Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / net / ethernet / sfc / falcon.c
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include <linux/slab.h>
19 #include "net_driver.h"
20 #include "bitfield.h"
21 #include "efx.h"
22 #include "nic.h"
23 #include "farch_regs.h"
24 #include "io.h"
25 #include "phy.h"
26 #include "workarounds.h"
27 #include "selftest.h"
28 #include "mdio_10g.h"
29
30 /* Hardware control for SFC4000 (aka Falcon). */
31
32 /**************************************************************************
33  *
34  * NIC stats
35  *
36  **************************************************************************
37  */
38
39 #define FALCON_MAC_STATS_SIZE 0x100
40
41 #define XgRxOctets_offset 0x0
42 #define XgRxOctets_WIDTH 48
43 #define XgRxOctetsOK_offset 0x8
44 #define XgRxOctetsOK_WIDTH 48
45 #define XgRxPkts_offset 0x10
46 #define XgRxPkts_WIDTH 32
47 #define XgRxPktsOK_offset 0x14
48 #define XgRxPktsOK_WIDTH 32
49 #define XgRxBroadcastPkts_offset 0x18
50 #define XgRxBroadcastPkts_WIDTH 32
51 #define XgRxMulticastPkts_offset 0x1C
52 #define XgRxMulticastPkts_WIDTH 32
53 #define XgRxUnicastPkts_offset 0x20
54 #define XgRxUnicastPkts_WIDTH 32
55 #define XgRxUndersizePkts_offset 0x24
56 #define XgRxUndersizePkts_WIDTH 32
57 #define XgRxOversizePkts_offset 0x28
58 #define XgRxOversizePkts_WIDTH 32
59 #define XgRxJabberPkts_offset 0x2C
60 #define XgRxJabberPkts_WIDTH 32
61 #define XgRxUndersizeFCSerrorPkts_offset 0x30
62 #define XgRxUndersizeFCSerrorPkts_WIDTH 32
63 #define XgRxDropEvents_offset 0x34
64 #define XgRxDropEvents_WIDTH 32
65 #define XgRxFCSerrorPkts_offset 0x38
66 #define XgRxFCSerrorPkts_WIDTH 32
67 #define XgRxAlignError_offset 0x3C
68 #define XgRxAlignError_WIDTH 32
69 #define XgRxSymbolError_offset 0x40
70 #define XgRxSymbolError_WIDTH 32
71 #define XgRxInternalMACError_offset 0x44
72 #define XgRxInternalMACError_WIDTH 32
73 #define XgRxControlPkts_offset 0x48
74 #define XgRxControlPkts_WIDTH 32
75 #define XgRxPausePkts_offset 0x4C
76 #define XgRxPausePkts_WIDTH 32
77 #define XgRxPkts64Octets_offset 0x50
78 #define XgRxPkts64Octets_WIDTH 32
79 #define XgRxPkts65to127Octets_offset 0x54
80 #define XgRxPkts65to127Octets_WIDTH 32
81 #define XgRxPkts128to255Octets_offset 0x58
82 #define XgRxPkts128to255Octets_WIDTH 32
83 #define XgRxPkts256to511Octets_offset 0x5C
84 #define XgRxPkts256to511Octets_WIDTH 32
85 #define XgRxPkts512to1023Octets_offset 0x60
86 #define XgRxPkts512to1023Octets_WIDTH 32
87 #define XgRxPkts1024to15xxOctets_offset 0x64
88 #define XgRxPkts1024to15xxOctets_WIDTH 32
89 #define XgRxPkts15xxtoMaxOctets_offset 0x68
90 #define XgRxPkts15xxtoMaxOctets_WIDTH 32
91 #define XgRxLengthError_offset 0x6C
92 #define XgRxLengthError_WIDTH 32
93 #define XgTxPkts_offset 0x80
94 #define XgTxPkts_WIDTH 32
95 #define XgTxOctets_offset 0x88
96 #define XgTxOctets_WIDTH 48
97 #define XgTxMulticastPkts_offset 0x90
98 #define XgTxMulticastPkts_WIDTH 32
99 #define XgTxBroadcastPkts_offset 0x94
100 #define XgTxBroadcastPkts_WIDTH 32
101 #define XgTxUnicastPkts_offset 0x98
102 #define XgTxUnicastPkts_WIDTH 32
103 #define XgTxControlPkts_offset 0x9C
104 #define XgTxControlPkts_WIDTH 32
105 #define XgTxPausePkts_offset 0xA0
106 #define XgTxPausePkts_WIDTH 32
107 #define XgTxPkts64Octets_offset 0xA4
108 #define XgTxPkts64Octets_WIDTH 32
109 #define XgTxPkts65to127Octets_offset 0xA8
110 #define XgTxPkts65to127Octets_WIDTH 32
111 #define XgTxPkts128to255Octets_offset 0xAC
112 #define XgTxPkts128to255Octets_WIDTH 32
113 #define XgTxPkts256to511Octets_offset 0xB0
114 #define XgTxPkts256to511Octets_WIDTH 32
115 #define XgTxPkts512to1023Octets_offset 0xB4
116 #define XgTxPkts512to1023Octets_WIDTH 32
117 #define XgTxPkts1024to15xxOctets_offset 0xB8
118 #define XgTxPkts1024to15xxOctets_WIDTH 32
119 #define XgTxPkts1519toMaxOctets_offset 0xBC
120 #define XgTxPkts1519toMaxOctets_WIDTH 32
121 #define XgTxUndersizePkts_offset 0xC0
122 #define XgTxUndersizePkts_WIDTH 32
123 #define XgTxOversizePkts_offset 0xC4
124 #define XgTxOversizePkts_WIDTH 32
125 #define XgTxNonTcpUdpPkt_offset 0xC8
126 #define XgTxNonTcpUdpPkt_WIDTH 16
127 #define XgTxMacSrcErrPkt_offset 0xCC
128 #define XgTxMacSrcErrPkt_WIDTH 16
129 #define XgTxIpSrcErrPkt_offset 0xD0
130 #define XgTxIpSrcErrPkt_WIDTH 16
131 #define XgDmaDone_offset 0xD4
132 #define XgDmaDone_WIDTH 32
133
134 #define FALCON_XMAC_STATS_DMA_FLAG(efx)                         \
135         (*(u32 *)((efx)->stats_buffer.addr + XgDmaDone_offset))
136
137 #define FALCON_DMA_STAT(ext_name, hw_name)                              \
138         [FALCON_STAT_ ## ext_name] =                                    \
139         { #ext_name,                                                    \
140           /* 48-bit stats are zero-padded to 64 on DMA */               \
141           hw_name ## _ ## WIDTH == 48 ? 64 : hw_name ## _ ## WIDTH,     \
142           hw_name ## _ ## offset }
143 #define FALCON_OTHER_STAT(ext_name)                                     \
144         [FALCON_STAT_ ## ext_name] = { #ext_name, 0, 0 }
145 #define GENERIC_SW_STAT(ext_name)                               \
146         [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
147
148 static const struct efx_hw_stat_desc falcon_stat_desc[FALCON_STAT_COUNT] = {
149         FALCON_DMA_STAT(tx_bytes, XgTxOctets),
150         FALCON_DMA_STAT(tx_packets, XgTxPkts),
151         FALCON_DMA_STAT(tx_pause, XgTxPausePkts),
152         FALCON_DMA_STAT(tx_control, XgTxControlPkts),
153         FALCON_DMA_STAT(tx_unicast, XgTxUnicastPkts),
154         FALCON_DMA_STAT(tx_multicast, XgTxMulticastPkts),
155         FALCON_DMA_STAT(tx_broadcast, XgTxBroadcastPkts),
156         FALCON_DMA_STAT(tx_lt64, XgTxUndersizePkts),
157         FALCON_DMA_STAT(tx_64, XgTxPkts64Octets),
158         FALCON_DMA_STAT(tx_65_to_127, XgTxPkts65to127Octets),
159         FALCON_DMA_STAT(tx_128_to_255, XgTxPkts128to255Octets),
160         FALCON_DMA_STAT(tx_256_to_511, XgTxPkts256to511Octets),
161         FALCON_DMA_STAT(tx_512_to_1023, XgTxPkts512to1023Octets),
162         FALCON_DMA_STAT(tx_1024_to_15xx, XgTxPkts1024to15xxOctets),
163         FALCON_DMA_STAT(tx_15xx_to_jumbo, XgTxPkts1519toMaxOctets),
164         FALCON_DMA_STAT(tx_gtjumbo, XgTxOversizePkts),
165         FALCON_DMA_STAT(tx_non_tcpudp, XgTxNonTcpUdpPkt),
166         FALCON_DMA_STAT(tx_mac_src_error, XgTxMacSrcErrPkt),
167         FALCON_DMA_STAT(tx_ip_src_error, XgTxIpSrcErrPkt),
168         FALCON_DMA_STAT(rx_bytes, XgRxOctets),
169         FALCON_DMA_STAT(rx_good_bytes, XgRxOctetsOK),
170         FALCON_OTHER_STAT(rx_bad_bytes),
171         FALCON_DMA_STAT(rx_packets, XgRxPkts),
172         FALCON_DMA_STAT(rx_good, XgRxPktsOK),
173         FALCON_DMA_STAT(rx_bad, XgRxFCSerrorPkts),
174         FALCON_DMA_STAT(rx_pause, XgRxPausePkts),
175         FALCON_DMA_STAT(rx_control, XgRxControlPkts),
176         FALCON_DMA_STAT(rx_unicast, XgRxUnicastPkts),
177         FALCON_DMA_STAT(rx_multicast, XgRxMulticastPkts),
178         FALCON_DMA_STAT(rx_broadcast, XgRxBroadcastPkts),
179         FALCON_DMA_STAT(rx_lt64, XgRxUndersizePkts),
180         FALCON_DMA_STAT(rx_64, XgRxPkts64Octets),
181         FALCON_DMA_STAT(rx_65_to_127, XgRxPkts65to127Octets),
182         FALCON_DMA_STAT(rx_128_to_255, XgRxPkts128to255Octets),
183         FALCON_DMA_STAT(rx_256_to_511, XgRxPkts256to511Octets),
184         FALCON_DMA_STAT(rx_512_to_1023, XgRxPkts512to1023Octets),
185         FALCON_DMA_STAT(rx_1024_to_15xx, XgRxPkts1024to15xxOctets),
186         FALCON_DMA_STAT(rx_15xx_to_jumbo, XgRxPkts15xxtoMaxOctets),
187         FALCON_DMA_STAT(rx_gtjumbo, XgRxOversizePkts),
188         FALCON_DMA_STAT(rx_bad_lt64, XgRxUndersizeFCSerrorPkts),
189         FALCON_DMA_STAT(rx_bad_gtjumbo, XgRxJabberPkts),
190         FALCON_DMA_STAT(rx_overflow, XgRxDropEvents),
191         FALCON_DMA_STAT(rx_symbol_error, XgRxSymbolError),
192         FALCON_DMA_STAT(rx_align_error, XgRxAlignError),
193         FALCON_DMA_STAT(rx_length_error, XgRxLengthError),
194         FALCON_DMA_STAT(rx_internal_error, XgRxInternalMACError),
195         FALCON_OTHER_STAT(rx_nodesc_drop_cnt),
196         GENERIC_SW_STAT(rx_nodesc_trunc),
197         GENERIC_SW_STAT(rx_noskb_drops),
198 };
199 static const unsigned long falcon_stat_mask[] = {
200         [0 ... BITS_TO_LONGS(FALCON_STAT_COUNT) - 1] = ~0UL,
201 };
202
203 /**************************************************************************
204  *
205  * Basic SPI command set and bit definitions
206  *
207  *************************************************************************/
208
209 #define SPI_WRSR 0x01           /* Write status register */
210 #define SPI_WRITE 0x02          /* Write data to memory array */
211 #define SPI_READ 0x03           /* Read data from memory array */
212 #define SPI_WRDI 0x04           /* Reset write enable latch */
213 #define SPI_RDSR 0x05           /* Read status register */
214 #define SPI_WREN 0x06           /* Set write enable latch */
215 #define SPI_SST_EWSR 0x50       /* SST: Enable write to status register */
216
217 #define SPI_STATUS_WPEN 0x80    /* Write-protect pin enabled */
218 #define SPI_STATUS_BP2 0x10     /* Block protection bit 2 */
219 #define SPI_STATUS_BP1 0x08     /* Block protection bit 1 */
220 #define SPI_STATUS_BP0 0x04     /* Block protection bit 0 */
221 #define SPI_STATUS_WEN 0x02     /* State of the write enable latch */
222 #define SPI_STATUS_NRDY 0x01    /* Device busy flag */
223
224 /**************************************************************************
225  *
226  * Non-volatile memory layout
227  *
228  **************************************************************************
229  */
230
231 /* SFC4000 flash is partitioned into:
232  *     0-0x400       chip and board config (see struct falcon_nvconfig)
233  *     0x400-0x8000  unused (or may contain VPD if EEPROM not present)
234  *     0x8000-end    boot code (mapped to PCI expansion ROM)
235  * SFC4000 small EEPROM (size < 0x400) is used for VPD only.
236  * SFC4000 large EEPROM (size >= 0x400) is partitioned into:
237  *     0-0x400       chip and board config
238  *     configurable  VPD
239  *     0x800-0x1800  boot config
240  * Aside from the chip and board config, all of these are optional and may
241  * be absent or truncated depending on the devices used.
242  */
243 #define FALCON_NVCONFIG_END 0x400U
244 #define FALCON_FLASH_BOOTCODE_START 0x8000U
245 #define FALCON_EEPROM_BOOTCONFIG_START 0x800U
246 #define FALCON_EEPROM_BOOTCONFIG_END 0x1800U
247
248 /* Board configuration v2 (v1 is obsolete; later versions are compatible) */
249 struct falcon_nvconfig_board_v2 {
250         __le16 nports;
251         u8 port0_phy_addr;
252         u8 port0_phy_type;
253         u8 port1_phy_addr;
254         u8 port1_phy_type;
255         __le16 asic_sub_revision;
256         __le16 board_revision;
257 } __packed;
258
259 /* Board configuration v3 extra information */
260 struct falcon_nvconfig_board_v3 {
261         __le32 spi_device_type[2];
262 } __packed;
263
264 /* Bit numbers for spi_device_type */
265 #define SPI_DEV_TYPE_SIZE_LBN 0
266 #define SPI_DEV_TYPE_SIZE_WIDTH 5
267 #define SPI_DEV_TYPE_ADDR_LEN_LBN 6
268 #define SPI_DEV_TYPE_ADDR_LEN_WIDTH 2
269 #define SPI_DEV_TYPE_ERASE_CMD_LBN 8
270 #define SPI_DEV_TYPE_ERASE_CMD_WIDTH 8
271 #define SPI_DEV_TYPE_ERASE_SIZE_LBN 16
272 #define SPI_DEV_TYPE_ERASE_SIZE_WIDTH 5
273 #define SPI_DEV_TYPE_BLOCK_SIZE_LBN 24
274 #define SPI_DEV_TYPE_BLOCK_SIZE_WIDTH 5
275 #define SPI_DEV_TYPE_FIELD(type, field)                                 \
276         (((type) >> EFX_LOW_BIT(field)) & EFX_MASK32(EFX_WIDTH(field)))
277
278 #define FALCON_NVCONFIG_OFFSET 0x300
279
280 #define FALCON_NVCONFIG_BOARD_MAGIC_NUM 0xFA1C
281 struct falcon_nvconfig {
282         efx_oword_t ee_vpd_cfg_reg;                     /* 0x300 */
283         u8 mac_address[2][8];                   /* 0x310 */
284         efx_oword_t pcie_sd_ctl0123_reg;                /* 0x320 */
285         efx_oword_t pcie_sd_ctl45_reg;                  /* 0x330 */
286         efx_oword_t pcie_pcs_ctl_stat_reg;              /* 0x340 */
287         efx_oword_t hw_init_reg;                        /* 0x350 */
288         efx_oword_t nic_stat_reg;                       /* 0x360 */
289         efx_oword_t glb_ctl_reg;                        /* 0x370 */
290         efx_oword_t srm_cfg_reg;                        /* 0x380 */
291         efx_oword_t spare_reg;                          /* 0x390 */
292         __le16 board_magic_num;                 /* 0x3A0 */
293         __le16 board_struct_ver;
294         __le16 board_checksum;
295         struct falcon_nvconfig_board_v2 board_v2;
296         efx_oword_t ee_base_page_reg;                   /* 0x3B0 */
297         struct falcon_nvconfig_board_v3 board_v3;       /* 0x3C0 */
298 } __packed;
299
300 /*************************************************************************/
301
302 static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method);
303 static void falcon_reconfigure_mac_wrapper(struct efx_nic *efx);
304
305 static const unsigned int
306 /* "Large" EEPROM device: Atmel AT25640 or similar
307  * 8 KB, 16-bit address, 32 B write block */
308 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
309                      | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
310                      | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
311 /* Default flash device: Atmel AT25F1024
312  * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
313 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
314                       | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
315                       | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
316                       | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
317                       | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
318
319 /**************************************************************************
320  *
321  * I2C bus - this is a bit-bashing interface using GPIO pins
322  * Note that it uses the output enables to tristate the outputs
323  * SDA is the data pin and SCL is the clock
324  *
325  **************************************************************************
326  */
327 static void falcon_setsda(void *data, int state)
328 {
329         struct efx_nic *efx = (struct efx_nic *)data;
330         efx_oword_t reg;
331
332         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
333         EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
334         efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
335 }
336
337 static void falcon_setscl(void *data, int state)
338 {
339         struct efx_nic *efx = (struct efx_nic *)data;
340         efx_oword_t reg;
341
342         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
343         EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
344         efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
345 }
346
347 static int falcon_getsda(void *data)
348 {
349         struct efx_nic *efx = (struct efx_nic *)data;
350         efx_oword_t reg;
351
352         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
353         return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
354 }
355
356 static int falcon_getscl(void *data)
357 {
358         struct efx_nic *efx = (struct efx_nic *)data;
359         efx_oword_t reg;
360
361         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
362         return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
363 }
364
365 static const struct i2c_algo_bit_data falcon_i2c_bit_operations = {
366         .setsda         = falcon_setsda,
367         .setscl         = falcon_setscl,
368         .getsda         = falcon_getsda,
369         .getscl         = falcon_getscl,
370         .udelay         = 5,
371         /* Wait up to 50 ms for slave to let us pull SCL high */
372         .timeout        = DIV_ROUND_UP(HZ, 20),
373 };
374
375 static void falcon_push_irq_moderation(struct efx_channel *channel)
376 {
377         efx_dword_t timer_cmd;
378         struct efx_nic *efx = channel->efx;
379
380         /* Set timer register */
381         if (channel->irq_moderation) {
382                 EFX_POPULATE_DWORD_2(timer_cmd,
383                                      FRF_AB_TC_TIMER_MODE,
384                                      FFE_BB_TIMER_MODE_INT_HLDOFF,
385                                      FRF_AB_TC_TIMER_VAL,
386                                      channel->irq_moderation - 1);
387         } else {
388                 EFX_POPULATE_DWORD_2(timer_cmd,
389                                      FRF_AB_TC_TIMER_MODE,
390                                      FFE_BB_TIMER_MODE_DIS,
391                                      FRF_AB_TC_TIMER_VAL, 0);
392         }
393         BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
394         efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
395                                channel->channel);
396 }
397
398 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);
399
400 static void falcon_prepare_flush(struct efx_nic *efx)
401 {
402         falcon_deconfigure_mac_wrapper(efx);
403
404         /* Wait for the tx and rx fifo's to get to the next packet boundary
405          * (~1ms without back-pressure), then to drain the remainder of the
406          * fifo's at data path speeds (negligible), with a healthy margin. */
407         msleep(10);
408 }
409
410 /* Acknowledge a legacy interrupt from Falcon
411  *
412  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
413  *
414  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
415  * BIU. Interrupt acknowledge is read sensitive so must write instead
416  * (then read to ensure the BIU collector is flushed)
417  *
418  * NB most hardware supports MSI interrupts
419  */
420 static inline void falcon_irq_ack_a1(struct efx_nic *efx)
421 {
422         efx_dword_t reg;
423
424         EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
425         efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
426         efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
427 }
428
429 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
430 {
431         struct efx_nic *efx = dev_id;
432         efx_oword_t *int_ker = efx->irq_status.addr;
433         int syserr;
434         int queues;
435
436         /* Check to see if this is our interrupt.  If it isn't, we
437          * exit without having touched the hardware.
438          */
439         if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
440                 netif_vdbg(efx, intr, efx->net_dev,
441                            "IRQ %d on CPU %d not for me\n", irq,
442                            raw_smp_processor_id());
443                 return IRQ_NONE;
444         }
445         efx->last_irq_cpu = raw_smp_processor_id();
446         netif_vdbg(efx, intr, efx->net_dev,
447                    "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
448                    irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
449
450         if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
451                 return IRQ_HANDLED;
452
453         /* Check to see if we have a serious error condition */
454         syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
455         if (unlikely(syserr))
456                 return efx_farch_fatal_interrupt(efx);
457
458         /* Determine interrupting queues, clear interrupt status
459          * register and acknowledge the device interrupt.
460          */
461         BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS);
462         queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
463         EFX_ZERO_OWORD(*int_ker);
464         wmb(); /* Ensure the vector is cleared before interrupt ack */
465         falcon_irq_ack_a1(efx);
466
467         if (queues & 1)
468                 efx_schedule_channel_irq(efx_get_channel(efx, 0));
469         if (queues & 2)
470                 efx_schedule_channel_irq(efx_get_channel(efx, 1));
471         return IRQ_HANDLED;
472 }
473
474 /**************************************************************************
475  *
476  * RSS
477  *
478  **************************************************************************
479  */
480
481 static void falcon_b0_rx_push_rss_config(struct efx_nic *efx)
482 {
483         efx_oword_t temp;
484
485         /* Set hash key for IPv4 */
486         memcpy(&temp, efx->rx_hash_key, sizeof(temp));
487         efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
488
489         efx_farch_rx_push_indir_table(efx);
490 }
491
492 /**************************************************************************
493  *
494  * EEPROM/flash
495  *
496  **************************************************************************
497  */
498
499 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
500
501 static int falcon_spi_poll(struct efx_nic *efx)
502 {
503         efx_oword_t reg;
504         efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
505         return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
506 }
507
508 /* Wait for SPI command completion */
509 static int falcon_spi_wait(struct efx_nic *efx)
510 {
511         /* Most commands will finish quickly, so we start polling at
512          * very short intervals.  Sometimes the command may have to
513          * wait for VPD or expansion ROM access outside of our
514          * control, so we allow up to 100 ms. */
515         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
516         int i;
517
518         for (i = 0; i < 10; i++) {
519                 if (!falcon_spi_poll(efx))
520                         return 0;
521                 udelay(10);
522         }
523
524         for (;;) {
525                 if (!falcon_spi_poll(efx))
526                         return 0;
527                 if (time_after_eq(jiffies, timeout)) {
528                         netif_err(efx, hw, efx->net_dev,
529                                   "timed out waiting for SPI\n");
530                         return -ETIMEDOUT;
531                 }
532                 schedule_timeout_uninterruptible(1);
533         }
534 }
535
536 static int
537 falcon_spi_cmd(struct efx_nic *efx, const struct falcon_spi_device *spi,
538                unsigned int command, int address,
539                const void *in, void *out, size_t len)
540 {
541         bool addressed = (address >= 0);
542         bool reading = (out != NULL);
543         efx_oword_t reg;
544         int rc;
545
546         /* Input validation */
547         if (len > FALCON_SPI_MAX_LEN)
548                 return -EINVAL;
549
550         /* Check that previous command is not still running */
551         rc = falcon_spi_poll(efx);
552         if (rc)
553                 return rc;
554
555         /* Program address register, if we have an address */
556         if (addressed) {
557                 EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
558                 efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
559         }
560
561         /* Program data register, if we have data */
562         if (in != NULL) {
563                 memcpy(&reg, in, len);
564                 efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
565         }
566
567         /* Issue read/write command */
568         EFX_POPULATE_OWORD_7(reg,
569                              FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
570                              FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
571                              FRF_AB_EE_SPI_HCMD_DABCNT, len,
572                              FRF_AB_EE_SPI_HCMD_READ, reading,
573                              FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
574                              FRF_AB_EE_SPI_HCMD_ADBCNT,
575                              (addressed ? spi->addr_len : 0),
576                              FRF_AB_EE_SPI_HCMD_ENC, command);
577         efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
578
579         /* Wait for read/write to complete */
580         rc = falcon_spi_wait(efx);
581         if (rc)
582                 return rc;
583
584         /* Read data */
585         if (out != NULL) {
586                 efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
587                 memcpy(out, &reg, len);
588         }
589
590         return 0;
591 }
592
593 static inline u8
594 falcon_spi_munge_command(const struct falcon_spi_device *spi,
595                          const u8 command, const unsigned int address)
596 {
597         return command | (((address >> 8) & spi->munge_address) << 3);
598 }
599
600 static int
601 falcon_spi_read(struct efx_nic *efx, const struct falcon_spi_device *spi,
602                 loff_t start, size_t len, size_t *retlen, u8 *buffer)
603 {
604         size_t block_len, pos = 0;
605         unsigned int command;
606         int rc = 0;
607
608         while (pos < len) {
609                 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
610
611                 command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
612                 rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
613                                     buffer + pos, block_len);
614                 if (rc)
615                         break;
616                 pos += block_len;
617
618                 /* Avoid locking up the system */
619                 cond_resched();
620                 if (signal_pending(current)) {
621                         rc = -EINTR;
622                         break;
623                 }
624         }
625
626         if (retlen)
627                 *retlen = pos;
628         return rc;
629 }
630
631 #ifdef CONFIG_SFC_MTD
632
633 struct falcon_mtd_partition {
634         struct efx_mtd_partition common;
635         const struct falcon_spi_device *spi;
636         size_t offset;
637 };
638
639 #define to_falcon_mtd_partition(mtd)                            \
640         container_of(mtd, struct falcon_mtd_partition, common.mtd)
641
642 static size_t
643 falcon_spi_write_limit(const struct falcon_spi_device *spi, size_t start)
644 {
645         return min(FALCON_SPI_MAX_LEN,
646                    (spi->block_size - (start & (spi->block_size - 1))));
647 }
648
649 /* Wait up to 10 ms for buffered write completion */
650 static int
651 falcon_spi_wait_write(struct efx_nic *efx, const struct falcon_spi_device *spi)
652 {
653         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
654         u8 status;
655         int rc;
656
657         for (;;) {
658                 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
659                                     &status, sizeof(status));
660                 if (rc)
661                         return rc;
662                 if (!(status & SPI_STATUS_NRDY))
663                         return 0;
664                 if (time_after_eq(jiffies, timeout)) {
665                         netif_err(efx, hw, efx->net_dev,
666                                   "SPI write timeout on device %d"
667                                   " last status=0x%02x\n",
668                                   spi->device_id, status);
669                         return -ETIMEDOUT;
670                 }
671                 schedule_timeout_uninterruptible(1);
672         }
673 }
674
675 static int
676 falcon_spi_write(struct efx_nic *efx, const struct falcon_spi_device *spi,
677                  loff_t start, size_t len, size_t *retlen, const u8 *buffer)
678 {
679         u8 verify_buffer[FALCON_SPI_MAX_LEN];
680         size_t block_len, pos = 0;
681         unsigned int command;
682         int rc = 0;
683
684         while (pos < len) {
685                 rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
686                 if (rc)
687                         break;
688
689                 block_len = min(len - pos,
690                                 falcon_spi_write_limit(spi, start + pos));
691                 command = falcon_spi_munge_command(spi, SPI_WRITE, start + pos);
692                 rc = falcon_spi_cmd(efx, spi, command, start + pos,
693                                     buffer + pos, NULL, block_len);
694                 if (rc)
695                         break;
696
697                 rc = falcon_spi_wait_write(efx, spi);
698                 if (rc)
699                         break;
700
701                 command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
702                 rc = falcon_spi_cmd(efx, spi, command, start + pos,
703                                     NULL, verify_buffer, block_len);
704                 if (memcmp(verify_buffer, buffer + pos, block_len)) {
705                         rc = -EIO;
706                         break;
707                 }
708
709                 pos += block_len;
710
711                 /* Avoid locking up the system */
712                 cond_resched();
713                 if (signal_pending(current)) {
714                         rc = -EINTR;
715                         break;
716                 }
717         }
718
719         if (retlen)
720                 *retlen = pos;
721         return rc;
722 }
723
724 static int
725 falcon_spi_slow_wait(struct falcon_mtd_partition *part, bool uninterruptible)
726 {
727         const struct falcon_spi_device *spi = part->spi;
728         struct efx_nic *efx = part->common.mtd.priv;
729         u8 status;
730         int rc, i;
731
732         /* Wait up to 4s for flash/EEPROM to finish a slow operation. */
733         for (i = 0; i < 40; i++) {
734                 __set_current_state(uninterruptible ?
735                                     TASK_UNINTERRUPTIBLE : TASK_INTERRUPTIBLE);
736                 schedule_timeout(HZ / 10);
737                 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
738                                     &status, sizeof(status));
739                 if (rc)
740                         return rc;
741                 if (!(status & SPI_STATUS_NRDY))
742                         return 0;
743                 if (signal_pending(current))
744                         return -EINTR;
745         }
746         pr_err("%s: timed out waiting for %s\n",
747                part->common.name, part->common.dev_type_name);
748         return -ETIMEDOUT;
749 }
750
751 static int
752 falcon_spi_unlock(struct efx_nic *efx, const struct falcon_spi_device *spi)
753 {
754         const u8 unlock_mask = (SPI_STATUS_BP2 | SPI_STATUS_BP1 |
755                                 SPI_STATUS_BP0);
756         u8 status;
757         int rc;
758
759         rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
760                             &status, sizeof(status));
761         if (rc)
762                 return rc;
763
764         if (!(status & unlock_mask))
765                 return 0; /* already unlocked */
766
767         rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
768         if (rc)
769                 return rc;
770         rc = falcon_spi_cmd(efx, spi, SPI_SST_EWSR, -1, NULL, NULL, 0);
771         if (rc)
772                 return rc;
773
774         status &= ~unlock_mask;
775         rc = falcon_spi_cmd(efx, spi, SPI_WRSR, -1, &status,
776                             NULL, sizeof(status));
777         if (rc)
778                 return rc;
779         rc = falcon_spi_wait_write(efx, spi);
780         if (rc)
781                 return rc;
782
783         return 0;
784 }
785
786 #define FALCON_SPI_VERIFY_BUF_LEN 16
787
788 static int
789 falcon_spi_erase(struct falcon_mtd_partition *part, loff_t start, size_t len)
790 {
791         const struct falcon_spi_device *spi = part->spi;
792         struct efx_nic *efx = part->common.mtd.priv;
793         unsigned pos, block_len;
794         u8 empty[FALCON_SPI_VERIFY_BUF_LEN];
795         u8 buffer[FALCON_SPI_VERIFY_BUF_LEN];
796         int rc;
797
798         if (len != spi->erase_size)
799                 return -EINVAL;
800
801         if (spi->erase_command == 0)
802                 return -EOPNOTSUPP;
803
804         rc = falcon_spi_unlock(efx, spi);
805         if (rc)
806                 return rc;
807         rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
808         if (rc)
809                 return rc;
810         rc = falcon_spi_cmd(efx, spi, spi->erase_command, start, NULL,
811                             NULL, 0);
812         if (rc)
813                 return rc;
814         rc = falcon_spi_slow_wait(part, false);
815
816         /* Verify the entire region has been wiped */
817         memset(empty, 0xff, sizeof(empty));
818         for (pos = 0; pos < len; pos += block_len) {
819                 block_len = min(len - pos, sizeof(buffer));
820                 rc = falcon_spi_read(efx, spi, start + pos, block_len,
821                                      NULL, buffer);
822                 if (rc)
823                         return rc;
824                 if (memcmp(empty, buffer, block_len))
825                         return -EIO;
826
827                 /* Avoid locking up the system */
828                 cond_resched();
829                 if (signal_pending(current))
830                         return -EINTR;
831         }
832
833         return rc;
834 }
835
836 static void falcon_mtd_rename(struct efx_mtd_partition *part)
837 {
838         struct efx_nic *efx = part->mtd.priv;
839
840         snprintf(part->name, sizeof(part->name), "%s %s",
841                  efx->name, part->type_name);
842 }
843
844 static int falcon_mtd_read(struct mtd_info *mtd, loff_t start,
845                            size_t len, size_t *retlen, u8 *buffer)
846 {
847         struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
848         struct efx_nic *efx = mtd->priv;
849         struct falcon_nic_data *nic_data = efx->nic_data;
850         int rc;
851
852         rc = mutex_lock_interruptible(&nic_data->spi_lock);
853         if (rc)
854                 return rc;
855         rc = falcon_spi_read(efx, part->spi, part->offset + start,
856                              len, retlen, buffer);
857         mutex_unlock(&nic_data->spi_lock);
858         return rc;
859 }
860
861 static int falcon_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
862 {
863         struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
864         struct efx_nic *efx = mtd->priv;
865         struct falcon_nic_data *nic_data = efx->nic_data;
866         int rc;
867
868         rc = mutex_lock_interruptible(&nic_data->spi_lock);
869         if (rc)
870                 return rc;
871         rc = falcon_spi_erase(part, part->offset + start, len);
872         mutex_unlock(&nic_data->spi_lock);
873         return rc;
874 }
875
876 static int falcon_mtd_write(struct mtd_info *mtd, loff_t start,
877                             size_t len, size_t *retlen, const u8 *buffer)
878 {
879         struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
880         struct efx_nic *efx = mtd->priv;
881         struct falcon_nic_data *nic_data = efx->nic_data;
882         int rc;
883
884         rc = mutex_lock_interruptible(&nic_data->spi_lock);
885         if (rc)
886                 return rc;
887         rc = falcon_spi_write(efx, part->spi, part->offset + start,
888                               len, retlen, buffer);
889         mutex_unlock(&nic_data->spi_lock);
890         return rc;
891 }
892
893 static int falcon_mtd_sync(struct mtd_info *mtd)
894 {
895         struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
896         struct efx_nic *efx = mtd->priv;
897         struct falcon_nic_data *nic_data = efx->nic_data;
898         int rc;
899
900         mutex_lock(&nic_data->spi_lock);
901         rc = falcon_spi_slow_wait(part, true);
902         mutex_unlock(&nic_data->spi_lock);
903         return rc;
904 }
905
906 static int falcon_mtd_probe(struct efx_nic *efx)
907 {
908         struct falcon_nic_data *nic_data = efx->nic_data;
909         struct falcon_mtd_partition *parts;
910         struct falcon_spi_device *spi;
911         size_t n_parts;
912         int rc = -ENODEV;
913
914         ASSERT_RTNL();
915
916         /* Allocate space for maximum number of partitions */
917         parts = kcalloc(2, sizeof(*parts), GFP_KERNEL);
918         if (!parts)
919                 return -ENOMEM;
920         n_parts = 0;
921
922         spi = &nic_data->spi_flash;
923         if (falcon_spi_present(spi) && spi->size > FALCON_FLASH_BOOTCODE_START) {
924                 parts[n_parts].spi = spi;
925                 parts[n_parts].offset = FALCON_FLASH_BOOTCODE_START;
926                 parts[n_parts].common.dev_type_name = "flash";
927                 parts[n_parts].common.type_name = "sfc_flash_bootrom";
928                 parts[n_parts].common.mtd.type = MTD_NORFLASH;
929                 parts[n_parts].common.mtd.flags = MTD_CAP_NORFLASH;
930                 parts[n_parts].common.mtd.size = spi->size - FALCON_FLASH_BOOTCODE_START;
931                 parts[n_parts].common.mtd.erasesize = spi->erase_size;
932                 n_parts++;
933         }
934
935         spi = &nic_data->spi_eeprom;
936         if (falcon_spi_present(spi) && spi->size > FALCON_EEPROM_BOOTCONFIG_START) {
937                 parts[n_parts].spi = spi;
938                 parts[n_parts].offset = FALCON_EEPROM_BOOTCONFIG_START;
939                 parts[n_parts].common.dev_type_name = "EEPROM";
940                 parts[n_parts].common.type_name = "sfc_bootconfig";
941                 parts[n_parts].common.mtd.type = MTD_RAM;
942                 parts[n_parts].common.mtd.flags = MTD_CAP_RAM;
943                 parts[n_parts].common.mtd.size =
944                         min(spi->size, FALCON_EEPROM_BOOTCONFIG_END) -
945                         FALCON_EEPROM_BOOTCONFIG_START;
946                 parts[n_parts].common.mtd.erasesize = spi->erase_size;
947                 n_parts++;
948         }
949
950         rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
951         if (rc)
952                 kfree(parts);
953         return rc;
954 }
955
956 #endif /* CONFIG_SFC_MTD */
957
958 /**************************************************************************
959  *
960  * XMAC operations
961  *
962  **************************************************************************
963  */
964
965 /* Configure the XAUI driver that is an output from Falcon */
966 static void falcon_setup_xaui(struct efx_nic *efx)
967 {
968         efx_oword_t sdctl, txdrv;
969
970         /* Move the XAUI into low power, unless there is no PHY, in
971          * which case the XAUI will have to drive a cable. */
972         if (efx->phy_type == PHY_TYPE_NONE)
973                 return;
974
975         efx_reado(efx, &sdctl, FR_AB_XX_SD_CTL);
976         EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
977         EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
978         EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
979         EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
980         EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
981         EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
982         EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
983         EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
984         efx_writeo(efx, &sdctl, FR_AB_XX_SD_CTL);
985
986         EFX_POPULATE_OWORD_8(txdrv,
987                              FRF_AB_XX_DEQD, FFE_AB_XX_TXDRV_DEQ_DEF,
988                              FRF_AB_XX_DEQC, FFE_AB_XX_TXDRV_DEQ_DEF,
989                              FRF_AB_XX_DEQB, FFE_AB_XX_TXDRV_DEQ_DEF,
990                              FRF_AB_XX_DEQA, FFE_AB_XX_TXDRV_DEQ_DEF,
991                              FRF_AB_XX_DTXD, FFE_AB_XX_TXDRV_DTX_DEF,
992                              FRF_AB_XX_DTXC, FFE_AB_XX_TXDRV_DTX_DEF,
993                              FRF_AB_XX_DTXB, FFE_AB_XX_TXDRV_DTX_DEF,
994                              FRF_AB_XX_DTXA, FFE_AB_XX_TXDRV_DTX_DEF);
995         efx_writeo(efx, &txdrv, FR_AB_XX_TXDRV_CTL);
996 }
997
998 int falcon_reset_xaui(struct efx_nic *efx)
999 {
1000         struct falcon_nic_data *nic_data = efx->nic_data;
1001         efx_oword_t reg;
1002         int count;
1003
1004         /* Don't fetch MAC statistics over an XMAC reset */
1005         WARN_ON(nic_data->stats_disable_count == 0);
1006
1007         /* Start reset sequence */
1008         EFX_POPULATE_OWORD_1(reg, FRF_AB_XX_RST_XX_EN, 1);
1009         efx_writeo(efx, &reg, FR_AB_XX_PWR_RST);
1010
1011         /* Wait up to 10 ms for completion, then reinitialise */
1012         for (count = 0; count < 1000; count++) {
1013                 efx_reado(efx, &reg, FR_AB_XX_PWR_RST);
1014                 if (EFX_OWORD_FIELD(reg, FRF_AB_XX_RST_XX_EN) == 0 &&
1015                     EFX_OWORD_FIELD(reg, FRF_AB_XX_SD_RST_ACT) == 0) {
1016                         falcon_setup_xaui(efx);
1017                         return 0;
1018                 }
1019                 udelay(10);
1020         }
1021         netif_err(efx, hw, efx->net_dev,
1022                   "timed out waiting for XAUI/XGXS reset\n");
1023         return -ETIMEDOUT;
1024 }
1025
1026 static void falcon_ack_status_intr(struct efx_nic *efx)
1027 {
1028         struct falcon_nic_data *nic_data = efx->nic_data;
1029         efx_oword_t reg;
1030
1031         if ((efx_nic_rev(efx) != EFX_REV_FALCON_B0) || LOOPBACK_INTERNAL(efx))
1032                 return;
1033
1034         /* We expect xgmii faults if the wireside link is down */
1035         if (!efx->link_state.up)
1036                 return;
1037
1038         /* We can only use this interrupt to signal the negative edge of
1039          * xaui_align [we have to poll the positive edge]. */
1040         if (nic_data->xmac_poll_required)
1041                 return;
1042
1043         efx_reado(efx, &reg, FR_AB_XM_MGT_INT_MSK);
1044 }
1045
1046 static bool falcon_xgxs_link_ok(struct efx_nic *efx)
1047 {
1048         efx_oword_t reg;
1049         bool align_done, link_ok = false;
1050         int sync_status;
1051
1052         /* Read link status */
1053         efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1054
1055         align_done = EFX_OWORD_FIELD(reg, FRF_AB_XX_ALIGN_DONE);
1056         sync_status = EFX_OWORD_FIELD(reg, FRF_AB_XX_SYNC_STAT);
1057         if (align_done && (sync_status == FFE_AB_XX_STAT_ALL_LANES))
1058                 link_ok = true;
1059
1060         /* Clear link status ready for next read */
1061         EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_COMMA_DET, FFE_AB_XX_STAT_ALL_LANES);
1062         EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_CHAR_ERR, FFE_AB_XX_STAT_ALL_LANES);
1063         EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_DISPERR, FFE_AB_XX_STAT_ALL_LANES);
1064         efx_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1065
1066         return link_ok;
1067 }
1068
1069 static bool falcon_xmac_link_ok(struct efx_nic *efx)
1070 {
1071         /*
1072          * Check MAC's XGXS link status except when using XGMII loopback
1073          * which bypasses the XGXS block.
1074          * If possible, check PHY's XGXS link status except when using
1075          * MAC loopback.
1076          */
1077         return (efx->loopback_mode == LOOPBACK_XGMII ||
1078                 falcon_xgxs_link_ok(efx)) &&
1079                 (!(efx->mdio.mmds & (1 << MDIO_MMD_PHYXS)) ||
1080                  LOOPBACK_INTERNAL(efx) ||
1081                  efx_mdio_phyxgxs_lane_sync(efx));
1082 }
1083
1084 static void falcon_reconfigure_xmac_core(struct efx_nic *efx)
1085 {
1086         unsigned int max_frame_len;
1087         efx_oword_t reg;
1088         bool rx_fc = !!(efx->link_state.fc & EFX_FC_RX);
1089         bool tx_fc = !!(efx->link_state.fc & EFX_FC_TX);
1090
1091         /* Configure MAC  - cut-thru mode is hard wired on */
1092         EFX_POPULATE_OWORD_3(reg,
1093                              FRF_AB_XM_RX_JUMBO_MODE, 1,
1094                              FRF_AB_XM_TX_STAT_EN, 1,
1095                              FRF_AB_XM_RX_STAT_EN, 1);
1096         efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1097
1098         /* Configure TX */
1099         EFX_POPULATE_OWORD_6(reg,
1100                              FRF_AB_XM_TXEN, 1,
1101                              FRF_AB_XM_TX_PRMBL, 1,
1102                              FRF_AB_XM_AUTO_PAD, 1,
1103                              FRF_AB_XM_TXCRC, 1,
1104                              FRF_AB_XM_FCNTL, tx_fc,
1105                              FRF_AB_XM_IPG, 0x3);
1106         efx_writeo(efx, &reg, FR_AB_XM_TX_CFG);
1107
1108         /* Configure RX */
1109         EFX_POPULATE_OWORD_5(reg,
1110                              FRF_AB_XM_RXEN, 1,
1111                              FRF_AB_XM_AUTO_DEPAD, 0,
1112                              FRF_AB_XM_ACPT_ALL_MCAST, 1,
1113                              FRF_AB_XM_ACPT_ALL_UCAST, !efx->unicast_filter,
1114                              FRF_AB_XM_PASS_CRC_ERR, 1);
1115         efx_writeo(efx, &reg, FR_AB_XM_RX_CFG);
1116
1117         /* Set frame length */
1118         max_frame_len = EFX_MAX_FRAME_LEN(efx->net_dev->mtu);
1119         EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_MAX_RX_FRM_SIZE, max_frame_len);
1120         efx_writeo(efx, &reg, FR_AB_XM_RX_PARAM);
1121         EFX_POPULATE_OWORD_2(reg,
1122                              FRF_AB_XM_MAX_TX_FRM_SIZE, max_frame_len,
1123                              FRF_AB_XM_TX_JUMBO_MODE, 1);
1124         efx_writeo(efx, &reg, FR_AB_XM_TX_PARAM);
1125
1126         EFX_POPULATE_OWORD_2(reg,
1127                              FRF_AB_XM_PAUSE_TIME, 0xfffe, /* MAX PAUSE TIME */
1128                              FRF_AB_XM_DIS_FCNTL, !rx_fc);
1129         efx_writeo(efx, &reg, FR_AB_XM_FC);
1130
1131         /* Set MAC address */
1132         memcpy(&reg, &efx->net_dev->dev_addr[0], 4);
1133         efx_writeo(efx, &reg, FR_AB_XM_ADR_LO);
1134         memcpy(&reg, &efx->net_dev->dev_addr[4], 2);
1135         efx_writeo(efx, &reg, FR_AB_XM_ADR_HI);
1136 }
1137
1138 static void falcon_reconfigure_xgxs_core(struct efx_nic *efx)
1139 {
1140         efx_oword_t reg;
1141         bool xgxs_loopback = (efx->loopback_mode == LOOPBACK_XGXS);
1142         bool xaui_loopback = (efx->loopback_mode == LOOPBACK_XAUI);
1143         bool xgmii_loopback = (efx->loopback_mode == LOOPBACK_XGMII);
1144         bool old_xgmii_loopback, old_xgxs_loopback, old_xaui_loopback;
1145
1146         /* XGXS block is flaky and will need to be reset if moving
1147          * into our out of XGMII, XGXS or XAUI loopbacks. */
1148         efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1149         old_xgxs_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN);
1150         old_xgmii_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN);
1151
1152         efx_reado(efx, &reg, FR_AB_XX_SD_CTL);
1153         old_xaui_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_LPBKA);
1154
1155         /* The PHY driver may have turned XAUI off */
1156         if ((xgxs_loopback != old_xgxs_loopback) ||
1157             (xaui_loopback != old_xaui_loopback) ||
1158             (xgmii_loopback != old_xgmii_loopback))
1159                 falcon_reset_xaui(efx);
1160
1161         efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1162         EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_FORCE_SIG,
1163                             (xgxs_loopback || xaui_loopback) ?
1164                             FFE_AB_XX_FORCE_SIG_ALL_LANES : 0);
1165         EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN, xgxs_loopback);
1166         EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN, xgmii_loopback);
1167         efx_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1168
1169         efx_reado(efx, &reg, FR_AB_XX_SD_CTL);
1170         EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKD, xaui_loopback);
1171         EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKC, xaui_loopback);
1172         EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKB, xaui_loopback);
1173         EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKA, xaui_loopback);
1174         efx_writeo(efx, &reg, FR_AB_XX_SD_CTL);
1175 }
1176
1177
1178 /* Try to bring up the Falcon side of the Falcon-Phy XAUI link */
1179 static bool falcon_xmac_link_ok_retry(struct efx_nic *efx, int tries)
1180 {
1181         bool mac_up = falcon_xmac_link_ok(efx);
1182
1183         if (LOOPBACK_MASK(efx) & LOOPBACKS_EXTERNAL(efx) & LOOPBACKS_WS ||
1184             efx_phy_mode_disabled(efx->phy_mode))
1185                 /* XAUI link is expected to be down */
1186                 return mac_up;
1187
1188         falcon_stop_nic_stats(efx);
1189
1190         while (!mac_up && tries) {
1191                 netif_dbg(efx, hw, efx->net_dev, "bashing xaui\n");
1192                 falcon_reset_xaui(efx);
1193                 udelay(200);
1194
1195                 mac_up = falcon_xmac_link_ok(efx);
1196                 --tries;
1197         }
1198
1199         falcon_start_nic_stats(efx);
1200
1201         return mac_up;
1202 }
1203
1204 static bool falcon_xmac_check_fault(struct efx_nic *efx)
1205 {
1206         return !falcon_xmac_link_ok_retry(efx, 5);
1207 }
1208
1209 static int falcon_reconfigure_xmac(struct efx_nic *efx)
1210 {
1211         struct falcon_nic_data *nic_data = efx->nic_data;
1212
1213         efx_farch_filter_sync_rx_mode(efx);
1214
1215         falcon_reconfigure_xgxs_core(efx);
1216         falcon_reconfigure_xmac_core(efx);
1217
1218         falcon_reconfigure_mac_wrapper(efx);
1219
1220         nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 5);
1221         falcon_ack_status_intr(efx);
1222
1223         return 0;
1224 }
1225
1226 static void falcon_poll_xmac(struct efx_nic *efx)
1227 {
1228         struct falcon_nic_data *nic_data = efx->nic_data;
1229
1230         /* We expect xgmii faults if the wireside link is down */
1231         if (!efx->link_state.up || !nic_data->xmac_poll_required)
1232                 return;
1233
1234         nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 1);
1235         falcon_ack_status_intr(efx);
1236 }
1237
1238 /**************************************************************************
1239  *
1240  * MAC wrapper
1241  *
1242  **************************************************************************
1243  */
1244
1245 static void falcon_push_multicast_hash(struct efx_nic *efx)
1246 {
1247         union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1248
1249         WARN_ON(!mutex_is_locked(&efx->mac_lock));
1250
1251         efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
1252         efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
1253 }
1254
1255 static void falcon_reset_macs(struct efx_nic *efx)
1256 {
1257         struct falcon_nic_data *nic_data = efx->nic_data;
1258         efx_oword_t reg, mac_ctrl;
1259         int count;
1260
1261         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
1262                 /* It's not safe to use GLB_CTL_REG to reset the
1263                  * macs, so instead use the internal MAC resets
1264                  */
1265                 EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1266                 efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1267
1268                 for (count = 0; count < 10000; count++) {
1269                         efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1270                         if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
1271                             0)
1272                                 return;
1273                         udelay(10);
1274                 }
1275
1276                 netif_err(efx, hw, efx->net_dev,
1277                           "timed out waiting for XMAC core reset\n");
1278         }
1279
1280         /* Mac stats will fail whist the TX fifo is draining */
1281         WARN_ON(nic_data->stats_disable_count == 0);
1282
1283         efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1284         EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
1285         efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1286
1287         efx_reado(efx, &reg, FR_AB_GLB_CTL);
1288         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
1289         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
1290         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1291         efx_writeo(efx, &reg, FR_AB_GLB_CTL);
1292
1293         count = 0;
1294         while (1) {
1295                 efx_reado(efx, &reg, FR_AB_GLB_CTL);
1296                 if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
1297                     !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
1298                     !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1299                         netif_dbg(efx, hw, efx->net_dev,
1300                                   "Completed MAC reset after %d loops\n",
1301                                   count);
1302                         break;
1303                 }
1304                 if (count > 20) {
1305                         netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
1306                         break;
1307                 }
1308                 count++;
1309                 udelay(10);
1310         }
1311
1312         /* Ensure the correct MAC is selected before statistics
1313          * are re-enabled by the caller */
1314         efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1315
1316         falcon_setup_xaui(efx);
1317 }
1318
1319 static void falcon_drain_tx_fifo(struct efx_nic *efx)
1320 {
1321         efx_oword_t reg;
1322
1323         if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
1324             (efx->loopback_mode != LOOPBACK_NONE))
1325                 return;
1326
1327         efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1328         /* There is no point in draining more than once */
1329         if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1330                 return;
1331
1332         falcon_reset_macs(efx);
1333 }
1334
1335 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1336 {
1337         efx_oword_t reg;
1338
1339         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1340                 return;
1341
1342         /* Isolate the MAC -> RX */
1343         efx_reado(efx, &reg, FR_AZ_RX_CFG);
1344         EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1345         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1346
1347         /* Isolate TX -> MAC */
1348         falcon_drain_tx_fifo(efx);
1349 }
1350
1351 static void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1352 {
1353         struct efx_link_state *link_state = &efx->link_state;
1354         efx_oword_t reg;
1355         int link_speed, isolate;
1356
1357         isolate = !!ACCESS_ONCE(efx->reset_pending);
1358
1359         switch (link_state->speed) {
1360         case 10000: link_speed = 3; break;
1361         case 1000:  link_speed = 2; break;
1362         case 100:   link_speed = 1; break;
1363         default:    link_speed = 0; break;
1364         }
1365
1366         /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1367          * as advertised.  Disable to ensure packets are not
1368          * indefinitely held and TX queue can be flushed at any point
1369          * while the link is down. */
1370         EFX_POPULATE_OWORD_5(reg,
1371                              FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
1372                              FRF_AB_MAC_BCAD_ACPT, 1,
1373                              FRF_AB_MAC_UC_PROM, !efx->unicast_filter,
1374                              FRF_AB_MAC_LINK_STATUS, 1, /* always set */
1375                              FRF_AB_MAC_SPEED, link_speed);
1376         /* On B0, MAC backpressure can be disabled and packets get
1377          * discarded. */
1378         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1379                 EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
1380                                     !link_state->up || isolate);
1381         }
1382
1383         efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1384
1385         /* Restore the multicast hash registers. */
1386         falcon_push_multicast_hash(efx);
1387
1388         efx_reado(efx, &reg, FR_AZ_RX_CFG);
1389         /* Enable XOFF signal from RX FIFO (we enabled it during NIC
1390          * initialisation but it may read back as 0) */
1391         EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1392         /* Unisolate the MAC -> RX */
1393         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1394                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
1395         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1396 }
1397
1398 static void falcon_stats_request(struct efx_nic *efx)
1399 {
1400         struct falcon_nic_data *nic_data = efx->nic_data;
1401         efx_oword_t reg;
1402
1403         WARN_ON(nic_data->stats_pending);
1404         WARN_ON(nic_data->stats_disable_count);
1405
1406         FALCON_XMAC_STATS_DMA_FLAG(efx) = 0;
1407         nic_data->stats_pending = true;
1408         wmb(); /* ensure done flag is clear */
1409
1410         /* Initiate DMA transfer of stats */
1411         EFX_POPULATE_OWORD_2(reg,
1412                              FRF_AB_MAC_STAT_DMA_CMD, 1,
1413                              FRF_AB_MAC_STAT_DMA_ADR,
1414                              efx->stats_buffer.dma_addr);
1415         efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
1416
1417         mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
1418 }
1419
1420 static void falcon_stats_complete(struct efx_nic *efx)
1421 {
1422         struct falcon_nic_data *nic_data = efx->nic_data;
1423
1424         if (!nic_data->stats_pending)
1425                 return;
1426
1427         nic_data->stats_pending = false;
1428         if (FALCON_XMAC_STATS_DMA_FLAG(efx)) {
1429                 rmb(); /* read the done flag before the stats */
1430                 efx_nic_update_stats(falcon_stat_desc, FALCON_STAT_COUNT,
1431                                      falcon_stat_mask, nic_data->stats,
1432                                      efx->stats_buffer.addr, true);
1433         } else {
1434                 netif_err(efx, hw, efx->net_dev,
1435                           "timed out waiting for statistics\n");
1436         }
1437 }
1438
1439 static void falcon_stats_timer_func(unsigned long context)
1440 {
1441         struct efx_nic *efx = (struct efx_nic *)context;
1442         struct falcon_nic_data *nic_data = efx->nic_data;
1443
1444         spin_lock(&efx->stats_lock);
1445
1446         falcon_stats_complete(efx);
1447         if (nic_data->stats_disable_count == 0)
1448                 falcon_stats_request(efx);
1449
1450         spin_unlock(&efx->stats_lock);
1451 }
1452
1453 static bool falcon_loopback_link_poll(struct efx_nic *efx)
1454 {
1455         struct efx_link_state old_state = efx->link_state;
1456
1457         WARN_ON(!mutex_is_locked(&efx->mac_lock));
1458         WARN_ON(!LOOPBACK_INTERNAL(efx));
1459
1460         efx->link_state.fd = true;
1461         efx->link_state.fc = efx->wanted_fc;
1462         efx->link_state.up = true;
1463         efx->link_state.speed = 10000;
1464
1465         return !efx_link_state_equal(&efx->link_state, &old_state);
1466 }
1467
1468 static int falcon_reconfigure_port(struct efx_nic *efx)
1469 {
1470         int rc;
1471
1472         WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0);
1473
1474         /* Poll the PHY link state *before* reconfiguring it. This means we
1475          * will pick up the correct speed (in loopback) to select the correct
1476          * MAC.
1477          */
1478         if (LOOPBACK_INTERNAL(efx))
1479                 falcon_loopback_link_poll(efx);
1480         else
1481                 efx->phy_op->poll(efx);
1482
1483         falcon_stop_nic_stats(efx);
1484         falcon_deconfigure_mac_wrapper(efx);
1485
1486         falcon_reset_macs(efx);
1487
1488         efx->phy_op->reconfigure(efx);
1489         rc = falcon_reconfigure_xmac(efx);
1490         BUG_ON(rc);
1491
1492         falcon_start_nic_stats(efx);
1493
1494         /* Synchronise efx->link_state with the kernel */
1495         efx_link_status_changed(efx);
1496
1497         return 0;
1498 }
1499
1500 /* TX flow control may automatically turn itself off if the link
1501  * partner (intermittently) stops responding to pause frames. There
1502  * isn't any indication that this has happened, so the best we do is
1503  * leave it up to the user to spot this and fix it by cycling transmit
1504  * flow control on this end.
1505  */
1506
1507 static void falcon_a1_prepare_enable_fc_tx(struct efx_nic *efx)
1508 {
1509         /* Schedule a reset to recover */
1510         efx_schedule_reset(efx, RESET_TYPE_INVISIBLE);
1511 }
1512
1513 static void falcon_b0_prepare_enable_fc_tx(struct efx_nic *efx)
1514 {
1515         /* Recover by resetting the EM block */
1516         falcon_stop_nic_stats(efx);
1517         falcon_drain_tx_fifo(efx);
1518         falcon_reconfigure_xmac(efx);
1519         falcon_start_nic_stats(efx);
1520 }
1521
1522 /**************************************************************************
1523  *
1524  * PHY access via GMII
1525  *
1526  **************************************************************************
1527  */
1528
1529 /* Wait for GMII access to complete */
1530 static int falcon_gmii_wait(struct efx_nic *efx)
1531 {
1532         efx_oword_t md_stat;
1533         int count;
1534
1535         /* wait up to 50ms - taken max from datasheet */
1536         for (count = 0; count < 5000; count++) {
1537                 efx_reado(efx, &md_stat, FR_AB_MD_STAT);
1538                 if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
1539                         if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
1540                             EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
1541                                 netif_err(efx, hw, efx->net_dev,
1542                                           "error from GMII access "
1543                                           EFX_OWORD_FMT"\n",
1544                                           EFX_OWORD_VAL(md_stat));
1545                                 return -EIO;
1546                         }
1547                         return 0;
1548                 }
1549                 udelay(10);
1550         }
1551         netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
1552         return -ETIMEDOUT;
1553 }
1554
1555 /* Write an MDIO register of a PHY connected to Falcon. */
1556 static int falcon_mdio_write(struct net_device *net_dev,
1557                              int prtad, int devad, u16 addr, u16 value)
1558 {
1559         struct efx_nic *efx = netdev_priv(net_dev);
1560         struct falcon_nic_data *nic_data = efx->nic_data;
1561         efx_oword_t reg;
1562         int rc;
1563
1564         netif_vdbg(efx, hw, efx->net_dev,
1565                    "writing MDIO %d register %d.%d with 0x%04x\n",
1566                     prtad, devad, addr, value);
1567
1568         mutex_lock(&nic_data->mdio_lock);
1569
1570         /* Check MDIO not currently being accessed */
1571         rc = falcon_gmii_wait(efx);
1572         if (rc)
1573                 goto out;
1574
1575         /* Write the address/ID register */
1576         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1577         efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1578
1579         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1580                              FRF_AB_MD_DEV_ADR, devad);
1581         efx_writeo(efx, &reg, FR_AB_MD_ID);
1582
1583         /* Write data */
1584         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
1585         efx_writeo(efx, &reg, FR_AB_MD_TXD);
1586
1587         EFX_POPULATE_OWORD_2(reg,
1588                              FRF_AB_MD_WRC, 1,
1589                              FRF_AB_MD_GC, 0);
1590         efx_writeo(efx, &reg, FR_AB_MD_CS);
1591
1592         /* Wait for data to be written */
1593         rc = falcon_gmii_wait(efx);
1594         if (rc) {
1595                 /* Abort the write operation */
1596                 EFX_POPULATE_OWORD_2(reg,
1597                                      FRF_AB_MD_WRC, 0,
1598                                      FRF_AB_MD_GC, 1);
1599                 efx_writeo(efx, &reg, FR_AB_MD_CS);
1600                 udelay(10);
1601         }
1602
1603 out:
1604         mutex_unlock(&nic_data->mdio_lock);
1605         return rc;
1606 }
1607
1608 /* Read an MDIO register of a PHY connected to Falcon. */
1609 static int falcon_mdio_read(struct net_device *net_dev,
1610                             int prtad, int devad, u16 addr)
1611 {
1612         struct efx_nic *efx = netdev_priv(net_dev);
1613         struct falcon_nic_data *nic_data = efx->nic_data;
1614         efx_oword_t reg;
1615         int rc;
1616
1617         mutex_lock(&nic_data->mdio_lock);
1618
1619         /* Check MDIO not currently being accessed */
1620         rc = falcon_gmii_wait(efx);
1621         if (rc)
1622                 goto out;
1623
1624         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1625         efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1626
1627         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1628                              FRF_AB_MD_DEV_ADR, devad);
1629         efx_writeo(efx, &reg, FR_AB_MD_ID);
1630
1631         /* Request data to be read */
1632         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
1633         efx_writeo(efx, &reg, FR_AB_MD_CS);
1634
1635         /* Wait for data to become available */
1636         rc = falcon_gmii_wait(efx);
1637         if (rc == 0) {
1638                 efx_reado(efx, &reg, FR_AB_MD_RXD);
1639                 rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
1640                 netif_vdbg(efx, hw, efx->net_dev,
1641                            "read from MDIO %d register %d.%d, got %04x\n",
1642                            prtad, devad, addr, rc);
1643         } else {
1644                 /* Abort the read operation */
1645                 EFX_POPULATE_OWORD_2(reg,
1646                                      FRF_AB_MD_RIC, 0,
1647                                      FRF_AB_MD_GC, 1);
1648                 efx_writeo(efx, &reg, FR_AB_MD_CS);
1649
1650                 netif_dbg(efx, hw, efx->net_dev,
1651                           "read from MDIO %d register %d.%d, got error %d\n",
1652                           prtad, devad, addr, rc);
1653         }
1654
1655 out:
1656         mutex_unlock(&nic_data->mdio_lock);
1657         return rc;
1658 }
1659
1660 /* This call is responsible for hooking in the MAC and PHY operations */
1661 static int falcon_probe_port(struct efx_nic *efx)
1662 {
1663         struct falcon_nic_data *nic_data = efx->nic_data;
1664         int rc;
1665
1666         switch (efx->phy_type) {
1667         case PHY_TYPE_SFX7101:
1668                 efx->phy_op = &falcon_sfx7101_phy_ops;
1669                 break;
1670         case PHY_TYPE_QT2022C2:
1671         case PHY_TYPE_QT2025C:
1672                 efx->phy_op = &falcon_qt202x_phy_ops;
1673                 break;
1674         case PHY_TYPE_TXC43128:
1675                 efx->phy_op = &falcon_txc_phy_ops;
1676                 break;
1677         default:
1678                 netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
1679                           efx->phy_type);
1680                 return -ENODEV;
1681         }
1682
1683         /* Fill out MDIO structure and loopback modes */
1684         mutex_init(&nic_data->mdio_lock);
1685         efx->mdio.mdio_read = falcon_mdio_read;
1686         efx->mdio.mdio_write = falcon_mdio_write;
1687         rc = efx->phy_op->probe(efx);
1688         if (rc != 0)
1689                 return rc;
1690
1691         /* Initial assumption */
1692         efx->link_state.speed = 10000;
1693         efx->link_state.fd = true;
1694
1695         /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
1696         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1697                 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
1698         else
1699                 efx->wanted_fc = EFX_FC_RX;
1700         if (efx->mdio.mmds & MDIO_DEVS_AN)
1701                 efx->wanted_fc |= EFX_FC_AUTO;
1702
1703         /* Allocate buffer for stats */
1704         rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
1705                                   FALCON_MAC_STATS_SIZE, GFP_KERNEL);
1706         if (rc)
1707                 return rc;
1708         netif_dbg(efx, probe, efx->net_dev,
1709                   "stats buffer at %llx (virt %p phys %llx)\n",
1710                   (u64)efx->stats_buffer.dma_addr,
1711                   efx->stats_buffer.addr,
1712                   (u64)virt_to_phys(efx->stats_buffer.addr));
1713
1714         return 0;
1715 }
1716
1717 static void falcon_remove_port(struct efx_nic *efx)
1718 {
1719         efx->phy_op->remove(efx);
1720         efx_nic_free_buffer(efx, &efx->stats_buffer);
1721 }
1722
1723 /* Global events are basically PHY events */
1724 static bool
1725 falcon_handle_global_event(struct efx_channel *channel, efx_qword_t *event)
1726 {
1727         struct efx_nic *efx = channel->efx;
1728         struct falcon_nic_data *nic_data = efx->nic_data;
1729
1730         if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
1731             EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
1732             EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR))
1733                 /* Ignored */
1734                 return true;
1735
1736         if ((efx_nic_rev(efx) == EFX_REV_FALCON_B0) &&
1737             EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
1738                 nic_data->xmac_poll_required = true;
1739                 return true;
1740         }
1741
1742         if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ?
1743             EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
1744             EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
1745                 netif_err(efx, rx_err, efx->net_dev,
1746                           "channel %d seen global RX_RESET event. Resetting.\n",
1747                           channel->channel);
1748
1749                 atomic_inc(&efx->rx_reset);
1750                 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
1751                                    RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
1752                 return true;
1753         }
1754
1755         return false;
1756 }
1757
1758 /**************************************************************************
1759  *
1760  * Falcon test code
1761  *
1762  **************************************************************************/
1763
1764 static int
1765 falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
1766 {
1767         struct falcon_nic_data *nic_data = efx->nic_data;
1768         struct falcon_nvconfig *nvconfig;
1769         struct falcon_spi_device *spi;
1770         void *region;
1771         int rc, magic_num, struct_ver;
1772         __le16 *word, *limit;
1773         u32 csum;
1774
1775         if (falcon_spi_present(&nic_data->spi_flash))
1776                 spi = &nic_data->spi_flash;
1777         else if (falcon_spi_present(&nic_data->spi_eeprom))
1778                 spi = &nic_data->spi_eeprom;
1779         else
1780                 return -EINVAL;
1781
1782         region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
1783         if (!region)
1784                 return -ENOMEM;
1785         nvconfig = region + FALCON_NVCONFIG_OFFSET;
1786
1787         mutex_lock(&nic_data->spi_lock);
1788         rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
1789         mutex_unlock(&nic_data->spi_lock);
1790         if (rc) {
1791                 netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
1792                           falcon_spi_present(&nic_data->spi_flash) ?
1793                           "flash" : "EEPROM");
1794                 rc = -EIO;
1795                 goto out;
1796         }
1797
1798         magic_num = le16_to_cpu(nvconfig->board_magic_num);
1799         struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
1800
1801         rc = -EINVAL;
1802         if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
1803                 netif_err(efx, hw, efx->net_dev,
1804                           "NVRAM bad magic 0x%x\n", magic_num);
1805                 goto out;
1806         }
1807         if (struct_ver < 2) {
1808                 netif_err(efx, hw, efx->net_dev,
1809                           "NVRAM has ancient version 0x%x\n", struct_ver);
1810                 goto out;
1811         } else if (struct_ver < 4) {
1812                 word = &nvconfig->board_magic_num;
1813                 limit = (__le16 *) (nvconfig + 1);
1814         } else {
1815                 word = region;
1816                 limit = region + FALCON_NVCONFIG_END;
1817         }
1818         for (csum = 0; word < limit; ++word)
1819                 csum += le16_to_cpu(*word);
1820
1821         if (~csum & 0xffff) {
1822                 netif_err(efx, hw, efx->net_dev,
1823                           "NVRAM has incorrect checksum\n");
1824                 goto out;
1825         }
1826
1827         rc = 0;
1828         if (nvconfig_out)
1829                 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
1830
1831  out:
1832         kfree(region);
1833         return rc;
1834 }
1835
1836 static int falcon_test_nvram(struct efx_nic *efx)
1837 {
1838         return falcon_read_nvram(efx, NULL);
1839 }
1840
1841 static const struct efx_farch_register_test falcon_b0_register_tests[] = {
1842         { FR_AZ_ADR_REGION,
1843           EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1844         { FR_AZ_RX_CFG,
1845           EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1846         { FR_AZ_TX_CFG,
1847           EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1848         { FR_AZ_TX_RESERVED,
1849           EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1850         { FR_AB_MAC_CTRL,
1851           EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1852         { FR_AZ_SRM_TX_DC_CFG,
1853           EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1854         { FR_AZ_RX_DC_CFG,
1855           EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1856         { FR_AZ_RX_DC_PF_WM,
1857           EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1858         { FR_BZ_DP_CTRL,
1859           EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1860         { FR_AB_GM_CFG2,
1861           EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1862         { FR_AB_GMF_CFG0,
1863           EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1864         { FR_AB_XM_GLB_CFG,
1865           EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1866         { FR_AB_XM_TX_CFG,
1867           EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1868         { FR_AB_XM_RX_CFG,
1869           EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1870         { FR_AB_XM_RX_PARAM,
1871           EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1872         { FR_AB_XM_FC,
1873           EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1874         { FR_AB_XM_ADR_LO,
1875           EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1876         { FR_AB_XX_SD_CTL,
1877           EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1878 };
1879
1880 static int
1881 falcon_b0_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
1882 {
1883         enum reset_type reset_method = RESET_TYPE_INVISIBLE;
1884         int rc, rc2;
1885
1886         mutex_lock(&efx->mac_lock);
1887         if (efx->loopback_modes) {
1888                 /* We need the 312 clock from the PHY to test the XMAC
1889                  * registers, so move into XGMII loopback if available */
1890                 if (efx->loopback_modes & (1 << LOOPBACK_XGMII))
1891                         efx->loopback_mode = LOOPBACK_XGMII;
1892                 else
1893                         efx->loopback_mode = __ffs(efx->loopback_modes);
1894         }
1895         __efx_reconfigure_port(efx);
1896         mutex_unlock(&efx->mac_lock);
1897
1898         efx_reset_down(efx, reset_method);
1899
1900         tests->registers =
1901                 efx_farch_test_registers(efx, falcon_b0_register_tests,
1902                                          ARRAY_SIZE(falcon_b0_register_tests))
1903                 ? -1 : 1;
1904
1905         rc = falcon_reset_hw(efx, reset_method);
1906         rc2 = efx_reset_up(efx, reset_method, rc == 0);
1907         return rc ? rc : rc2;
1908 }
1909
1910 /**************************************************************************
1911  *
1912  * Device reset
1913  *
1914  **************************************************************************
1915  */
1916
1917 static enum reset_type falcon_map_reset_reason(enum reset_type reason)
1918 {
1919         switch (reason) {
1920         case RESET_TYPE_RX_RECOVERY:
1921         case RESET_TYPE_DMA_ERROR:
1922         case RESET_TYPE_TX_SKIP:
1923                 /* These can occasionally occur due to hardware bugs.
1924                  * We try to reset without disrupting the link.
1925                  */
1926                 return RESET_TYPE_INVISIBLE;
1927         default:
1928                 return RESET_TYPE_ALL;
1929         }
1930 }
1931
1932 static int falcon_map_reset_flags(u32 *flags)
1933 {
1934         enum {
1935                 FALCON_RESET_INVISIBLE = (ETH_RESET_DMA | ETH_RESET_FILTER |
1936                                           ETH_RESET_OFFLOAD | ETH_RESET_MAC),
1937                 FALCON_RESET_ALL = FALCON_RESET_INVISIBLE | ETH_RESET_PHY,
1938                 FALCON_RESET_WORLD = FALCON_RESET_ALL | ETH_RESET_IRQ,
1939         };
1940
1941         if ((*flags & FALCON_RESET_WORLD) == FALCON_RESET_WORLD) {
1942                 *flags &= ~FALCON_RESET_WORLD;
1943                 return RESET_TYPE_WORLD;
1944         }
1945
1946         if ((*flags & FALCON_RESET_ALL) == FALCON_RESET_ALL) {
1947                 *flags &= ~FALCON_RESET_ALL;
1948                 return RESET_TYPE_ALL;
1949         }
1950
1951         if ((*flags & FALCON_RESET_INVISIBLE) == FALCON_RESET_INVISIBLE) {
1952                 *flags &= ~FALCON_RESET_INVISIBLE;
1953                 return RESET_TYPE_INVISIBLE;
1954         }
1955
1956         return -EINVAL;
1957 }
1958
1959 /* Resets NIC to known state.  This routine must be called in process
1960  * context and is allowed to sleep. */
1961 static int __falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1962 {
1963         struct falcon_nic_data *nic_data = efx->nic_data;
1964         efx_oword_t glb_ctl_reg_ker;
1965         int rc;
1966
1967         netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
1968                   RESET_TYPE(method));
1969
1970         /* Initiate device reset */
1971         if (method == RESET_TYPE_WORLD) {
1972                 rc = pci_save_state(efx->pci_dev);
1973                 if (rc) {
1974                         netif_err(efx, drv, efx->net_dev,
1975                                   "failed to backup PCI state of primary "
1976                                   "function prior to hardware reset\n");
1977                         goto fail1;
1978                 }
1979                 if (efx_nic_is_dual_func(efx)) {
1980                         rc = pci_save_state(nic_data->pci_dev2);
1981                         if (rc) {
1982                                 netif_err(efx, drv, efx->net_dev,
1983                                           "failed to backup PCI state of "
1984                                           "secondary function prior to "
1985                                           "hardware reset\n");
1986                                 goto fail2;
1987                         }
1988                 }
1989
1990                 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
1991                                      FRF_AB_EXT_PHY_RST_DUR,
1992                                      FFE_AB_EXT_PHY_RST_DUR_10240US,
1993                                      FRF_AB_SWRST, 1);
1994         } else {
1995                 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
1996                                      /* exclude PHY from "invisible" reset */
1997                                      FRF_AB_EXT_PHY_RST_CTL,
1998                                      method == RESET_TYPE_INVISIBLE,
1999                                      /* exclude EEPROM/flash and PCIe */
2000                                      FRF_AB_PCIE_CORE_RST_CTL, 1,
2001                                      FRF_AB_PCIE_NSTKY_RST_CTL, 1,
2002                                      FRF_AB_PCIE_SD_RST_CTL, 1,
2003                                      FRF_AB_EE_RST_CTL, 1,
2004                                      FRF_AB_EXT_PHY_RST_DUR,
2005                                      FFE_AB_EXT_PHY_RST_DUR_10240US,
2006                                      FRF_AB_SWRST, 1);
2007         }
2008         efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2009
2010         netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
2011         schedule_timeout_uninterruptible(HZ / 20);
2012
2013         /* Restore PCI configuration if needed */
2014         if (method == RESET_TYPE_WORLD) {
2015                 if (efx_nic_is_dual_func(efx))
2016                         pci_restore_state(nic_data->pci_dev2);
2017                 pci_restore_state(efx->pci_dev);
2018                 netif_dbg(efx, drv, efx->net_dev,
2019                           "successfully restored PCI config\n");
2020         }
2021
2022         /* Assert that reset complete */
2023         efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2024         if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2025                 rc = -ETIMEDOUT;
2026                 netif_err(efx, hw, efx->net_dev,
2027                           "timed out waiting for hardware reset\n");
2028                 goto fail3;
2029         }
2030         netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
2031
2032         return 0;
2033
2034         /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2035 fail2:
2036         pci_restore_state(efx->pci_dev);
2037 fail1:
2038 fail3:
2039         return rc;
2040 }
2041
2042 static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2043 {
2044         struct falcon_nic_data *nic_data = efx->nic_data;
2045         int rc;
2046
2047         mutex_lock(&nic_data->spi_lock);
2048         rc = __falcon_reset_hw(efx, method);
2049         mutex_unlock(&nic_data->spi_lock);
2050
2051         return rc;
2052 }
2053
2054 static void falcon_monitor(struct efx_nic *efx)
2055 {
2056         bool link_changed;
2057         int rc;
2058
2059         BUG_ON(!mutex_is_locked(&efx->mac_lock));
2060
2061         rc = falcon_board(efx)->type->monitor(efx);
2062         if (rc) {
2063                 netif_err(efx, hw, efx->net_dev,
2064                           "Board sensor %s; shutting down PHY\n",
2065                           (rc == -ERANGE) ? "reported fault" : "failed");
2066                 efx->phy_mode |= PHY_MODE_LOW_POWER;
2067                 rc = __efx_reconfigure_port(efx);
2068                 WARN_ON(rc);
2069         }
2070
2071         if (LOOPBACK_INTERNAL(efx))
2072                 link_changed = falcon_loopback_link_poll(efx);
2073         else
2074                 link_changed = efx->phy_op->poll(efx);
2075
2076         if (link_changed) {
2077                 falcon_stop_nic_stats(efx);
2078                 falcon_deconfigure_mac_wrapper(efx);
2079
2080                 falcon_reset_macs(efx);
2081                 rc = falcon_reconfigure_xmac(efx);
2082                 BUG_ON(rc);
2083
2084                 falcon_start_nic_stats(efx);
2085
2086                 efx_link_status_changed(efx);
2087         }
2088
2089         falcon_poll_xmac(efx);
2090 }
2091
2092 /* Zeroes out the SRAM contents.  This routine must be called in
2093  * process context and is allowed to sleep.
2094  */
2095 static int falcon_reset_sram(struct efx_nic *efx)
2096 {
2097         efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2098         int count;
2099
2100         /* Set the SRAM wake/sleep GPIO appropriately. */
2101         efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2102         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
2103         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2104         efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2105
2106         /* Initiate SRAM reset */
2107         EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2108                              FRF_AZ_SRM_INIT_EN, 1,
2109                              FRF_AZ_SRM_NB_SZ, 0);
2110         efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2111
2112         /* Wait for SRAM reset to complete */
2113         count = 0;
2114         do {
2115                 netif_dbg(efx, hw, efx->net_dev,
2116                           "waiting for SRAM reset (attempt %d)...\n", count);
2117
2118                 /* SRAM reset is slow; expect around 16ms */
2119                 schedule_timeout_uninterruptible(HZ / 50);
2120
2121                 /* Check for reset complete */
2122                 efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2123                 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2124                         netif_dbg(efx, hw, efx->net_dev,
2125                                   "SRAM reset complete\n");
2126
2127                         return 0;
2128                 }
2129         } while (++count < 20); /* wait up to 0.4 sec */
2130
2131         netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
2132         return -ETIMEDOUT;
2133 }
2134
2135 static void falcon_spi_device_init(struct efx_nic *efx,
2136                                   struct falcon_spi_device *spi_device,
2137                                   unsigned int device_id, u32 device_type)
2138 {
2139         if (device_type != 0) {
2140                 spi_device->device_id = device_id;
2141                 spi_device->size =
2142                         1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2143                 spi_device->addr_len =
2144                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2145                 spi_device->munge_address = (spi_device->size == 1 << 9 &&
2146                                              spi_device->addr_len == 1);
2147                 spi_device->erase_command =
2148                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2149                 spi_device->erase_size =
2150                         1 << SPI_DEV_TYPE_FIELD(device_type,
2151                                                 SPI_DEV_TYPE_ERASE_SIZE);
2152                 spi_device->block_size =
2153                         1 << SPI_DEV_TYPE_FIELD(device_type,
2154                                                 SPI_DEV_TYPE_BLOCK_SIZE);
2155         } else {
2156                 spi_device->size = 0;
2157         }
2158 }
2159
2160 /* Extract non-volatile configuration */
2161 static int falcon_probe_nvconfig(struct efx_nic *efx)
2162 {
2163         struct falcon_nic_data *nic_data = efx->nic_data;
2164         struct falcon_nvconfig *nvconfig;
2165         int rc;
2166
2167         nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2168         if (!nvconfig)
2169                 return -ENOMEM;
2170
2171         rc = falcon_read_nvram(efx, nvconfig);
2172         if (rc)
2173                 goto out;
2174
2175         efx->phy_type = nvconfig->board_v2.port0_phy_type;
2176         efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr;
2177
2178         if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2179                 falcon_spi_device_init(
2180                         efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
2181                         le32_to_cpu(nvconfig->board_v3
2182                                     .spi_device_type[FFE_AB_SPI_DEVICE_FLASH]));
2183                 falcon_spi_device_init(
2184                         efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
2185                         le32_to_cpu(nvconfig->board_v3
2186                                     .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM]));
2187         }
2188
2189         /* Read the MAC addresses */
2190         ether_addr_copy(efx->net_dev->perm_addr, nvconfig->mac_address[0]);
2191
2192         netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
2193                   efx->phy_type, efx->mdio.prtad);
2194
2195         rc = falcon_probe_board(efx,
2196                                 le16_to_cpu(nvconfig->board_v2.board_revision));
2197 out:
2198         kfree(nvconfig);
2199         return rc;
2200 }
2201
2202 static int falcon_dimension_resources(struct efx_nic *efx)
2203 {
2204         efx->rx_dc_base = 0x20000;
2205         efx->tx_dc_base = 0x26000;
2206         return 0;
2207 }
2208
2209 /* Probe all SPI devices on the NIC */
2210 static void falcon_probe_spi_devices(struct efx_nic *efx)
2211 {
2212         struct falcon_nic_data *nic_data = efx->nic_data;
2213         efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2214         int boot_dev;
2215
2216         efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
2217         efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2218         efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2219
2220         if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
2221                 boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
2222                             FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2223                 netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
2224                           boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
2225                           "flash" : "EEPROM");
2226         } else {
2227                 /* Disable VPD and set clock dividers to safe
2228                  * values for initial programming. */
2229                 boot_dev = -1;
2230                 netif_dbg(efx, probe, efx->net_dev,
2231                           "Booted from internal ASIC settings;"
2232                           " setting SPI config\n");
2233                 EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2234                                      /* 125 MHz / 7 ~= 20 MHz */
2235                                      FRF_AB_EE_SF_CLOCK_DIV, 7,
2236                                      /* 125 MHz / 63 ~= 2 MHz */
2237                                      FRF_AB_EE_EE_CLOCK_DIV, 63);
2238                 efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2239         }
2240
2241         mutex_init(&nic_data->spi_lock);
2242
2243         if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
2244                 falcon_spi_device_init(efx, &nic_data->spi_flash,
2245                                        FFE_AB_SPI_DEVICE_FLASH,
2246                                        default_flash_type);
2247         if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
2248                 falcon_spi_device_init(efx, &nic_data->spi_eeprom,
2249                                        FFE_AB_SPI_DEVICE_EEPROM,
2250                                        large_eeprom_type);
2251 }
2252
2253 static unsigned int falcon_a1_mem_map_size(struct efx_nic *efx)
2254 {
2255         return 0x20000;
2256 }
2257
2258 static unsigned int falcon_b0_mem_map_size(struct efx_nic *efx)
2259 {
2260         /* Map everything up to and including the RSS indirection table.
2261          * The PCI core takes care of mapping the MSI-X tables.
2262          */
2263         return FR_BZ_RX_INDIRECTION_TBL +
2264                 FR_BZ_RX_INDIRECTION_TBL_STEP * FR_BZ_RX_INDIRECTION_TBL_ROWS;
2265 }
2266
2267 static int falcon_probe_nic(struct efx_nic *efx)
2268 {
2269         struct falcon_nic_data *nic_data;
2270         struct falcon_board *board;
2271         int rc;
2272
2273         efx->primary = efx; /* only one usable function per controller */
2274
2275         /* Allocate storage for hardware specific data */
2276         nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2277         if (!nic_data)
2278                 return -ENOMEM;
2279         efx->nic_data = nic_data;
2280
2281         rc = -ENODEV;
2282
2283         if (efx_farch_fpga_ver(efx) != 0) {
2284                 netif_err(efx, probe, efx->net_dev,
2285                           "Falcon FPGA not supported\n");
2286                 goto fail1;
2287         }
2288
2289         if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
2290                 efx_oword_t nic_stat;
2291                 struct pci_dev *dev;
2292                 u8 pci_rev = efx->pci_dev->revision;
2293
2294                 if ((pci_rev == 0xff) || (pci_rev == 0)) {
2295                         netif_err(efx, probe, efx->net_dev,
2296                                   "Falcon rev A0 not supported\n");
2297                         goto fail1;
2298                 }
2299                 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2300                 if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
2301                         netif_err(efx, probe, efx->net_dev,
2302                                   "Falcon rev A1 1G not supported\n");
2303                         goto fail1;
2304                 }
2305                 if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2306                         netif_err(efx, probe, efx->net_dev,
2307                                   "Falcon rev A1 PCI-X not supported\n");
2308                         goto fail1;
2309                 }
2310
2311                 dev = pci_dev_get(efx->pci_dev);
2312                 while ((dev = pci_get_device(PCI_VENDOR_ID_SOLARFLARE,
2313                                              PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1,
2314                                              dev))) {
2315                         if (dev->bus == efx->pci_dev->bus &&
2316                             dev->devfn == efx->pci_dev->devfn + 1) {
2317                                 nic_data->pci_dev2 = dev;
2318                                 break;
2319                         }
2320                 }
2321                 if (!nic_data->pci_dev2) {
2322                         netif_err(efx, probe, efx->net_dev,
2323                                   "failed to find secondary function\n");
2324                         rc = -ENODEV;
2325                         goto fail2;
2326                 }
2327         }
2328
2329         /* Now we can reset the NIC */
2330         rc = __falcon_reset_hw(efx, RESET_TYPE_ALL);
2331         if (rc) {
2332                 netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
2333                 goto fail3;
2334         }
2335
2336         /* Allocate memory for INT_KER */
2337         rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t),
2338                                   GFP_KERNEL);
2339         if (rc)
2340                 goto fail4;
2341         BUG_ON(efx->irq_status.dma_addr & 0x0f);
2342
2343         netif_dbg(efx, probe, efx->net_dev,
2344                   "INT_KER at %llx (virt %p phys %llx)\n",
2345                   (u64)efx->irq_status.dma_addr,
2346                   efx->irq_status.addr,
2347                   (u64)virt_to_phys(efx->irq_status.addr));
2348
2349         falcon_probe_spi_devices(efx);
2350
2351         /* Read in the non-volatile configuration */
2352         rc = falcon_probe_nvconfig(efx);
2353         if (rc) {
2354                 if (rc == -EINVAL)
2355                         netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n");
2356                 goto fail5;
2357         }
2358
2359         efx->max_channels = (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ? 4 :
2360                              EFX_MAX_CHANNELS);
2361         efx->timer_quantum_ns = 4968; /* 621 cycles */
2362
2363         /* Initialise I2C adapter */
2364         board = falcon_board(efx);
2365         board->i2c_adap.owner = THIS_MODULE;
2366         board->i2c_data = falcon_i2c_bit_operations;
2367         board->i2c_data.data = efx;
2368         board->i2c_adap.algo_data = &board->i2c_data;
2369         board->i2c_adap.dev.parent = &efx->pci_dev->dev;
2370         strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
2371                 sizeof(board->i2c_adap.name));
2372         rc = i2c_bit_add_bus(&board->i2c_adap);
2373         if (rc)
2374                 goto fail5;
2375
2376         rc = falcon_board(efx)->type->init(efx);
2377         if (rc) {
2378                 netif_err(efx, probe, efx->net_dev,
2379                           "failed to initialise board\n");
2380                 goto fail6;
2381         }
2382
2383         nic_data->stats_disable_count = 1;
2384         setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
2385                     (unsigned long)efx);
2386
2387         return 0;
2388
2389  fail6:
2390         i2c_del_adapter(&board->i2c_adap);
2391         memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2392  fail5:
2393         efx_nic_free_buffer(efx, &efx->irq_status);
2394  fail4:
2395  fail3:
2396         if (nic_data->pci_dev2) {
2397                 pci_dev_put(nic_data->pci_dev2);
2398                 nic_data->pci_dev2 = NULL;
2399         }
2400  fail2:
2401  fail1:
2402         kfree(efx->nic_data);
2403         return rc;
2404 }
2405
2406 static void falcon_init_rx_cfg(struct efx_nic *efx)
2407 {
2408         /* RX control FIFO thresholds (32 entries) */
2409         const unsigned ctrl_xon_thr = 20;
2410         const unsigned ctrl_xoff_thr = 25;
2411         efx_oword_t reg;
2412
2413         efx_reado(efx, &reg, FR_AZ_RX_CFG);
2414         if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
2415                 /* Data FIFO size is 5.5K.  The RX DMA engine only
2416                  * supports scattering for user-mode queues, but will
2417                  * split DMA writes at intervals of RX_USR_BUF_SIZE
2418                  * (32-byte units) even for kernel-mode queues.  We
2419                  * set it to be so large that that never happens.
2420                  */
2421                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
2422                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
2423                                     (3 * 4096) >> 5);
2424                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, 512 >> 8);
2425                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, 2048 >> 8);
2426                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
2427                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
2428         } else {
2429                 /* Data FIFO size is 80K; register fields moved */
2430                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
2431                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
2432                                     EFX_RX_USR_BUF_SIZE >> 5);
2433                 /* Send XON and XOFF at ~3 * max MTU away from empty/full */
2434                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, 27648 >> 8);
2435                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, 54272 >> 8);
2436                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
2437                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
2438                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2439
2440                 /* Enable hash insertion. This is broken for the
2441                  * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
2442                  * IPv4 hashes. */
2443                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
2444                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
2445                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
2446         }
2447         /* Always enable XOFF signal from RX FIFO.  We enable
2448          * or disable transmission of pause frames at the MAC. */
2449         EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
2450         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
2451 }
2452
2453 /* This call performs hardware-specific global initialisation, such as
2454  * defining the descriptor cache sizes and number of RSS channels.
2455  * It does not set up any buffers, descriptor rings or event queues.
2456  */
2457 static int falcon_init_nic(struct efx_nic *efx)
2458 {
2459         efx_oword_t temp;
2460         int rc;
2461
2462         /* Use on-chip SRAM */
2463         efx_reado(efx, &temp, FR_AB_NIC_STAT);
2464         EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
2465         efx_writeo(efx, &temp, FR_AB_NIC_STAT);
2466
2467         rc = falcon_reset_sram(efx);
2468         if (rc)
2469                 return rc;
2470
2471         /* Clear the parity enables on the TX data fifos as
2472          * they produce false parity errors because of timing issues
2473          */
2474         if (EFX_WORKAROUND_5129(efx)) {
2475                 efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
2476                 EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
2477                 efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
2478         }
2479
2480         if (EFX_WORKAROUND_7244(efx)) {
2481                 efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
2482                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
2483                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
2484                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
2485                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
2486                 efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
2487         }
2488
2489         /* XXX This is documented only for Falcon A0/A1 */
2490         /* Setup RX.  Wait for descriptor is broken and must
2491          * be disabled.  RXDP recovery shouldn't be needed, but is.
2492          */
2493         efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
2494         EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
2495         EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
2496         if (EFX_WORKAROUND_5583(efx))
2497                 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
2498         efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
2499
2500         /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
2501          * descriptors (which is bad).
2502          */
2503         efx_reado(efx, &temp, FR_AZ_TX_CFG);
2504         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
2505         efx_writeo(efx, &temp, FR_AZ_TX_CFG);
2506
2507         falcon_init_rx_cfg(efx);
2508
2509         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2510                 falcon_b0_rx_push_rss_config(efx);
2511
2512                 /* Set destination of both TX and RX Flush events */
2513                 EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
2514                 efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
2515         }
2516
2517         efx_farch_init_common(efx);
2518
2519         return 0;
2520 }
2521
2522 static void falcon_remove_nic(struct efx_nic *efx)
2523 {
2524         struct falcon_nic_data *nic_data = efx->nic_data;
2525         struct falcon_board *board = falcon_board(efx);
2526
2527         board->type->fini(efx);
2528
2529         /* Remove I2C adapter and clear it in preparation for a retry */
2530         i2c_del_adapter(&board->i2c_adap);
2531         memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2532
2533         efx_nic_free_buffer(efx, &efx->irq_status);
2534
2535         __falcon_reset_hw(efx, RESET_TYPE_ALL);
2536
2537         /* Release the second function after the reset */
2538         if (nic_data->pci_dev2) {
2539                 pci_dev_put(nic_data->pci_dev2);
2540                 nic_data->pci_dev2 = NULL;
2541         }
2542
2543         /* Tear down the private nic state */
2544         kfree(efx->nic_data);
2545         efx->nic_data = NULL;
2546 }
2547
2548 static size_t falcon_describe_nic_stats(struct efx_nic *efx, u8 *names)
2549 {
2550         return efx_nic_describe_stats(falcon_stat_desc, FALCON_STAT_COUNT,
2551                                       falcon_stat_mask, names);
2552 }
2553
2554 static size_t falcon_update_nic_stats(struct efx_nic *efx, u64 *full_stats,
2555                                       struct rtnl_link_stats64 *core_stats)
2556 {
2557         struct falcon_nic_data *nic_data = efx->nic_data;
2558         u64 *stats = nic_data->stats;
2559         efx_oword_t cnt;
2560
2561         if (!nic_data->stats_disable_count) {
2562                 efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
2563                 stats[FALCON_STAT_rx_nodesc_drop_cnt] +=
2564                         EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
2565
2566                 if (nic_data->stats_pending &&
2567                     FALCON_XMAC_STATS_DMA_FLAG(efx)) {
2568                         nic_data->stats_pending = false;
2569                         rmb(); /* read the done flag before the stats */
2570                         efx_nic_update_stats(
2571                                 falcon_stat_desc, FALCON_STAT_COUNT,
2572                                 falcon_stat_mask,
2573                                 stats, efx->stats_buffer.addr, true);
2574                 }
2575
2576                 /* Update derived statistic */
2577                 efx_update_diff_stat(&stats[FALCON_STAT_rx_bad_bytes],
2578                                      stats[FALCON_STAT_rx_bytes] -
2579                                      stats[FALCON_STAT_rx_good_bytes] -
2580                                      stats[FALCON_STAT_rx_control] * 64);
2581                 efx_update_sw_stats(efx, stats);
2582         }
2583
2584         if (full_stats)
2585                 memcpy(full_stats, stats, sizeof(u64) * FALCON_STAT_COUNT);
2586
2587         if (core_stats) {
2588                 core_stats->rx_packets = stats[FALCON_STAT_rx_packets];
2589                 core_stats->tx_packets = stats[FALCON_STAT_tx_packets];
2590                 core_stats->rx_bytes = stats[FALCON_STAT_rx_bytes];
2591                 core_stats->tx_bytes = stats[FALCON_STAT_tx_bytes];
2592                 core_stats->rx_dropped = stats[FALCON_STAT_rx_nodesc_drop_cnt] +
2593                                          stats[GENERIC_STAT_rx_nodesc_trunc] +
2594                                          stats[GENERIC_STAT_rx_noskb_drops];
2595                 core_stats->multicast = stats[FALCON_STAT_rx_multicast];
2596                 core_stats->rx_length_errors =
2597                         stats[FALCON_STAT_rx_gtjumbo] +
2598                         stats[FALCON_STAT_rx_length_error];
2599                 core_stats->rx_crc_errors = stats[FALCON_STAT_rx_bad];
2600                 core_stats->rx_frame_errors = stats[FALCON_STAT_rx_align_error];
2601                 core_stats->rx_fifo_errors = stats[FALCON_STAT_rx_overflow];
2602
2603                 core_stats->rx_errors = (core_stats->rx_length_errors +
2604                                          core_stats->rx_crc_errors +
2605                                          core_stats->rx_frame_errors +
2606                                          stats[FALCON_STAT_rx_symbol_error]);
2607         }
2608
2609         return FALCON_STAT_COUNT;
2610 }
2611
2612 void falcon_start_nic_stats(struct efx_nic *efx)
2613 {
2614         struct falcon_nic_data *nic_data = efx->nic_data;
2615
2616         spin_lock_bh(&efx->stats_lock);
2617         if (--nic_data->stats_disable_count == 0)
2618                 falcon_stats_request(efx);
2619         spin_unlock_bh(&efx->stats_lock);
2620 }
2621
2622 /* We don't acutally pull stats on falcon. Wait 10ms so that
2623  * they arrive when we call this just after start_stats
2624  */
2625 static void falcon_pull_nic_stats(struct efx_nic *efx)
2626 {
2627         msleep(10);
2628 }
2629
2630 void falcon_stop_nic_stats(struct efx_nic *efx)
2631 {
2632         struct falcon_nic_data *nic_data = efx->nic_data;
2633         int i;
2634
2635         might_sleep();
2636
2637         spin_lock_bh(&efx->stats_lock);
2638         ++nic_data->stats_disable_count;
2639         spin_unlock_bh(&efx->stats_lock);
2640
2641         del_timer_sync(&nic_data->stats_timer);
2642
2643         /* Wait enough time for the most recent transfer to
2644          * complete. */
2645         for (i = 0; i < 4 && nic_data->stats_pending; i++) {
2646                 if (FALCON_XMAC_STATS_DMA_FLAG(efx))
2647                         break;
2648                 msleep(1);
2649         }
2650
2651         spin_lock_bh(&efx->stats_lock);
2652         falcon_stats_complete(efx);
2653         spin_unlock_bh(&efx->stats_lock);
2654 }
2655
2656 static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
2657 {
2658         falcon_board(efx)->type->set_id_led(efx, mode);
2659 }
2660
2661 /**************************************************************************
2662  *
2663  * Wake on LAN
2664  *
2665  **************************************************************************
2666  */
2667
2668 static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
2669 {
2670         wol->supported = 0;
2671         wol->wolopts = 0;
2672         memset(&wol->sopass, 0, sizeof(wol->sopass));
2673 }
2674
2675 static int falcon_set_wol(struct efx_nic *efx, u32 type)
2676 {
2677         if (type != 0)
2678                 return -EINVAL;
2679         return 0;
2680 }
2681
2682 /**************************************************************************
2683  *
2684  * Revision-dependent attributes used by efx.c and nic.c
2685  *
2686  **************************************************************************
2687  */
2688
2689 const struct efx_nic_type falcon_a1_nic_type = {
2690         .mem_map_size = falcon_a1_mem_map_size,
2691         .probe = falcon_probe_nic,
2692         .remove = falcon_remove_nic,
2693         .init = falcon_init_nic,
2694         .dimension_resources = falcon_dimension_resources,
2695         .fini = falcon_irq_ack_a1,
2696         .monitor = falcon_monitor,
2697         .map_reset_reason = falcon_map_reset_reason,
2698         .map_reset_flags = falcon_map_reset_flags,
2699         .reset = falcon_reset_hw,
2700         .probe_port = falcon_probe_port,
2701         .remove_port = falcon_remove_port,
2702         .handle_global_event = falcon_handle_global_event,
2703         .fini_dmaq = efx_farch_fini_dmaq,
2704         .prepare_flush = falcon_prepare_flush,
2705         .finish_flush = efx_port_dummy_op_void,
2706         .prepare_flr = efx_port_dummy_op_void,
2707         .finish_flr = efx_farch_finish_flr,
2708         .describe_stats = falcon_describe_nic_stats,
2709         .update_stats = falcon_update_nic_stats,
2710         .start_stats = falcon_start_nic_stats,
2711         .pull_stats = falcon_pull_nic_stats,
2712         .stop_stats = falcon_stop_nic_stats,
2713         .set_id_led = falcon_set_id_led,
2714         .push_irq_moderation = falcon_push_irq_moderation,
2715         .reconfigure_port = falcon_reconfigure_port,
2716         .prepare_enable_fc_tx = falcon_a1_prepare_enable_fc_tx,
2717         .reconfigure_mac = falcon_reconfigure_xmac,
2718         .check_mac_fault = falcon_xmac_check_fault,
2719         .get_wol = falcon_get_wol,
2720         .set_wol = falcon_set_wol,
2721         .resume_wol = efx_port_dummy_op_void,
2722         .test_nvram = falcon_test_nvram,
2723         .irq_enable_master = efx_farch_irq_enable_master,
2724         .irq_test_generate = efx_farch_irq_test_generate,
2725         .irq_disable_non_ev = efx_farch_irq_disable_master,
2726         .irq_handle_msi = efx_farch_msi_interrupt,
2727         .irq_handle_legacy = falcon_legacy_interrupt_a1,
2728         .tx_probe = efx_farch_tx_probe,
2729         .tx_init = efx_farch_tx_init,
2730         .tx_remove = efx_farch_tx_remove,
2731         .tx_write = efx_farch_tx_write,
2732         .rx_push_rss_config = efx_port_dummy_op_void,
2733         .rx_probe = efx_farch_rx_probe,
2734         .rx_init = efx_farch_rx_init,
2735         .rx_remove = efx_farch_rx_remove,
2736         .rx_write = efx_farch_rx_write,
2737         .rx_defer_refill = efx_farch_rx_defer_refill,
2738         .ev_probe = efx_farch_ev_probe,
2739         .ev_init = efx_farch_ev_init,
2740         .ev_fini = efx_farch_ev_fini,
2741         .ev_remove = efx_farch_ev_remove,
2742         .ev_process = efx_farch_ev_process,
2743         .ev_read_ack = efx_farch_ev_read_ack,
2744         .ev_test_generate = efx_farch_ev_test_generate,
2745
2746         /* We don't expose the filter table on Falcon A1 as it is not
2747          * mapped into function 0, but these implementations still
2748          * work with a degenerate case of all tables set to size 0.
2749          */
2750         .filter_table_probe = efx_farch_filter_table_probe,
2751         .filter_table_restore = efx_farch_filter_table_restore,
2752         .filter_table_remove = efx_farch_filter_table_remove,
2753         .filter_insert = efx_farch_filter_insert,
2754         .filter_remove_safe = efx_farch_filter_remove_safe,
2755         .filter_get_safe = efx_farch_filter_get_safe,
2756         .filter_clear_rx = efx_farch_filter_clear_rx,
2757         .filter_count_rx_used = efx_farch_filter_count_rx_used,
2758         .filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit,
2759         .filter_get_rx_ids = efx_farch_filter_get_rx_ids,
2760
2761 #ifdef CONFIG_SFC_MTD
2762         .mtd_probe = falcon_mtd_probe,
2763         .mtd_rename = falcon_mtd_rename,
2764         .mtd_read = falcon_mtd_read,
2765         .mtd_erase = falcon_mtd_erase,
2766         .mtd_write = falcon_mtd_write,
2767         .mtd_sync = falcon_mtd_sync,
2768 #endif
2769         .sriov_init = efx_falcon_sriov_init,
2770         .sriov_fini = efx_falcon_sriov_fini,
2771         .sriov_mac_address_changed = efx_falcon_sriov_mac_address_changed,
2772         .sriov_wanted = efx_falcon_sriov_wanted,
2773         .sriov_reset = efx_falcon_sriov_reset,
2774
2775         .revision = EFX_REV_FALCON_A1,
2776         .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
2777         .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
2778         .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
2779         .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
2780         .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
2781         .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2782         .rx_buffer_padding = 0x24,
2783         .can_rx_scatter = false,
2784         .max_interrupt_mode = EFX_INT_MODE_MSI,
2785         .timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2786         .offload_features = NETIF_F_IP_CSUM,
2787         .mcdi_max_ver = -1,
2788 };
2789
2790 const struct efx_nic_type falcon_b0_nic_type = {
2791         .mem_map_size = falcon_b0_mem_map_size,
2792         .probe = falcon_probe_nic,
2793         .remove = falcon_remove_nic,
2794         .init = falcon_init_nic,
2795         .dimension_resources = falcon_dimension_resources,
2796         .fini = efx_port_dummy_op_void,
2797         .monitor = falcon_monitor,
2798         .map_reset_reason = falcon_map_reset_reason,
2799         .map_reset_flags = falcon_map_reset_flags,
2800         .reset = falcon_reset_hw,
2801         .probe_port = falcon_probe_port,
2802         .remove_port = falcon_remove_port,
2803         .handle_global_event = falcon_handle_global_event,
2804         .fini_dmaq = efx_farch_fini_dmaq,
2805         .prepare_flush = falcon_prepare_flush,
2806         .finish_flush = efx_port_dummy_op_void,
2807         .prepare_flr = efx_port_dummy_op_void,
2808         .finish_flr = efx_farch_finish_flr,
2809         .describe_stats = falcon_describe_nic_stats,
2810         .update_stats = falcon_update_nic_stats,
2811         .start_stats = falcon_start_nic_stats,
2812         .pull_stats = falcon_pull_nic_stats,
2813         .stop_stats = falcon_stop_nic_stats,
2814         .set_id_led = falcon_set_id_led,
2815         .push_irq_moderation = falcon_push_irq_moderation,
2816         .reconfigure_port = falcon_reconfigure_port,
2817         .prepare_enable_fc_tx = falcon_b0_prepare_enable_fc_tx,
2818         .reconfigure_mac = falcon_reconfigure_xmac,
2819         .check_mac_fault = falcon_xmac_check_fault,
2820         .get_wol = falcon_get_wol,
2821         .set_wol = falcon_set_wol,
2822         .resume_wol = efx_port_dummy_op_void,
2823         .test_chip = falcon_b0_test_chip,
2824         .test_nvram = falcon_test_nvram,
2825         .irq_enable_master = efx_farch_irq_enable_master,
2826         .irq_test_generate = efx_farch_irq_test_generate,
2827         .irq_disable_non_ev = efx_farch_irq_disable_master,
2828         .irq_handle_msi = efx_farch_msi_interrupt,
2829         .irq_handle_legacy = efx_farch_legacy_interrupt,
2830         .tx_probe = efx_farch_tx_probe,
2831         .tx_init = efx_farch_tx_init,
2832         .tx_remove = efx_farch_tx_remove,
2833         .tx_write = efx_farch_tx_write,
2834         .rx_push_rss_config = falcon_b0_rx_push_rss_config,
2835         .rx_probe = efx_farch_rx_probe,
2836         .rx_init = efx_farch_rx_init,
2837         .rx_remove = efx_farch_rx_remove,
2838         .rx_write = efx_farch_rx_write,
2839         .rx_defer_refill = efx_farch_rx_defer_refill,
2840         .ev_probe = efx_farch_ev_probe,
2841         .ev_init = efx_farch_ev_init,
2842         .ev_fini = efx_farch_ev_fini,
2843         .ev_remove = efx_farch_ev_remove,
2844         .ev_process = efx_farch_ev_process,
2845         .ev_read_ack = efx_farch_ev_read_ack,
2846         .ev_test_generate = efx_farch_ev_test_generate,
2847         .filter_table_probe = efx_farch_filter_table_probe,
2848         .filter_table_restore = efx_farch_filter_table_restore,
2849         .filter_table_remove = efx_farch_filter_table_remove,
2850         .filter_update_rx_scatter = efx_farch_filter_update_rx_scatter,
2851         .filter_insert = efx_farch_filter_insert,
2852         .filter_remove_safe = efx_farch_filter_remove_safe,
2853         .filter_get_safe = efx_farch_filter_get_safe,
2854         .filter_clear_rx = efx_farch_filter_clear_rx,
2855         .filter_count_rx_used = efx_farch_filter_count_rx_used,
2856         .filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit,
2857         .filter_get_rx_ids = efx_farch_filter_get_rx_ids,
2858 #ifdef CONFIG_RFS_ACCEL
2859         .filter_rfs_insert = efx_farch_filter_rfs_insert,
2860         .filter_rfs_expire_one = efx_farch_filter_rfs_expire_one,
2861 #endif
2862 #ifdef CONFIG_SFC_MTD
2863         .mtd_probe = falcon_mtd_probe,
2864         .mtd_rename = falcon_mtd_rename,
2865         .mtd_read = falcon_mtd_read,
2866         .mtd_erase = falcon_mtd_erase,
2867         .mtd_write = falcon_mtd_write,
2868         .mtd_sync = falcon_mtd_sync,
2869 #endif
2870         .sriov_init = efx_falcon_sriov_init,
2871         .sriov_fini = efx_falcon_sriov_fini,
2872         .sriov_mac_address_changed = efx_falcon_sriov_mac_address_changed,
2873         .sriov_wanted = efx_falcon_sriov_wanted,
2874         .sriov_reset = efx_falcon_sriov_reset,
2875
2876         .revision = EFX_REV_FALCON_B0,
2877         .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
2878         .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
2879         .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
2880         .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
2881         .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
2882         .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2883         .rx_prefix_size = FS_BZ_RX_PREFIX_SIZE,
2884         .rx_hash_offset = FS_BZ_RX_PREFIX_HASH_OFST,
2885         .rx_buffer_padding = 0,
2886         .can_rx_scatter = true,
2887         .max_interrupt_mode = EFX_INT_MODE_MSIX,
2888         .timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2889         .offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,
2890         .mcdi_max_ver = -1,
2891         .max_rx_ip_filters = FR_BZ_RX_FILTER_TBL0_ROWS,
2892 };