Upgrade to 4.4.50-rt62
[kvmfornfv.git] / kernel / drivers / net / ethernet / qlogic / qlge / qlge_main.c
1 /*
2  * QLogic qlge NIC HBA Driver
3  * Copyright (c)  2003-2008 QLogic Corporation
4  * See LICENSE.qlge for copyright and licensing details.
5  * Author:     Linux qlge network device driver by
6  *                      Ron Mercer <ron.mercer@qlogic.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/bitops.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/if_vlan.h>
37 #include <linux/skbuff.h>
38 #include <linux/delay.h>
39 #include <linux/mm.h>
40 #include <linux/vmalloc.h>
41 #include <linux/prefetch.h>
42 #include <net/ip6_checksum.h>
43
44 #include "qlge.h"
45
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
48
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
53
54 static const u32 default_msg =
55     NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER |    */
57     NETIF_MSG_IFDOWN |
58     NETIF_MSG_IFUP |
59     NETIF_MSG_RX_ERR |
60     NETIF_MSG_TX_ERR |
61 /*  NETIF_MSG_TX_QUEUED | */
62 /*  NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
63 /* NETIF_MSG_PKTDATA | */
64     NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
66 static int debug = -1;  /* defaults above */
67 module_param(debug, int, 0664);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70 #define MSIX_IRQ 0
71 #define MSI_IRQ 1
72 #define LEG_IRQ 2
73 static int qlge_irq_type = MSIX_IRQ;
74 module_param(qlge_irq_type, int, 0664);
75 MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76
77 static int qlge_mpi_coredump;
78 module_param(qlge_mpi_coredump, int, 0);
79 MODULE_PARM_DESC(qlge_mpi_coredump,
80                 "Option to enable MPI firmware dump. "
81                 "Default is OFF - Do Not allocate memory. ");
82
83 static int qlge_force_coredump;
84 module_param(qlge_force_coredump, int, 0);
85 MODULE_PARM_DESC(qlge_force_coredump,
86                 "Option to allow force of firmware core dump. "
87                 "Default is OFF - Do not allow.");
88
89 static const struct pci_device_id qlge_pci_tbl[] = {
90         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
91         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
92         /* required last entry */
93         {0,}
94 };
95
96 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
97
98 static int ql_wol(struct ql_adapter *);
99 static void qlge_set_multicast_list(struct net_device *);
100 static int ql_adapter_down(struct ql_adapter *);
101 static int ql_adapter_up(struct ql_adapter *);
102
103 /* This hardware semaphore causes exclusive access to
104  * resources shared between the NIC driver, MPI firmware,
105  * FCOE firmware and the FC driver.
106  */
107 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
108 {
109         u32 sem_bits = 0;
110
111         switch (sem_mask) {
112         case SEM_XGMAC0_MASK:
113                 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
114                 break;
115         case SEM_XGMAC1_MASK:
116                 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
117                 break;
118         case SEM_ICB_MASK:
119                 sem_bits = SEM_SET << SEM_ICB_SHIFT;
120                 break;
121         case SEM_MAC_ADDR_MASK:
122                 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
123                 break;
124         case SEM_FLASH_MASK:
125                 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
126                 break;
127         case SEM_PROBE_MASK:
128                 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
129                 break;
130         case SEM_RT_IDX_MASK:
131                 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
132                 break;
133         case SEM_PROC_REG_MASK:
134                 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
135                 break;
136         default:
137                 netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
138                 return -EINVAL;
139         }
140
141         ql_write32(qdev, SEM, sem_bits | sem_mask);
142         return !(ql_read32(qdev, SEM) & sem_bits);
143 }
144
145 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
146 {
147         unsigned int wait_count = 30;
148         do {
149                 if (!ql_sem_trylock(qdev, sem_mask))
150                         return 0;
151                 udelay(100);
152         } while (--wait_count);
153         return -ETIMEDOUT;
154 }
155
156 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
157 {
158         ql_write32(qdev, SEM, sem_mask);
159         ql_read32(qdev, SEM);   /* flush */
160 }
161
162 /* This function waits for a specific bit to come ready
163  * in a given register.  It is used mostly by the initialize
164  * process, but is also used in kernel thread API such as
165  * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
166  */
167 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
168 {
169         u32 temp;
170         int count = UDELAY_COUNT;
171
172         while (count) {
173                 temp = ql_read32(qdev, reg);
174
175                 /* check for errors */
176                 if (temp & err_bit) {
177                         netif_alert(qdev, probe, qdev->ndev,
178                                     "register 0x%.08x access error, value = 0x%.08x!.\n",
179                                     reg, temp);
180                         return -EIO;
181                 } else if (temp & bit)
182                         return 0;
183                 udelay(UDELAY_DELAY);
184                 count--;
185         }
186         netif_alert(qdev, probe, qdev->ndev,
187                     "Timed out waiting for reg %x to come ready.\n", reg);
188         return -ETIMEDOUT;
189 }
190
191 /* The CFG register is used to download TX and RX control blocks
192  * to the chip. This function waits for an operation to complete.
193  */
194 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
195 {
196         int count = UDELAY_COUNT;
197         u32 temp;
198
199         while (count) {
200                 temp = ql_read32(qdev, CFG);
201                 if (temp & CFG_LE)
202                         return -EIO;
203                 if (!(temp & bit))
204                         return 0;
205                 udelay(UDELAY_DELAY);
206                 count--;
207         }
208         return -ETIMEDOUT;
209 }
210
211
212 /* Used to issue init control blocks to hw. Maps control block,
213  * sets address, triggers download, waits for completion.
214  */
215 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
216                  u16 q_id)
217 {
218         u64 map;
219         int status = 0;
220         int direction;
221         u32 mask;
222         u32 value;
223
224         direction =
225             (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
226             PCI_DMA_FROMDEVICE;
227
228         map = pci_map_single(qdev->pdev, ptr, size, direction);
229         if (pci_dma_mapping_error(qdev->pdev, map)) {
230                 netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
231                 return -ENOMEM;
232         }
233
234         status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
235         if (status)
236                 return status;
237
238         status = ql_wait_cfg(qdev, bit);
239         if (status) {
240                 netif_err(qdev, ifup, qdev->ndev,
241                           "Timed out waiting for CFG to come ready.\n");
242                 goto exit;
243         }
244
245         ql_write32(qdev, ICB_L, (u32) map);
246         ql_write32(qdev, ICB_H, (u32) (map >> 32));
247
248         mask = CFG_Q_MASK | (bit << 16);
249         value = bit | (q_id << CFG_Q_SHIFT);
250         ql_write32(qdev, CFG, (mask | value));
251
252         /*
253          * Wait for the bit to clear after signaling hw.
254          */
255         status = ql_wait_cfg(qdev, bit);
256 exit:
257         ql_sem_unlock(qdev, SEM_ICB_MASK);      /* does flush too */
258         pci_unmap_single(qdev->pdev, map, size, direction);
259         return status;
260 }
261
262 /* Get a specific MAC address from the CAM.  Used for debug and reg dump. */
263 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
264                         u32 *value)
265 {
266         u32 offset = 0;
267         int status;
268
269         switch (type) {
270         case MAC_ADDR_TYPE_MULTI_MAC:
271         case MAC_ADDR_TYPE_CAM_MAC:
272                 {
273                         status =
274                             ql_wait_reg_rdy(qdev,
275                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
276                         if (status)
277                                 goto exit;
278                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
279                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
280                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
281                         status =
282                             ql_wait_reg_rdy(qdev,
283                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
284                         if (status)
285                                 goto exit;
286                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
287                         status =
288                             ql_wait_reg_rdy(qdev,
289                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
290                         if (status)
291                                 goto exit;
292                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
293                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
294                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
295                         status =
296                             ql_wait_reg_rdy(qdev,
297                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
298                         if (status)
299                                 goto exit;
300                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
301                         if (type == MAC_ADDR_TYPE_CAM_MAC) {
302                                 status =
303                                     ql_wait_reg_rdy(qdev,
304                                         MAC_ADDR_IDX, MAC_ADDR_MW, 0);
305                                 if (status)
306                                         goto exit;
307                                 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
308                                            (index << MAC_ADDR_IDX_SHIFT) | /* index */
309                                            MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
310                                 status =
311                                     ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
312                                                     MAC_ADDR_MR, 0);
313                                 if (status)
314                                         goto exit;
315                                 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
316                         }
317                         break;
318                 }
319         case MAC_ADDR_TYPE_VLAN:
320         case MAC_ADDR_TYPE_MULTI_FLTR:
321         default:
322                 netif_crit(qdev, ifup, qdev->ndev,
323                            "Address type %d not yet supported.\n", type);
324                 status = -EPERM;
325         }
326 exit:
327         return status;
328 }
329
330 /* Set up a MAC, multicast or VLAN address for the
331  * inbound frame matching.
332  */
333 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
334                                u16 index)
335 {
336         u32 offset = 0;
337         int status = 0;
338
339         switch (type) {
340         case MAC_ADDR_TYPE_MULTI_MAC:
341                 {
342                         u32 upper = (addr[0] << 8) | addr[1];
343                         u32 lower = (addr[2] << 24) | (addr[3] << 16) |
344                                         (addr[4] << 8) | (addr[5]);
345
346                         status =
347                                 ql_wait_reg_rdy(qdev,
348                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
349                         if (status)
350                                 goto exit;
351                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
352                                 (index << MAC_ADDR_IDX_SHIFT) |
353                                 type | MAC_ADDR_E);
354                         ql_write32(qdev, MAC_ADDR_DATA, lower);
355                         status =
356                                 ql_wait_reg_rdy(qdev,
357                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
358                         if (status)
359                                 goto exit;
360                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
361                                 (index << MAC_ADDR_IDX_SHIFT) |
362                                 type | MAC_ADDR_E);
363
364                         ql_write32(qdev, MAC_ADDR_DATA, upper);
365                         status =
366                                 ql_wait_reg_rdy(qdev,
367                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
368                         if (status)
369                                 goto exit;
370                         break;
371                 }
372         case MAC_ADDR_TYPE_CAM_MAC:
373                 {
374                         u32 cam_output;
375                         u32 upper = (addr[0] << 8) | addr[1];
376                         u32 lower =
377                             (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
378                             (addr[5]);
379                         status =
380                             ql_wait_reg_rdy(qdev,
381                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
382                         if (status)
383                                 goto exit;
384                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
385                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
386                                    type);       /* type */
387                         ql_write32(qdev, MAC_ADDR_DATA, lower);
388                         status =
389                             ql_wait_reg_rdy(qdev,
390                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
391                         if (status)
392                                 goto exit;
393                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
394                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
395                                    type);       /* type */
396                         ql_write32(qdev, MAC_ADDR_DATA, upper);
397                         status =
398                             ql_wait_reg_rdy(qdev,
399                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
400                         if (status)
401                                 goto exit;
402                         ql_write32(qdev, MAC_ADDR_IDX, (offset) |       /* offset */
403                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
404                                    type);       /* type */
405                         /* This field should also include the queue id
406                            and possibly the function id.  Right now we hardcode
407                            the route field to NIC core.
408                          */
409                         cam_output = (CAM_OUT_ROUTE_NIC |
410                                       (qdev->
411                                        func << CAM_OUT_FUNC_SHIFT) |
412                                         (0 << CAM_OUT_CQ_ID_SHIFT));
413                         if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
414                                 cam_output |= CAM_OUT_RV;
415                         /* route to NIC core */
416                         ql_write32(qdev, MAC_ADDR_DATA, cam_output);
417                         break;
418                 }
419         case MAC_ADDR_TYPE_VLAN:
420                 {
421                         u32 enable_bit = *((u32 *) &addr[0]);
422                         /* For VLAN, the addr actually holds a bit that
423                          * either enables or disables the vlan id we are
424                          * addressing. It's either MAC_ADDR_E on or off.
425                          * That's bit-27 we're talking about.
426                          */
427                         status =
428                             ql_wait_reg_rdy(qdev,
429                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
430                         if (status)
431                                 goto exit;
432                         ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
433                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
434                                    type |       /* type */
435                                    enable_bit); /* enable/disable */
436                         break;
437                 }
438         case MAC_ADDR_TYPE_MULTI_FLTR:
439         default:
440                 netif_crit(qdev, ifup, qdev->ndev,
441                            "Address type %d not yet supported.\n", type);
442                 status = -EPERM;
443         }
444 exit:
445         return status;
446 }
447
448 /* Set or clear MAC address in hardware. We sometimes
449  * have to clear it to prevent wrong frame routing
450  * especially in a bonding environment.
451  */
452 static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
453 {
454         int status;
455         char zero_mac_addr[ETH_ALEN];
456         char *addr;
457
458         if (set) {
459                 addr = &qdev->current_mac_addr[0];
460                 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
461                              "Set Mac addr %pM\n", addr);
462         } else {
463                 eth_zero_addr(zero_mac_addr);
464                 addr = &zero_mac_addr[0];
465                 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
466                              "Clearing MAC address\n");
467         }
468         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
469         if (status)
470                 return status;
471         status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
472                         MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
473         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
474         if (status)
475                 netif_err(qdev, ifup, qdev->ndev,
476                           "Failed to init mac address.\n");
477         return status;
478 }
479
480 void ql_link_on(struct ql_adapter *qdev)
481 {
482         netif_err(qdev, link, qdev->ndev, "Link is up.\n");
483         netif_carrier_on(qdev->ndev);
484         ql_set_mac_addr(qdev, 1);
485 }
486
487 void ql_link_off(struct ql_adapter *qdev)
488 {
489         netif_err(qdev, link, qdev->ndev, "Link is down.\n");
490         netif_carrier_off(qdev->ndev);
491         ql_set_mac_addr(qdev, 0);
492 }
493
494 /* Get a specific frame routing value from the CAM.
495  * Used for debug and reg dump.
496  */
497 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
498 {
499         int status = 0;
500
501         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
502         if (status)
503                 goto exit;
504
505         ql_write32(qdev, RT_IDX,
506                    RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
507         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
508         if (status)
509                 goto exit;
510         *value = ql_read32(qdev, RT_DATA);
511 exit:
512         return status;
513 }
514
515 /* The NIC function for this chip has 16 routing indexes.  Each one can be used
516  * to route different frame types to various inbound queues.  We send broadcast/
517  * multicast/error frames to the default queue for slow handling,
518  * and CAM hit/RSS frames to the fast handling queues.
519  */
520 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
521                               int enable)
522 {
523         int status = -EINVAL; /* Return error if no mask match. */
524         u32 value = 0;
525
526         switch (mask) {
527         case RT_IDX_CAM_HIT:
528                 {
529                         value = RT_IDX_DST_CAM_Q |      /* dest */
530                             RT_IDX_TYPE_NICQ |  /* type */
531                             (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
532                         break;
533                 }
534         case RT_IDX_VALID:      /* Promiscuous Mode frames. */
535                 {
536                         value = RT_IDX_DST_DFLT_Q |     /* dest */
537                             RT_IDX_TYPE_NICQ |  /* type */
538                             (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
539                         break;
540                 }
541         case RT_IDX_ERR:        /* Pass up MAC,IP,TCP/UDP error frames. */
542                 {
543                         value = RT_IDX_DST_DFLT_Q |     /* dest */
544                             RT_IDX_TYPE_NICQ |  /* type */
545                             (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
546                         break;
547                 }
548         case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
549                 {
550                         value = RT_IDX_DST_DFLT_Q | /* dest */
551                                 RT_IDX_TYPE_NICQ | /* type */
552                                 (RT_IDX_IP_CSUM_ERR_SLOT <<
553                                 RT_IDX_IDX_SHIFT); /* index */
554                         break;
555                 }
556         case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
557                 {
558                         value = RT_IDX_DST_DFLT_Q | /* dest */
559                                 RT_IDX_TYPE_NICQ | /* type */
560                                 (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
561                                 RT_IDX_IDX_SHIFT); /* index */
562                         break;
563                 }
564         case RT_IDX_BCAST:      /* Pass up Broadcast frames to default Q. */
565                 {
566                         value = RT_IDX_DST_DFLT_Q |     /* dest */
567                             RT_IDX_TYPE_NICQ |  /* type */
568                             (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
569                         break;
570                 }
571         case RT_IDX_MCAST:      /* Pass up All Multicast frames. */
572                 {
573                         value = RT_IDX_DST_DFLT_Q |     /* dest */
574                             RT_IDX_TYPE_NICQ |  /* type */
575                             (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
576                         break;
577                 }
578         case RT_IDX_MCAST_MATCH:        /* Pass up matched Multicast frames. */
579                 {
580                         value = RT_IDX_DST_DFLT_Q |     /* dest */
581                             RT_IDX_TYPE_NICQ |  /* type */
582                             (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
583                         break;
584                 }
585         case RT_IDX_RSS_MATCH:  /* Pass up matched RSS frames. */
586                 {
587                         value = RT_IDX_DST_RSS |        /* dest */
588                             RT_IDX_TYPE_NICQ |  /* type */
589                             (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
590                         break;
591                 }
592         case 0:         /* Clear the E-bit on an entry. */
593                 {
594                         value = RT_IDX_DST_DFLT_Q |     /* dest */
595                             RT_IDX_TYPE_NICQ |  /* type */
596                             (index << RT_IDX_IDX_SHIFT);/* index */
597                         break;
598                 }
599         default:
600                 netif_err(qdev, ifup, qdev->ndev,
601                           "Mask type %d not yet supported.\n", mask);
602                 status = -EPERM;
603                 goto exit;
604         }
605
606         if (value) {
607                 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
608                 if (status)
609                         goto exit;
610                 value |= (enable ? RT_IDX_E : 0);
611                 ql_write32(qdev, RT_IDX, value);
612                 ql_write32(qdev, RT_DATA, enable ? mask : 0);
613         }
614 exit:
615         return status;
616 }
617
618 static void ql_enable_interrupts(struct ql_adapter *qdev)
619 {
620         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
621 }
622
623 static void ql_disable_interrupts(struct ql_adapter *qdev)
624 {
625         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
626 }
627
628 /* If we're running with multiple MSI-X vectors then we enable on the fly.
629  * Otherwise, we may have multiple outstanding workers and don't want to
630  * enable until the last one finishes. In this case, the irq_cnt gets
631  * incremented every time we queue a worker and decremented every time
632  * a worker finishes.  Once it hits zero we enable the interrupt.
633  */
634 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
635 {
636         u32 var = 0;
637         unsigned long hw_flags = 0;
638         struct intr_context *ctx = qdev->intr_context + intr;
639
640         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
641                 /* Always enable if we're MSIX multi interrupts and
642                  * it's not the default (zeroeth) interrupt.
643                  */
644                 ql_write32(qdev, INTR_EN,
645                            ctx->intr_en_mask);
646                 var = ql_read32(qdev, STS);
647                 return var;
648         }
649
650         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
651         if (atomic_dec_and_test(&ctx->irq_cnt)) {
652                 ql_write32(qdev, INTR_EN,
653                            ctx->intr_en_mask);
654                 var = ql_read32(qdev, STS);
655         }
656         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
657         return var;
658 }
659
660 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
661 {
662         u32 var = 0;
663         struct intr_context *ctx;
664
665         /* HW disables for us if we're MSIX multi interrupts and
666          * it's not the default (zeroeth) interrupt.
667          */
668         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
669                 return 0;
670
671         ctx = qdev->intr_context + intr;
672         spin_lock(&qdev->hw_lock);
673         if (!atomic_read(&ctx->irq_cnt)) {
674                 ql_write32(qdev, INTR_EN,
675                 ctx->intr_dis_mask);
676                 var = ql_read32(qdev, STS);
677         }
678         atomic_inc(&ctx->irq_cnt);
679         spin_unlock(&qdev->hw_lock);
680         return var;
681 }
682
683 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
684 {
685         int i;
686         for (i = 0; i < qdev->intr_count; i++) {
687                 /* The enable call does a atomic_dec_and_test
688                  * and enables only if the result is zero.
689                  * So we precharge it here.
690                  */
691                 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
692                         i == 0))
693                         atomic_set(&qdev->intr_context[i].irq_cnt, 1);
694                 ql_enable_completion_interrupt(qdev, i);
695         }
696
697 }
698
699 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
700 {
701         int status, i;
702         u16 csum = 0;
703         __le16 *flash = (__le16 *)&qdev->flash;
704
705         status = strncmp((char *)&qdev->flash, str, 4);
706         if (status) {
707                 netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
708                 return  status;
709         }
710
711         for (i = 0; i < size; i++)
712                 csum += le16_to_cpu(*flash++);
713
714         if (csum)
715                 netif_err(qdev, ifup, qdev->ndev,
716                           "Invalid flash checksum, csum = 0x%.04x.\n", csum);
717
718         return csum;
719 }
720
721 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
722 {
723         int status = 0;
724         /* wait for reg to come ready */
725         status = ql_wait_reg_rdy(qdev,
726                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
727         if (status)
728                 goto exit;
729         /* set up for reg read */
730         ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
731         /* wait for reg to come ready */
732         status = ql_wait_reg_rdy(qdev,
733                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
734         if (status)
735                 goto exit;
736          /* This data is stored on flash as an array of
737          * __le32.  Since ql_read32() returns cpu endian
738          * we need to swap it back.
739          */
740         *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
741 exit:
742         return status;
743 }
744
745 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
746 {
747         u32 i, size;
748         int status;
749         __le32 *p = (__le32 *)&qdev->flash;
750         u32 offset;
751         u8 mac_addr[6];
752
753         /* Get flash offset for function and adjust
754          * for dword access.
755          */
756         if (!qdev->port)
757                 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
758         else
759                 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
760
761         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
762                 return -ETIMEDOUT;
763
764         size = sizeof(struct flash_params_8000) / sizeof(u32);
765         for (i = 0; i < size; i++, p++) {
766                 status = ql_read_flash_word(qdev, i+offset, p);
767                 if (status) {
768                         netif_err(qdev, ifup, qdev->ndev,
769                                   "Error reading flash.\n");
770                         goto exit;
771                 }
772         }
773
774         status = ql_validate_flash(qdev,
775                         sizeof(struct flash_params_8000) / sizeof(u16),
776                         "8000");
777         if (status) {
778                 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
779                 status = -EINVAL;
780                 goto exit;
781         }
782
783         /* Extract either manufacturer or BOFM modified
784          * MAC address.
785          */
786         if (qdev->flash.flash_params_8000.data_type1 == 2)
787                 memcpy(mac_addr,
788                         qdev->flash.flash_params_8000.mac_addr1,
789                         qdev->ndev->addr_len);
790         else
791                 memcpy(mac_addr,
792                         qdev->flash.flash_params_8000.mac_addr,
793                         qdev->ndev->addr_len);
794
795         if (!is_valid_ether_addr(mac_addr)) {
796                 netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
797                 status = -EINVAL;
798                 goto exit;
799         }
800
801         memcpy(qdev->ndev->dev_addr,
802                 mac_addr,
803                 qdev->ndev->addr_len);
804
805 exit:
806         ql_sem_unlock(qdev, SEM_FLASH_MASK);
807         return status;
808 }
809
810 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
811 {
812         int i;
813         int status;
814         __le32 *p = (__le32 *)&qdev->flash;
815         u32 offset = 0;
816         u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
817
818         /* Second function's parameters follow the first
819          * function's.
820          */
821         if (qdev->port)
822                 offset = size;
823
824         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
825                 return -ETIMEDOUT;
826
827         for (i = 0; i < size; i++, p++) {
828                 status = ql_read_flash_word(qdev, i+offset, p);
829                 if (status) {
830                         netif_err(qdev, ifup, qdev->ndev,
831                                   "Error reading flash.\n");
832                         goto exit;
833                 }
834
835         }
836
837         status = ql_validate_flash(qdev,
838                         sizeof(struct flash_params_8012) / sizeof(u16),
839                         "8012");
840         if (status) {
841                 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
842                 status = -EINVAL;
843                 goto exit;
844         }
845
846         if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
847                 status = -EINVAL;
848                 goto exit;
849         }
850
851         memcpy(qdev->ndev->dev_addr,
852                 qdev->flash.flash_params_8012.mac_addr,
853                 qdev->ndev->addr_len);
854
855 exit:
856         ql_sem_unlock(qdev, SEM_FLASH_MASK);
857         return status;
858 }
859
860 /* xgmac register are located behind the xgmac_addr and xgmac_data
861  * register pair.  Each read/write requires us to wait for the ready
862  * bit before reading/writing the data.
863  */
864 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
865 {
866         int status;
867         /* wait for reg to come ready */
868         status = ql_wait_reg_rdy(qdev,
869                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
870         if (status)
871                 return status;
872         /* write the data to the data reg */
873         ql_write32(qdev, XGMAC_DATA, data);
874         /* trigger the write */
875         ql_write32(qdev, XGMAC_ADDR, reg);
876         return status;
877 }
878
879 /* xgmac register are located behind the xgmac_addr and xgmac_data
880  * register pair.  Each read/write requires us to wait for the ready
881  * bit before reading/writing the data.
882  */
883 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
884 {
885         int status = 0;
886         /* wait for reg to come ready */
887         status = ql_wait_reg_rdy(qdev,
888                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
889         if (status)
890                 goto exit;
891         /* set up for reg read */
892         ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
893         /* wait for reg to come ready */
894         status = ql_wait_reg_rdy(qdev,
895                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
896         if (status)
897                 goto exit;
898         /* get the data */
899         *data = ql_read32(qdev, XGMAC_DATA);
900 exit:
901         return status;
902 }
903
904 /* This is used for reading the 64-bit statistics regs. */
905 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
906 {
907         int status = 0;
908         u32 hi = 0;
909         u32 lo = 0;
910
911         status = ql_read_xgmac_reg(qdev, reg, &lo);
912         if (status)
913                 goto exit;
914
915         status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
916         if (status)
917                 goto exit;
918
919         *data = (u64) lo | ((u64) hi << 32);
920
921 exit:
922         return status;
923 }
924
925 static int ql_8000_port_initialize(struct ql_adapter *qdev)
926 {
927         int status;
928         /*
929          * Get MPI firmware version for driver banner
930          * and ethool info.
931          */
932         status = ql_mb_about_fw(qdev);
933         if (status)
934                 goto exit;
935         status = ql_mb_get_fw_state(qdev);
936         if (status)
937                 goto exit;
938         /* Wake up a worker to get/set the TX/RX frame sizes. */
939         queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
940 exit:
941         return status;
942 }
943
944 /* Take the MAC Core out of reset.
945  * Enable statistics counting.
946  * Take the transmitter/receiver out of reset.
947  * This functionality may be done in the MPI firmware at a
948  * later date.
949  */
950 static int ql_8012_port_initialize(struct ql_adapter *qdev)
951 {
952         int status = 0;
953         u32 data;
954
955         if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
956                 /* Another function has the semaphore, so
957                  * wait for the port init bit to come ready.
958                  */
959                 netif_info(qdev, link, qdev->ndev,
960                            "Another function has the semaphore, so wait for the port init bit to come ready.\n");
961                 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
962                 if (status) {
963                         netif_crit(qdev, link, qdev->ndev,
964                                    "Port initialize timed out.\n");
965                 }
966                 return status;
967         }
968
969         netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
970         /* Set the core reset. */
971         status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
972         if (status)
973                 goto end;
974         data |= GLOBAL_CFG_RESET;
975         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
976         if (status)
977                 goto end;
978
979         /* Clear the core reset and turn on jumbo for receiver. */
980         data &= ~GLOBAL_CFG_RESET;      /* Clear core reset. */
981         data |= GLOBAL_CFG_JUMBO;       /* Turn on jumbo. */
982         data |= GLOBAL_CFG_TX_STAT_EN;
983         data |= GLOBAL_CFG_RX_STAT_EN;
984         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
985         if (status)
986                 goto end;
987
988         /* Enable transmitter, and clear it's reset. */
989         status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
990         if (status)
991                 goto end;
992         data &= ~TX_CFG_RESET;  /* Clear the TX MAC reset. */
993         data |= TX_CFG_EN;      /* Enable the transmitter. */
994         status = ql_write_xgmac_reg(qdev, TX_CFG, data);
995         if (status)
996                 goto end;
997
998         /* Enable receiver and clear it's reset. */
999         status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
1000         if (status)
1001                 goto end;
1002         data &= ~RX_CFG_RESET;  /* Clear the RX MAC reset. */
1003         data |= RX_CFG_EN;      /* Enable the receiver. */
1004         status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1005         if (status)
1006                 goto end;
1007
1008         /* Turn on jumbo. */
1009         status =
1010             ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1011         if (status)
1012                 goto end;
1013         status =
1014             ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1015         if (status)
1016                 goto end;
1017
1018         /* Signal to the world that the port is enabled.        */
1019         ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1020 end:
1021         ql_sem_unlock(qdev, qdev->xg_sem_mask);
1022         return status;
1023 }
1024
1025 static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1026 {
1027         return PAGE_SIZE << qdev->lbq_buf_order;
1028 }
1029
1030 /* Get the next large buffer. */
1031 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
1032 {
1033         struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1034         rx_ring->lbq_curr_idx++;
1035         if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1036                 rx_ring->lbq_curr_idx = 0;
1037         rx_ring->lbq_free_cnt++;
1038         return lbq_desc;
1039 }
1040
1041 static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1042                 struct rx_ring *rx_ring)
1043 {
1044         struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1045
1046         pci_dma_sync_single_for_cpu(qdev->pdev,
1047                                         dma_unmap_addr(lbq_desc, mapaddr),
1048                                     rx_ring->lbq_buf_size,
1049                                         PCI_DMA_FROMDEVICE);
1050
1051         /* If it's the last chunk of our master page then
1052          * we unmap it.
1053          */
1054         if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1055                                         == ql_lbq_block_size(qdev))
1056                 pci_unmap_page(qdev->pdev,
1057                                 lbq_desc->p.pg_chunk.map,
1058                                 ql_lbq_block_size(qdev),
1059                                 PCI_DMA_FROMDEVICE);
1060         return lbq_desc;
1061 }
1062
1063 /* Get the next small buffer. */
1064 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
1065 {
1066         struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1067         rx_ring->sbq_curr_idx++;
1068         if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1069                 rx_ring->sbq_curr_idx = 0;
1070         rx_ring->sbq_free_cnt++;
1071         return sbq_desc;
1072 }
1073
1074 /* Update an rx ring index. */
1075 static void ql_update_cq(struct rx_ring *rx_ring)
1076 {
1077         rx_ring->cnsmr_idx++;
1078         rx_ring->curr_entry++;
1079         if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1080                 rx_ring->cnsmr_idx = 0;
1081                 rx_ring->curr_entry = rx_ring->cq_base;
1082         }
1083 }
1084
1085 static void ql_write_cq_idx(struct rx_ring *rx_ring)
1086 {
1087         ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1088 }
1089
1090 static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1091                                                 struct bq_desc *lbq_desc)
1092 {
1093         if (!rx_ring->pg_chunk.page) {
1094                 u64 map;
1095                 rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
1096                                                 GFP_ATOMIC,
1097                                                 qdev->lbq_buf_order);
1098                 if (unlikely(!rx_ring->pg_chunk.page)) {
1099                         netif_err(qdev, drv, qdev->ndev,
1100                                   "page allocation failed.\n");
1101                         return -ENOMEM;
1102                 }
1103                 rx_ring->pg_chunk.offset = 0;
1104                 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1105                                         0, ql_lbq_block_size(qdev),
1106                                         PCI_DMA_FROMDEVICE);
1107                 if (pci_dma_mapping_error(qdev->pdev, map)) {
1108                         __free_pages(rx_ring->pg_chunk.page,
1109                                         qdev->lbq_buf_order);
1110                         rx_ring->pg_chunk.page = NULL;
1111                         netif_err(qdev, drv, qdev->ndev,
1112                                   "PCI mapping failed.\n");
1113                         return -ENOMEM;
1114                 }
1115                 rx_ring->pg_chunk.map = map;
1116                 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1117         }
1118
1119         /* Copy the current master pg_chunk info
1120          * to the current descriptor.
1121          */
1122         lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1123
1124         /* Adjust the master page chunk for next
1125          * buffer get.
1126          */
1127         rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1128         if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1129                 rx_ring->pg_chunk.page = NULL;
1130                 lbq_desc->p.pg_chunk.last_flag = 1;
1131         } else {
1132                 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1133                 get_page(rx_ring->pg_chunk.page);
1134                 lbq_desc->p.pg_chunk.last_flag = 0;
1135         }
1136         return 0;
1137 }
1138 /* Process (refill) a large buffer queue. */
1139 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1140 {
1141         u32 clean_idx = rx_ring->lbq_clean_idx;
1142         u32 start_idx = clean_idx;
1143         struct bq_desc *lbq_desc;
1144         u64 map;
1145         int i;
1146
1147         while (rx_ring->lbq_free_cnt > 32) {
1148                 for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
1149                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1150                                      "lbq: try cleaning clean_idx = %d.\n",
1151                                      clean_idx);
1152                         lbq_desc = &rx_ring->lbq[clean_idx];
1153                         if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
1154                                 rx_ring->lbq_clean_idx = clean_idx;
1155                                 netif_err(qdev, ifup, qdev->ndev,
1156                                                 "Could not get a page chunk, i=%d, clean_idx =%d .\n",
1157                                                 i, clean_idx);
1158                                 return;
1159                         }
1160
1161                         map = lbq_desc->p.pg_chunk.map +
1162                                 lbq_desc->p.pg_chunk.offset;
1163                                 dma_unmap_addr_set(lbq_desc, mapaddr, map);
1164                         dma_unmap_len_set(lbq_desc, maplen,
1165                                         rx_ring->lbq_buf_size);
1166                                 *lbq_desc->addr = cpu_to_le64(map);
1167
1168                         pci_dma_sync_single_for_device(qdev->pdev, map,
1169                                                 rx_ring->lbq_buf_size,
1170                                                 PCI_DMA_FROMDEVICE);
1171                         clean_idx++;
1172                         if (clean_idx == rx_ring->lbq_len)
1173                                 clean_idx = 0;
1174                 }
1175
1176                 rx_ring->lbq_clean_idx = clean_idx;
1177                 rx_ring->lbq_prod_idx += 16;
1178                 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1179                         rx_ring->lbq_prod_idx = 0;
1180                 rx_ring->lbq_free_cnt -= 16;
1181         }
1182
1183         if (start_idx != clean_idx) {
1184                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1185                              "lbq: updating prod idx = %d.\n",
1186                              rx_ring->lbq_prod_idx);
1187                 ql_write_db_reg(rx_ring->lbq_prod_idx,
1188                                 rx_ring->lbq_prod_idx_db_reg);
1189         }
1190 }
1191
1192 /* Process (refill) a small buffer queue. */
1193 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1194 {
1195         u32 clean_idx = rx_ring->sbq_clean_idx;
1196         u32 start_idx = clean_idx;
1197         struct bq_desc *sbq_desc;
1198         u64 map;
1199         int i;
1200
1201         while (rx_ring->sbq_free_cnt > 16) {
1202                 for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
1203                         sbq_desc = &rx_ring->sbq[clean_idx];
1204                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1205                                      "sbq: try cleaning clean_idx = %d.\n",
1206                                      clean_idx);
1207                         if (sbq_desc->p.skb == NULL) {
1208                                 netif_printk(qdev, rx_status, KERN_DEBUG,
1209                                              qdev->ndev,
1210                                              "sbq: getting new skb for index %d.\n",
1211                                              sbq_desc->index);
1212                                 sbq_desc->p.skb =
1213                                     netdev_alloc_skb(qdev->ndev,
1214                                                      SMALL_BUFFER_SIZE);
1215                                 if (sbq_desc->p.skb == NULL) {
1216                                         rx_ring->sbq_clean_idx = clean_idx;
1217                                         return;
1218                                 }
1219                                 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1220                                 map = pci_map_single(qdev->pdev,
1221                                                      sbq_desc->p.skb->data,
1222                                                      rx_ring->sbq_buf_size,
1223                                                      PCI_DMA_FROMDEVICE);
1224                                 if (pci_dma_mapping_error(qdev->pdev, map)) {
1225                                         netif_err(qdev, ifup, qdev->ndev,
1226                                                   "PCI mapping failed.\n");
1227                                         rx_ring->sbq_clean_idx = clean_idx;
1228                                         dev_kfree_skb_any(sbq_desc->p.skb);
1229                                         sbq_desc->p.skb = NULL;
1230                                         return;
1231                                 }
1232                                 dma_unmap_addr_set(sbq_desc, mapaddr, map);
1233                                 dma_unmap_len_set(sbq_desc, maplen,
1234                                                   rx_ring->sbq_buf_size);
1235                                 *sbq_desc->addr = cpu_to_le64(map);
1236                         }
1237
1238                         clean_idx++;
1239                         if (clean_idx == rx_ring->sbq_len)
1240                                 clean_idx = 0;
1241                 }
1242                 rx_ring->sbq_clean_idx = clean_idx;
1243                 rx_ring->sbq_prod_idx += 16;
1244                 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1245                         rx_ring->sbq_prod_idx = 0;
1246                 rx_ring->sbq_free_cnt -= 16;
1247         }
1248
1249         if (start_idx != clean_idx) {
1250                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1251                              "sbq: updating prod idx = %d.\n",
1252                              rx_ring->sbq_prod_idx);
1253                 ql_write_db_reg(rx_ring->sbq_prod_idx,
1254                                 rx_ring->sbq_prod_idx_db_reg);
1255         }
1256 }
1257
1258 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1259                                     struct rx_ring *rx_ring)
1260 {
1261         ql_update_sbq(qdev, rx_ring);
1262         ql_update_lbq(qdev, rx_ring);
1263 }
1264
1265 /* Unmaps tx buffers.  Can be called from send() if a pci mapping
1266  * fails at some stage, or from the interrupt when a tx completes.
1267  */
1268 static void ql_unmap_send(struct ql_adapter *qdev,
1269                           struct tx_ring_desc *tx_ring_desc, int mapped)
1270 {
1271         int i;
1272         for (i = 0; i < mapped; i++) {
1273                 if (i == 0 || (i == 7 && mapped > 7)) {
1274                         /*
1275                          * Unmap the skb->data area, or the
1276                          * external sglist (AKA the Outbound
1277                          * Address List (OAL)).
1278                          * If its the zeroeth element, then it's
1279                          * the skb->data area.  If it's the 7th
1280                          * element and there is more than 6 frags,
1281                          * then its an OAL.
1282                          */
1283                         if (i == 7) {
1284                                 netif_printk(qdev, tx_done, KERN_DEBUG,
1285                                              qdev->ndev,
1286                                              "unmapping OAL area.\n");
1287                         }
1288                         pci_unmap_single(qdev->pdev,
1289                                          dma_unmap_addr(&tx_ring_desc->map[i],
1290                                                         mapaddr),
1291                                          dma_unmap_len(&tx_ring_desc->map[i],
1292                                                        maplen),
1293                                          PCI_DMA_TODEVICE);
1294                 } else {
1295                         netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1296                                      "unmapping frag %d.\n", i);
1297                         pci_unmap_page(qdev->pdev,
1298                                        dma_unmap_addr(&tx_ring_desc->map[i],
1299                                                       mapaddr),
1300                                        dma_unmap_len(&tx_ring_desc->map[i],
1301                                                      maplen), PCI_DMA_TODEVICE);
1302                 }
1303         }
1304
1305 }
1306
1307 /* Map the buffers for this transmit.  This will return
1308  * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1309  */
1310 static int ql_map_send(struct ql_adapter *qdev,
1311                        struct ob_mac_iocb_req *mac_iocb_ptr,
1312                        struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1313 {
1314         int len = skb_headlen(skb);
1315         dma_addr_t map;
1316         int frag_idx, err, map_idx = 0;
1317         struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1318         int frag_cnt = skb_shinfo(skb)->nr_frags;
1319
1320         if (frag_cnt) {
1321                 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1322                              "frag_cnt = %d.\n", frag_cnt);
1323         }
1324         /*
1325          * Map the skb buffer first.
1326          */
1327         map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1328
1329         err = pci_dma_mapping_error(qdev->pdev, map);
1330         if (err) {
1331                 netif_err(qdev, tx_queued, qdev->ndev,
1332                           "PCI mapping failed with error: %d\n", err);
1333
1334                 return NETDEV_TX_BUSY;
1335         }
1336
1337         tbd->len = cpu_to_le32(len);
1338         tbd->addr = cpu_to_le64(map);
1339         dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1340         dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1341         map_idx++;
1342
1343         /*
1344          * This loop fills the remainder of the 8 address descriptors
1345          * in the IOCB.  If there are more than 7 fragments, then the
1346          * eighth address desc will point to an external list (OAL).
1347          * When this happens, the remainder of the frags will be stored
1348          * in this list.
1349          */
1350         for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1351                 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1352                 tbd++;
1353                 if (frag_idx == 6 && frag_cnt > 7) {
1354                         /* Let's tack on an sglist.
1355                          * Our control block will now
1356                          * look like this:
1357                          * iocb->seg[0] = skb->data
1358                          * iocb->seg[1] = frag[0]
1359                          * iocb->seg[2] = frag[1]
1360                          * iocb->seg[3] = frag[2]
1361                          * iocb->seg[4] = frag[3]
1362                          * iocb->seg[5] = frag[4]
1363                          * iocb->seg[6] = frag[5]
1364                          * iocb->seg[7] = ptr to OAL (external sglist)
1365                          * oal->seg[0] = frag[6]
1366                          * oal->seg[1] = frag[7]
1367                          * oal->seg[2] = frag[8]
1368                          * oal->seg[3] = frag[9]
1369                          * oal->seg[4] = frag[10]
1370                          *      etc...
1371                          */
1372                         /* Tack on the OAL in the eighth segment of IOCB. */
1373                         map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1374                                              sizeof(struct oal),
1375                                              PCI_DMA_TODEVICE);
1376                         err = pci_dma_mapping_error(qdev->pdev, map);
1377                         if (err) {
1378                                 netif_err(qdev, tx_queued, qdev->ndev,
1379                                           "PCI mapping outbound address list with error: %d\n",
1380                                           err);
1381                                 goto map_error;
1382                         }
1383
1384                         tbd->addr = cpu_to_le64(map);
1385                         /*
1386                          * The length is the number of fragments
1387                          * that remain to be mapped times the length
1388                          * of our sglist (OAL).
1389                          */
1390                         tbd->len =
1391                             cpu_to_le32((sizeof(struct tx_buf_desc) *
1392                                          (frag_cnt - frag_idx)) | TX_DESC_C);
1393                         dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1394                                            map);
1395                         dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1396                                           sizeof(struct oal));
1397                         tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1398                         map_idx++;
1399                 }
1400
1401                 map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
1402                                        DMA_TO_DEVICE);
1403
1404                 err = dma_mapping_error(&qdev->pdev->dev, map);
1405                 if (err) {
1406                         netif_err(qdev, tx_queued, qdev->ndev,
1407                                   "PCI mapping frags failed with error: %d.\n",
1408                                   err);
1409                         goto map_error;
1410                 }
1411
1412                 tbd->addr = cpu_to_le64(map);
1413                 tbd->len = cpu_to_le32(skb_frag_size(frag));
1414                 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1415                 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1416                                   skb_frag_size(frag));
1417
1418         }
1419         /* Save the number of segments we've mapped. */
1420         tx_ring_desc->map_cnt = map_idx;
1421         /* Terminate the last segment. */
1422         tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1423         return NETDEV_TX_OK;
1424
1425 map_error:
1426         /*
1427          * If the first frag mapping failed, then i will be zero.
1428          * This causes the unmap of the skb->data area.  Otherwise
1429          * we pass in the number of frags that mapped successfully
1430          * so they can be umapped.
1431          */
1432         ql_unmap_send(qdev, tx_ring_desc, map_idx);
1433         return NETDEV_TX_BUSY;
1434 }
1435
1436 /* Categorizing receive firmware frame errors */
1437 static void ql_categorize_rx_err(struct ql_adapter *qdev, u8 rx_err,
1438                                  struct rx_ring *rx_ring)
1439 {
1440         struct nic_stats *stats = &qdev->nic_stats;
1441
1442         stats->rx_err_count++;
1443         rx_ring->rx_errors++;
1444
1445         switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) {
1446         case IB_MAC_IOCB_RSP_ERR_CODE_ERR:
1447                 stats->rx_code_err++;
1448                 break;
1449         case IB_MAC_IOCB_RSP_ERR_OVERSIZE:
1450                 stats->rx_oversize_err++;
1451                 break;
1452         case IB_MAC_IOCB_RSP_ERR_UNDERSIZE:
1453                 stats->rx_undersize_err++;
1454                 break;
1455         case IB_MAC_IOCB_RSP_ERR_PREAMBLE:
1456                 stats->rx_preamble_err++;
1457                 break;
1458         case IB_MAC_IOCB_RSP_ERR_FRAME_LEN:
1459                 stats->rx_frame_len_err++;
1460                 break;
1461         case IB_MAC_IOCB_RSP_ERR_CRC:
1462                 stats->rx_crc_err++;
1463         default:
1464                 break;
1465         }
1466 }
1467
1468 /**
1469  * ql_update_mac_hdr_len - helper routine to update the mac header length
1470  * based on vlan tags if present
1471  */
1472 static void ql_update_mac_hdr_len(struct ql_adapter *qdev,
1473                                   struct ib_mac_iocb_rsp *ib_mac_rsp,
1474                                   void *page, size_t *len)
1475 {
1476         u16 *tags;
1477
1478         if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
1479                 return;
1480         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) {
1481                 tags = (u16 *)page;
1482                 /* Look for stacked vlan tags in ethertype field */
1483                 if (tags[6] == ETH_P_8021Q &&
1484                     tags[8] == ETH_P_8021Q)
1485                         *len += 2 * VLAN_HLEN;
1486                 else
1487                         *len += VLAN_HLEN;
1488         }
1489 }
1490
1491 /* Process an inbound completion from an rx ring. */
1492 static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1493                                         struct rx_ring *rx_ring,
1494                                         struct ib_mac_iocb_rsp *ib_mac_rsp,
1495                                         u32 length,
1496                                         u16 vlan_id)
1497 {
1498         struct sk_buff *skb;
1499         struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1500         struct napi_struct *napi = &rx_ring->napi;
1501
1502         /* Frame error, so drop the packet. */
1503         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1504                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1505                 put_page(lbq_desc->p.pg_chunk.page);
1506                 return;
1507         }
1508         napi->dev = qdev->ndev;
1509
1510         skb = napi_get_frags(napi);
1511         if (!skb) {
1512                 netif_err(qdev, drv, qdev->ndev,
1513                           "Couldn't get an skb, exiting.\n");
1514                 rx_ring->rx_dropped++;
1515                 put_page(lbq_desc->p.pg_chunk.page);
1516                 return;
1517         }
1518         prefetch(lbq_desc->p.pg_chunk.va);
1519         __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1520                              lbq_desc->p.pg_chunk.page,
1521                              lbq_desc->p.pg_chunk.offset,
1522                              length);
1523
1524         skb->len += length;
1525         skb->data_len += length;
1526         skb->truesize += length;
1527         skb_shinfo(skb)->nr_frags++;
1528
1529         rx_ring->rx_packets++;
1530         rx_ring->rx_bytes += length;
1531         skb->ip_summed = CHECKSUM_UNNECESSARY;
1532         skb_record_rx_queue(skb, rx_ring->cq_id);
1533         if (vlan_id != 0xffff)
1534                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1535         napi_gro_frags(napi);
1536 }
1537
1538 /* Process an inbound completion from an rx ring. */
1539 static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1540                                         struct rx_ring *rx_ring,
1541                                         struct ib_mac_iocb_rsp *ib_mac_rsp,
1542                                         u32 length,
1543                                         u16 vlan_id)
1544 {
1545         struct net_device *ndev = qdev->ndev;
1546         struct sk_buff *skb = NULL;
1547         void *addr;
1548         struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1549         struct napi_struct *napi = &rx_ring->napi;
1550         size_t hlen = ETH_HLEN;
1551
1552         skb = netdev_alloc_skb(ndev, length);
1553         if (!skb) {
1554                 rx_ring->rx_dropped++;
1555                 put_page(lbq_desc->p.pg_chunk.page);
1556                 return;
1557         }
1558
1559         addr = lbq_desc->p.pg_chunk.va;
1560         prefetch(addr);
1561
1562         /* Frame error, so drop the packet. */
1563         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1564                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1565                 goto err_out;
1566         }
1567
1568         /* Update the MAC header length*/
1569         ql_update_mac_hdr_len(qdev, ib_mac_rsp, addr, &hlen);
1570
1571         /* The max framesize filter on this chip is set higher than
1572          * MTU since FCoE uses 2k frames.
1573          */
1574         if (skb->len > ndev->mtu + hlen) {
1575                 netif_err(qdev, drv, qdev->ndev,
1576                           "Segment too small, dropping.\n");
1577                 rx_ring->rx_dropped++;
1578                 goto err_out;
1579         }
1580         memcpy(skb_put(skb, hlen), addr, hlen);
1581         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1582                      "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1583                      length);
1584         skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1585                                 lbq_desc->p.pg_chunk.offset + hlen,
1586                                 length - hlen);
1587         skb->len += length - hlen;
1588         skb->data_len += length - hlen;
1589         skb->truesize += length - hlen;
1590
1591         rx_ring->rx_packets++;
1592         rx_ring->rx_bytes += skb->len;
1593         skb->protocol = eth_type_trans(skb, ndev);
1594         skb_checksum_none_assert(skb);
1595
1596         if ((ndev->features & NETIF_F_RXCSUM) &&
1597                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1598                 /* TCP frame. */
1599                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1600                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1601                                      "TCP checksum done!\n");
1602                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1603                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1604                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1605                         /* Unfragmented ipv4 UDP frame. */
1606                         struct iphdr *iph =
1607                                 (struct iphdr *)((u8 *)addr + hlen);
1608                         if (!(iph->frag_off &
1609                                 htons(IP_MF|IP_OFFSET))) {
1610                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1611                                 netif_printk(qdev, rx_status, KERN_DEBUG,
1612                                              qdev->ndev,
1613                                              "UDP checksum done!\n");
1614                         }
1615                 }
1616         }
1617
1618         skb_record_rx_queue(skb, rx_ring->cq_id);
1619         if (vlan_id != 0xffff)
1620                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1621         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1622                 napi_gro_receive(napi, skb);
1623         else
1624                 netif_receive_skb(skb);
1625         return;
1626 err_out:
1627         dev_kfree_skb_any(skb);
1628         put_page(lbq_desc->p.pg_chunk.page);
1629 }
1630
1631 /* Process an inbound completion from an rx ring. */
1632 static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1633                                         struct rx_ring *rx_ring,
1634                                         struct ib_mac_iocb_rsp *ib_mac_rsp,
1635                                         u32 length,
1636                                         u16 vlan_id)
1637 {
1638         struct net_device *ndev = qdev->ndev;
1639         struct sk_buff *skb = NULL;
1640         struct sk_buff *new_skb = NULL;
1641         struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1642
1643         skb = sbq_desc->p.skb;
1644         /* Allocate new_skb and copy */
1645         new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1646         if (new_skb == NULL) {
1647                 rx_ring->rx_dropped++;
1648                 return;
1649         }
1650         skb_reserve(new_skb, NET_IP_ALIGN);
1651
1652         pci_dma_sync_single_for_cpu(qdev->pdev,
1653                                     dma_unmap_addr(sbq_desc, mapaddr),
1654                                     dma_unmap_len(sbq_desc, maplen),
1655                                     PCI_DMA_FROMDEVICE);
1656
1657         memcpy(skb_put(new_skb, length), skb->data, length);
1658
1659         pci_dma_sync_single_for_device(qdev->pdev,
1660                                        dma_unmap_addr(sbq_desc, mapaddr),
1661                                        dma_unmap_len(sbq_desc, maplen),
1662                                        PCI_DMA_FROMDEVICE);
1663         skb = new_skb;
1664
1665         /* Frame error, so drop the packet. */
1666         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1667                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1668                 dev_kfree_skb_any(skb);
1669                 return;
1670         }
1671
1672         /* loopback self test for ethtool */
1673         if (test_bit(QL_SELFTEST, &qdev->flags)) {
1674                 ql_check_lb_frame(qdev, skb);
1675                 dev_kfree_skb_any(skb);
1676                 return;
1677         }
1678
1679         /* The max framesize filter on this chip is set higher than
1680          * MTU since FCoE uses 2k frames.
1681          */
1682         if (skb->len > ndev->mtu + ETH_HLEN) {
1683                 dev_kfree_skb_any(skb);
1684                 rx_ring->rx_dropped++;
1685                 return;
1686         }
1687
1688         prefetch(skb->data);
1689         if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1690                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1691                              "%s Multicast.\n",
1692                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1693                              IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1694                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1695                              IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1696                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1697                              IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1698         }
1699         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
1700                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1701                              "Promiscuous Packet.\n");
1702
1703         rx_ring->rx_packets++;
1704         rx_ring->rx_bytes += skb->len;
1705         skb->protocol = eth_type_trans(skb, ndev);
1706         skb_checksum_none_assert(skb);
1707
1708         /* If rx checksum is on, and there are no
1709          * csum or frame errors.
1710          */
1711         if ((ndev->features & NETIF_F_RXCSUM) &&
1712                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1713                 /* TCP frame. */
1714                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1715                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1716                                      "TCP checksum done!\n");
1717                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1718                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1719                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1720                         /* Unfragmented ipv4 UDP frame. */
1721                         struct iphdr *iph = (struct iphdr *) skb->data;
1722                         if (!(iph->frag_off &
1723                                 htons(IP_MF|IP_OFFSET))) {
1724                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1725                                 netif_printk(qdev, rx_status, KERN_DEBUG,
1726                                              qdev->ndev,
1727                                              "UDP checksum done!\n");
1728                         }
1729                 }
1730         }
1731
1732         skb_record_rx_queue(skb, rx_ring->cq_id);
1733         if (vlan_id != 0xffff)
1734                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1735         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1736                 napi_gro_receive(&rx_ring->napi, skb);
1737         else
1738                 netif_receive_skb(skb);
1739 }
1740
1741 static void ql_realign_skb(struct sk_buff *skb, int len)
1742 {
1743         void *temp_addr = skb->data;
1744
1745         /* Undo the skb_reserve(skb,32) we did before
1746          * giving to hardware, and realign data on
1747          * a 2-byte boundary.
1748          */
1749         skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1750         skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1751         skb_copy_to_linear_data(skb, temp_addr,
1752                 (unsigned int)len);
1753 }
1754
1755 /*
1756  * This function builds an skb for the given inbound
1757  * completion.  It will be rewritten for readability in the near
1758  * future, but for not it works well.
1759  */
1760 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1761                                        struct rx_ring *rx_ring,
1762                                        struct ib_mac_iocb_rsp *ib_mac_rsp)
1763 {
1764         struct bq_desc *lbq_desc;
1765         struct bq_desc *sbq_desc;
1766         struct sk_buff *skb = NULL;
1767         u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1768         u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1769         size_t hlen = ETH_HLEN;
1770
1771         /*
1772          * Handle the header buffer if present.
1773          */
1774         if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1775             ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1776                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1777                              "Header of %d bytes in small buffer.\n", hdr_len);
1778                 /*
1779                  * Headers fit nicely into a small buffer.
1780                  */
1781                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1782                 pci_unmap_single(qdev->pdev,
1783                                 dma_unmap_addr(sbq_desc, mapaddr),
1784                                 dma_unmap_len(sbq_desc, maplen),
1785                                 PCI_DMA_FROMDEVICE);
1786                 skb = sbq_desc->p.skb;
1787                 ql_realign_skb(skb, hdr_len);
1788                 skb_put(skb, hdr_len);
1789                 sbq_desc->p.skb = NULL;
1790         }
1791
1792         /*
1793          * Handle the data buffer(s).
1794          */
1795         if (unlikely(!length)) {        /* Is there data too? */
1796                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1797                              "No Data buffer in this packet.\n");
1798                 return skb;
1799         }
1800
1801         if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1802                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1803                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1804                                      "Headers in small, data of %d bytes in small, combine them.\n",
1805                                      length);
1806                         /*
1807                          * Data is less than small buffer size so it's
1808                          * stuffed in a small buffer.
1809                          * For this case we append the data
1810                          * from the "data" small buffer to the "header" small
1811                          * buffer.
1812                          */
1813                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1814                         pci_dma_sync_single_for_cpu(qdev->pdev,
1815                                                     dma_unmap_addr
1816                                                     (sbq_desc, mapaddr),
1817                                                     dma_unmap_len
1818                                                     (sbq_desc, maplen),
1819                                                     PCI_DMA_FROMDEVICE);
1820                         memcpy(skb_put(skb, length),
1821                                sbq_desc->p.skb->data, length);
1822                         pci_dma_sync_single_for_device(qdev->pdev,
1823                                                        dma_unmap_addr
1824                                                        (sbq_desc,
1825                                                         mapaddr),
1826                                                        dma_unmap_len
1827                                                        (sbq_desc,
1828                                                         maplen),
1829                                                        PCI_DMA_FROMDEVICE);
1830                 } else {
1831                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1832                                      "%d bytes in a single small buffer.\n",
1833                                      length);
1834                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1835                         skb = sbq_desc->p.skb;
1836                         ql_realign_skb(skb, length);
1837                         skb_put(skb, length);
1838                         pci_unmap_single(qdev->pdev,
1839                                          dma_unmap_addr(sbq_desc,
1840                                                         mapaddr),
1841                                          dma_unmap_len(sbq_desc,
1842                                                        maplen),
1843                                          PCI_DMA_FROMDEVICE);
1844                         sbq_desc->p.skb = NULL;
1845                 }
1846         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1847                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1848                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1849                                      "Header in small, %d bytes in large. Chain large to small!\n",
1850                                      length);
1851                         /*
1852                          * The data is in a single large buffer.  We
1853                          * chain it to the header buffer's skb and let
1854                          * it rip.
1855                          */
1856                         lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1857                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1858                                      "Chaining page at offset = %d, for %d bytes  to skb.\n",
1859                                      lbq_desc->p.pg_chunk.offset, length);
1860                         skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1861                                                 lbq_desc->p.pg_chunk.offset,
1862                                                 length);
1863                         skb->len += length;
1864                         skb->data_len += length;
1865                         skb->truesize += length;
1866                 } else {
1867                         /*
1868                          * The headers and data are in a single large buffer. We
1869                          * copy it to a new skb and let it go. This can happen with
1870                          * jumbo mtu on a non-TCP/UDP frame.
1871                          */
1872                         lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1873                         skb = netdev_alloc_skb(qdev->ndev, length);
1874                         if (skb == NULL) {
1875                                 netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1876                                              "No skb available, drop the packet.\n");
1877                                 return NULL;
1878                         }
1879                         pci_unmap_page(qdev->pdev,
1880                                        dma_unmap_addr(lbq_desc,
1881                                                       mapaddr),
1882                                        dma_unmap_len(lbq_desc, maplen),
1883                                        PCI_DMA_FROMDEVICE);
1884                         skb_reserve(skb, NET_IP_ALIGN);
1885                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1886                                      "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1887                                      length);
1888                         skb_fill_page_desc(skb, 0,
1889                                                 lbq_desc->p.pg_chunk.page,
1890                                                 lbq_desc->p.pg_chunk.offset,
1891                                                 length);
1892                         skb->len += length;
1893                         skb->data_len += length;
1894                         skb->truesize += length;
1895                         length -= length;
1896                         ql_update_mac_hdr_len(qdev, ib_mac_rsp,
1897                                               lbq_desc->p.pg_chunk.va,
1898                                               &hlen);
1899                         __pskb_pull_tail(skb, hlen);
1900                 }
1901         } else {
1902                 /*
1903                  * The data is in a chain of large buffers
1904                  * pointed to by a small buffer.  We loop
1905                  * thru and chain them to the our small header
1906                  * buffer's skb.
1907                  * frags:  There are 18 max frags and our small
1908                  *         buffer will hold 32 of them. The thing is,
1909                  *         we'll use 3 max for our 9000 byte jumbo
1910                  *         frames.  If the MTU goes up we could
1911                  *          eventually be in trouble.
1912                  */
1913                 int size, i = 0;
1914                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1915                 pci_unmap_single(qdev->pdev,
1916                                  dma_unmap_addr(sbq_desc, mapaddr),
1917                                  dma_unmap_len(sbq_desc, maplen),
1918                                  PCI_DMA_FROMDEVICE);
1919                 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1920                         /*
1921                          * This is an non TCP/UDP IP frame, so
1922                          * the headers aren't split into a small
1923                          * buffer.  We have to use the small buffer
1924                          * that contains our sg list as our skb to
1925                          * send upstairs. Copy the sg list here to
1926                          * a local buffer and use it to find the
1927                          * pages to chain.
1928                          */
1929                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1930                                      "%d bytes of headers & data in chain of large.\n",
1931                                      length);
1932                         skb = sbq_desc->p.skb;
1933                         sbq_desc->p.skb = NULL;
1934                         skb_reserve(skb, NET_IP_ALIGN);
1935                 }
1936                 do {
1937                         lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1938                         size = (length < rx_ring->lbq_buf_size) ? length :
1939                                 rx_ring->lbq_buf_size;
1940
1941                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1942                                      "Adding page %d to skb for %d bytes.\n",
1943                                      i, size);
1944                         skb_fill_page_desc(skb, i,
1945                                                 lbq_desc->p.pg_chunk.page,
1946                                                 lbq_desc->p.pg_chunk.offset,
1947                                                 size);
1948                         skb->len += size;
1949                         skb->data_len += size;
1950                         skb->truesize += size;
1951                         length -= size;
1952                         i++;
1953                 } while (length > 0);
1954                 ql_update_mac_hdr_len(qdev, ib_mac_rsp, lbq_desc->p.pg_chunk.va,
1955                                       &hlen);
1956                 __pskb_pull_tail(skb, hlen);
1957         }
1958         return skb;
1959 }
1960
1961 /* Process an inbound completion from an rx ring. */
1962 static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
1963                                    struct rx_ring *rx_ring,
1964                                    struct ib_mac_iocb_rsp *ib_mac_rsp,
1965                                    u16 vlan_id)
1966 {
1967         struct net_device *ndev = qdev->ndev;
1968         struct sk_buff *skb = NULL;
1969
1970         QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1971
1972         skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1973         if (unlikely(!skb)) {
1974                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1975                              "No skb available, drop packet.\n");
1976                 rx_ring->rx_dropped++;
1977                 return;
1978         }
1979
1980         /* Frame error, so drop the packet. */
1981         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1982                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1983                 dev_kfree_skb_any(skb);
1984                 return;
1985         }
1986
1987         /* The max framesize filter on this chip is set higher than
1988          * MTU since FCoE uses 2k frames.
1989          */
1990         if (skb->len > ndev->mtu + ETH_HLEN) {
1991                 dev_kfree_skb_any(skb);
1992                 rx_ring->rx_dropped++;
1993                 return;
1994         }
1995
1996         /* loopback self test for ethtool */
1997         if (test_bit(QL_SELFTEST, &qdev->flags)) {
1998                 ql_check_lb_frame(qdev, skb);
1999                 dev_kfree_skb_any(skb);
2000                 return;
2001         }
2002
2003         prefetch(skb->data);
2004         if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
2005                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
2006                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2007                              IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
2008                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2009                              IB_MAC_IOCB_RSP_M_REG ? "Registered" :
2010                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2011                              IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
2012                 rx_ring->rx_multicast++;
2013         }
2014         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
2015                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2016                              "Promiscuous Packet.\n");
2017         }
2018
2019         skb->protocol = eth_type_trans(skb, ndev);
2020         skb_checksum_none_assert(skb);
2021
2022         /* If rx checksum is on, and there are no
2023          * csum or frame errors.
2024          */
2025         if ((ndev->features & NETIF_F_RXCSUM) &&
2026                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
2027                 /* TCP frame. */
2028                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
2029                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2030                                      "TCP checksum done!\n");
2031                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2032                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
2033                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
2034                 /* Unfragmented ipv4 UDP frame. */
2035                         struct iphdr *iph = (struct iphdr *) skb->data;
2036                         if (!(iph->frag_off &
2037                                 htons(IP_MF|IP_OFFSET))) {
2038                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2039                                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2040                                              "TCP checksum done!\n");
2041                         }
2042                 }
2043         }
2044
2045         rx_ring->rx_packets++;
2046         rx_ring->rx_bytes += skb->len;
2047         skb_record_rx_queue(skb, rx_ring->cq_id);
2048         if (vlan_id != 0xffff)
2049                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
2050         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
2051                 napi_gro_receive(&rx_ring->napi, skb);
2052         else
2053                 netif_receive_skb(skb);
2054 }
2055
2056 /* Process an inbound completion from an rx ring. */
2057 static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
2058                                         struct rx_ring *rx_ring,
2059                                         struct ib_mac_iocb_rsp *ib_mac_rsp)
2060 {
2061         u32 length = le32_to_cpu(ib_mac_rsp->data_len);
2062         u16 vlan_id = ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
2063                         (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)) ?
2064                         ((le16_to_cpu(ib_mac_rsp->vlan_id) &
2065                         IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
2066
2067         QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
2068
2069         if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2070                 /* The data and headers are split into
2071                  * separate buffers.
2072                  */
2073                 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2074                                                 vlan_id);
2075         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2076                 /* The data fit in a single small buffer.
2077                  * Allocate a new skb, copy the data and
2078                  * return the buffer to the free pool.
2079                  */
2080                 ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2081                                                 length, vlan_id);
2082         } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2083                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2084                 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2085                 /* TCP packet in a page chunk that's been checksummed.
2086                  * Tack it on to our GRO skb and let it go.
2087                  */
2088                 ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2089                                                 length, vlan_id);
2090         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2091                 /* Non-TCP packet in a page chunk. Allocate an
2092                  * skb, tack it on frags, and send it up.
2093                  */
2094                 ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2095                                                 length, vlan_id);
2096         } else {
2097                 /* Non-TCP/UDP large frames that span multiple buffers
2098                  * can be processed corrrectly by the split frame logic.
2099                  */
2100                 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2101                                                 vlan_id);
2102         }
2103
2104         return (unsigned long)length;
2105 }
2106
2107 /* Process an outbound completion from an rx ring. */
2108 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2109                                    struct ob_mac_iocb_rsp *mac_rsp)
2110 {
2111         struct tx_ring *tx_ring;
2112         struct tx_ring_desc *tx_ring_desc;
2113
2114         QL_DUMP_OB_MAC_RSP(mac_rsp);
2115         tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2116         tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2117         ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
2118         tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2119         tx_ring->tx_packets++;
2120         dev_kfree_skb(tx_ring_desc->skb);
2121         tx_ring_desc->skb = NULL;
2122
2123         if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2124                                         OB_MAC_IOCB_RSP_S |
2125                                         OB_MAC_IOCB_RSP_L |
2126                                         OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2127                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
2128                         netif_warn(qdev, tx_done, qdev->ndev,
2129                                    "Total descriptor length did not match transfer length.\n");
2130                 }
2131                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
2132                         netif_warn(qdev, tx_done, qdev->ndev,
2133                                    "Frame too short to be valid, not sent.\n");
2134                 }
2135                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
2136                         netif_warn(qdev, tx_done, qdev->ndev,
2137                                    "Frame too long, but sent anyway.\n");
2138                 }
2139                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
2140                         netif_warn(qdev, tx_done, qdev->ndev,
2141                                    "PCI backplane error. Frame not sent.\n");
2142                 }
2143         }
2144         atomic_inc(&tx_ring->tx_count);
2145 }
2146
2147 /* Fire up a handler to reset the MPI processor. */
2148 void ql_queue_fw_error(struct ql_adapter *qdev)
2149 {
2150         ql_link_off(qdev);
2151         queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2152 }
2153
2154 void ql_queue_asic_error(struct ql_adapter *qdev)
2155 {
2156         ql_link_off(qdev);
2157         ql_disable_interrupts(qdev);
2158         /* Clear adapter up bit to signal the recovery
2159          * process that it shouldn't kill the reset worker
2160          * thread
2161          */
2162         clear_bit(QL_ADAPTER_UP, &qdev->flags);
2163         /* Set asic recovery bit to indicate reset process that we are
2164          * in fatal error recovery process rather than normal close
2165          */
2166         set_bit(QL_ASIC_RECOVERY, &qdev->flags);
2167         queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2168 }
2169
2170 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2171                                     struct ib_ae_iocb_rsp *ib_ae_rsp)
2172 {
2173         switch (ib_ae_rsp->event) {
2174         case MGMT_ERR_EVENT:
2175                 netif_err(qdev, rx_err, qdev->ndev,
2176                           "Management Processor Fatal Error.\n");
2177                 ql_queue_fw_error(qdev);
2178                 return;
2179
2180         case CAM_LOOKUP_ERR_EVENT:
2181                 netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
2182                 netdev_err(qdev->ndev, "This event shouldn't occur.\n");
2183                 ql_queue_asic_error(qdev);
2184                 return;
2185
2186         case SOFT_ECC_ERROR_EVENT:
2187                 netdev_err(qdev->ndev, "Soft ECC error detected.\n");
2188                 ql_queue_asic_error(qdev);
2189                 break;
2190
2191         case PCI_ERR_ANON_BUF_RD:
2192                 netdev_err(qdev->ndev, "PCI error occurred when reading "
2193                                         "anonymous buffers from rx_ring %d.\n",
2194                                         ib_ae_rsp->q_id);
2195                 ql_queue_asic_error(qdev);
2196                 break;
2197
2198         default:
2199                 netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2200                           ib_ae_rsp->event);
2201                 ql_queue_asic_error(qdev);
2202                 break;
2203         }
2204 }
2205
2206 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2207 {
2208         struct ql_adapter *qdev = rx_ring->qdev;
2209         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2210         struct ob_mac_iocb_rsp *net_rsp = NULL;
2211         int count = 0;
2212
2213         struct tx_ring *tx_ring;
2214         /* While there are entries in the completion queue. */
2215         while (prod != rx_ring->cnsmr_idx) {
2216
2217                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2218                              "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2219                              rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2220
2221                 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2222                 rmb();
2223                 switch (net_rsp->opcode) {
2224
2225                 case OPCODE_OB_MAC_TSO_IOCB:
2226                 case OPCODE_OB_MAC_IOCB:
2227                         ql_process_mac_tx_intr(qdev, net_rsp);
2228                         break;
2229                 default:
2230                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2231                                      "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2232                                      net_rsp->opcode);
2233                 }
2234                 count++;
2235                 ql_update_cq(rx_ring);
2236                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2237         }
2238         if (!net_rsp)
2239                 return 0;
2240         ql_write_cq_idx(rx_ring);
2241         tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
2242         if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
2243                 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2244                         /*
2245                          * The queue got stopped because the tx_ring was full.
2246                          * Wake it up, because it's now at least 25% empty.
2247                          */
2248                         netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2249         }
2250
2251         return count;
2252 }
2253
2254 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2255 {
2256         struct ql_adapter *qdev = rx_ring->qdev;
2257         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2258         struct ql_net_rsp_iocb *net_rsp;
2259         int count = 0;
2260
2261         /* While there are entries in the completion queue. */
2262         while (prod != rx_ring->cnsmr_idx) {
2263
2264                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2265                              "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2266                              rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2267
2268                 net_rsp = rx_ring->curr_entry;
2269                 rmb();
2270                 switch (net_rsp->opcode) {
2271                 case OPCODE_IB_MAC_IOCB:
2272                         ql_process_mac_rx_intr(qdev, rx_ring,
2273                                                (struct ib_mac_iocb_rsp *)
2274                                                net_rsp);
2275                         break;
2276
2277                 case OPCODE_IB_AE_IOCB:
2278                         ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2279                                                 net_rsp);
2280                         break;
2281                 default:
2282                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2283                                      "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2284                                      net_rsp->opcode);
2285                         break;
2286                 }
2287                 count++;
2288                 ql_update_cq(rx_ring);
2289                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2290                 if (count == budget)
2291                         break;
2292         }
2293         ql_update_buffer_queues(qdev, rx_ring);
2294         ql_write_cq_idx(rx_ring);
2295         return count;
2296 }
2297
2298 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2299 {
2300         struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2301         struct ql_adapter *qdev = rx_ring->qdev;
2302         struct rx_ring *trx_ring;
2303         int i, work_done = 0;
2304         struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
2305
2306         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2307                      "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
2308
2309         /* Service the TX rings first.  They start
2310          * right after the RSS rings. */
2311         for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2312                 trx_ring = &qdev->rx_ring[i];
2313                 /* If this TX completion ring belongs to this vector and
2314                  * it's not empty then service it.
2315                  */
2316                 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2317                         (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2318                                         trx_ring->cnsmr_idx)) {
2319                         netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2320                                      "%s: Servicing TX completion ring %d.\n",
2321                                      __func__, trx_ring->cq_id);
2322                         ql_clean_outbound_rx_ring(trx_ring);
2323                 }
2324         }
2325
2326         /*
2327          * Now service the RSS ring if it's active.
2328          */
2329         if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2330                                         rx_ring->cnsmr_idx) {
2331                 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2332                              "%s: Servicing RX completion ring %d.\n",
2333                              __func__, rx_ring->cq_id);
2334                 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2335         }
2336
2337         if (work_done < budget) {
2338                 napi_complete(napi);
2339                 ql_enable_completion_interrupt(qdev, rx_ring->irq);
2340         }
2341         return work_done;
2342 }
2343
2344 static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
2345 {
2346         struct ql_adapter *qdev = netdev_priv(ndev);
2347
2348         if (features & NETIF_F_HW_VLAN_CTAG_RX) {
2349                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
2350                                  NIC_RCV_CFG_VLAN_MATCH_AND_NON);
2351         } else {
2352                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2353         }
2354 }
2355
2356 /**
2357  * qlge_update_hw_vlan_features - helper routine to reinitialize the adapter
2358  * based on the features to enable/disable hardware vlan accel
2359  */
2360 static int qlge_update_hw_vlan_features(struct net_device *ndev,
2361                                         netdev_features_t features)
2362 {
2363         struct ql_adapter *qdev = netdev_priv(ndev);
2364         int status = 0;
2365         bool need_restart = netif_running(ndev);
2366
2367         if (need_restart) {
2368                 status = ql_adapter_down(qdev);
2369                 if (status) {
2370                         netif_err(qdev, link, qdev->ndev,
2371                                   "Failed to bring down the adapter\n");
2372                         return status;
2373                 }
2374         }
2375
2376         /* update the features with resent change */
2377         ndev->features = features;
2378
2379         if (need_restart) {
2380                 status = ql_adapter_up(qdev);
2381                 if (status) {
2382                         netif_err(qdev, link, qdev->ndev,
2383                                   "Failed to bring up the adapter\n");
2384                         return status;
2385                 }
2386         }
2387
2388         return status;
2389 }
2390
2391 static netdev_features_t qlge_fix_features(struct net_device *ndev,
2392         netdev_features_t features)
2393 {
2394         int err;
2395
2396         /* Update the behavior of vlan accel in the adapter */
2397         err = qlge_update_hw_vlan_features(ndev, features);
2398         if (err)
2399                 return err;
2400
2401         return features;
2402 }
2403
2404 static int qlge_set_features(struct net_device *ndev,
2405         netdev_features_t features)
2406 {
2407         netdev_features_t changed = ndev->features ^ features;
2408
2409         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2410                 qlge_vlan_mode(ndev, features);
2411
2412         return 0;
2413 }
2414
2415 static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
2416 {
2417         u32 enable_bit = MAC_ADDR_E;
2418         int err;
2419
2420         err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2421                                   MAC_ADDR_TYPE_VLAN, vid);
2422         if (err)
2423                 netif_err(qdev, ifup, qdev->ndev,
2424                           "Failed to init vlan address.\n");
2425         return err;
2426 }
2427
2428 static int qlge_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
2429 {
2430         struct ql_adapter *qdev = netdev_priv(ndev);
2431         int status;
2432         int err;
2433
2434         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2435         if (status)
2436                 return status;
2437
2438         err = __qlge_vlan_rx_add_vid(qdev, vid);
2439         set_bit(vid, qdev->active_vlans);
2440
2441         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2442
2443         return err;
2444 }
2445
2446 static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
2447 {
2448         u32 enable_bit = 0;
2449         int err;
2450
2451         err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2452                                   MAC_ADDR_TYPE_VLAN, vid);
2453         if (err)
2454                 netif_err(qdev, ifup, qdev->ndev,
2455                           "Failed to clear vlan address.\n");
2456         return err;
2457 }
2458
2459 static int qlge_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
2460 {
2461         struct ql_adapter *qdev = netdev_priv(ndev);
2462         int status;
2463         int err;
2464
2465         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2466         if (status)
2467                 return status;
2468
2469         err = __qlge_vlan_rx_kill_vid(qdev, vid);
2470         clear_bit(vid, qdev->active_vlans);
2471
2472         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2473
2474         return err;
2475 }
2476
2477 static void qlge_restore_vlan(struct ql_adapter *qdev)
2478 {
2479         int status;
2480         u16 vid;
2481
2482         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2483         if (status)
2484                 return;
2485
2486         for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
2487                 __qlge_vlan_rx_add_vid(qdev, vid);
2488
2489         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2490 }
2491
2492 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
2493 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2494 {
2495         struct rx_ring *rx_ring = dev_id;
2496         napi_schedule(&rx_ring->napi);
2497         return IRQ_HANDLED;
2498 }
2499
2500 /* This handles a fatal error, MPI activity, and the default
2501  * rx_ring in an MSI-X multiple vector environment.
2502  * In MSI/Legacy environment it also process the rest of
2503  * the rx_rings.
2504  */
2505 static irqreturn_t qlge_isr(int irq, void *dev_id)
2506 {
2507         struct rx_ring *rx_ring = dev_id;
2508         struct ql_adapter *qdev = rx_ring->qdev;
2509         struct intr_context *intr_context = &qdev->intr_context[0];
2510         u32 var;
2511         int work_done = 0;
2512
2513         spin_lock(&qdev->hw_lock);
2514         if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
2515                 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2516                              "Shared Interrupt, Not ours!\n");
2517                 spin_unlock(&qdev->hw_lock);
2518                 return IRQ_NONE;
2519         }
2520         spin_unlock(&qdev->hw_lock);
2521
2522         var = ql_disable_completion_interrupt(qdev, intr_context->intr);
2523
2524         /*
2525          * Check for fatal error.
2526          */
2527         if (var & STS_FE) {
2528                 ql_queue_asic_error(qdev);
2529                 netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
2530                 var = ql_read32(qdev, ERR_STS);
2531                 netdev_err(qdev->ndev, "Resetting chip. "
2532                                         "Error Status Register = 0x%x\n", var);
2533                 return IRQ_HANDLED;
2534         }
2535
2536         /*
2537          * Check MPI processor activity.
2538          */
2539         if ((var & STS_PI) &&
2540                 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
2541                 /*
2542                  * We've got an async event or mailbox completion.
2543                  * Handle it and clear the source of the interrupt.
2544                  */
2545                 netif_err(qdev, intr, qdev->ndev,
2546                           "Got MPI processor interrupt.\n");
2547                 ql_disable_completion_interrupt(qdev, intr_context->intr);
2548                 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2549                 queue_delayed_work_on(smp_processor_id(),
2550                                 qdev->workqueue, &qdev->mpi_work, 0);
2551                 work_done++;
2552         }
2553
2554         /*
2555          * Get the bit-mask that shows the active queues for this
2556          * pass.  Compare it to the queues that this irq services
2557          * and call napi if there's a match.
2558          */
2559         var = ql_read32(qdev, ISR1);
2560         if (var & intr_context->irq_mask) {
2561                 netif_info(qdev, intr, qdev->ndev,
2562                            "Waking handler for rx_ring[0].\n");
2563                 ql_disable_completion_interrupt(qdev, intr_context->intr);
2564                 napi_schedule(&rx_ring->napi);
2565                 work_done++;
2566         }
2567         ql_enable_completion_interrupt(qdev, intr_context->intr);
2568         return work_done ? IRQ_HANDLED : IRQ_NONE;
2569 }
2570
2571 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2572 {
2573
2574         if (skb_is_gso(skb)) {
2575                 int err;
2576                 __be16 l3_proto = vlan_get_protocol(skb);
2577
2578                 err = skb_cow_head(skb, 0);
2579                 if (err < 0)
2580                         return err;
2581
2582                 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2583                 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2584                 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2585                 mac_iocb_ptr->total_hdrs_len =
2586                     cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2587                 mac_iocb_ptr->net_trans_offset =
2588                     cpu_to_le16(skb_network_offset(skb) |
2589                                 skb_transport_offset(skb)
2590                                 << OB_MAC_TRANSPORT_HDR_SHIFT);
2591                 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2592                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2593                 if (likely(l3_proto == htons(ETH_P_IP))) {
2594                         struct iphdr *iph = ip_hdr(skb);
2595                         iph->check = 0;
2596                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2597                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2598                                                                  iph->daddr, 0,
2599                                                                  IPPROTO_TCP,
2600                                                                  0);
2601                 } else if (l3_proto == htons(ETH_P_IPV6)) {
2602                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2603                         tcp_hdr(skb)->check =
2604                             ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2605                                              &ipv6_hdr(skb)->daddr,
2606                                              0, IPPROTO_TCP, 0);
2607                 }
2608                 return 1;
2609         }
2610         return 0;
2611 }
2612
2613 static void ql_hw_csum_setup(struct sk_buff *skb,
2614                              struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2615 {
2616         int len;
2617         struct iphdr *iph = ip_hdr(skb);
2618         __sum16 *check;
2619         mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2620         mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2621         mac_iocb_ptr->net_trans_offset =
2622                 cpu_to_le16(skb_network_offset(skb) |
2623                 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2624
2625         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2626         len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2627         if (likely(iph->protocol == IPPROTO_TCP)) {
2628                 check = &(tcp_hdr(skb)->check);
2629                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2630                 mac_iocb_ptr->total_hdrs_len =
2631                     cpu_to_le16(skb_transport_offset(skb) +
2632                                 (tcp_hdr(skb)->doff << 2));
2633         } else {
2634                 check = &(udp_hdr(skb)->check);
2635                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2636                 mac_iocb_ptr->total_hdrs_len =
2637                     cpu_to_le16(skb_transport_offset(skb) +
2638                                 sizeof(struct udphdr));
2639         }
2640         *check = ~csum_tcpudp_magic(iph->saddr,
2641                                     iph->daddr, len, iph->protocol, 0);
2642 }
2643
2644 static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
2645 {
2646         struct tx_ring_desc *tx_ring_desc;
2647         struct ob_mac_iocb_req *mac_iocb_ptr;
2648         struct ql_adapter *qdev = netdev_priv(ndev);
2649         int tso;
2650         struct tx_ring *tx_ring;
2651         u32 tx_ring_idx = (u32) skb->queue_mapping;
2652
2653         tx_ring = &qdev->tx_ring[tx_ring_idx];
2654
2655         if (skb_padto(skb, ETH_ZLEN))
2656                 return NETDEV_TX_OK;
2657
2658         if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2659                 netif_info(qdev, tx_queued, qdev->ndev,
2660                            "%s: BUG! shutting down tx queue %d due to lack of resources.\n",
2661                            __func__, tx_ring_idx);
2662                 netif_stop_subqueue(ndev, tx_ring->wq_id);
2663                 tx_ring->tx_errors++;
2664                 return NETDEV_TX_BUSY;
2665         }
2666         tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2667         mac_iocb_ptr = tx_ring_desc->queue_entry;
2668         memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
2669
2670         mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2671         mac_iocb_ptr->tid = tx_ring_desc->index;
2672         /* We use the upper 32-bits to store the tx queue for this IO.
2673          * When we get the completion we can use it to establish the context.
2674          */
2675         mac_iocb_ptr->txq_idx = tx_ring_idx;
2676         tx_ring_desc->skb = skb;
2677
2678         mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2679
2680         if (skb_vlan_tag_present(skb)) {
2681                 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2682                              "Adding a vlan tag %d.\n", skb_vlan_tag_get(skb));
2683                 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2684                 mac_iocb_ptr->vlan_tci = cpu_to_le16(skb_vlan_tag_get(skb));
2685         }
2686         tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2687         if (tso < 0) {
2688                 dev_kfree_skb_any(skb);
2689                 return NETDEV_TX_OK;
2690         } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2691                 ql_hw_csum_setup(skb,
2692                                  (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2693         }
2694         if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2695                         NETDEV_TX_OK) {
2696                 netif_err(qdev, tx_queued, qdev->ndev,
2697                           "Could not map the segments.\n");
2698                 tx_ring->tx_errors++;
2699                 return NETDEV_TX_BUSY;
2700         }
2701         QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2702         tx_ring->prod_idx++;
2703         if (tx_ring->prod_idx == tx_ring->wq_len)
2704                 tx_ring->prod_idx = 0;
2705         wmb();
2706
2707         ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2708         netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2709                      "tx queued, slot %d, len %d\n",
2710                      tx_ring->prod_idx, skb->len);
2711
2712         atomic_dec(&tx_ring->tx_count);
2713
2714         if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2715                 netif_stop_subqueue(ndev, tx_ring->wq_id);
2716                 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2717                         /*
2718                          * The queue got stopped because the tx_ring was full.
2719                          * Wake it up, because it's now at least 25% empty.
2720                          */
2721                         netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2722         }
2723         return NETDEV_TX_OK;
2724 }
2725
2726
2727 static void ql_free_shadow_space(struct ql_adapter *qdev)
2728 {
2729         if (qdev->rx_ring_shadow_reg_area) {
2730                 pci_free_consistent(qdev->pdev,
2731                                     PAGE_SIZE,
2732                                     qdev->rx_ring_shadow_reg_area,
2733                                     qdev->rx_ring_shadow_reg_dma);
2734                 qdev->rx_ring_shadow_reg_area = NULL;
2735         }
2736         if (qdev->tx_ring_shadow_reg_area) {
2737                 pci_free_consistent(qdev->pdev,
2738                                     PAGE_SIZE,
2739                                     qdev->tx_ring_shadow_reg_area,
2740                                     qdev->tx_ring_shadow_reg_dma);
2741                 qdev->tx_ring_shadow_reg_area = NULL;
2742         }
2743 }
2744
2745 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2746 {
2747         qdev->rx_ring_shadow_reg_area =
2748                 pci_zalloc_consistent(qdev->pdev, PAGE_SIZE,
2749                                       &qdev->rx_ring_shadow_reg_dma);
2750         if (qdev->rx_ring_shadow_reg_area == NULL) {
2751                 netif_err(qdev, ifup, qdev->ndev,
2752                           "Allocation of RX shadow space failed.\n");
2753                 return -ENOMEM;
2754         }
2755
2756         qdev->tx_ring_shadow_reg_area =
2757                 pci_zalloc_consistent(qdev->pdev, PAGE_SIZE,
2758                                       &qdev->tx_ring_shadow_reg_dma);
2759         if (qdev->tx_ring_shadow_reg_area == NULL) {
2760                 netif_err(qdev, ifup, qdev->ndev,
2761                           "Allocation of TX shadow space failed.\n");
2762                 goto err_wqp_sh_area;
2763         }
2764         return 0;
2765
2766 err_wqp_sh_area:
2767         pci_free_consistent(qdev->pdev,
2768                             PAGE_SIZE,
2769                             qdev->rx_ring_shadow_reg_area,
2770                             qdev->rx_ring_shadow_reg_dma);
2771         return -ENOMEM;
2772 }
2773
2774 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2775 {
2776         struct tx_ring_desc *tx_ring_desc;
2777         int i;
2778         struct ob_mac_iocb_req *mac_iocb_ptr;
2779
2780         mac_iocb_ptr = tx_ring->wq_base;
2781         tx_ring_desc = tx_ring->q;
2782         for (i = 0; i < tx_ring->wq_len; i++) {
2783                 tx_ring_desc->index = i;
2784                 tx_ring_desc->skb = NULL;
2785                 tx_ring_desc->queue_entry = mac_iocb_ptr;
2786                 mac_iocb_ptr++;
2787                 tx_ring_desc++;
2788         }
2789         atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2790 }
2791
2792 static void ql_free_tx_resources(struct ql_adapter *qdev,
2793                                  struct tx_ring *tx_ring)
2794 {
2795         if (tx_ring->wq_base) {
2796                 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2797                                     tx_ring->wq_base, tx_ring->wq_base_dma);
2798                 tx_ring->wq_base = NULL;
2799         }
2800         kfree(tx_ring->q);
2801         tx_ring->q = NULL;
2802 }
2803
2804 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2805                                  struct tx_ring *tx_ring)
2806 {
2807         tx_ring->wq_base =
2808             pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2809                                  &tx_ring->wq_base_dma);
2810
2811         if ((tx_ring->wq_base == NULL) ||
2812             tx_ring->wq_base_dma & WQ_ADDR_ALIGN)
2813                 goto pci_alloc_err;
2814
2815         tx_ring->q =
2816             kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2817         if (tx_ring->q == NULL)
2818                 goto err;
2819
2820         return 0;
2821 err:
2822         pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2823                             tx_ring->wq_base, tx_ring->wq_base_dma);
2824         tx_ring->wq_base = NULL;
2825 pci_alloc_err:
2826         netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
2827         return -ENOMEM;
2828 }
2829
2830 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2831 {
2832         struct bq_desc *lbq_desc;
2833
2834         uint32_t  curr_idx, clean_idx;
2835
2836         curr_idx = rx_ring->lbq_curr_idx;
2837         clean_idx = rx_ring->lbq_clean_idx;
2838         while (curr_idx != clean_idx) {
2839                 lbq_desc = &rx_ring->lbq[curr_idx];
2840
2841                 if (lbq_desc->p.pg_chunk.last_flag) {
2842                         pci_unmap_page(qdev->pdev,
2843                                 lbq_desc->p.pg_chunk.map,
2844                                 ql_lbq_block_size(qdev),
2845                                        PCI_DMA_FROMDEVICE);
2846                         lbq_desc->p.pg_chunk.last_flag = 0;
2847                 }
2848
2849                 put_page(lbq_desc->p.pg_chunk.page);
2850                 lbq_desc->p.pg_chunk.page = NULL;
2851
2852                 if (++curr_idx == rx_ring->lbq_len)
2853                         curr_idx = 0;
2854
2855         }
2856         if (rx_ring->pg_chunk.page) {
2857                 pci_unmap_page(qdev->pdev, rx_ring->pg_chunk.map,
2858                         ql_lbq_block_size(qdev), PCI_DMA_FROMDEVICE);
2859                 put_page(rx_ring->pg_chunk.page);
2860                 rx_ring->pg_chunk.page = NULL;
2861         }
2862 }
2863
2864 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2865 {
2866         int i;
2867         struct bq_desc *sbq_desc;
2868
2869         for (i = 0; i < rx_ring->sbq_len; i++) {
2870                 sbq_desc = &rx_ring->sbq[i];
2871                 if (sbq_desc == NULL) {
2872                         netif_err(qdev, ifup, qdev->ndev,
2873                                   "sbq_desc %d is NULL.\n", i);
2874                         return;
2875                 }
2876                 if (sbq_desc->p.skb) {
2877                         pci_unmap_single(qdev->pdev,
2878                                          dma_unmap_addr(sbq_desc, mapaddr),
2879                                          dma_unmap_len(sbq_desc, maplen),
2880                                          PCI_DMA_FROMDEVICE);
2881                         dev_kfree_skb(sbq_desc->p.skb);
2882                         sbq_desc->p.skb = NULL;
2883                 }
2884         }
2885 }
2886
2887 /* Free all large and small rx buffers associated
2888  * with the completion queues for this device.
2889  */
2890 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2891 {
2892         int i;
2893         struct rx_ring *rx_ring;
2894
2895         for (i = 0; i < qdev->rx_ring_count; i++) {
2896                 rx_ring = &qdev->rx_ring[i];
2897                 if (rx_ring->lbq)
2898                         ql_free_lbq_buffers(qdev, rx_ring);
2899                 if (rx_ring->sbq)
2900                         ql_free_sbq_buffers(qdev, rx_ring);
2901         }
2902 }
2903
2904 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2905 {
2906         struct rx_ring *rx_ring;
2907         int i;
2908
2909         for (i = 0; i < qdev->rx_ring_count; i++) {
2910                 rx_ring = &qdev->rx_ring[i];
2911                 if (rx_ring->type != TX_Q)
2912                         ql_update_buffer_queues(qdev, rx_ring);
2913         }
2914 }
2915
2916 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2917                                 struct rx_ring *rx_ring)
2918 {
2919         int i;
2920         struct bq_desc *lbq_desc;
2921         __le64 *bq = rx_ring->lbq_base;
2922
2923         memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2924         for (i = 0; i < rx_ring->lbq_len; i++) {
2925                 lbq_desc = &rx_ring->lbq[i];
2926                 memset(lbq_desc, 0, sizeof(*lbq_desc));
2927                 lbq_desc->index = i;
2928                 lbq_desc->addr = bq;
2929                 bq++;
2930         }
2931 }
2932
2933 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2934                                 struct rx_ring *rx_ring)
2935 {
2936         int i;
2937         struct bq_desc *sbq_desc;
2938         __le64 *bq = rx_ring->sbq_base;
2939
2940         memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2941         for (i = 0; i < rx_ring->sbq_len; i++) {
2942                 sbq_desc = &rx_ring->sbq[i];
2943                 memset(sbq_desc, 0, sizeof(*sbq_desc));
2944                 sbq_desc->index = i;
2945                 sbq_desc->addr = bq;
2946                 bq++;
2947         }
2948 }
2949
2950 static void ql_free_rx_resources(struct ql_adapter *qdev,
2951                                  struct rx_ring *rx_ring)
2952 {
2953         /* Free the small buffer queue. */
2954         if (rx_ring->sbq_base) {
2955                 pci_free_consistent(qdev->pdev,
2956                                     rx_ring->sbq_size,
2957                                     rx_ring->sbq_base, rx_ring->sbq_base_dma);
2958                 rx_ring->sbq_base = NULL;
2959         }
2960
2961         /* Free the small buffer queue control blocks. */
2962         kfree(rx_ring->sbq);
2963         rx_ring->sbq = NULL;
2964
2965         /* Free the large buffer queue. */
2966         if (rx_ring->lbq_base) {
2967                 pci_free_consistent(qdev->pdev,
2968                                     rx_ring->lbq_size,
2969                                     rx_ring->lbq_base, rx_ring->lbq_base_dma);
2970                 rx_ring->lbq_base = NULL;
2971         }
2972
2973         /* Free the large buffer queue control blocks. */
2974         kfree(rx_ring->lbq);
2975         rx_ring->lbq = NULL;
2976
2977         /* Free the rx queue. */
2978         if (rx_ring->cq_base) {
2979                 pci_free_consistent(qdev->pdev,
2980                                     rx_ring->cq_size,
2981                                     rx_ring->cq_base, rx_ring->cq_base_dma);
2982                 rx_ring->cq_base = NULL;
2983         }
2984 }
2985
2986 /* Allocate queues and buffers for this completions queue based
2987  * on the values in the parameter structure. */
2988 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2989                                  struct rx_ring *rx_ring)
2990 {
2991
2992         /*
2993          * Allocate the completion queue for this rx_ring.
2994          */
2995         rx_ring->cq_base =
2996             pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2997                                  &rx_ring->cq_base_dma);
2998
2999         if (rx_ring->cq_base == NULL) {
3000                 netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
3001                 return -ENOMEM;
3002         }
3003
3004         if (rx_ring->sbq_len) {
3005                 /*
3006                  * Allocate small buffer queue.
3007                  */
3008                 rx_ring->sbq_base =
3009                     pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
3010                                          &rx_ring->sbq_base_dma);
3011
3012                 if (rx_ring->sbq_base == NULL) {
3013                         netif_err(qdev, ifup, qdev->ndev,
3014                                   "Small buffer queue allocation failed.\n");
3015                         goto err_mem;
3016                 }
3017
3018                 /*
3019                  * Allocate small buffer queue control blocks.
3020                  */
3021                 rx_ring->sbq = kmalloc_array(rx_ring->sbq_len,
3022                                              sizeof(struct bq_desc),
3023                                              GFP_KERNEL);
3024                 if (rx_ring->sbq == NULL)
3025                         goto err_mem;
3026
3027                 ql_init_sbq_ring(qdev, rx_ring);
3028         }
3029
3030         if (rx_ring->lbq_len) {
3031                 /*
3032                  * Allocate large buffer queue.
3033                  */
3034                 rx_ring->lbq_base =
3035                     pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
3036                                          &rx_ring->lbq_base_dma);
3037
3038                 if (rx_ring->lbq_base == NULL) {
3039                         netif_err(qdev, ifup, qdev->ndev,
3040                                   "Large buffer queue allocation failed.\n");
3041                         goto err_mem;
3042                 }
3043                 /*
3044                  * Allocate large buffer queue control blocks.
3045                  */
3046                 rx_ring->lbq = kmalloc_array(rx_ring->lbq_len,
3047                                              sizeof(struct bq_desc),
3048                                              GFP_KERNEL);
3049                 if (rx_ring->lbq == NULL)
3050                         goto err_mem;
3051
3052                 ql_init_lbq_ring(qdev, rx_ring);
3053         }
3054
3055         return 0;
3056
3057 err_mem:
3058         ql_free_rx_resources(qdev, rx_ring);
3059         return -ENOMEM;
3060 }
3061
3062 static void ql_tx_ring_clean(struct ql_adapter *qdev)
3063 {
3064         struct tx_ring *tx_ring;
3065         struct tx_ring_desc *tx_ring_desc;
3066         int i, j;
3067
3068         /*
3069          * Loop through all queues and free
3070          * any resources.
3071          */
3072         for (j = 0; j < qdev->tx_ring_count; j++) {
3073                 tx_ring = &qdev->tx_ring[j];
3074                 for (i = 0; i < tx_ring->wq_len; i++) {
3075                         tx_ring_desc = &tx_ring->q[i];
3076                         if (tx_ring_desc && tx_ring_desc->skb) {
3077                                 netif_err(qdev, ifdown, qdev->ndev,
3078                                           "Freeing lost SKB %p, from queue %d, index %d.\n",
3079                                           tx_ring_desc->skb, j,
3080                                           tx_ring_desc->index);
3081                                 ql_unmap_send(qdev, tx_ring_desc,
3082                                               tx_ring_desc->map_cnt);
3083                                 dev_kfree_skb(tx_ring_desc->skb);
3084                                 tx_ring_desc->skb = NULL;
3085                         }
3086                 }
3087         }
3088 }
3089
3090 static void ql_free_mem_resources(struct ql_adapter *qdev)
3091 {
3092         int i;
3093
3094         for (i = 0; i < qdev->tx_ring_count; i++)
3095                 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
3096         for (i = 0; i < qdev->rx_ring_count; i++)
3097                 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
3098         ql_free_shadow_space(qdev);
3099 }
3100
3101 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
3102 {
3103         int i;
3104
3105         /* Allocate space for our shadow registers and such. */
3106         if (ql_alloc_shadow_space(qdev))
3107                 return -ENOMEM;
3108
3109         for (i = 0; i < qdev->rx_ring_count; i++) {
3110                 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
3111                         netif_err(qdev, ifup, qdev->ndev,
3112                                   "RX resource allocation failed.\n");
3113                         goto err_mem;
3114                 }
3115         }
3116         /* Allocate tx queue resources */
3117         for (i = 0; i < qdev->tx_ring_count; i++) {
3118                 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
3119                         netif_err(qdev, ifup, qdev->ndev,
3120                                   "TX resource allocation failed.\n");
3121                         goto err_mem;
3122                 }
3123         }
3124         return 0;
3125
3126 err_mem:
3127         ql_free_mem_resources(qdev);
3128         return -ENOMEM;
3129 }
3130
3131 /* Set up the rx ring control block and pass it to the chip.
3132  * The control block is defined as
3133  * "Completion Queue Initialization Control Block", or cqicb.
3134  */
3135 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3136 {
3137         struct cqicb *cqicb = &rx_ring->cqicb;
3138         void *shadow_reg = qdev->rx_ring_shadow_reg_area +
3139                 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3140         u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
3141                 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3142         void __iomem *doorbell_area =
3143             qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3144         int err = 0;
3145         u16 bq_len;
3146         u64 tmp;
3147         __le64 *base_indirect_ptr;
3148         int page_entries;
3149
3150         /* Set up the shadow registers for this ring. */
3151         rx_ring->prod_idx_sh_reg = shadow_reg;
3152         rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
3153         *rx_ring->prod_idx_sh_reg = 0;
3154         shadow_reg += sizeof(u64);
3155         shadow_reg_dma += sizeof(u64);
3156         rx_ring->lbq_base_indirect = shadow_reg;
3157         rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
3158         shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3159         shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3160         rx_ring->sbq_base_indirect = shadow_reg;
3161         rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3162
3163         /* PCI doorbell mem area + 0x00 for consumer index register */
3164         rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
3165         rx_ring->cnsmr_idx = 0;
3166         rx_ring->curr_entry = rx_ring->cq_base;
3167
3168         /* PCI doorbell mem area + 0x04 for valid register */
3169         rx_ring->valid_db_reg = doorbell_area + 0x04;
3170
3171         /* PCI doorbell mem area + 0x18 for large buffer consumer */
3172         rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
3173
3174         /* PCI doorbell mem area + 0x1c */
3175         rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
3176
3177         memset((void *)cqicb, 0, sizeof(struct cqicb));
3178         cqicb->msix_vect = rx_ring->irq;
3179
3180         bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3181         cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
3182
3183         cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
3184
3185         cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
3186
3187         /*
3188          * Set up the control block load flags.
3189          */
3190         cqicb->flags = FLAGS_LC |       /* Load queue base address */
3191             FLAGS_LV |          /* Load MSI-X vector */
3192             FLAGS_LI;           /* Load irq delay values */
3193         if (rx_ring->lbq_len) {
3194                 cqicb->flags |= FLAGS_LL;       /* Load lbq values */
3195                 tmp = (u64)rx_ring->lbq_base_dma;
3196                 base_indirect_ptr = rx_ring->lbq_base_indirect;
3197                 page_entries = 0;
3198                 do {
3199                         *base_indirect_ptr = cpu_to_le64(tmp);
3200                         tmp += DB_PAGE_SIZE;
3201                         base_indirect_ptr++;
3202                         page_entries++;
3203                 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3204                 cqicb->lbq_addr =
3205                     cpu_to_le64(rx_ring->lbq_base_indirect_dma);
3206                 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3207                         (u16) rx_ring->lbq_buf_size;
3208                 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3209                 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3210                         (u16) rx_ring->lbq_len;
3211                 cqicb->lbq_len = cpu_to_le16(bq_len);
3212                 rx_ring->lbq_prod_idx = 0;
3213                 rx_ring->lbq_curr_idx = 0;
3214                 rx_ring->lbq_clean_idx = 0;
3215                 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
3216         }
3217         if (rx_ring->sbq_len) {
3218                 cqicb->flags |= FLAGS_LS;       /* Load sbq values */
3219                 tmp = (u64)rx_ring->sbq_base_dma;
3220                 base_indirect_ptr = rx_ring->sbq_base_indirect;
3221                 page_entries = 0;
3222                 do {
3223                         *base_indirect_ptr = cpu_to_le64(tmp);
3224                         tmp += DB_PAGE_SIZE;
3225                         base_indirect_ptr++;
3226                         page_entries++;
3227                 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
3228                 cqicb->sbq_addr =
3229                     cpu_to_le64(rx_ring->sbq_base_indirect_dma);
3230                 cqicb->sbq_buf_size =
3231                     cpu_to_le16((u16)(rx_ring->sbq_buf_size));
3232                 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3233                         (u16) rx_ring->sbq_len;
3234                 cqicb->sbq_len = cpu_to_le16(bq_len);
3235                 rx_ring->sbq_prod_idx = 0;
3236                 rx_ring->sbq_curr_idx = 0;
3237                 rx_ring->sbq_clean_idx = 0;
3238                 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
3239         }
3240         switch (rx_ring->type) {
3241         case TX_Q:
3242                 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3243                 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3244                 break;
3245         case RX_Q:
3246                 /* Inbound completion handling rx_rings run in
3247                  * separate NAPI contexts.
3248                  */
3249                 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3250                                64);
3251                 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3252                 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3253                 break;
3254         default:
3255                 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3256                              "Invalid rx_ring->type = %d.\n", rx_ring->type);
3257         }
3258         err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3259                            CFG_LCQ, rx_ring->cq_id);
3260         if (err) {
3261                 netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
3262                 return err;
3263         }
3264         return err;
3265 }
3266
3267 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3268 {
3269         struct wqicb *wqicb = (struct wqicb *)tx_ring;
3270         void __iomem *doorbell_area =
3271             qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3272         void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3273             (tx_ring->wq_id * sizeof(u64));
3274         u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3275             (tx_ring->wq_id * sizeof(u64));
3276         int err = 0;
3277
3278         /*
3279          * Assign doorbell registers for this tx_ring.
3280          */
3281         /* TX PCI doorbell mem area for tx producer index */
3282         tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
3283         tx_ring->prod_idx = 0;
3284         /* TX PCI doorbell mem area + 0x04 */
3285         tx_ring->valid_db_reg = doorbell_area + 0x04;
3286
3287         /*
3288          * Assign shadow registers for this tx_ring.
3289          */
3290         tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3291         tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3292
3293         wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3294         wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3295                                    Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3296         wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3297         wqicb->rid = 0;
3298         wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
3299
3300         wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
3301
3302         ql_init_tx_ring(qdev, tx_ring);
3303
3304         err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
3305                            (u16) tx_ring->wq_id);
3306         if (err) {
3307                 netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
3308                 return err;
3309         }
3310         return err;
3311 }
3312
3313 static void ql_disable_msix(struct ql_adapter *qdev)
3314 {
3315         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3316                 pci_disable_msix(qdev->pdev);
3317                 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3318                 kfree(qdev->msi_x_entry);
3319                 qdev->msi_x_entry = NULL;
3320         } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3321                 pci_disable_msi(qdev->pdev);
3322                 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3323         }
3324 }
3325
3326 /* We start by trying to get the number of vectors
3327  * stored in qdev->intr_count. If we don't get that
3328  * many then we reduce the count and try again.
3329  */
3330 static void ql_enable_msix(struct ql_adapter *qdev)
3331 {
3332         int i, err;
3333
3334         /* Get the MSIX vectors. */
3335         if (qlge_irq_type == MSIX_IRQ) {
3336                 /* Try to alloc space for the msix struct,
3337                  * if it fails then go to MSI/legacy.
3338                  */
3339                 qdev->msi_x_entry = kcalloc(qdev->intr_count,
3340                                             sizeof(struct msix_entry),
3341                                             GFP_KERNEL);
3342                 if (!qdev->msi_x_entry) {
3343                         qlge_irq_type = MSI_IRQ;
3344                         goto msi;
3345                 }
3346
3347                 for (i = 0; i < qdev->intr_count; i++)
3348                         qdev->msi_x_entry[i].entry = i;
3349
3350                 err = pci_enable_msix_range(qdev->pdev, qdev->msi_x_entry,
3351                                             1, qdev->intr_count);
3352                 if (err < 0) {
3353                         kfree(qdev->msi_x_entry);
3354                         qdev->msi_x_entry = NULL;
3355                         netif_warn(qdev, ifup, qdev->ndev,
3356                                    "MSI-X Enable failed, trying MSI.\n");
3357                         qlge_irq_type = MSI_IRQ;
3358                 } else {
3359                         qdev->intr_count = err;
3360                         set_bit(QL_MSIX_ENABLED, &qdev->flags);
3361                         netif_info(qdev, ifup, qdev->ndev,
3362                                    "MSI-X Enabled, got %d vectors.\n",
3363                                    qdev->intr_count);
3364                         return;
3365                 }
3366         }
3367 msi:
3368         qdev->intr_count = 1;
3369         if (qlge_irq_type == MSI_IRQ) {
3370                 if (!pci_enable_msi(qdev->pdev)) {
3371                         set_bit(QL_MSI_ENABLED, &qdev->flags);
3372                         netif_info(qdev, ifup, qdev->ndev,
3373                                    "Running with MSI interrupts.\n");
3374                         return;
3375                 }
3376         }
3377         qlge_irq_type = LEG_IRQ;
3378         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3379                      "Running with legacy interrupts.\n");
3380 }
3381
3382 /* Each vector services 1 RSS ring and and 1 or more
3383  * TX completion rings.  This function loops through
3384  * the TX completion rings and assigns the vector that
3385  * will service it.  An example would be if there are
3386  * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3387  * This would mean that vector 0 would service RSS ring 0
3388  * and TX completion rings 0,1,2 and 3.  Vector 1 would
3389  * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3390  */
3391 static void ql_set_tx_vect(struct ql_adapter *qdev)
3392 {
3393         int i, j, vect;
3394         u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3395
3396         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3397                 /* Assign irq vectors to TX rx_rings.*/
3398                 for (vect = 0, j = 0, i = qdev->rss_ring_count;
3399                                          i < qdev->rx_ring_count; i++) {
3400                         if (j == tx_rings_per_vector) {
3401                                 vect++;
3402                                 j = 0;
3403                         }
3404                         qdev->rx_ring[i].irq = vect;
3405                         j++;
3406                 }
3407         } else {
3408                 /* For single vector all rings have an irq
3409                  * of zero.
3410                  */
3411                 for (i = 0; i < qdev->rx_ring_count; i++)
3412                         qdev->rx_ring[i].irq = 0;
3413         }
3414 }
3415
3416 /* Set the interrupt mask for this vector.  Each vector
3417  * will service 1 RSS ring and 1 or more TX completion
3418  * rings.  This function sets up a bit mask per vector
3419  * that indicates which rings it services.
3420  */
3421 static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3422 {
3423         int j, vect = ctx->intr;
3424         u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3425
3426         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3427                 /* Add the RSS ring serviced by this vector
3428                  * to the mask.
3429                  */
3430                 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3431                 /* Add the TX ring(s) serviced by this vector
3432                  * to the mask. */
3433                 for (j = 0; j < tx_rings_per_vector; j++) {
3434                         ctx->irq_mask |=
3435                         (1 << qdev->rx_ring[qdev->rss_ring_count +
3436                         (vect * tx_rings_per_vector) + j].cq_id);
3437                 }
3438         } else {
3439                 /* For single vector we just shift each queue's
3440                  * ID into the mask.
3441                  */
3442                 for (j = 0; j < qdev->rx_ring_count; j++)
3443                         ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3444         }
3445 }
3446
3447 /*
3448  * Here we build the intr_context structures based on
3449  * our rx_ring count and intr vector count.
3450  * The intr_context structure is used to hook each vector
3451  * to possibly different handlers.
3452  */
3453 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3454 {
3455         int i = 0;
3456         struct intr_context *intr_context = &qdev->intr_context[0];
3457
3458         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3459                 /* Each rx_ring has it's
3460                  * own intr_context since we have separate
3461                  * vectors for each queue.
3462                  */
3463                 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3464                         qdev->rx_ring[i].irq = i;
3465                         intr_context->intr = i;
3466                         intr_context->qdev = qdev;
3467                         /* Set up this vector's bit-mask that indicates
3468                          * which queues it services.
3469                          */
3470                         ql_set_irq_mask(qdev, intr_context);
3471                         /*
3472                          * We set up each vectors enable/disable/read bits so
3473                          * there's no bit/mask calculations in the critical path.
3474                          */
3475                         intr_context->intr_en_mask =
3476                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3477                             INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3478                             | i;
3479                         intr_context->intr_dis_mask =
3480                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3481                             INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3482                             INTR_EN_IHD | i;
3483                         intr_context->intr_read_mask =
3484                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3485                             INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3486                             i;
3487                         if (i == 0) {
3488                                 /* The first vector/queue handles
3489                                  * broadcast/multicast, fatal errors,
3490                                  * and firmware events.  This in addition
3491                                  * to normal inbound NAPI processing.
3492                                  */
3493                                 intr_context->handler = qlge_isr;
3494                                 sprintf(intr_context->name, "%s-rx-%d",
3495                                         qdev->ndev->name, i);
3496                         } else {
3497                                 /*
3498                                  * Inbound queues handle unicast frames only.
3499                                  */
3500                                 intr_context->handler = qlge_msix_rx_isr;
3501                                 sprintf(intr_context->name, "%s-rx-%d",
3502                                         qdev->ndev->name, i);
3503                         }
3504                 }
3505         } else {
3506                 /*
3507                  * All rx_rings use the same intr_context since
3508                  * there is only one vector.
3509                  */
3510                 intr_context->intr = 0;
3511                 intr_context->qdev = qdev;
3512                 /*
3513                  * We set up each vectors enable/disable/read bits so
3514                  * there's no bit/mask calculations in the critical path.
3515                  */
3516                 intr_context->intr_en_mask =
3517                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3518                 intr_context->intr_dis_mask =
3519                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3520                     INTR_EN_TYPE_DISABLE;
3521                 intr_context->intr_read_mask =
3522                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3523                 /*
3524                  * Single interrupt means one handler for all rings.
3525                  */
3526                 intr_context->handler = qlge_isr;
3527                 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
3528                 /* Set up this vector's bit-mask that indicates
3529                  * which queues it services. In this case there is
3530                  * a single vector so it will service all RSS and
3531                  * TX completion rings.
3532                  */
3533                 ql_set_irq_mask(qdev, intr_context);
3534         }
3535         /* Tell the TX completion rings which MSIx vector
3536          * they will be using.
3537          */
3538         ql_set_tx_vect(qdev);
3539 }
3540
3541 static void ql_free_irq(struct ql_adapter *qdev)
3542 {
3543         int i;
3544         struct intr_context *intr_context = &qdev->intr_context[0];
3545
3546         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3547                 if (intr_context->hooked) {
3548                         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3549                                 free_irq(qdev->msi_x_entry[i].vector,
3550                                          &qdev->rx_ring[i]);
3551                         } else {
3552                                 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
3553                         }
3554                 }
3555         }
3556         ql_disable_msix(qdev);
3557 }
3558
3559 static int ql_request_irq(struct ql_adapter *qdev)
3560 {
3561         int i;
3562         int status = 0;
3563         struct pci_dev *pdev = qdev->pdev;
3564         struct intr_context *intr_context = &qdev->intr_context[0];
3565
3566         ql_resolve_queues_to_irqs(qdev);
3567
3568         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3569                 atomic_set(&intr_context->irq_cnt, 0);
3570                 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3571                         status = request_irq(qdev->msi_x_entry[i].vector,
3572                                              intr_context->handler,
3573                                              0,
3574                                              intr_context->name,
3575                                              &qdev->rx_ring[i]);
3576                         if (status) {
3577                                 netif_err(qdev, ifup, qdev->ndev,
3578                                           "Failed request for MSIX interrupt %d.\n",
3579                                           i);
3580                                 goto err_irq;
3581                         }
3582                 } else {
3583                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3584                                      "trying msi or legacy interrupts.\n");
3585                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3586                                      "%s: irq = %d.\n", __func__, pdev->irq);
3587                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3588                                      "%s: context->name = %s.\n", __func__,
3589                                      intr_context->name);
3590                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3591                                      "%s: dev_id = 0x%p.\n", __func__,
3592                                      &qdev->rx_ring[0]);
3593                         status =
3594                             request_irq(pdev->irq, qlge_isr,
3595                                         test_bit(QL_MSI_ENABLED,
3596                                                  &qdev->
3597                                                  flags) ? 0 : IRQF_SHARED,
3598                                         intr_context->name, &qdev->rx_ring[0]);
3599                         if (status)
3600                                 goto err_irq;
3601
3602                         netif_err(qdev, ifup, qdev->ndev,
3603                                   "Hooked intr %d, queue type %s, with name %s.\n",
3604                                   i,
3605                                   qdev->rx_ring[0].type == DEFAULT_Q ?
3606                                   "DEFAULT_Q" :
3607                                   qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3608                                   qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3609                                   intr_context->name);
3610                 }
3611                 intr_context->hooked = 1;
3612         }
3613         return status;
3614 err_irq:
3615         netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!\n");
3616         ql_free_irq(qdev);
3617         return status;
3618 }
3619
3620 static int ql_start_rss(struct ql_adapter *qdev)
3621 {
3622         static const u8 init_hash_seed[] = {
3623                 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3624                 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
3625                 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
3626                 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
3627                 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
3628         };
3629         struct ricb *ricb = &qdev->ricb;
3630         int status = 0;
3631         int i;
3632         u8 *hash_id = (u8 *) ricb->hash_cq_id;
3633
3634         memset((void *)ricb, 0, sizeof(*ricb));
3635
3636         ricb->base_cq = RSS_L4K;
3637         ricb->flags =
3638                 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3639         ricb->mask = cpu_to_le16((u16)(0x3ff));
3640
3641         /*
3642          * Fill out the Indirection Table.
3643          */
3644         for (i = 0; i < 1024; i++)
3645                 hash_id[i] = (i & (qdev->rss_ring_count - 1));
3646
3647         memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3648         memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
3649
3650         status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
3651         if (status) {
3652                 netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
3653                 return status;
3654         }
3655         return status;
3656 }
3657
3658 static int ql_clear_routing_entries(struct ql_adapter *qdev)
3659 {
3660         int i, status = 0;
3661
3662         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3663         if (status)
3664                 return status;
3665         /* Clear all the entries in the routing table. */
3666         for (i = 0; i < 16; i++) {
3667                 status = ql_set_routing_reg(qdev, i, 0, 0);
3668                 if (status) {
3669                         netif_err(qdev, ifup, qdev->ndev,
3670                                   "Failed to init routing register for CAM packets.\n");
3671                         break;
3672                 }
3673         }
3674         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3675         return status;
3676 }
3677
3678 /* Initialize the frame-to-queue routing. */
3679 static int ql_route_initialize(struct ql_adapter *qdev)
3680 {
3681         int status = 0;
3682
3683         /* Clear all the entries in the routing table. */
3684         status = ql_clear_routing_entries(qdev);
3685         if (status)
3686                 return status;
3687
3688         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3689         if (status)
3690                 return status;
3691
3692         status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3693                                                 RT_IDX_IP_CSUM_ERR, 1);
3694         if (status) {
3695                 netif_err(qdev, ifup, qdev->ndev,
3696                         "Failed to init routing register "
3697                         "for IP CSUM error packets.\n");
3698                 goto exit;
3699         }
3700         status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3701                                                 RT_IDX_TU_CSUM_ERR, 1);
3702         if (status) {
3703                 netif_err(qdev, ifup, qdev->ndev,
3704                         "Failed to init routing register "
3705                         "for TCP/UDP CSUM error packets.\n");
3706                 goto exit;
3707         }
3708         status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3709         if (status) {
3710                 netif_err(qdev, ifup, qdev->ndev,
3711                           "Failed to init routing register for broadcast packets.\n");
3712                 goto exit;
3713         }
3714         /* If we have more than one inbound queue, then turn on RSS in the
3715          * routing block.
3716          */
3717         if (qdev->rss_ring_count > 1) {
3718                 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3719                                         RT_IDX_RSS_MATCH, 1);
3720                 if (status) {
3721                         netif_err(qdev, ifup, qdev->ndev,
3722                                   "Failed to init routing register for MATCH RSS packets.\n");
3723                         goto exit;
3724                 }
3725         }
3726
3727         status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3728                                     RT_IDX_CAM_HIT, 1);
3729         if (status)
3730                 netif_err(qdev, ifup, qdev->ndev,
3731                           "Failed to init routing register for CAM packets.\n");
3732 exit:
3733         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3734         return status;
3735 }
3736
3737 int ql_cam_route_initialize(struct ql_adapter *qdev)
3738 {
3739         int status, set;
3740
3741         /* If check if the link is up and use to
3742          * determine if we are setting or clearing
3743          * the MAC address in the CAM.
3744          */
3745         set = ql_read32(qdev, STS);
3746         set &= qdev->port_link_up;
3747         status = ql_set_mac_addr(qdev, set);
3748         if (status) {
3749                 netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
3750                 return status;
3751         }
3752
3753         status = ql_route_initialize(qdev);
3754         if (status)
3755                 netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
3756
3757         return status;
3758 }
3759
3760 static int ql_adapter_initialize(struct ql_adapter *qdev)
3761 {
3762         u32 value, mask;
3763         int i;
3764         int status = 0;
3765
3766         /*
3767          * Set up the System register to halt on errors.
3768          */
3769         value = SYS_EFE | SYS_FAE;
3770         mask = value << 16;
3771         ql_write32(qdev, SYS, mask | value);
3772
3773         /* Set the default queue, and VLAN behavior. */
3774         value = NIC_RCV_CFG_DFQ;
3775         mask = NIC_RCV_CFG_DFQ_MASK;
3776         if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3777                 value |= NIC_RCV_CFG_RV;
3778                 mask |= (NIC_RCV_CFG_RV << 16);
3779         }
3780         ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3781
3782         /* Set the MPI interrupt to enabled. */
3783         ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3784
3785         /* Enable the function, set pagesize, enable error checking. */
3786         value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3787             FSC_EC | FSC_VM_PAGE_4K;
3788         value |= SPLT_SETTING;
3789
3790         /* Set/clear header splitting. */
3791         mask = FSC_VM_PAGESIZE_MASK |
3792             FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3793         ql_write32(qdev, FSC, mask | value);
3794
3795         ql_write32(qdev, SPLT_HDR, SPLT_LEN);
3796
3797         /* Set RX packet routing to use port/pci function on which the
3798          * packet arrived on in addition to usual frame routing.
3799          * This is helpful on bonding where both interfaces can have
3800          * the same MAC address.
3801          */
3802         ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
3803         /* Reroute all packets to our Interface.
3804          * They may have been routed to MPI firmware
3805          * due to WOL.
3806          */
3807         value = ql_read32(qdev, MGMT_RCV_CFG);
3808         value &= ~MGMT_RCV_CFG_RM;
3809         mask = 0xffff0000;
3810
3811         /* Sticky reg needs clearing due to WOL. */
3812         ql_write32(qdev, MGMT_RCV_CFG, mask);
3813         ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3814
3815         /* Default WOL is enable on Mezz cards */
3816         if (qdev->pdev->subsystem_device == 0x0068 ||
3817                         qdev->pdev->subsystem_device == 0x0180)
3818                 qdev->wol = WAKE_MAGIC;
3819
3820         /* Start up the rx queues. */
3821         for (i = 0; i < qdev->rx_ring_count; i++) {
3822                 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3823                 if (status) {
3824                         netif_err(qdev, ifup, qdev->ndev,
3825                                   "Failed to start rx ring[%d].\n", i);
3826                         return status;
3827                 }
3828         }
3829
3830         /* If there is more than one inbound completion queue
3831          * then download a RICB to configure RSS.
3832          */
3833         if (qdev->rss_ring_count > 1) {
3834                 status = ql_start_rss(qdev);
3835                 if (status) {
3836                         netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
3837                         return status;
3838                 }
3839         }
3840
3841         /* Start up the tx queues. */
3842         for (i = 0; i < qdev->tx_ring_count; i++) {
3843                 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3844                 if (status) {
3845                         netif_err(qdev, ifup, qdev->ndev,
3846                                   "Failed to start tx ring[%d].\n", i);
3847                         return status;
3848                 }
3849         }
3850
3851         /* Initialize the port and set the max framesize. */
3852         status = qdev->nic_ops->port_initialize(qdev);
3853         if (status)
3854                 netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
3855
3856         /* Set up the MAC address and frame routing filter. */
3857         status = ql_cam_route_initialize(qdev);
3858         if (status) {
3859                 netif_err(qdev, ifup, qdev->ndev,
3860                           "Failed to init CAM/Routing tables.\n");
3861                 return status;
3862         }
3863
3864         /* Start NAPI for the RSS queues. */
3865         for (i = 0; i < qdev->rss_ring_count; i++)
3866                 napi_enable(&qdev->rx_ring[i].napi);
3867
3868         return status;
3869 }
3870
3871 /* Issue soft reset to chip. */
3872 static int ql_adapter_reset(struct ql_adapter *qdev)
3873 {
3874         u32 value;
3875         int status = 0;
3876         unsigned long end_jiffies;
3877
3878         /* Clear all the entries in the routing table. */
3879         status = ql_clear_routing_entries(qdev);
3880         if (status) {
3881                 netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
3882                 return status;
3883         }
3884
3885         /* Check if bit is set then skip the mailbox command and
3886          * clear the bit, else we are in normal reset process.
3887          */
3888         if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
3889                 /* Stop management traffic. */
3890                 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3891
3892                 /* Wait for the NIC and MGMNT FIFOs to empty. */
3893                 ql_wait_fifo_empty(qdev);
3894         } else
3895                 clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
3896
3897         ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3898
3899         end_jiffies = jiffies + usecs_to_jiffies(30);
3900         do {
3901                 value = ql_read32(qdev, RST_FO);
3902                 if ((value & RST_FO_FR) == 0)
3903                         break;
3904                 cpu_relax();
3905         } while (time_before(jiffies, end_jiffies));
3906
3907         if (value & RST_FO_FR) {
3908                 netif_err(qdev, ifdown, qdev->ndev,
3909                           "ETIMEDOUT!!! errored out of resetting the chip!\n");
3910                 status = -ETIMEDOUT;
3911         }
3912
3913         /* Resume management traffic. */
3914         ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
3915         return status;
3916 }
3917
3918 static void ql_display_dev_info(struct net_device *ndev)
3919 {
3920         struct ql_adapter *qdev = netdev_priv(ndev);
3921
3922         netif_info(qdev, probe, qdev->ndev,
3923                    "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3924                    "XG Roll = %d, XG Rev = %d.\n",
3925                    qdev->func,
3926                    qdev->port,
3927                    qdev->chip_rev_id & 0x0000000f,
3928                    qdev->chip_rev_id >> 4 & 0x0000000f,
3929                    qdev->chip_rev_id >> 8 & 0x0000000f,
3930                    qdev->chip_rev_id >> 12 & 0x0000000f);
3931         netif_info(qdev, probe, qdev->ndev,
3932                    "MAC address %pM\n", ndev->dev_addr);
3933 }
3934
3935 static int ql_wol(struct ql_adapter *qdev)
3936 {
3937         int status = 0;
3938         u32 wol = MB_WOL_DISABLE;
3939
3940         /* The CAM is still intact after a reset, but if we
3941          * are doing WOL, then we may need to program the
3942          * routing regs. We would also need to issue the mailbox
3943          * commands to instruct the MPI what to do per the ethtool
3944          * settings.
3945          */
3946
3947         if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3948                         WAKE_MCAST | WAKE_BCAST)) {
3949                 netif_err(qdev, ifdown, qdev->ndev,
3950                           "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
3951                           qdev->wol);
3952                 return -EINVAL;
3953         }
3954
3955         if (qdev->wol & WAKE_MAGIC) {
3956                 status = ql_mb_wol_set_magic(qdev, 1);
3957                 if (status) {
3958                         netif_err(qdev, ifdown, qdev->ndev,
3959                                   "Failed to set magic packet on %s.\n",
3960                                   qdev->ndev->name);
3961                         return status;
3962                 } else
3963                         netif_info(qdev, drv, qdev->ndev,
3964                                    "Enabled magic packet successfully on %s.\n",
3965                                    qdev->ndev->name);
3966
3967                 wol |= MB_WOL_MAGIC_PKT;
3968         }
3969
3970         if (qdev->wol) {
3971                 wol |= MB_WOL_MODE_ON;
3972                 status = ql_mb_wol_mode(qdev, wol);
3973                 netif_err(qdev, drv, qdev->ndev,
3974                           "WOL %s (wol code 0x%x) on %s\n",
3975                           (status == 0) ? "Successfully set" : "Failed",
3976                           wol, qdev->ndev->name);
3977         }
3978
3979         return status;
3980 }
3981
3982 static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
3983 {
3984
3985         /* Don't kill the reset worker thread if we
3986          * are in the process of recovery.
3987          */
3988         if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3989                 cancel_delayed_work_sync(&qdev->asic_reset_work);
3990         cancel_delayed_work_sync(&qdev->mpi_reset_work);
3991         cancel_delayed_work_sync(&qdev->mpi_work);
3992         cancel_delayed_work_sync(&qdev->mpi_idc_work);
3993         cancel_delayed_work_sync(&qdev->mpi_core_to_log);
3994         cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3995 }
3996
3997 static int ql_adapter_down(struct ql_adapter *qdev)
3998 {
3999         int i, status = 0;
4000
4001         ql_link_off(qdev);
4002
4003         ql_cancel_all_work_sync(qdev);
4004
4005         for (i = 0; i < qdev->rss_ring_count; i++)
4006                 napi_disable(&qdev->rx_ring[i].napi);
4007
4008         clear_bit(QL_ADAPTER_UP, &qdev->flags);
4009
4010         ql_disable_interrupts(qdev);
4011
4012         ql_tx_ring_clean(qdev);
4013
4014         /* Call netif_napi_del() from common point.
4015          */
4016         for (i = 0; i < qdev->rss_ring_count; i++)
4017                 netif_napi_del(&qdev->rx_ring[i].napi);
4018
4019         status = ql_adapter_reset(qdev);
4020         if (status)
4021                 netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
4022                           qdev->func);
4023         ql_free_rx_buffers(qdev);
4024
4025         return status;
4026 }
4027
4028 static int ql_adapter_up(struct ql_adapter *qdev)
4029 {
4030         int err = 0;
4031
4032         err = ql_adapter_initialize(qdev);
4033         if (err) {
4034                 netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
4035                 goto err_init;
4036         }
4037         set_bit(QL_ADAPTER_UP, &qdev->flags);
4038         ql_alloc_rx_buffers(qdev);
4039         /* If the port is initialized and the
4040          * link is up the turn on the carrier.
4041          */
4042         if ((ql_read32(qdev, STS) & qdev->port_init) &&
4043                         (ql_read32(qdev, STS) & qdev->port_link_up))
4044                 ql_link_on(qdev);
4045         /* Restore rx mode. */
4046         clear_bit(QL_ALLMULTI, &qdev->flags);
4047         clear_bit(QL_PROMISCUOUS, &qdev->flags);
4048         qlge_set_multicast_list(qdev->ndev);
4049
4050         /* Restore vlan setting. */
4051         qlge_restore_vlan(qdev);
4052
4053         ql_enable_interrupts(qdev);
4054         ql_enable_all_completion_interrupts(qdev);
4055         netif_tx_start_all_queues(qdev->ndev);
4056
4057         return 0;
4058 err_init:
4059         ql_adapter_reset(qdev);
4060         return err;
4061 }
4062
4063 static void ql_release_adapter_resources(struct ql_adapter *qdev)
4064 {
4065         ql_free_mem_resources(qdev);
4066         ql_free_irq(qdev);
4067 }
4068
4069 static int ql_get_adapter_resources(struct ql_adapter *qdev)
4070 {
4071         int status = 0;
4072
4073         if (ql_alloc_mem_resources(qdev)) {
4074                 netif_err(qdev, ifup, qdev->ndev, "Unable to  allocate memory.\n");
4075                 return -ENOMEM;
4076         }
4077         status = ql_request_irq(qdev);
4078         return status;
4079 }
4080
4081 static int qlge_close(struct net_device *ndev)
4082 {
4083         struct ql_adapter *qdev = netdev_priv(ndev);
4084
4085         /* If we hit pci_channel_io_perm_failure
4086          * failure condition, then we already
4087          * brought the adapter down.
4088          */
4089         if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
4090                 netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
4091                 clear_bit(QL_EEH_FATAL, &qdev->flags);
4092                 return 0;
4093         }
4094
4095         /*
4096          * Wait for device to recover from a reset.
4097          * (Rarely happens, but possible.)
4098          */
4099         while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
4100                 msleep(1);
4101         ql_adapter_down(qdev);
4102         ql_release_adapter_resources(qdev);
4103         return 0;
4104 }
4105
4106 static int ql_configure_rings(struct ql_adapter *qdev)
4107 {
4108         int i;
4109         struct rx_ring *rx_ring;
4110         struct tx_ring *tx_ring;
4111         int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
4112         unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4113                 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4114
4115         qdev->lbq_buf_order = get_order(lbq_buf_len);
4116
4117         /* In a perfect world we have one RSS ring for each CPU
4118          * and each has it's own vector.  To do that we ask for
4119          * cpu_cnt vectors.  ql_enable_msix() will adjust the
4120          * vector count to what we actually get.  We then
4121          * allocate an RSS ring for each.
4122          * Essentially, we are doing min(cpu_count, msix_vector_count).
4123          */
4124         qdev->intr_count = cpu_cnt;
4125         ql_enable_msix(qdev);
4126         /* Adjust the RSS ring count to the actual vector count. */
4127         qdev->rss_ring_count = qdev->intr_count;
4128         qdev->tx_ring_count = cpu_cnt;
4129         qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
4130
4131         for (i = 0; i < qdev->tx_ring_count; i++) {
4132                 tx_ring = &qdev->tx_ring[i];
4133                 memset((void *)tx_ring, 0, sizeof(*tx_ring));
4134                 tx_ring->qdev = qdev;
4135                 tx_ring->wq_id = i;
4136                 tx_ring->wq_len = qdev->tx_ring_size;
4137                 tx_ring->wq_size =
4138                     tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4139
4140                 /*
4141                  * The completion queue ID for the tx rings start
4142                  * immediately after the rss rings.
4143                  */
4144                 tx_ring->cq_id = qdev->rss_ring_count + i;
4145         }
4146
4147         for (i = 0; i < qdev->rx_ring_count; i++) {
4148                 rx_ring = &qdev->rx_ring[i];
4149                 memset((void *)rx_ring, 0, sizeof(*rx_ring));
4150                 rx_ring->qdev = qdev;
4151                 rx_ring->cq_id = i;
4152                 rx_ring->cpu = i % cpu_cnt;     /* CPU to run handler on. */
4153                 if (i < qdev->rss_ring_count) {
4154                         /*
4155                          * Inbound (RSS) queues.
4156                          */
4157                         rx_ring->cq_len = qdev->rx_ring_size;
4158                         rx_ring->cq_size =
4159                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4160                         rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4161                         rx_ring->lbq_size =
4162                             rx_ring->lbq_len * sizeof(__le64);
4163                         rx_ring->lbq_buf_size = (u16)lbq_buf_len;
4164                         rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4165                         rx_ring->sbq_size =
4166                             rx_ring->sbq_len * sizeof(__le64);
4167                         rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
4168                         rx_ring->type = RX_Q;
4169                 } else {
4170                         /*
4171                          * Outbound queue handles outbound completions only.
4172                          */
4173                         /* outbound cq is same size as tx_ring it services. */
4174                         rx_ring->cq_len = qdev->tx_ring_size;
4175                         rx_ring->cq_size =
4176                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4177                         rx_ring->lbq_len = 0;
4178                         rx_ring->lbq_size = 0;
4179                         rx_ring->lbq_buf_size = 0;
4180                         rx_ring->sbq_len = 0;
4181                         rx_ring->sbq_size = 0;
4182                         rx_ring->sbq_buf_size = 0;
4183                         rx_ring->type = TX_Q;
4184                 }
4185         }
4186         return 0;
4187 }
4188
4189 static int qlge_open(struct net_device *ndev)
4190 {
4191         int err = 0;
4192         struct ql_adapter *qdev = netdev_priv(ndev);
4193
4194         err = ql_adapter_reset(qdev);
4195         if (err)
4196                 return err;
4197
4198         err = ql_configure_rings(qdev);
4199         if (err)
4200                 return err;
4201
4202         err = ql_get_adapter_resources(qdev);
4203         if (err)
4204                 goto error_up;
4205
4206         err = ql_adapter_up(qdev);
4207         if (err)
4208                 goto error_up;
4209
4210         return err;
4211
4212 error_up:
4213         ql_release_adapter_resources(qdev);
4214         return err;
4215 }
4216
4217 static int ql_change_rx_buffers(struct ql_adapter *qdev)
4218 {
4219         struct rx_ring *rx_ring;
4220         int i, status;
4221         u32 lbq_buf_len;
4222
4223         /* Wait for an outstanding reset to complete. */
4224         if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4225                 int i = 4;
4226
4227                 while (--i && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4228                         netif_err(qdev, ifup, qdev->ndev,
4229                                   "Waiting for adapter UP...\n");
4230                         ssleep(1);
4231                 }
4232
4233                 if (!i) {
4234                         netif_err(qdev, ifup, qdev->ndev,
4235                                   "Timed out waiting for adapter UP\n");
4236                         return -ETIMEDOUT;
4237                 }
4238         }
4239
4240         status = ql_adapter_down(qdev);
4241         if (status)
4242                 goto error;
4243
4244         /* Get the new rx buffer size. */
4245         lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4246                 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4247         qdev->lbq_buf_order = get_order(lbq_buf_len);
4248
4249         for (i = 0; i < qdev->rss_ring_count; i++) {
4250                 rx_ring = &qdev->rx_ring[i];
4251                 /* Set the new size. */
4252                 rx_ring->lbq_buf_size = lbq_buf_len;
4253         }
4254
4255         status = ql_adapter_up(qdev);
4256         if (status)
4257                 goto error;
4258
4259         return status;
4260 error:
4261         netif_alert(qdev, ifup, qdev->ndev,
4262                     "Driver up/down cycle failed, closing device.\n");
4263         set_bit(QL_ADAPTER_UP, &qdev->flags);
4264         dev_close(qdev->ndev);
4265         return status;
4266 }
4267
4268 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4269 {
4270         struct ql_adapter *qdev = netdev_priv(ndev);
4271         int status;
4272
4273         if (ndev->mtu == 1500 && new_mtu == 9000) {
4274                 netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
4275         } else if (ndev->mtu == 9000 && new_mtu == 1500) {
4276                 netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
4277         } else
4278                 return -EINVAL;
4279
4280         queue_delayed_work(qdev->workqueue,
4281                         &qdev->mpi_port_cfg_work, 3*HZ);
4282
4283         ndev->mtu = new_mtu;
4284
4285         if (!netif_running(qdev->ndev)) {
4286                 return 0;
4287         }
4288
4289         status = ql_change_rx_buffers(qdev);
4290         if (status) {
4291                 netif_err(qdev, ifup, qdev->ndev,
4292                           "Changing MTU failed.\n");
4293         }
4294
4295         return status;
4296 }
4297
4298 static struct net_device_stats *qlge_get_stats(struct net_device
4299                                                *ndev)
4300 {
4301         struct ql_adapter *qdev = netdev_priv(ndev);
4302         struct rx_ring *rx_ring = &qdev->rx_ring[0];
4303         struct tx_ring *tx_ring = &qdev->tx_ring[0];
4304         unsigned long pkts, mcast, dropped, errors, bytes;
4305         int i;
4306
4307         /* Get RX stats. */
4308         pkts = mcast = dropped = errors = bytes = 0;
4309         for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4310                         pkts += rx_ring->rx_packets;
4311                         bytes += rx_ring->rx_bytes;
4312                         dropped += rx_ring->rx_dropped;
4313                         errors += rx_ring->rx_errors;
4314                         mcast += rx_ring->rx_multicast;
4315         }
4316         ndev->stats.rx_packets = pkts;
4317         ndev->stats.rx_bytes = bytes;
4318         ndev->stats.rx_dropped = dropped;
4319         ndev->stats.rx_errors = errors;
4320         ndev->stats.multicast = mcast;
4321
4322         /* Get TX stats. */
4323         pkts = errors = bytes = 0;
4324         for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4325                         pkts += tx_ring->tx_packets;
4326                         bytes += tx_ring->tx_bytes;
4327                         errors += tx_ring->tx_errors;
4328         }
4329         ndev->stats.tx_packets = pkts;
4330         ndev->stats.tx_bytes = bytes;
4331         ndev->stats.tx_errors = errors;
4332         return &ndev->stats;
4333 }
4334
4335 static void qlge_set_multicast_list(struct net_device *ndev)
4336 {
4337         struct ql_adapter *qdev = netdev_priv(ndev);
4338         struct netdev_hw_addr *ha;
4339         int i, status;
4340
4341         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4342         if (status)
4343                 return;
4344         /*
4345          * Set or clear promiscuous mode if a
4346          * transition is taking place.
4347          */
4348         if (ndev->flags & IFF_PROMISC) {
4349                 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4350                         if (ql_set_routing_reg
4351                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
4352                                 netif_err(qdev, hw, qdev->ndev,
4353                                           "Failed to set promiscuous mode.\n");
4354                         } else {
4355                                 set_bit(QL_PROMISCUOUS, &qdev->flags);
4356                         }
4357                 }
4358         } else {
4359                 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4360                         if (ql_set_routing_reg
4361                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
4362                                 netif_err(qdev, hw, qdev->ndev,
4363                                           "Failed to clear promiscuous mode.\n");
4364                         } else {
4365                                 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4366                         }
4367                 }
4368         }
4369
4370         /*
4371          * Set or clear all multicast mode if a
4372          * transition is taking place.
4373          */
4374         if ((ndev->flags & IFF_ALLMULTI) ||
4375             (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
4376                 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4377                         if (ql_set_routing_reg
4378                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
4379                                 netif_err(qdev, hw, qdev->ndev,
4380                                           "Failed to set all-multi mode.\n");
4381                         } else {
4382                                 set_bit(QL_ALLMULTI, &qdev->flags);
4383                         }
4384                 }
4385         } else {
4386                 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4387                         if (ql_set_routing_reg
4388                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
4389                                 netif_err(qdev, hw, qdev->ndev,
4390                                           "Failed to clear all-multi mode.\n");
4391                         } else {
4392                                 clear_bit(QL_ALLMULTI, &qdev->flags);
4393                         }
4394                 }
4395         }
4396
4397         if (!netdev_mc_empty(ndev)) {
4398                 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4399                 if (status)
4400                         goto exit;
4401                 i = 0;
4402                 netdev_for_each_mc_addr(ha, ndev) {
4403                         if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
4404                                                 MAC_ADDR_TYPE_MULTI_MAC, i)) {
4405                                 netif_err(qdev, hw, qdev->ndev,
4406                                           "Failed to loadmulticast address.\n");
4407                                 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4408                                 goto exit;
4409                         }
4410                         i++;
4411                 }
4412                 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4413                 if (ql_set_routing_reg
4414                     (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
4415                         netif_err(qdev, hw, qdev->ndev,
4416                                   "Failed to set multicast match mode.\n");
4417                 } else {
4418                         set_bit(QL_ALLMULTI, &qdev->flags);
4419                 }
4420         }
4421 exit:
4422         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
4423 }
4424
4425 static int qlge_set_mac_address(struct net_device *ndev, void *p)
4426 {
4427         struct ql_adapter *qdev = netdev_priv(ndev);
4428         struct sockaddr *addr = p;
4429         int status;
4430
4431         if (!is_valid_ether_addr(addr->sa_data))
4432                 return -EADDRNOTAVAIL;
4433         memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
4434         /* Update local copy of current mac address. */
4435         memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4436
4437         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4438         if (status)
4439                 return status;
4440         status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4441                         MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
4442         if (status)
4443                 netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
4444         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4445         return status;
4446 }
4447
4448 static void qlge_tx_timeout(struct net_device *ndev)
4449 {
4450         struct ql_adapter *qdev = netdev_priv(ndev);
4451         ql_queue_asic_error(qdev);
4452 }
4453
4454 static void ql_asic_reset_work(struct work_struct *work)
4455 {
4456         struct ql_adapter *qdev =
4457             container_of(work, struct ql_adapter, asic_reset_work.work);
4458         int status;
4459         rtnl_lock();
4460         status = ql_adapter_down(qdev);
4461         if (status)
4462                 goto error;
4463
4464         status = ql_adapter_up(qdev);
4465         if (status)
4466                 goto error;
4467
4468         /* Restore rx mode. */
4469         clear_bit(QL_ALLMULTI, &qdev->flags);
4470         clear_bit(QL_PROMISCUOUS, &qdev->flags);
4471         qlge_set_multicast_list(qdev->ndev);
4472
4473         rtnl_unlock();
4474         return;
4475 error:
4476         netif_alert(qdev, ifup, qdev->ndev,
4477                     "Driver up/down cycle failed, closing device\n");
4478
4479         set_bit(QL_ADAPTER_UP, &qdev->flags);
4480         dev_close(qdev->ndev);
4481         rtnl_unlock();
4482 }
4483
4484 static const struct nic_operations qla8012_nic_ops = {
4485         .get_flash              = ql_get_8012_flash_params,
4486         .port_initialize        = ql_8012_port_initialize,
4487 };
4488
4489 static const struct nic_operations qla8000_nic_ops = {
4490         .get_flash              = ql_get_8000_flash_params,
4491         .port_initialize        = ql_8000_port_initialize,
4492 };
4493
4494 /* Find the pcie function number for the other NIC
4495  * on this chip.  Since both NIC functions share a
4496  * common firmware we have the lowest enabled function
4497  * do any common work.  Examples would be resetting
4498  * after a fatal firmware error, or doing a firmware
4499  * coredump.
4500  */
4501 static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4502 {
4503         int status = 0;
4504         u32 temp;
4505         u32 nic_func1, nic_func2;
4506
4507         status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4508                         &temp);
4509         if (status)
4510                 return status;
4511
4512         nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4513                         MPI_TEST_NIC_FUNC_MASK);
4514         nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4515                         MPI_TEST_NIC_FUNC_MASK);
4516
4517         if (qdev->func == nic_func1)
4518                 qdev->alt_func = nic_func2;
4519         else if (qdev->func == nic_func2)
4520                 qdev->alt_func = nic_func1;
4521         else
4522                 status = -EIO;
4523
4524         return status;
4525 }
4526
4527 static int ql_get_board_info(struct ql_adapter *qdev)
4528 {
4529         int status;
4530         qdev->func =
4531             (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
4532         if (qdev->func > 3)
4533                 return -EIO;
4534
4535         status = ql_get_alt_pcie_func(qdev);
4536         if (status)
4537                 return status;
4538
4539         qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4540         if (qdev->port) {
4541                 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4542                 qdev->port_link_up = STS_PL1;
4543                 qdev->port_init = STS_PI1;
4544                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4545                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4546         } else {
4547                 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4548                 qdev->port_link_up = STS_PL0;
4549                 qdev->port_init = STS_PI0;
4550                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4551                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4552         }
4553         qdev->chip_rev_id = ql_read32(qdev, REV_ID);
4554         qdev->device_id = qdev->pdev->device;
4555         if (qdev->device_id == QLGE_DEVICE_ID_8012)
4556                 qdev->nic_ops = &qla8012_nic_ops;
4557         else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4558                 qdev->nic_ops = &qla8000_nic_ops;
4559         return status;
4560 }
4561
4562 static void ql_release_all(struct pci_dev *pdev)
4563 {
4564         struct net_device *ndev = pci_get_drvdata(pdev);
4565         struct ql_adapter *qdev = netdev_priv(ndev);
4566
4567         if (qdev->workqueue) {
4568                 destroy_workqueue(qdev->workqueue);
4569                 qdev->workqueue = NULL;
4570         }
4571
4572         if (qdev->reg_base)
4573                 iounmap(qdev->reg_base);
4574         if (qdev->doorbell_area)
4575                 iounmap(qdev->doorbell_area);
4576         vfree(qdev->mpi_coredump);
4577         pci_release_regions(pdev);
4578 }
4579
4580 static int ql_init_device(struct pci_dev *pdev, struct net_device *ndev,
4581                           int cards_found)
4582 {
4583         struct ql_adapter *qdev = netdev_priv(ndev);
4584         int err = 0;
4585
4586         memset((void *)qdev, 0, sizeof(*qdev));
4587         err = pci_enable_device(pdev);
4588         if (err) {
4589                 dev_err(&pdev->dev, "PCI device enable failed.\n");
4590                 return err;
4591         }
4592
4593         qdev->ndev = ndev;
4594         qdev->pdev = pdev;
4595         pci_set_drvdata(pdev, ndev);
4596
4597         /* Set PCIe read request size */
4598         err = pcie_set_readrq(pdev, 4096);
4599         if (err) {
4600                 dev_err(&pdev->dev, "Set readrq failed.\n");
4601                 goto err_out1;
4602         }
4603
4604         err = pci_request_regions(pdev, DRV_NAME);
4605         if (err) {
4606                 dev_err(&pdev->dev, "PCI region request failed.\n");
4607                 return err;
4608         }
4609
4610         pci_set_master(pdev);
4611         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4612                 set_bit(QL_DMA64, &qdev->flags);
4613                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4614         } else {
4615                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4616                 if (!err)
4617                        err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4618         }
4619
4620         if (err) {
4621                 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4622                 goto err_out2;
4623         }
4624
4625         /* Set PCIe reset type for EEH to fundamental. */
4626         pdev->needs_freset = 1;
4627         pci_save_state(pdev);
4628         qdev->reg_base =
4629             ioremap_nocache(pci_resource_start(pdev, 1),
4630                             pci_resource_len(pdev, 1));
4631         if (!qdev->reg_base) {
4632                 dev_err(&pdev->dev, "Register mapping failed.\n");
4633                 err = -ENOMEM;
4634                 goto err_out2;
4635         }
4636
4637         qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4638         qdev->doorbell_area =
4639             ioremap_nocache(pci_resource_start(pdev, 3),
4640                             pci_resource_len(pdev, 3));
4641         if (!qdev->doorbell_area) {
4642                 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4643                 err = -ENOMEM;
4644                 goto err_out2;
4645         }
4646
4647         err = ql_get_board_info(qdev);
4648         if (err) {
4649                 dev_err(&pdev->dev, "Register access failed.\n");
4650                 err = -EIO;
4651                 goto err_out2;
4652         }
4653         qdev->msg_enable = netif_msg_init(debug, default_msg);
4654         spin_lock_init(&qdev->hw_lock);
4655         spin_lock_init(&qdev->stats_lock);
4656
4657         if (qlge_mpi_coredump) {
4658                 qdev->mpi_coredump =
4659                         vmalloc(sizeof(struct ql_mpi_coredump));
4660                 if (qdev->mpi_coredump == NULL) {
4661                         err = -ENOMEM;
4662                         goto err_out2;
4663                 }
4664                 if (qlge_force_coredump)
4665                         set_bit(QL_FRC_COREDUMP, &qdev->flags);
4666         }
4667         /* make sure the EEPROM is good */
4668         err = qdev->nic_ops->get_flash(qdev);
4669         if (err) {
4670                 dev_err(&pdev->dev, "Invalid FLASH.\n");
4671                 goto err_out2;
4672         }
4673
4674         /* Keep local copy of current mac address. */
4675         memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4676
4677         /* Set up the default ring sizes. */
4678         qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4679         qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4680
4681         /* Set up the coalescing parameters. */
4682         qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4683         qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4684         qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4685         qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4686
4687         /*
4688          * Set up the operating parameters.
4689          */
4690         qdev->workqueue = create_singlethread_workqueue(ndev->name);
4691         INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4692         INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4693         INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
4694         INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
4695         INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
4696         INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
4697         init_completion(&qdev->ide_completion);
4698         mutex_init(&qdev->mpi_mutex);
4699
4700         if (!cards_found) {
4701                 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4702                 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4703                          DRV_NAME, DRV_VERSION);
4704         }
4705         return 0;
4706 err_out2:
4707         ql_release_all(pdev);
4708 err_out1:
4709         pci_disable_device(pdev);
4710         return err;
4711 }
4712
4713 static const struct net_device_ops qlge_netdev_ops = {
4714         .ndo_open               = qlge_open,
4715         .ndo_stop               = qlge_close,
4716         .ndo_start_xmit         = qlge_send,
4717         .ndo_change_mtu         = qlge_change_mtu,
4718         .ndo_get_stats          = qlge_get_stats,
4719         .ndo_set_rx_mode        = qlge_set_multicast_list,
4720         .ndo_set_mac_address    = qlge_set_mac_address,
4721         .ndo_validate_addr      = eth_validate_addr,
4722         .ndo_tx_timeout         = qlge_tx_timeout,
4723         .ndo_fix_features       = qlge_fix_features,
4724         .ndo_set_features       = qlge_set_features,
4725         .ndo_vlan_rx_add_vid    = qlge_vlan_rx_add_vid,
4726         .ndo_vlan_rx_kill_vid   = qlge_vlan_rx_kill_vid,
4727 };
4728
4729 static void ql_timer(unsigned long data)
4730 {
4731         struct ql_adapter *qdev = (struct ql_adapter *)data;
4732         u32 var = 0;
4733
4734         var = ql_read32(qdev, STS);
4735         if (pci_channel_offline(qdev->pdev)) {
4736                 netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
4737                 return;
4738         }
4739
4740         mod_timer(&qdev->timer, jiffies + (5*HZ));
4741 }
4742
4743 static int qlge_probe(struct pci_dev *pdev,
4744                       const struct pci_device_id *pci_entry)
4745 {
4746         struct net_device *ndev = NULL;
4747         struct ql_adapter *qdev = NULL;
4748         static int cards_found = 0;
4749         int err = 0;
4750
4751         ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
4752                         min(MAX_CPUS, netif_get_num_default_rss_queues()));
4753         if (!ndev)
4754                 return -ENOMEM;
4755
4756         err = ql_init_device(pdev, ndev, cards_found);
4757         if (err < 0) {
4758                 free_netdev(ndev);
4759                 return err;
4760         }
4761
4762         qdev = netdev_priv(ndev);
4763         SET_NETDEV_DEV(ndev, &pdev->dev);
4764         ndev->hw_features = NETIF_F_SG |
4765                             NETIF_F_IP_CSUM |
4766                             NETIF_F_TSO |
4767                             NETIF_F_TSO_ECN |
4768                             NETIF_F_HW_VLAN_CTAG_TX |
4769                             NETIF_F_HW_VLAN_CTAG_RX |
4770                             NETIF_F_HW_VLAN_CTAG_FILTER |
4771                             NETIF_F_RXCSUM;
4772         ndev->features = ndev->hw_features;
4773         ndev->vlan_features = ndev->hw_features;
4774         /* vlan gets same features (except vlan filter) */
4775         ndev->vlan_features &= ~(NETIF_F_HW_VLAN_CTAG_FILTER |
4776                                  NETIF_F_HW_VLAN_CTAG_TX |
4777                                  NETIF_F_HW_VLAN_CTAG_RX);
4778
4779         if (test_bit(QL_DMA64, &qdev->flags))
4780                 ndev->features |= NETIF_F_HIGHDMA;
4781
4782         /*
4783          * Set up net_device structure.
4784          */
4785         ndev->tx_queue_len = qdev->tx_ring_size;
4786         ndev->irq = pdev->irq;
4787
4788         ndev->netdev_ops = &qlge_netdev_ops;
4789         ndev->ethtool_ops = &qlge_ethtool_ops;
4790         ndev->watchdog_timeo = 10 * HZ;
4791
4792         err = register_netdev(ndev);
4793         if (err) {
4794                 dev_err(&pdev->dev, "net device registration failed.\n");
4795                 ql_release_all(pdev);
4796                 pci_disable_device(pdev);
4797                 free_netdev(ndev);
4798                 return err;
4799         }
4800         /* Start up the timer to trigger EEH if
4801          * the bus goes dead
4802          */
4803         init_timer_deferrable(&qdev->timer);
4804         qdev->timer.data = (unsigned long)qdev;
4805         qdev->timer.function = ql_timer;
4806         qdev->timer.expires = jiffies + (5*HZ);
4807         add_timer(&qdev->timer);
4808         ql_link_off(qdev);
4809         ql_display_dev_info(ndev);
4810         atomic_set(&qdev->lb_count, 0);
4811         cards_found++;
4812         return 0;
4813 }
4814
4815 netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4816 {
4817         return qlge_send(skb, ndev);
4818 }
4819
4820 int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4821 {
4822         return ql_clean_inbound_rx_ring(rx_ring, budget);
4823 }
4824
4825 static void qlge_remove(struct pci_dev *pdev)
4826 {
4827         struct net_device *ndev = pci_get_drvdata(pdev);
4828         struct ql_adapter *qdev = netdev_priv(ndev);
4829         del_timer_sync(&qdev->timer);
4830         ql_cancel_all_work_sync(qdev);
4831         unregister_netdev(ndev);
4832         ql_release_all(pdev);
4833         pci_disable_device(pdev);
4834         free_netdev(ndev);
4835 }
4836
4837 /* Clean up resources without touching hardware. */
4838 static void ql_eeh_close(struct net_device *ndev)
4839 {
4840         int i;
4841         struct ql_adapter *qdev = netdev_priv(ndev);
4842
4843         if (netif_carrier_ok(ndev)) {
4844                 netif_carrier_off(ndev);
4845                 netif_stop_queue(ndev);
4846         }
4847
4848         /* Disabling the timer */
4849         del_timer_sync(&qdev->timer);
4850         ql_cancel_all_work_sync(qdev);
4851
4852         for (i = 0; i < qdev->rss_ring_count; i++)
4853                 netif_napi_del(&qdev->rx_ring[i].napi);
4854
4855         clear_bit(QL_ADAPTER_UP, &qdev->flags);
4856         ql_tx_ring_clean(qdev);
4857         ql_free_rx_buffers(qdev);
4858         ql_release_adapter_resources(qdev);
4859 }
4860
4861 /*
4862  * This callback is called by the PCI subsystem whenever
4863  * a PCI bus error is detected.
4864  */
4865 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4866                                                enum pci_channel_state state)
4867 {
4868         struct net_device *ndev = pci_get_drvdata(pdev);
4869         struct ql_adapter *qdev = netdev_priv(ndev);
4870
4871         switch (state) {
4872         case pci_channel_io_normal:
4873                 return PCI_ERS_RESULT_CAN_RECOVER;
4874         case pci_channel_io_frozen:
4875                 netif_device_detach(ndev);
4876                 if (netif_running(ndev))
4877                         ql_eeh_close(ndev);
4878                 pci_disable_device(pdev);
4879                 return PCI_ERS_RESULT_NEED_RESET;
4880         case pci_channel_io_perm_failure:
4881                 dev_err(&pdev->dev,
4882                         "%s: pci_channel_io_perm_failure.\n", __func__);
4883                 ql_eeh_close(ndev);
4884                 set_bit(QL_EEH_FATAL, &qdev->flags);
4885                 return PCI_ERS_RESULT_DISCONNECT;
4886         }
4887
4888         /* Request a slot reset. */
4889         return PCI_ERS_RESULT_NEED_RESET;
4890 }
4891
4892 /*
4893  * This callback is called after the PCI buss has been reset.
4894  * Basically, this tries to restart the card from scratch.
4895  * This is a shortened version of the device probe/discovery code,
4896  * it resembles the first-half of the () routine.
4897  */
4898 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4899 {
4900         struct net_device *ndev = pci_get_drvdata(pdev);
4901         struct ql_adapter *qdev = netdev_priv(ndev);
4902
4903         pdev->error_state = pci_channel_io_normal;
4904
4905         pci_restore_state(pdev);
4906         if (pci_enable_device(pdev)) {
4907                 netif_err(qdev, ifup, qdev->ndev,
4908                           "Cannot re-enable PCI device after reset.\n");
4909                 return PCI_ERS_RESULT_DISCONNECT;
4910         }
4911         pci_set_master(pdev);
4912
4913         if (ql_adapter_reset(qdev)) {
4914                 netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4915                 set_bit(QL_EEH_FATAL, &qdev->flags);
4916                 return PCI_ERS_RESULT_DISCONNECT;
4917         }
4918
4919         return PCI_ERS_RESULT_RECOVERED;
4920 }
4921
4922 static void qlge_io_resume(struct pci_dev *pdev)
4923 {
4924         struct net_device *ndev = pci_get_drvdata(pdev);
4925         struct ql_adapter *qdev = netdev_priv(ndev);
4926         int err = 0;
4927
4928         if (netif_running(ndev)) {
4929                 err = qlge_open(ndev);
4930                 if (err) {
4931                         netif_err(qdev, ifup, qdev->ndev,
4932                                   "Device initialization failed after reset.\n");
4933                         return;
4934                 }
4935         } else {
4936                 netif_err(qdev, ifup, qdev->ndev,
4937                           "Device was not running prior to EEH.\n");
4938         }
4939         mod_timer(&qdev->timer, jiffies + (5*HZ));
4940         netif_device_attach(ndev);
4941 }
4942
4943 static const struct pci_error_handlers qlge_err_handler = {
4944         .error_detected = qlge_io_error_detected,
4945         .slot_reset = qlge_io_slot_reset,
4946         .resume = qlge_io_resume,
4947 };
4948
4949 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4950 {
4951         struct net_device *ndev = pci_get_drvdata(pdev);
4952         struct ql_adapter *qdev = netdev_priv(ndev);
4953         int err;
4954
4955         netif_device_detach(ndev);
4956         del_timer_sync(&qdev->timer);
4957
4958         if (netif_running(ndev)) {
4959                 err = ql_adapter_down(qdev);
4960                 if (!err)
4961                         return err;
4962         }
4963
4964         ql_wol(qdev);
4965         err = pci_save_state(pdev);
4966         if (err)
4967                 return err;
4968
4969         pci_disable_device(pdev);
4970
4971         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4972
4973         return 0;
4974 }
4975
4976 #ifdef CONFIG_PM
4977 static int qlge_resume(struct pci_dev *pdev)
4978 {
4979         struct net_device *ndev = pci_get_drvdata(pdev);
4980         struct ql_adapter *qdev = netdev_priv(ndev);
4981         int err;
4982
4983         pci_set_power_state(pdev, PCI_D0);
4984         pci_restore_state(pdev);
4985         err = pci_enable_device(pdev);
4986         if (err) {
4987                 netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
4988                 return err;
4989         }
4990         pci_set_master(pdev);
4991
4992         pci_enable_wake(pdev, PCI_D3hot, 0);
4993         pci_enable_wake(pdev, PCI_D3cold, 0);
4994
4995         if (netif_running(ndev)) {
4996                 err = ql_adapter_up(qdev);
4997                 if (err)
4998                         return err;
4999         }
5000
5001         mod_timer(&qdev->timer, jiffies + (5*HZ));
5002         netif_device_attach(ndev);
5003
5004         return 0;
5005 }
5006 #endif /* CONFIG_PM */
5007
5008 static void qlge_shutdown(struct pci_dev *pdev)
5009 {
5010         qlge_suspend(pdev, PMSG_SUSPEND);
5011 }
5012
5013 static struct pci_driver qlge_driver = {
5014         .name = DRV_NAME,
5015         .id_table = qlge_pci_tbl,
5016         .probe = qlge_probe,
5017         .remove = qlge_remove,
5018 #ifdef CONFIG_PM
5019         .suspend = qlge_suspend,
5020         .resume = qlge_resume,
5021 #endif
5022         .shutdown = qlge_shutdown,
5023         .err_handler = &qlge_err_handler
5024 };
5025
5026 module_pci_driver(qlge_driver);