Upgrade to 4.4.50-rt62
[kvmfornfv.git] / kernel / drivers / net / ethernet / renesas / sh_eth.c
1 /*  SuperH Ethernet device driver
2  *
3  *  Copyright (C) 2014  Renesas Electronics Corporation
4  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5  *  Copyright (C) 2008-2014 Renesas Solutions Corp.
6  *  Copyright (C) 2013-2014 Cogent Embedded, Inc.
7  *  Copyright (C) 2014 Codethink Limited
8  *
9  *  This program is free software; you can redistribute it and/or modify it
10  *  under the terms and conditions of the GNU General Public License,
11  *  version 2, as published by the Free Software Foundation.
12  *
13  *  This program is distributed in the hope it will be useful, but WITHOUT
14  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  *  more details.
17  *
18  *  The full GNU General Public License is included in this distribution in
19  *  the file called "COPYING".
20  */
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/etherdevice.h>
28 #include <linux/delay.h>
29 #include <linux/platform_device.h>
30 #include <linux/mdio-bitbang.h>
31 #include <linux/netdevice.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_irq.h>
35 #include <linux/of_net.h>
36 #include <linux/phy.h>
37 #include <linux/cache.h>
38 #include <linux/io.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/slab.h>
41 #include <linux/ethtool.h>
42 #include <linux/if_vlan.h>
43 #include <linux/clk.h>
44 #include <linux/sh_eth.h>
45 #include <linux/of_mdio.h>
46
47 #include "sh_eth.h"
48
49 #define SH_ETH_DEF_MSG_ENABLE \
50                 (NETIF_MSG_LINK | \
51                 NETIF_MSG_TIMER | \
52                 NETIF_MSG_RX_ERR| \
53                 NETIF_MSG_TX_ERR)
54
55 #define SH_ETH_OFFSET_INVALID   ((u16)~0)
56
57 #define SH_ETH_OFFSET_DEFAULTS                  \
58         [0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
59
60 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
61         SH_ETH_OFFSET_DEFAULTS,
62
63         [EDSR]          = 0x0000,
64         [EDMR]          = 0x0400,
65         [EDTRR]         = 0x0408,
66         [EDRRR]         = 0x0410,
67         [EESR]          = 0x0428,
68         [EESIPR]        = 0x0430,
69         [TDLAR]         = 0x0010,
70         [TDFAR]         = 0x0014,
71         [TDFXR]         = 0x0018,
72         [TDFFR]         = 0x001c,
73         [RDLAR]         = 0x0030,
74         [RDFAR]         = 0x0034,
75         [RDFXR]         = 0x0038,
76         [RDFFR]         = 0x003c,
77         [TRSCER]        = 0x0438,
78         [RMFCR]         = 0x0440,
79         [TFTR]          = 0x0448,
80         [FDR]           = 0x0450,
81         [RMCR]          = 0x0458,
82         [RPADIR]        = 0x0460,
83         [FCFTR]         = 0x0468,
84         [CSMR]          = 0x04E4,
85
86         [ECMR]          = 0x0500,
87         [ECSR]          = 0x0510,
88         [ECSIPR]        = 0x0518,
89         [PIR]           = 0x0520,
90         [PSR]           = 0x0528,
91         [PIPR]          = 0x052c,
92         [RFLR]          = 0x0508,
93         [APR]           = 0x0554,
94         [MPR]           = 0x0558,
95         [PFTCR]         = 0x055c,
96         [PFRCR]         = 0x0560,
97         [TPAUSER]       = 0x0564,
98         [GECMR]         = 0x05b0,
99         [BCULR]         = 0x05b4,
100         [MAHR]          = 0x05c0,
101         [MALR]          = 0x05c8,
102         [TROCR]         = 0x0700,
103         [CDCR]          = 0x0708,
104         [LCCR]          = 0x0710,
105         [CEFCR]         = 0x0740,
106         [FRECR]         = 0x0748,
107         [TSFRCR]        = 0x0750,
108         [TLFRCR]        = 0x0758,
109         [RFCR]          = 0x0760,
110         [CERCR]         = 0x0768,
111         [CEECR]         = 0x0770,
112         [MAFCR]         = 0x0778,
113         [RMII_MII]      = 0x0790,
114
115         [ARSTR]         = 0x0000,
116         [TSU_CTRST]     = 0x0004,
117         [TSU_FWEN0]     = 0x0010,
118         [TSU_FWEN1]     = 0x0014,
119         [TSU_FCM]       = 0x0018,
120         [TSU_BSYSL0]    = 0x0020,
121         [TSU_BSYSL1]    = 0x0024,
122         [TSU_PRISL0]    = 0x0028,
123         [TSU_PRISL1]    = 0x002c,
124         [TSU_FWSL0]     = 0x0030,
125         [TSU_FWSL1]     = 0x0034,
126         [TSU_FWSLC]     = 0x0038,
127         [TSU_QTAG0]     = 0x0040,
128         [TSU_QTAG1]     = 0x0044,
129         [TSU_FWSR]      = 0x0050,
130         [TSU_FWINMK]    = 0x0054,
131         [TSU_ADQT0]     = 0x0048,
132         [TSU_ADQT1]     = 0x004c,
133         [TSU_VTAG0]     = 0x0058,
134         [TSU_VTAG1]     = 0x005c,
135         [TSU_ADSBSY]    = 0x0060,
136         [TSU_TEN]       = 0x0064,
137         [TSU_POST1]     = 0x0070,
138         [TSU_POST2]     = 0x0074,
139         [TSU_POST3]     = 0x0078,
140         [TSU_POST4]     = 0x007c,
141         [TSU_ADRH0]     = 0x0100,
142
143         [TXNLCR0]       = 0x0080,
144         [TXALCR0]       = 0x0084,
145         [RXNLCR0]       = 0x0088,
146         [RXALCR0]       = 0x008c,
147         [FWNLCR0]       = 0x0090,
148         [FWALCR0]       = 0x0094,
149         [TXNLCR1]       = 0x00a0,
150         [TXALCR1]       = 0x00a0,
151         [RXNLCR1]       = 0x00a8,
152         [RXALCR1]       = 0x00ac,
153         [FWNLCR1]       = 0x00b0,
154         [FWALCR1]       = 0x00b4,
155 };
156
157 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
158         SH_ETH_OFFSET_DEFAULTS,
159
160         [EDSR]          = 0x0000,
161         [EDMR]          = 0x0400,
162         [EDTRR]         = 0x0408,
163         [EDRRR]         = 0x0410,
164         [EESR]          = 0x0428,
165         [EESIPR]        = 0x0430,
166         [TDLAR]         = 0x0010,
167         [TDFAR]         = 0x0014,
168         [TDFXR]         = 0x0018,
169         [TDFFR]         = 0x001c,
170         [RDLAR]         = 0x0030,
171         [RDFAR]         = 0x0034,
172         [RDFXR]         = 0x0038,
173         [RDFFR]         = 0x003c,
174         [TRSCER]        = 0x0438,
175         [RMFCR]         = 0x0440,
176         [TFTR]          = 0x0448,
177         [FDR]           = 0x0450,
178         [RMCR]          = 0x0458,
179         [RPADIR]        = 0x0460,
180         [FCFTR]         = 0x0468,
181         [CSMR]          = 0x04E4,
182
183         [ECMR]          = 0x0500,
184         [RFLR]          = 0x0508,
185         [ECSR]          = 0x0510,
186         [ECSIPR]        = 0x0518,
187         [PIR]           = 0x0520,
188         [APR]           = 0x0554,
189         [MPR]           = 0x0558,
190         [PFTCR]         = 0x055c,
191         [PFRCR]         = 0x0560,
192         [TPAUSER]       = 0x0564,
193         [MAHR]          = 0x05c0,
194         [MALR]          = 0x05c8,
195         [CEFCR]         = 0x0740,
196         [FRECR]         = 0x0748,
197         [TSFRCR]        = 0x0750,
198         [TLFRCR]        = 0x0758,
199         [RFCR]          = 0x0760,
200         [MAFCR]         = 0x0778,
201
202         [ARSTR]         = 0x0000,
203         [TSU_CTRST]     = 0x0004,
204         [TSU_VTAG0]     = 0x0058,
205         [TSU_ADSBSY]    = 0x0060,
206         [TSU_TEN]       = 0x0064,
207         [TSU_ADRH0]     = 0x0100,
208
209         [TXNLCR0]       = 0x0080,
210         [TXALCR0]       = 0x0084,
211         [RXNLCR0]       = 0x0088,
212         [RXALCR0]       = 0x008C,
213 };
214
215 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
216         SH_ETH_OFFSET_DEFAULTS,
217
218         [ECMR]          = 0x0300,
219         [RFLR]          = 0x0308,
220         [ECSR]          = 0x0310,
221         [ECSIPR]        = 0x0318,
222         [PIR]           = 0x0320,
223         [PSR]           = 0x0328,
224         [RDMLR]         = 0x0340,
225         [IPGR]          = 0x0350,
226         [APR]           = 0x0354,
227         [MPR]           = 0x0358,
228         [RFCF]          = 0x0360,
229         [TPAUSER]       = 0x0364,
230         [TPAUSECR]      = 0x0368,
231         [MAHR]          = 0x03c0,
232         [MALR]          = 0x03c8,
233         [TROCR]         = 0x03d0,
234         [CDCR]          = 0x03d4,
235         [LCCR]          = 0x03d8,
236         [CNDCR]         = 0x03dc,
237         [CEFCR]         = 0x03e4,
238         [FRECR]         = 0x03e8,
239         [TSFRCR]        = 0x03ec,
240         [TLFRCR]        = 0x03f0,
241         [RFCR]          = 0x03f4,
242         [MAFCR]         = 0x03f8,
243
244         [EDMR]          = 0x0200,
245         [EDTRR]         = 0x0208,
246         [EDRRR]         = 0x0210,
247         [TDLAR]         = 0x0218,
248         [RDLAR]         = 0x0220,
249         [EESR]          = 0x0228,
250         [EESIPR]        = 0x0230,
251         [TRSCER]        = 0x0238,
252         [RMFCR]         = 0x0240,
253         [TFTR]          = 0x0248,
254         [FDR]           = 0x0250,
255         [RMCR]          = 0x0258,
256         [TFUCR]         = 0x0264,
257         [RFOCR]         = 0x0268,
258         [RMIIMODE]      = 0x026c,
259         [FCFTR]         = 0x0270,
260         [TRIMD]         = 0x027c,
261 };
262
263 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
264         SH_ETH_OFFSET_DEFAULTS,
265
266         [ECMR]          = 0x0100,
267         [RFLR]          = 0x0108,
268         [ECSR]          = 0x0110,
269         [ECSIPR]        = 0x0118,
270         [PIR]           = 0x0120,
271         [PSR]           = 0x0128,
272         [RDMLR]         = 0x0140,
273         [IPGR]          = 0x0150,
274         [APR]           = 0x0154,
275         [MPR]           = 0x0158,
276         [TPAUSER]       = 0x0164,
277         [RFCF]          = 0x0160,
278         [TPAUSECR]      = 0x0168,
279         [BCFRR]         = 0x016c,
280         [MAHR]          = 0x01c0,
281         [MALR]          = 0x01c8,
282         [TROCR]         = 0x01d0,
283         [CDCR]          = 0x01d4,
284         [LCCR]          = 0x01d8,
285         [CNDCR]         = 0x01dc,
286         [CEFCR]         = 0x01e4,
287         [FRECR]         = 0x01e8,
288         [TSFRCR]        = 0x01ec,
289         [TLFRCR]        = 0x01f0,
290         [RFCR]          = 0x01f4,
291         [MAFCR]         = 0x01f8,
292         [RTRATE]        = 0x01fc,
293
294         [EDMR]          = 0x0000,
295         [EDTRR]         = 0x0008,
296         [EDRRR]         = 0x0010,
297         [TDLAR]         = 0x0018,
298         [RDLAR]         = 0x0020,
299         [EESR]          = 0x0028,
300         [EESIPR]        = 0x0030,
301         [TRSCER]        = 0x0038,
302         [RMFCR]         = 0x0040,
303         [TFTR]          = 0x0048,
304         [FDR]           = 0x0050,
305         [RMCR]          = 0x0058,
306         [TFUCR]         = 0x0064,
307         [RFOCR]         = 0x0068,
308         [FCFTR]         = 0x0070,
309         [RPADIR]        = 0x0078,
310         [TRIMD]         = 0x007c,
311         [RBWAR]         = 0x00c8,
312         [RDFAR]         = 0x00cc,
313         [TBRAR]         = 0x00d4,
314         [TDFAR]         = 0x00d8,
315 };
316
317 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
318         SH_ETH_OFFSET_DEFAULTS,
319
320         [EDMR]          = 0x0000,
321         [EDTRR]         = 0x0004,
322         [EDRRR]         = 0x0008,
323         [TDLAR]         = 0x000c,
324         [RDLAR]         = 0x0010,
325         [EESR]          = 0x0014,
326         [EESIPR]        = 0x0018,
327         [TRSCER]        = 0x001c,
328         [RMFCR]         = 0x0020,
329         [TFTR]          = 0x0024,
330         [FDR]           = 0x0028,
331         [RMCR]          = 0x002c,
332         [EDOCR]         = 0x0030,
333         [FCFTR]         = 0x0034,
334         [RPADIR]        = 0x0038,
335         [TRIMD]         = 0x003c,
336         [RBWAR]         = 0x0040,
337         [RDFAR]         = 0x0044,
338         [TBRAR]         = 0x004c,
339         [TDFAR]         = 0x0050,
340
341         [ECMR]          = 0x0160,
342         [ECSR]          = 0x0164,
343         [ECSIPR]        = 0x0168,
344         [PIR]           = 0x016c,
345         [MAHR]          = 0x0170,
346         [MALR]          = 0x0174,
347         [RFLR]          = 0x0178,
348         [PSR]           = 0x017c,
349         [TROCR]         = 0x0180,
350         [CDCR]          = 0x0184,
351         [LCCR]          = 0x0188,
352         [CNDCR]         = 0x018c,
353         [CEFCR]         = 0x0194,
354         [FRECR]         = 0x0198,
355         [TSFRCR]        = 0x019c,
356         [TLFRCR]        = 0x01a0,
357         [RFCR]          = 0x01a4,
358         [MAFCR]         = 0x01a8,
359         [IPGR]          = 0x01b4,
360         [APR]           = 0x01b8,
361         [MPR]           = 0x01bc,
362         [TPAUSER]       = 0x01c4,
363         [BCFR]          = 0x01cc,
364
365         [ARSTR]         = 0x0000,
366         [TSU_CTRST]     = 0x0004,
367         [TSU_FWEN0]     = 0x0010,
368         [TSU_FWEN1]     = 0x0014,
369         [TSU_FCM]       = 0x0018,
370         [TSU_BSYSL0]    = 0x0020,
371         [TSU_BSYSL1]    = 0x0024,
372         [TSU_PRISL0]    = 0x0028,
373         [TSU_PRISL1]    = 0x002c,
374         [TSU_FWSL0]     = 0x0030,
375         [TSU_FWSL1]     = 0x0034,
376         [TSU_FWSLC]     = 0x0038,
377         [TSU_QTAGM0]    = 0x0040,
378         [TSU_QTAGM1]    = 0x0044,
379         [TSU_ADQT0]     = 0x0048,
380         [TSU_ADQT1]     = 0x004c,
381         [TSU_FWSR]      = 0x0050,
382         [TSU_FWINMK]    = 0x0054,
383         [TSU_ADSBSY]    = 0x0060,
384         [TSU_TEN]       = 0x0064,
385         [TSU_POST1]     = 0x0070,
386         [TSU_POST2]     = 0x0074,
387         [TSU_POST3]     = 0x0078,
388         [TSU_POST4]     = 0x007c,
389
390         [TXNLCR0]       = 0x0080,
391         [TXALCR0]       = 0x0084,
392         [RXNLCR0]       = 0x0088,
393         [RXALCR0]       = 0x008c,
394         [FWNLCR0]       = 0x0090,
395         [FWALCR0]       = 0x0094,
396         [TXNLCR1]       = 0x00a0,
397         [TXALCR1]       = 0x00a0,
398         [RXNLCR1]       = 0x00a8,
399         [RXALCR1]       = 0x00ac,
400         [FWNLCR1]       = 0x00b0,
401         [FWALCR1]       = 0x00b4,
402
403         [TSU_ADRH0]     = 0x0100,
404 };
405
406 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
407 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
408
409 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
410 {
411         struct sh_eth_private *mdp = netdev_priv(ndev);
412         u16 offset = mdp->reg_offset[enum_index];
413
414         if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
415                 return;
416
417         iowrite32(data, mdp->addr + offset);
418 }
419
420 static u32 sh_eth_read(struct net_device *ndev, int enum_index)
421 {
422         struct sh_eth_private *mdp = netdev_priv(ndev);
423         u16 offset = mdp->reg_offset[enum_index];
424
425         if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
426                 return ~0U;
427
428         return ioread32(mdp->addr + offset);
429 }
430
431 static bool sh_eth_is_gether(struct sh_eth_private *mdp)
432 {
433         return mdp->reg_offset == sh_eth_offset_gigabit;
434 }
435
436 static bool sh_eth_is_rz_fast_ether(struct sh_eth_private *mdp)
437 {
438         return mdp->reg_offset == sh_eth_offset_fast_rz;
439 }
440
441 static void sh_eth_select_mii(struct net_device *ndev)
442 {
443         u32 value = 0x0;
444         struct sh_eth_private *mdp = netdev_priv(ndev);
445
446         switch (mdp->phy_interface) {
447         case PHY_INTERFACE_MODE_GMII:
448                 value = 0x2;
449                 break;
450         case PHY_INTERFACE_MODE_MII:
451                 value = 0x1;
452                 break;
453         case PHY_INTERFACE_MODE_RMII:
454                 value = 0x0;
455                 break;
456         default:
457                 netdev_warn(ndev,
458                             "PHY interface mode was not setup. Set to MII.\n");
459                 value = 0x1;
460                 break;
461         }
462
463         sh_eth_write(ndev, value, RMII_MII);
464 }
465
466 static void sh_eth_set_duplex(struct net_device *ndev)
467 {
468         struct sh_eth_private *mdp = netdev_priv(ndev);
469
470         if (mdp->duplex) /* Full */
471                 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
472         else            /* Half */
473                 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
474 }
475
476 /* There is CPU dependent code */
477 static void sh_eth_set_rate_r8a777x(struct net_device *ndev)
478 {
479         struct sh_eth_private *mdp = netdev_priv(ndev);
480
481         switch (mdp->speed) {
482         case 10: /* 10BASE */
483                 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_ELB, ECMR);
484                 break;
485         case 100:/* 100BASE */
486                 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_ELB, ECMR);
487                 break;
488         default:
489                 break;
490         }
491 }
492
493 /* R8A7778/9 */
494 static struct sh_eth_cpu_data r8a777x_data = {
495         .set_duplex     = sh_eth_set_duplex,
496         .set_rate       = sh_eth_set_rate_r8a777x,
497
498         .register_type  = SH_ETH_REG_FAST_RCAR,
499
500         .ecsr_value     = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
501         .ecsipr_value   = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
502         .eesipr_value   = 0x01ff009f,
503
504         .tx_check       = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
505         .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
506                           EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
507                           EESR_ECI,
508         .fdr_value      = 0x00000f0f,
509
510         .apr            = 1,
511         .mpr            = 1,
512         .tpauser        = 1,
513         .hw_swap        = 1,
514 };
515
516 /* R8A7790/1 */
517 static struct sh_eth_cpu_data r8a779x_data = {
518         .set_duplex     = sh_eth_set_duplex,
519         .set_rate       = sh_eth_set_rate_r8a777x,
520
521         .register_type  = SH_ETH_REG_FAST_RCAR,
522
523         .ecsr_value     = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
524         .ecsipr_value   = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
525         .eesipr_value   = 0x01ff009f,
526
527         .tx_check       = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
528         .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
529                           EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
530                           EESR_ECI,
531         .fdr_value      = 0x00000f0f,
532
533         .trscer_err_mask = DESC_I_RINT8,
534
535         .apr            = 1,
536         .mpr            = 1,
537         .tpauser        = 1,
538         .hw_swap        = 1,
539         .rmiimode       = 1,
540 };
541
542 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
543 {
544         struct sh_eth_private *mdp = netdev_priv(ndev);
545
546         switch (mdp->speed) {
547         case 10: /* 10BASE */
548                 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
549                 break;
550         case 100:/* 100BASE */
551                 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
552                 break;
553         default:
554                 break;
555         }
556 }
557
558 /* SH7724 */
559 static struct sh_eth_cpu_data sh7724_data = {
560         .set_duplex     = sh_eth_set_duplex,
561         .set_rate       = sh_eth_set_rate_sh7724,
562
563         .register_type  = SH_ETH_REG_FAST_SH4,
564
565         .ecsr_value     = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
566         .ecsipr_value   = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
567         .eesipr_value   = 0x01ff009f,
568
569         .tx_check       = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
570         .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
571                           EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
572                           EESR_ECI,
573
574         .apr            = 1,
575         .mpr            = 1,
576         .tpauser        = 1,
577         .hw_swap        = 1,
578         .rpadir         = 1,
579         .rpadir_value   = 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
580 };
581
582 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
583 {
584         struct sh_eth_private *mdp = netdev_priv(ndev);
585
586         switch (mdp->speed) {
587         case 10: /* 10BASE */
588                 sh_eth_write(ndev, 0, RTRATE);
589                 break;
590         case 100:/* 100BASE */
591                 sh_eth_write(ndev, 1, RTRATE);
592                 break;
593         default:
594                 break;
595         }
596 }
597
598 /* SH7757 */
599 static struct sh_eth_cpu_data sh7757_data = {
600         .set_duplex     = sh_eth_set_duplex,
601         .set_rate       = sh_eth_set_rate_sh7757,
602
603         .register_type  = SH_ETH_REG_FAST_SH4,
604
605         .eesipr_value   = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
606
607         .tx_check       = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
608         .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
609                           EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
610                           EESR_ECI,
611
612         .irq_flags      = IRQF_SHARED,
613         .apr            = 1,
614         .mpr            = 1,
615         .tpauser        = 1,
616         .hw_swap        = 1,
617         .no_ade         = 1,
618         .rpadir         = 1,
619         .rpadir_value   = 2 << 16,
620         .rtrate         = 1,
621 };
622
623 #define SH_GIGA_ETH_BASE        0xfee00000UL
624 #define GIGA_MALR(port)         (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
625 #define GIGA_MAHR(port)         (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
626 static void sh_eth_chip_reset_giga(struct net_device *ndev)
627 {
628         int i;
629         u32 mahr[2], malr[2];
630
631         /* save MAHR and MALR */
632         for (i = 0; i < 2; i++) {
633                 malr[i] = ioread32((void *)GIGA_MALR(i));
634                 mahr[i] = ioread32((void *)GIGA_MAHR(i));
635         }
636
637         /* reset device */
638         iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
639         mdelay(1);
640
641         /* restore MAHR and MALR */
642         for (i = 0; i < 2; i++) {
643                 iowrite32(malr[i], (void *)GIGA_MALR(i));
644                 iowrite32(mahr[i], (void *)GIGA_MAHR(i));
645         }
646 }
647
648 static void sh_eth_set_rate_giga(struct net_device *ndev)
649 {
650         struct sh_eth_private *mdp = netdev_priv(ndev);
651
652         switch (mdp->speed) {
653         case 10: /* 10BASE */
654                 sh_eth_write(ndev, 0x00000000, GECMR);
655                 break;
656         case 100:/* 100BASE */
657                 sh_eth_write(ndev, 0x00000010, GECMR);
658                 break;
659         case 1000: /* 1000BASE */
660                 sh_eth_write(ndev, 0x00000020, GECMR);
661                 break;
662         default:
663                 break;
664         }
665 }
666
667 /* SH7757(GETHERC) */
668 static struct sh_eth_cpu_data sh7757_data_giga = {
669         .chip_reset     = sh_eth_chip_reset_giga,
670         .set_duplex     = sh_eth_set_duplex,
671         .set_rate       = sh_eth_set_rate_giga,
672
673         .register_type  = SH_ETH_REG_GIGABIT,
674
675         .ecsr_value     = ECSR_ICD | ECSR_MPD,
676         .ecsipr_value   = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
677         .eesipr_value   = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
678
679         .tx_check       = EESR_TC1 | EESR_FTC,
680         .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
681                           EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
682                           EESR_TDE | EESR_ECI,
683         .fdr_value      = 0x0000072f,
684
685         .irq_flags      = IRQF_SHARED,
686         .apr            = 1,
687         .mpr            = 1,
688         .tpauser        = 1,
689         .bculr          = 1,
690         .hw_swap        = 1,
691         .rpadir         = 1,
692         .rpadir_value   = 2 << 16,
693         .no_trimd       = 1,
694         .no_ade         = 1,
695         .tsu            = 1,
696 };
697
698 static void sh_eth_chip_reset(struct net_device *ndev)
699 {
700         struct sh_eth_private *mdp = netdev_priv(ndev);
701
702         /* reset device */
703         sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
704         mdelay(1);
705 }
706
707 static void sh_eth_set_rate_gether(struct net_device *ndev)
708 {
709         struct sh_eth_private *mdp = netdev_priv(ndev);
710
711         switch (mdp->speed) {
712         case 10: /* 10BASE */
713                 sh_eth_write(ndev, GECMR_10, GECMR);
714                 break;
715         case 100:/* 100BASE */
716                 sh_eth_write(ndev, GECMR_100, GECMR);
717                 break;
718         case 1000: /* 1000BASE */
719                 sh_eth_write(ndev, GECMR_1000, GECMR);
720                 break;
721         default:
722                 break;
723         }
724 }
725
726 /* SH7734 */
727 static struct sh_eth_cpu_data sh7734_data = {
728         .chip_reset     = sh_eth_chip_reset,
729         .set_duplex     = sh_eth_set_duplex,
730         .set_rate       = sh_eth_set_rate_gether,
731
732         .register_type  = SH_ETH_REG_GIGABIT,
733
734         .ecsr_value     = ECSR_ICD | ECSR_MPD,
735         .ecsipr_value   = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
736         .eesipr_value   = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
737
738         .tx_check       = EESR_TC1 | EESR_FTC,
739         .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
740                           EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
741                           EESR_TDE | EESR_ECI,
742
743         .apr            = 1,
744         .mpr            = 1,
745         .tpauser        = 1,
746         .bculr          = 1,
747         .hw_swap        = 1,
748         .no_trimd       = 1,
749         .no_ade         = 1,
750         .tsu            = 1,
751         .hw_crc         = 1,
752         .select_mii     = 1,
753 };
754
755 /* SH7763 */
756 static struct sh_eth_cpu_data sh7763_data = {
757         .chip_reset     = sh_eth_chip_reset,
758         .set_duplex     = sh_eth_set_duplex,
759         .set_rate       = sh_eth_set_rate_gether,
760
761         .register_type  = SH_ETH_REG_GIGABIT,
762
763         .ecsr_value     = ECSR_ICD | ECSR_MPD,
764         .ecsipr_value   = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
765         .eesipr_value   = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
766
767         .tx_check       = EESR_TC1 | EESR_FTC,
768         .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
769                           EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
770                           EESR_ECI,
771
772         .apr            = 1,
773         .mpr            = 1,
774         .tpauser        = 1,
775         .bculr          = 1,
776         .hw_swap        = 1,
777         .no_trimd       = 1,
778         .no_ade         = 1,
779         .tsu            = 1,
780         .irq_flags      = IRQF_SHARED,
781 };
782
783 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
784 {
785         struct sh_eth_private *mdp = netdev_priv(ndev);
786
787         /* reset device */
788         sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
789         mdelay(1);
790
791         sh_eth_select_mii(ndev);
792 }
793
794 /* R8A7740 */
795 static struct sh_eth_cpu_data r8a7740_data = {
796         .chip_reset     = sh_eth_chip_reset_r8a7740,
797         .set_duplex     = sh_eth_set_duplex,
798         .set_rate       = sh_eth_set_rate_gether,
799
800         .register_type  = SH_ETH_REG_GIGABIT,
801
802         .ecsr_value     = ECSR_ICD | ECSR_MPD,
803         .ecsipr_value   = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
804         .eesipr_value   = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
805
806         .tx_check       = EESR_TC1 | EESR_FTC,
807         .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
808                           EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
809                           EESR_TDE | EESR_ECI,
810         .fdr_value      = 0x0000070f,
811
812         .apr            = 1,
813         .mpr            = 1,
814         .tpauser        = 1,
815         .bculr          = 1,
816         .hw_swap        = 1,
817         .rpadir         = 1,
818         .rpadir_value   = 2 << 16,
819         .no_trimd       = 1,
820         .no_ade         = 1,
821         .tsu            = 1,
822         .select_mii     = 1,
823         .shift_rd0      = 1,
824 };
825
826 /* R7S72100 */
827 static struct sh_eth_cpu_data r7s72100_data = {
828         .chip_reset     = sh_eth_chip_reset,
829         .set_duplex     = sh_eth_set_duplex,
830
831         .register_type  = SH_ETH_REG_FAST_RZ,
832
833         .ecsr_value     = ECSR_ICD,
834         .ecsipr_value   = ECSIPR_ICDIP,
835         .eesipr_value   = 0xe77f009f,
836
837         .tx_check       = EESR_TC1 | EESR_FTC,
838         .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
839                           EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
840                           EESR_TDE | EESR_ECI,
841         .fdr_value      = 0x0000070f,
842
843         .no_psr         = 1,
844         .apr            = 1,
845         .mpr            = 1,
846         .tpauser        = 1,
847         .hw_swap        = 1,
848         .rpadir         = 1,
849         .rpadir_value   = 2 << 16,
850         .no_trimd       = 1,
851         .no_ade         = 1,
852         .hw_crc         = 1,
853         .tsu            = 1,
854         .shift_rd0      = 1,
855 };
856
857 static struct sh_eth_cpu_data sh7619_data = {
858         .register_type  = SH_ETH_REG_FAST_SH3_SH2,
859
860         .eesipr_value   = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
861
862         .apr            = 1,
863         .mpr            = 1,
864         .tpauser        = 1,
865         .hw_swap        = 1,
866 };
867
868 static struct sh_eth_cpu_data sh771x_data = {
869         .register_type  = SH_ETH_REG_FAST_SH3_SH2,
870
871         .eesipr_value   = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
872         .tsu            = 1,
873 };
874
875 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
876 {
877         if (!cd->ecsr_value)
878                 cd->ecsr_value = DEFAULT_ECSR_INIT;
879
880         if (!cd->ecsipr_value)
881                 cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
882
883         if (!cd->fcftr_value)
884                 cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
885                                   DEFAULT_FIFO_F_D_RFD;
886
887         if (!cd->fdr_value)
888                 cd->fdr_value = DEFAULT_FDR_INIT;
889
890         if (!cd->tx_check)
891                 cd->tx_check = DEFAULT_TX_CHECK;
892
893         if (!cd->eesr_err_check)
894                 cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
895
896         if (!cd->trscer_err_mask)
897                 cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
898 }
899
900 static int sh_eth_check_reset(struct net_device *ndev)
901 {
902         int ret = 0;
903         int cnt = 100;
904
905         while (cnt > 0) {
906                 if (!(sh_eth_read(ndev, EDMR) & 0x3))
907                         break;
908                 mdelay(1);
909                 cnt--;
910         }
911         if (cnt <= 0) {
912                 netdev_err(ndev, "Device reset failed\n");
913                 ret = -ETIMEDOUT;
914         }
915         return ret;
916 }
917
918 static int sh_eth_reset(struct net_device *ndev)
919 {
920         struct sh_eth_private *mdp = netdev_priv(ndev);
921         int ret = 0;
922
923         if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) {
924                 sh_eth_write(ndev, EDSR_ENALL, EDSR);
925                 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
926                              EDMR);
927
928                 ret = sh_eth_check_reset(ndev);
929                 if (ret)
930                         return ret;
931
932                 /* Table Init */
933                 sh_eth_write(ndev, 0x0, TDLAR);
934                 sh_eth_write(ndev, 0x0, TDFAR);
935                 sh_eth_write(ndev, 0x0, TDFXR);
936                 sh_eth_write(ndev, 0x0, TDFFR);
937                 sh_eth_write(ndev, 0x0, RDLAR);
938                 sh_eth_write(ndev, 0x0, RDFAR);
939                 sh_eth_write(ndev, 0x0, RDFXR);
940                 sh_eth_write(ndev, 0x0, RDFFR);
941
942                 /* Reset HW CRC register */
943                 if (mdp->cd->hw_crc)
944                         sh_eth_write(ndev, 0x0, CSMR);
945
946                 /* Select MII mode */
947                 if (mdp->cd->select_mii)
948                         sh_eth_select_mii(ndev);
949         } else {
950                 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
951                              EDMR);
952                 mdelay(3);
953                 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
954                              EDMR);
955         }
956
957         return ret;
958 }
959
960 static void sh_eth_set_receive_align(struct sk_buff *skb)
961 {
962         uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
963
964         if (reserve)
965                 skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
966 }
967
968
969 /* CPU <-> EDMAC endian convert */
970 static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
971 {
972         switch (mdp->edmac_endian) {
973         case EDMAC_LITTLE_ENDIAN:
974                 return cpu_to_le32(x);
975         case EDMAC_BIG_ENDIAN:
976                 return cpu_to_be32(x);
977         }
978         return x;
979 }
980
981 static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
982 {
983         switch (mdp->edmac_endian) {
984         case EDMAC_LITTLE_ENDIAN:
985                 return le32_to_cpu(x);
986         case EDMAC_BIG_ENDIAN:
987                 return be32_to_cpu(x);
988         }
989         return x;
990 }
991
992 /* Program the hardware MAC address from dev->dev_addr. */
993 static void update_mac_address(struct net_device *ndev)
994 {
995         sh_eth_write(ndev,
996                      (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
997                      (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
998         sh_eth_write(ndev,
999                      (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
1000 }
1001
1002 /* Get MAC address from SuperH MAC address register
1003  *
1004  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
1005  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
1006  * When you want use this device, you must set MAC address in bootloader.
1007  *
1008  */
1009 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
1010 {
1011         if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
1012                 memcpy(ndev->dev_addr, mac, ETH_ALEN);
1013         } else {
1014                 ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
1015                 ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
1016                 ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
1017                 ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
1018                 ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
1019                 ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
1020         }
1021 }
1022
1023 static u32 sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
1024 {
1025         if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp))
1026                 return EDTRR_TRNS_GETHER;
1027         else
1028                 return EDTRR_TRNS_ETHER;
1029 }
1030
1031 struct bb_info {
1032         void (*set_gate)(void *addr);
1033         struct mdiobb_ctrl ctrl;
1034         void *addr;
1035         u32 mmd_msk;/* MMD */
1036         u32 mdo_msk;
1037         u32 mdi_msk;
1038         u32 mdc_msk;
1039 };
1040
1041 /* PHY bit set */
1042 static void bb_set(void *addr, u32 msk)
1043 {
1044         iowrite32(ioread32(addr) | msk, addr);
1045 }
1046
1047 /* PHY bit clear */
1048 static void bb_clr(void *addr, u32 msk)
1049 {
1050         iowrite32((ioread32(addr) & ~msk), addr);
1051 }
1052
1053 /* PHY bit read */
1054 static int bb_read(void *addr, u32 msk)
1055 {
1056         return (ioread32(addr) & msk) != 0;
1057 }
1058
1059 /* Data I/O pin control */
1060 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1061 {
1062         struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1063
1064         if (bitbang->set_gate)
1065                 bitbang->set_gate(bitbang->addr);
1066
1067         if (bit)
1068                 bb_set(bitbang->addr, bitbang->mmd_msk);
1069         else
1070                 bb_clr(bitbang->addr, bitbang->mmd_msk);
1071 }
1072
1073 /* Set bit data*/
1074 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1075 {
1076         struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1077
1078         if (bitbang->set_gate)
1079                 bitbang->set_gate(bitbang->addr);
1080
1081         if (bit)
1082                 bb_set(bitbang->addr, bitbang->mdo_msk);
1083         else
1084                 bb_clr(bitbang->addr, bitbang->mdo_msk);
1085 }
1086
1087 /* Get bit data*/
1088 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1089 {
1090         struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1091
1092         if (bitbang->set_gate)
1093                 bitbang->set_gate(bitbang->addr);
1094
1095         return bb_read(bitbang->addr, bitbang->mdi_msk);
1096 }
1097
1098 /* MDC pin control */
1099 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1100 {
1101         struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1102
1103         if (bitbang->set_gate)
1104                 bitbang->set_gate(bitbang->addr);
1105
1106         if (bit)
1107                 bb_set(bitbang->addr, bitbang->mdc_msk);
1108         else
1109                 bb_clr(bitbang->addr, bitbang->mdc_msk);
1110 }
1111
1112 /* mdio bus control struct */
1113 static struct mdiobb_ops bb_ops = {
1114         .owner = THIS_MODULE,
1115         .set_mdc = sh_mdc_ctrl,
1116         .set_mdio_dir = sh_mmd_ctrl,
1117         .set_mdio_data = sh_set_mdio,
1118         .get_mdio_data = sh_get_mdio,
1119 };
1120
1121 /* free skb and descriptor buffer */
1122 static void sh_eth_ring_free(struct net_device *ndev)
1123 {
1124         struct sh_eth_private *mdp = netdev_priv(ndev);
1125         int ringsize, i;
1126
1127         /* Free Rx skb ringbuffer */
1128         if (mdp->rx_skbuff) {
1129                 for (i = 0; i < mdp->num_rx_ring; i++)
1130                         dev_kfree_skb(mdp->rx_skbuff[i]);
1131         }
1132         kfree(mdp->rx_skbuff);
1133         mdp->rx_skbuff = NULL;
1134
1135         /* Free Tx skb ringbuffer */
1136         if (mdp->tx_skbuff) {
1137                 for (i = 0; i < mdp->num_tx_ring; i++)
1138                         dev_kfree_skb(mdp->tx_skbuff[i]);
1139         }
1140         kfree(mdp->tx_skbuff);
1141         mdp->tx_skbuff = NULL;
1142
1143         if (mdp->rx_ring) {
1144                 ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1145                 dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1146                                   mdp->rx_desc_dma);
1147                 mdp->rx_ring = NULL;
1148         }
1149
1150         if (mdp->tx_ring) {
1151                 ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1152                 dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1153                                   mdp->tx_desc_dma);
1154                 mdp->tx_ring = NULL;
1155         }
1156 }
1157
1158 /* format skb and descriptor buffer */
1159 static void sh_eth_ring_format(struct net_device *ndev)
1160 {
1161         struct sh_eth_private *mdp = netdev_priv(ndev);
1162         int i;
1163         struct sk_buff *skb;
1164         struct sh_eth_rxdesc *rxdesc = NULL;
1165         struct sh_eth_txdesc *txdesc = NULL;
1166         int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1167         int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1168         int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1169         dma_addr_t dma_addr;
1170         u32 buf_len;
1171
1172         mdp->cur_rx = 0;
1173         mdp->cur_tx = 0;
1174         mdp->dirty_rx = 0;
1175         mdp->dirty_tx = 0;
1176
1177         memset(mdp->rx_ring, 0, rx_ringsize);
1178
1179         /* build Rx ring buffer */
1180         for (i = 0; i < mdp->num_rx_ring; i++) {
1181                 /* skb */
1182                 mdp->rx_skbuff[i] = NULL;
1183                 skb = netdev_alloc_skb(ndev, skbuff_size);
1184                 if (skb == NULL)
1185                         break;
1186                 sh_eth_set_receive_align(skb);
1187
1188                 /* The size of the buffer is a multiple of 32 bytes. */
1189                 buf_len = ALIGN(mdp->rx_buf_sz, 32);
1190                 dma_addr = dma_map_single(&ndev->dev, skb->data, buf_len,
1191                                           DMA_FROM_DEVICE);
1192                 if (dma_mapping_error(&ndev->dev, dma_addr)) {
1193                         kfree_skb(skb);
1194                         break;
1195                 }
1196                 mdp->rx_skbuff[i] = skb;
1197
1198                 /* RX descriptor */
1199                 rxdesc = &mdp->rx_ring[i];
1200                 rxdesc->len = cpu_to_edmac(mdp, buf_len << 16);
1201                 rxdesc->addr = cpu_to_edmac(mdp, dma_addr);
1202                 rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1203
1204                 /* Rx descriptor address set */
1205                 if (i == 0) {
1206                         sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1207                         if (sh_eth_is_gether(mdp) ||
1208                             sh_eth_is_rz_fast_ether(mdp))
1209                                 sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1210                 }
1211         }
1212
1213         mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1214
1215         /* Mark the last entry as wrapping the ring. */
1216         if (rxdesc)
1217                 rxdesc->status |= cpu_to_edmac(mdp, RD_RDLE);
1218
1219         memset(mdp->tx_ring, 0, tx_ringsize);
1220
1221         /* build Tx ring buffer */
1222         for (i = 0; i < mdp->num_tx_ring; i++) {
1223                 mdp->tx_skbuff[i] = NULL;
1224                 txdesc = &mdp->tx_ring[i];
1225                 txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1226                 txdesc->len = cpu_to_edmac(mdp, 0);
1227                 if (i == 0) {
1228                         /* Tx descriptor address set */
1229                         sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1230                         if (sh_eth_is_gether(mdp) ||
1231                             sh_eth_is_rz_fast_ether(mdp))
1232                                 sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1233                 }
1234         }
1235
1236         txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1237 }
1238
1239 /* Get skb and descriptor buffer */
1240 static int sh_eth_ring_init(struct net_device *ndev)
1241 {
1242         struct sh_eth_private *mdp = netdev_priv(ndev);
1243         int rx_ringsize, tx_ringsize;
1244
1245         /* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1246          * card needs room to do 8 byte alignment, +2 so we can reserve
1247          * the first 2 bytes, and +16 gets room for the status word from the
1248          * card.
1249          */
1250         mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1251                           (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1252         if (mdp->cd->rpadir)
1253                 mdp->rx_buf_sz += NET_IP_ALIGN;
1254
1255         /* Allocate RX and TX skb rings */
1256         mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1257                                  GFP_KERNEL);
1258         if (!mdp->rx_skbuff)
1259                 return -ENOMEM;
1260
1261         mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1262                                  GFP_KERNEL);
1263         if (!mdp->tx_skbuff)
1264                 goto ring_free;
1265
1266         /* Allocate all Rx descriptors. */
1267         rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1268         mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1269                                           GFP_KERNEL);
1270         if (!mdp->rx_ring)
1271                 goto ring_free;
1272
1273         mdp->dirty_rx = 0;
1274
1275         /* Allocate all Tx descriptors. */
1276         tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1277         mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1278                                           GFP_KERNEL);
1279         if (!mdp->tx_ring)
1280                 goto ring_free;
1281         return 0;
1282
1283 ring_free:
1284         /* Free Rx and Tx skb ring buffer and DMA buffer */
1285         sh_eth_ring_free(ndev);
1286
1287         return -ENOMEM;
1288 }
1289
1290 static int sh_eth_dev_init(struct net_device *ndev, bool start)
1291 {
1292         int ret = 0;
1293         struct sh_eth_private *mdp = netdev_priv(ndev);
1294         u32 val;
1295
1296         /* Soft Reset */
1297         ret = sh_eth_reset(ndev);
1298         if (ret)
1299                 return ret;
1300
1301         if (mdp->cd->rmiimode)
1302                 sh_eth_write(ndev, 0x1, RMIIMODE);
1303
1304         /* Descriptor format */
1305         sh_eth_ring_format(ndev);
1306         if (mdp->cd->rpadir)
1307                 sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1308
1309         /* all sh_eth int mask */
1310         sh_eth_write(ndev, 0, EESIPR);
1311
1312 #if defined(__LITTLE_ENDIAN)
1313         if (mdp->cd->hw_swap)
1314                 sh_eth_write(ndev, EDMR_EL, EDMR);
1315         else
1316 #endif
1317                 sh_eth_write(ndev, 0, EDMR);
1318
1319         /* FIFO size set */
1320         sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1321         sh_eth_write(ndev, 0, TFTR);
1322
1323         /* Frame recv control (enable multiple-packets per rx irq) */
1324         sh_eth_write(ndev, RMCR_RNC, RMCR);
1325
1326         sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1327
1328         if (mdp->cd->bculr)
1329                 sh_eth_write(ndev, 0x800, BCULR);       /* Burst sycle set */
1330
1331         sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1332
1333         if (!mdp->cd->no_trimd)
1334                 sh_eth_write(ndev, 0, TRIMD);
1335
1336         /* Recv frame limit set register */
1337         sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1338                      RFLR);
1339
1340         sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
1341         if (start) {
1342                 mdp->irq_enabled = true;
1343                 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1344         }
1345
1346         /* PAUSE Prohibition */
1347         val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
1348                 ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
1349
1350         sh_eth_write(ndev, val, ECMR);
1351
1352         if (mdp->cd->set_rate)
1353                 mdp->cd->set_rate(ndev);
1354
1355         /* E-MAC Status Register clear */
1356         sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1357
1358         /* E-MAC Interrupt Enable register */
1359         if (start)
1360                 sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1361
1362         /* Set MAC address */
1363         update_mac_address(ndev);
1364
1365         /* mask reset */
1366         if (mdp->cd->apr)
1367                 sh_eth_write(ndev, APR_AP, APR);
1368         if (mdp->cd->mpr)
1369                 sh_eth_write(ndev, MPR_MP, MPR);
1370         if (mdp->cd->tpauser)
1371                 sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1372
1373         if (start) {
1374                 /* Setting the Rx mode will start the Rx process. */
1375                 sh_eth_write(ndev, EDRRR_R, EDRRR);
1376
1377                 netif_start_queue(ndev);
1378         }
1379
1380         return ret;
1381 }
1382
1383 static void sh_eth_dev_exit(struct net_device *ndev)
1384 {
1385         struct sh_eth_private *mdp = netdev_priv(ndev);
1386         int i;
1387
1388         /* Deactivate all TX descriptors, so DMA should stop at next
1389          * packet boundary if it's currently running
1390          */
1391         for (i = 0; i < mdp->num_tx_ring; i++)
1392                 mdp->tx_ring[i].status &= ~cpu_to_edmac(mdp, TD_TACT);
1393
1394         /* Disable TX FIFO egress to MAC */
1395         sh_eth_rcv_snd_disable(ndev);
1396
1397         /* Stop RX DMA at next packet boundary */
1398         sh_eth_write(ndev, 0, EDRRR);
1399
1400         /* Aside from TX DMA, we can't tell when the hardware is
1401          * really stopped, so we need to reset to make sure.
1402          * Before doing that, wait for long enough to *probably*
1403          * finish transmitting the last packet and poll stats.
1404          */
1405         msleep(2); /* max frame time at 10 Mbps < 1250 us */
1406         sh_eth_get_stats(ndev);
1407         sh_eth_reset(ndev);
1408
1409         /* Set MAC address again */
1410         update_mac_address(ndev);
1411 }
1412
1413 /* free Tx skb function */
1414 static int sh_eth_txfree(struct net_device *ndev)
1415 {
1416         struct sh_eth_private *mdp = netdev_priv(ndev);
1417         struct sh_eth_txdesc *txdesc;
1418         int free_num = 0;
1419         int entry = 0;
1420
1421         for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1422                 entry = mdp->dirty_tx % mdp->num_tx_ring;
1423                 txdesc = &mdp->tx_ring[entry];
1424                 if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
1425                         break;
1426                 /* TACT bit must be checked before all the following reads */
1427                 dma_rmb();
1428                 netif_info(mdp, tx_done, ndev,
1429                            "tx entry %d status 0x%08x\n",
1430                            entry, edmac_to_cpu(mdp, txdesc->status));
1431                 /* Free the original skb. */
1432                 if (mdp->tx_skbuff[entry]) {
1433                         dma_unmap_single(&ndev->dev,
1434                                          edmac_to_cpu(mdp, txdesc->addr),
1435                                          edmac_to_cpu(mdp, txdesc->len) >> 16,
1436                                          DMA_TO_DEVICE);
1437                         dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1438                         mdp->tx_skbuff[entry] = NULL;
1439                         free_num++;
1440                 }
1441                 txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1442                 if (entry >= mdp->num_tx_ring - 1)
1443                         txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1444
1445                 ndev->stats.tx_packets++;
1446                 ndev->stats.tx_bytes += edmac_to_cpu(mdp, txdesc->len) >> 16;
1447         }
1448         return free_num;
1449 }
1450
1451 /* Packet receive function */
1452 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1453 {
1454         struct sh_eth_private *mdp = netdev_priv(ndev);
1455         struct sh_eth_rxdesc *rxdesc;
1456
1457         int entry = mdp->cur_rx % mdp->num_rx_ring;
1458         int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1459         int limit;
1460         struct sk_buff *skb;
1461         u16 pkt_len = 0;
1462         u32 desc_status;
1463         int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1464         dma_addr_t dma_addr;
1465         u32 buf_len;
1466
1467         boguscnt = min(boguscnt, *quota);
1468         limit = boguscnt;
1469         rxdesc = &mdp->rx_ring[entry];
1470         while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
1471                 /* RACT bit must be checked before all the following reads */
1472                 dma_rmb();
1473                 desc_status = edmac_to_cpu(mdp, rxdesc->status);
1474                 pkt_len = edmac_to_cpu(mdp, rxdesc->len) & RD_RFL;
1475
1476                 if (--boguscnt < 0)
1477                         break;
1478
1479                 netif_info(mdp, rx_status, ndev,
1480                            "rx entry %d status 0x%08x len %d\n",
1481                            entry, desc_status, pkt_len);
1482
1483                 if (!(desc_status & RDFEND))
1484                         ndev->stats.rx_length_errors++;
1485
1486                 /* In case of almost all GETHER/ETHERs, the Receive Frame State
1487                  * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1488                  * bit 0. However, in case of the R8A7740 and R7S72100
1489                  * the RFS bits are from bit 25 to bit 16. So, the
1490                  * driver needs right shifting by 16.
1491                  */
1492                 if (mdp->cd->shift_rd0)
1493                         desc_status >>= 16;
1494
1495                 skb = mdp->rx_skbuff[entry];
1496                 if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1497                                    RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1498                         ndev->stats.rx_errors++;
1499                         if (desc_status & RD_RFS1)
1500                                 ndev->stats.rx_crc_errors++;
1501                         if (desc_status & RD_RFS2)
1502                                 ndev->stats.rx_frame_errors++;
1503                         if (desc_status & RD_RFS3)
1504                                 ndev->stats.rx_length_errors++;
1505                         if (desc_status & RD_RFS4)
1506                                 ndev->stats.rx_length_errors++;
1507                         if (desc_status & RD_RFS6)
1508                                 ndev->stats.rx_missed_errors++;
1509                         if (desc_status & RD_RFS10)
1510                                 ndev->stats.rx_over_errors++;
1511                 } else  if (skb) {
1512                         dma_addr = edmac_to_cpu(mdp, rxdesc->addr);
1513                         if (!mdp->cd->hw_swap)
1514                                 sh_eth_soft_swap(
1515                                         phys_to_virt(ALIGN(dma_addr, 4)),
1516                                         pkt_len + 2);
1517                         mdp->rx_skbuff[entry] = NULL;
1518                         if (mdp->cd->rpadir)
1519                                 skb_reserve(skb, NET_IP_ALIGN);
1520                         dma_unmap_single(&ndev->dev, dma_addr,
1521                                          ALIGN(mdp->rx_buf_sz, 32),
1522                                          DMA_FROM_DEVICE);
1523                         skb_put(skb, pkt_len);
1524                         skb->protocol = eth_type_trans(skb, ndev);
1525                         netif_receive_skb(skb);
1526                         ndev->stats.rx_packets++;
1527                         ndev->stats.rx_bytes += pkt_len;
1528                         if (desc_status & RD_RFS8)
1529                                 ndev->stats.multicast++;
1530                 }
1531                 entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1532                 rxdesc = &mdp->rx_ring[entry];
1533         }
1534
1535         /* Refill the Rx ring buffers. */
1536         for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1537                 entry = mdp->dirty_rx % mdp->num_rx_ring;
1538                 rxdesc = &mdp->rx_ring[entry];
1539                 /* The size of the buffer is 32 byte boundary. */
1540                 buf_len = ALIGN(mdp->rx_buf_sz, 32);
1541                 rxdesc->len = cpu_to_edmac(mdp, buf_len << 16);
1542
1543                 if (mdp->rx_skbuff[entry] == NULL) {
1544                         skb = netdev_alloc_skb(ndev, skbuff_size);
1545                         if (skb == NULL)
1546                                 break;  /* Better luck next round. */
1547                         sh_eth_set_receive_align(skb);
1548                         dma_addr = dma_map_single(&ndev->dev, skb->data,
1549                                                   buf_len, DMA_FROM_DEVICE);
1550                         if (dma_mapping_error(&ndev->dev, dma_addr)) {
1551                                 kfree_skb(skb);
1552                                 break;
1553                         }
1554                         mdp->rx_skbuff[entry] = skb;
1555
1556                         skb_checksum_none_assert(skb);
1557                         rxdesc->addr = cpu_to_edmac(mdp, dma_addr);
1558                 }
1559                 dma_wmb(); /* RACT bit must be set after all the above writes */
1560                 if (entry >= mdp->num_rx_ring - 1)
1561                         rxdesc->status |=
1562                                 cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDLE);
1563                 else
1564                         rxdesc->status |=
1565                                 cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1566         }
1567
1568         /* Restart Rx engine if stopped. */
1569         /* If we don't need to check status, don't. -KDU */
1570         if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1571                 /* fix the values for the next receiving if RDE is set */
1572                 if (intr_status & EESR_RDE &&
1573                     mdp->reg_offset[RDFAR] != SH_ETH_OFFSET_INVALID) {
1574                         u32 count = (sh_eth_read(ndev, RDFAR) -
1575                                      sh_eth_read(ndev, RDLAR)) >> 4;
1576
1577                         mdp->cur_rx = count;
1578                         mdp->dirty_rx = count;
1579                 }
1580                 sh_eth_write(ndev, EDRRR_R, EDRRR);
1581         }
1582
1583         *quota -= limit - boguscnt - 1;
1584
1585         return *quota <= 0;
1586 }
1587
1588 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1589 {
1590         /* disable tx and rx */
1591         sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
1592                 ~(ECMR_RE | ECMR_TE), ECMR);
1593 }
1594
1595 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1596 {
1597         /* enable tx and rx */
1598         sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
1599                 (ECMR_RE | ECMR_TE), ECMR);
1600 }
1601
1602 /* error control function */
1603 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1604 {
1605         struct sh_eth_private *mdp = netdev_priv(ndev);
1606         u32 felic_stat;
1607         u32 link_stat;
1608         u32 mask;
1609
1610         if (intr_status & EESR_ECI) {
1611                 felic_stat = sh_eth_read(ndev, ECSR);
1612                 sh_eth_write(ndev, felic_stat, ECSR);   /* clear int */
1613                 if (felic_stat & ECSR_ICD)
1614                         ndev->stats.tx_carrier_errors++;
1615                 if (felic_stat & ECSR_LCHNG) {
1616                         /* Link Changed */
1617                         if (mdp->cd->no_psr || mdp->no_ether_link) {
1618                                 goto ignore_link;
1619                         } else {
1620                                 link_stat = (sh_eth_read(ndev, PSR));
1621                                 if (mdp->ether_link_active_low)
1622                                         link_stat = ~link_stat;
1623                         }
1624                         if (!(link_stat & PHY_ST_LINK)) {
1625                                 sh_eth_rcv_snd_disable(ndev);
1626                         } else {
1627                                 /* Link Up */
1628                                 sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
1629                                                    ~DMAC_M_ECI, EESIPR);
1630                                 /* clear int */
1631                                 sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
1632                                              ECSR);
1633                                 sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
1634                                                    DMAC_M_ECI, EESIPR);
1635                                 /* enable tx and rx */
1636                                 sh_eth_rcv_snd_enable(ndev);
1637                         }
1638                 }
1639         }
1640
1641 ignore_link:
1642         if (intr_status & EESR_TWB) {
1643                 /* Unused write back interrupt */
1644                 if (intr_status & EESR_TABT) {  /* Transmit Abort int */
1645                         ndev->stats.tx_aborted_errors++;
1646                         netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1647                 }
1648         }
1649
1650         if (intr_status & EESR_RABT) {
1651                 /* Receive Abort int */
1652                 if (intr_status & EESR_RFRMER) {
1653                         /* Receive Frame Overflow int */
1654                         ndev->stats.rx_frame_errors++;
1655                 }
1656         }
1657
1658         if (intr_status & EESR_TDE) {
1659                 /* Transmit Descriptor Empty int */
1660                 ndev->stats.tx_fifo_errors++;
1661                 netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1662         }
1663
1664         if (intr_status & EESR_TFE) {
1665                 /* FIFO under flow */
1666                 ndev->stats.tx_fifo_errors++;
1667                 netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1668         }
1669
1670         if (intr_status & EESR_RDE) {
1671                 /* Receive Descriptor Empty int */
1672                 ndev->stats.rx_over_errors++;
1673         }
1674
1675         if (intr_status & EESR_RFE) {
1676                 /* Receive FIFO Overflow int */
1677                 ndev->stats.rx_fifo_errors++;
1678         }
1679
1680         if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1681                 /* Address Error */
1682                 ndev->stats.tx_fifo_errors++;
1683                 netif_err(mdp, tx_err, ndev, "Address Error\n");
1684         }
1685
1686         mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1687         if (mdp->cd->no_ade)
1688                 mask &= ~EESR_ADE;
1689         if (intr_status & mask) {
1690                 /* Tx error */
1691                 u32 edtrr = sh_eth_read(ndev, EDTRR);
1692
1693                 /* dmesg */
1694                 netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1695                            intr_status, mdp->cur_tx, mdp->dirty_tx,
1696                            (u32)ndev->state, edtrr);
1697                 /* dirty buffer free */
1698                 sh_eth_txfree(ndev);
1699
1700                 /* SH7712 BUG */
1701                 if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1702                         /* tx dma start */
1703                         sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1704                 }
1705                 /* wakeup */
1706                 netif_wake_queue(ndev);
1707         }
1708 }
1709
1710 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1711 {
1712         struct net_device *ndev = netdev;
1713         struct sh_eth_private *mdp = netdev_priv(ndev);
1714         struct sh_eth_cpu_data *cd = mdp->cd;
1715         irqreturn_t ret = IRQ_NONE;
1716         u32 intr_status, intr_enable;
1717
1718         spin_lock(&mdp->lock);
1719
1720         /* Get interrupt status */
1721         intr_status = sh_eth_read(ndev, EESR);
1722         /* Mask it with the interrupt mask, forcing ECI interrupt to be always
1723          * enabled since it's the one that  comes thru regardless of the mask,
1724          * and we need to fully handle it in sh_eth_error() in order to quench
1725          * it as it doesn't get cleared by just writing 1 to the ECI bit...
1726          */
1727         intr_enable = sh_eth_read(ndev, EESIPR);
1728         intr_status &= intr_enable | DMAC_M_ECI;
1729         if (intr_status & (EESR_RX_CHECK | cd->tx_check | cd->eesr_err_check))
1730                 ret = IRQ_HANDLED;
1731         else
1732                 goto out;
1733
1734         if (!likely(mdp->irq_enabled)) {
1735                 sh_eth_write(ndev, 0, EESIPR);
1736                 goto out;
1737         }
1738
1739         if (intr_status & EESR_RX_CHECK) {
1740                 if (napi_schedule_prep(&mdp->napi)) {
1741                         /* Mask Rx interrupts */
1742                         sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1743                                      EESIPR);
1744                         __napi_schedule(&mdp->napi);
1745                 } else {
1746                         netdev_warn(ndev,
1747                                     "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1748                                     intr_status, intr_enable);
1749                 }
1750         }
1751
1752         /* Tx Check */
1753         if (intr_status & cd->tx_check) {
1754                 /* Clear Tx interrupts */
1755                 sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1756
1757                 sh_eth_txfree(ndev);
1758                 netif_wake_queue(ndev);
1759         }
1760
1761         if (intr_status & cd->eesr_err_check) {
1762                 /* Clear error interrupts */
1763                 sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1764
1765                 sh_eth_error(ndev, intr_status);
1766         }
1767
1768 out:
1769         spin_unlock(&mdp->lock);
1770
1771         return ret;
1772 }
1773
1774 static int sh_eth_poll(struct napi_struct *napi, int budget)
1775 {
1776         struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1777                                                   napi);
1778         struct net_device *ndev = napi->dev;
1779         int quota = budget;
1780         u32 intr_status;
1781
1782         for (;;) {
1783                 intr_status = sh_eth_read(ndev, EESR);
1784                 if (!(intr_status & EESR_RX_CHECK))
1785                         break;
1786                 /* Clear Rx interrupts */
1787                 sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1788
1789                 if (sh_eth_rx(ndev, intr_status, &quota))
1790                         goto out;
1791         }
1792
1793         napi_complete(napi);
1794
1795         /* Reenable Rx interrupts */
1796         if (mdp->irq_enabled)
1797                 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1798 out:
1799         return budget - quota;
1800 }
1801
1802 /* PHY state control function */
1803 static void sh_eth_adjust_link(struct net_device *ndev)
1804 {
1805         struct sh_eth_private *mdp = netdev_priv(ndev);
1806         struct phy_device *phydev = mdp->phydev;
1807         int new_state = 0;
1808
1809         if (phydev->link) {
1810                 if (phydev->duplex != mdp->duplex) {
1811                         new_state = 1;
1812                         mdp->duplex = phydev->duplex;
1813                         if (mdp->cd->set_duplex)
1814                                 mdp->cd->set_duplex(ndev);
1815                 }
1816
1817                 if (phydev->speed != mdp->speed) {
1818                         new_state = 1;
1819                         mdp->speed = phydev->speed;
1820                         if (mdp->cd->set_rate)
1821                                 mdp->cd->set_rate(ndev);
1822                 }
1823                 if (!mdp->link) {
1824                         sh_eth_write(ndev,
1825                                      sh_eth_read(ndev, ECMR) & ~ECMR_TXF,
1826                                      ECMR);
1827                         new_state = 1;
1828                         mdp->link = phydev->link;
1829                         if (mdp->cd->no_psr || mdp->no_ether_link)
1830                                 sh_eth_rcv_snd_enable(ndev);
1831                 }
1832         } else if (mdp->link) {
1833                 new_state = 1;
1834                 mdp->link = 0;
1835                 mdp->speed = 0;
1836                 mdp->duplex = -1;
1837                 if (mdp->cd->no_psr || mdp->no_ether_link)
1838                         sh_eth_rcv_snd_disable(ndev);
1839         }
1840
1841         if (new_state && netif_msg_link(mdp))
1842                 phy_print_status(phydev);
1843 }
1844
1845 /* PHY init function */
1846 static int sh_eth_phy_init(struct net_device *ndev)
1847 {
1848         struct device_node *np = ndev->dev.parent->of_node;
1849         struct sh_eth_private *mdp = netdev_priv(ndev);
1850         struct phy_device *phydev = NULL;
1851
1852         mdp->link = 0;
1853         mdp->speed = 0;
1854         mdp->duplex = -1;
1855
1856         /* Try connect to PHY */
1857         if (np) {
1858                 struct device_node *pn;
1859
1860                 pn = of_parse_phandle(np, "phy-handle", 0);
1861                 phydev = of_phy_connect(ndev, pn,
1862                                         sh_eth_adjust_link, 0,
1863                                         mdp->phy_interface);
1864
1865                 if (!phydev)
1866                         phydev = ERR_PTR(-ENOENT);
1867         } else {
1868                 char phy_id[MII_BUS_ID_SIZE + 3];
1869
1870                 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1871                          mdp->mii_bus->id, mdp->phy_id);
1872
1873                 phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1874                                      mdp->phy_interface);
1875         }
1876
1877         if (IS_ERR(phydev)) {
1878                 netdev_err(ndev, "failed to connect PHY\n");
1879                 return PTR_ERR(phydev);
1880         }
1881
1882         netdev_info(ndev, "attached PHY %d (IRQ %d) to driver %s\n",
1883                     phydev->addr, phydev->irq, phydev->drv->name);
1884
1885         mdp->phydev = phydev;
1886
1887         return 0;
1888 }
1889
1890 /* PHY control start function */
1891 static int sh_eth_phy_start(struct net_device *ndev)
1892 {
1893         struct sh_eth_private *mdp = netdev_priv(ndev);
1894         int ret;
1895
1896         ret = sh_eth_phy_init(ndev);
1897         if (ret)
1898                 return ret;
1899
1900         phy_start(mdp->phydev);
1901
1902         return 0;
1903 }
1904
1905 static int sh_eth_get_settings(struct net_device *ndev,
1906                                struct ethtool_cmd *ecmd)
1907 {
1908         struct sh_eth_private *mdp = netdev_priv(ndev);
1909         unsigned long flags;
1910         int ret;
1911
1912         if (!mdp->phydev)
1913                 return -ENODEV;
1914
1915         spin_lock_irqsave(&mdp->lock, flags);
1916         ret = phy_ethtool_gset(mdp->phydev, ecmd);
1917         spin_unlock_irqrestore(&mdp->lock, flags);
1918
1919         return ret;
1920 }
1921
1922 static int sh_eth_set_settings(struct net_device *ndev,
1923                                struct ethtool_cmd *ecmd)
1924 {
1925         struct sh_eth_private *mdp = netdev_priv(ndev);
1926         unsigned long flags;
1927         int ret;
1928
1929         if (!mdp->phydev)
1930                 return -ENODEV;
1931
1932         spin_lock_irqsave(&mdp->lock, flags);
1933
1934         /* disable tx and rx */
1935         sh_eth_rcv_snd_disable(ndev);
1936
1937         ret = phy_ethtool_sset(mdp->phydev, ecmd);
1938         if (ret)
1939                 goto error_exit;
1940
1941         if (ecmd->duplex == DUPLEX_FULL)
1942                 mdp->duplex = 1;
1943         else
1944                 mdp->duplex = 0;
1945
1946         if (mdp->cd->set_duplex)
1947                 mdp->cd->set_duplex(ndev);
1948
1949 error_exit:
1950         mdelay(1);
1951
1952         /* enable tx and rx */
1953         sh_eth_rcv_snd_enable(ndev);
1954
1955         spin_unlock_irqrestore(&mdp->lock, flags);
1956
1957         return ret;
1958 }
1959
1960 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
1961  * version must be bumped as well.  Just adding registers up to that
1962  * limit is fine, as long as the existing register indices don't
1963  * change.
1964  */
1965 #define SH_ETH_REG_DUMP_VERSION         1
1966 #define SH_ETH_REG_DUMP_MAX_REGS        256
1967
1968 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
1969 {
1970         struct sh_eth_private *mdp = netdev_priv(ndev);
1971         struct sh_eth_cpu_data *cd = mdp->cd;
1972         u32 *valid_map;
1973         size_t len;
1974
1975         BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
1976
1977         /* Dump starts with a bitmap that tells ethtool which
1978          * registers are defined for this chip.
1979          */
1980         len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
1981         if (buf) {
1982                 valid_map = buf;
1983                 buf += len;
1984         } else {
1985                 valid_map = NULL;
1986         }
1987
1988         /* Add a register to the dump, if it has a defined offset.
1989          * This automatically skips most undefined registers, but for
1990          * some it is also necessary to check a capability flag in
1991          * struct sh_eth_cpu_data.
1992          */
1993 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
1994 #define add_reg_from(reg, read_expr) do {                               \
1995                 if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) {    \
1996                         if (buf) {                                      \
1997                                 mark_reg_valid(reg);                    \
1998                                 *buf++ = read_expr;                     \
1999                         }                                               \
2000                         ++len;                                          \
2001                 }                                                       \
2002         } while (0)
2003 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
2004 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
2005
2006         add_reg(EDSR);
2007         add_reg(EDMR);
2008         add_reg(EDTRR);
2009         add_reg(EDRRR);
2010         add_reg(EESR);
2011         add_reg(EESIPR);
2012         add_reg(TDLAR);
2013         add_reg(TDFAR);
2014         add_reg(TDFXR);
2015         add_reg(TDFFR);
2016         add_reg(RDLAR);
2017         add_reg(RDFAR);
2018         add_reg(RDFXR);
2019         add_reg(RDFFR);
2020         add_reg(TRSCER);
2021         add_reg(RMFCR);
2022         add_reg(TFTR);
2023         add_reg(FDR);
2024         add_reg(RMCR);
2025         add_reg(TFUCR);
2026         add_reg(RFOCR);
2027         if (cd->rmiimode)
2028                 add_reg(RMIIMODE);
2029         add_reg(FCFTR);
2030         if (cd->rpadir)
2031                 add_reg(RPADIR);
2032         if (!cd->no_trimd)
2033                 add_reg(TRIMD);
2034         add_reg(ECMR);
2035         add_reg(ECSR);
2036         add_reg(ECSIPR);
2037         add_reg(PIR);
2038         if (!cd->no_psr)
2039                 add_reg(PSR);
2040         add_reg(RDMLR);
2041         add_reg(RFLR);
2042         add_reg(IPGR);
2043         if (cd->apr)
2044                 add_reg(APR);
2045         if (cd->mpr)
2046                 add_reg(MPR);
2047         add_reg(RFCR);
2048         add_reg(RFCF);
2049         if (cd->tpauser)
2050                 add_reg(TPAUSER);
2051         add_reg(TPAUSECR);
2052         add_reg(GECMR);
2053         if (cd->bculr)
2054                 add_reg(BCULR);
2055         add_reg(MAHR);
2056         add_reg(MALR);
2057         add_reg(TROCR);
2058         add_reg(CDCR);
2059         add_reg(LCCR);
2060         add_reg(CNDCR);
2061         add_reg(CEFCR);
2062         add_reg(FRECR);
2063         add_reg(TSFRCR);
2064         add_reg(TLFRCR);
2065         add_reg(CERCR);
2066         add_reg(CEECR);
2067         add_reg(MAFCR);
2068         if (cd->rtrate)
2069                 add_reg(RTRATE);
2070         if (cd->hw_crc)
2071                 add_reg(CSMR);
2072         if (cd->select_mii)
2073                 add_reg(RMII_MII);
2074         add_reg(ARSTR);
2075         if (cd->tsu) {
2076                 add_tsu_reg(TSU_CTRST);
2077                 add_tsu_reg(TSU_FWEN0);
2078                 add_tsu_reg(TSU_FWEN1);
2079                 add_tsu_reg(TSU_FCM);
2080                 add_tsu_reg(TSU_BSYSL0);
2081                 add_tsu_reg(TSU_BSYSL1);
2082                 add_tsu_reg(TSU_PRISL0);
2083                 add_tsu_reg(TSU_PRISL1);
2084                 add_tsu_reg(TSU_FWSL0);
2085                 add_tsu_reg(TSU_FWSL1);
2086                 add_tsu_reg(TSU_FWSLC);
2087                 add_tsu_reg(TSU_QTAG0);
2088                 add_tsu_reg(TSU_QTAG1);
2089                 add_tsu_reg(TSU_QTAGM0);
2090                 add_tsu_reg(TSU_QTAGM1);
2091                 add_tsu_reg(TSU_FWSR);
2092                 add_tsu_reg(TSU_FWINMK);
2093                 add_tsu_reg(TSU_ADQT0);
2094                 add_tsu_reg(TSU_ADQT1);
2095                 add_tsu_reg(TSU_VTAG0);
2096                 add_tsu_reg(TSU_VTAG1);
2097                 add_tsu_reg(TSU_ADSBSY);
2098                 add_tsu_reg(TSU_TEN);
2099                 add_tsu_reg(TSU_POST1);
2100                 add_tsu_reg(TSU_POST2);
2101                 add_tsu_reg(TSU_POST3);
2102                 add_tsu_reg(TSU_POST4);
2103                 if (mdp->reg_offset[TSU_ADRH0] != SH_ETH_OFFSET_INVALID) {
2104                         /* This is the start of a table, not just a single
2105                          * register.
2106                          */
2107                         if (buf) {
2108                                 unsigned int i;
2109
2110                                 mark_reg_valid(TSU_ADRH0);
2111                                 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2112                                         *buf++ = ioread32(
2113                                                 mdp->tsu_addr +
2114                                                 mdp->reg_offset[TSU_ADRH0] +
2115                                                 i * 4);
2116                         }
2117                         len += SH_ETH_TSU_CAM_ENTRIES * 2;
2118                 }
2119         }
2120
2121 #undef mark_reg_valid
2122 #undef add_reg_from
2123 #undef add_reg
2124 #undef add_tsu_reg
2125
2126         return len * 4;
2127 }
2128
2129 static int sh_eth_get_regs_len(struct net_device *ndev)
2130 {
2131         return __sh_eth_get_regs(ndev, NULL);
2132 }
2133
2134 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2135                             void *buf)
2136 {
2137         struct sh_eth_private *mdp = netdev_priv(ndev);
2138
2139         regs->version = SH_ETH_REG_DUMP_VERSION;
2140
2141         pm_runtime_get_sync(&mdp->pdev->dev);
2142         __sh_eth_get_regs(ndev, buf);
2143         pm_runtime_put_sync(&mdp->pdev->dev);
2144 }
2145
2146 static int sh_eth_nway_reset(struct net_device *ndev)
2147 {
2148         struct sh_eth_private *mdp = netdev_priv(ndev);
2149         unsigned long flags;
2150         int ret;
2151
2152         if (!mdp->phydev)
2153                 return -ENODEV;
2154
2155         spin_lock_irqsave(&mdp->lock, flags);
2156         ret = phy_start_aneg(mdp->phydev);
2157         spin_unlock_irqrestore(&mdp->lock, flags);
2158
2159         return ret;
2160 }
2161
2162 static u32 sh_eth_get_msglevel(struct net_device *ndev)
2163 {
2164         struct sh_eth_private *mdp = netdev_priv(ndev);
2165         return mdp->msg_enable;
2166 }
2167
2168 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2169 {
2170         struct sh_eth_private *mdp = netdev_priv(ndev);
2171         mdp->msg_enable = value;
2172 }
2173
2174 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2175         "rx_current", "tx_current",
2176         "rx_dirty", "tx_dirty",
2177 };
2178 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
2179
2180 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2181 {
2182         switch (sset) {
2183         case ETH_SS_STATS:
2184                 return SH_ETH_STATS_LEN;
2185         default:
2186                 return -EOPNOTSUPP;
2187         }
2188 }
2189
2190 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2191                                      struct ethtool_stats *stats, u64 *data)
2192 {
2193         struct sh_eth_private *mdp = netdev_priv(ndev);
2194         int i = 0;
2195
2196         /* device-specific stats */
2197         data[i++] = mdp->cur_rx;
2198         data[i++] = mdp->cur_tx;
2199         data[i++] = mdp->dirty_rx;
2200         data[i++] = mdp->dirty_tx;
2201 }
2202
2203 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2204 {
2205         switch (stringset) {
2206         case ETH_SS_STATS:
2207                 memcpy(data, *sh_eth_gstrings_stats,
2208                        sizeof(sh_eth_gstrings_stats));
2209                 break;
2210         }
2211 }
2212
2213 static void sh_eth_get_ringparam(struct net_device *ndev,
2214                                  struct ethtool_ringparam *ring)
2215 {
2216         struct sh_eth_private *mdp = netdev_priv(ndev);
2217
2218         ring->rx_max_pending = RX_RING_MAX;
2219         ring->tx_max_pending = TX_RING_MAX;
2220         ring->rx_pending = mdp->num_rx_ring;
2221         ring->tx_pending = mdp->num_tx_ring;
2222 }
2223
2224 static int sh_eth_set_ringparam(struct net_device *ndev,
2225                                 struct ethtool_ringparam *ring)
2226 {
2227         struct sh_eth_private *mdp = netdev_priv(ndev);
2228         int ret;
2229
2230         if (ring->tx_pending > TX_RING_MAX ||
2231             ring->rx_pending > RX_RING_MAX ||
2232             ring->tx_pending < TX_RING_MIN ||
2233             ring->rx_pending < RX_RING_MIN)
2234                 return -EINVAL;
2235         if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2236                 return -EINVAL;
2237
2238         if (netif_running(ndev)) {
2239                 netif_device_detach(ndev);
2240                 netif_tx_disable(ndev);
2241
2242                 /* Serialise with the interrupt handler and NAPI, then
2243                  * disable interrupts.  We have to clear the
2244                  * irq_enabled flag first to ensure that interrupts
2245                  * won't be re-enabled.
2246                  */
2247                 mdp->irq_enabled = false;
2248                 synchronize_irq(ndev->irq);
2249                 napi_synchronize(&mdp->napi);
2250                 sh_eth_write(ndev, 0x0000, EESIPR);
2251
2252                 sh_eth_dev_exit(ndev);
2253
2254                 /* Free all the skbuffs in the Rx queue and the DMA buffers. */
2255                 sh_eth_ring_free(ndev);
2256         }
2257
2258         /* Set new parameters */
2259         mdp->num_rx_ring = ring->rx_pending;
2260         mdp->num_tx_ring = ring->tx_pending;
2261
2262         if (netif_running(ndev)) {
2263                 ret = sh_eth_ring_init(ndev);
2264                 if (ret < 0) {
2265                         netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2266                                    __func__);
2267                         return ret;
2268                 }
2269                 ret = sh_eth_dev_init(ndev, false);
2270                 if (ret < 0) {
2271                         netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2272                                    __func__);
2273                         return ret;
2274                 }
2275
2276                 mdp->irq_enabled = true;
2277                 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
2278                 /* Setting the Rx mode will start the Rx process. */
2279                 sh_eth_write(ndev, EDRRR_R, EDRRR);
2280                 netif_device_attach(ndev);
2281         }
2282
2283         return 0;
2284 }
2285
2286 static const struct ethtool_ops sh_eth_ethtool_ops = {
2287         .get_settings   = sh_eth_get_settings,
2288         .set_settings   = sh_eth_set_settings,
2289         .get_regs_len   = sh_eth_get_regs_len,
2290         .get_regs       = sh_eth_get_regs,
2291         .nway_reset     = sh_eth_nway_reset,
2292         .get_msglevel   = sh_eth_get_msglevel,
2293         .set_msglevel   = sh_eth_set_msglevel,
2294         .get_link       = ethtool_op_get_link,
2295         .get_strings    = sh_eth_get_strings,
2296         .get_ethtool_stats  = sh_eth_get_ethtool_stats,
2297         .get_sset_count     = sh_eth_get_sset_count,
2298         .get_ringparam  = sh_eth_get_ringparam,
2299         .set_ringparam  = sh_eth_set_ringparam,
2300 };
2301
2302 /* network device open function */
2303 static int sh_eth_open(struct net_device *ndev)
2304 {
2305         int ret = 0;
2306         struct sh_eth_private *mdp = netdev_priv(ndev);
2307
2308         pm_runtime_get_sync(&mdp->pdev->dev);
2309
2310         napi_enable(&mdp->napi);
2311
2312         ret = request_irq(ndev->irq, sh_eth_interrupt,
2313                           mdp->cd->irq_flags, ndev->name, ndev);
2314         if (ret) {
2315                 netdev_err(ndev, "Can not assign IRQ number\n");
2316                 goto out_napi_off;
2317         }
2318
2319         /* Descriptor set */
2320         ret = sh_eth_ring_init(ndev);
2321         if (ret)
2322                 goto out_free_irq;
2323
2324         /* device init */
2325         ret = sh_eth_dev_init(ndev, true);
2326         if (ret)
2327                 goto out_free_irq;
2328
2329         /* PHY control start*/
2330         ret = sh_eth_phy_start(ndev);
2331         if (ret)
2332                 goto out_free_irq;
2333
2334         mdp->is_opened = 1;
2335
2336         return ret;
2337
2338 out_free_irq:
2339         free_irq(ndev->irq, ndev);
2340 out_napi_off:
2341         napi_disable(&mdp->napi);
2342         pm_runtime_put_sync(&mdp->pdev->dev);
2343         return ret;
2344 }
2345
2346 /* Timeout function */
2347 static void sh_eth_tx_timeout(struct net_device *ndev)
2348 {
2349         struct sh_eth_private *mdp = netdev_priv(ndev);
2350         struct sh_eth_rxdesc *rxdesc;
2351         int i;
2352
2353         netif_stop_queue(ndev);
2354
2355         netif_err(mdp, timer, ndev,
2356                   "transmit timed out, status %8.8x, resetting...\n",
2357                   sh_eth_read(ndev, EESR));
2358
2359         /* tx_errors count up */
2360         ndev->stats.tx_errors++;
2361
2362         /* Free all the skbuffs in the Rx queue. */
2363         for (i = 0; i < mdp->num_rx_ring; i++) {
2364                 rxdesc = &mdp->rx_ring[i];
2365                 rxdesc->status = cpu_to_edmac(mdp, 0);
2366                 rxdesc->addr = cpu_to_edmac(mdp, 0xBADF00D0);
2367                 dev_kfree_skb(mdp->rx_skbuff[i]);
2368                 mdp->rx_skbuff[i] = NULL;
2369         }
2370         for (i = 0; i < mdp->num_tx_ring; i++) {
2371                 dev_kfree_skb(mdp->tx_skbuff[i]);
2372                 mdp->tx_skbuff[i] = NULL;
2373         }
2374
2375         /* device init */
2376         sh_eth_dev_init(ndev, true);
2377 }
2378
2379 /* Packet transmit function */
2380 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2381 {
2382         struct sh_eth_private *mdp = netdev_priv(ndev);
2383         struct sh_eth_txdesc *txdesc;
2384         dma_addr_t dma_addr;
2385         u32 entry;
2386         unsigned long flags;
2387
2388         spin_lock_irqsave(&mdp->lock, flags);
2389         if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2390                 if (!sh_eth_txfree(ndev)) {
2391                         netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2392                         netif_stop_queue(ndev);
2393                         spin_unlock_irqrestore(&mdp->lock, flags);
2394                         return NETDEV_TX_BUSY;
2395                 }
2396         }
2397         spin_unlock_irqrestore(&mdp->lock, flags);
2398
2399         if (skb_put_padto(skb, ETH_ZLEN))
2400                 return NETDEV_TX_OK;
2401
2402         entry = mdp->cur_tx % mdp->num_tx_ring;
2403         mdp->tx_skbuff[entry] = skb;
2404         txdesc = &mdp->tx_ring[entry];
2405         /* soft swap. */
2406         if (!mdp->cd->hw_swap)
2407                 sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2408         dma_addr = dma_map_single(&ndev->dev, skb->data, skb->len,
2409                                   DMA_TO_DEVICE);
2410         if (dma_mapping_error(&ndev->dev, dma_addr)) {
2411                 kfree_skb(skb);
2412                 return NETDEV_TX_OK;
2413         }
2414         txdesc->addr = cpu_to_edmac(mdp, dma_addr);
2415         txdesc->len  = cpu_to_edmac(mdp, skb->len << 16);
2416
2417         dma_wmb(); /* TACT bit must be set after all the above writes */
2418         if (entry >= mdp->num_tx_ring - 1)
2419                 txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
2420         else
2421                 txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
2422
2423         mdp->cur_tx++;
2424
2425         if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2426                 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2427
2428         return NETDEV_TX_OK;
2429 }
2430
2431 /* The statistics registers have write-clear behaviour, which means we
2432  * will lose any increment between the read and write.  We mitigate
2433  * this by only clearing when we read a non-zero value, so we will
2434  * never falsely report a total of zero.
2435  */
2436 static void
2437 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2438 {
2439         u32 delta = sh_eth_read(ndev, reg);
2440
2441         if (delta) {
2442                 *stat += delta;
2443                 sh_eth_write(ndev, 0, reg);
2444         }
2445 }
2446
2447 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2448 {
2449         struct sh_eth_private *mdp = netdev_priv(ndev);
2450
2451         if (sh_eth_is_rz_fast_ether(mdp))
2452                 return &ndev->stats;
2453
2454         if (!mdp->is_opened)
2455                 return &ndev->stats;
2456
2457         sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2458         sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2459         sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2460
2461         if (sh_eth_is_gether(mdp)) {
2462                 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2463                                    CERCR);
2464                 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2465                                    CEECR);
2466         } else {
2467                 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2468                                    CNDCR);
2469         }
2470
2471         return &ndev->stats;
2472 }
2473
2474 /* device close function */
2475 static int sh_eth_close(struct net_device *ndev)
2476 {
2477         struct sh_eth_private *mdp = netdev_priv(ndev);
2478
2479         netif_stop_queue(ndev);
2480
2481         /* Serialise with the interrupt handler and NAPI, then disable
2482          * interrupts.  We have to clear the irq_enabled flag first to
2483          * ensure that interrupts won't be re-enabled.
2484          */
2485         mdp->irq_enabled = false;
2486         synchronize_irq(ndev->irq);
2487         napi_disable(&mdp->napi);
2488         sh_eth_write(ndev, 0x0000, EESIPR);
2489
2490         sh_eth_dev_exit(ndev);
2491
2492         /* PHY Disconnect */
2493         if (mdp->phydev) {
2494                 phy_stop(mdp->phydev);
2495                 phy_disconnect(mdp->phydev);
2496                 mdp->phydev = NULL;
2497         }
2498
2499         free_irq(ndev->irq, ndev);
2500
2501         /* Free all the skbuffs in the Rx queue and the DMA buffer. */
2502         sh_eth_ring_free(ndev);
2503
2504         pm_runtime_put_sync(&mdp->pdev->dev);
2505
2506         mdp->is_opened = 0;
2507
2508         return 0;
2509 }
2510
2511 /* ioctl to device function */
2512 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2513 {
2514         struct sh_eth_private *mdp = netdev_priv(ndev);
2515         struct phy_device *phydev = mdp->phydev;
2516
2517         if (!netif_running(ndev))
2518                 return -EINVAL;
2519
2520         if (!phydev)
2521                 return -ENODEV;
2522
2523         return phy_mii_ioctl(phydev, rq, cmd);
2524 }
2525
2526 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2527 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2528                                             int entry)
2529 {
2530         return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2531 }
2532
2533 static u32 sh_eth_tsu_get_post_mask(int entry)
2534 {
2535         return 0x0f << (28 - ((entry % 8) * 4));
2536 }
2537
2538 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2539 {
2540         return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2541 }
2542
2543 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2544                                              int entry)
2545 {
2546         struct sh_eth_private *mdp = netdev_priv(ndev);
2547         u32 tmp;
2548         void *reg_offset;
2549
2550         reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2551         tmp = ioread32(reg_offset);
2552         iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2553 }
2554
2555 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2556                                               int entry)
2557 {
2558         struct sh_eth_private *mdp = netdev_priv(ndev);
2559         u32 post_mask, ref_mask, tmp;
2560         void *reg_offset;
2561
2562         reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2563         post_mask = sh_eth_tsu_get_post_mask(entry);
2564         ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2565
2566         tmp = ioread32(reg_offset);
2567         iowrite32(tmp & ~post_mask, reg_offset);
2568
2569         /* If other port enables, the function returns "true" */
2570         return tmp & ref_mask;
2571 }
2572
2573 static int sh_eth_tsu_busy(struct net_device *ndev)
2574 {
2575         int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2576         struct sh_eth_private *mdp = netdev_priv(ndev);
2577
2578         while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2579                 udelay(10);
2580                 timeout--;
2581                 if (timeout <= 0) {
2582                         netdev_err(ndev, "%s: timeout\n", __func__);
2583                         return -ETIMEDOUT;
2584                 }
2585         }
2586
2587         return 0;
2588 }
2589
2590 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2591                                   const u8 *addr)
2592 {
2593         u32 val;
2594
2595         val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2596         iowrite32(val, reg);
2597         if (sh_eth_tsu_busy(ndev) < 0)
2598                 return -EBUSY;
2599
2600         val = addr[4] << 8 | addr[5];
2601         iowrite32(val, reg + 4);
2602         if (sh_eth_tsu_busy(ndev) < 0)
2603                 return -EBUSY;
2604
2605         return 0;
2606 }
2607
2608 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2609 {
2610         u32 val;
2611
2612         val = ioread32(reg);
2613         addr[0] = (val >> 24) & 0xff;
2614         addr[1] = (val >> 16) & 0xff;
2615         addr[2] = (val >> 8) & 0xff;
2616         addr[3] = val & 0xff;
2617         val = ioread32(reg + 4);
2618         addr[4] = (val >> 8) & 0xff;
2619         addr[5] = val & 0xff;
2620 }
2621
2622
2623 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2624 {
2625         struct sh_eth_private *mdp = netdev_priv(ndev);
2626         void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2627         int i;
2628         u8 c_addr[ETH_ALEN];
2629
2630         for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2631                 sh_eth_tsu_read_entry(reg_offset, c_addr);
2632                 if (ether_addr_equal(addr, c_addr))
2633                         return i;
2634         }
2635
2636         return -ENOENT;
2637 }
2638
2639 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2640 {
2641         u8 blank[ETH_ALEN];
2642         int entry;
2643
2644         memset(blank, 0, sizeof(blank));
2645         entry = sh_eth_tsu_find_entry(ndev, blank);
2646         return (entry < 0) ? -ENOMEM : entry;
2647 }
2648
2649 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2650                                               int entry)
2651 {
2652         struct sh_eth_private *mdp = netdev_priv(ndev);
2653         void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2654         int ret;
2655         u8 blank[ETH_ALEN];
2656
2657         sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2658                          ~(1 << (31 - entry)), TSU_TEN);
2659
2660         memset(blank, 0, sizeof(blank));
2661         ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2662         if (ret < 0)
2663                 return ret;
2664         return 0;
2665 }
2666
2667 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2668 {
2669         struct sh_eth_private *mdp = netdev_priv(ndev);
2670         void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2671         int i, ret;
2672
2673         if (!mdp->cd->tsu)
2674                 return 0;
2675
2676         i = sh_eth_tsu_find_entry(ndev, addr);
2677         if (i < 0) {
2678                 /* No entry found, create one */
2679                 i = sh_eth_tsu_find_empty(ndev);
2680                 if (i < 0)
2681                         return -ENOMEM;
2682                 ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2683                 if (ret < 0)
2684                         return ret;
2685
2686                 /* Enable the entry */
2687                 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2688                                  (1 << (31 - i)), TSU_TEN);
2689         }
2690
2691         /* Entry found or created, enable POST */
2692         sh_eth_tsu_enable_cam_entry_post(ndev, i);
2693
2694         return 0;
2695 }
2696
2697 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2698 {
2699         struct sh_eth_private *mdp = netdev_priv(ndev);
2700         int i, ret;
2701
2702         if (!mdp->cd->tsu)
2703                 return 0;
2704
2705         i = sh_eth_tsu_find_entry(ndev, addr);
2706         if (i) {
2707                 /* Entry found */
2708                 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2709                         goto done;
2710
2711                 /* Disable the entry if both ports was disabled */
2712                 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2713                 if (ret < 0)
2714                         return ret;
2715         }
2716 done:
2717         return 0;
2718 }
2719
2720 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2721 {
2722         struct sh_eth_private *mdp = netdev_priv(ndev);
2723         int i, ret;
2724
2725         if (!mdp->cd->tsu)
2726                 return 0;
2727
2728         for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2729                 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2730                         continue;
2731
2732                 /* Disable the entry if both ports was disabled */
2733                 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2734                 if (ret < 0)
2735                         return ret;
2736         }
2737
2738         return 0;
2739 }
2740
2741 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2742 {
2743         struct sh_eth_private *mdp = netdev_priv(ndev);
2744         u8 addr[ETH_ALEN];
2745         void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2746         int i;
2747
2748         if (!mdp->cd->tsu)
2749                 return;
2750
2751         for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2752                 sh_eth_tsu_read_entry(reg_offset, addr);
2753                 if (is_multicast_ether_addr(addr))
2754                         sh_eth_tsu_del_entry(ndev, addr);
2755         }
2756 }
2757
2758 /* Update promiscuous flag and multicast filter */
2759 static void sh_eth_set_rx_mode(struct net_device *ndev)
2760 {
2761         struct sh_eth_private *mdp = netdev_priv(ndev);
2762         u32 ecmr_bits;
2763         int mcast_all = 0;
2764         unsigned long flags;
2765
2766         spin_lock_irqsave(&mdp->lock, flags);
2767         /* Initial condition is MCT = 1, PRM = 0.
2768          * Depending on ndev->flags, set PRM or clear MCT
2769          */
2770         ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2771         if (mdp->cd->tsu)
2772                 ecmr_bits |= ECMR_MCT;
2773
2774         if (!(ndev->flags & IFF_MULTICAST)) {
2775                 sh_eth_tsu_purge_mcast(ndev);
2776                 mcast_all = 1;
2777         }
2778         if (ndev->flags & IFF_ALLMULTI) {
2779                 sh_eth_tsu_purge_mcast(ndev);
2780                 ecmr_bits &= ~ECMR_MCT;
2781                 mcast_all = 1;
2782         }
2783
2784         if (ndev->flags & IFF_PROMISC) {
2785                 sh_eth_tsu_purge_all(ndev);
2786                 ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2787         } else if (mdp->cd->tsu) {
2788                 struct netdev_hw_addr *ha;
2789                 netdev_for_each_mc_addr(ha, ndev) {
2790                         if (mcast_all && is_multicast_ether_addr(ha->addr))
2791                                 continue;
2792
2793                         if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2794                                 if (!mcast_all) {
2795                                         sh_eth_tsu_purge_mcast(ndev);
2796                                         ecmr_bits &= ~ECMR_MCT;
2797                                         mcast_all = 1;
2798                                 }
2799                         }
2800                 }
2801         }
2802
2803         /* update the ethernet mode */
2804         sh_eth_write(ndev, ecmr_bits, ECMR);
2805
2806         spin_unlock_irqrestore(&mdp->lock, flags);
2807 }
2808
2809 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2810 {
2811         if (!mdp->port)
2812                 return TSU_VTAG0;
2813         else
2814                 return TSU_VTAG1;
2815 }
2816
2817 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2818                                   __be16 proto, u16 vid)
2819 {
2820         struct sh_eth_private *mdp = netdev_priv(ndev);
2821         int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2822
2823         if (unlikely(!mdp->cd->tsu))
2824                 return -EPERM;
2825
2826         /* No filtering if vid = 0 */
2827         if (!vid)
2828                 return 0;
2829
2830         mdp->vlan_num_ids++;
2831
2832         /* The controller has one VLAN tag HW filter. So, if the filter is
2833          * already enabled, the driver disables it and the filte
2834          */
2835         if (mdp->vlan_num_ids > 1) {
2836                 /* disable VLAN filter */
2837                 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2838                 return 0;
2839         }
2840
2841         sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2842                          vtag_reg_index);
2843
2844         return 0;
2845 }
2846
2847 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2848                                    __be16 proto, u16 vid)
2849 {
2850         struct sh_eth_private *mdp = netdev_priv(ndev);
2851         int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2852
2853         if (unlikely(!mdp->cd->tsu))
2854                 return -EPERM;
2855
2856         /* No filtering if vid = 0 */
2857         if (!vid)
2858                 return 0;
2859
2860         mdp->vlan_num_ids--;
2861         sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2862
2863         return 0;
2864 }
2865
2866 /* SuperH's TSU register init function */
2867 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2868 {
2869         if (sh_eth_is_rz_fast_ether(mdp)) {
2870                 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2871                 return;
2872         }
2873
2874         sh_eth_tsu_write(mdp, 0, TSU_FWEN0);    /* Disable forward(0->1) */
2875         sh_eth_tsu_write(mdp, 0, TSU_FWEN1);    /* Disable forward(1->0) */
2876         sh_eth_tsu_write(mdp, 0, TSU_FCM);      /* forward fifo 3k-3k */
2877         sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2878         sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2879         sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2880         sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2881         sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2882         sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2883         sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2884         if (sh_eth_is_gether(mdp)) {
2885                 sh_eth_tsu_write(mdp, 0, TSU_QTAG0);    /* Disable QTAG(0->1) */
2886                 sh_eth_tsu_write(mdp, 0, TSU_QTAG1);    /* Disable QTAG(1->0) */
2887         } else {
2888                 sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);   /* Disable QTAG(0->1) */
2889                 sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);   /* Disable QTAG(1->0) */
2890         }
2891         sh_eth_tsu_write(mdp, 0, TSU_FWSR);     /* all interrupt status clear */
2892         sh_eth_tsu_write(mdp, 0, TSU_FWINMK);   /* Disable all interrupt */
2893         sh_eth_tsu_write(mdp, 0, TSU_TEN);      /* Disable all CAM entry */
2894         sh_eth_tsu_write(mdp, 0, TSU_POST1);    /* Disable CAM entry [ 0- 7] */
2895         sh_eth_tsu_write(mdp, 0, TSU_POST2);    /* Disable CAM entry [ 8-15] */
2896         sh_eth_tsu_write(mdp, 0, TSU_POST3);    /* Disable CAM entry [16-23] */
2897         sh_eth_tsu_write(mdp, 0, TSU_POST4);    /* Disable CAM entry [24-31] */
2898 }
2899
2900 /* MDIO bus release function */
2901 static int sh_mdio_release(struct sh_eth_private *mdp)
2902 {
2903         /* unregister mdio bus */
2904         mdiobus_unregister(mdp->mii_bus);
2905
2906         /* free bitbang info */
2907         free_mdio_bitbang(mdp->mii_bus);
2908
2909         return 0;
2910 }
2911
2912 /* MDIO bus init function */
2913 static int sh_mdio_init(struct sh_eth_private *mdp,
2914                         struct sh_eth_plat_data *pd)
2915 {
2916         int ret, i;
2917         struct bb_info *bitbang;
2918         struct platform_device *pdev = mdp->pdev;
2919         struct device *dev = &mdp->pdev->dev;
2920
2921         /* create bit control struct for PHY */
2922         bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
2923         if (!bitbang)
2924                 return -ENOMEM;
2925
2926         /* bitbang init */
2927         bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2928         bitbang->set_gate = pd->set_mdio_gate;
2929         bitbang->mdi_msk = PIR_MDI;
2930         bitbang->mdo_msk = PIR_MDO;
2931         bitbang->mmd_msk = PIR_MMD;
2932         bitbang->mdc_msk = PIR_MDC;
2933         bitbang->ctrl.ops = &bb_ops;
2934
2935         /* MII controller setting */
2936         mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2937         if (!mdp->mii_bus)
2938                 return -ENOMEM;
2939
2940         /* Hook up MII support for ethtool */
2941         mdp->mii_bus->name = "sh_mii";
2942         mdp->mii_bus->parent = dev;
2943         snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2944                  pdev->name, pdev->id);
2945
2946         /* PHY IRQ */
2947         mdp->mii_bus->irq = devm_kmalloc_array(dev, PHY_MAX_ADDR, sizeof(int),
2948                                                GFP_KERNEL);
2949         if (!mdp->mii_bus->irq) {
2950                 ret = -ENOMEM;
2951                 goto out_free_bus;
2952         }
2953
2954         /* register MDIO bus */
2955         if (dev->of_node) {
2956                 ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
2957         } else {
2958                 for (i = 0; i < PHY_MAX_ADDR; i++)
2959                         mdp->mii_bus->irq[i] = PHY_POLL;
2960                 if (pd->phy_irq > 0)
2961                         mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
2962
2963                 ret = mdiobus_register(mdp->mii_bus);
2964         }
2965
2966         if (ret)
2967                 goto out_free_bus;
2968
2969         return 0;
2970
2971 out_free_bus:
2972         free_mdio_bitbang(mdp->mii_bus);
2973         return ret;
2974 }
2975
2976 static const u16 *sh_eth_get_register_offset(int register_type)
2977 {
2978         const u16 *reg_offset = NULL;
2979
2980         switch (register_type) {
2981         case SH_ETH_REG_GIGABIT:
2982                 reg_offset = sh_eth_offset_gigabit;
2983                 break;
2984         case SH_ETH_REG_FAST_RZ:
2985                 reg_offset = sh_eth_offset_fast_rz;
2986                 break;
2987         case SH_ETH_REG_FAST_RCAR:
2988                 reg_offset = sh_eth_offset_fast_rcar;
2989                 break;
2990         case SH_ETH_REG_FAST_SH4:
2991                 reg_offset = sh_eth_offset_fast_sh4;
2992                 break;
2993         case SH_ETH_REG_FAST_SH3_SH2:
2994                 reg_offset = sh_eth_offset_fast_sh3_sh2;
2995                 break;
2996         default:
2997                 break;
2998         }
2999
3000         return reg_offset;
3001 }
3002
3003 static const struct net_device_ops sh_eth_netdev_ops = {
3004         .ndo_open               = sh_eth_open,
3005         .ndo_stop               = sh_eth_close,
3006         .ndo_start_xmit         = sh_eth_start_xmit,
3007         .ndo_get_stats          = sh_eth_get_stats,
3008         .ndo_set_rx_mode        = sh_eth_set_rx_mode,
3009         .ndo_tx_timeout         = sh_eth_tx_timeout,
3010         .ndo_do_ioctl           = sh_eth_do_ioctl,
3011         .ndo_validate_addr      = eth_validate_addr,
3012         .ndo_set_mac_address    = eth_mac_addr,
3013         .ndo_change_mtu         = eth_change_mtu,
3014 };
3015
3016 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
3017         .ndo_open               = sh_eth_open,
3018         .ndo_stop               = sh_eth_close,
3019         .ndo_start_xmit         = sh_eth_start_xmit,
3020         .ndo_get_stats          = sh_eth_get_stats,
3021         .ndo_set_rx_mode        = sh_eth_set_rx_mode,
3022         .ndo_vlan_rx_add_vid    = sh_eth_vlan_rx_add_vid,
3023         .ndo_vlan_rx_kill_vid   = sh_eth_vlan_rx_kill_vid,
3024         .ndo_tx_timeout         = sh_eth_tx_timeout,
3025         .ndo_do_ioctl           = sh_eth_do_ioctl,
3026         .ndo_validate_addr      = eth_validate_addr,
3027         .ndo_set_mac_address    = eth_mac_addr,
3028         .ndo_change_mtu         = eth_change_mtu,
3029 };
3030
3031 #ifdef CONFIG_OF
3032 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3033 {
3034         struct device_node *np = dev->of_node;
3035         struct sh_eth_plat_data *pdata;
3036         const char *mac_addr;
3037
3038         pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3039         if (!pdata)
3040                 return NULL;
3041
3042         pdata->phy_interface = of_get_phy_mode(np);
3043
3044         mac_addr = of_get_mac_address(np);
3045         if (mac_addr)
3046                 memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
3047
3048         pdata->no_ether_link =
3049                 of_property_read_bool(np, "renesas,no-ether-link");
3050         pdata->ether_link_active_low =
3051                 of_property_read_bool(np, "renesas,ether-link-active-low");
3052
3053         return pdata;
3054 }
3055
3056 static const struct of_device_id sh_eth_match_table[] = {
3057         { .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
3058         { .compatible = "renesas,ether-r8a7778", .data = &r8a777x_data },
3059         { .compatible = "renesas,ether-r8a7779", .data = &r8a777x_data },
3060         { .compatible = "renesas,ether-r8a7790", .data = &r8a779x_data },
3061         { .compatible = "renesas,ether-r8a7791", .data = &r8a779x_data },
3062         { .compatible = "renesas,ether-r8a7793", .data = &r8a779x_data },
3063         { .compatible = "renesas,ether-r8a7794", .data = &r8a779x_data },
3064         { .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
3065         { }
3066 };
3067 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
3068 #else
3069 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3070 {
3071         return NULL;
3072 }
3073 #endif
3074
3075 static int sh_eth_drv_probe(struct platform_device *pdev)
3076 {
3077         int ret, devno = 0;
3078         struct resource *res;
3079         struct net_device *ndev = NULL;
3080         struct sh_eth_private *mdp = NULL;
3081         struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
3082         const struct platform_device_id *id = platform_get_device_id(pdev);
3083
3084         /* get base addr */
3085         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3086
3087         ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3088         if (!ndev)
3089                 return -ENOMEM;
3090
3091         pm_runtime_enable(&pdev->dev);
3092         pm_runtime_get_sync(&pdev->dev);
3093
3094         devno = pdev->id;
3095         if (devno < 0)
3096                 devno = 0;
3097
3098         ndev->dma = -1;
3099         ret = platform_get_irq(pdev, 0);
3100         if (ret < 0)
3101                 goto out_release;
3102         ndev->irq = ret;
3103
3104         SET_NETDEV_DEV(ndev, &pdev->dev);
3105
3106         mdp = netdev_priv(ndev);
3107         mdp->num_tx_ring = TX_RING_SIZE;
3108         mdp->num_rx_ring = RX_RING_SIZE;
3109         mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3110         if (IS_ERR(mdp->addr)) {
3111                 ret = PTR_ERR(mdp->addr);
3112                 goto out_release;
3113         }
3114
3115         ndev->base_addr = res->start;
3116
3117         spin_lock_init(&mdp->lock);
3118         mdp->pdev = pdev;
3119
3120         if (pdev->dev.of_node)
3121                 pd = sh_eth_parse_dt(&pdev->dev);
3122         if (!pd) {
3123                 dev_err(&pdev->dev, "no platform data\n");
3124                 ret = -EINVAL;
3125                 goto out_release;
3126         }
3127
3128         /* get PHY ID */
3129         mdp->phy_id = pd->phy;
3130         mdp->phy_interface = pd->phy_interface;
3131         /* EDMAC endian */
3132         mdp->edmac_endian = pd->edmac_endian;
3133         mdp->no_ether_link = pd->no_ether_link;
3134         mdp->ether_link_active_low = pd->ether_link_active_low;
3135
3136         /* set cpu data */
3137         if (id) {
3138                 mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3139         } else  {
3140                 const struct of_device_id *match;
3141
3142                 match = of_match_device(of_match_ptr(sh_eth_match_table),
3143                                         &pdev->dev);
3144                 mdp->cd = (struct sh_eth_cpu_data *)match->data;
3145         }
3146         mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3147         if (!mdp->reg_offset) {
3148                 dev_err(&pdev->dev, "Unknown register type (%d)\n",
3149                         mdp->cd->register_type);
3150                 ret = -EINVAL;
3151                 goto out_release;
3152         }
3153         sh_eth_set_default_cpu_data(mdp->cd);
3154
3155         /* set function */
3156         if (mdp->cd->tsu)
3157                 ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3158         else
3159                 ndev->netdev_ops = &sh_eth_netdev_ops;
3160         ndev->ethtool_ops = &sh_eth_ethtool_ops;
3161         ndev->watchdog_timeo = TX_TIMEOUT;
3162
3163         /* debug message level */
3164         mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3165
3166         /* read and set MAC address */
3167         read_mac_address(ndev, pd->mac_addr);
3168         if (!is_valid_ether_addr(ndev->dev_addr)) {
3169                 dev_warn(&pdev->dev,
3170                          "no valid MAC address supplied, using a random one.\n");
3171                 eth_hw_addr_random(ndev);
3172         }
3173
3174         /* ioremap the TSU registers */
3175         if (mdp->cd->tsu) {
3176                 struct resource *rtsu;
3177                 rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3178                 mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
3179                 if (IS_ERR(mdp->tsu_addr)) {
3180                         ret = PTR_ERR(mdp->tsu_addr);
3181                         goto out_release;
3182                 }
3183                 mdp->port = devno % 2;
3184                 ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
3185         }
3186
3187         /* initialize first or needed device */
3188         if (!devno || pd->needs_init) {
3189                 if (mdp->cd->chip_reset)
3190                         mdp->cd->chip_reset(ndev);
3191
3192                 if (mdp->cd->tsu) {
3193                         /* TSU init (Init only)*/
3194                         sh_eth_tsu_init(mdp);
3195                 }
3196         }
3197
3198         if (mdp->cd->rmiimode)
3199                 sh_eth_write(ndev, 0x1, RMIIMODE);
3200
3201         /* MDIO bus init */
3202         ret = sh_mdio_init(mdp, pd);
3203         if (ret) {
3204                 dev_err(&ndev->dev, "failed to initialise MDIO\n");
3205                 goto out_release;
3206         }
3207
3208         netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3209
3210         /* network device register */
3211         ret = register_netdev(ndev);
3212         if (ret)
3213                 goto out_napi_del;
3214
3215         /* print device information */
3216         netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3217                     (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3218
3219         pm_runtime_put(&pdev->dev);
3220         platform_set_drvdata(pdev, ndev);
3221
3222         return ret;
3223
3224 out_napi_del:
3225         netif_napi_del(&mdp->napi);
3226         sh_mdio_release(mdp);
3227
3228 out_release:
3229         /* net_dev free */
3230         if (ndev)
3231                 free_netdev(ndev);
3232
3233         pm_runtime_put(&pdev->dev);
3234         pm_runtime_disable(&pdev->dev);
3235         return ret;
3236 }
3237
3238 static int sh_eth_drv_remove(struct platform_device *pdev)
3239 {
3240         struct net_device *ndev = platform_get_drvdata(pdev);
3241         struct sh_eth_private *mdp = netdev_priv(ndev);
3242
3243         unregister_netdev(ndev);
3244         netif_napi_del(&mdp->napi);
3245         sh_mdio_release(mdp);
3246         pm_runtime_disable(&pdev->dev);
3247         free_netdev(ndev);
3248
3249         return 0;
3250 }
3251
3252 #ifdef CONFIG_PM
3253 #ifdef CONFIG_PM_SLEEP
3254 static int sh_eth_suspend(struct device *dev)
3255 {
3256         struct net_device *ndev = dev_get_drvdata(dev);
3257         int ret = 0;
3258
3259         if (netif_running(ndev)) {
3260                 netif_device_detach(ndev);
3261                 ret = sh_eth_close(ndev);
3262         }
3263
3264         return ret;
3265 }
3266
3267 static int sh_eth_resume(struct device *dev)
3268 {
3269         struct net_device *ndev = dev_get_drvdata(dev);
3270         int ret = 0;
3271
3272         if (netif_running(ndev)) {
3273                 ret = sh_eth_open(ndev);
3274                 if (ret < 0)
3275                         return ret;
3276                 netif_device_attach(ndev);
3277         }
3278
3279         return ret;
3280 }
3281 #endif
3282
3283 static int sh_eth_runtime_nop(struct device *dev)
3284 {
3285         /* Runtime PM callback shared between ->runtime_suspend()
3286          * and ->runtime_resume(). Simply returns success.
3287          *
3288          * This driver re-initializes all registers after
3289          * pm_runtime_get_sync() anyway so there is no need
3290          * to save and restore registers here.
3291          */
3292         return 0;
3293 }
3294
3295 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3296         SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3297         SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3298 };
3299 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3300 #else
3301 #define SH_ETH_PM_OPS NULL
3302 #endif
3303
3304 static struct platform_device_id sh_eth_id_table[] = {
3305         { "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3306         { "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3307         { "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3308         { "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3309         { "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3310         { "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3311         { "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3312         { "r7s72100-ether", (kernel_ulong_t)&r7s72100_data },
3313         { "r8a7740-gether", (kernel_ulong_t)&r8a7740_data },
3314         { "r8a777x-ether", (kernel_ulong_t)&r8a777x_data },
3315         { "r8a7790-ether", (kernel_ulong_t)&r8a779x_data },
3316         { "r8a7791-ether", (kernel_ulong_t)&r8a779x_data },
3317         { "r8a7793-ether", (kernel_ulong_t)&r8a779x_data },
3318         { "r8a7794-ether", (kernel_ulong_t)&r8a779x_data },
3319         { }
3320 };
3321 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3322
3323 static struct platform_driver sh_eth_driver = {
3324         .probe = sh_eth_drv_probe,
3325         .remove = sh_eth_drv_remove,
3326         .id_table = sh_eth_id_table,
3327         .driver = {
3328                    .name = CARDNAME,
3329                    .pm = SH_ETH_PM_OPS,
3330                    .of_match_table = of_match_ptr(sh_eth_match_table),
3331         },
3332 };
3333
3334 module_platform_driver(sh_eth_driver);
3335
3336 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3337 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3338 MODULE_LICENSE("GPL v2");