);
578
579         data->tmpstats.tx_aborted_errors +=
580             tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
581                              TSI108_STAT_CARRY2_TXPAUSE,
582                              TSI108_STAT_TXPAUSEDROP_CARRY,
583                              &data->tx_pause_drop);
584
585         data->tmpstats.tx_aborted_errors += excol;
586
587         data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
588         data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
589             data->tmpstats.rx_crc_errors +
590             data->tmpstats.rx_frame_errors +
591             data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
592
593         spin_unlock_irq(&data->misclock);
594         return &data->tmpstats;
595 }
596
597 static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
598 {
599         TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
600                              TSI108_EC_RXQ_PTRHIGH_VALID);
601
602         TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
603                              | TSI108_EC_RXCTRL_QUEUE0);
604 }
605
606 static void tsi108_restart_tx(struct tsi108_prv_data * data)
607 {
608         TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
609                              TSI108_EC_TXQ_PTRHIGH_VALID);
610
611         TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
612                              TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
613 }
614
615 /* txlock must be held by caller, with IRQs disabled, and
616  * with permission to re-enable them when the lock is dropped.
617  */
618 static void tsi108_complete_tx(struct net_device *dev)
619 {
620         struct tsi108_prv_data *data = netdev_priv(dev);
621         int tx;
622         struct sk_buff *skb;
623         int release = 0;
624
625         while (!data->txfree || data->txhead != data->txtail) {
626                 tx = data->txtail;
627
628                 if (data->txring[tx].misc & TSI108_TX_OWN)
629                         break;
630
631                 skb = data->txskbs[tx];
632
633                 if (!(data->txring[tx].misc & TSI108_TX_OK))
634                         printk("%s: bad tx packet, misc %x\n",
635                                dev->name, data->txring[tx].misc);
636
637                 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
638                 data->txfree++;
639
640                 if (data->txring[tx].misc & TSI108_TX_EOF) {
641                         dev_kfree_skb_any(skb);
642                         release++;
643                 }
644         }
645
646         if (release) {
647                 if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
648                         netif_wake_queue(dev);
649         }
650 }
651
652 static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
653 {
654         struct tsi108_prv_data *data = netdev_priv(dev);
655         int frags = skb_shinfo(skb)->nr_frags + 1;
656         int i;
657
658         if (!data->phy_ok && net_ratelimit())
659                 printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
660
661         if (!data->link_up) {
662                 printk(KERN_ERR "%s: Transmit while link is down!\n",
663                        dev->name);
664                 netif_stop_queue(dev);
665                 return NETDEV_TX_BUSY;
666         }
667
668         if (data->txfree < MAX_SKB_FRAGS + 1) {
669                 netif_stop_queue(dev);
670
671                 if (net_ratelimit())
672                         printk(KERN_ERR "%s: Transmit with full tx ring!\n",
673                                dev->name);
674                 return NETDEV_TX_BUSY;
675         }
676
677         if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
678                 netif_stop_queue(dev);
679         }
680
681         spin_lock_irq(&data->txlock);
682
683         for (i = 0; i < frags; i++) {
684                 int misc = 0;
685                 int tx = data->txhead;
686
687                 /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
688                  * the interrupt bit.  TX descriptor-complete interrupts are
689                  * enabled when the queue fills up, and masked when there is
690                  * still free space.  This way, when saturating the outbound
691                  * link, the tx interrupts are kept to a reasonable level.
692                  * When the queue is not full, reclamation of skbs still occurs
693                  * as new packets are transmitted, or on a queue-empty
694                  * interrupt.
695                  */
696
697                 if ((tx % TSI108_TX_INT_FREQ == 0) &&
698                     ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
699                         misc = TSI108_TX_INT;
700
701                 data->txskbs[tx] = skb;
702
703                 if (i == 0) {
704                         data->txring[tx].buf0 = dma_map_single(NULL, skb->data,
705                                         skb_headlen(skb), DMA_TO_DEVICE);
706                         data->txring[tx].len = skb_headlen(skb);
707                         misc |= TSI108_TX_SOF;
708                 } else {
709                         const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
710
711                         data->txring[tx].buf0 = skb_frag_dma_map(NULL, frag,
712                                                                  0,
713                                                                  skb_frag_size(frag),
714                                                                  DMA_TO_DEVICE);
715                         data->txring[tx].len = skb_frag_size(frag);
716                 }
717
718                 if (i == frags - 1)
719                         misc |= TSI108_TX_EOF;
720
721                 if (netif_msg_pktdata(data)) {
722                         int i;
723                         printk("%s: Tx Frame contents (%d)\n", dev->name,
724                                skb->len);
725                         for (i = 0; i < skb->len; i++)
726                                 printk(" %2.2x", skb->data[i]);
727                         printk(".\n");
728                 }
729                 data->txring[tx].misc = misc | TSI108_TX_OWN;
730
731                 data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
732                 data->txfree--;
733         }
734
735         tsi108_complete_tx(dev);
736
737         /* This must be done after the check for completed tx descriptors,
738          * so that the tail pointer is correct.
739          */
740
741         if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
742                 tsi108_restart_tx(data);
743
744         spin_unlock_irq(&data->txlock);
745         return NETDEV_TX_OK;
746 }
747
748 static int tsi108_complete_rx(struct net_device *dev, int budget)
749 {
750         struct tsi108_prv_data *data = netdev_priv(dev);
751         int done = 0;
752
753         while (data->rxfree && done != budget) {
754                 int rx = data->rxtail;
755                 struct sk_buff *skb;
756
757                 if (data->rxring[rx].misc & TSI108_RX_OWN)
758                         break;
759
760                 skb = data->rxskbs[rx];
761                 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
762                 data->rxfree--;
763                 done++;
764
765                 if (data->rxring[rx].misc & TSI108_RX_BAD) {
766                         spin_lock_irq(&data->misclock);
767
768                         if (data->rxring[rx].misc & TSI108_RX_CRC)
769                                 data->stats.rx_crc_errors++;
770                         if (data->rxring[rx].misc & TSI108_RX_OVER)
771                                 data->stats.rx_fifo_errors++;
772
773                         spin_unlock_irq(&data->misclock);
774
775                         dev_kfree_skb_any(skb);
776                         continue;
777                 }
778                 if (netif_msg_pktdata(data)) {
779                         int i;
780                         printk("%s: Rx Frame contents (%d)\n",
781                                dev->name, data->rxring[rx].len);
782                         for (i = 0; i < data->rxring[rx].len; i++)
783                                 printk(" %2.2x", skb->data[i]);
784                         printk(".\n");
785                 }
786
787                 skb_put(skb, data->rxring[rx].len);
788                 skb->protocol = eth_type_trans(skb, dev);
789                 netif_receive_skb(skb);
790         }
791
792         return done;
793 }
794
795 static int tsi108_refill_rx(struct net_device *dev, int budget)
796 {
797         struct tsi108_prv_data *data = netdev_priv(dev);
798         int done = 0;
799
800         while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
801                 int rx = data->rxhead;
802                 struct sk_buff *skb;
803
804                 skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
805                 data->rxskbs[rx] = skb;
806                 if (!skb)
807                         break;
808
809                 data->rxring[rx].buf0 = dma_map_single(NULL, skb->data,
810                                                         TSI108_RX_SKB_SIZE,
811                                                         DMA_FROM_DEVICE);
812
813                 /* Sometimes the hardware sets blen to zero after packet
814                  * reception, even though the manual says that it's only ever
815                  * modified by the driver.
816                  */
817
818                 data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
819                 data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
820
821                 data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
822                 data->rxfree++;
823                 done++;
824         }
825
826         if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
827                            TSI108_EC_RXSTAT_QUEUE0))
828                 tsi108_restart_rx(data, dev);
829
830         return done;
831 }
832
833 static int tsi108_poll(struct napi_struct *napi, int budget)
834 {
835         struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi);
836         struct net_device *dev = data->dev;
837         u32 estat = TSI_READ(TSI108_EC_RXESTAT);
838         u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
839         int num_received = 0, num_filled = 0;
840
841         intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
842             TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
843
844         TSI_WRITE(TSI108_EC_RXESTAT, estat);
845         TSI_WRITE(TSI108_EC_INTSTAT, intstat);
846
847         if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
848                 num_received = tsi108_complete_rx(dev, budget);
849
850         /* This should normally fill no more slots than the number of
851          * packets received in tsi108_complete_rx().  The exception
852          * is when we previously ran out of memory for RX SKBs.  In that
853          * case, it's helpful to obey the budget, not only so that the
854          * CPU isn't hogged, but so that memory (which may still be low)
855          * is not hogged by one device.
856          *
857          * A work unit is considered to be two SKBs to allow us to catch
858          * up when the ring has shrunk due to out-of-memory but we're
859          * still removing the full budget's worth of packets each time.
860          */
861
862         if (data->rxfree < TSI108_RXRING_LEN)
863                 num_filled = tsi108_refill_rx(dev, budget * 2);
864
865         if (intstat & TSI108_INT_RXERROR) {
866                 u32 err = TSI_READ(TSI108_EC_RXERR);
867                 TSI_WRITE(TSI108_EC_RXERR, err);
868
869                 if (err) {
870                         if (net_ratelimit())
871                                 printk(KERN_DEBUG "%s: RX error %x\n",
872                                        dev->name, err);
873
874                         if (!(TSI_READ(TSI108_EC_RXSTAT) &
875                               TSI108_EC_RXSTAT_QUEUE0))
876                                 tsi108_restart_rx(data, dev);
877                 }
878         }
879
880         if (intstat & TSI108_INT_RXOVERRUN) {
881                 spin_lock_irq(&data->misclock);
882                 data->stats.rx_fifo_errors++;
883                 spin_unlock_irq(&data->misclock);
884         }
885
886         if (num_received < budget) {
887                 data->rxpending = 0;
888                 napi_complete(napi);
889
890                 TSI_WRITE(TSI108_EC_INTMASK,
891                                      TSI_READ(TSI108_EC_INTMASK)
892                                      & ~(TSI108_INT_RXQUEUE0
893                                          | TSI108_INT_RXTHRESH |
894                                          TSI108_INT_RXOVERRUN |
895                                          TSI108_INT_RXERROR |
896                                          TSI108_INT_RXWAIT));
897         } else {
898                 data->rxpending = 1;
899         }
900
901         return num_received;
902 }
903
904 static void tsi108_rx_int(struct net_device *dev)
905 {
906         struct tsi108_prv_data *data = netdev_priv(dev);
907
908         /* A race could cause dev to already be scheduled, so it's not an
909          * error if that happens (and interrupts shouldn't be re-masked,
910          * because that can cause harmful races, if poll has already
911          * unmasked them but not cleared LINK_STATE_SCHED).
912          *
913          * This can happen if this code races with tsi108_poll(), which masks
914          * the interrupts after tsi108_irq_one() read the mask, but before
915          * napi_schedule is called.  It could also happen due to calls
916          * from tsi108_check_rxring().
917          */
918
919         if (napi_schedule_prep(&data->napi)) {
920                 /* Mask, rather than ack, the receive interrupts.  The ack
921                  * will happen in tsi108_poll().
922                  */
923
924                 TSI_WRITE(TSI108_EC_INTMASK,
925                                      TSI_READ(TSI108_EC_INTMASK) |
926                                      TSI108_INT_RXQUEUE0
927                                      | TSI108_INT_RXTHRESH |
928                                      TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
929                                      TSI108_INT_RXWAIT);
930                 __napi_schedule(&data->napi);
931         } else {
932                 if (!netif_running(dev)) {
933                         /* This can happen if an interrupt occurs while the
934                          * interface is being brought down, as the START
935                          * bit is cleared before the stop function is called.
936                          *
937                          * In this case, the interrupts must be masked, or
938                          * they will continue indefinitely.
939                          *
940                          * There's a race here if the interface is brought down
941                          * and then up in rapid succession, as the device could
942                          * be made running after the above check and before
943                          * the masking below.  This will only happen if the IRQ
944                          * thread has a lower priority than the task brining
945                          * up the interface.  Fixing this race would likely
946                          * require changes in generic code.
947                          */
948
949                         TSI_WRITE(TSI108_EC_INTMASK,
950                                              TSI_READ
951                                              (TSI108_EC_INTMASK) |
952                                              TSI108_INT_RXQUEUE0 |
953                                              TSI108_INT_RXTHRESH |
954                                              TSI108_INT_RXOVERRUN |
955                                              TSI108_INT_RXERROR |
956                                              TSI108_INT_RXWAIT);
957                 }
958         }
959 }
960
961 /* If the RX ring has run out of memory, try periodically
962  * to allocate some more, as otherwise poll would never
963  * get called (apart from the initial end-of-queue condition).
964  *
965  * This is called once per second (by default) from the thread.
966  */
967
968 static void tsi108_check_rxring(struct net_device *dev)
969 {
970         struct tsi108_prv_data *data = netdev_priv(dev);
971
972         /* A poll is scheduled, as opposed to caling tsi108_refill_rx
973          * directly, so as to keep the receive path single-threaded
974          * (and thus not needing a lock).
975          */
976
977         if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
978                 tsi108_rx_int(dev);
979 }
980
981 static void tsi108_tx_int(struct net_device *dev)
982 {
983         struct tsi108_prv_data *data = netdev_priv(dev);
984         u32 estat = TSI_READ(TSI108_EC_TXESTAT);
985
986         TSI_WRITE(TSI108_EC_TXESTAT, estat);
987         TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
988                              TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
989         if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
990                 u32 err = TSI_READ(TSI108_EC_TXERR);
991                 TSI_WRITE(TSI108_EC_TXERR, err);
992
993                 if (err && net_ratelimit())
994                         printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
995         }
996
997         if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
998                 spin_lock(&data->txlock);
999                 tsi108_complete_tx(dev);
1000                 spin_unlock(&data->txlock);
1001         }
1002 }
1003
1004
1005 static irqreturn_t tsi108_irq(int irq, void *dev_id)
1006 {
1007         struct net_device *dev = dev_id;
1008         struct tsi108_prv_data *data = netdev_priv(dev);
1009         u32 stat = TSI_READ(TSI108_EC_INTSTAT);
1010
1011         if (!(stat & TSI108_INT_ANY))
1012                 return IRQ_NONE;        /* Not our interrupt */
1013
1014         stat &= ~TSI_READ(TSI108_EC_INTMASK);
1015
1016         if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
1017                     TSI108_INT_TXERROR))
1018                 tsi108_tx_int(dev);
1019         if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
1020                     TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
1021                     TSI108_INT_RXERROR))
1022                 tsi108_rx_int(dev);
1023
1024         if (stat & TSI108_INT_SFN) {
1025                 if (net_ratelimit())
1026                         printk(KERN_DEBUG "%s: SFN error\n", dev->name);
1027                 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
1028         }
1029
1030         if (stat & TSI108_INT_STATCARRY) {
1031                 tsi108_stat_carry(dev);
1032                 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
1033         }
1034
1035         return IRQ_HANDLED;
1036 }
1037
1038 static void tsi108_stop_ethernet(struct net_device *dev)
1039 {
1040         struct tsi108_prv_data *data = netdev_priv(dev);
1041         int i = 1000;
1042         /* Disable all TX and RX queues ... */
1043         TSI_WRITE(TSI108_EC_TXCTRL, 0);
1044         TSI_WRITE(TSI108_EC_RXCTRL, 0);
1045
1046         /* ...and wait for them to become idle */
1047         while(i--) {
1048                 if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
1049                         break;
1050                 udelay(10);
1051         }
1052         i = 1000;
1053         while(i--){
1054                 if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
1055                         return;
1056                 udelay(10);
1057         }
1058         printk(KERN_ERR "%s function time out\n", __func__);
1059 }
1060
1061 static void tsi108_reset_ether(struct tsi108_prv_data * data)
1062 {
1063         TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
1064         udelay(100);
1065         TSI_WRITE(TSI108_MAC_CFG1, 0);
1066
1067         TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
1068         udelay(100);
1069         TSI_WRITE(TSI108_EC_PORTCTRL,
1070                              TSI_READ(TSI108_EC_PORTCTRL) &
1071                              ~TSI108_EC_PORTCTRL_STATRST);
1072
1073         TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
1074         udelay(100);
1075         TSI_WRITE(TSI108_EC_TXCFG,
1076                              TSI_READ(TSI108_EC_TXCFG) &
1077                              ~TSI108_EC_TXCFG_RST);
1078
1079         TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
1080         udelay(100);
1081         TSI_WRITE(TSI108_EC_RXCFG,
1082                              TSI_READ(TSI108_EC_RXCFG) &
1083                              ~TSI108_EC_RXCFG_RST);
1084
1085         TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1086                              TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
1087                              TSI108_MAC_MII_MGMT_RST);
1088         udelay(100);
1089         TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1090                              (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
1091                              ~(TSI108_MAC_MII_MGMT_RST |
1092                                TSI108_MAC_MII_MGMT_CLK)) | 0x07);
1093 }
1094
1095 static int tsi108_get_mac(struct net_device *dev)
1096 {
1097         struct tsi108_prv_data *data = netdev_priv(dev);
1098         u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
1099         u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
1100
1101         /* Note that the octets are reversed from what the manual says,
1102          * producing an even weirder ordering...
1103          */
1104         if (word2 == 0 && word1 == 0) {
1105                 dev->dev_addr[0] = 0x00;
1106                 dev->dev_addr[1] = 0x06;
1107                 dev->dev_addr[2] = 0xd2;
1108                 dev->dev_addr[3] = 0x00;
1109                 dev->dev_addr[4] = 0x00;
1110                 if (0x8 == data->phy)
1111                         dev->dev_addr[5] = 0x01;
1112                 else
1113                         dev->dev_addr[5] = 0x02;
1114
1115                 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1116
1117                 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1118                     (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1119
1120                 TSI_WRITE(TSI108_MAC_ADDR1, word1);
1121                 TSI_WRITE(TSI108_MAC_ADDR2, word2);
1122         } else {
1123                 dev->dev_addr[0] = (word2 >> 16) & 0xff;
1124                 dev->dev_addr[1] = (word2 >> 24) & 0xff;
1125                 dev->dev_addr[2] = (word1 >> 0) & 0xff;
1126                 dev->dev_addr[3] = (word1 >> 8) & 0xff;
1127                 dev->dev_addr[4] = (word1 >> 16) & 0xff;
1128                 dev->dev_addr[5] = (word1 >> 24) & 0xff;
1129         }
1130
1131         if (!is_valid_ether_addr(dev->dev_addr)) {
1132                 printk(KERN_ERR
1133                        "%s: Invalid MAC address. word1: %08x, word2: %08x\n",
1134                        dev->name, word1, word2);
1135                 return -EINVAL;
1136         }
1137
1138         return 0;
1139 }
1140
1141 static int tsi108_set_mac(struct net_device *dev, void *addr)
1142 {
1143         struct tsi108_prv_data *data = netdev_priv(dev);
1144         u32 word1, word2;
1145         int i;
1146
1147         if (!is_valid_ether_addr(addr))
1148                 return -EADDRNOTAVAIL;
1149
1150         for (i = 0; i < 6; i++)
1151                 /* +2 is for the offset of the HW addr type */
1152                 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
1153
1154         word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1155
1156         word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1157             (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1158
1159         spin_lock_irq(&data->misclock);
1160         TSI_WRITE(TSI108_MAC_ADDR1, word1);
1161         TSI_WRITE(TSI108_MAC_ADDR2, word2);
1162         spin_lock(&data->txlock);
1163
1164         if (data->txfree && data->link_up)
1165                 netif_wake_queue(dev);
1166
1167         spin_unlock(&data->txlock);
1168         spin_unlock_irq(&data->misclock);
1169         return 0;
1170 }
1171
1172 /* Protected by dev->xmit_lock. */
1173 static void tsi108_set_rx_mode(struct net_device *dev)
1174 {
1175         struct tsi108_prv_data *data = netdev_priv(dev);
1176         u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
1177
1178         if (dev->flags & IFF_PROMISC) {
1179                 rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
1180                 rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
1181                 goto out;
1182         }
1183
1184         rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
1185
1186         if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
1187                 int i;
1188                 struct netdev_hw_addr *ha;
1189                 rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
1190
1191                 memset(data->mc_hash, 0, sizeof(data->mc_hash));
1192
1193                 netdev_for_each_mc_addr(ha, dev) {
1194                         u32 hash, crc;
1195
1196                         crc = ether_crc(6, ha->addr);
1197                         hash = crc >> 23;
1198                         __set_bit(hash, &data->mc_hash[0]);
1199                 }
1200
1201                 TSI_WRITE(TSI108_EC_HASHADDR,
1202                                      TSI108_EC_HASHADDR_AUTOINC |
1203                                      TSI108_EC_HASHADDR_MCAST);
1204
1205                 for (i = 0; i < 16; i++) {
1206                         /* The manual says that the hardware may drop
1207                          * back-to-back writes to the data register.
1208                          */
1209                         udelay(1);
1210                         TSI_WRITE(TSI108_EC_HASHDATA,
1211                                              data->mc_hash[i]);
1212                 }
1213         }
1214
1215       out:
1216         TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
1217 }
1218
1219 static void tsi108_init_phy(struct net_device *dev)
1220 {
1221         struct tsi108_prv_data *data = netdev_priv(dev);
1222         u32 i = 0;
1223         u16 phyval = 0;
1224         unsigned long flags;
1225
1226         spin_lock_irqsave(&phy_lock, flags);
1227
1228         tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
1229         while (--i) {
1230                 if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
1231                         break;
1232                 udelay(10);
1233         }
1234         if (i == 0)
1235                 printk(KERN_ERR "%s function time out\n", __func__);
1236
1237         if (data->phy_type == TSI108_PHY_BCM54XX) {
1238                 tsi108_write_mii(data, 0x09, 0x0300);
1239                 tsi108_write_mii(data, 0x10, 0x1020);
1240                 tsi108_write_mii(data, 0x1c, 0x8c00);
1241         }
1242
1243         tsi108_write_mii(data,
1244                          MII_BMCR,
1245                          BMCR_ANENABLE | BMCR_ANRESTART);
1246         while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
1247                 cpu_relax();
1248
1249         /* Set G/MII mode and receive clock select in TBI control #2.  The
1250          * second port won't work if this isn't done, even though we don't
1251          * use TBI mode.
1252          */
1253
1254         tsi108_write_tbi(data, 0x11, 0x30);
1255
1256         /* FIXME: It seems to take more than 2 back-to-back reads to the
1257          * PHY_STAT register before the link up status bit is set.
1258          */
1259
1260         data->link_up = 0;
1261
1262         while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
1263                  BMSR_LSTATUS)) {
1264                 if (i++ > (MII_READ_DELAY / 10)) {
1265                         break;
1266                 }
1267                 spin_unlock_irqrestore(&phy_lock, flags);
1268                 msleep(10);
1269                 spin_lock_irqsave(&phy_lock, flags);
1270         }
1271
1272         data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
1273         printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
1274         data->phy_ok = 1;
1275         data->init_media = 1;
1276         spin_unlock_irqrestore(&phy_lock, flags);
1277 }
1278
1279 static void tsi108_kill_phy(struct net_device *dev)
1280 {
1281         struct tsi108_prv_data *data = netdev_priv(dev);
1282         unsigned long flags;
1283
1284         spin_lock_irqsave(&phy_lock, flags);
1285         tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
1286         data->phy_ok = 0;
1287         spin_unlock_irqrestore(&phy_lock, flags);
1288 }
1289
1290 static int tsi108_open(struct net_device *dev)
1291 {
1292         int i;
1293         struct tsi108_prv_data *data = netdev_priv(dev);
1294         unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
1295         unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
1296
1297         i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
1298         if (i != 0) {
1299                 printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
1300                        data->id, data->irq_num);
1301                 return i;
1302         } else {
1303                 dev->irq = data->irq_num;
1304                 printk(KERN_NOTICE
1305                        "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1306                        data->id, dev->irq, dev->name);
1307         }
1308
1309         data->rxring = dma_zalloc_coherent(NULL, rxring_size, &data->rxdma,
1310                                            GFP_KERNEL);
1311         if (!data->rxring)
1312                 return -ENOMEM;
1313
1314         data->txring = dma_zalloc_coherent(NULL, txring_size, &data->txdma,
1315                                            GFP_KERNEL);
1316         if (!data->txring) {
1317                 pci_free_consistent(0, rxring_size, data->rxring, data->rxdma);
1318                 return -ENOMEM;
1319         }
1320
1321         for (i = 0; i < TSI108_RXRING_LEN; i++) {
1322                 data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
1323                 data->rxring[i].blen = TSI108_RXBUF_SIZE;
1324                 data->rxring[i].vlan = 0;
1325         }
1326
1327         data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
1328
1329         data->rxtail = 0;
1330         data->rxhead = 0;
1331
1332         for (i = 0; i < TSI108_RXRING_LEN; i++) {
1333                 struct sk_buff *skb;
1334
1335                 skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
1336                 if (!skb) {
1337                         /* Bah.  No memory for now, but maybe we'll get
1338                          * some more later.
1339                          * For now, we'll live with the smaller ring.
1340                          */
1341                         printk(KERN_WARNING
1342                                "%s: Could only allocate %d receive skb(s).\n",
1343                                dev->name, i);
1344                         data->rxhead = i;
1345                         break;
1346                 }
1347
1348                 data->rxskbs[i] = skb;
1349                 data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
1350                 data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
1351         }
1352
1353         data->rxfree = i;
1354         TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
1355
1356         for (i = 0; i < TSI108_TXRING_LEN; i++) {
1357                 data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
1358                 data->txring[i].misc = 0;
1359         }
1360
1361         data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
1362         data->txtail = 0;
1363         data->txhead = 0;
1364         data->txfree = TSI108_TXRING_LEN;
1365         TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
1366         tsi108_init_phy(dev);
1367
1368         napi_enable(&data->napi);
1369
1370         setup_timer(&data->timer, tsi108_timed_checker, (unsigned long)dev);
1371         mod_timer(&data->timer, jiffies + 1);
1372
1373         tsi108_restart_rx(data, dev);
1374
1375         TSI_WRITE(TSI108_EC_INTSTAT, ~0);
1376
1377         TSI_WRITE(TSI108_EC_INTMASK,
1378                              ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
1379                                TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
1380                                TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
1381                                TSI108_INT_SFN | TSI108_INT_STATCARRY));
1382
1383         TSI_WRITE(TSI108_MAC_CFG1,
1384                              TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
1385         netif_start_queue(dev);
1386         return 0;
1387 }
1388
1389 static int tsi108_close(struct net_device *dev)
1390 {
1391         struct tsi108_prv_data *data = netdev_priv(dev);
1392
1393         netif_stop_queue(dev);
1394         napi_disable(&data->napi);
1395
1396         del_timer_sync(&data->timer);
1397
1398         tsi108_stop_ethernet(dev);
1399         tsi108_kill_phy(dev);
1400         TSI_WRITE(TSI108_EC_INTMASK, ~0);
1401         TSI_WRITE(TSI108_MAC_CFG1, 0);
1402
1403         /* Check for any pending TX packets, and drop them. */
1404
1405         while (!data->txfree || data->txhead != data->txtail) {
1406                 int tx = data->txtail;
1407                 struct sk_buff *skb;
1408                 skb = data->txskbs[tx];
1409                 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
1410                 data->txfree++;
1411                 dev_kfree_skb(skb);
1412         }
1413
1414         free_irq(data->irq_num, dev);
1415
1416         /* Discard the RX ring. */
1417
1418         while (data->rxfree) {
1419                 int rx = data->rxtail;
1420                 struct sk_buff *skb;
1421
1422                 skb = data->rxskbs[rx];
1423                 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
1424                 data->rxfree--;
1425                 dev_kfree_skb(skb);
1426         }
1427
1428         dma_free_coherent(0,
1429                             TSI108_RXRING_LEN * sizeof(rx_desc),
1430                             data->rxring, data->rxdma);
1431         dma_free_coherent(0,
1432                             TSI108_TXRING_LEN * sizeof(tx_desc),
1433                             data->txring, data->txdma);
1434
1435         return 0;
1436 }
1437
1438 static void tsi108_init_mac(struct net_device *dev)
1439 {
1440         struct tsi108_prv_data *data = netdev_priv(dev);
1441
1442         TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
1443                              TSI108_MAC_CFG2_PADCRC);
1444
1445         TSI_WRITE(TSI108_EC_TXTHRESH,
1446                              (192 << TSI108_EC_TXTHRESH_STARTFILL) |
1447                              (192 << TSI108_EC_TXTHRESH_STOPFILL));
1448
1449         TSI_WRITE(TSI108_STAT_CARRYMASK1,
1450                              ~(TSI108_STAT_CARRY1_RXBYTES |
1451                                TSI108_STAT_CARRY1_RXPKTS |
1452                                TSI108_STAT_CARRY1_RXFCS |
1453                                TSI108_STAT_CARRY1_RXMCAST |
1454                                TSI108_STAT_CARRY1_RXALIGN |
1455                                TSI108_STAT_CARRY1_RXLENGTH |
1456                                TSI108_STAT_CARRY1_RXRUNT |
1457                                TSI108_STAT_CARRY1_RXJUMBO |
1458                                TSI108_STAT_CARRY1_RXFRAG |
1459                                TSI108_STAT_CARRY1_RXJABBER |
1460                                TSI108_STAT_CARRY1_RXDROP));
1461
1462         TSI_WRITE(TSI108_STAT_CARRYMASK2,
1463                              ~(TSI108_STAT_CARRY2_TXBYTES |
1464                                TSI108_STAT_CARRY2_TXPKTS |
1465                                TSI108_STAT_CARRY2_TXEXDEF |
1466                                TSI108_STAT_CARRY2_TXEXCOL |
1467                                TSI108_STAT_CARRY2_TXTCOL |
1468                                TSI108_STAT_CARRY2_TXPAUSE));
1469
1470         TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
1471         TSI_WRITE(TSI108_MAC_CFG1, 0);
1472
1473         TSI_WRITE(TSI108_EC_RXCFG,
1474                              TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
1475
1476         TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
1477                              TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
1478                              TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1479                                                 TSI108_EC_TXQ_CFG_SFNPORT));
1480
1481         TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
1482                              TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
1483                              TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1484                                                 TSI108_EC_RXQ_CFG_SFNPORT));
1485
1486         TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
1487                              TSI108_EC_TXQ_BUFCFG_BURST256 |
1488                              TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1489                                                 TSI108_EC_TXQ_BUFCFG_SFNPORT));
1490
1491         TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
1492                              TSI108_EC_RXQ_BUFCFG_BURST256 |
1493                              TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1494                                                 TSI108_EC_RXQ_BUFCFG_SFNPORT));
1495
1496         TSI_WRITE(TSI108_EC_INTMASK, ~0);
1497 }
1498
1499 static int tsi108_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1500 {
1501         struct tsi108_prv_data *data = netdev_priv(dev);
1502         unsigned long flags;
1503         int rc;
1504
1505         spin_lock_irqsave(&data->txlock, flags);
1506         rc = mii_ethtool_gset(&data->mii_if, cmd);
1507         spin_unlock_irqrestore(&data->txlock, flags);
1508
1509         return rc;
1510 }
1511
1512 static int tsi108_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1513 {
1514         struct tsi108_prv_data *data = netdev_priv(dev);
1515         unsigned long flags;
1516         int rc;
1517
1518         spin_lock_irqsave(&data->txlock, flags);
1519         rc = mii_ethtool_sset(&data->mii_if, cmd);
1520         spin_unlock_irqrestore(&data->txlock, flags);
1521
1522         return rc;
1523 }
1524
1525 static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1526 {
1527         struct tsi108_prv_data *data = netdev_priv(dev);
1528         if (!netif_running(dev))
1529                 return -EINVAL;
1530         return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
1531 }
1532
1533 static const struct ethtool_ops tsi108_ethtool_ops = {
1534         .get_link       = ethtool_op_get_link,
1535         .get_settings   = tsi108_get_settings,
1536         .set_settings   = tsi108_set_settings,
1537 };
1538
1539 static const struct net_device_ops tsi108_netdev_ops = {
1540         .ndo_open               = tsi108_open,
1541         .ndo_stop               = tsi108_close,
1542         .ndo_start_xmit         = tsi108_send_packet,
1543         .ndo_set_rx_mode        = tsi108_set_rx_mode,
1544         .ndo_get_stats          = tsi108_get_stats,
1545         .ndo_do_ioctl           = tsi108_do_ioctl,
1546         .ndo_set_mac_address    = tsi108_set_mac,
1547         .ndo_validate_addr      = eth_validate_addr,
1548         .ndo_change_mtu         = eth_change_mtu,
1549 };
1550
1551 static int
1552 tsi108_init_one(struct platform_device *pdev)
1553 {
1554         struct net_device *dev = NULL;
1555         struct tsi108_prv_data *data = NULL;
1556         hw_info *einfo;
1557         int err = 0;
1558
1559         einfo = dev_get_platdata(&pdev->dev);
1560
1561         if (NULL == einfo) {
1562                 printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
1563                        pdev->id);
1564                 return -ENODEV;
1565         }
1566
1567         /* Create an ethernet device instance */
1568
1569         dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
1570         if (!dev)
1571                 return -ENOMEM;
1572
1573         printk("tsi108_eth%d: probe...\n", pdev->id);
1574         data = netdev_priv(dev);
1575         data->dev = dev;
1576
1577         pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1578                         pdev->id, einfo->regs, einfo->phyregs,
1579                         einfo->phy, einfo->irq_num);
1580
1581         data->regs = ioremap(einfo->regs, 0x400);
1582         if (NULL == data->regs) {
1583                 err = -ENOMEM;
1584                 goto regs_fail;
1585         }
1586
1587         data->phyregs = ioremap(einfo->phyregs, 0x400);
1588         if (NULL == data->phyregs) {
1589                 err = -ENOMEM;
1590                 goto phyregs_fail;
1591         }
1592 /* MII setup */
1593         data->mii_if.dev = dev;
1594         data->mii_if.mdio_read = tsi108_mdio_read;
1595         data->mii_if.mdio_write = tsi108_mdio_write;
1596         data->mii_if.phy_id = einfo->phy;
1597         data->mii_if.phy_id_mask = 0x1f;
1598         data->mii_if.reg_num_mask = 0x1f;
1599
1600         data->phy = einfo->phy;
1601         data->phy_type = einfo->phy_type;
1602         data->irq_num = einfo->irq_num;
1603         data->id = pdev->id;
1604         netif_napi_add(dev, &data->napi, tsi108_poll, 64);
1605         dev->netdev_ops = &tsi108_netdev_ops;
1606         dev->ethtool_ops = &tsi108_ethtool_ops;
1607
1608         /* Apparently, the Linux networking code won't use scatter-gather
1609          * if the hardware doesn't do checksums.  However, it's faster
1610          * to checksum in place and use SG, as (among other reasons)
1611          * the cache won't be dirtied (which then has to be flushed
1612          * before DMA).  The checksumming is done by the driver (via
1613          * a new function skb_csum_dev() in net/core/skbuff.c).
1614          */
1615
1616         dev->features = NETIF_F_HIGHDMA;
1617
1618         spin_lock_init(&data->txlock);
1619         spin_lock_init(&data->misclock);
1620
1621         tsi108_reset_ether(data);
1622         tsi108_kill_phy(dev);
1623
1624         if ((err = tsi108_get_mac(dev)) != 0) {
1625                 printk(KERN_ERR "%s: Invalid MAC address.  Please correct.\n",
1626                        dev->name);
1627                 goto register_fail;
1628         }
1629
1630         tsi108_init_mac(dev);
1631         err = register_netdev(dev);
1632         if (err) {
1633                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1634                                 dev->name);
1635                 goto register_fail;
1636         }
1637
1638         platform_set_drvdata(pdev, dev);
1639         printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %pM\n",
1640                dev->name, dev->dev_addr);
1641 #ifdef DEBUG
1642         data->msg_enable = DEBUG;
1643         dump_eth_one(dev);
1644 #endif
1645
1646         return 0;
1647
1648 register_fail:
1649         iounmap(data->phyregs);
1650
1651 phyregs_fail:
1652         iounmap(data->regs);
1653
1654 regs_fail:
1655         free_netdev(dev);
1656         return err;
1657 }
1658
1659 /* There's no way to either get interrupts from the PHY when
1660  * something changes, or to have the Tsi108 automatically communicate
1661  * with the PHY to reconfigure itself.
1662  *
1663  * Thus, we have to do it using a timer.
1664  */
1665
1666 static void tsi108_timed_checker(unsigned long dev_ptr)
1667 {
1668         struct net_device *dev = (struct net_device *)dev_ptr;
1669         struct tsi108_prv_data *data = netdev_priv(dev);
1670
1671         tsi108_check_phy(dev);
1672         tsi108_check_rxring(dev);
1673         mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
1674 }
1675
1676 static int tsi108_ether_remove(struct platform_device *pdev)
1677 {
1678         struct net_device *dev = platform_get_drvdata(pdev);
1679         struct tsi108_prv_data *priv = netdev_priv(dev);
1680
1681         unregister_netdev(dev);
1682         tsi108_stop_ethernet(dev);
1683         iounmap(priv->regs);
1684         iounmap(priv->phyregs);
1685         free_netdev(dev);
1686
1687         return 0;
1688 }
1689 module_platform_driver(tsi_eth_driver);
1690
1691 MODULE_AUTHOR("Tundra Semiconductor Corporation");
1692 MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1693 MODULE_LICENSE("GPL");
1694 MODULE_ALIAS("platform:tsi-ethernet");