Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / net / ethernet / ti / netcp_core.c
1 /*
2  * Keystone NetCP Core driver
3  *
4  * Copyright (C) 2014 Texas Instruments Incorporated
5  * Authors:     Sandeep Nair <sandeep_n@ti.com>
6  *              Sandeep Paulraj <s-paulraj@ti.com>
7  *              Cyril Chemparathy <cyril@ti.com>
8  *              Santosh Shilimkar <santosh.shilimkar@ti.com>
9  *              Murali Karicheri <m-karicheri2@ti.com>
10  *              Wingman Kwok <w-kwok2@ti.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation version 2.
15  *
16  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
17  * kind, whether express or implied; without even the implied warranty
18  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  */
21
22 #include <linux/io.h>
23 #include <linux/module.h>
24 #include <linux/of_net.h>
25 #include <linux/of_address.h>
26 #include <linux/if_vlan.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/platform_device.h>
29 #include <linux/soc/ti/knav_qmss.h>
30 #include <linux/soc/ti/knav_dma.h>
31
32 #include "netcp.h"
33
34 #define NETCP_SOP_OFFSET        (NET_IP_ALIGN + NET_SKB_PAD)
35 #define NETCP_NAPI_WEIGHT       64
36 #define NETCP_TX_TIMEOUT        (5 * HZ)
37 #define NETCP_MIN_PACKET_SIZE   ETH_ZLEN
38 #define NETCP_MAX_MCAST_ADDR    16
39
40 #define NETCP_EFUSE_REG_INDEX   0
41
42 #define NETCP_MOD_PROBE_SKIPPED 1
43 #define NETCP_MOD_PROBE_FAILED  2
44
45 #define NETCP_DEBUG (NETIF_MSG_HW       | NETIF_MSG_WOL         |       \
46                     NETIF_MSG_DRV       | NETIF_MSG_LINK        |       \
47                     NETIF_MSG_IFUP      | NETIF_MSG_INTR        |       \
48                     NETIF_MSG_PROBE     | NETIF_MSG_TIMER       |       \
49                     NETIF_MSG_IFDOWN    | NETIF_MSG_RX_ERR      |       \
50                     NETIF_MSG_TX_ERR    | NETIF_MSG_TX_DONE     |       \
51                     NETIF_MSG_PKTDATA   | NETIF_MSG_TX_QUEUED   |       \
52                     NETIF_MSG_RX_STATUS)
53
54 #define knav_queue_get_id(q)    knav_queue_device_control(q, \
55                                 KNAV_QUEUE_GET_ID, (unsigned long)NULL)
56
57 #define knav_queue_enable_notify(q) knav_queue_device_control(q,        \
58                                         KNAV_QUEUE_ENABLE_NOTIFY,       \
59                                         (unsigned long)NULL)
60
61 #define knav_queue_disable_notify(q) knav_queue_device_control(q,       \
62                                         KNAV_QUEUE_DISABLE_NOTIFY,      \
63                                         (unsigned long)NULL)
64
65 #define knav_queue_get_count(q) knav_queue_device_control(q, \
66                                 KNAV_QUEUE_GET_COUNT, (unsigned long)NULL)
67
68 #define for_each_netcp_module(module)                   \
69         list_for_each_entry(module, &netcp_modules, module_list)
70
71 #define for_each_netcp_device_module(netcp_device, inst_modpriv) \
72         list_for_each_entry(inst_modpriv, \
73                 &((netcp_device)->modpriv_head), inst_list)
74
75 #define for_each_module(netcp, intf_modpriv)                    \
76         list_for_each_entry(intf_modpriv, &netcp->module_head, intf_list)
77
78 /* Module management structures */
79 struct netcp_device {
80         struct list_head        device_list;
81         struct list_head        interface_head;
82         struct list_head        modpriv_head;
83         struct device           *device;
84 };
85
86 struct netcp_inst_modpriv {
87         struct netcp_device     *netcp_device;
88         struct netcp_module     *netcp_module;
89         struct list_head        inst_list;
90         void                    *module_priv;
91 };
92
93 struct netcp_intf_modpriv {
94         struct netcp_intf       *netcp_priv;
95         struct netcp_module     *netcp_module;
96         struct list_head        intf_list;
97         void                    *module_priv;
98 };
99
100 static LIST_HEAD(netcp_devices);
101 static LIST_HEAD(netcp_modules);
102 static DEFINE_MUTEX(netcp_modules_lock);
103
104 static int netcp_debug_level = -1;
105 module_param(netcp_debug_level, int, 0);
106 MODULE_PARM_DESC(netcp_debug_level, "Netcp debug level (NETIF_MSG bits) (0=none,...,16=all)");
107
108 /* Helper functions - Get/Set */
109 static void get_pkt_info(u32 *buff, u32 *buff_len, u32 *ndesc,
110                          struct knav_dma_desc *desc)
111 {
112         *buff_len = desc->buff_len;
113         *buff = desc->buff;
114         *ndesc = desc->next_desc;
115 }
116
117 static void get_pad_info(u32 *pad0, u32 *pad1, struct knav_dma_desc *desc)
118 {
119         *pad0 = desc->pad[0];
120         *pad1 = desc->pad[1];
121 }
122
123 static void get_org_pkt_info(u32 *buff, u32 *buff_len,
124                              struct knav_dma_desc *desc)
125 {
126         *buff = desc->orig_buff;
127         *buff_len = desc->orig_len;
128 }
129
130 static void get_words(u32 *words, int num_words, u32 *desc)
131 {
132         int i;
133
134         for (i = 0; i < num_words; i++)
135                 words[i] = desc[i];
136 }
137
138 static void set_pkt_info(u32 buff, u32 buff_len, u32 ndesc,
139                          struct knav_dma_desc *desc)
140 {
141         desc->buff_len = buff_len;
142         desc->buff = buff;
143         desc->next_desc = ndesc;
144 }
145
146 static void set_desc_info(u32 desc_info, u32 pkt_info,
147                           struct knav_dma_desc *desc)
148 {
149         desc->desc_info = desc_info;
150         desc->packet_info = pkt_info;
151 }
152
153 static void set_pad_info(u32 pad0, u32 pad1, struct knav_dma_desc *desc)
154 {
155         desc->pad[0] = pad0;
156         desc->pad[1] = pad1;
157 }
158
159 static void set_org_pkt_info(u32 buff, u32 buff_len,
160                              struct knav_dma_desc *desc)
161 {
162         desc->orig_buff = buff;
163         desc->orig_len = buff_len;
164 }
165
166 static void set_words(u32 *words, int num_words, u32 *desc)
167 {
168         int i;
169
170         for (i = 0; i < num_words; i++)
171                 desc[i] = words[i];
172 }
173
174 /* Read the e-fuse value as 32 bit values to be endian independent */
175 static int emac_arch_get_mac_addr(char *x, void __iomem *efuse_mac)
176 {
177         unsigned int addr0, addr1;
178
179         addr1 = readl(efuse_mac + 4);
180         addr0 = readl(efuse_mac);
181
182         x[0] = (addr1 & 0x0000ff00) >> 8;
183         x[1] = addr1 & 0x000000ff;
184         x[2] = (addr0 & 0xff000000) >> 24;
185         x[3] = (addr0 & 0x00ff0000) >> 16;
186         x[4] = (addr0 & 0x0000ff00) >> 8;
187         x[5] = addr0 & 0x000000ff;
188
189         return 0;
190 }
191
192 static const char *netcp_node_name(struct device_node *node)
193 {
194         const char *name;
195
196         if (of_property_read_string(node, "label", &name) < 0)
197                 name = node->name;
198         if (!name)
199                 name = "unknown";
200         return name;
201 }
202
203 /* Module management routines */
204 static int netcp_register_interface(struct netcp_intf *netcp)
205 {
206         int ret;
207
208         ret = register_netdev(netcp->ndev);
209         if (!ret)
210                 netcp->netdev_registered = true;
211         return ret;
212 }
213
214 static int netcp_module_probe(struct netcp_device *netcp_device,
215                               struct netcp_module *module)
216 {
217         struct device *dev = netcp_device->device;
218         struct device_node *devices, *interface, *node = dev->of_node;
219         struct device_node *child;
220         struct netcp_inst_modpriv *inst_modpriv;
221         struct netcp_intf *netcp_intf;
222         struct netcp_module *tmp;
223         bool primary_module_registered = false;
224         int ret;
225
226         /* Find this module in the sub-tree for this device */
227         devices = of_get_child_by_name(node, "netcp-devices");
228         if (!devices) {
229                 dev_err(dev, "could not find netcp-devices node\n");
230                 return NETCP_MOD_PROBE_SKIPPED;
231         }
232
233         for_each_available_child_of_node(devices, child) {
234                 const char *name = netcp_node_name(child);
235
236                 if (!strcasecmp(module->name, name))
237                         break;
238         }
239
240         of_node_put(devices);
241         /* If module not used for this device, skip it */
242         if (!child) {
243                 dev_warn(dev, "module(%s) not used for device\n", module->name);
244                 return NETCP_MOD_PROBE_SKIPPED;
245         }
246
247         inst_modpriv = devm_kzalloc(dev, sizeof(*inst_modpriv), GFP_KERNEL);
248         if (!inst_modpriv) {
249                 of_node_put(child);
250                 return -ENOMEM;
251         }
252
253         inst_modpriv->netcp_device = netcp_device;
254         inst_modpriv->netcp_module = module;
255         list_add_tail(&inst_modpriv->inst_list, &netcp_device->modpriv_head);
256
257         ret = module->probe(netcp_device, dev, child,
258                             &inst_modpriv->module_priv);
259         of_node_put(child);
260         if (ret) {
261                 dev_err(dev, "Probe of module(%s) failed with %d\n",
262                         module->name, ret);
263                 list_del(&inst_modpriv->inst_list);
264                 devm_kfree(dev, inst_modpriv);
265                 return NETCP_MOD_PROBE_FAILED;
266         }
267
268         /* Attach modules only if the primary module is probed */
269         for_each_netcp_module(tmp) {
270                 if (tmp->primary)
271                         primary_module_registered = true;
272         }
273
274         if (!primary_module_registered)
275                 return 0;
276
277         /* Attach module to interfaces */
278         list_for_each_entry(netcp_intf, &netcp_device->interface_head,
279                             interface_list) {
280                 struct netcp_intf_modpriv *intf_modpriv;
281
282                 /* If interface not registered then register now */
283                 if (!netcp_intf->netdev_registered)
284                         ret = netcp_register_interface(netcp_intf);
285
286                 if (ret)
287                         return -ENODEV;
288
289                 intf_modpriv = devm_kzalloc(dev, sizeof(*intf_modpriv),
290                                             GFP_KERNEL);
291                 if (!intf_modpriv)
292                         return -ENOMEM;
293
294                 interface = of_parse_phandle(netcp_intf->node_interface,
295                                              module->name, 0);
296
297                 intf_modpriv->netcp_priv = netcp_intf;
298                 intf_modpriv->netcp_module = module;
299                 list_add_tail(&intf_modpriv->intf_list,
300                               &netcp_intf->module_head);
301
302                 ret = module->attach(inst_modpriv->module_priv,
303                                      netcp_intf->ndev, interface,
304                                      &intf_modpriv->module_priv);
305                 of_node_put(interface);
306                 if (ret) {
307                         dev_dbg(dev, "Attach of module %s declined with %d\n",
308                                 module->name, ret);
309                         list_del(&intf_modpriv->intf_list);
310                         devm_kfree(dev, intf_modpriv);
311                         continue;
312                 }
313         }
314         return 0;
315 }
316
317 int netcp_register_module(struct netcp_module *module)
318 {
319         struct netcp_device *netcp_device;
320         struct netcp_module *tmp;
321         int ret;
322
323         if (!module->name) {
324                 WARN(1, "error registering netcp module: no name\n");
325                 return -EINVAL;
326         }
327
328         if (!module->probe) {
329                 WARN(1, "error registering netcp module: no probe\n");
330                 return -EINVAL;
331         }
332
333         mutex_lock(&netcp_modules_lock);
334
335         for_each_netcp_module(tmp) {
336                 if (!strcasecmp(tmp->name, module->name)) {
337                         mutex_unlock(&netcp_modules_lock);
338                         return -EEXIST;
339                 }
340         }
341         list_add_tail(&module->module_list, &netcp_modules);
342
343         list_for_each_entry(netcp_device, &netcp_devices, device_list) {
344                 ret = netcp_module_probe(netcp_device, module);
345                 if (ret < 0)
346                         goto fail;
347         }
348
349         mutex_unlock(&netcp_modules_lock);
350         return 0;
351
352 fail:
353         mutex_unlock(&netcp_modules_lock);
354         netcp_unregister_module(module);
355         return ret;
356 }
357 EXPORT_SYMBOL_GPL(netcp_register_module);
358
359 static void netcp_release_module(struct netcp_device *netcp_device,
360                                  struct netcp_module *module)
361 {
362         struct netcp_inst_modpriv *inst_modpriv, *inst_tmp;
363         struct netcp_intf *netcp_intf, *netcp_tmp;
364         struct device *dev = netcp_device->device;
365
366         /* Release the module from each interface */
367         list_for_each_entry_safe(netcp_intf, netcp_tmp,
368                                  &netcp_device->interface_head,
369                                  interface_list) {
370                 struct netcp_intf_modpriv *intf_modpriv, *intf_tmp;
371
372                 list_for_each_entry_safe(intf_modpriv, intf_tmp,
373                                          &netcp_intf->module_head,
374                                          intf_list) {
375                         if (intf_modpriv->netcp_module == module) {
376                                 module->release(intf_modpriv->module_priv);
377                                 list_del(&intf_modpriv->intf_list);
378                                 devm_kfree(dev, intf_modpriv);
379                                 break;
380                         }
381                 }
382         }
383
384         /* Remove the module from each instance */
385         list_for_each_entry_safe(inst_modpriv, inst_tmp,
386                                  &netcp_device->modpriv_head, inst_list) {
387                 if (inst_modpriv->netcp_module == module) {
388                         module->remove(netcp_device,
389                                        inst_modpriv->module_priv);
390                         list_del(&inst_modpriv->inst_list);
391                         devm_kfree(dev, inst_modpriv);
392                         break;
393                 }
394         }
395 }
396
397 void netcp_unregister_module(struct netcp_module *module)
398 {
399         struct netcp_device *netcp_device;
400         struct netcp_module *module_tmp;
401
402         mutex_lock(&netcp_modules_lock);
403
404         list_for_each_entry(netcp_device, &netcp_devices, device_list) {
405                 netcp_release_module(netcp_device, module);
406         }
407
408         /* Remove the module from the module list */
409         for_each_netcp_module(module_tmp) {
410                 if (module == module_tmp) {
411                         list_del(&module->module_list);
412                         break;
413                 }
414         }
415
416         mutex_unlock(&netcp_modules_lock);
417 }
418 EXPORT_SYMBOL_GPL(netcp_unregister_module);
419
420 void *netcp_module_get_intf_data(struct netcp_module *module,
421                                  struct netcp_intf *intf)
422 {
423         struct netcp_intf_modpriv *intf_modpriv;
424
425         list_for_each_entry(intf_modpriv, &intf->module_head, intf_list)
426                 if (intf_modpriv->netcp_module == module)
427                         return intf_modpriv->module_priv;
428         return NULL;
429 }
430 EXPORT_SYMBOL_GPL(netcp_module_get_intf_data);
431
432 /* Module TX and RX Hook management */
433 struct netcp_hook_list {
434         struct list_head         list;
435         netcp_hook_rtn          *hook_rtn;
436         void                    *hook_data;
437         int                      order;
438 };
439
440 int netcp_register_txhook(struct netcp_intf *netcp_priv, int order,
441                           netcp_hook_rtn *hook_rtn, void *hook_data)
442 {
443         struct netcp_hook_list *entry;
444         struct netcp_hook_list *next;
445         unsigned long flags;
446
447         entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
448         if (!entry)
449                 return -ENOMEM;
450
451         entry->hook_rtn  = hook_rtn;
452         entry->hook_data = hook_data;
453         entry->order     = order;
454
455         spin_lock_irqsave(&netcp_priv->lock, flags);
456         list_for_each_entry(next, &netcp_priv->txhook_list_head, list) {
457                 if (next->order > order)
458                         break;
459         }
460         __list_add(&entry->list, next->list.prev, &next->list);
461         spin_unlock_irqrestore(&netcp_priv->lock, flags);
462
463         return 0;
464 }
465 EXPORT_SYMBOL_GPL(netcp_register_txhook);
466
467 int netcp_unregister_txhook(struct netcp_intf *netcp_priv, int order,
468                             netcp_hook_rtn *hook_rtn, void *hook_data)
469 {
470         struct netcp_hook_list *next, *n;
471         unsigned long flags;
472
473         spin_lock_irqsave(&netcp_priv->lock, flags);
474         list_for_each_entry_safe(next, n, &netcp_priv->txhook_list_head, list) {
475                 if ((next->order     == order) &&
476                     (next->hook_rtn  == hook_rtn) &&
477                     (next->hook_data == hook_data)) {
478                         list_del(&next->list);
479                         spin_unlock_irqrestore(&netcp_priv->lock, flags);
480                         devm_kfree(netcp_priv->dev, next);
481                         return 0;
482                 }
483         }
484         spin_unlock_irqrestore(&netcp_priv->lock, flags);
485         return -ENOENT;
486 }
487 EXPORT_SYMBOL_GPL(netcp_unregister_txhook);
488
489 int netcp_register_rxhook(struct netcp_intf *netcp_priv, int order,
490                           netcp_hook_rtn *hook_rtn, void *hook_data)
491 {
492         struct netcp_hook_list *entry;
493         struct netcp_hook_list *next;
494         unsigned long flags;
495
496         entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
497         if (!entry)
498                 return -ENOMEM;
499
500         entry->hook_rtn  = hook_rtn;
501         entry->hook_data = hook_data;
502         entry->order     = order;
503
504         spin_lock_irqsave(&netcp_priv->lock, flags);
505         list_for_each_entry(next, &netcp_priv->rxhook_list_head, list) {
506                 if (next->order > order)
507                         break;
508         }
509         __list_add(&entry->list, next->list.prev, &next->list);
510         spin_unlock_irqrestore(&netcp_priv->lock, flags);
511
512         return 0;
513 }
514
515 int netcp_unregister_rxhook(struct netcp_intf *netcp_priv, int order,
516                             netcp_hook_rtn *hook_rtn, void *hook_data)
517 {
518         struct netcp_hook_list *next, *n;
519         unsigned long flags;
520
521         spin_lock_irqsave(&netcp_priv->lock, flags);
522         list_for_each_entry_safe(next, n, &netcp_priv->rxhook_list_head, list) {
523                 if ((next->order     == order) &&
524                     (next->hook_rtn  == hook_rtn) &&
525                     (next->hook_data == hook_data)) {
526                         list_del(&next->list);
527                         spin_unlock_irqrestore(&netcp_priv->lock, flags);
528                         devm_kfree(netcp_priv->dev, next);
529                         return 0;
530                 }
531         }
532         spin_unlock_irqrestore(&netcp_priv->lock, flags);
533
534         return -ENOENT;
535 }
536
537 static void netcp_frag_free(bool is_frag, void *ptr)
538 {
539         if (is_frag)
540                 put_page(virt_to_head_page(ptr));
541         else
542                 kfree(ptr);
543 }
544
545 static void netcp_free_rx_desc_chain(struct netcp_intf *netcp,
546                                      struct knav_dma_desc *desc)
547 {
548         struct knav_dma_desc *ndesc;
549         dma_addr_t dma_desc, dma_buf;
550         unsigned int buf_len, dma_sz = sizeof(*ndesc);
551         void *buf_ptr;
552         u32 tmp;
553
554         get_words(&dma_desc, 1, &desc->next_desc);
555
556         while (dma_desc) {
557                 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
558                 if (unlikely(!ndesc)) {
559                         dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
560                         break;
561                 }
562                 get_pkt_info(&dma_buf, &tmp, &dma_desc, ndesc);
563                 get_pad_info((u32 *)&buf_ptr, &tmp, ndesc);
564                 dma_unmap_page(netcp->dev, dma_buf, PAGE_SIZE, DMA_FROM_DEVICE);
565                 __free_page(buf_ptr);
566                 knav_pool_desc_put(netcp->rx_pool, desc);
567         }
568
569         get_pad_info((u32 *)&buf_ptr, &buf_len, desc);
570         if (buf_ptr)
571                 netcp_frag_free(buf_len <= PAGE_SIZE, buf_ptr);
572         knav_pool_desc_put(netcp->rx_pool, desc);
573 }
574
575 static void netcp_empty_rx_queue(struct netcp_intf *netcp)
576 {
577         struct knav_dma_desc *desc;
578         unsigned int dma_sz;
579         dma_addr_t dma;
580
581         for (; ;) {
582                 dma = knav_queue_pop(netcp->rx_queue, &dma_sz);
583                 if (!dma)
584                         break;
585
586                 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
587                 if (unlikely(!desc)) {
588                         dev_err(netcp->ndev_dev, "%s: failed to unmap Rx desc\n",
589                                 __func__);
590                         netcp->ndev->stats.rx_errors++;
591                         continue;
592                 }
593                 netcp_free_rx_desc_chain(netcp, desc);
594                 netcp->ndev->stats.rx_dropped++;
595         }
596 }
597
598 static int netcp_process_one_rx_packet(struct netcp_intf *netcp)
599 {
600         unsigned int dma_sz, buf_len, org_buf_len;
601         struct knav_dma_desc *desc, *ndesc;
602         unsigned int pkt_sz = 0, accum_sz;
603         struct netcp_hook_list *rx_hook;
604         dma_addr_t dma_desc, dma_buff;
605         struct netcp_packet p_info;
606         struct sk_buff *skb;
607         void *org_buf_ptr;
608         u32 tmp;
609
610         dma_desc = knav_queue_pop(netcp->rx_queue, &dma_sz);
611         if (!dma_desc)
612                 return -1;
613
614         desc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
615         if (unlikely(!desc)) {
616                 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
617                 return 0;
618         }
619
620         get_pkt_info(&dma_buff, &buf_len, &dma_desc, desc);
621         get_pad_info((u32 *)&org_buf_ptr, &org_buf_len, desc);
622
623         if (unlikely(!org_buf_ptr)) {
624                 dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
625                 goto free_desc;
626         }
627
628         pkt_sz &= KNAV_DMA_DESC_PKT_LEN_MASK;
629         accum_sz = buf_len;
630         dma_unmap_single(netcp->dev, dma_buff, buf_len, DMA_FROM_DEVICE);
631
632         /* Build a new sk_buff for the primary buffer */
633         skb = build_skb(org_buf_ptr, org_buf_len);
634         if (unlikely(!skb)) {
635                 dev_err(netcp->ndev_dev, "build_skb() failed\n");
636                 goto free_desc;
637         }
638
639         /* update data, tail and len */
640         skb_reserve(skb, NETCP_SOP_OFFSET);
641         __skb_put(skb, buf_len);
642
643         /* Fill in the page fragment list */
644         while (dma_desc) {
645                 struct page *page;
646
647                 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
648                 if (unlikely(!ndesc)) {
649                         dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
650                         goto free_desc;
651                 }
652
653                 get_pkt_info(&dma_buff, &buf_len, &dma_desc, ndesc);
654                 get_pad_info((u32 *)&page, &tmp, ndesc);
655
656                 if (likely(dma_buff && buf_len && page)) {
657                         dma_unmap_page(netcp->dev, dma_buff, PAGE_SIZE,
658                                        DMA_FROM_DEVICE);
659                 } else {
660                         dev_err(netcp->ndev_dev, "Bad Rx desc dma_buff(%p), len(%d), page(%p)\n",
661                                 (void *)dma_buff, buf_len, page);
662                         goto free_desc;
663                 }
664
665                 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
666                                 offset_in_page(dma_buff), buf_len, PAGE_SIZE);
667                 accum_sz += buf_len;
668
669                 /* Free the descriptor */
670                 knav_pool_desc_put(netcp->rx_pool, ndesc);
671         }
672
673         /* Free the primary descriptor */
674         knav_pool_desc_put(netcp->rx_pool, desc);
675
676         /* check for packet len and warn */
677         if (unlikely(pkt_sz != accum_sz))
678                 dev_dbg(netcp->ndev_dev, "mismatch in packet size(%d) & sum of fragments(%d)\n",
679                         pkt_sz, accum_sz);
680
681         /* Remove ethernet FCS from the packet */
682         __pskb_trim(skb, skb->len - ETH_FCS_LEN);
683
684         /* Call each of the RX hooks */
685         p_info.skb = skb;
686         p_info.rxtstamp_complete = false;
687         list_for_each_entry(rx_hook, &netcp->rxhook_list_head, list) {
688                 int ret;
689
690                 ret = rx_hook->hook_rtn(rx_hook->order, rx_hook->hook_data,
691                                         &p_info);
692                 if (unlikely(ret)) {
693                         dev_err(netcp->ndev_dev, "RX hook %d failed: %d\n",
694                                 rx_hook->order, ret);
695                         netcp->ndev->stats.rx_errors++;
696                         dev_kfree_skb(skb);
697                         return 0;
698                 }
699         }
700
701         netcp->ndev->last_rx = jiffies;
702         netcp->ndev->stats.rx_packets++;
703         netcp->ndev->stats.rx_bytes += skb->len;
704
705         /* push skb up the stack */
706         skb->protocol = eth_type_trans(skb, netcp->ndev);
707         netif_receive_skb(skb);
708         return 0;
709
710 free_desc:
711         netcp_free_rx_desc_chain(netcp, desc);
712         netcp->ndev->stats.rx_errors++;
713         return 0;
714 }
715
716 static int netcp_process_rx_packets(struct netcp_intf *netcp,
717                                     unsigned int budget)
718 {
719         int i;
720
721         for (i = 0; (i < budget) && !netcp_process_one_rx_packet(netcp); i++)
722                 ;
723         return i;
724 }
725
726 /* Release descriptors and attached buffers from Rx FDQ */
727 static void netcp_free_rx_buf(struct netcp_intf *netcp, int fdq)
728 {
729         struct knav_dma_desc *desc;
730         unsigned int buf_len, dma_sz;
731         dma_addr_t dma;
732         void *buf_ptr;
733         u32 tmp;
734
735         /* Allocate descriptor */
736         while ((dma = knav_queue_pop(netcp->rx_fdq[fdq], &dma_sz))) {
737                 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
738                 if (unlikely(!desc)) {
739                         dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
740                         continue;
741                 }
742
743                 get_org_pkt_info(&dma, &buf_len, desc);
744                 get_pad_info((u32 *)&buf_ptr, &tmp, desc);
745
746                 if (unlikely(!dma)) {
747                         dev_err(netcp->ndev_dev, "NULL orig_buff in desc\n");
748                         knav_pool_desc_put(netcp->rx_pool, desc);
749                         continue;
750                 }
751
752                 if (unlikely(!buf_ptr)) {
753                         dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
754                         knav_pool_desc_put(netcp->rx_pool, desc);
755                         continue;
756                 }
757
758                 if (fdq == 0) {
759                         dma_unmap_single(netcp->dev, dma, buf_len,
760                                          DMA_FROM_DEVICE);
761                         netcp_frag_free((buf_len <= PAGE_SIZE), buf_ptr);
762                 } else {
763                         dma_unmap_page(netcp->dev, dma, buf_len,
764                                        DMA_FROM_DEVICE);
765                         __free_page(buf_ptr);
766                 }
767
768                 knav_pool_desc_put(netcp->rx_pool, desc);
769         }
770 }
771
772 static void netcp_rxpool_free(struct netcp_intf *netcp)
773 {
774         int i;
775
776         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
777              !IS_ERR_OR_NULL(netcp->rx_fdq[i]); i++)
778                 netcp_free_rx_buf(netcp, i);
779
780         if (knav_pool_count(netcp->rx_pool) != netcp->rx_pool_size)
781                 dev_err(netcp->ndev_dev, "Lost Rx (%d) descriptors\n",
782                         netcp->rx_pool_size - knav_pool_count(netcp->rx_pool));
783
784         knav_pool_destroy(netcp->rx_pool);
785         netcp->rx_pool = NULL;
786 }
787
788 static void netcp_allocate_rx_buf(struct netcp_intf *netcp, int fdq)
789 {
790         struct knav_dma_desc *hwdesc;
791         unsigned int buf_len, dma_sz;
792         u32 desc_info, pkt_info;
793         struct page *page;
794         dma_addr_t dma;
795         void *bufptr;
796         u32 pad[2];
797
798         /* Allocate descriptor */
799         hwdesc = knav_pool_desc_get(netcp->rx_pool);
800         if (IS_ERR_OR_NULL(hwdesc)) {
801                 dev_dbg(netcp->ndev_dev, "out of rx pool desc\n");
802                 return;
803         }
804
805         if (likely(fdq == 0)) {
806                 unsigned int primary_buf_len;
807                 /* Allocate a primary receive queue entry */
808                 buf_len = netcp->rx_buffer_sizes[0] + NETCP_SOP_OFFSET;
809                 primary_buf_len = SKB_DATA_ALIGN(buf_len) +
810                                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
811
812                 if (primary_buf_len <= PAGE_SIZE) {
813                         bufptr = netdev_alloc_frag(primary_buf_len);
814                         pad[1] = primary_buf_len;
815                 } else {
816                         bufptr = kmalloc(primary_buf_len, GFP_ATOMIC |
817                                          GFP_DMA32 | __GFP_COLD);
818                         pad[1] = 0;
819                 }
820
821                 if (unlikely(!bufptr)) {
822                         dev_warn_ratelimited(netcp->ndev_dev, "Primary RX buffer alloc failed\n");
823                         goto fail;
824                 }
825                 dma = dma_map_single(netcp->dev, bufptr, buf_len,
826                                      DMA_TO_DEVICE);
827                 pad[0] = (u32)bufptr;
828
829         } else {
830                 /* Allocate a secondary receive queue entry */
831                 page = alloc_page(GFP_ATOMIC | GFP_DMA32 | __GFP_COLD);
832                 if (unlikely(!page)) {
833                         dev_warn_ratelimited(netcp->ndev_dev, "Secondary page alloc failed\n");
834                         goto fail;
835                 }
836                 buf_len = PAGE_SIZE;
837                 dma = dma_map_page(netcp->dev, page, 0, buf_len, DMA_TO_DEVICE);
838                 pad[0] = (u32)page;
839                 pad[1] = 0;
840         }
841
842         desc_info =  KNAV_DMA_DESC_PS_INFO_IN_DESC;
843         desc_info |= buf_len & KNAV_DMA_DESC_PKT_LEN_MASK;
844         pkt_info =  KNAV_DMA_DESC_HAS_EPIB;
845         pkt_info |= KNAV_DMA_NUM_PS_WORDS << KNAV_DMA_DESC_PSLEN_SHIFT;
846         pkt_info |= (netcp->rx_queue_id & KNAV_DMA_DESC_RETQ_MASK) <<
847                     KNAV_DMA_DESC_RETQ_SHIFT;
848         set_org_pkt_info(dma, buf_len, hwdesc);
849         set_pad_info(pad[0], pad[1], hwdesc);
850         set_desc_info(desc_info, pkt_info, hwdesc);
851
852         /* Push to FDQs */
853         knav_pool_desc_map(netcp->rx_pool, hwdesc, sizeof(*hwdesc), &dma,
854                            &dma_sz);
855         knav_queue_push(netcp->rx_fdq[fdq], dma, sizeof(*hwdesc), 0);
856         return;
857
858 fail:
859         knav_pool_desc_put(netcp->rx_pool, hwdesc);
860 }
861
862 /* Refill Rx FDQ with descriptors & attached buffers */
863 static void netcp_rxpool_refill(struct netcp_intf *netcp)
864 {
865         u32 fdq_deficit[KNAV_DMA_FDQ_PER_CHAN] = {0};
866         int i;
867
868         /* Calculate the FDQ deficit and refill */
869         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_fdq[i]; i++) {
870                 fdq_deficit[i] = netcp->rx_queue_depths[i] -
871                                  knav_queue_get_count(netcp->rx_fdq[i]);
872
873                 while (fdq_deficit[i]--)
874                         netcp_allocate_rx_buf(netcp, i);
875         } /* end for fdqs */
876 }
877
878 /* NAPI poll */
879 static int netcp_rx_poll(struct napi_struct *napi, int budget)
880 {
881         struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
882                                                 rx_napi);
883         unsigned int packets;
884
885         packets = netcp_process_rx_packets(netcp, budget);
886
887         if (packets < budget) {
888                 napi_complete(&netcp->rx_napi);
889                 knav_queue_enable_notify(netcp->rx_queue);
890         }
891
892         netcp_rxpool_refill(netcp);
893         return packets;
894 }
895
896 static void netcp_rx_notify(void *arg)
897 {
898         struct netcp_intf *netcp = arg;
899
900         knav_queue_disable_notify(netcp->rx_queue);
901         napi_schedule(&netcp->rx_napi);
902 }
903
904 static void netcp_free_tx_desc_chain(struct netcp_intf *netcp,
905                                      struct knav_dma_desc *desc,
906                                      unsigned int desc_sz)
907 {
908         struct knav_dma_desc *ndesc = desc;
909         dma_addr_t dma_desc, dma_buf;
910         unsigned int buf_len;
911
912         while (ndesc) {
913                 get_pkt_info(&dma_buf, &buf_len, &dma_desc, ndesc);
914
915                 if (dma_buf && buf_len)
916                         dma_unmap_single(netcp->dev, dma_buf, buf_len,
917                                          DMA_TO_DEVICE);
918                 else
919                         dev_warn(netcp->ndev_dev, "bad Tx desc buf(%p), len(%d)\n",
920                                  (void *)dma_buf, buf_len);
921
922                 knav_pool_desc_put(netcp->tx_pool, ndesc);
923                 ndesc = NULL;
924                 if (dma_desc) {
925                         ndesc = knav_pool_desc_unmap(netcp->tx_pool, dma_desc,
926                                                      desc_sz);
927                         if (!ndesc)
928                                 dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
929                 }
930         }
931 }
932
933 static int netcp_process_tx_compl_packets(struct netcp_intf *netcp,
934                                           unsigned int budget)
935 {
936         struct knav_dma_desc *desc;
937         struct sk_buff *skb;
938         unsigned int dma_sz;
939         dma_addr_t dma;
940         int pkts = 0;
941         u32 tmp;
942
943         while (budget--) {
944                 dma = knav_queue_pop(netcp->tx_compl_q, &dma_sz);
945                 if (!dma)
946                         break;
947                 desc = knav_pool_desc_unmap(netcp->tx_pool, dma, dma_sz);
948                 if (unlikely(!desc)) {
949                         dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
950                         netcp->ndev->stats.tx_errors++;
951                         continue;
952                 }
953
954                 get_pad_info((u32 *)&skb, &tmp, desc);
955                 netcp_free_tx_desc_chain(netcp, desc, dma_sz);
956                 if (!skb) {
957                         dev_err(netcp->ndev_dev, "No skb in Tx desc\n");
958                         netcp->ndev->stats.tx_errors++;
959                         continue;
960                 }
961
962                 if (netif_subqueue_stopped(netcp->ndev, skb) &&
963                     netif_running(netcp->ndev) &&
964                     (knav_pool_count(netcp->tx_pool) >
965                     netcp->tx_resume_threshold)) {
966                         u16 subqueue = skb_get_queue_mapping(skb);
967
968                         netif_wake_subqueue(netcp->ndev, subqueue);
969                 }
970
971                 netcp->ndev->stats.tx_packets++;
972                 netcp->ndev->stats.tx_bytes += skb->len;
973                 dev_kfree_skb(skb);
974                 pkts++;
975         }
976         return pkts;
977 }
978
979 static int netcp_tx_poll(struct napi_struct *napi, int budget)
980 {
981         int packets;
982         struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
983                                                 tx_napi);
984
985         packets = netcp_process_tx_compl_packets(netcp, budget);
986         if (packets < budget) {
987                 napi_complete(&netcp->tx_napi);
988                 knav_queue_enable_notify(netcp->tx_compl_q);
989         }
990
991         return packets;
992 }
993
994 static void netcp_tx_notify(void *arg)
995 {
996         struct netcp_intf *netcp = arg;
997
998         knav_queue_disable_notify(netcp->tx_compl_q);
999         napi_schedule(&netcp->tx_napi);
1000 }
1001
1002 static struct knav_dma_desc*
1003 netcp_tx_map_skb(struct sk_buff *skb, struct netcp_intf *netcp)
1004 {
1005         struct knav_dma_desc *desc, *ndesc, *pdesc;
1006         unsigned int pkt_len = skb_headlen(skb);
1007         struct device *dev = netcp->dev;
1008         dma_addr_t dma_addr;
1009         unsigned int dma_sz;
1010         int i;
1011
1012         /* Map the linear buffer */
1013         dma_addr = dma_map_single(dev, skb->data, pkt_len, DMA_TO_DEVICE);
1014         if (unlikely(!dma_addr)) {
1015                 dev_err(netcp->ndev_dev, "Failed to map skb buffer\n");
1016                 return NULL;
1017         }
1018
1019         desc = knav_pool_desc_get(netcp->tx_pool);
1020         if (unlikely(IS_ERR_OR_NULL(desc))) {
1021                 dev_err(netcp->ndev_dev, "out of TX desc\n");
1022                 dma_unmap_single(dev, dma_addr, pkt_len, DMA_TO_DEVICE);
1023                 return NULL;
1024         }
1025
1026         set_pkt_info(dma_addr, pkt_len, 0, desc);
1027         if (skb_is_nonlinear(skb)) {
1028                 prefetchw(skb_shinfo(skb));
1029         } else {
1030                 desc->next_desc = 0;
1031                 goto upd_pkt_len;
1032         }
1033
1034         pdesc = desc;
1035
1036         /* Handle the case where skb is fragmented in pages */
1037         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1038                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1039                 struct page *page = skb_frag_page(frag);
1040                 u32 page_offset = frag->page_offset;
1041                 u32 buf_len = skb_frag_size(frag);
1042                 dma_addr_t desc_dma;
1043                 u32 pkt_info;
1044
1045                 dma_addr = dma_map_page(dev, page, page_offset, buf_len,
1046                                         DMA_TO_DEVICE);
1047                 if (unlikely(!dma_addr)) {
1048                         dev_err(netcp->ndev_dev, "Failed to map skb page\n");
1049                         goto free_descs;
1050                 }
1051
1052                 ndesc = knav_pool_desc_get(netcp->tx_pool);
1053                 if (unlikely(IS_ERR_OR_NULL(ndesc))) {
1054                         dev_err(netcp->ndev_dev, "out of TX desc for frags\n");
1055                         dma_unmap_page(dev, dma_addr, buf_len, DMA_TO_DEVICE);
1056                         goto free_descs;
1057                 }
1058
1059                 desc_dma = knav_pool_desc_virt_to_dma(netcp->tx_pool,
1060                                                       (void *)ndesc);
1061                 pkt_info =
1062                         (netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1063                                 KNAV_DMA_DESC_RETQ_SHIFT;
1064                 set_pkt_info(dma_addr, buf_len, 0, ndesc);
1065                 set_words(&desc_dma, 1, &pdesc->next_desc);
1066                 pkt_len += buf_len;
1067                 if (pdesc != desc)
1068                         knav_pool_desc_map(netcp->tx_pool, pdesc,
1069                                            sizeof(*pdesc), &desc_dma, &dma_sz);
1070                 pdesc = ndesc;
1071         }
1072         if (pdesc != desc)
1073                 knav_pool_desc_map(netcp->tx_pool, pdesc, sizeof(*pdesc),
1074                                    &dma_addr, &dma_sz);
1075
1076         /* frag list based linkage is not supported for now. */
1077         if (skb_shinfo(skb)->frag_list) {
1078                 dev_err_ratelimited(netcp->ndev_dev, "NETIF_F_FRAGLIST not supported\n");
1079                 goto free_descs;
1080         }
1081
1082 upd_pkt_len:
1083         WARN_ON(pkt_len != skb->len);
1084
1085         pkt_len &= KNAV_DMA_DESC_PKT_LEN_MASK;
1086         set_words(&pkt_len, 1, &desc->desc_info);
1087         return desc;
1088
1089 free_descs:
1090         netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1091         return NULL;
1092 }
1093
1094 static int netcp_tx_submit_skb(struct netcp_intf *netcp,
1095                                struct sk_buff *skb,
1096                                struct knav_dma_desc *desc)
1097 {
1098         struct netcp_tx_pipe *tx_pipe = NULL;
1099         struct netcp_hook_list *tx_hook;
1100         struct netcp_packet p_info;
1101         unsigned int dma_sz;
1102         dma_addr_t dma;
1103         u32 tmp = 0;
1104         int ret = 0;
1105
1106         p_info.netcp = netcp;
1107         p_info.skb = skb;
1108         p_info.tx_pipe = NULL;
1109         p_info.psdata_len = 0;
1110         p_info.ts_context = NULL;
1111         p_info.txtstamp_complete = NULL;
1112         p_info.epib = desc->epib;
1113         p_info.psdata = desc->psdata;
1114         memset(p_info.epib, 0, KNAV_DMA_NUM_EPIB_WORDS * sizeof(u32));
1115
1116         /* Find out where to inject the packet for transmission */
1117         list_for_each_entry(tx_hook, &netcp->txhook_list_head, list) {
1118                 ret = tx_hook->hook_rtn(tx_hook->order, tx_hook->hook_data,
1119                                         &p_info);
1120                 if (unlikely(ret != 0)) {
1121                         dev_err(netcp->ndev_dev, "TX hook %d rejected the packet with reason(%d)\n",
1122                                 tx_hook->order, ret);
1123                         ret = (ret < 0) ? ret : NETDEV_TX_OK;
1124                         goto out;
1125                 }
1126         }
1127
1128         /* Make sure some TX hook claimed the packet */
1129         tx_pipe = p_info.tx_pipe;
1130         if (!tx_pipe) {
1131                 dev_err(netcp->ndev_dev, "No TX hook claimed the packet!\n");
1132                 ret = -ENXIO;
1133                 goto out;
1134         }
1135
1136         /* update descriptor */
1137         if (p_info.psdata_len) {
1138                 u32 *psdata = p_info.psdata;
1139
1140                 memmove(p_info.psdata, p_info.psdata + p_info.psdata_len,
1141                         p_info.psdata_len);
1142                 set_words(psdata, p_info.psdata_len, psdata);
1143                 tmp |= (p_info.psdata_len & KNAV_DMA_DESC_PSLEN_MASK) <<
1144                         KNAV_DMA_DESC_PSLEN_SHIFT;
1145         }
1146
1147         tmp |= KNAV_DMA_DESC_HAS_EPIB |
1148                 ((netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1149                 KNAV_DMA_DESC_RETQ_SHIFT);
1150
1151         if (!(tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO)) {
1152                 tmp |= ((tx_pipe->switch_to_port & KNAV_DMA_DESC_PSFLAG_MASK) <<
1153                         KNAV_DMA_DESC_PSFLAG_SHIFT);
1154         }
1155
1156         set_words(&tmp, 1, &desc->packet_info);
1157         set_words((u32 *)&skb, 1, &desc->pad[0]);
1158
1159         if (tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO) {
1160                 tmp = tx_pipe->switch_to_port;
1161                 set_words((u32 *)&tmp, 1, &desc->tag_info);
1162         }
1163
1164         /* submit packet descriptor */
1165         ret = knav_pool_desc_map(netcp->tx_pool, desc, sizeof(*desc), &dma,
1166                                  &dma_sz);
1167         if (unlikely(ret)) {
1168                 dev_err(netcp->ndev_dev, "%s() failed to map desc\n", __func__);
1169                 ret = -ENOMEM;
1170                 goto out;
1171         }
1172         skb_tx_timestamp(skb);
1173         knav_queue_push(tx_pipe->dma_queue, dma, dma_sz, 0);
1174
1175 out:
1176         return ret;
1177 }
1178
1179 /* Submit the packet */
1180 static int netcp_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1181 {
1182         struct netcp_intf *netcp = netdev_priv(ndev);
1183         int subqueue = skb_get_queue_mapping(skb);
1184         struct knav_dma_desc *desc;
1185         int desc_count, ret = 0;
1186
1187         if (unlikely(skb->len <= 0)) {
1188                 dev_kfree_skb(skb);
1189                 return NETDEV_TX_OK;
1190         }
1191
1192         if (unlikely(skb->len < NETCP_MIN_PACKET_SIZE)) {
1193                 ret = skb_padto(skb, NETCP_MIN_PACKET_SIZE);
1194                 if (ret < 0) {
1195                         /* If we get here, the skb has already been dropped */
1196                         dev_warn(netcp->ndev_dev, "padding failed (%d), packet dropped\n",
1197                                  ret);
1198                         ndev->stats.tx_dropped++;
1199                         return ret;
1200                 }
1201                 skb->len = NETCP_MIN_PACKET_SIZE;
1202         }
1203
1204         desc = netcp_tx_map_skb(skb, netcp);
1205         if (unlikely(!desc)) {
1206                 netif_stop_subqueue(ndev, subqueue);
1207                 ret = -ENOBUFS;
1208                 goto drop;
1209         }
1210
1211         ret = netcp_tx_submit_skb(netcp, skb, desc);
1212         if (ret)
1213                 goto drop;
1214
1215         ndev->trans_start = jiffies;
1216
1217         /* Check Tx pool count & stop subqueue if needed */
1218         desc_count = knav_pool_count(netcp->tx_pool);
1219         if (desc_count < netcp->tx_pause_threshold) {
1220                 dev_dbg(netcp->ndev_dev, "pausing tx, count(%d)\n", desc_count);
1221                 netif_stop_subqueue(ndev, subqueue);
1222         }
1223         return NETDEV_TX_OK;
1224
1225 drop:
1226         ndev->stats.tx_dropped++;
1227         if (desc)
1228                 netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1229         dev_kfree_skb(skb);
1230         return ret;
1231 }
1232
1233 int netcp_txpipe_close(struct netcp_tx_pipe *tx_pipe)
1234 {
1235         if (tx_pipe->dma_channel) {
1236                 knav_dma_close_channel(tx_pipe->dma_channel);
1237                 tx_pipe->dma_channel = NULL;
1238         }
1239         return 0;
1240 }
1241 EXPORT_SYMBOL_GPL(netcp_txpipe_close);
1242
1243 int netcp_txpipe_open(struct netcp_tx_pipe *tx_pipe)
1244 {
1245         struct device *dev = tx_pipe->netcp_device->device;
1246         struct knav_dma_cfg config;
1247         int ret = 0;
1248         u8 name[16];
1249
1250         memset(&config, 0, sizeof(config));
1251         config.direction = DMA_MEM_TO_DEV;
1252         config.u.tx.filt_einfo = false;
1253         config.u.tx.filt_pswords = false;
1254         config.u.tx.priority = DMA_PRIO_MED_L;
1255
1256         tx_pipe->dma_channel = knav_dma_open_channel(dev,
1257                                 tx_pipe->dma_chan_name, &config);
1258         if (IS_ERR_OR_NULL(tx_pipe->dma_channel)) {
1259                 dev_err(dev, "failed opening tx chan(%s)\n",
1260                         tx_pipe->dma_chan_name);
1261                 goto err;
1262         }
1263
1264         snprintf(name, sizeof(name), "tx-pipe-%s", dev_name(dev));
1265         tx_pipe->dma_queue = knav_queue_open(name, tx_pipe->dma_queue_id,
1266                                              KNAV_QUEUE_SHARED);
1267         if (IS_ERR(tx_pipe->dma_queue)) {
1268                 dev_err(dev, "Could not open DMA queue for channel \"%s\": %d\n",
1269                         name, ret);
1270                 ret = PTR_ERR(tx_pipe->dma_queue);
1271                 goto err;
1272         }
1273
1274         dev_dbg(dev, "opened tx pipe %s\n", name);
1275         return 0;
1276
1277 err:
1278         if (!IS_ERR_OR_NULL(tx_pipe->dma_channel))
1279                 knav_dma_close_channel(tx_pipe->dma_channel);
1280         tx_pipe->dma_channel = NULL;
1281         return ret;
1282 }
1283 EXPORT_SYMBOL_GPL(netcp_txpipe_open);
1284
1285 int netcp_txpipe_init(struct netcp_tx_pipe *tx_pipe,
1286                       struct netcp_device *netcp_device,
1287                       const char *dma_chan_name, unsigned int dma_queue_id)
1288 {
1289         memset(tx_pipe, 0, sizeof(*tx_pipe));
1290         tx_pipe->netcp_device = netcp_device;
1291         tx_pipe->dma_chan_name = dma_chan_name;
1292         tx_pipe->dma_queue_id = dma_queue_id;
1293         return 0;
1294 }
1295 EXPORT_SYMBOL_GPL(netcp_txpipe_init);
1296
1297 static struct netcp_addr *netcp_addr_find(struct netcp_intf *netcp,
1298                                           const u8 *addr,
1299                                           enum netcp_addr_type type)
1300 {
1301         struct netcp_addr *naddr;
1302
1303         list_for_each_entry(naddr, &netcp->addr_list, node) {
1304                 if (naddr->type != type)
1305                         continue;
1306                 if (addr && memcmp(addr, naddr->addr, ETH_ALEN))
1307                         continue;
1308                 return naddr;
1309         }
1310
1311         return NULL;
1312 }
1313
1314 static struct netcp_addr *netcp_addr_add(struct netcp_intf *netcp,
1315                                          const u8 *addr,
1316                                          enum netcp_addr_type type)
1317 {
1318         struct netcp_addr *naddr;
1319
1320         naddr = devm_kmalloc(netcp->dev, sizeof(*naddr), GFP_ATOMIC);
1321         if (!naddr)
1322                 return NULL;
1323
1324         naddr->type = type;
1325         naddr->flags = 0;
1326         naddr->netcp = netcp;
1327         if (addr)
1328                 ether_addr_copy(naddr->addr, addr);
1329         else
1330                 eth_zero_addr(naddr->addr);
1331         list_add_tail(&naddr->node, &netcp->addr_list);
1332
1333         return naddr;
1334 }
1335
1336 static void netcp_addr_del(struct netcp_intf *netcp, struct netcp_addr *naddr)
1337 {
1338         list_del(&naddr->node);
1339         devm_kfree(netcp->dev, naddr);
1340 }
1341
1342 static void netcp_addr_clear_mark(struct netcp_intf *netcp)
1343 {
1344         struct netcp_addr *naddr;
1345
1346         list_for_each_entry(naddr, &netcp->addr_list, node)
1347                 naddr->flags = 0;
1348 }
1349
1350 static void netcp_addr_add_mark(struct netcp_intf *netcp, const u8 *addr,
1351                                 enum netcp_addr_type type)
1352 {
1353         struct netcp_addr *naddr;
1354
1355         naddr = netcp_addr_find(netcp, addr, type);
1356         if (naddr) {
1357                 naddr->flags |= ADDR_VALID;
1358                 return;
1359         }
1360
1361         naddr = netcp_addr_add(netcp, addr, type);
1362         if (!WARN_ON(!naddr))
1363                 naddr->flags |= ADDR_NEW;
1364 }
1365
1366 static void netcp_addr_sweep_del(struct netcp_intf *netcp)
1367 {
1368         struct netcp_addr *naddr, *tmp;
1369         struct netcp_intf_modpriv *priv;
1370         struct netcp_module *module;
1371         int error;
1372
1373         list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1374                 if (naddr->flags & (ADDR_VALID | ADDR_NEW))
1375                         continue;
1376                 dev_dbg(netcp->ndev_dev, "deleting address %pM, type %x\n",
1377                         naddr->addr, naddr->type);
1378                 mutex_lock(&netcp_modules_lock);
1379                 for_each_module(netcp, priv) {
1380                         module = priv->netcp_module;
1381                         if (!module->del_addr)
1382                                 continue;
1383                         error = module->del_addr(priv->module_priv,
1384                                                  naddr);
1385                         WARN_ON(error);
1386                 }
1387                 mutex_unlock(&netcp_modules_lock);
1388                 netcp_addr_del(netcp, naddr);
1389         }
1390 }
1391
1392 static void netcp_addr_sweep_add(struct netcp_intf *netcp)
1393 {
1394         struct netcp_addr *naddr, *tmp;
1395         struct netcp_intf_modpriv *priv;
1396         struct netcp_module *module;
1397         int error;
1398
1399         list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1400                 if (!(naddr->flags & ADDR_NEW))
1401                         continue;
1402                 dev_dbg(netcp->ndev_dev, "adding address %pM, type %x\n",
1403                         naddr->addr, naddr->type);
1404                 mutex_lock(&netcp_modules_lock);
1405                 for_each_module(netcp, priv) {
1406                         module = priv->netcp_module;
1407                         if (!module->add_addr)
1408                                 continue;
1409                         error = module->add_addr(priv->module_priv, naddr);
1410                         WARN_ON(error);
1411                 }
1412                 mutex_unlock(&netcp_modules_lock);
1413         }
1414 }
1415
1416 static void netcp_set_rx_mode(struct net_device *ndev)
1417 {
1418         struct netcp_intf *netcp = netdev_priv(ndev);
1419         struct netdev_hw_addr *ndev_addr;
1420         bool promisc;
1421
1422         promisc = (ndev->flags & IFF_PROMISC ||
1423                    ndev->flags & IFF_ALLMULTI ||
1424                    netdev_mc_count(ndev) > NETCP_MAX_MCAST_ADDR);
1425
1426         /* first clear all marks */
1427         netcp_addr_clear_mark(netcp);
1428
1429         /* next add new entries, mark existing ones */
1430         netcp_addr_add_mark(netcp, ndev->broadcast, ADDR_BCAST);
1431         for_each_dev_addr(ndev, ndev_addr)
1432                 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_DEV);
1433         netdev_for_each_uc_addr(ndev_addr, ndev)
1434                 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_UCAST);
1435         netdev_for_each_mc_addr(ndev_addr, ndev)
1436                 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_MCAST);
1437
1438         if (promisc)
1439                 netcp_addr_add_mark(netcp, NULL, ADDR_ANY);
1440
1441         /* finally sweep and callout into modules */
1442         netcp_addr_sweep_del(netcp);
1443         netcp_addr_sweep_add(netcp);
1444 }
1445
1446 static void netcp_free_navigator_resources(struct netcp_intf *netcp)
1447 {
1448         int i;
1449
1450         if (netcp->rx_channel) {
1451                 knav_dma_close_channel(netcp->rx_channel);
1452                 netcp->rx_channel = NULL;
1453         }
1454
1455         if (!IS_ERR_OR_NULL(netcp->rx_pool))
1456                 netcp_rxpool_free(netcp);
1457
1458         if (!IS_ERR_OR_NULL(netcp->rx_queue)) {
1459                 knav_queue_close(netcp->rx_queue);
1460                 netcp->rx_queue = NULL;
1461         }
1462
1463         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
1464              !IS_ERR_OR_NULL(netcp->rx_fdq[i]) ; ++i) {
1465                 knav_queue_close(netcp->rx_fdq[i]);
1466                 netcp->rx_fdq[i] = NULL;
1467         }
1468
1469         if (!IS_ERR_OR_NULL(netcp->tx_compl_q)) {
1470                 knav_queue_close(netcp->tx_compl_q);
1471                 netcp->tx_compl_q = NULL;
1472         }
1473
1474         if (!IS_ERR_OR_NULL(netcp->tx_pool)) {
1475                 knav_pool_destroy(netcp->tx_pool);
1476                 netcp->tx_pool = NULL;
1477         }
1478 }
1479
1480 static int netcp_setup_navigator_resources(struct net_device *ndev)
1481 {
1482         struct netcp_intf *netcp = netdev_priv(ndev);
1483         struct knav_queue_notify_config notify_cfg;
1484         struct knav_dma_cfg config;
1485         u32 last_fdq = 0;
1486         u8 name[16];
1487         int ret;
1488         int i;
1489
1490         /* Create Rx/Tx descriptor pools */
1491         snprintf(name, sizeof(name), "rx-pool-%s", ndev->name);
1492         netcp->rx_pool = knav_pool_create(name, netcp->rx_pool_size,
1493                                                 netcp->rx_pool_region_id);
1494         if (IS_ERR_OR_NULL(netcp->rx_pool)) {
1495                 dev_err(netcp->ndev_dev, "Couldn't create rx pool\n");
1496                 ret = PTR_ERR(netcp->rx_pool);
1497                 goto fail;
1498         }
1499
1500         snprintf(name, sizeof(name), "tx-pool-%s", ndev->name);
1501         netcp->tx_pool = knav_pool_create(name, netcp->tx_pool_size,
1502                                                 netcp->tx_pool_region_id);
1503         if (IS_ERR_OR_NULL(netcp->tx_pool)) {
1504                 dev_err(netcp->ndev_dev, "Couldn't create tx pool\n");
1505                 ret = PTR_ERR(netcp->tx_pool);
1506                 goto fail;
1507         }
1508
1509         /* open Tx completion queue */
1510         snprintf(name, sizeof(name), "tx-compl-%s", ndev->name);
1511         netcp->tx_compl_q = knav_queue_open(name, netcp->tx_compl_qid, 0);
1512         if (IS_ERR_OR_NULL(netcp->tx_compl_q)) {
1513                 ret = PTR_ERR(netcp->tx_compl_q);
1514                 goto fail;
1515         }
1516         netcp->tx_compl_qid = knav_queue_get_id(netcp->tx_compl_q);
1517
1518         /* Set notification for Tx completion */
1519         notify_cfg.fn = netcp_tx_notify;
1520         notify_cfg.fn_arg = netcp;
1521         ret = knav_queue_device_control(netcp->tx_compl_q,
1522                                         KNAV_QUEUE_SET_NOTIFIER,
1523                                         (unsigned long)&notify_cfg);
1524         if (ret)
1525                 goto fail;
1526
1527         knav_queue_disable_notify(netcp->tx_compl_q);
1528
1529         /* open Rx completion queue */
1530         snprintf(name, sizeof(name), "rx-compl-%s", ndev->name);
1531         netcp->rx_queue = knav_queue_open(name, netcp->rx_queue_id, 0);
1532         if (IS_ERR_OR_NULL(netcp->rx_queue)) {
1533                 ret = PTR_ERR(netcp->rx_queue);
1534                 goto fail;
1535         }
1536         netcp->rx_queue_id = knav_queue_get_id(netcp->rx_queue);
1537
1538         /* Set notification for Rx completion */
1539         notify_cfg.fn = netcp_rx_notify;
1540         notify_cfg.fn_arg = netcp;
1541         ret = knav_queue_device_control(netcp->rx_queue,
1542                                         KNAV_QUEUE_SET_NOTIFIER,
1543                                         (unsigned long)&notify_cfg);
1544         if (ret)
1545                 goto fail;
1546
1547         knav_queue_disable_notify(netcp->rx_queue);
1548
1549         /* open Rx FDQs */
1550         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
1551              netcp->rx_queue_depths[i] && netcp->rx_buffer_sizes[i]; ++i) {
1552                 snprintf(name, sizeof(name), "rx-fdq-%s-%d", ndev->name, i);
1553                 netcp->rx_fdq[i] = knav_queue_open(name, KNAV_QUEUE_GP, 0);
1554                 if (IS_ERR_OR_NULL(netcp->rx_fdq[i])) {
1555                         ret = PTR_ERR(netcp->rx_fdq[i]);
1556                         goto fail;
1557                 }
1558         }
1559
1560         memset(&config, 0, sizeof(config));
1561         config.direction                = DMA_DEV_TO_MEM;
1562         config.u.rx.einfo_present       = true;
1563         config.u.rx.psinfo_present      = true;
1564         config.u.rx.err_mode            = DMA_DROP;
1565         config.u.rx.desc_type           = DMA_DESC_HOST;
1566         config.u.rx.psinfo_at_sop       = false;
1567         config.u.rx.sop_offset          = NETCP_SOP_OFFSET;
1568         config.u.rx.dst_q               = netcp->rx_queue_id;
1569         config.u.rx.thresh              = DMA_THRESH_NONE;
1570
1571         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; ++i) {
1572                 if (netcp->rx_fdq[i])
1573                         last_fdq = knav_queue_get_id(netcp->rx_fdq[i]);
1574                 config.u.rx.fdq[i] = last_fdq;
1575         }
1576
1577         netcp->rx_channel = knav_dma_open_channel(netcp->netcp_device->device,
1578                                         netcp->dma_chan_name, &config);
1579         if (IS_ERR_OR_NULL(netcp->rx_channel)) {
1580                 dev_err(netcp->ndev_dev, "failed opening rx chan(%s\n",
1581                         netcp->dma_chan_name);
1582                 goto fail;
1583         }
1584
1585         dev_dbg(netcp->ndev_dev, "opened RX channel: %p\n", netcp->rx_channel);
1586         return 0;
1587
1588 fail:
1589         netcp_free_navigator_resources(netcp);
1590         return ret;
1591 }
1592
1593 /* Open the device */
1594 static int netcp_ndo_open(struct net_device *ndev)
1595 {
1596         struct netcp_intf *netcp = netdev_priv(ndev);
1597         struct netcp_intf_modpriv *intf_modpriv;
1598         struct netcp_module *module;
1599         int ret;
1600
1601         netif_carrier_off(ndev);
1602         ret = netcp_setup_navigator_resources(ndev);
1603         if (ret) {
1604                 dev_err(netcp->ndev_dev, "Failed to setup navigator resources\n");
1605                 goto fail;
1606         }
1607
1608         mutex_lock(&netcp_modules_lock);
1609         for_each_module(netcp, intf_modpriv) {
1610                 module = intf_modpriv->netcp_module;
1611                 if (module->open) {
1612                         ret = module->open(intf_modpriv->module_priv, ndev);
1613                         if (ret != 0) {
1614                                 dev_err(netcp->ndev_dev, "module open failed\n");
1615                                 goto fail_open;
1616                         }
1617                 }
1618         }
1619         mutex_unlock(&netcp_modules_lock);
1620
1621         netcp_rxpool_refill(netcp);
1622         napi_enable(&netcp->rx_napi);
1623         napi_enable(&netcp->tx_napi);
1624         knav_queue_enable_notify(netcp->tx_compl_q);
1625         knav_queue_enable_notify(netcp->rx_queue);
1626         netif_tx_wake_all_queues(ndev);
1627         dev_dbg(netcp->ndev_dev, "netcp device %s opened\n", ndev->name);
1628         return 0;
1629
1630 fail_open:
1631         for_each_module(netcp, intf_modpriv) {
1632                 module = intf_modpriv->netcp_module;
1633                 if (module->close)
1634                         module->close(intf_modpriv->module_priv, ndev);
1635         }
1636         mutex_unlock(&netcp_modules_lock);
1637
1638 fail:
1639         netcp_free_navigator_resources(netcp);
1640         return ret;
1641 }
1642
1643 /* Close the device */
1644 static int netcp_ndo_stop(struct net_device *ndev)
1645 {
1646         struct netcp_intf *netcp = netdev_priv(ndev);
1647         struct netcp_intf_modpriv *intf_modpriv;
1648         struct netcp_module *module;
1649         int err = 0;
1650
1651         netif_tx_stop_all_queues(ndev);
1652         netif_carrier_off(ndev);
1653         netcp_addr_clear_mark(netcp);
1654         netcp_addr_sweep_del(netcp);
1655         knav_queue_disable_notify(netcp->rx_queue);
1656         knav_queue_disable_notify(netcp->tx_compl_q);
1657         napi_disable(&netcp->rx_napi);
1658         napi_disable(&netcp->tx_napi);
1659
1660         mutex_lock(&netcp_modules_lock);
1661         for_each_module(netcp, intf_modpriv) {
1662                 module = intf_modpriv->netcp_module;
1663                 if (module->close) {
1664                         err = module->close(intf_modpriv->module_priv, ndev);
1665                         if (err != 0)
1666                                 dev_err(netcp->ndev_dev, "Close failed\n");
1667                 }
1668         }
1669         mutex_unlock(&netcp_modules_lock);
1670
1671         /* Recycle Rx descriptors from completion queue */
1672         netcp_empty_rx_queue(netcp);
1673
1674         /* Recycle Tx descriptors from completion queue */
1675         netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1676
1677         if (knav_pool_count(netcp->tx_pool) != netcp->tx_pool_size)
1678                 dev_err(netcp->ndev_dev, "Lost (%d) Tx descs\n",
1679                         netcp->tx_pool_size - knav_pool_count(netcp->tx_pool));
1680
1681         netcp_free_navigator_resources(netcp);
1682         dev_dbg(netcp->ndev_dev, "netcp device %s stopped\n", ndev->name);
1683         return 0;
1684 }
1685
1686 static int netcp_ndo_ioctl(struct net_device *ndev,
1687                            struct ifreq *req, int cmd)
1688 {
1689         struct netcp_intf *netcp = netdev_priv(ndev);
1690         struct netcp_intf_modpriv *intf_modpriv;
1691         struct netcp_module *module;
1692         int ret = -1, err = -EOPNOTSUPP;
1693
1694         if (!netif_running(ndev))
1695                 return -EINVAL;
1696
1697         mutex_lock(&netcp_modules_lock);
1698         for_each_module(netcp, intf_modpriv) {
1699                 module = intf_modpriv->netcp_module;
1700                 if (!module->ioctl)
1701                         continue;
1702
1703                 err = module->ioctl(intf_modpriv->module_priv, req, cmd);
1704                 if ((err < 0) && (err != -EOPNOTSUPP)) {
1705                         ret = err;
1706                         goto out;
1707                 }
1708                 if (err == 0)
1709                         ret = err;
1710         }
1711
1712 out:
1713         mutex_unlock(&netcp_modules_lock);
1714         return (ret == 0) ? 0 : err;
1715 }
1716
1717 static int netcp_ndo_change_mtu(struct net_device *ndev, int new_mtu)
1718 {
1719         struct netcp_intf *netcp = netdev_priv(ndev);
1720
1721         /* MTU < 68 is an error for IPv4 traffic */
1722         if ((new_mtu < 68) ||
1723             (new_mtu > (NETCP_MAX_FRAME_SIZE - ETH_HLEN - ETH_FCS_LEN))) {
1724                 dev_err(netcp->ndev_dev, "Invalid mtu size = %d\n", new_mtu);
1725                 return -EINVAL;
1726         }
1727
1728         ndev->mtu = new_mtu;
1729         return 0;
1730 }
1731
1732 static void netcp_ndo_tx_timeout(struct net_device *ndev)
1733 {
1734         struct netcp_intf *netcp = netdev_priv(ndev);
1735         unsigned int descs = knav_pool_count(netcp->tx_pool);
1736
1737         dev_err(netcp->ndev_dev, "transmit timed out tx descs(%d)\n", descs);
1738         netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1739         ndev->trans_start = jiffies;
1740         netif_tx_wake_all_queues(ndev);
1741 }
1742
1743 static int netcp_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
1744 {
1745         struct netcp_intf *netcp = netdev_priv(ndev);
1746         struct netcp_intf_modpriv *intf_modpriv;
1747         struct netcp_module *module;
1748         int err = 0;
1749
1750         dev_dbg(netcp->ndev_dev, "adding rx vlan id: %d\n", vid);
1751
1752         mutex_lock(&netcp_modules_lock);
1753         for_each_module(netcp, intf_modpriv) {
1754                 module = intf_modpriv->netcp_module;
1755                 if ((module->add_vid) && (vid != 0)) {
1756                         err = module->add_vid(intf_modpriv->module_priv, vid);
1757                         if (err != 0) {
1758                                 dev_err(netcp->ndev_dev, "Could not add vlan id = %d\n",
1759                                         vid);
1760                                 break;
1761                         }
1762                 }
1763         }
1764         mutex_unlock(&netcp_modules_lock);
1765         return err;
1766 }
1767
1768 static int netcp_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
1769 {
1770         struct netcp_intf *netcp = netdev_priv(ndev);
1771         struct netcp_intf_modpriv *intf_modpriv;
1772         struct netcp_module *module;
1773         int err = 0;
1774
1775         dev_dbg(netcp->ndev_dev, "removing rx vlan id: %d\n", vid);
1776
1777         mutex_lock(&netcp_modules_lock);
1778         for_each_module(netcp, intf_modpriv) {
1779                 module = intf_modpriv->netcp_module;
1780                 if (module->del_vid) {
1781                         err = module->del_vid(intf_modpriv->module_priv, vid);
1782                         if (err != 0) {
1783                                 dev_err(netcp->ndev_dev, "Could not delete vlan id = %d\n",
1784                                         vid);
1785                                 break;
1786                         }
1787                 }
1788         }
1789         mutex_unlock(&netcp_modules_lock);
1790         return err;
1791 }
1792
1793 static u16 netcp_select_queue(struct net_device *dev, struct sk_buff *skb,
1794                               void *accel_priv,
1795                               select_queue_fallback_t fallback)
1796 {
1797         return 0;
1798 }
1799
1800 static int netcp_setup_tc(struct net_device *dev, u8 num_tc)
1801 {
1802         int i;
1803
1804         /* setup tc must be called under rtnl lock */
1805         ASSERT_RTNL();
1806
1807         /* Sanity-check the number of traffic classes requested */
1808         if ((dev->real_num_tx_queues <= 1) ||
1809             (dev->real_num_tx_queues < num_tc))
1810                 return -EINVAL;
1811
1812         /* Configure traffic class to queue mappings */
1813         if (num_tc) {
1814                 netdev_set_num_tc(dev, num_tc);
1815                 for (i = 0; i < num_tc; i++)
1816                         netdev_set_tc_queue(dev, i, 1, i);
1817         } else {
1818                 netdev_reset_tc(dev);
1819         }
1820
1821         return 0;
1822 }
1823
1824 static const struct net_device_ops netcp_netdev_ops = {
1825         .ndo_open               = netcp_ndo_open,
1826         .ndo_stop               = netcp_ndo_stop,
1827         .ndo_start_xmit         = netcp_ndo_start_xmit,
1828         .ndo_set_rx_mode        = netcp_set_rx_mode,
1829         .ndo_do_ioctl           = netcp_ndo_ioctl,
1830         .ndo_change_mtu         = netcp_ndo_change_mtu,
1831         .ndo_set_mac_address    = eth_mac_addr,
1832         .ndo_validate_addr      = eth_validate_addr,
1833         .ndo_vlan_rx_add_vid    = netcp_rx_add_vid,
1834         .ndo_vlan_rx_kill_vid   = netcp_rx_kill_vid,
1835         .ndo_tx_timeout         = netcp_ndo_tx_timeout,
1836         .ndo_select_queue       = netcp_select_queue,
1837         .ndo_setup_tc           = netcp_setup_tc,
1838 };
1839
1840 static int netcp_create_interface(struct netcp_device *netcp_device,
1841                                   struct device_node *node_interface)
1842 {
1843         struct device *dev = netcp_device->device;
1844         struct device_node *node = dev->of_node;
1845         struct netcp_intf *netcp;
1846         struct net_device *ndev;
1847         resource_size_t size;
1848         struct resource res;
1849         void __iomem *efuse = NULL;
1850         u32 efuse_mac = 0;
1851         const void *mac_addr;
1852         u8 efuse_mac_addr[6];
1853         u32 temp[2];
1854         int ret = 0;
1855
1856         ndev = alloc_etherdev_mqs(sizeof(*netcp), 1, 1);
1857         if (!ndev) {
1858                 dev_err(dev, "Error allocating netdev\n");
1859                 return -ENOMEM;
1860         }
1861
1862         ndev->features |= NETIF_F_SG;
1863         ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1864         ndev->hw_features = ndev->features;
1865         ndev->vlan_features |=  NETIF_F_SG;
1866
1867         netcp = netdev_priv(ndev);
1868         spin_lock_init(&netcp->lock);
1869         INIT_LIST_HEAD(&netcp->module_head);
1870         INIT_LIST_HEAD(&netcp->txhook_list_head);
1871         INIT_LIST_HEAD(&netcp->rxhook_list_head);
1872         INIT_LIST_HEAD(&netcp->addr_list);
1873         netcp->netcp_device = netcp_device;
1874         netcp->dev = netcp_device->device;
1875         netcp->ndev = ndev;
1876         netcp->ndev_dev  = &ndev->dev;
1877         netcp->msg_enable = netif_msg_init(netcp_debug_level, NETCP_DEBUG);
1878         netcp->tx_pause_threshold = MAX_SKB_FRAGS;
1879         netcp->tx_resume_threshold = netcp->tx_pause_threshold;
1880         netcp->node_interface = node_interface;
1881
1882         ret = of_property_read_u32(node_interface, "efuse-mac", &efuse_mac);
1883         if (efuse_mac) {
1884                 if (of_address_to_resource(node, NETCP_EFUSE_REG_INDEX, &res)) {
1885                         dev_err(dev, "could not find efuse-mac reg resource\n");
1886                         ret = -ENODEV;
1887                         goto quit;
1888                 }
1889                 size = resource_size(&res);
1890
1891                 if (!devm_request_mem_region(dev, res.start, size,
1892                                              dev_name(dev))) {
1893                         dev_err(dev, "could not reserve resource\n");
1894                         ret = -ENOMEM;
1895                         goto quit;
1896                 }
1897
1898                 efuse = devm_ioremap_nocache(dev, res.start, size);
1899                 if (!efuse) {
1900                         dev_err(dev, "could not map resource\n");
1901                         devm_release_mem_region(dev, res.start, size);
1902                         ret = -ENOMEM;
1903                         goto quit;
1904                 }
1905
1906                 emac_arch_get_mac_addr(efuse_mac_addr, efuse);
1907                 if (is_valid_ether_addr(efuse_mac_addr))
1908                         ether_addr_copy(ndev->dev_addr, efuse_mac_addr);
1909                 else
1910                         random_ether_addr(ndev->dev_addr);
1911
1912                 devm_iounmap(dev, efuse);
1913                 devm_release_mem_region(dev, res.start, size);
1914         } else {
1915                 mac_addr = of_get_mac_address(node_interface);
1916                 if (mac_addr)
1917                         ether_addr_copy(ndev->dev_addr, mac_addr);
1918                 else
1919                         random_ether_addr(ndev->dev_addr);
1920         }
1921
1922         ret = of_property_read_string(node_interface, "rx-channel",
1923                                       &netcp->dma_chan_name);
1924         if (ret < 0) {
1925                 dev_err(dev, "missing \"rx-channel\" parameter\n");
1926                 ret = -ENODEV;
1927                 goto quit;
1928         }
1929
1930         ret = of_property_read_u32(node_interface, "rx-queue",
1931                                    &netcp->rx_queue_id);
1932         if (ret < 0) {
1933                 dev_warn(dev, "missing \"rx-queue\" parameter\n");
1934                 netcp->rx_queue_id = KNAV_QUEUE_QPEND;
1935         }
1936
1937         ret = of_property_read_u32_array(node_interface, "rx-queue-depth",
1938                                          netcp->rx_queue_depths,
1939                                          KNAV_DMA_FDQ_PER_CHAN);
1940         if (ret < 0) {
1941                 dev_err(dev, "missing \"rx-queue-depth\" parameter\n");
1942                 netcp->rx_queue_depths[0] = 128;
1943         }
1944
1945         ret = of_property_read_u32_array(node_interface, "rx-buffer-size",
1946                                          netcp->rx_buffer_sizes,
1947                                          KNAV_DMA_FDQ_PER_CHAN);
1948         if (ret) {
1949                 dev_err(dev, "missing \"rx-buffer-size\" parameter\n");
1950                 netcp->rx_buffer_sizes[0] = 1536;
1951         }
1952
1953         ret = of_property_read_u32_array(node_interface, "rx-pool", temp, 2);
1954         if (ret < 0) {
1955                 dev_err(dev, "missing \"rx-pool\" parameter\n");
1956                 ret = -ENODEV;
1957                 goto quit;
1958         }
1959         netcp->rx_pool_size = temp[0];
1960         netcp->rx_pool_region_id = temp[1];
1961
1962         ret = of_property_read_u32_array(node_interface, "tx-pool", temp, 2);
1963         if (ret < 0) {
1964                 dev_err(dev, "missing \"tx-pool\" parameter\n");
1965                 ret = -ENODEV;
1966                 goto quit;
1967         }
1968         netcp->tx_pool_size = temp[0];
1969         netcp->tx_pool_region_id = temp[1];
1970
1971         if (netcp->tx_pool_size < MAX_SKB_FRAGS) {
1972                 dev_err(dev, "tx-pool size too small, must be atleast(%ld)\n",
1973                         MAX_SKB_FRAGS);
1974                 ret = -ENODEV;
1975                 goto quit;
1976         }
1977
1978         ret = of_property_read_u32(node_interface, "tx-completion-queue",
1979                                    &netcp->tx_compl_qid);
1980         if (ret < 0) {
1981                 dev_warn(dev, "missing \"tx-completion-queue\" parameter\n");
1982                 netcp->tx_compl_qid = KNAV_QUEUE_QPEND;
1983         }
1984
1985         /* NAPI register */
1986         netif_napi_add(ndev, &netcp->rx_napi, netcp_rx_poll, NETCP_NAPI_WEIGHT);
1987         netif_napi_add(ndev, &netcp->tx_napi, netcp_tx_poll, NETCP_NAPI_WEIGHT);
1988
1989         /* Register the network device */
1990         ndev->dev_id            = 0;
1991         ndev->watchdog_timeo    = NETCP_TX_TIMEOUT;
1992         ndev->netdev_ops        = &netcp_netdev_ops;
1993         SET_NETDEV_DEV(ndev, dev);
1994
1995         list_add_tail(&netcp->interface_list, &netcp_device->interface_head);
1996         return 0;
1997
1998 quit:
1999         free_netdev(ndev);
2000         return ret;
2001 }
2002
2003 static void netcp_delete_interface(struct netcp_device *netcp_device,
2004                                    struct net_device *ndev)
2005 {
2006         struct netcp_intf_modpriv *intf_modpriv, *tmp;
2007         struct netcp_intf *netcp = netdev_priv(ndev);
2008         struct netcp_module *module;
2009
2010         dev_dbg(netcp_device->device, "Removing interface \"%s\"\n",
2011                 ndev->name);
2012
2013         /* Notify each of the modules that the interface is going away */
2014         list_for_each_entry_safe(intf_modpriv, tmp, &netcp->module_head,
2015                                  intf_list) {
2016                 module = intf_modpriv->netcp_module;
2017                 dev_dbg(netcp_device->device, "Releasing module \"%s\"\n",
2018                         module->name);
2019                 if (module->release)
2020                         module->release(intf_modpriv->module_priv);
2021                 list_del(&intf_modpriv->intf_list);
2022                 kfree(intf_modpriv);
2023         }
2024         WARN(!list_empty(&netcp->module_head), "%s interface module list is not empty!\n",
2025              ndev->name);
2026
2027         list_del(&netcp->interface_list);
2028
2029         of_node_put(netcp->node_interface);
2030         unregister_netdev(ndev);
2031         netif_napi_del(&netcp->rx_napi);
2032         free_netdev(ndev);
2033 }
2034
2035 static int netcp_probe(struct platform_device *pdev)
2036 {
2037         struct device_node *node = pdev->dev.of_node;
2038         struct netcp_intf *netcp_intf, *netcp_tmp;
2039         struct device_node *child, *interfaces;
2040         struct netcp_device *netcp_device;
2041         struct device *dev = &pdev->dev;
2042         struct netcp_module *module;
2043         int ret;
2044
2045         if (!node) {
2046                 dev_err(dev, "could not find device info\n");
2047                 return -ENODEV;
2048         }
2049
2050         /* Allocate a new NETCP device instance */
2051         netcp_device = devm_kzalloc(dev, sizeof(*netcp_device), GFP_KERNEL);
2052         if (!netcp_device)
2053                 return -ENOMEM;
2054
2055         pm_runtime_enable(&pdev->dev);
2056         ret = pm_runtime_get_sync(&pdev->dev);
2057         if (ret < 0) {
2058                 dev_err(dev, "Failed to enable NETCP power-domain\n");
2059                 pm_runtime_disable(&pdev->dev);
2060                 return ret;
2061         }
2062
2063         /* Initialize the NETCP device instance */
2064         INIT_LIST_HEAD(&netcp_device->interface_head);
2065         INIT_LIST_HEAD(&netcp_device->modpriv_head);
2066         netcp_device->device = dev;
2067         platform_set_drvdata(pdev, netcp_device);
2068
2069         /* create interfaces */
2070         interfaces = of_get_child_by_name(node, "netcp-interfaces");
2071         if (!interfaces) {
2072                 dev_err(dev, "could not find netcp-interfaces node\n");
2073                 ret = -ENODEV;
2074                 goto probe_quit;
2075         }
2076
2077         for_each_available_child_of_node(interfaces, child) {
2078                 ret = netcp_create_interface(netcp_device, child);
2079                 if (ret) {
2080                         dev_err(dev, "could not create interface(%s)\n",
2081                                 child->name);
2082                         goto probe_quit_interface;
2083                 }
2084         }
2085
2086         /* Add the device instance to the list */
2087         list_add_tail(&netcp_device->device_list, &netcp_devices);
2088
2089         /* Probe & attach any modules already registered */
2090         mutex_lock(&netcp_modules_lock);
2091         for_each_netcp_module(module) {
2092                 ret = netcp_module_probe(netcp_device, module);
2093                 if (ret < 0)
2094                         dev_err(dev, "module(%s) probe failed\n", module->name);
2095         }
2096         mutex_unlock(&netcp_modules_lock);
2097         return 0;
2098
2099 probe_quit_interface:
2100         list_for_each_entry_safe(netcp_intf, netcp_tmp,
2101                                  &netcp_device->interface_head,
2102                                  interface_list) {
2103                 netcp_delete_interface(netcp_device, netcp_intf->ndev);
2104         }
2105
2106 probe_quit:
2107         pm_runtime_put_sync(&pdev->dev);
2108         pm_runtime_disable(&pdev->dev);
2109         platform_set_drvdata(pdev, NULL);
2110         return ret;
2111 }
2112
2113 static int netcp_remove(struct platform_device *pdev)
2114 {
2115         struct netcp_device *netcp_device = platform_get_drvdata(pdev);
2116         struct netcp_inst_modpriv *inst_modpriv, *tmp;
2117         struct netcp_module *module;
2118
2119         list_for_each_entry_safe(inst_modpriv, tmp, &netcp_device->modpriv_head,
2120                                  inst_list) {
2121                 module = inst_modpriv->netcp_module;
2122                 dev_dbg(&pdev->dev, "Removing module \"%s\"\n", module->name);
2123                 module->remove(netcp_device, inst_modpriv->module_priv);
2124                 list_del(&inst_modpriv->inst_list);
2125                 kfree(inst_modpriv);
2126         }
2127         WARN(!list_empty(&netcp_device->interface_head), "%s interface list not empty!\n",
2128              pdev->name);
2129
2130         devm_kfree(&pdev->dev, netcp_device);
2131         pm_runtime_put_sync(&pdev->dev);
2132         pm_runtime_disable(&pdev->dev);
2133         platform_set_drvdata(pdev, NULL);
2134         return 0;
2135 }
2136
2137 static const struct of_device_id of_match[] = {
2138         { .compatible = "ti,netcp-1.0", },
2139         {},
2140 };
2141 MODULE_DEVICE_TABLE(of, of_match);
2142
2143 static struct platform_driver netcp_driver = {
2144         .driver = {
2145                 .name           = "netcp-1.0",
2146                 .owner          = THIS_MODULE,
2147                 .of_match_table = of_match,
2148         },
2149         .probe = netcp_probe,
2150         .remove = netcp_remove,
2151 };
2152 module_platform_driver(netcp_driver);
2153
2154 MODULE_LICENSE("GPL v2");
2155 MODULE_DESCRIPTION("TI NETCP driver for Keystone SOCs");
2156 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com");