Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / net / ethernet / sfc / rx.c
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/socket.h>
12 #include <linux/in.h>
13 #include <linux/slab.h>
14 #include <linux/ip.h>
15 #include <linux/ipv6.h>
16 #include <linux/tcp.h>
17 #include <linux/udp.h>
18 #include <linux/prefetch.h>
19 #include <linux/moduleparam.h>
20 #include <linux/iommu.h>
21 #include <net/ip.h>
22 #include <net/checksum.h>
23 #include "net_driver.h"
24 #include "efx.h"
25 #include "filter.h"
26 #include "nic.h"
27 #include "selftest.h"
28 #include "workarounds.h"
29
30 /* Preferred number of descriptors to fill at once */
31 #define EFX_RX_PREFERRED_BATCH 8U
32
33 /* Number of RX buffers to recycle pages for.  When creating the RX page recycle
34  * ring, this number is divided by the number of buffers per page to calculate
35  * the number of pages to store in the RX page recycle ring.
36  */
37 #define EFX_RECYCLE_RING_SIZE_IOMMU 4096
38 #define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH)
39
40 /* Size of buffer allocated for skb header area. */
41 #define EFX_SKB_HEADERS  128u
42
43 /* This is the percentage fill level below which new RX descriptors
44  * will be added to the RX descriptor ring.
45  */
46 static unsigned int rx_refill_threshold;
47
48 /* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */
49 #define EFX_RX_MAX_FRAGS DIV_ROUND_UP(EFX_MAX_FRAME_LEN(EFX_MAX_MTU), \
50                                       EFX_RX_USR_BUF_SIZE)
51
52 /*
53  * RX maximum head room required.
54  *
55  * This must be at least 1 to prevent overflow, plus one packet-worth
56  * to allow pipelined receives.
57  */
58 #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
59
60 static inline u8 *efx_rx_buf_va(struct efx_rx_buffer *buf)
61 {
62         return page_address(buf->page) + buf->page_offset;
63 }
64
65 static inline u32 efx_rx_buf_hash(struct efx_nic *efx, const u8 *eh)
66 {
67 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
68         return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_hash_offset));
69 #else
70         const u8 *data = eh + efx->rx_packet_hash_offset;
71         return (u32)data[0]       |
72                (u32)data[1] << 8  |
73                (u32)data[2] << 16 |
74                (u32)data[3] << 24;
75 #endif
76 }
77
78 static inline struct efx_rx_buffer *
79 efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
80 {
81         if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
82                 return efx_rx_buffer(rx_queue, 0);
83         else
84                 return rx_buf + 1;
85 }
86
87 static inline void efx_sync_rx_buffer(struct efx_nic *efx,
88                                       struct efx_rx_buffer *rx_buf,
89                                       unsigned int len)
90 {
91         dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len,
92                                 DMA_FROM_DEVICE);
93 }
94
95 void efx_rx_config_page_split(struct efx_nic *efx)
96 {
97         efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align,
98                                       EFX_RX_BUF_ALIGNMENT);
99         efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
100                 ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) /
101                  efx->rx_page_buf_step);
102         efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
103                 efx->rx_bufs_per_page;
104         efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH,
105                                                efx->rx_bufs_per_page);
106 }
107
108 /* Check the RX page recycle ring for a page that can be reused. */
109 static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
110 {
111         struct efx_nic *efx = rx_queue->efx;
112         struct page *page;
113         struct efx_rx_page_state *state;
114         unsigned index;
115
116         index = rx_queue->page_remove & rx_queue->page_ptr_mask;
117         page = rx_queue->page_ring[index];
118         if (page == NULL)
119                 return NULL;
120
121         rx_queue->page_ring[index] = NULL;
122         /* page_remove cannot exceed page_add. */
123         if (rx_queue->page_remove != rx_queue->page_add)
124                 ++rx_queue->page_remove;
125
126         /* If page_count is 1 then we hold the only reference to this page. */
127         if (page_count(page) == 1) {
128                 ++rx_queue->page_recycle_count;
129                 return page;
130         } else {
131                 state = page_address(page);
132                 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
133                                PAGE_SIZE << efx->rx_buffer_order,
134                                DMA_FROM_DEVICE);
135                 put_page(page);
136                 ++rx_queue->page_recycle_failed;
137         }
138
139         return NULL;
140 }
141
142 /**
143  * efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
144  *
145  * @rx_queue:           Efx RX queue
146  *
147  * This allocates a batch of pages, maps them for DMA, and populates
148  * struct efx_rx_buffers for each one. Return a negative error code or
149  * 0 on success. If a single page can be used for multiple buffers,
150  * then the page will either be inserted fully, or not at all.
151  */
152 static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic)
153 {
154         struct efx_nic *efx = rx_queue->efx;
155         struct efx_rx_buffer *rx_buf;
156         struct page *page;
157         unsigned int page_offset;
158         struct efx_rx_page_state *state;
159         dma_addr_t dma_addr;
160         unsigned index, count;
161
162         count = 0;
163         do {
164                 page = efx_reuse_page(rx_queue);
165                 if (page == NULL) {
166                         page = alloc_pages(__GFP_COLD | __GFP_COMP |
167                                            (atomic ? GFP_ATOMIC : GFP_KERNEL),
168                                            efx->rx_buffer_order);
169                         if (unlikely(page == NULL))
170                                 return -ENOMEM;
171                         dma_addr =
172                                 dma_map_page(&efx->pci_dev->dev, page, 0,
173                                              PAGE_SIZE << efx->rx_buffer_order,
174                                              DMA_FROM_DEVICE);
175                         if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
176                                                        dma_addr))) {
177                                 __free_pages(page, efx->rx_buffer_order);
178                                 return -EIO;
179                         }
180                         state = page_address(page);
181                         state->dma_addr = dma_addr;
182                 } else {
183                         state = page_address(page);
184                         dma_addr = state->dma_addr;
185                 }
186
187                 dma_addr += sizeof(struct efx_rx_page_state);
188                 page_offset = sizeof(struct efx_rx_page_state);
189
190                 do {
191                         index = rx_queue->added_count & rx_queue->ptr_mask;
192                         rx_buf = efx_rx_buffer(rx_queue, index);
193                         rx_buf->dma_addr = dma_addr + efx->rx_ip_align;
194                         rx_buf->page = page;
195                         rx_buf->page_offset = page_offset + efx->rx_ip_align;
196                         rx_buf->len = efx->rx_dma_len;
197                         rx_buf->flags = 0;
198                         ++rx_queue->added_count;
199                         get_page(page);
200                         dma_addr += efx->rx_page_buf_step;
201                         page_offset += efx->rx_page_buf_step;
202                 } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
203
204                 rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
205         } while (++count < efx->rx_pages_per_batch);
206
207         return 0;
208 }
209
210 /* Unmap a DMA-mapped page.  This function is only called for the final RX
211  * buffer in a page.
212  */
213 static void efx_unmap_rx_buffer(struct efx_nic *efx,
214                                 struct efx_rx_buffer *rx_buf)
215 {
216         struct page *page = rx_buf->page;
217
218         if (page) {
219                 struct efx_rx_page_state *state = page_address(page);
220                 dma_unmap_page(&efx->pci_dev->dev,
221                                state->dma_addr,
222                                PAGE_SIZE << efx->rx_buffer_order,
223                                DMA_FROM_DEVICE);
224         }
225 }
226
227 static void efx_free_rx_buffers(struct efx_rx_queue *rx_queue,
228                                 struct efx_rx_buffer *rx_buf,
229                                 unsigned int num_bufs)
230 {
231         do {
232                 if (rx_buf->page) {
233                         put_page(rx_buf->page);
234                         rx_buf->page = NULL;
235                 }
236                 rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
237         } while (--num_bufs);
238 }
239
240 /* Attempt to recycle the page if there is an RX recycle ring; the page can
241  * only be added if this is the final RX buffer, to prevent pages being used in
242  * the descriptor ring and appearing in the recycle ring simultaneously.
243  */
244 static void efx_recycle_rx_page(struct efx_channel *channel,
245                                 struct efx_rx_buffer *rx_buf)
246 {
247         struct page *page = rx_buf->page;
248         struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
249         struct efx_nic *efx = rx_queue->efx;
250         unsigned index;
251
252         /* Only recycle the page after processing the final buffer. */
253         if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
254                 return;
255
256         index = rx_queue->page_add & rx_queue->page_ptr_mask;
257         if (rx_queue->page_ring[index] == NULL) {
258                 unsigned read_index = rx_queue->page_remove &
259                         rx_queue->page_ptr_mask;
260
261                 /* The next slot in the recycle ring is available, but
262                  * increment page_remove if the read pointer currently
263                  * points here.
264                  */
265                 if (read_index == index)
266                         ++rx_queue->page_remove;
267                 rx_queue->page_ring[index] = page;
268                 ++rx_queue->page_add;
269                 return;
270         }
271         ++rx_queue->page_recycle_full;
272         efx_unmap_rx_buffer(efx, rx_buf);
273         put_page(rx_buf->page);
274 }
275
276 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
277                                struct efx_rx_buffer *rx_buf)
278 {
279         /* Release the page reference we hold for the buffer. */
280         if (rx_buf->page)
281                 put_page(rx_buf->page);
282
283         /* If this is the last buffer in a page, unmap and free it. */
284         if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
285                 efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
286                 efx_free_rx_buffers(rx_queue, rx_buf, 1);
287         }
288         rx_buf->page = NULL;
289 }
290
291 /* Recycle the pages that are used by buffers that have just been received. */
292 static void efx_recycle_rx_pages(struct efx_channel *channel,
293                                  struct efx_rx_buffer *rx_buf,
294                                  unsigned int n_frags)
295 {
296         struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
297
298         do {
299                 efx_recycle_rx_page(channel, rx_buf);
300                 rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
301         } while (--n_frags);
302 }
303
304 static void efx_discard_rx_packet(struct efx_channel *channel,
305                                   struct efx_rx_buffer *rx_buf,
306                                   unsigned int n_frags)
307 {
308         struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
309
310         efx_recycle_rx_pages(channel, rx_buf, n_frags);
311
312         efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
313 }
314
315 /**
316  * efx_fast_push_rx_descriptors - push new RX descriptors quickly
317  * @rx_queue:           RX descriptor queue
318  *
319  * This will aim to fill the RX descriptor queue up to
320  * @rx_queue->@max_fill. If there is insufficient atomic
321  * memory to do so, a slow fill will be scheduled.
322  *
323  * The caller must provide serialisation (none is used here). In practise,
324  * this means this function must run from the NAPI handler, or be called
325  * when NAPI is disabled.
326  */
327 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, bool atomic)
328 {
329         struct efx_nic *efx = rx_queue->efx;
330         unsigned int fill_level, batch_size;
331         int space, rc = 0;
332
333         if (!rx_queue->refill_enabled)
334                 return;
335
336         /* Calculate current fill level, and exit if we don't need to fill */
337         fill_level = (rx_queue->added_count - rx_queue->removed_count);
338         EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
339         if (fill_level >= rx_queue->fast_fill_trigger)
340                 goto out;
341
342         /* Record minimum fill level */
343         if (unlikely(fill_level < rx_queue->min_fill)) {
344                 if (fill_level)
345                         rx_queue->min_fill = fill_level;
346         }
347
348         batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
349         space = rx_queue->max_fill - fill_level;
350         EFX_BUG_ON_PARANOID(space < batch_size);
351
352         netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
353                    "RX queue %d fast-filling descriptor ring from"
354                    " level %d to level %d\n",
355                    efx_rx_queue_index(rx_queue), fill_level,
356                    rx_queue->max_fill);
357
358
359         do {
360                 rc = efx_init_rx_buffers(rx_queue, atomic);
361                 if (unlikely(rc)) {
362                         /* Ensure that we don't leave the rx queue empty */
363                         if (rx_queue->added_count == rx_queue->removed_count)
364                                 efx_schedule_slow_fill(rx_queue);
365                         goto out;
366                 }
367         } while ((space -= batch_size) >= batch_size);
368
369         netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
370                    "RX queue %d fast-filled descriptor ring "
371                    "to level %d\n", efx_rx_queue_index(rx_queue),
372                    rx_queue->added_count - rx_queue->removed_count);
373
374  out:
375         if (rx_queue->notified_count != rx_queue->added_count)
376                 efx_nic_notify_rx_desc(rx_queue);
377 }
378
379 void efx_rx_slow_fill(unsigned long context)
380 {
381         struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
382
383         /* Post an event to cause NAPI to run and refill the queue */
384         efx_nic_generate_fill_event(rx_queue);
385         ++rx_queue->slow_fill_count;
386 }
387
388 static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
389                                      struct efx_rx_buffer *rx_buf,
390                                      int len)
391 {
392         struct efx_nic *efx = rx_queue->efx;
393         unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
394
395         if (likely(len <= max_len))
396                 return;
397
398         /* The packet must be discarded, but this is only a fatal error
399          * if the caller indicated it was
400          */
401         rx_buf->flags |= EFX_RX_PKT_DISCARD;
402
403         if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
404                 if (net_ratelimit())
405                         netif_err(efx, rx_err, efx->net_dev,
406                                   " RX queue %d seriously overlength "
407                                   "RX event (0x%x > 0x%x+0x%x). Leaking\n",
408                                   efx_rx_queue_index(rx_queue), len, max_len,
409                                   efx->type->rx_buffer_padding);
410                 efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
411         } else {
412                 if (net_ratelimit())
413                         netif_err(efx, rx_err, efx->net_dev,
414                                   " RX queue %d overlength RX event "
415                                   "(0x%x > 0x%x)\n",
416                                   efx_rx_queue_index(rx_queue), len, max_len);
417         }
418
419         efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
420 }
421
422 /* Pass a received packet up through GRO.  GRO can handle pages
423  * regardless of checksum state and skbs with a good checksum.
424  */
425 static void
426 efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf,
427                   unsigned int n_frags, u8 *eh)
428 {
429         struct napi_struct *napi = &channel->napi_str;
430         gro_result_t gro_result;
431         struct efx_nic *efx = channel->efx;
432         struct sk_buff *skb;
433
434         skb = napi_get_frags(napi);
435         if (unlikely(!skb)) {
436                 struct efx_rx_queue *rx_queue;
437
438                 rx_queue = efx_channel_get_rx_queue(channel);
439                 efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
440                 return;
441         }
442
443         if (efx->net_dev->features & NETIF_F_RXHASH)
444                 skb_set_hash(skb, efx_rx_buf_hash(efx, eh),
445                              PKT_HASH_TYPE_L3);
446         skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
447                           CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
448
449         for (;;) {
450                 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
451                                    rx_buf->page, rx_buf->page_offset,
452                                    rx_buf->len);
453                 rx_buf->page = NULL;
454                 skb->len += rx_buf->len;
455                 if (skb_shinfo(skb)->nr_frags == n_frags)
456                         break;
457
458                 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
459         }
460
461         skb->data_len = skb->len;
462         skb->truesize += n_frags * efx->rx_buffer_truesize;
463
464         skb_record_rx_queue(skb, channel->rx_queue.core_index);
465
466         skb_mark_napi_id(skb, &channel->napi_str);
467         gro_result = napi_gro_frags(napi);
468         if (gro_result != GRO_DROP)
469                 channel->irq_mod_score += 2;
470 }
471
472 /* Allocate and construct an SKB around page fragments */
473 static struct sk_buff *efx_rx_mk_skb(struct efx_channel *channel,
474                                      struct efx_rx_buffer *rx_buf,
475                                      unsigned int n_frags,
476                                      u8 *eh, int hdr_len)
477 {
478         struct efx_nic *efx = channel->efx;
479         struct sk_buff *skb;
480
481         /* Allocate an SKB to store the headers */
482         skb = netdev_alloc_skb(efx->net_dev,
483                                efx->rx_ip_align + efx->rx_prefix_size +
484                                hdr_len);
485         if (unlikely(skb == NULL)) {
486                 atomic_inc(&efx->n_rx_noskb_drops);
487                 return NULL;
488         }
489
490         EFX_BUG_ON_PARANOID(rx_buf->len < hdr_len);
491
492         memcpy(skb->data + efx->rx_ip_align, eh - efx->rx_prefix_size,
493                efx->rx_prefix_size + hdr_len);
494         skb_reserve(skb, efx->rx_ip_align + efx->rx_prefix_size);
495         __skb_put(skb, hdr_len);
496
497         /* Append the remaining page(s) onto the frag list */
498         if (rx_buf->len > hdr_len) {
499                 rx_buf->page_offset += hdr_len;
500                 rx_buf->len -= hdr_len;
501
502                 for (;;) {
503                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
504                                            rx_buf->page, rx_buf->page_offset,
505                                            rx_buf->len);
506                         rx_buf->page = NULL;
507                         skb->len += rx_buf->len;
508                         skb->data_len += rx_buf->len;
509                         if (skb_shinfo(skb)->nr_frags == n_frags)
510                                 break;
511
512                         rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
513                 }
514         } else {
515                 __free_pages(rx_buf->page, efx->rx_buffer_order);
516                 rx_buf->page = NULL;
517                 n_frags = 0;
518         }
519
520         skb->truesize += n_frags * efx->rx_buffer_truesize;
521
522         /* Move past the ethernet header */
523         skb->protocol = eth_type_trans(skb, efx->net_dev);
524
525         skb_mark_napi_id(skb, &channel->napi_str);
526
527         return skb;
528 }
529
530 void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
531                    unsigned int n_frags, unsigned int len, u16 flags)
532 {
533         struct efx_nic *efx = rx_queue->efx;
534         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
535         struct efx_rx_buffer *rx_buf;
536
537         rx_queue->rx_packets++;
538
539         rx_buf = efx_rx_buffer(rx_queue, index);
540         rx_buf->flags |= flags;
541
542         /* Validate the number of fragments and completed length */
543         if (n_frags == 1) {
544                 if (!(flags & EFX_RX_PKT_PREFIX_LEN))
545                         efx_rx_packet__check_len(rx_queue, rx_buf, len);
546         } else if (unlikely(n_frags > EFX_RX_MAX_FRAGS) ||
547                    unlikely(len <= (n_frags - 1) * efx->rx_dma_len) ||
548                    unlikely(len > n_frags * efx->rx_dma_len) ||
549                    unlikely(!efx->rx_scatter)) {
550                 /* If this isn't an explicit discard request, either
551                  * the hardware or the driver is broken.
552                  */
553                 WARN_ON(!(len == 0 && rx_buf->flags & EFX_RX_PKT_DISCARD));
554                 rx_buf->flags |= EFX_RX_PKT_DISCARD;
555         }
556
557         netif_vdbg(efx, rx_status, efx->net_dev,
558                    "RX queue %d received ids %x-%x len %d %s%s\n",
559                    efx_rx_queue_index(rx_queue), index,
560                    (index + n_frags - 1) & rx_queue->ptr_mask, len,
561                    (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
562                    (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : "");
563
564         /* Discard packet, if instructed to do so.  Process the
565          * previous receive first.
566          */
567         if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) {
568                 efx_rx_flush_packet(channel);
569                 efx_discard_rx_packet(channel, rx_buf, n_frags);
570                 return;
571         }
572
573         if (n_frags == 1 && !(flags & EFX_RX_PKT_PREFIX_LEN))
574                 rx_buf->len = len;
575
576         /* Release and/or sync the DMA mapping - assumes all RX buffers
577          * consumed in-order per RX queue.
578          */
579         efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
580
581         /* Prefetch nice and early so data will (hopefully) be in cache by
582          * the time we look at it.
583          */
584         prefetch(efx_rx_buf_va(rx_buf));
585
586         rx_buf->page_offset += efx->rx_prefix_size;
587         rx_buf->len -= efx->rx_prefix_size;
588
589         if (n_frags > 1) {
590                 /* Release/sync DMA mapping for additional fragments.
591                  * Fix length for last fragment.
592                  */
593                 unsigned int tail_frags = n_frags - 1;
594
595                 for (;;) {
596                         rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
597                         if (--tail_frags == 0)
598                                 break;
599                         efx_sync_rx_buffer(efx, rx_buf, efx->rx_dma_len);
600                 }
601                 rx_buf->len = len - (n_frags - 1) * efx->rx_dma_len;
602                 efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
603         }
604
605         /* All fragments have been DMA-synced, so recycle pages. */
606         rx_buf = efx_rx_buffer(rx_queue, index);
607         efx_recycle_rx_pages(channel, rx_buf, n_frags);
608
609         /* Pipeline receives so that we give time for packet headers to be
610          * prefetched into cache.
611          */
612         efx_rx_flush_packet(channel);
613         channel->rx_pkt_n_frags = n_frags;
614         channel->rx_pkt_index = index;
615 }
616
617 static void efx_rx_deliver(struct efx_channel *channel, u8 *eh,
618                            struct efx_rx_buffer *rx_buf,
619                            unsigned int n_frags)
620 {
621         struct sk_buff *skb;
622         u16 hdr_len = min_t(u16, rx_buf->len, EFX_SKB_HEADERS);
623
624         skb = efx_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len);
625         if (unlikely(skb == NULL)) {
626                 struct efx_rx_queue *rx_queue;
627
628                 rx_queue = efx_channel_get_rx_queue(channel);
629                 efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
630                 return;
631         }
632         skb_record_rx_queue(skb, channel->rx_queue.core_index);
633
634         /* Set the SKB flags */
635         skb_checksum_none_assert(skb);
636         if (likely(rx_buf->flags & EFX_RX_PKT_CSUMMED))
637                 skb->ip_summed = CHECKSUM_UNNECESSARY;
638
639         efx_rx_skb_attach_timestamp(channel, skb);
640
641         if (channel->type->receive_skb)
642                 if (channel->type->receive_skb(channel, skb))
643                         return;
644
645         /* Pass the packet up */
646         netif_receive_skb(skb);
647 }
648
649 /* Handle a received packet.  Second half: Touches packet payload. */
650 void __efx_rx_packet(struct efx_channel *channel)
651 {
652         struct efx_nic *efx = channel->efx;
653         struct efx_rx_buffer *rx_buf =
654                 efx_rx_buffer(&channel->rx_queue, channel->rx_pkt_index);
655         u8 *eh = efx_rx_buf_va(rx_buf);
656
657         /* Read length from the prefix if necessary.  This already
658          * excludes the length of the prefix itself.
659          */
660         if (rx_buf->flags & EFX_RX_PKT_PREFIX_LEN)
661                 rx_buf->len = le16_to_cpup((__le16 *)
662                                            (eh + efx->rx_packet_len_offset));
663
664         /* If we're in loopback test, then pass the packet directly to the
665          * loopback layer, and free the rx_buf here
666          */
667         if (unlikely(efx->loopback_selftest)) {
668                 struct efx_rx_queue *rx_queue;
669
670                 efx_loopback_rx_packet(efx, eh, rx_buf->len);
671                 rx_queue = efx_channel_get_rx_queue(channel);
672                 efx_free_rx_buffers(rx_queue, rx_buf,
673                                     channel->rx_pkt_n_frags);
674                 goto out;
675         }
676
677         if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
678                 rx_buf->flags &= ~EFX_RX_PKT_CSUMMED;
679
680         if ((rx_buf->flags & EFX_RX_PKT_TCP) && !channel->type->receive_skb &&
681             !efx_channel_busy_polling(channel))
682                 efx_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh);
683         else
684                 efx_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags);
685 out:
686         channel->rx_pkt_n_frags = 0;
687 }
688
689 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
690 {
691         struct efx_nic *efx = rx_queue->efx;
692         unsigned int entries;
693         int rc;
694
695         /* Create the smallest power-of-two aligned ring */
696         entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
697         EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
698         rx_queue->ptr_mask = entries - 1;
699
700         netif_dbg(efx, probe, efx->net_dev,
701                   "creating RX queue %d size %#x mask %#x\n",
702                   efx_rx_queue_index(rx_queue), efx->rxq_entries,
703                   rx_queue->ptr_mask);
704
705         /* Allocate RX buffers */
706         rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
707                                    GFP_KERNEL);
708         if (!rx_queue->buffer)
709                 return -ENOMEM;
710
711         rc = efx_nic_probe_rx(rx_queue);
712         if (rc) {
713                 kfree(rx_queue->buffer);
714                 rx_queue->buffer = NULL;
715         }
716
717         return rc;
718 }
719
720 static void efx_init_rx_recycle_ring(struct efx_nic *efx,
721                                      struct efx_rx_queue *rx_queue)
722 {
723         unsigned int bufs_in_recycle_ring, page_ring_size;
724
725         /* Set the RX recycle ring size */
726 #ifdef CONFIG_PPC64
727         bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
728 #else
729         if (iommu_present(&pci_bus_type))
730                 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
731         else
732                 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_NOIOMMU;
733 #endif /* CONFIG_PPC64 */
734
735         page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
736                                             efx->rx_bufs_per_page);
737         rx_queue->page_ring = kcalloc(page_ring_size,
738                                       sizeof(*rx_queue->page_ring), GFP_KERNEL);
739         rx_queue->page_ptr_mask = page_ring_size - 1;
740 }
741
742 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
743 {
744         struct efx_nic *efx = rx_queue->efx;
745         unsigned int max_fill, trigger, max_trigger;
746
747         netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
748                   "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
749
750         /* Initialise ptr fields */
751         rx_queue->added_count = 0;
752         rx_queue->notified_count = 0;
753         rx_queue->removed_count = 0;
754         rx_queue->min_fill = -1U;
755         efx_init_rx_recycle_ring(efx, rx_queue);
756
757         rx_queue->page_remove = 0;
758         rx_queue->page_add = rx_queue->page_ptr_mask + 1;
759         rx_queue->page_recycle_count = 0;
760         rx_queue->page_recycle_failed = 0;
761         rx_queue->page_recycle_full = 0;
762
763         /* Initialise limit fields */
764         max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
765         max_trigger =
766                 max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
767         if (rx_refill_threshold != 0) {
768                 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
769                 if (trigger > max_trigger)
770                         trigger = max_trigger;
771         } else {
772                 trigger = max_trigger;
773         }
774
775         rx_queue->max_fill = max_fill;
776         rx_queue->fast_fill_trigger = trigger;
777         rx_queue->refill_enabled = true;
778
779         /* Set up RX descriptor ring */
780         efx_nic_init_rx(rx_queue);
781 }
782
783 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
784 {
785         int i;
786         struct efx_nic *efx = rx_queue->efx;
787         struct efx_rx_buffer *rx_buf;
788
789         netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
790                   "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
791
792         del_timer_sync(&rx_queue->slow_fill);
793
794         /* Release RX buffers from the current read ptr to the write ptr */
795         if (rx_queue->buffer) {
796                 for (i = rx_queue->removed_count; i < rx_queue->added_count;
797                      i++) {
798                         unsigned index = i & rx_queue->ptr_mask;
799                         rx_buf = efx_rx_buffer(rx_queue, index);
800                         efx_fini_rx_buffer(rx_queue, rx_buf);
801                 }
802         }
803
804         /* Unmap and release the pages in the recycle ring. Remove the ring. */
805         for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
806                 struct page *page = rx_queue->page_ring[i];
807                 struct efx_rx_page_state *state;
808
809                 if (page == NULL)
810                         continue;
811
812                 state = page_address(page);
813                 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
814                                PAGE_SIZE << efx->rx_buffer_order,
815                                DMA_FROM_DEVICE);
816                 put_page(page);
817         }
818         kfree(rx_queue->page_ring);
819         rx_queue->page_ring = NULL;
820 }
821
822 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
823 {
824         netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
825                   "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
826
827         efx_nic_remove_rx(rx_queue);
828
829         kfree(rx_queue->buffer);
830         rx_queue->buffer = NULL;
831 }
832
833
834 module_param(rx_refill_threshold, uint, 0444);
835 MODULE_PARM_DESC(rx_refill_threshold,
836                  "RX descriptor ring refill threshold (%)");
837
838 #ifdef CONFIG_RFS_ACCEL
839
840 int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
841                    u16 rxq_index, u32 flow_id)
842 {
843         struct efx_nic *efx = netdev_priv(net_dev);
844         struct efx_channel *channel;
845         struct efx_filter_spec spec;
846         const __be16 *ports;
847         __be16 ether_type;
848         int nhoff;
849         int rc;
850
851         /* The core RPS/RFS code has already parsed and validated
852          * VLAN, IP and transport headers.  We assume they are in the
853          * header area.
854          */
855
856         if (skb->protocol == htons(ETH_P_8021Q)) {
857                 const struct vlan_hdr *vh =
858                         (const struct vlan_hdr *)skb->data;
859
860                 /* We can't filter on the IP 5-tuple and the vlan
861                  * together, so just strip the vlan header and filter
862                  * on the IP part.
863                  */
864                 EFX_BUG_ON_PARANOID(skb_headlen(skb) < sizeof(*vh));
865                 ether_type = vh->h_vlan_encapsulated_proto;
866                 nhoff = sizeof(struct vlan_hdr);
867         } else {
868                 ether_type = skb->protocol;
869                 nhoff = 0;
870         }
871
872         if (ether_type != htons(ETH_P_IP) && ether_type != htons(ETH_P_IPV6))
873                 return -EPROTONOSUPPORT;
874
875         efx_filter_init_rx(&spec, EFX_FILTER_PRI_HINT,
876                            efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0,
877                            rxq_index);
878         spec.match_flags =
879                 EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
880                 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
881                 EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT;
882         spec.ether_type = ether_type;
883
884         if (ether_type == htons(ETH_P_IP)) {
885                 const struct iphdr *ip =
886                         (const struct iphdr *)(skb->data + nhoff);
887
888                 EFX_BUG_ON_PARANOID(skb_headlen(skb) < nhoff + sizeof(*ip));
889                 if (ip_is_fragment(ip))
890                         return -EPROTONOSUPPORT;
891                 spec.ip_proto = ip->protocol;
892                 spec.rem_host[0] = ip->saddr;
893                 spec.loc_host[0] = ip->daddr;
894                 EFX_BUG_ON_PARANOID(skb_headlen(skb) < nhoff + 4 * ip->ihl + 4);
895                 ports = (const __be16 *)(skb->data + nhoff + 4 * ip->ihl);
896         } else {
897                 const struct ipv6hdr *ip6 =
898                         (const struct ipv6hdr *)(skb->data + nhoff);
899
900                 EFX_BUG_ON_PARANOID(skb_headlen(skb) <
901                                     nhoff + sizeof(*ip6) + 4);
902                 spec.ip_proto = ip6->nexthdr;
903                 memcpy(spec.rem_host, &ip6->saddr, sizeof(ip6->saddr));
904                 memcpy(spec.loc_host, &ip6->daddr, sizeof(ip6->daddr));
905                 ports = (const __be16 *)(ip6 + 1);
906         }
907
908         spec.rem_port = ports[0];
909         spec.loc_port = ports[1];
910
911         rc = efx->type->filter_rfs_insert(efx, &spec);
912         if (rc < 0)
913                 return rc;
914
915         /* Remember this so we can check whether to expire the filter later */
916         efx->rps_flow_id[rc] = flow_id;
917         channel = efx_get_channel(efx, skb_get_rx_queue(skb));
918         ++channel->rfs_filters_added;
919
920         if (ether_type == htons(ETH_P_IP))
921                 netif_info(efx, rx_status, efx->net_dev,
922                            "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d]\n",
923                            (spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
924                            spec.rem_host, ntohs(ports[0]), spec.loc_host,
925                            ntohs(ports[1]), rxq_index, flow_id, rc);
926         else
927                 netif_info(efx, rx_status, efx->net_dev,
928                            "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d]\n",
929                            (spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
930                            spec.rem_host, ntohs(ports[0]), spec.loc_host,
931                            ntohs(ports[1]), rxq_index, flow_id, rc);
932
933         return rc;
934 }
935
936 bool __efx_filter_rfs_expire(struct efx_nic *efx, unsigned int quota)
937 {
938         bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index);
939         unsigned int index, size;
940         u32 flow_id;
941
942         if (!spin_trylock_bh(&efx->filter_lock))
943                 return false;
944
945         expire_one = efx->type->filter_rfs_expire_one;
946         index = efx->rps_expire_index;
947         size = efx->type->max_rx_ip_filters;
948         while (quota--) {
949                 flow_id = efx->rps_flow_id[index];
950                 if (expire_one(efx, flow_id, index))
951                         netif_info(efx, rx_status, efx->net_dev,
952                                    "expired filter %d [flow %u]\n",
953                                    index, flow_id);
954                 if (++index == size)
955                         index = 0;
956         }
957         efx->rps_expire_index = index;
958
959         spin_unlock_bh(&efx->filter_lock);
960         return true;
961 }
962
963 #endif /* CONFIG_RFS_ACCEL */
964
965 /**
966  * efx_filter_is_mc_recipient - test whether spec is a multicast recipient
967  * @spec: Specification to test
968  *
969  * Return: %true if the specification is a non-drop RX filter that
970  * matches a local MAC address I/G bit value of 1 or matches a local
971  * IPv4 or IPv6 address value in the respective multicast address
972  * range.  Otherwise %false.
973  */
974 bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec)
975 {
976         if (!(spec->flags & EFX_FILTER_FLAG_RX) ||
977             spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP)
978                 return false;
979
980         if (spec->match_flags &
981             (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) &&
982             is_multicast_ether_addr(spec->loc_mac))
983                 return true;
984
985         if ((spec->match_flags &
986              (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
987             (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
988                 if (spec->ether_type == htons(ETH_P_IP) &&
989                     ipv4_is_multicast(spec->loc_host[0]))
990                         return true;
991                 if (spec->ether_type == htons(ETH_P_IPV6) &&
992                     ((const u8 *)spec->loc_host)[0] == 0xff)
993                         return true;
994         }
995
996         return false;
997 }