Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / net / ethernet / sfc / farch.c
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/crc32.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "nic.h"
22 #include "farch_regs.h"
23 #include "io.h"
24 #include "workarounds.h"
25
26 /* Falcon-architecture (SFC4000 and SFC9000-family) support */
27
28 /**************************************************************************
29  *
30  * Configurable values
31  *
32  **************************************************************************
33  */
34
35 /* This is set to 16 for a good reason.  In summary, if larger than
36  * 16, the descriptor cache holds more than a default socket
37  * buffer's worth of packets (for UDP we can only have at most one
38  * socket buffer's worth outstanding).  This combined with the fact
39  * that we only get 1 TX event per descriptor cache means the NIC
40  * goes idle.
41  */
42 #define TX_DC_ENTRIES 16
43 #define TX_DC_ENTRIES_ORDER 1
44
45 #define RX_DC_ENTRIES 64
46 #define RX_DC_ENTRIES_ORDER 3
47
48 /* If EFX_MAX_INT_ERRORS internal errors occur within
49  * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
50  * disable it.
51  */
52 #define EFX_INT_ERROR_EXPIRE 3600
53 #define EFX_MAX_INT_ERRORS 5
54
55 /* Depth of RX flush request fifo */
56 #define EFX_RX_FLUSH_COUNT 4
57
58 /* Driver generated events */
59 #define _EFX_CHANNEL_MAGIC_TEST         0x000101
60 #define _EFX_CHANNEL_MAGIC_FILL         0x000102
61 #define _EFX_CHANNEL_MAGIC_RX_DRAIN     0x000103
62 #define _EFX_CHANNEL_MAGIC_TX_DRAIN     0x000104
63
64 #define _EFX_CHANNEL_MAGIC(_code, _data)        ((_code) << 8 | (_data))
65 #define _EFX_CHANNEL_MAGIC_CODE(_magic)         ((_magic) >> 8)
66
67 #define EFX_CHANNEL_MAGIC_TEST(_channel)                                \
68         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
69 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue)                               \
70         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,                     \
71                            efx_rx_queue_index(_rx_queue))
72 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)                           \
73         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,                 \
74                            efx_rx_queue_index(_rx_queue))
75 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)                           \
76         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,                 \
77                            (_tx_queue)->queue)
78
79 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
80
81 /**************************************************************************
82  *
83  * Hardware access
84  *
85  **************************************************************************/
86
87 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
88                                      unsigned int index)
89 {
90         efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
91                         value, index);
92 }
93
94 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
95                                      const efx_oword_t *mask)
96 {
97         return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
98                 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
99 }
100
101 int efx_farch_test_registers(struct efx_nic *efx,
102                              const struct efx_farch_register_test *regs,
103                              size_t n_regs)
104 {
105         unsigned address = 0, i, j;
106         efx_oword_t mask, imask, original, reg, buf;
107
108         for (i = 0; i < n_regs; ++i) {
109                 address = regs[i].address;
110                 mask = imask = regs[i].mask;
111                 EFX_INVERT_OWORD(imask);
112
113                 efx_reado(efx, &original, address);
114
115                 /* bit sweep on and off */
116                 for (j = 0; j < 128; j++) {
117                         if (!EFX_EXTRACT_OWORD32(mask, j, j))
118                                 continue;
119
120                         /* Test this testable bit can be set in isolation */
121                         EFX_AND_OWORD(reg, original, mask);
122                         EFX_SET_OWORD32(reg, j, j, 1);
123
124                         efx_writeo(efx, &reg, address);
125                         efx_reado(efx, &buf, address);
126
127                         if (efx_masked_compare_oword(&reg, &buf, &mask))
128                                 goto fail;
129
130                         /* Test this testable bit can be cleared in isolation */
131                         EFX_OR_OWORD(reg, original, mask);
132                         EFX_SET_OWORD32(reg, j, j, 0);
133
134                         efx_writeo(efx, &reg, address);
135                         efx_reado(efx, &buf, address);
136
137                         if (efx_masked_compare_oword(&reg, &buf, &mask))
138                                 goto fail;
139                 }
140
141                 efx_writeo(efx, &original, address);
142         }
143
144         return 0;
145
146 fail:
147         netif_err(efx, hw, efx->net_dev,
148                   "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
149                   " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
150                   EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
151         return -EIO;
152 }
153
154 /**************************************************************************
155  *
156  * Special buffer handling
157  * Special buffers are used for event queues and the TX and RX
158  * descriptor rings.
159  *
160  *************************************************************************/
161
162 /*
163  * Initialise a special buffer
164  *
165  * This will define a buffer (previously allocated via
166  * efx_alloc_special_buffer()) in the buffer table, allowing
167  * it to be used for event queues, descriptor rings etc.
168  */
169 static void
170 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
171 {
172         efx_qword_t buf_desc;
173         unsigned int index;
174         dma_addr_t dma_addr;
175         int i;
176
177         EFX_BUG_ON_PARANOID(!buffer->buf.addr);
178
179         /* Write buffer descriptors to NIC */
180         for (i = 0; i < buffer->entries; i++) {
181                 index = buffer->index + i;
182                 dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
183                 netif_dbg(efx, probe, efx->net_dev,
184                           "mapping special buffer %d at %llx\n",
185                           index, (unsigned long long)dma_addr);
186                 EFX_POPULATE_QWORD_3(buf_desc,
187                                      FRF_AZ_BUF_ADR_REGION, 0,
188                                      FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
189                                      FRF_AZ_BUF_OWNER_ID_FBUF, 0);
190                 efx_write_buf_tbl(efx, &buf_desc, index);
191         }
192 }
193
194 /* Unmaps a buffer and clears the buffer table entries */
195 static void
196 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
197 {
198         efx_oword_t buf_tbl_upd;
199         unsigned int start = buffer->index;
200         unsigned int end = (buffer->index + buffer->entries - 1);
201
202         if (!buffer->entries)
203                 return;
204
205         netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
206                   buffer->index, buffer->index + buffer->entries - 1);
207
208         EFX_POPULATE_OWORD_4(buf_tbl_upd,
209                              FRF_AZ_BUF_UPD_CMD, 0,
210                              FRF_AZ_BUF_CLR_CMD, 1,
211                              FRF_AZ_BUF_CLR_END_ID, end,
212                              FRF_AZ_BUF_CLR_START_ID, start);
213         efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
214 }
215
216 /*
217  * Allocate a new special buffer
218  *
219  * This allocates memory for a new buffer, clears it and allocates a
220  * new buffer ID range.  It does not write into the buffer table.
221  *
222  * This call will allocate 4KB buffers, since 8KB buffers can't be
223  * used for event queues and descriptor rings.
224  */
225 static int efx_alloc_special_buffer(struct efx_nic *efx,
226                                     struct efx_special_buffer *buffer,
227                                     unsigned int len)
228 {
229 #ifdef CONFIG_SFC_SRIOV
230         struct siena_nic_data *nic_data = efx->nic_data;
231 #endif
232         len = ALIGN(len, EFX_BUF_SIZE);
233
234         if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
235                 return -ENOMEM;
236         buffer->entries = len / EFX_BUF_SIZE;
237         BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
238
239         /* Select new buffer ID */
240         buffer->index = efx->next_buffer_table;
241         efx->next_buffer_table += buffer->entries;
242 #ifdef CONFIG_SFC_SRIOV
243         BUG_ON(efx_siena_sriov_enabled(efx) &&
244                nic_data->vf_buftbl_base < efx->next_buffer_table);
245 #endif
246
247         netif_dbg(efx, probe, efx->net_dev,
248                   "allocating special buffers %d-%d at %llx+%x "
249                   "(virt %p phys %llx)\n", buffer->index,
250                   buffer->index + buffer->entries - 1,
251                   (u64)buffer->buf.dma_addr, len,
252                   buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
253
254         return 0;
255 }
256
257 static void
258 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
259 {
260         if (!buffer->buf.addr)
261                 return;
262
263         netif_dbg(efx, hw, efx->net_dev,
264                   "deallocating special buffers %d-%d at %llx+%x "
265                   "(virt %p phys %llx)\n", buffer->index,
266                   buffer->index + buffer->entries - 1,
267                   (u64)buffer->buf.dma_addr, buffer->buf.len,
268                   buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
269
270         efx_nic_free_buffer(efx, &buffer->buf);
271         buffer->entries = 0;
272 }
273
274 /**************************************************************************
275  *
276  * TX path
277  *
278  **************************************************************************/
279
280 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
281 static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
282 {
283         unsigned write_ptr;
284         efx_dword_t reg;
285
286         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
287         EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
288         efx_writed_page(tx_queue->efx, &reg,
289                         FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
290 }
291
292 /* Write pointer and first descriptor for TX descriptor ring */
293 static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
294                                           const efx_qword_t *txd)
295 {
296         unsigned write_ptr;
297         efx_oword_t reg;
298
299         BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
300         BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
301
302         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
303         EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
304                              FRF_AZ_TX_DESC_WPTR, write_ptr);
305         reg.qword[0] = *txd;
306         efx_writeo_page(tx_queue->efx, &reg,
307                         FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
308 }
309
310
311 /* For each entry inserted into the software descriptor ring, create a
312  * descriptor in the hardware TX descriptor ring (in host memory), and
313  * write a doorbell.
314  */
315 void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
316 {
317         struct efx_tx_buffer *buffer;
318         efx_qword_t *txd;
319         unsigned write_ptr;
320         unsigned old_write_count = tx_queue->write_count;
321
322         BUG_ON(tx_queue->write_count == tx_queue->insert_count);
323
324         do {
325                 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
326                 buffer = &tx_queue->buffer[write_ptr];
327                 txd = efx_tx_desc(tx_queue, write_ptr);
328                 ++tx_queue->write_count;
329
330                 EFX_BUG_ON_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
331
332                 /* Create TX descriptor ring entry */
333                 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
334                 EFX_POPULATE_QWORD_4(*txd,
335                                      FSF_AZ_TX_KER_CONT,
336                                      buffer->flags & EFX_TX_BUF_CONT,
337                                      FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
338                                      FSF_AZ_TX_KER_BUF_REGION, 0,
339                                      FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
340         } while (tx_queue->write_count != tx_queue->insert_count);
341
342         wmb(); /* Ensure descriptors are written before they are fetched */
343
344         if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
345                 txd = efx_tx_desc(tx_queue,
346                                   old_write_count & tx_queue->ptr_mask);
347                 efx_farch_push_tx_desc(tx_queue, txd);
348                 ++tx_queue->pushes;
349         } else {
350                 efx_farch_notify_tx_desc(tx_queue);
351         }
352 }
353
354 /* Allocate hardware resources for a TX queue */
355 int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
356 {
357         struct efx_nic *efx = tx_queue->efx;
358         unsigned entries;
359
360         entries = tx_queue->ptr_mask + 1;
361         return efx_alloc_special_buffer(efx, &tx_queue->txd,
362                                         entries * sizeof(efx_qword_t));
363 }
364
365 void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
366 {
367         struct efx_nic *efx = tx_queue->efx;
368         efx_oword_t reg;
369
370         /* Pin TX descriptor ring */
371         efx_init_special_buffer(efx, &tx_queue->txd);
372
373         /* Push TX descriptor ring to card */
374         EFX_POPULATE_OWORD_10(reg,
375                               FRF_AZ_TX_DESCQ_EN, 1,
376                               FRF_AZ_TX_ISCSI_DDIG_EN, 0,
377                               FRF_AZ_TX_ISCSI_HDIG_EN, 0,
378                               FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
379                               FRF_AZ_TX_DESCQ_EVQ_ID,
380                               tx_queue->channel->channel,
381                               FRF_AZ_TX_DESCQ_OWNER_ID, 0,
382                               FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
383                               FRF_AZ_TX_DESCQ_SIZE,
384                               __ffs(tx_queue->txd.entries),
385                               FRF_AZ_TX_DESCQ_TYPE, 0,
386                               FRF_BZ_TX_NON_IP_DROP_DIS, 1);
387
388         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
389                 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
390                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
391                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
392                                     !csum);
393         }
394
395         efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
396                          tx_queue->queue);
397
398         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
399                 /* Only 128 bits in this register */
400                 BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
401
402                 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
403                 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
404                         __clear_bit_le(tx_queue->queue, &reg);
405                 else
406                         __set_bit_le(tx_queue->queue, &reg);
407                 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
408         }
409
410         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
411                 EFX_POPULATE_OWORD_1(reg,
412                                      FRF_BZ_TX_PACE,
413                                      (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
414                                      FFE_BZ_TX_PACE_OFF :
415                                      FFE_BZ_TX_PACE_RESERVED);
416                 efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
417                                  tx_queue->queue);
418         }
419 }
420
421 static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
422 {
423         struct efx_nic *efx = tx_queue->efx;
424         efx_oword_t tx_flush_descq;
425
426         WARN_ON(atomic_read(&tx_queue->flush_outstanding));
427         atomic_set(&tx_queue->flush_outstanding, 1);
428
429         EFX_POPULATE_OWORD_2(tx_flush_descq,
430                              FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
431                              FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
432         efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
433 }
434
435 void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
436 {
437         struct efx_nic *efx = tx_queue->efx;
438         efx_oword_t tx_desc_ptr;
439
440         /* Remove TX descriptor ring from card */
441         EFX_ZERO_OWORD(tx_desc_ptr);
442         efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
443                          tx_queue->queue);
444
445         /* Unpin TX descriptor ring */
446         efx_fini_special_buffer(efx, &tx_queue->txd);
447 }
448
449 /* Free buffers backing TX queue */
450 void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
451 {
452         efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
453 }
454
455 /**************************************************************************
456  *
457  * RX path
458  *
459  **************************************************************************/
460
461 /* This creates an entry in the RX descriptor queue */
462 static inline void
463 efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
464 {
465         struct efx_rx_buffer *rx_buf;
466         efx_qword_t *rxd;
467
468         rxd = efx_rx_desc(rx_queue, index);
469         rx_buf = efx_rx_buffer(rx_queue, index);
470         EFX_POPULATE_QWORD_3(*rxd,
471                              FSF_AZ_RX_KER_BUF_SIZE,
472                              rx_buf->len -
473                              rx_queue->efx->type->rx_buffer_padding,
474                              FSF_AZ_RX_KER_BUF_REGION, 0,
475                              FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
476 }
477
478 /* This writes to the RX_DESC_WPTR register for the specified receive
479  * descriptor ring.
480  */
481 void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
482 {
483         struct efx_nic *efx = rx_queue->efx;
484         efx_dword_t reg;
485         unsigned write_ptr;
486
487         while (rx_queue->notified_count != rx_queue->added_count) {
488                 efx_farch_build_rx_desc(
489                         rx_queue,
490                         rx_queue->notified_count & rx_queue->ptr_mask);
491                 ++rx_queue->notified_count;
492         }
493
494         wmb();
495         write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
496         EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
497         efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
498                         efx_rx_queue_index(rx_queue));
499 }
500
501 int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
502 {
503         struct efx_nic *efx = rx_queue->efx;
504         unsigned entries;
505
506         entries = rx_queue->ptr_mask + 1;
507         return efx_alloc_special_buffer(efx, &rx_queue->rxd,
508                                         entries * sizeof(efx_qword_t));
509 }
510
511 void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
512 {
513         efx_oword_t rx_desc_ptr;
514         struct efx_nic *efx = rx_queue->efx;
515         bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
516         bool iscsi_digest_en = is_b0;
517         bool jumbo_en;
518
519         /* For kernel-mode queues in Falcon A1, the JUMBO flag enables
520          * DMA to continue after a PCIe page boundary (and scattering
521          * is not possible).  In Falcon B0 and Siena, it enables
522          * scatter.
523          */
524         jumbo_en = !is_b0 || efx->rx_scatter;
525
526         netif_dbg(efx, hw, efx->net_dev,
527                   "RX queue %d ring in special buffers %d-%d\n",
528                   efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
529                   rx_queue->rxd.index + rx_queue->rxd.entries - 1);
530
531         rx_queue->scatter_n = 0;
532
533         /* Pin RX descriptor ring */
534         efx_init_special_buffer(efx, &rx_queue->rxd);
535
536         /* Push RX descriptor ring to card */
537         EFX_POPULATE_OWORD_10(rx_desc_ptr,
538                               FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
539                               FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
540                               FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
541                               FRF_AZ_RX_DESCQ_EVQ_ID,
542                               efx_rx_queue_channel(rx_queue)->channel,
543                               FRF_AZ_RX_DESCQ_OWNER_ID, 0,
544                               FRF_AZ_RX_DESCQ_LABEL,
545                               efx_rx_queue_index(rx_queue),
546                               FRF_AZ_RX_DESCQ_SIZE,
547                               __ffs(rx_queue->rxd.entries),
548                               FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
549                               FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
550                               FRF_AZ_RX_DESCQ_EN, 1);
551         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
552                          efx_rx_queue_index(rx_queue));
553 }
554
555 static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
556 {
557         struct efx_nic *efx = rx_queue->efx;
558         efx_oword_t rx_flush_descq;
559
560         EFX_POPULATE_OWORD_2(rx_flush_descq,
561                              FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
562                              FRF_AZ_RX_FLUSH_DESCQ,
563                              efx_rx_queue_index(rx_queue));
564         efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
565 }
566
567 void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
568 {
569         efx_oword_t rx_desc_ptr;
570         struct efx_nic *efx = rx_queue->efx;
571
572         /* Remove RX descriptor ring from card */
573         EFX_ZERO_OWORD(rx_desc_ptr);
574         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
575                          efx_rx_queue_index(rx_queue));
576
577         /* Unpin RX descriptor ring */
578         efx_fini_special_buffer(efx, &rx_queue->rxd);
579 }
580
581 /* Free buffers backing RX queue */
582 void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
583 {
584         efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
585 }
586
587 /**************************************************************************
588  *
589  * Flush handling
590  *
591  **************************************************************************/
592
593 /* efx_farch_flush_queues() must be woken up when all flushes are completed,
594  * or more RX flushes can be kicked off.
595  */
596 static bool efx_farch_flush_wake(struct efx_nic *efx)
597 {
598         /* Ensure that all updates are visible to efx_farch_flush_queues() */
599         smp_mb();
600
601         return (atomic_read(&efx->active_queues) == 0 ||
602                 (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
603                  && atomic_read(&efx->rxq_flush_pending) > 0));
604 }
605
606 static bool efx_check_tx_flush_complete(struct efx_nic *efx)
607 {
608         bool i = true;
609         efx_oword_t txd_ptr_tbl;
610         struct efx_channel *channel;
611         struct efx_tx_queue *tx_queue;
612
613         efx_for_each_channel(channel, efx) {
614                 efx_for_each_channel_tx_queue(tx_queue, channel) {
615                         efx_reado_table(efx, &txd_ptr_tbl,
616                                         FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
617                         if (EFX_OWORD_FIELD(txd_ptr_tbl,
618                                             FRF_AZ_TX_DESCQ_FLUSH) ||
619                             EFX_OWORD_FIELD(txd_ptr_tbl,
620                                             FRF_AZ_TX_DESCQ_EN)) {
621                                 netif_dbg(efx, hw, efx->net_dev,
622                                           "flush did not complete on TXQ %d\n",
623                                           tx_queue->queue);
624                                 i = false;
625                         } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
626                                                   1, 0)) {
627                                 /* The flush is complete, but we didn't
628                                  * receive a flush completion event
629                                  */
630                                 netif_dbg(efx, hw, efx->net_dev,
631                                           "flush complete on TXQ %d, so drain "
632                                           "the queue\n", tx_queue->queue);
633                                 /* Don't need to increment active_queues as it
634                                  * has already been incremented for the queues
635                                  * which did not drain
636                                  */
637                                 efx_farch_magic_event(channel,
638                                                       EFX_CHANNEL_MAGIC_TX_DRAIN(
639                                                               tx_queue));
640                         }
641                 }
642         }
643
644         return i;
645 }
646
647 /* Flush all the transmit queues, and continue flushing receive queues until
648  * they're all flushed. Wait for the DRAIN events to be received so that there
649  * are no more RX and TX events left on any channel. */
650 static int efx_farch_do_flush(struct efx_nic *efx)
651 {
652         unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
653         struct efx_channel *channel;
654         struct efx_rx_queue *rx_queue;
655         struct efx_tx_queue *tx_queue;
656         int rc = 0;
657
658         efx_for_each_channel(channel, efx) {
659                 efx_for_each_channel_tx_queue(tx_queue, channel) {
660                         efx_farch_flush_tx_queue(tx_queue);
661                 }
662                 efx_for_each_channel_rx_queue(rx_queue, channel) {
663                         rx_queue->flush_pending = true;
664                         atomic_inc(&efx->rxq_flush_pending);
665                 }
666         }
667
668         while (timeout && atomic_read(&efx->active_queues) > 0) {
669                 /* If SRIOV is enabled, then offload receive queue flushing to
670                  * the firmware (though we will still have to poll for
671                  * completion). If that fails, fall back to the old scheme.
672                  */
673                 if (efx_siena_sriov_enabled(efx)) {
674                         rc = efx_mcdi_flush_rxqs(efx);
675                         if (!rc)
676                                 goto wait;
677                 }
678
679                 /* The hardware supports four concurrent rx flushes, each of
680                  * which may need to be retried if there is an outstanding
681                  * descriptor fetch
682                  */
683                 efx_for_each_channel(channel, efx) {
684                         efx_for_each_channel_rx_queue(rx_queue, channel) {
685                                 if (atomic_read(&efx->rxq_flush_outstanding) >=
686                                     EFX_RX_FLUSH_COUNT)
687                                         break;
688
689                                 if (rx_queue->flush_pending) {
690                                         rx_queue->flush_pending = false;
691                                         atomic_dec(&efx->rxq_flush_pending);
692                                         atomic_inc(&efx->rxq_flush_outstanding);
693                                         efx_farch_flush_rx_queue(rx_queue);
694                                 }
695                         }
696                 }
697
698         wait:
699                 timeout = wait_event_timeout(efx->flush_wq,
700                                              efx_farch_flush_wake(efx),
701                                              timeout);
702         }
703
704         if (atomic_read(&efx->active_queues) &&
705             !efx_check_tx_flush_complete(efx)) {
706                 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
707                           "(rx %d+%d)\n", atomic_read(&efx->active_queues),
708                           atomic_read(&efx->rxq_flush_outstanding),
709                           atomic_read(&efx->rxq_flush_pending));
710                 rc = -ETIMEDOUT;
711
712                 atomic_set(&efx->active_queues, 0);
713                 atomic_set(&efx->rxq_flush_pending, 0);
714                 atomic_set(&efx->rxq_flush_outstanding, 0);
715         }
716
717         return rc;
718 }
719
720 int efx_farch_fini_dmaq(struct efx_nic *efx)
721 {
722         struct efx_channel *channel;
723         struct efx_tx_queue *tx_queue;
724         struct efx_rx_queue *rx_queue;
725         int rc = 0;
726
727         /* Do not attempt to write to the NIC during EEH recovery */
728         if (efx->state != STATE_RECOVERY) {
729                 /* Only perform flush if DMA is enabled */
730                 if (efx->pci_dev->is_busmaster) {
731                         efx->type->prepare_flush(efx);
732                         rc = efx_farch_do_flush(efx);
733                         efx->type->finish_flush(efx);
734                 }
735
736                 efx_for_each_channel(channel, efx) {
737                         efx_for_each_channel_rx_queue(rx_queue, channel)
738                                 efx_farch_rx_fini(rx_queue);
739                         efx_for_each_channel_tx_queue(tx_queue, channel)
740                                 efx_farch_tx_fini(tx_queue);
741                 }
742         }
743
744         return rc;
745 }
746
747 /* Reset queue and flush accounting after FLR
748  *
749  * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
750  * mastering was disabled), in which case we don't receive (RXQ) flush
751  * completion events.  This means that efx->rxq_flush_outstanding remained at 4
752  * after the FLR; also, efx->active_queues was non-zero (as no flush completion
753  * events were received, and we didn't go through efx_check_tx_flush_complete())
754  * If we don't fix this up, on the next call to efx_realloc_channels() we won't
755  * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
756  * for batched flush requests; and the efx->active_queues gets messed up because
757  * we keep incrementing for the newly initialised queues, but it never went to
758  * zero previously.  Then we get a timeout every time we try to restart the
759  * queues, as it doesn't go back to zero when we should be flushing the queues.
760  */
761 void efx_farch_finish_flr(struct efx_nic *efx)
762 {
763         atomic_set(&efx->rxq_flush_pending, 0);
764         atomic_set(&efx->rxq_flush_outstanding, 0);
765         atomic_set(&efx->active_queues, 0);
766 }
767
768
769 /**************************************************************************
770  *
771  * Event queue processing
772  * Event queues are processed by per-channel tasklets.
773  *
774  **************************************************************************/
775
776 /* Update a channel's event queue's read pointer (RPTR) register
777  *
778  * This writes the EVQ_RPTR_REG register for the specified channel's
779  * event queue.
780  */
781 void efx_farch_ev_read_ack(struct efx_channel *channel)
782 {
783         efx_dword_t reg;
784         struct efx_nic *efx = channel->efx;
785
786         EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
787                              channel->eventq_read_ptr & channel->eventq_mask);
788
789         /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
790          * of 4 bytes, but it is really 16 bytes just like later revisions.
791          */
792         efx_writed(efx, &reg,
793                    efx->type->evq_rptr_tbl_base +
794                    FR_BZ_EVQ_RPTR_STEP * channel->channel);
795 }
796
797 /* Use HW to insert a SW defined event */
798 void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
799                               efx_qword_t *event)
800 {
801         efx_oword_t drv_ev_reg;
802
803         BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
804                      FRF_AZ_DRV_EV_DATA_WIDTH != 64);
805         drv_ev_reg.u32[0] = event->u32[0];
806         drv_ev_reg.u32[1] = event->u32[1];
807         drv_ev_reg.u32[2] = 0;
808         drv_ev_reg.u32[3] = 0;
809         EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
810         efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
811 }
812
813 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
814 {
815         efx_qword_t event;
816
817         EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
818                              FSE_AZ_EV_CODE_DRV_GEN_EV,
819                              FSF_AZ_DRV_GEN_EV_MAGIC, magic);
820         efx_farch_generate_event(channel->efx, channel->channel, &event);
821 }
822
823 /* Handle a transmit completion event
824  *
825  * The NIC batches TX completion events; the message we receive is of
826  * the form "complete all TX events up to this index".
827  */
828 static int
829 efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
830 {
831         unsigned int tx_ev_desc_ptr;
832         unsigned int tx_ev_q_label;
833         struct efx_tx_queue *tx_queue;
834         struct efx_nic *efx = channel->efx;
835         int tx_packets = 0;
836
837         if (unlikely(ACCESS_ONCE(efx->reset_pending)))
838                 return 0;
839
840         if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
841                 /* Transmit completion */
842                 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
843                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
844                 tx_queue = efx_channel_get_tx_queue(
845                         channel, tx_ev_q_label % EFX_TXQ_TYPES);
846                 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
847                               tx_queue->ptr_mask);
848                 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
849         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
850                 /* Rewrite the FIFO write pointer */
851                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
852                 tx_queue = efx_channel_get_tx_queue(
853                         channel, tx_ev_q_label % EFX_TXQ_TYPES);
854
855                 netif_tx_lock(efx->net_dev);
856                 efx_farch_notify_tx_desc(tx_queue);
857                 netif_tx_unlock(efx->net_dev);
858         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
859                 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
860         } else {
861                 netif_err(efx, tx_err, efx->net_dev,
862                           "channel %d unexpected TX event "
863                           EFX_QWORD_FMT"\n", channel->channel,
864                           EFX_QWORD_VAL(*event));
865         }
866
867         return tx_packets;
868 }
869
870 /* Detect errors included in the rx_evt_pkt_ok bit. */
871 static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
872                                       const efx_qword_t *event)
873 {
874         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
875         struct efx_nic *efx = rx_queue->efx;
876         bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
877         bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
878         bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
879         bool rx_ev_other_err, rx_ev_pause_frm;
880         bool rx_ev_hdr_type, rx_ev_mcast_pkt;
881         unsigned rx_ev_pkt_type;
882
883         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
884         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
885         rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
886         rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
887         rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
888                                                  FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
889         rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
890                                                   FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
891         rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
892                                                    FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
893         rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
894         rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
895         rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
896                           0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
897         rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
898
899         /* Every error apart from tobe_disc and pause_frm */
900         rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
901                            rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
902                            rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
903
904         /* Count errors that are not in MAC stats.  Ignore expected
905          * checksum errors during self-test. */
906         if (rx_ev_frm_trunc)
907                 ++channel->n_rx_frm_trunc;
908         else if (rx_ev_tobe_disc)
909                 ++channel->n_rx_tobe_disc;
910         else if (!efx->loopback_selftest) {
911                 if (rx_ev_ip_hdr_chksum_err)
912                         ++channel->n_rx_ip_hdr_chksum_err;
913                 else if (rx_ev_tcp_udp_chksum_err)
914                         ++channel->n_rx_tcp_udp_chksum_err;
915         }
916
917         /* TOBE_DISC is expected on unicast mismatches; don't print out an
918          * error message.  FRM_TRUNC indicates RXDP dropped the packet due
919          * to a FIFO overflow.
920          */
921 #ifdef DEBUG
922         if (rx_ev_other_err && net_ratelimit()) {
923                 netif_dbg(efx, rx_err, efx->net_dev,
924                           " RX queue %d unexpected RX event "
925                           EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
926                           efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
927                           rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
928                           rx_ev_ip_hdr_chksum_err ?
929                           " [IP_HDR_CHKSUM_ERR]" : "",
930                           rx_ev_tcp_udp_chksum_err ?
931                           " [TCP_UDP_CHKSUM_ERR]" : "",
932                           rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
933                           rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
934                           rx_ev_drib_nib ? " [DRIB_NIB]" : "",
935                           rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
936                           rx_ev_pause_frm ? " [PAUSE]" : "");
937         }
938 #endif
939
940         /* The frame must be discarded if any of these are true. */
941         return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
942                 rx_ev_tobe_disc | rx_ev_pause_frm) ?
943                 EFX_RX_PKT_DISCARD : 0;
944 }
945
946 /* Handle receive events that are not in-order. Return true if this
947  * can be handled as a partial packet discard, false if it's more
948  * serious.
949  */
950 static bool
951 efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
952 {
953         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
954         struct efx_nic *efx = rx_queue->efx;
955         unsigned expected, dropped;
956
957         if (rx_queue->scatter_n &&
958             index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
959                       rx_queue->ptr_mask)) {
960                 ++channel->n_rx_nodesc_trunc;
961                 return true;
962         }
963
964         expected = rx_queue->removed_count & rx_queue->ptr_mask;
965         dropped = (index - expected) & rx_queue->ptr_mask;
966         netif_info(efx, rx_err, efx->net_dev,
967                    "dropped %d events (index=%d expected=%d)\n",
968                    dropped, index, expected);
969
970         efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
971                            RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
972         return false;
973 }
974
975 /* Handle a packet received event
976  *
977  * The NIC gives a "discard" flag if it's a unicast packet with the
978  * wrong destination address
979  * Also "is multicast" and "matches multicast filter" flags can be used to
980  * discard non-matching multicast packets.
981  */
982 static void
983 efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
984 {
985         unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
986         unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
987         unsigned expected_ptr;
988         bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
989         u16 flags;
990         struct efx_rx_queue *rx_queue;
991         struct efx_nic *efx = channel->efx;
992
993         if (unlikely(ACCESS_ONCE(efx->reset_pending)))
994                 return;
995
996         rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
997         rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
998         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
999                 channel->channel);
1000
1001         rx_queue = efx_channel_get_rx_queue(channel);
1002
1003         rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
1004         expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
1005                         rx_queue->ptr_mask);
1006
1007         /* Check for partial drops and other errors */
1008         if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
1009             unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
1010                 if (rx_ev_desc_ptr != expected_ptr &&
1011                     !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1012                         return;
1013
1014                 /* Discard all pending fragments */
1015                 if (rx_queue->scatter_n) {
1016                         efx_rx_packet(
1017                                 rx_queue,
1018                                 rx_queue->removed_count & rx_queue->ptr_mask,
1019                                 rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1020                         rx_queue->removed_count += rx_queue->scatter_n;
1021                         rx_queue->scatter_n = 0;
1022                 }
1023
1024                 /* Return if there is no new fragment */
1025                 if (rx_ev_desc_ptr != expected_ptr)
1026                         return;
1027
1028                 /* Discard new fragment if not SOP */
1029                 if (!rx_ev_sop) {
1030                         efx_rx_packet(
1031                                 rx_queue,
1032                                 rx_queue->removed_count & rx_queue->ptr_mask,
1033                                 1, 0, EFX_RX_PKT_DISCARD);
1034                         ++rx_queue->removed_count;
1035                         return;
1036                 }
1037         }
1038
1039         ++rx_queue->scatter_n;
1040         if (rx_ev_cont)
1041                 return;
1042
1043         rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1044         rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1045         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1046
1047         if (likely(rx_ev_pkt_ok)) {
1048                 /* If packet is marked as OK then we can rely on the
1049                  * hardware checksum and classification.
1050                  */
1051                 flags = 0;
1052                 switch (rx_ev_hdr_type) {
1053                 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1054                         flags |= EFX_RX_PKT_TCP;
1055                         /* fall through */
1056                 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1057                         flags |= EFX_RX_PKT_CSUMMED;
1058                         /* fall through */
1059                 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1060                 case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1061                         break;
1062                 }
1063         } else {
1064                 flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1065         }
1066
1067         /* Detect multicast packets that didn't match the filter */
1068         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1069         if (rx_ev_mcast_pkt) {
1070                 unsigned int rx_ev_mcast_hash_match =
1071                         EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1072
1073                 if (unlikely(!rx_ev_mcast_hash_match)) {
1074                         ++channel->n_rx_mcast_mismatch;
1075                         flags |= EFX_RX_PKT_DISCARD;
1076                 }
1077         }
1078
1079         channel->irq_mod_score += 2;
1080
1081         /* Handle received packet */
1082         efx_rx_packet(rx_queue,
1083                       rx_queue->removed_count & rx_queue->ptr_mask,
1084                       rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1085         rx_queue->removed_count += rx_queue->scatter_n;
1086         rx_queue->scatter_n = 0;
1087 }
1088
1089 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1090  * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1091  * of all transmit completions.
1092  */
1093 static void
1094 efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1095 {
1096         struct efx_tx_queue *tx_queue;
1097         int qid;
1098
1099         qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1100         if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1101                 tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1102                                             qid % EFX_TXQ_TYPES);
1103                 if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1104                         efx_farch_magic_event(tx_queue->channel,
1105                                               EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1106                 }
1107         }
1108 }
1109
1110 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1111  * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1112  * the RX queue back to the mask of RX queues in need of flushing.
1113  */
1114 static void
1115 efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1116 {
1117         struct efx_channel *channel;
1118         struct efx_rx_queue *rx_queue;
1119         int qid;
1120         bool failed;
1121
1122         qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1123         failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1124         if (qid >= efx->n_channels)
1125                 return;
1126         channel = efx_get_channel(efx, qid);
1127         if (!efx_channel_has_rx_queue(channel))
1128                 return;
1129         rx_queue = efx_channel_get_rx_queue(channel);
1130
1131         if (failed) {
1132                 netif_info(efx, hw, efx->net_dev,
1133                            "RXQ %d flush retry\n", qid);
1134                 rx_queue->flush_pending = true;
1135                 atomic_inc(&efx->rxq_flush_pending);
1136         } else {
1137                 efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1138                                       EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1139         }
1140         atomic_dec(&efx->rxq_flush_outstanding);
1141         if (efx_farch_flush_wake(efx))
1142                 wake_up(&efx->flush_wq);
1143 }
1144
1145 static void
1146 efx_farch_handle_drain_event(struct efx_channel *channel)
1147 {
1148         struct efx_nic *efx = channel->efx;
1149
1150         WARN_ON(atomic_read(&efx->active_queues) == 0);
1151         atomic_dec(&efx->active_queues);
1152         if (efx_farch_flush_wake(efx))
1153                 wake_up(&efx->flush_wq);
1154 }
1155
1156 static void efx_farch_handle_generated_event(struct efx_channel *channel,
1157                                              efx_qword_t *event)
1158 {
1159         struct efx_nic *efx = channel->efx;
1160         struct efx_rx_queue *rx_queue =
1161                 efx_channel_has_rx_queue(channel) ?
1162                 efx_channel_get_rx_queue(channel) : NULL;
1163         unsigned magic, code;
1164
1165         magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1166         code = _EFX_CHANNEL_MAGIC_CODE(magic);
1167
1168         if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1169                 channel->event_test_cpu = raw_smp_processor_id();
1170         } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1171                 /* The queue must be empty, so we won't receive any rx
1172                  * events, so efx_process_channel() won't refill the
1173                  * queue. Refill it here */
1174                 efx_fast_push_rx_descriptors(rx_queue, true);
1175         } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1176                 efx_farch_handle_drain_event(channel);
1177         } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1178                 efx_farch_handle_drain_event(channel);
1179         } else {
1180                 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1181                           "generated event "EFX_QWORD_FMT"\n",
1182                           channel->channel, EFX_QWORD_VAL(*event));
1183         }
1184 }
1185
1186 static void
1187 efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1188 {
1189         struct efx_nic *efx = channel->efx;
1190         unsigned int ev_sub_code;
1191         unsigned int ev_sub_data;
1192
1193         ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1194         ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1195
1196         switch (ev_sub_code) {
1197         case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1198                 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1199                            channel->channel, ev_sub_data);
1200                 efx_farch_handle_tx_flush_done(efx, event);
1201                 efx_siena_sriov_tx_flush_done(efx, event);
1202                 break;
1203         case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1204                 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1205                            channel->channel, ev_sub_data);
1206                 efx_farch_handle_rx_flush_done(efx, event);
1207                 efx_siena_sriov_rx_flush_done(efx, event);
1208                 break;
1209         case FSE_AZ_EVQ_INIT_DONE_EV:
1210                 netif_dbg(efx, hw, efx->net_dev,
1211                           "channel %d EVQ %d initialised\n",
1212                           channel->channel, ev_sub_data);
1213                 break;
1214         case FSE_AZ_SRM_UPD_DONE_EV:
1215                 netif_vdbg(efx, hw, efx->net_dev,
1216                            "channel %d SRAM update done\n", channel->channel);
1217                 break;
1218         case FSE_AZ_WAKE_UP_EV:
1219                 netif_vdbg(efx, hw, efx->net_dev,
1220                            "channel %d RXQ %d wakeup event\n",
1221                            channel->channel, ev_sub_data);
1222                 break;
1223         case FSE_AZ_TIMER_EV:
1224                 netif_vdbg(efx, hw, efx->net_dev,
1225                            "channel %d RX queue %d timer expired\n",
1226                            channel->channel, ev_sub_data);
1227                 break;
1228         case FSE_AA_RX_RECOVER_EV:
1229                 netif_err(efx, rx_err, efx->net_dev,
1230                           "channel %d seen DRIVER RX_RESET event. "
1231                         "Resetting.\n", channel->channel);
1232                 atomic_inc(&efx->rx_reset);
1233                 efx_schedule_reset(efx,
1234                                    EFX_WORKAROUND_6555(efx) ?
1235                                    RESET_TYPE_RX_RECOVERY :
1236                                    RESET_TYPE_DISABLE);
1237                 break;
1238         case FSE_BZ_RX_DSC_ERROR_EV:
1239                 if (ev_sub_data < EFX_VI_BASE) {
1240                         netif_err(efx, rx_err, efx->net_dev,
1241                                   "RX DMA Q %d reports descriptor fetch error."
1242                                   " RX Q %d is disabled.\n", ev_sub_data,
1243                                   ev_sub_data);
1244                         efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1245                 } else
1246                         efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1247                 break;
1248         case FSE_BZ_TX_DSC_ERROR_EV:
1249                 if (ev_sub_data < EFX_VI_BASE) {
1250                         netif_err(efx, tx_err, efx->net_dev,
1251                                   "TX DMA Q %d reports descriptor fetch error."
1252                                   " TX Q %d is disabled.\n", ev_sub_data,
1253                                   ev_sub_data);
1254                         efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1255                 } else
1256                         efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1257                 break;
1258         default:
1259                 netif_vdbg(efx, hw, efx->net_dev,
1260                            "channel %d unknown driver event code %d "
1261                            "data %04x\n", channel->channel, ev_sub_code,
1262                            ev_sub_data);
1263                 break;
1264         }
1265 }
1266
1267 int efx_farch_ev_process(struct efx_channel *channel, int budget)
1268 {
1269         struct efx_nic *efx = channel->efx;
1270         unsigned int read_ptr;
1271         efx_qword_t event, *p_event;
1272         int ev_code;
1273         int tx_packets = 0;
1274         int spent = 0;
1275
1276         if (budget <= 0)
1277                 return spent;
1278
1279         read_ptr = channel->eventq_read_ptr;
1280
1281         for (;;) {
1282                 p_event = efx_event(channel, read_ptr);
1283                 event = *p_event;
1284
1285                 if (!efx_event_present(&event))
1286                         /* End of events */
1287                         break;
1288
1289                 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1290                            "channel %d event is "EFX_QWORD_FMT"\n",
1291                            channel->channel, EFX_QWORD_VAL(event));
1292
1293                 /* Clear this event by marking it all ones */
1294                 EFX_SET_QWORD(*p_event);
1295
1296                 ++read_ptr;
1297
1298                 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1299
1300                 switch (ev_code) {
1301                 case FSE_AZ_EV_CODE_RX_EV:
1302                         efx_farch_handle_rx_event(channel, &event);
1303                         if (++spent == budget)
1304                                 goto out;
1305                         break;
1306                 case FSE_AZ_EV_CODE_TX_EV:
1307                         tx_packets += efx_farch_handle_tx_event(channel,
1308                                                                 &event);
1309                         if (tx_packets > efx->txq_entries) {
1310                                 spent = budget;
1311                                 goto out;
1312                         }
1313                         break;
1314                 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1315                         efx_farch_handle_generated_event(channel, &event);
1316                         break;
1317                 case FSE_AZ_EV_CODE_DRIVER_EV:
1318                         efx_farch_handle_driver_event(channel, &event);
1319                         break;
1320                 case FSE_CZ_EV_CODE_USER_EV:
1321                         efx_siena_sriov_event(channel, &event);
1322                         break;
1323                 case FSE_CZ_EV_CODE_MCDI_EV:
1324                         efx_mcdi_process_event(channel, &event);
1325                         break;
1326                 case FSE_AZ_EV_CODE_GLOBAL_EV:
1327                         if (efx->type->handle_global_event &&
1328                             efx->type->handle_global_event(channel, &event))
1329                                 break;
1330                         /* else fall through */
1331                 default:
1332                         netif_err(channel->efx, hw, channel->efx->net_dev,
1333                                   "channel %d unknown event type %d (data "
1334                                   EFX_QWORD_FMT ")\n", channel->channel,
1335                                   ev_code, EFX_QWORD_VAL(event));
1336                 }
1337         }
1338
1339 out:
1340         channel->eventq_read_ptr = read_ptr;
1341         return spent;
1342 }
1343
1344 /* Allocate buffer table entries for event queue */
1345 int efx_farch_ev_probe(struct efx_channel *channel)
1346 {
1347         struct efx_nic *efx = channel->efx;
1348         unsigned entries;
1349
1350         entries = channel->eventq_mask + 1;
1351         return efx_alloc_special_buffer(efx, &channel->eventq,
1352                                         entries * sizeof(efx_qword_t));
1353 }
1354
1355 int efx_farch_ev_init(struct efx_channel *channel)
1356 {
1357         efx_oword_t reg;
1358         struct efx_nic *efx = channel->efx;
1359
1360         netif_dbg(efx, hw, efx->net_dev,
1361                   "channel %d event queue in special buffers %d-%d\n",
1362                   channel->channel, channel->eventq.index,
1363                   channel->eventq.index + channel->eventq.entries - 1);
1364
1365         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1366                 EFX_POPULATE_OWORD_3(reg,
1367                                      FRF_CZ_TIMER_Q_EN, 1,
1368                                      FRF_CZ_HOST_NOTIFY_MODE, 0,
1369                                      FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1370                 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1371         }
1372
1373         /* Pin event queue buffer */
1374         efx_init_special_buffer(efx, &channel->eventq);
1375
1376         /* Fill event queue with all ones (i.e. empty events) */
1377         memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1378
1379         /* Push event queue to card */
1380         EFX_POPULATE_OWORD_3(reg,
1381                              FRF_AZ_EVQ_EN, 1,
1382                              FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1383                              FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1384         efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1385                          channel->channel);
1386
1387         return 0;
1388 }
1389
1390 void efx_farch_ev_fini(struct efx_channel *channel)
1391 {
1392         efx_oword_t reg;
1393         struct efx_nic *efx = channel->efx;
1394
1395         /* Remove event queue from card */
1396         EFX_ZERO_OWORD(reg);
1397         efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1398                          channel->channel);
1399         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1400                 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1401
1402         /* Unpin event queue */
1403         efx_fini_special_buffer(efx, &channel->eventq);
1404 }
1405
1406 /* Free buffers backing event queue */
1407 void efx_farch_ev_remove(struct efx_channel *channel)
1408 {
1409         efx_free_special_buffer(channel->efx, &channel->eventq);
1410 }
1411
1412
1413 void efx_farch_ev_test_generate(struct efx_channel *channel)
1414 {
1415         efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1416 }
1417
1418 void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1419 {
1420         efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1421                               EFX_CHANNEL_MAGIC_FILL(rx_queue));
1422 }
1423
1424 /**************************************************************************
1425  *
1426  * Hardware interrupts
1427  * The hardware interrupt handler does very little work; all the event
1428  * queue processing is carried out by per-channel tasklets.
1429  *
1430  **************************************************************************/
1431
1432 /* Enable/disable/generate interrupts */
1433 static inline void efx_farch_interrupts(struct efx_nic *efx,
1434                                       bool enabled, bool force)
1435 {
1436         efx_oword_t int_en_reg_ker;
1437
1438         EFX_POPULATE_OWORD_3(int_en_reg_ker,
1439                              FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1440                              FRF_AZ_KER_INT_KER, force,
1441                              FRF_AZ_DRV_INT_EN_KER, enabled);
1442         efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1443 }
1444
1445 void efx_farch_irq_enable_master(struct efx_nic *efx)
1446 {
1447         EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1448         wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1449
1450         efx_farch_interrupts(efx, true, false);
1451 }
1452
1453 void efx_farch_irq_disable_master(struct efx_nic *efx)
1454 {
1455         /* Disable interrupts */
1456         efx_farch_interrupts(efx, false, false);
1457 }
1458
1459 /* Generate a test interrupt
1460  * Interrupt must already have been enabled, otherwise nasty things
1461  * may happen.
1462  */
1463 void efx_farch_irq_test_generate(struct efx_nic *efx)
1464 {
1465         efx_farch_interrupts(efx, true, true);
1466 }
1467
1468 /* Process a fatal interrupt
1469  * Disable bus mastering ASAP and schedule a reset
1470  */
1471 irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1472 {
1473         struct falcon_nic_data *nic_data = efx->nic_data;
1474         efx_oword_t *int_ker = efx->irq_status.addr;
1475         efx_oword_t fatal_intr;
1476         int error, mem_perr;
1477
1478         efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1479         error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1480
1481         netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1482                   EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1483                   EFX_OWORD_VAL(fatal_intr),
1484                   error ? "disabling bus mastering" : "no recognised error");
1485
1486         /* If this is a memory parity error dump which blocks are offending */
1487         mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1488                     EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1489         if (mem_perr) {
1490                 efx_oword_t reg;
1491                 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1492                 netif_err(efx, hw, efx->net_dev,
1493                           "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1494                           EFX_OWORD_VAL(reg));
1495         }
1496
1497         /* Disable both devices */
1498         pci_clear_master(efx->pci_dev);
1499         if (efx_nic_is_dual_func(efx))
1500                 pci_clear_master(nic_data->pci_dev2);
1501         efx_farch_irq_disable_master(efx);
1502
1503         /* Count errors and reset or disable the NIC accordingly */
1504         if (efx->int_error_count == 0 ||
1505             time_after(jiffies, efx->int_error_expire)) {
1506                 efx->int_error_count = 0;
1507                 efx->int_error_expire =
1508                         jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1509         }
1510         if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1511                 netif_err(efx, hw, efx->net_dev,
1512                           "SYSTEM ERROR - reset scheduled\n");
1513                 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1514         } else {
1515                 netif_err(efx, hw, efx->net_dev,
1516                           "SYSTEM ERROR - max number of errors seen."
1517                           "NIC will be disabled\n");
1518                 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1519         }
1520
1521         return IRQ_HANDLED;
1522 }
1523
1524 /* Handle a legacy interrupt
1525  * Acknowledges the interrupt and schedule event queue processing.
1526  */
1527 irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1528 {
1529         struct efx_nic *efx = dev_id;
1530         bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1531         efx_oword_t *int_ker = efx->irq_status.addr;
1532         irqreturn_t result = IRQ_NONE;
1533         struct efx_channel *channel;
1534         efx_dword_t reg;
1535         u32 queues;
1536         int syserr;
1537
1538         /* Read the ISR which also ACKs the interrupts */
1539         efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1540         queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1541
1542         /* Legacy interrupts are disabled too late by the EEH kernel
1543          * code. Disable them earlier.
1544          * If an EEH error occurred, the read will have returned all ones.
1545          */
1546         if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1547             !efx->eeh_disabled_legacy_irq) {
1548                 disable_irq_nosync(efx->legacy_irq);
1549                 efx->eeh_disabled_legacy_irq = true;
1550         }
1551
1552         /* Handle non-event-queue sources */
1553         if (queues & (1U << efx->irq_level) && soft_enabled) {
1554                 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1555                 if (unlikely(syserr))
1556                         return efx_farch_fatal_interrupt(efx);
1557                 efx->last_irq_cpu = raw_smp_processor_id();
1558         }
1559
1560         if (queues != 0) {
1561                 efx->irq_zero_count = 0;
1562
1563                 /* Schedule processing of any interrupting queues */
1564                 if (likely(soft_enabled)) {
1565                         efx_for_each_channel(channel, efx) {
1566                                 if (queues & 1)
1567                                         efx_schedule_channel_irq(channel);
1568                                 queues >>= 1;
1569                         }
1570                 }
1571                 result = IRQ_HANDLED;
1572
1573         } else {
1574                 efx_qword_t *event;
1575
1576                 /* Legacy ISR read can return zero once (SF bug 15783) */
1577
1578                 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1579                  * because this might be a shared interrupt. */
1580                 if (efx->irq_zero_count++ == 0)
1581                         result = IRQ_HANDLED;
1582
1583                 /* Ensure we schedule or rearm all event queues */
1584                 if (likely(soft_enabled)) {
1585                         efx_for_each_channel(channel, efx) {
1586                                 event = efx_event(channel,
1587                                                   channel->eventq_read_ptr);
1588                                 if (efx_event_present(event))
1589                                         efx_schedule_channel_irq(channel);
1590                                 else
1591                                         efx_farch_ev_read_ack(channel);
1592                         }
1593                 }
1594         }
1595
1596         if (result == IRQ_HANDLED)
1597                 netif_vdbg(efx, intr, efx->net_dev,
1598                            "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1599                            irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1600
1601         return result;
1602 }
1603
1604 /* Handle an MSI interrupt
1605  *
1606  * Handle an MSI hardware interrupt.  This routine schedules event
1607  * queue processing.  No interrupt acknowledgement cycle is necessary.
1608  * Also, we never need to check that the interrupt is for us, since
1609  * MSI interrupts cannot be shared.
1610  */
1611 irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1612 {
1613         struct efx_msi_context *context = dev_id;
1614         struct efx_nic *efx = context->efx;
1615         efx_oword_t *int_ker = efx->irq_status.addr;
1616         int syserr;
1617
1618         netif_vdbg(efx, intr, efx->net_dev,
1619                    "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1620                    irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1621
1622         if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
1623                 return IRQ_HANDLED;
1624
1625         /* Handle non-event-queue sources */
1626         if (context->index == efx->irq_level) {
1627                 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1628                 if (unlikely(syserr))
1629                         return efx_farch_fatal_interrupt(efx);
1630                 efx->last_irq_cpu = raw_smp_processor_id();
1631         }
1632
1633         /* Schedule processing of the channel */
1634         efx_schedule_channel_irq(efx->channel[context->index]);
1635
1636         return IRQ_HANDLED;
1637 }
1638
1639 /* Setup RSS indirection table.
1640  * This maps from the hash value of the packet to RXQ
1641  */
1642 void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1643 {
1644         size_t i = 0;
1645         efx_dword_t dword;
1646
1647         BUG_ON(efx_nic_rev(efx) < EFX_REV_FALCON_B0);
1648
1649         BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1650                      FR_BZ_RX_INDIRECTION_TBL_ROWS);
1651
1652         for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1653                 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1654                                      efx->rx_indir_table[i]);
1655                 efx_writed(efx, &dword,
1656                            FR_BZ_RX_INDIRECTION_TBL +
1657                            FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1658         }
1659 }
1660
1661 /* Looks at available SRAM resources and works out how many queues we
1662  * can support, and where things like descriptor caches should live.
1663  *
1664  * SRAM is split up as follows:
1665  * 0                          buftbl entries for channels
1666  * efx->vf_buftbl_base        buftbl entries for SR-IOV
1667  * efx->rx_dc_base            RX descriptor caches
1668  * efx->tx_dc_base            TX descriptor caches
1669  */
1670 void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1671 {
1672         unsigned vi_count, buftbl_min;
1673
1674 #ifdef CONFIG_SFC_SRIOV
1675         struct siena_nic_data *nic_data = efx->nic_data;
1676 #endif
1677
1678         /* Account for the buffer table entries backing the datapath channels
1679          * and the descriptor caches for those channels.
1680          */
1681         buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1682                        efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1683                        efx->n_channels * EFX_MAX_EVQ_SIZE)
1684                       * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1685         vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1686
1687 #ifdef CONFIG_SFC_SRIOV
1688         if (efx->type->sriov_wanted(efx)) {
1689                 unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
1690
1691                 nic_data->vf_buftbl_base = buftbl_min;
1692
1693                 vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1694                 vi_count = max(vi_count, EFX_VI_BASE);
1695                 buftbl_free = (sram_lim_qw - buftbl_min -
1696                                vi_count * vi_dc_entries);
1697
1698                 entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
1699                                   efx_vf_size(efx));
1700                 vf_limit = min(buftbl_free / entries_per_vf,
1701                                (1024U - EFX_VI_BASE) >> efx->vi_scale);
1702
1703                 if (efx->vf_count > vf_limit) {
1704                         netif_err(efx, probe, efx->net_dev,
1705                                   "Reducing VF count from from %d to %d\n",
1706                                   efx->vf_count, vf_limit);
1707                         efx->vf_count = vf_limit;
1708                 }
1709                 vi_count += efx->vf_count * efx_vf_size(efx);
1710         }
1711 #endif
1712
1713         efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1714         efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1715 }
1716
1717 u32 efx_farch_fpga_ver(struct efx_nic *efx)
1718 {
1719         efx_oword_t altera_build;
1720         efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1721         return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1722 }
1723
1724 void efx_farch_init_common(struct efx_nic *efx)
1725 {
1726         efx_oword_t temp;
1727
1728         /* Set positions of descriptor caches in SRAM. */
1729         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1730         efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1731         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1732         efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1733
1734         /* Set TX descriptor cache size. */
1735         BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1736         EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1737         efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1738
1739         /* Set RX descriptor cache size.  Set low watermark to size-8, as
1740          * this allows most efficient prefetching.
1741          */
1742         BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1743         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1744         efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1745         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1746         efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1747
1748         /* Program INT_KER address */
1749         EFX_POPULATE_OWORD_2(temp,
1750                              FRF_AZ_NORM_INT_VEC_DIS_KER,
1751                              EFX_INT_MODE_USE_MSI(efx),
1752                              FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1753         efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1754
1755         if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1756                 /* Use an interrupt level unused by event queues */
1757                 efx->irq_level = 0x1f;
1758         else
1759                 /* Use a valid MSI-X vector */
1760                 efx->irq_level = 0;
1761
1762         /* Enable all the genuinely fatal interrupts.  (They are still
1763          * masked by the overall interrupt mask, controlled by
1764          * falcon_interrupts()).
1765          *
1766          * Note: All other fatal interrupts are enabled
1767          */
1768         EFX_POPULATE_OWORD_3(temp,
1769                              FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1770                              FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1771                              FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1772         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1773                 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1774         EFX_INVERT_OWORD(temp);
1775         efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1776
1777         /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1778          * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1779          */
1780         efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1781         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1782         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1783         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1784         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1785         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1786         /* Enable SW_EV to inherit in char driver - assume harmless here */
1787         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1788         /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1789         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1790         /* Disable hardware watchdog which can misfire */
1791         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1792         /* Squash TX of packets of 16 bytes or less */
1793         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1794                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1795         efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1796
1797         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1798                 EFX_POPULATE_OWORD_4(temp,
1799                                      /* Default values */
1800                                      FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1801                                      FRF_BZ_TX_PACE_SB_AF, 0xb,
1802                                      FRF_BZ_TX_PACE_FB_BASE, 0,
1803                                      /* Allow large pace values in the
1804                                       * fast bin. */
1805                                      FRF_BZ_TX_PACE_BIN_TH,
1806                                      FFE_BZ_TX_PACE_RESERVED);
1807                 efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1808         }
1809 }
1810
1811 /**************************************************************************
1812  *
1813  * Filter tables
1814  *
1815  **************************************************************************
1816  */
1817
1818 /* "Fudge factors" - difference between programmed value and actual depth.
1819  * Due to pipelined implementation we need to program H/W with a value that
1820  * is larger than the hop limit we want.
1821  */
1822 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1823 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1824
1825 /* Hard maximum search limit.  Hardware will time-out beyond 200-something.
1826  * We also need to avoid infinite loops in efx_farch_filter_search() when the
1827  * table is full.
1828  */
1829 #define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1830
1831 /* Don't try very hard to find space for performance hints, as this is
1832  * counter-productive. */
1833 #define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1834
1835 enum efx_farch_filter_type {
1836         EFX_FARCH_FILTER_TCP_FULL = 0,
1837         EFX_FARCH_FILTER_TCP_WILD,
1838         EFX_FARCH_FILTER_UDP_FULL,
1839         EFX_FARCH_FILTER_UDP_WILD,
1840         EFX_FARCH_FILTER_MAC_FULL = 4,
1841         EFX_FARCH_FILTER_MAC_WILD,
1842         EFX_FARCH_FILTER_UC_DEF = 8,
1843         EFX_FARCH_FILTER_MC_DEF,
1844         EFX_FARCH_FILTER_TYPE_COUNT,            /* number of specific types */
1845 };
1846
1847 enum efx_farch_filter_table_id {
1848         EFX_FARCH_FILTER_TABLE_RX_IP = 0,
1849         EFX_FARCH_FILTER_TABLE_RX_MAC,
1850         EFX_FARCH_FILTER_TABLE_RX_DEF,
1851         EFX_FARCH_FILTER_TABLE_TX_MAC,
1852         EFX_FARCH_FILTER_TABLE_COUNT,
1853 };
1854
1855 enum efx_farch_filter_index {
1856         EFX_FARCH_FILTER_INDEX_UC_DEF,
1857         EFX_FARCH_FILTER_INDEX_MC_DEF,
1858         EFX_FARCH_FILTER_SIZE_RX_DEF,
1859 };
1860
1861 struct efx_farch_filter_spec {
1862         u8      type:4;
1863         u8      priority:4;
1864         u8      flags;
1865         u16     dmaq_id;
1866         u32     data[3];
1867 };
1868
1869 struct efx_farch_filter_table {
1870         enum efx_farch_filter_table_id id;
1871         u32             offset;         /* address of table relative to BAR */
1872         unsigned        size;           /* number of entries */
1873         unsigned        step;           /* step between entries */
1874         unsigned        used;           /* number currently used */
1875         unsigned long   *used_bitmap;
1876         struct efx_farch_filter_spec *spec;
1877         unsigned        search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
1878 };
1879
1880 struct efx_farch_filter_state {
1881         struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
1882 };
1883
1884 static void
1885 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
1886                                    struct efx_farch_filter_table *table,
1887                                    unsigned int filter_idx);
1888
1889 /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1890  * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
1891 static u16 efx_farch_filter_hash(u32 key)
1892 {
1893         u16 tmp;
1894
1895         /* First 16 rounds */
1896         tmp = 0x1fff ^ key >> 16;
1897         tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1898         tmp = tmp ^ tmp >> 9;
1899         /* Last 16 rounds */
1900         tmp = tmp ^ tmp << 13 ^ key;
1901         tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1902         return tmp ^ tmp >> 9;
1903 }
1904
1905 /* To allow for hash collisions, filter search continues at these
1906  * increments from the first possible entry selected by the hash. */
1907 static u16 efx_farch_filter_increment(u32 key)
1908 {
1909         return key * 2 - 1;
1910 }
1911
1912 static enum efx_farch_filter_table_id
1913 efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
1914 {
1915         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1916                      (EFX_FARCH_FILTER_TCP_FULL >> 2));
1917         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1918                      (EFX_FARCH_FILTER_TCP_WILD >> 2));
1919         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1920                      (EFX_FARCH_FILTER_UDP_FULL >> 2));
1921         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1922                      (EFX_FARCH_FILTER_UDP_WILD >> 2));
1923         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1924                      (EFX_FARCH_FILTER_MAC_FULL >> 2));
1925         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1926                      (EFX_FARCH_FILTER_MAC_WILD >> 2));
1927         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
1928                      EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
1929         return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
1930 }
1931
1932 static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
1933 {
1934         struct efx_farch_filter_state *state = efx->filter_state;
1935         struct efx_farch_filter_table *table;
1936         efx_oword_t filter_ctl;
1937
1938         efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1939
1940         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
1941         EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1942                             table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
1943                             EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1944         EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1945                             table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
1946                             EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1947         EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1948                             table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
1949                             EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1950         EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1951                             table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
1952                             EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1953
1954         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
1955         if (table->size) {
1956                 EFX_SET_OWORD_FIELD(
1957                         filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1958                         table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1959                         EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1960                 EFX_SET_OWORD_FIELD(
1961                         filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1962                         table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1963                         EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1964         }
1965
1966         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
1967         if (table->size) {
1968                 EFX_SET_OWORD_FIELD(
1969                         filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1970                         table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1971                 EFX_SET_OWORD_FIELD(
1972                         filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1973                         !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1974                            EFX_FILTER_FLAG_RX_RSS));
1975                 EFX_SET_OWORD_FIELD(
1976                         filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1977                         table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1978                 EFX_SET_OWORD_FIELD(
1979                         filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1980                         !!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1981                            EFX_FILTER_FLAG_RX_RSS));
1982
1983                 /* There is a single bit to enable RX scatter for all
1984                  * unmatched packets.  Only set it if scatter is
1985                  * enabled in both filter specs.
1986                  */
1987                 EFX_SET_OWORD_FIELD(
1988                         filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1989                         !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1990                            table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1991                            EFX_FILTER_FLAG_RX_SCATTER));
1992         } else if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1993                 /* We don't expose 'default' filters because unmatched
1994                  * packets always go to the queue number found in the
1995                  * RSS table.  But we still need to set the RX scatter
1996                  * bit here.
1997                  */
1998                 EFX_SET_OWORD_FIELD(
1999                         filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
2000                         efx->rx_scatter);
2001         }
2002
2003         efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
2004 }
2005
2006 static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
2007 {
2008         struct efx_farch_filter_state *state = efx->filter_state;
2009         struct efx_farch_filter_table *table;
2010         efx_oword_t tx_cfg;
2011
2012         efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
2013
2014         table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2015         if (table->size) {
2016                 EFX_SET_OWORD_FIELD(
2017                         tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
2018                         table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
2019                         EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
2020                 EFX_SET_OWORD_FIELD(
2021                         tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
2022                         table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
2023                         EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
2024         }
2025
2026         efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
2027 }
2028
2029 static int
2030 efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
2031                                const struct efx_filter_spec *gen_spec)
2032 {
2033         bool is_full = false;
2034
2035         if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) &&
2036             gen_spec->rss_context != EFX_FILTER_RSS_CONTEXT_DEFAULT)
2037                 return -EINVAL;
2038
2039         spec->priority = gen_spec->priority;
2040         spec->flags = gen_spec->flags;
2041         spec->dmaq_id = gen_spec->dmaq_id;
2042
2043         switch (gen_spec->match_flags) {
2044         case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2045               EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
2046               EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
2047                 is_full = true;
2048                 /* fall through */
2049         case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2050               EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
2051                 __be32 rhost, host1, host2;
2052                 __be16 rport, port1, port2;
2053
2054                 EFX_BUG_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2055
2056                 if (gen_spec->ether_type != htons(ETH_P_IP))
2057                         return -EPROTONOSUPPORT;
2058                 if (gen_spec->loc_port == 0 ||
2059                     (is_full && gen_spec->rem_port == 0))
2060                         return -EADDRNOTAVAIL;
2061                 switch (gen_spec->ip_proto) {
2062                 case IPPROTO_TCP:
2063                         spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
2064                                       EFX_FARCH_FILTER_TCP_WILD);
2065                         break;
2066                 case IPPROTO_UDP:
2067                         spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
2068                                       EFX_FARCH_FILTER_UDP_WILD);
2069                         break;
2070                 default:
2071                         return -EPROTONOSUPPORT;
2072                 }
2073
2074                 /* Filter is constructed in terms of source and destination,
2075                  * with the odd wrinkle that the ports are swapped in a UDP
2076                  * wildcard filter.  We need to convert from local and remote
2077                  * (= zero for wildcard) addresses.
2078                  */
2079                 rhost = is_full ? gen_spec->rem_host[0] : 0;
2080                 rport = is_full ? gen_spec->rem_port : 0;
2081                 host1 = rhost;
2082                 host2 = gen_spec->loc_host[0];
2083                 if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2084                         port1 = gen_spec->loc_port;
2085                         port2 = rport;
2086                 } else {
2087                         port1 = rport;
2088                         port2 = gen_spec->loc_port;
2089                 }
2090                 spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2091                 spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2092                 spec->data[2] = ntohl(host2);
2093
2094                 break;
2095         }
2096
2097         case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
2098                 is_full = true;
2099                 /* fall through */
2100         case EFX_FILTER_MATCH_LOC_MAC:
2101                 spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
2102                               EFX_FARCH_FILTER_MAC_WILD);
2103                 spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2104                 spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2105                                  gen_spec->loc_mac[3] << 16 |
2106                                  gen_spec->loc_mac[4] << 8 |
2107                                  gen_spec->loc_mac[5]);
2108                 spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2109                                  gen_spec->loc_mac[1]);
2110                 break;
2111
2112         case EFX_FILTER_MATCH_LOC_MAC_IG:
2113                 spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2114                               EFX_FARCH_FILTER_MC_DEF :
2115                               EFX_FARCH_FILTER_UC_DEF);
2116                 memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2117                 break;
2118
2119         default:
2120                 return -EPROTONOSUPPORT;
2121         }
2122
2123         return 0;
2124 }
2125
2126 static void
2127 efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
2128                              const struct efx_farch_filter_spec *spec)
2129 {
2130         bool is_full = false;
2131
2132         /* *gen_spec should be completely initialised, to be consistent
2133          * with efx_filter_init_{rx,tx}() and in case we want to copy
2134          * it back to userland.
2135          */
2136         memset(gen_spec, 0, sizeof(*gen_spec));
2137
2138         gen_spec->priority = spec->priority;
2139         gen_spec->flags = spec->flags;
2140         gen_spec->dmaq_id = spec->dmaq_id;
2141
2142         switch (spec->type) {
2143         case EFX_FARCH_FILTER_TCP_FULL:
2144         case EFX_FARCH_FILTER_UDP_FULL:
2145                 is_full = true;
2146                 /* fall through */
2147         case EFX_FARCH_FILTER_TCP_WILD:
2148         case EFX_FARCH_FILTER_UDP_WILD: {
2149                 __be32 host1, host2;
2150                 __be16 port1, port2;
2151
2152                 gen_spec->match_flags =
2153                         EFX_FILTER_MATCH_ETHER_TYPE |
2154                         EFX_FILTER_MATCH_IP_PROTO |
2155                         EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
2156                 if (is_full)
2157                         gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
2158                                                   EFX_FILTER_MATCH_REM_PORT);
2159                 gen_spec->ether_type = htons(ETH_P_IP);
2160                 gen_spec->ip_proto =
2161                         (spec->type == EFX_FARCH_FILTER_TCP_FULL ||
2162                          spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
2163                         IPPROTO_TCP : IPPROTO_UDP;
2164
2165                 host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2166                 port1 = htons(spec->data[0]);
2167                 host2 = htonl(spec->data[2]);
2168                 port2 = htons(spec->data[1] >> 16);
2169                 if (spec->flags & EFX_FILTER_FLAG_TX) {
2170                         gen_spec->loc_host[0] = host1;
2171                         gen_spec->rem_host[0] = host2;
2172                 } else {
2173                         gen_spec->loc_host[0] = host2;
2174                         gen_spec->rem_host[0] = host1;
2175                 }
2176                 if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
2177                     (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2178                         gen_spec->loc_port = port1;
2179                         gen_spec->rem_port = port2;
2180                 } else {
2181                         gen_spec->loc_port = port2;
2182                         gen_spec->rem_port = port1;
2183                 }
2184
2185                 break;
2186         }
2187
2188         case EFX_FARCH_FILTER_MAC_FULL:
2189                 is_full = true;
2190                 /* fall through */
2191         case EFX_FARCH_FILTER_MAC_WILD:
2192                 gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
2193                 if (is_full)
2194                         gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
2195                 gen_spec->loc_mac[0] = spec->data[2] >> 8;
2196                 gen_spec->loc_mac[1] = spec->data[2];
2197                 gen_spec->loc_mac[2] = spec->data[1] >> 24;
2198                 gen_spec->loc_mac[3] = spec->data[1] >> 16;
2199                 gen_spec->loc_mac[4] = spec->data[1] >> 8;
2200                 gen_spec->loc_mac[5] = spec->data[1];
2201                 gen_spec->outer_vid = htons(spec->data[0]);
2202                 break;
2203
2204         case EFX_FARCH_FILTER_UC_DEF:
2205         case EFX_FARCH_FILTER_MC_DEF:
2206                 gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
2207                 gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
2208                 break;
2209
2210         default:
2211                 WARN_ON(1);
2212                 break;
2213         }
2214 }
2215
2216 static void
2217 efx_farch_filter_init_rx_auto(struct efx_nic *efx,
2218                               struct efx_farch_filter_spec *spec)
2219 {
2220         /* If there's only one channel then disable RSS for non VF
2221          * traffic, thereby allowing VFs to use RSS when the PF can't.
2222          */
2223         spec->priority = EFX_FILTER_PRI_AUTO;
2224         spec->flags = (EFX_FILTER_FLAG_RX |
2225                        (efx->n_rx_channels > 1 ? EFX_FILTER_FLAG_RX_RSS : 0) |
2226                        (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
2227         spec->dmaq_id = 0;
2228 }
2229
2230 /* Build a filter entry and return its n-tuple key. */
2231 static u32 efx_farch_filter_build(efx_oword_t *filter,
2232                                   struct efx_farch_filter_spec *spec)
2233 {
2234         u32 data3;
2235
2236         switch (efx_farch_filter_spec_table_id(spec)) {
2237         case EFX_FARCH_FILTER_TABLE_RX_IP: {
2238                 bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
2239                                spec->type == EFX_FARCH_FILTER_UDP_WILD);
2240                 EFX_POPULATE_OWORD_7(
2241                         *filter,
2242                         FRF_BZ_RSS_EN,
2243                         !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2244                         FRF_BZ_SCATTER_EN,
2245                         !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2246                         FRF_BZ_TCP_UDP, is_udp,
2247                         FRF_BZ_RXQ_ID, spec->dmaq_id,
2248                         EFX_DWORD_2, spec->data[2],
2249                         EFX_DWORD_1, spec->data[1],
2250                         EFX_DWORD_0, spec->data[0]);
2251                 data3 = is_udp;
2252                 break;
2253         }
2254
2255         case EFX_FARCH_FILTER_TABLE_RX_MAC: {
2256                 bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2257                 EFX_POPULATE_OWORD_7(
2258                         *filter,
2259                         FRF_CZ_RMFT_RSS_EN,
2260                         !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2261                         FRF_CZ_RMFT_SCATTER_EN,
2262                         !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2263                         FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2264                         FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2265                         FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2266                         FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2267                         FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2268                 data3 = is_wild;
2269                 break;
2270         }
2271
2272         case EFX_FARCH_FILTER_TABLE_TX_MAC: {
2273                 bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2274                 EFX_POPULATE_OWORD_5(*filter,
2275                                      FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2276                                      FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2277                                      FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2278                                      FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2279                                      FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2280                 data3 = is_wild | spec->dmaq_id << 1;
2281                 break;
2282         }
2283
2284         default:
2285                 BUG();
2286         }
2287
2288         return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2289 }
2290
2291 static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
2292                                    const struct efx_farch_filter_spec *right)
2293 {
2294         if (left->type != right->type ||
2295             memcmp(left->data, right->data, sizeof(left->data)))
2296                 return false;
2297
2298         if (left->flags & EFX_FILTER_FLAG_TX &&
2299             left->dmaq_id != right->dmaq_id)
2300                 return false;
2301
2302         return true;
2303 }
2304
2305 /*
2306  * Construct/deconstruct external filter IDs.  At least the RX filter
2307  * IDs must be ordered by matching priority, for RX NFC semantics.
2308  *
2309  * Deconstruction needs to be robust against invalid IDs so that
2310  * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2311  * accept user-provided IDs.
2312  */
2313
2314 #define EFX_FARCH_FILTER_MATCH_PRI_COUNT        5
2315
2316 static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
2317         [EFX_FARCH_FILTER_TCP_FULL]     = 0,
2318         [EFX_FARCH_FILTER_UDP_FULL]     = 0,
2319         [EFX_FARCH_FILTER_TCP_WILD]     = 1,
2320         [EFX_FARCH_FILTER_UDP_WILD]     = 1,
2321         [EFX_FARCH_FILTER_MAC_FULL]     = 2,
2322         [EFX_FARCH_FILTER_MAC_WILD]     = 3,
2323         [EFX_FARCH_FILTER_UC_DEF]       = 4,
2324         [EFX_FARCH_FILTER_MC_DEF]       = 4,
2325 };
2326
2327 static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
2328         EFX_FARCH_FILTER_TABLE_RX_IP,   /* RX match pri 0 */
2329         EFX_FARCH_FILTER_TABLE_RX_IP,
2330         EFX_FARCH_FILTER_TABLE_RX_MAC,
2331         EFX_FARCH_FILTER_TABLE_RX_MAC,
2332         EFX_FARCH_FILTER_TABLE_RX_DEF,  /* RX match pri 4 */
2333         EFX_FARCH_FILTER_TABLE_TX_MAC,  /* TX match pri 0 */
2334         EFX_FARCH_FILTER_TABLE_TX_MAC,  /* TX match pri 1 */
2335 };
2336
2337 #define EFX_FARCH_FILTER_INDEX_WIDTH 13
2338 #define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2339
2340 static inline u32
2341 efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
2342                          unsigned int index)
2343 {
2344         unsigned int range;
2345
2346         range = efx_farch_filter_type_match_pri[spec->type];
2347         if (!(spec->flags & EFX_FILTER_FLAG_RX))
2348                 range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
2349
2350         return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
2351 }
2352
2353 static inline enum efx_farch_filter_table_id
2354 efx_farch_filter_id_table_id(u32 id)
2355 {
2356         unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
2357
2358         if (range < ARRAY_SIZE(efx_farch_filter_range_table))
2359                 return efx_farch_filter_range_table[range];
2360         else
2361                 return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
2362 }
2363
2364 static inline unsigned int efx_farch_filter_id_index(u32 id)
2365 {
2366         return id & EFX_FARCH_FILTER_INDEX_MASK;
2367 }
2368
2369 u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
2370 {
2371         struct efx_farch_filter_state *state = efx->filter_state;
2372         unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2373         enum efx_farch_filter_table_id table_id;
2374
2375         do {
2376                 table_id = efx_farch_filter_range_table[range];
2377                 if (state->table[table_id].size != 0)
2378                         return range << EFX_FARCH_FILTER_INDEX_WIDTH |
2379                                 state->table[table_id].size;
2380         } while (range--);
2381
2382         return 0;
2383 }
2384
2385 s32 efx_farch_filter_insert(struct efx_nic *efx,
2386                             struct efx_filter_spec *gen_spec,
2387                             bool replace_equal)
2388 {
2389         struct efx_farch_filter_state *state = efx->filter_state;
2390         struct efx_farch_filter_table *table;
2391         struct efx_farch_filter_spec spec;
2392         efx_oword_t filter;
2393         int rep_index, ins_index;
2394         unsigned int depth = 0;
2395         int rc;
2396
2397         rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
2398         if (rc)
2399                 return rc;
2400
2401         table = &state->table[efx_farch_filter_spec_table_id(&spec)];
2402         if (table->size == 0)
2403                 return -EINVAL;
2404
2405         netif_vdbg(efx, hw, efx->net_dev,
2406                    "%s: type %d search_limit=%d", __func__, spec.type,
2407                    table->search_limit[spec.type]);
2408
2409         if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2410                 /* One filter spec per type */
2411                 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
2412                 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
2413                              EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
2414                 rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
2415                 ins_index = rep_index;
2416
2417                 spin_lock_bh(&efx->filter_lock);
2418         } else {
2419                 /* Search concurrently for
2420                  * (1) a filter to be replaced (rep_index): any filter
2421                  *     with the same match values, up to the current
2422                  *     search depth for this type, and
2423                  * (2) the insertion point (ins_index): (1) or any
2424                  *     free slot before it or up to the maximum search
2425                  *     depth for this priority
2426                  * We fail if we cannot find (2).
2427                  *
2428                  * We can stop once either
2429                  * (a) we find (1), in which case we have definitely
2430                  *     found (2) as well; or
2431                  * (b) we have searched exhaustively for (1), and have
2432                  *     either found (2) or searched exhaustively for it
2433                  */
2434                 u32 key = efx_farch_filter_build(&filter, &spec);
2435                 unsigned int hash = efx_farch_filter_hash(key);
2436                 unsigned int incr = efx_farch_filter_increment(key);
2437                 unsigned int max_rep_depth = table->search_limit[spec.type];
2438                 unsigned int max_ins_depth =
2439                         spec.priority <= EFX_FILTER_PRI_HINT ?
2440                         EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2441                         EFX_FARCH_FILTER_CTL_SRCH_MAX;
2442                 unsigned int i = hash & (table->size - 1);
2443
2444                 ins_index = -1;
2445                 depth = 1;
2446
2447                 spin_lock_bh(&efx->filter_lock);
2448
2449                 for (;;) {
2450                         if (!test_bit(i, table->used_bitmap)) {
2451                                 if (ins_index < 0)
2452                                         ins_index = i;
2453                         } else if (efx_farch_filter_equal(&spec,
2454                                                           &table->spec[i])) {
2455                                 /* Case (a) */
2456                                 if (ins_index < 0)
2457                                         ins_index = i;
2458                                 rep_index = i;
2459                                 break;
2460                         }
2461
2462                         if (depth >= max_rep_depth &&
2463                             (ins_index >= 0 || depth >= max_ins_depth)) {
2464                                 /* Case (b) */
2465                                 if (ins_index < 0) {
2466                                         rc = -EBUSY;
2467                                         goto out;
2468                                 }
2469                                 rep_index = -1;
2470                                 break;
2471                         }
2472
2473                         i = (i + incr) & (table->size - 1);
2474                         ++depth;
2475                 }
2476         }
2477
2478         /* If we found a filter to be replaced, check whether we
2479          * should do so
2480          */
2481         if (rep_index >= 0) {
2482                 struct efx_farch_filter_spec *saved_spec =
2483                         &table->spec[rep_index];
2484
2485                 if (spec.priority == saved_spec->priority && !replace_equal) {
2486                         rc = -EEXIST;
2487                         goto out;
2488                 }
2489                 if (spec.priority < saved_spec->priority) {
2490                         rc = -EPERM;
2491                         goto out;
2492                 }
2493                 if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
2494                     saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
2495                         spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2496         }
2497
2498         /* Insert the filter */
2499         if (ins_index != rep_index) {
2500                 __set_bit(ins_index, table->used_bitmap);
2501                 ++table->used;
2502         }
2503         table->spec[ins_index] = spec;
2504
2505         if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2506                 efx_farch_filter_push_rx_config(efx);
2507         } else {
2508                 if (table->search_limit[spec.type] < depth) {
2509                         table->search_limit[spec.type] = depth;
2510                         if (spec.flags & EFX_FILTER_FLAG_TX)
2511                                 efx_farch_filter_push_tx_limits(efx);
2512                         else
2513                                 efx_farch_filter_push_rx_config(efx);
2514                 }
2515
2516                 efx_writeo(efx, &filter,
2517                            table->offset + table->step * ins_index);
2518
2519                 /* If we were able to replace a filter by inserting
2520                  * at a lower depth, clear the replaced filter
2521                  */
2522                 if (ins_index != rep_index && rep_index >= 0)
2523                         efx_farch_filter_table_clear_entry(efx, table,
2524                                                            rep_index);
2525         }
2526
2527         netif_vdbg(efx, hw, efx->net_dev,
2528                    "%s: filter type %d index %d rxq %u set",
2529                    __func__, spec.type, ins_index, spec.dmaq_id);
2530         rc = efx_farch_filter_make_id(&spec, ins_index);
2531
2532 out:
2533         spin_unlock_bh(&efx->filter_lock);
2534         return rc;
2535 }
2536
2537 static void
2538 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
2539                                    struct efx_farch_filter_table *table,
2540                                    unsigned int filter_idx)
2541 {
2542         static efx_oword_t filter;
2543
2544         EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2545         BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2546
2547         __clear_bit(filter_idx, table->used_bitmap);
2548         --table->used;
2549         memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2550
2551         efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
2552
2553         /* If this filter required a greater search depth than
2554          * any other, the search limit for its type can now be
2555          * decreased.  However, it is hard to determine that
2556          * unless the table has become completely empty - in
2557          * which case, all its search limits can be set to 0.
2558          */
2559         if (unlikely(table->used == 0)) {
2560                 memset(table->search_limit, 0, sizeof(table->search_limit));
2561                 if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
2562                         efx_farch_filter_push_tx_limits(efx);
2563                 else
2564                         efx_farch_filter_push_rx_config(efx);
2565         }
2566 }
2567
2568 static int efx_farch_filter_remove(struct efx_nic *efx,
2569                                    struct efx_farch_filter_table *table,
2570                                    unsigned int filter_idx,
2571                                    enum efx_filter_priority priority)
2572 {
2573         struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2574
2575         if (!test_bit(filter_idx, table->used_bitmap) ||
2576             spec->priority != priority)
2577                 return -ENOENT;
2578
2579         if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2580                 efx_farch_filter_init_rx_auto(efx, spec);
2581                 efx_farch_filter_push_rx_config(efx);
2582         } else {
2583                 efx_farch_filter_table_clear_entry(efx, table, filter_idx);
2584         }
2585
2586         return 0;
2587 }
2588
2589 int efx_farch_filter_remove_safe(struct efx_nic *efx,
2590                                  enum efx_filter_priority priority,
2591                                  u32 filter_id)
2592 {
2593         struct efx_farch_filter_state *state = efx->filter_state;
2594         enum efx_farch_filter_table_id table_id;
2595         struct efx_farch_filter_table *table;
2596         unsigned int filter_idx;
2597         struct efx_farch_filter_spec *spec;
2598         int rc;
2599
2600         table_id = efx_farch_filter_id_table_id(filter_id);
2601         if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2602                 return -ENOENT;
2603         table = &state->table[table_id];
2604
2605         filter_idx = efx_farch_filter_id_index(filter_id);
2606         if (filter_idx >= table->size)
2607                 return -ENOENT;
2608         spec = &table->spec[filter_idx];
2609
2610         spin_lock_bh(&efx->filter_lock);
2611         rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
2612         spin_unlock_bh(&efx->filter_lock);
2613
2614         return rc;
2615 }
2616
2617 int efx_farch_filter_get_safe(struct efx_nic *efx,
2618                               enum efx_filter_priority priority,
2619                               u32 filter_id, struct efx_filter_spec *spec_buf)
2620 {
2621         struct efx_farch_filter_state *state = efx->filter_state;
2622         enum efx_farch_filter_table_id table_id;
2623         struct efx_farch_filter_table *table;
2624         struct efx_farch_filter_spec *spec;
2625         unsigned int filter_idx;
2626         int rc;
2627
2628         table_id = efx_farch_filter_id_table_id(filter_id);
2629         if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2630                 return -ENOENT;
2631         table = &state->table[table_id];
2632
2633         filter_idx = efx_farch_filter_id_index(filter_id);
2634         if (filter_idx >= table->size)
2635                 return -ENOENT;
2636         spec = &table->spec[filter_idx];
2637
2638         spin_lock_bh(&efx->filter_lock);
2639
2640         if (test_bit(filter_idx, table->used_bitmap) &&
2641             spec->priority == priority) {
2642                 efx_farch_filter_to_gen_spec(spec_buf, spec);
2643                 rc = 0;
2644         } else {
2645                 rc = -ENOENT;
2646         }
2647
2648         spin_unlock_bh(&efx->filter_lock);
2649
2650         return rc;
2651 }
2652
2653 static void
2654 efx_farch_filter_table_clear(struct efx_nic *efx,
2655                              enum efx_farch_filter_table_id table_id,
2656                              enum efx_filter_priority priority)
2657 {
2658         struct efx_farch_filter_state *state = efx->filter_state;
2659         struct efx_farch_filter_table *table = &state->table[table_id];
2660         unsigned int filter_idx;
2661
2662         spin_lock_bh(&efx->filter_lock);
2663         for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2664                 if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
2665                         efx_farch_filter_remove(efx, table,
2666                                                 filter_idx, priority);
2667         }
2668         spin_unlock_bh(&efx->filter_lock);
2669 }
2670
2671 int efx_farch_filter_clear_rx(struct efx_nic *efx,
2672                                enum efx_filter_priority priority)
2673 {
2674         efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
2675                                      priority);
2676         efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
2677                                      priority);
2678         efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
2679                                      priority);
2680         return 0;
2681 }
2682
2683 u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
2684                                    enum efx_filter_priority priority)
2685 {
2686         struct efx_farch_filter_state *state = efx->filter_state;
2687         enum efx_farch_filter_table_id table_id;
2688         struct efx_farch_filter_table *table;
2689         unsigned int filter_idx;
2690         u32 count = 0;
2691
2692         spin_lock_bh(&efx->filter_lock);
2693
2694         for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2695              table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2696              table_id++) {
2697                 table = &state->table[table_id];
2698                 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2699                         if (test_bit(filter_idx, table->used_bitmap) &&
2700                             table->spec[filter_idx].priority == priority)
2701                                 ++count;
2702                 }
2703         }
2704
2705         spin_unlock_bh(&efx->filter_lock);
2706
2707         return count;
2708 }
2709
2710 s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
2711                                 enum efx_filter_priority priority,
2712                                 u32 *buf, u32 size)
2713 {
2714         struct efx_farch_filter_state *state = efx->filter_state;
2715         enum efx_farch_filter_table_id table_id;
2716         struct efx_farch_filter_table *table;
2717         unsigned int filter_idx;
2718         s32 count = 0;
2719
2720         spin_lock_bh(&efx->filter_lock);
2721
2722         for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2723              table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2724              table_id++) {
2725                 table = &state->table[table_id];
2726                 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2727                         if (test_bit(filter_idx, table->used_bitmap) &&
2728                             table->spec[filter_idx].priority == priority) {
2729                                 if (count == size) {
2730                                         count = -EMSGSIZE;
2731                                         goto out;
2732                                 }
2733                                 buf[count++] = efx_farch_filter_make_id(
2734                                         &table->spec[filter_idx], filter_idx);
2735                         }
2736                 }
2737         }
2738 out:
2739         spin_unlock_bh(&efx->filter_lock);
2740
2741         return count;
2742 }
2743
2744 /* Restore filter stater after reset */
2745 void efx_farch_filter_table_restore(struct efx_nic *efx)
2746 {
2747         struct efx_farch_filter_state *state = efx->filter_state;
2748         enum efx_farch_filter_table_id table_id;
2749         struct efx_farch_filter_table *table;
2750         efx_oword_t filter;
2751         unsigned int filter_idx;
2752
2753         spin_lock_bh(&efx->filter_lock);
2754
2755         for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2756                 table = &state->table[table_id];
2757
2758                 /* Check whether this is a regular register table */
2759                 if (table->step == 0)
2760                         continue;
2761
2762                 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2763                         if (!test_bit(filter_idx, table->used_bitmap))
2764                                 continue;
2765                         efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2766                         efx_writeo(efx, &filter,
2767                                    table->offset + table->step * filter_idx);
2768                 }
2769         }
2770
2771         efx_farch_filter_push_rx_config(efx);
2772         efx_farch_filter_push_tx_limits(efx);
2773
2774         spin_unlock_bh(&efx->filter_lock);
2775 }
2776
2777 void efx_farch_filter_table_remove(struct efx_nic *efx)
2778 {
2779         struct efx_farch_filter_state *state = efx->filter_state;
2780         enum efx_farch_filter_table_id table_id;
2781
2782         for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2783                 kfree(state->table[table_id].used_bitmap);
2784                 vfree(state->table[table_id].spec);
2785         }
2786         kfree(state);
2787 }
2788
2789 int efx_farch_filter_table_probe(struct efx_nic *efx)
2790 {
2791         struct efx_farch_filter_state *state;
2792         struct efx_farch_filter_table *table;
2793         unsigned table_id;
2794
2795         state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
2796         if (!state)
2797                 return -ENOMEM;
2798         efx->filter_state = state;
2799
2800         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2801                 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2802                 table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
2803                 table->offset = FR_BZ_RX_FILTER_TBL0;
2804                 table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2805                 table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2806         }
2807
2808         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
2809                 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
2810                 table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
2811                 table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
2812                 table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
2813                 table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
2814
2815                 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2816                 table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
2817                 table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
2818
2819                 table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2820                 table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
2821                 table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
2822                 table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
2823                 table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2824         }
2825
2826         for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2827                 table = &state->table[table_id];
2828                 if (table->size == 0)
2829                         continue;
2830                 table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2831                                              sizeof(unsigned long),
2832                                              GFP_KERNEL);
2833                 if (!table->used_bitmap)
2834                         goto fail;
2835                 table->spec = vzalloc(table->size * sizeof(*table->spec));
2836                 if (!table->spec)
2837                         goto fail;
2838         }
2839
2840         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2841         if (table->size) {
2842                 /* RX default filters must always exist */
2843                 struct efx_farch_filter_spec *spec;
2844                 unsigned i;
2845
2846                 for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
2847                         spec = &table->spec[i];
2848                         spec->type = EFX_FARCH_FILTER_UC_DEF + i;
2849                         efx_farch_filter_init_rx_auto(efx, spec);
2850                         __set_bit(i, table->used_bitmap);
2851                 }
2852         }
2853
2854         efx_farch_filter_push_rx_config(efx);
2855
2856         return 0;
2857
2858 fail:
2859         efx_farch_filter_table_remove(efx);
2860         return -ENOMEM;
2861 }
2862
2863 /* Update scatter enable flags for filters pointing to our own RX queues */
2864 void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
2865 {
2866         struct efx_farch_filter_state *state = efx->filter_state;
2867         enum efx_farch_filter_table_id table_id;
2868         struct efx_farch_filter_table *table;
2869         efx_oword_t filter;
2870         unsigned int filter_idx;
2871
2872         spin_lock_bh(&efx->filter_lock);
2873
2874         for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2875              table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2876              table_id++) {
2877                 table = &state->table[table_id];
2878
2879                 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2880                         if (!test_bit(filter_idx, table->used_bitmap) ||
2881                             table->spec[filter_idx].dmaq_id >=
2882                             efx->n_rx_channels)
2883                                 continue;
2884
2885                         if (efx->rx_scatter)
2886                                 table->spec[filter_idx].flags |=
2887                                         EFX_FILTER_FLAG_RX_SCATTER;
2888                         else
2889                                 table->spec[filter_idx].flags &=
2890                                         ~EFX_FILTER_FLAG_RX_SCATTER;
2891
2892                         if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
2893                                 /* Pushed by efx_farch_filter_push_rx_config() */
2894                                 continue;
2895
2896                         efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2897                         efx_writeo(efx, &filter,
2898                                    table->offset + table->step * filter_idx);
2899                 }
2900         }
2901
2902         efx_farch_filter_push_rx_config(efx);
2903
2904         spin_unlock_bh(&efx->filter_lock);
2905 }
2906
2907 #ifdef CONFIG_RFS_ACCEL
2908
2909 s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
2910                                 struct efx_filter_spec *gen_spec)
2911 {
2912         return efx_farch_filter_insert(efx, gen_spec, true);
2913 }
2914
2915 bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2916                                      unsigned int index)
2917 {
2918         struct efx_farch_filter_state *state = efx->filter_state;
2919         struct efx_farch_filter_table *table =
2920                 &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2921
2922         if (test_bit(index, table->used_bitmap) &&
2923             table->spec[index].priority == EFX_FILTER_PRI_HINT &&
2924             rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id,
2925                                 flow_id, index)) {
2926                 efx_farch_filter_table_clear_entry(efx, table, index);
2927                 return true;
2928         }
2929
2930         return false;
2931 }
2932
2933 #endif /* CONFIG_RFS_ACCEL */
2934
2935 void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
2936 {
2937         struct net_device *net_dev = efx->net_dev;
2938         struct netdev_hw_addr *ha;
2939         union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2940         u32 crc;
2941         int bit;
2942
2943         if (!efx_dev_registered(efx))
2944                 return;
2945
2946         netif_addr_lock_bh(net_dev);
2947
2948         efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2949
2950         /* Build multicast hash table */
2951         if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2952                 memset(mc_hash, 0xff, sizeof(*mc_hash));
2953         } else {
2954                 memset(mc_hash, 0x00, sizeof(*mc_hash));
2955                 netdev_for_each_mc_addr(ha, net_dev) {
2956                         crc = ether_crc_le(ETH_ALEN, ha->addr);
2957                         bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2958                         __set_bit_le(bit, mc_hash);
2959                 }
2960
2961                 /* Broadcast packets go through the multicast hash filter.
2962                  * ether_crc_le() of the broadcast address is 0xbe2612ff
2963                  * so we always add bit 0xff to the mask.
2964                  */
2965                 __set_bit_le(0xff, mc_hash);
2966         }
2967
2968         netif_addr_unlock_bh(net_dev);
2969 }