Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / net / ethernet / neterion / s2io.c
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2010 Exar Corp.
4  *
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik          : For pointing out the improper error condition
15  *                        check in the s2io_xmit routine and also some
16  *                        issues in the Tx watch dog function. Also for
17  *                        patiently answering all those innumerable
18  *                        questions regaring the 2.6 porting issues.
19  * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
20  *                        macros available only in 2.6 Kernel.
21  * Francois Romieu      : For pointing out all code part that were
22  *                        deprecated and also styling related comments.
23  * Grant Grundler       : For helping me get rid of some Architecture
24  *                        dependent code.
25  * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explanation of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *              values are 1, 2.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     2(MSI_X). Default value is '2(MSI_X)'
41  * lro_max_pkts: This parameter defines maximum number of packets can be
42  *     aggregated as a single large packet
43  * napi: This parameter used to enable/disable NAPI (polling Rx)
44  *     Possible values '1' for enable and '0' for disable. Default is '1'
45  * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
46  *      Possible values '1' for enable and '0' for disable. Default is '0'
47  * vlan_tag_strip: This can be used to enable or disable vlan stripping.
48  *                 Possible values '1' for enable , '0' for disable.
49  *                 Default is '2' - which means disable in promisc mode
50  *                 and enable in non-promiscuous mode.
51  * multiq: This parameter used to enable/disable MULTIQUEUE support.
52  *      Possible values '1' for enable and '0' for disable. Default is '0'
53  ************************************************************************/
54
55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/mdio.h>
67 #include <linux/skbuff.h>
68 #include <linux/init.h>
69 #include <linux/delay.h>
70 #include <linux/stddef.h>
71 #include <linux/ioctl.h>
72 #include <linux/timex.h>
73 #include <linux/ethtool.h>
74 #include <linux/workqueue.h>
75 #include <linux/if_vlan.h>
76 #include <linux/ip.h>
77 #include <linux/tcp.h>
78 #include <linux/uaccess.h>
79 #include <linux/io.h>
80 #include <linux/slab.h>
81 #include <linux/prefetch.h>
82 #include <net/tcp.h>
83 #include <net/checksum.h>
84
85 #include <asm/div64.h>
86 #include <asm/irq.h>
87
88 /* local include */
89 #include "s2io.h"
90 #include "s2io-regs.h"
91
92 #define DRV_VERSION "2.0.26.28"
93
94 /* S2io Driver name & version. */
95 static const char s2io_driver_name[] = "Neterion";
96 static const char s2io_driver_version[] = DRV_VERSION;
97
98 static const int rxd_size[2] = {32, 48};
99 static const int rxd_count[2] = {127, 85};
100
101 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
102 {
103         int ret;
104
105         ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
106                (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
107
108         return ret;
109 }
110
111 /*
112  * Cards with following subsystem_id have a link state indication
113  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
114  * macro below identifies these cards given the subsystem_id.
115  */
116 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid)              \
117         (dev_type == XFRAME_I_DEVICE) ?                                 \
118         ((((subid >= 0x600B) && (subid <= 0x600D)) ||                   \
119           ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
120
121 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
122                                       ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
123
124 static inline int is_s2io_card_up(const struct s2io_nic *sp)
125 {
126         return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
127 }
128
129 /* Ethtool related variables and Macros. */
130 static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
131         "Register test\t(offline)",
132         "Eeprom test\t(offline)",
133         "Link test\t(online)",
134         "RLDRAM test\t(offline)",
135         "BIST Test\t(offline)"
136 };
137
138 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
139         {"tmac_frms"},
140         {"tmac_data_octets"},
141         {"tmac_drop_frms"},
142         {"tmac_mcst_frms"},
143         {"tmac_bcst_frms"},
144         {"tmac_pause_ctrl_frms"},
145         {"tmac_ttl_octets"},
146         {"tmac_ucst_frms"},
147         {"tmac_nucst_frms"},
148         {"tmac_any_err_frms"},
149         {"tmac_ttl_less_fb_octets"},
150         {"tmac_vld_ip_octets"},
151         {"tmac_vld_ip"},
152         {"tmac_drop_ip"},
153         {"tmac_icmp"},
154         {"tmac_rst_tcp"},
155         {"tmac_tcp"},
156         {"tmac_udp"},
157         {"rmac_vld_frms"},
158         {"rmac_data_octets"},
159         {"rmac_fcs_err_frms"},
160         {"rmac_drop_frms"},
161         {"rmac_vld_mcst_frms"},
162         {"rmac_vld_bcst_frms"},
163         {"rmac_in_rng_len_err_frms"},
164         {"rmac_out_rng_len_err_frms"},
165         {"rmac_long_frms"},
166         {"rmac_pause_ctrl_frms"},
167         {"rmac_unsup_ctrl_frms"},
168         {"rmac_ttl_octets"},
169         {"rmac_accepted_ucst_frms"},
170         {"rmac_accepted_nucst_frms"},
171         {"rmac_discarded_frms"},
172         {"rmac_drop_events"},
173         {"rmac_ttl_less_fb_octets"},
174         {"rmac_ttl_frms"},
175         {"rmac_usized_frms"},
176         {"rmac_osized_frms"},
177         {"rmac_frag_frms"},
178         {"rmac_jabber_frms"},
179         {"rmac_ttl_64_frms"},
180         {"rmac_ttl_65_127_frms"},
181         {"rmac_ttl_128_255_frms"},
182         {"rmac_ttl_256_511_frms"},
183         {"rmac_ttl_512_1023_frms"},
184         {"rmac_ttl_1024_1518_frms"},
185         {"rmac_ip"},
186         {"rmac_ip_octets"},
187         {"rmac_hdr_err_ip"},
188         {"rmac_drop_ip"},
189         {"rmac_icmp"},
190         {"rmac_tcp"},
191         {"rmac_udp"},
192         {"rmac_err_drp_udp"},
193         {"rmac_xgmii_err_sym"},
194         {"rmac_frms_q0"},
195         {"rmac_frms_q1"},
196         {"rmac_frms_q2"},
197         {"rmac_frms_q3"},
198         {"rmac_frms_q4"},
199         {"rmac_frms_q5"},
200         {"rmac_frms_q6"},
201         {"rmac_frms_q7"},
202         {"rmac_full_q0"},
203         {"rmac_full_q1"},
204         {"rmac_full_q2"},
205         {"rmac_full_q3"},
206         {"rmac_full_q4"},
207         {"rmac_full_q5"},
208         {"rmac_full_q6"},
209         {"rmac_full_q7"},
210         {"rmac_pause_cnt"},
211         {"rmac_xgmii_data_err_cnt"},
212         {"rmac_xgmii_ctrl_err_cnt"},
213         {"rmac_accepted_ip"},
214         {"rmac_err_tcp"},
215         {"rd_req_cnt"},
216         {"new_rd_req_cnt"},
217         {"new_rd_req_rtry_cnt"},
218         {"rd_rtry_cnt"},
219         {"wr_rtry_rd_ack_cnt"},
220         {"wr_req_cnt"},
221         {"new_wr_req_cnt"},
222         {"new_wr_req_rtry_cnt"},
223         {"wr_rtry_cnt"},
224         {"wr_disc_cnt"},
225         {"rd_rtry_wr_ack_cnt"},
226         {"txp_wr_cnt"},
227         {"txd_rd_cnt"},
228         {"txd_wr_cnt"},
229         {"rxd_rd_cnt"},
230         {"rxd_wr_cnt"},
231         {"txf_rd_cnt"},
232         {"rxf_wr_cnt"}
233 };
234
235 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
236         {"rmac_ttl_1519_4095_frms"},
237         {"rmac_ttl_4096_8191_frms"},
238         {"rmac_ttl_8192_max_frms"},
239         {"rmac_ttl_gt_max_frms"},
240         {"rmac_osized_alt_frms"},
241         {"rmac_jabber_alt_frms"},
242         {"rmac_gt_max_alt_frms"},
243         {"rmac_vlan_frms"},
244         {"rmac_len_discard"},
245         {"rmac_fcs_discard"},
246         {"rmac_pf_discard"},
247         {"rmac_da_discard"},
248         {"rmac_red_discard"},
249         {"rmac_rts_discard"},
250         {"rmac_ingm_full_discard"},
251         {"link_fault_cnt"}
252 };
253
254 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
255         {"\n DRIVER STATISTICS"},
256         {"single_bit_ecc_errs"},
257         {"double_bit_ecc_errs"},
258         {"parity_err_cnt"},
259         {"serious_err_cnt"},
260         {"soft_reset_cnt"},
261         {"fifo_full_cnt"},
262         {"ring_0_full_cnt"},
263         {"ring_1_full_cnt"},
264         {"ring_2_full_cnt"},
265         {"ring_3_full_cnt"},
266         {"ring_4_full_cnt"},
267         {"ring_5_full_cnt"},
268         {"ring_6_full_cnt"},
269         {"ring_7_full_cnt"},
270         {"alarm_transceiver_temp_high"},
271         {"alarm_transceiver_temp_low"},
272         {"alarm_laser_bias_current_high"},
273         {"alarm_laser_bias_current_low"},
274         {"alarm_laser_output_power_high"},
275         {"alarm_laser_output_power_low"},
276         {"warn_transceiver_temp_high"},
277         {"warn_transceiver_temp_low"},
278         {"warn_laser_bias_current_high"},
279         {"warn_laser_bias_current_low"},
280         {"warn_laser_output_power_high"},
281         {"warn_laser_output_power_low"},
282         {"lro_aggregated_pkts"},
283         {"lro_flush_both_count"},
284         {"lro_out_of_sequence_pkts"},
285         {"lro_flush_due_to_max_pkts"},
286         {"lro_avg_aggr_pkts"},
287         {"mem_alloc_fail_cnt"},
288         {"pci_map_fail_cnt"},
289         {"watchdog_timer_cnt"},
290         {"mem_allocated"},
291         {"mem_freed"},
292         {"link_up_cnt"},
293         {"link_down_cnt"},
294         {"link_up_time"},
295         {"link_down_time"},
296         {"tx_tcode_buf_abort_cnt"},
297         {"tx_tcode_desc_abort_cnt"},
298         {"tx_tcode_parity_err_cnt"},
299         {"tx_tcode_link_loss_cnt"},
300         {"tx_tcode_list_proc_err_cnt"},
301         {"rx_tcode_parity_err_cnt"},
302         {"rx_tcode_abort_cnt"},
303         {"rx_tcode_parity_abort_cnt"},
304         {"rx_tcode_rda_fail_cnt"},
305         {"rx_tcode_unkn_prot_cnt"},
306         {"rx_tcode_fcs_err_cnt"},
307         {"rx_tcode_buf_size_err_cnt"},
308         {"rx_tcode_rxd_corrupt_cnt"},
309         {"rx_tcode_unkn_err_cnt"},
310         {"tda_err_cnt"},
311         {"pfc_err_cnt"},
312         {"pcc_err_cnt"},
313         {"tti_err_cnt"},
314         {"tpa_err_cnt"},
315         {"sm_err_cnt"},
316         {"lso_err_cnt"},
317         {"mac_tmac_err_cnt"},
318         {"mac_rmac_err_cnt"},
319         {"xgxs_txgxs_err_cnt"},
320         {"xgxs_rxgxs_err_cnt"},
321         {"rc_err_cnt"},
322         {"prc_pcix_err_cnt"},
323         {"rpa_err_cnt"},
324         {"rda_err_cnt"},
325         {"rti_err_cnt"},
326         {"mc_err_cnt"}
327 };
328
329 #define S2IO_XENA_STAT_LEN      ARRAY_SIZE(ethtool_xena_stats_keys)
330 #define S2IO_ENHANCED_STAT_LEN  ARRAY_SIZE(ethtool_enhanced_stats_keys)
331 #define S2IO_DRIVER_STAT_LEN    ARRAY_SIZE(ethtool_driver_stats_keys)
332
333 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
334 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
335
336 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
337 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
338
339 #define S2IO_TEST_LEN   ARRAY_SIZE(s2io_gstrings)
340 #define S2IO_STRINGS_LEN        (S2IO_TEST_LEN * ETH_GSTRING_LEN)
341
342 #define S2IO_TIMER_CONF(timer, handle, arg, exp)        \
343         init_timer(&timer);                             \
344         timer.function = handle;                        \
345         timer.data = (unsigned long)arg;                \
346         mod_timer(&timer, (jiffies + exp))              \
347
348 /* copy mac addr to def_mac_addr array */
349 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
350 {
351         sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
352         sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
353         sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
354         sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
355         sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
356         sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
357 }
358
359 /*
360  * Constants to be programmed into the Xena's registers, to configure
361  * the XAUI.
362  */
363
364 #define END_SIGN        0x0
365 static const u64 herc_act_dtx_cfg[] = {
366         /* Set address */
367         0x8000051536750000ULL, 0x80000515367500E0ULL,
368         /* Write data */
369         0x8000051536750004ULL, 0x80000515367500E4ULL,
370         /* Set address */
371         0x80010515003F0000ULL, 0x80010515003F00E0ULL,
372         /* Write data */
373         0x80010515003F0004ULL, 0x80010515003F00E4ULL,
374         /* Set address */
375         0x801205150D440000ULL, 0x801205150D4400E0ULL,
376         /* Write data */
377         0x801205150D440004ULL, 0x801205150D4400E4ULL,
378         /* Set address */
379         0x80020515F2100000ULL, 0x80020515F21000E0ULL,
380         /* Write data */
381         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
382         /* Done */
383         END_SIGN
384 };
385
386 static const u64 xena_dtx_cfg[] = {
387         /* Set address */
388         0x8000051500000000ULL, 0x80000515000000E0ULL,
389         /* Write data */
390         0x80000515D9350004ULL, 0x80000515D93500E4ULL,
391         /* Set address */
392         0x8001051500000000ULL, 0x80010515000000E0ULL,
393         /* Write data */
394         0x80010515001E0004ULL, 0x80010515001E00E4ULL,
395         /* Set address */
396         0x8002051500000000ULL, 0x80020515000000E0ULL,
397         /* Write data */
398         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
399         END_SIGN
400 };
401
402 /*
403  * Constants for Fixing the MacAddress problem seen mostly on
404  * Alpha machines.
405  */
406 static const u64 fix_mac[] = {
407         0x0060000000000000ULL, 0x0060600000000000ULL,
408         0x0040600000000000ULL, 0x0000600000000000ULL,
409         0x0020600000000000ULL, 0x0060600000000000ULL,
410         0x0020600000000000ULL, 0x0060600000000000ULL,
411         0x0020600000000000ULL, 0x0060600000000000ULL,
412         0x0020600000000000ULL, 0x0060600000000000ULL,
413         0x0020600000000000ULL, 0x0060600000000000ULL,
414         0x0020600000000000ULL, 0x0060600000000000ULL,
415         0x0020600000000000ULL, 0x0060600000000000ULL,
416         0x0020600000000000ULL, 0x0060600000000000ULL,
417         0x0020600000000000ULL, 0x0060600000000000ULL,
418         0x0020600000000000ULL, 0x0060600000000000ULL,
419         0x0020600000000000ULL, 0x0000600000000000ULL,
420         0x0040600000000000ULL, 0x0060600000000000ULL,
421         END_SIGN
422 };
423
424 MODULE_LICENSE("GPL");
425 MODULE_VERSION(DRV_VERSION);
426
427
428 /* Module Loadable parameters. */
429 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
430 S2IO_PARM_INT(rx_ring_num, 1);
431 S2IO_PARM_INT(multiq, 0);
432 S2IO_PARM_INT(rx_ring_mode, 1);
433 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
434 S2IO_PARM_INT(rmac_pause_time, 0x100);
435 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
436 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
437 S2IO_PARM_INT(shared_splits, 0);
438 S2IO_PARM_INT(tmac_util_period, 5);
439 S2IO_PARM_INT(rmac_util_period, 5);
440 S2IO_PARM_INT(l3l4hdr_size, 128);
441 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
442 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
443 /* Frequency of Rx desc syncs expressed as power of 2 */
444 S2IO_PARM_INT(rxsync_frequency, 3);
445 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
446 S2IO_PARM_INT(intr_type, 2);
447 /* Large receive offload feature */
448
449 /* Max pkts to be aggregated by LRO at one time. If not specified,
450  * aggregation happens until we hit max IP pkt size(64K)
451  */
452 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
453 S2IO_PARM_INT(indicate_max_pkts, 0);
454
455 S2IO_PARM_INT(napi, 1);
456 S2IO_PARM_INT(ufo, 0);
457 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
458
459 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
460 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
461 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
462 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
463 static unsigned int rts_frm_len[MAX_RX_RINGS] =
464 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
465
466 module_param_array(tx_fifo_len, uint, NULL, 0);
467 module_param_array(rx_ring_sz, uint, NULL, 0);
468 module_param_array(rts_frm_len, uint, NULL, 0);
469
470 /*
471  * S2IO device table.
472  * This table lists all the devices that this driver supports.
473  */
474 static const struct pci_device_id s2io_tbl[] = {
475         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
476          PCI_ANY_ID, PCI_ANY_ID},
477         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
478          PCI_ANY_ID, PCI_ANY_ID},
479         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
480          PCI_ANY_ID, PCI_ANY_ID},
481         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
482          PCI_ANY_ID, PCI_ANY_ID},
483         {0,}
484 };
485
486 MODULE_DEVICE_TABLE(pci, s2io_tbl);
487
488 static const struct pci_error_handlers s2io_err_handler = {
489         .error_detected = s2io_io_error_detected,
490         .slot_reset = s2io_io_slot_reset,
491         .resume = s2io_io_resume,
492 };
493
494 static struct pci_driver s2io_driver = {
495         .name = "S2IO",
496         .id_table = s2io_tbl,
497         .probe = s2io_init_nic,
498         .remove = s2io_rem_nic,
499         .err_handler = &s2io_err_handler,
500 };
501
502 /* A simplifier macro used both by init and free shared_mem Fns(). */
503 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
504
505 /* netqueue manipulation helper functions */
506 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
507 {
508         if (!sp->config.multiq) {
509                 int i;
510
511                 for (i = 0; i < sp->config.tx_fifo_num; i++)
512                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
513         }
514         netif_tx_stop_all_queues(sp->dev);
515 }
516
517 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
518 {
519         if (!sp->config.multiq)
520                 sp->mac_control.fifos[fifo_no].queue_state =
521                         FIFO_QUEUE_STOP;
522
523         netif_tx_stop_all_queues(sp->dev);
524 }
525
526 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
527 {
528         if (!sp->config.multiq) {
529                 int i;
530
531                 for (i = 0; i < sp->config.tx_fifo_num; i++)
532                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
533         }
534         netif_tx_start_all_queues(sp->dev);
535 }
536
537 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
538 {
539         if (!sp->config.multiq) {
540                 int i;
541
542                 for (i = 0; i < sp->config.tx_fifo_num; i++)
543                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
544         }
545         netif_tx_wake_all_queues(sp->dev);
546 }
547
548 static inline void s2io_wake_tx_queue(
549         struct fifo_info *fifo, int cnt, u8 multiq)
550 {
551
552         if (multiq) {
553                 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
554                         netif_wake_subqueue(fifo->dev, fifo->fifo_no);
555         } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
556                 if (netif_queue_stopped(fifo->dev)) {
557                         fifo->queue_state = FIFO_QUEUE_START;
558                         netif_wake_queue(fifo->dev);
559                 }
560         }
561 }
562
563 /**
564  * init_shared_mem - Allocation and Initialization of Memory
565  * @nic: Device private variable.
566  * Description: The function allocates all the memory areas shared
567  * between the NIC and the driver. This includes Tx descriptors,
568  * Rx descriptors and the statistics block.
569  */
570
571 static int init_shared_mem(struct s2io_nic *nic)
572 {
573         u32 size;
574         void *tmp_v_addr, *tmp_v_addr_next;
575         dma_addr_t tmp_p_addr, tmp_p_addr_next;
576         struct RxD_block *pre_rxd_blk = NULL;
577         int i, j, blk_cnt;
578         int lst_size, lst_per_page;
579         struct net_device *dev = nic->dev;
580         unsigned long tmp;
581         struct buffAdd *ba;
582         struct config_param *config = &nic->config;
583         struct mac_info *mac_control = &nic->mac_control;
584         unsigned long long mem_allocated = 0;
585
586         /* Allocation and initialization of TXDLs in FIFOs */
587         size = 0;
588         for (i = 0; i < config->tx_fifo_num; i++) {
589                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
590
591                 size += tx_cfg->fifo_len;
592         }
593         if (size > MAX_AVAILABLE_TXDS) {
594                 DBG_PRINT(ERR_DBG,
595                           "Too many TxDs requested: %d, max supported: %d\n",
596                           size, MAX_AVAILABLE_TXDS);
597                 return -EINVAL;
598         }
599
600         size = 0;
601         for (i = 0; i < config->tx_fifo_num; i++) {
602                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
603
604                 size = tx_cfg->fifo_len;
605                 /*
606                  * Legal values are from 2 to 8192
607                  */
608                 if (size < 2) {
609                         DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
610                                   "Valid lengths are 2 through 8192\n",
611                                   i, size);
612                         return -EINVAL;
613                 }
614         }
615
616         lst_size = (sizeof(struct TxD) * config->max_txds);
617         lst_per_page = PAGE_SIZE / lst_size;
618
619         for (i = 0; i < config->tx_fifo_num; i++) {
620                 struct fifo_info *fifo = &mac_control->fifos[i];
621                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
622                 int fifo_len = tx_cfg->fifo_len;
623                 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
624
625                 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
626                 if (!fifo->list_info) {
627                         DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
628                         return -ENOMEM;
629                 }
630                 mem_allocated += list_holder_size;
631         }
632         for (i = 0; i < config->tx_fifo_num; i++) {
633                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
634                                                 lst_per_page);
635                 struct fifo_info *fifo = &mac_control->fifos[i];
636                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
637
638                 fifo->tx_curr_put_info.offset = 0;
639                 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
640                 fifo->tx_curr_get_info.offset = 0;
641                 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
642                 fifo->fifo_no = i;
643                 fifo->nic = nic;
644                 fifo->max_txds = MAX_SKB_FRAGS + 2;
645                 fifo->dev = dev;
646
647                 for (j = 0; j < page_num; j++) {
648                         int k = 0;
649                         dma_addr_t tmp_p;
650                         void *tmp_v;
651                         tmp_v = pci_alloc_consistent(nic->pdev,
652                                                      PAGE_SIZE, &tmp_p);
653                         if (!tmp_v) {
654                                 DBG_PRINT(INFO_DBG,
655                                           "pci_alloc_consistent failed for TxDL\n");
656                                 return -ENOMEM;
657                         }
658                         /* If we got a zero DMA address(can happen on
659                          * certain platforms like PPC), reallocate.
660                          * Store virtual address of page we don't want,
661                          * to be freed later.
662                          */
663                         if (!tmp_p) {
664                                 mac_control->zerodma_virt_addr = tmp_v;
665                                 DBG_PRINT(INIT_DBG,
666                                           "%s: Zero DMA address for TxDL. "
667                                           "Virtual address %p\n",
668                                           dev->name, tmp_v);
669                                 tmp_v = pci_alloc_consistent(nic->pdev,
670                                                              PAGE_SIZE, &tmp_p);
671                                 if (!tmp_v) {
672                                         DBG_PRINT(INFO_DBG,
673                                                   "pci_alloc_consistent failed for TxDL\n");
674                                         return -ENOMEM;
675                                 }
676                                 mem_allocated += PAGE_SIZE;
677                         }
678                         while (k < lst_per_page) {
679                                 int l = (j * lst_per_page) + k;
680                                 if (l == tx_cfg->fifo_len)
681                                         break;
682                                 fifo->list_info[l].list_virt_addr =
683                                         tmp_v + (k * lst_size);
684                                 fifo->list_info[l].list_phy_addr =
685                                         tmp_p + (k * lst_size);
686                                 k++;
687                         }
688                 }
689         }
690
691         for (i = 0; i < config->tx_fifo_num; i++) {
692                 struct fifo_info *fifo = &mac_control->fifos[i];
693                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
694
695                 size = tx_cfg->fifo_len;
696                 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
697                 if (!fifo->ufo_in_band_v)
698                         return -ENOMEM;
699                 mem_allocated += (size * sizeof(u64));
700         }
701
702         /* Allocation and initialization of RXDs in Rings */
703         size = 0;
704         for (i = 0; i < config->rx_ring_num; i++) {
705                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
706                 struct ring_info *ring = &mac_control->rings[i];
707
708                 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
709                         DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
710                                   "multiple of RxDs per Block\n",
711                                   dev->name, i);
712                         return FAILURE;
713                 }
714                 size += rx_cfg->num_rxd;
715                 ring->block_count = rx_cfg->num_rxd /
716                         (rxd_count[nic->rxd_mode] + 1);
717                 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
718         }
719         if (nic->rxd_mode == RXD_MODE_1)
720                 size = (size * (sizeof(struct RxD1)));
721         else
722                 size = (size * (sizeof(struct RxD3)));
723
724         for (i = 0; i < config->rx_ring_num; i++) {
725                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
726                 struct ring_info *ring = &mac_control->rings[i];
727
728                 ring->rx_curr_get_info.block_index = 0;
729                 ring->rx_curr_get_info.offset = 0;
730                 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
731                 ring->rx_curr_put_info.block_index = 0;
732                 ring->rx_curr_put_info.offset = 0;
733                 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
734                 ring->nic = nic;
735                 ring->ring_no = i;
736
737                 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
738                 /*  Allocating all the Rx blocks */
739                 for (j = 0; j < blk_cnt; j++) {
740                         struct rx_block_info *rx_blocks;
741                         int l;
742
743                         rx_blocks = &ring->rx_blocks[j];
744                         size = SIZE_OF_BLOCK;   /* size is always page size */
745                         tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
746                                                           &tmp_p_addr);
747                         if (tmp_v_addr == NULL) {
748                                 /*
749                                  * In case of failure, free_shared_mem()
750                                  * is called, which should free any
751                                  * memory that was alloced till the
752                                  * failure happened.
753                                  */
754                                 rx_blocks->block_virt_addr = tmp_v_addr;
755                                 return -ENOMEM;
756                         }
757                         mem_allocated += size;
758                         memset(tmp_v_addr, 0, size);
759
760                         size = sizeof(struct rxd_info) *
761                                 rxd_count[nic->rxd_mode];
762                         rx_blocks->block_virt_addr = tmp_v_addr;
763                         rx_blocks->block_dma_addr = tmp_p_addr;
764                         rx_blocks->rxds = kmalloc(size,  GFP_KERNEL);
765                         if (!rx_blocks->rxds)
766                                 return -ENOMEM;
767                         mem_allocated += size;
768                         for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
769                                 rx_blocks->rxds[l].virt_addr =
770                                         rx_blocks->block_virt_addr +
771                                         (rxd_size[nic->rxd_mode] * l);
772                                 rx_blocks->rxds[l].dma_addr =
773                                         rx_blocks->block_dma_addr +
774                                         (rxd_size[nic->rxd_mode] * l);
775                         }
776                 }
777                 /* Interlinking all Rx Blocks */
778                 for (j = 0; j < blk_cnt; j++) {
779                         int next = (j + 1) % blk_cnt;
780                         tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
781                         tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
782                         tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
783                         tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
784
785                         pre_rxd_blk = tmp_v_addr;
786                         pre_rxd_blk->reserved_2_pNext_RxD_block =
787                                 (unsigned long)tmp_v_addr_next;
788                         pre_rxd_blk->pNext_RxD_Blk_physical =
789                                 (u64)tmp_p_addr_next;
790                 }
791         }
792         if (nic->rxd_mode == RXD_MODE_3B) {
793                 /*
794                  * Allocation of Storages for buffer addresses in 2BUFF mode
795                  * and the buffers as well.
796                  */
797                 for (i = 0; i < config->rx_ring_num; i++) {
798                         struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
799                         struct ring_info *ring = &mac_control->rings[i];
800
801                         blk_cnt = rx_cfg->num_rxd /
802                                 (rxd_count[nic->rxd_mode] + 1);
803                         size = sizeof(struct buffAdd *) * blk_cnt;
804                         ring->ba = kmalloc(size, GFP_KERNEL);
805                         if (!ring->ba)
806                                 return -ENOMEM;
807                         mem_allocated += size;
808                         for (j = 0; j < blk_cnt; j++) {
809                                 int k = 0;
810
811                                 size = sizeof(struct buffAdd) *
812                                         (rxd_count[nic->rxd_mode] + 1);
813                                 ring->ba[j] = kmalloc(size, GFP_KERNEL);
814                                 if (!ring->ba[j])
815                                         return -ENOMEM;
816                                 mem_allocated += size;
817                                 while (k != rxd_count[nic->rxd_mode]) {
818                                         ba = &ring->ba[j][k];
819                                         size = BUF0_LEN + ALIGN_SIZE;
820                                         ba->ba_0_org = kmalloc(size, GFP_KERNEL);
821                                         if (!ba->ba_0_org)
822                                                 return -ENOMEM;
823                                         mem_allocated += size;
824                                         tmp = (unsigned long)ba->ba_0_org;
825                                         tmp += ALIGN_SIZE;
826                                         tmp &= ~((unsigned long)ALIGN_SIZE);
827                                         ba->ba_0 = (void *)tmp;
828
829                                         size = BUF1_LEN + ALIGN_SIZE;
830                                         ba->ba_1_org = kmalloc(size, GFP_KERNEL);
831                                         if (!ba->ba_1_org)
832                                                 return -ENOMEM;
833                                         mem_allocated += size;
834                                         tmp = (unsigned long)ba->ba_1_org;
835                                         tmp += ALIGN_SIZE;
836                                         tmp &= ~((unsigned long)ALIGN_SIZE);
837                                         ba->ba_1 = (void *)tmp;
838                                         k++;
839                                 }
840                         }
841                 }
842         }
843
844         /* Allocation and initialization of Statistics block */
845         size = sizeof(struct stat_block);
846         mac_control->stats_mem =
847                 pci_alloc_consistent(nic->pdev, size,
848                                      &mac_control->stats_mem_phy);
849
850         if (!mac_control->stats_mem) {
851                 /*
852                  * In case of failure, free_shared_mem() is called, which
853                  * should free any memory that was alloced till the
854                  * failure happened.
855                  */
856                 return -ENOMEM;
857         }
858         mem_allocated += size;
859         mac_control->stats_mem_sz = size;
860
861         tmp_v_addr = mac_control->stats_mem;
862         mac_control->stats_info = tmp_v_addr;
863         memset(tmp_v_addr, 0, size);
864         DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
865                 dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
866         mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
867         return SUCCESS;
868 }
869
870 /**
871  * free_shared_mem - Free the allocated Memory
872  * @nic:  Device private variable.
873  * Description: This function is to free all memory locations allocated by
874  * the init_shared_mem() function and return it to the kernel.
875  */
876
877 static void free_shared_mem(struct s2io_nic *nic)
878 {
879         int i, j, blk_cnt, size;
880         void *tmp_v_addr;
881         dma_addr_t tmp_p_addr;
882         int lst_size, lst_per_page;
883         struct net_device *dev;
884         int page_num = 0;
885         struct config_param *config;
886         struct mac_info *mac_control;
887         struct stat_block *stats;
888         struct swStat *swstats;
889
890         if (!nic)
891                 return;
892
893         dev = nic->dev;
894
895         config = &nic->config;
896         mac_control = &nic->mac_control;
897         stats = mac_control->stats_info;
898         swstats = &stats->sw_stat;
899
900         lst_size = sizeof(struct TxD) * config->max_txds;
901         lst_per_page = PAGE_SIZE / lst_size;
902
903         for (i = 0; i < config->tx_fifo_num; i++) {
904                 struct fifo_info *fifo = &mac_control->fifos[i];
905                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
906
907                 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
908                 for (j = 0; j < page_num; j++) {
909                         int mem_blks = (j * lst_per_page);
910                         struct list_info_hold *fli;
911
912                         if (!fifo->list_info)
913                                 return;
914
915                         fli = &fifo->list_info[mem_blks];
916                         if (!fli->list_virt_addr)
917                                 break;
918                         pci_free_consistent(nic->pdev, PAGE_SIZE,
919                                             fli->list_virt_addr,
920                                             fli->list_phy_addr);
921                         swstats->mem_freed += PAGE_SIZE;
922                 }
923                 /* If we got a zero DMA address during allocation,
924                  * free the page now
925                  */
926                 if (mac_control->zerodma_virt_addr) {
927                         pci_free_consistent(nic->pdev, PAGE_SIZE,
928                                             mac_control->zerodma_virt_addr,
929                                             (dma_addr_t)0);
930                         DBG_PRINT(INIT_DBG,
931                                   "%s: Freeing TxDL with zero DMA address. "
932                                   "Virtual address %p\n",
933                                   dev->name, mac_control->zerodma_virt_addr);
934                         swstats->mem_freed += PAGE_SIZE;
935                 }
936                 kfree(fifo->list_info);
937                 swstats->mem_freed += tx_cfg->fifo_len *
938                         sizeof(struct list_info_hold);
939         }
940
941         size = SIZE_OF_BLOCK;
942         for (i = 0; i < config->rx_ring_num; i++) {
943                 struct ring_info *ring = &mac_control->rings[i];
944
945                 blk_cnt = ring->block_count;
946                 for (j = 0; j < blk_cnt; j++) {
947                         tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
948                         tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
949                         if (tmp_v_addr == NULL)
950                                 break;
951                         pci_free_consistent(nic->pdev, size,
952                                             tmp_v_addr, tmp_p_addr);
953                         swstats->mem_freed += size;
954                         kfree(ring->rx_blocks[j].rxds);
955                         swstats->mem_freed += sizeof(struct rxd_info) *
956                                 rxd_count[nic->rxd_mode];
957                 }
958         }
959
960         if (nic->rxd_mode == RXD_MODE_3B) {
961                 /* Freeing buffer storage addresses in 2BUFF mode. */
962                 for (i = 0; i < config->rx_ring_num; i++) {
963                         struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
964                         struct ring_info *ring = &mac_control->rings[i];
965
966                         blk_cnt = rx_cfg->num_rxd /
967                                 (rxd_count[nic->rxd_mode] + 1);
968                         for (j = 0; j < blk_cnt; j++) {
969                                 int k = 0;
970                                 if (!ring->ba[j])
971                                         continue;
972                                 while (k != rxd_count[nic->rxd_mode]) {
973                                         struct buffAdd *ba = &ring->ba[j][k];
974                                         kfree(ba->ba_0_org);
975                                         swstats->mem_freed +=
976                                                 BUF0_LEN + ALIGN_SIZE;
977                                         kfree(ba->ba_1_org);
978                                         swstats->mem_freed +=
979                                                 BUF1_LEN + ALIGN_SIZE;
980                                         k++;
981                                 }
982                                 kfree(ring->ba[j]);
983                                 swstats->mem_freed += sizeof(struct buffAdd) *
984                                         (rxd_count[nic->rxd_mode] + 1);
985                         }
986                         kfree(ring->ba);
987                         swstats->mem_freed += sizeof(struct buffAdd *) *
988                                 blk_cnt;
989                 }
990         }
991
992         for (i = 0; i < nic->config.tx_fifo_num; i++) {
993                 struct fifo_info *fifo = &mac_control->fifos[i];
994                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
995
996                 if (fifo->ufo_in_band_v) {
997                         swstats->mem_freed += tx_cfg->fifo_len *
998                                 sizeof(u64);
999                         kfree(fifo->ufo_in_band_v);
1000                 }
1001         }
1002
1003         if (mac_control->stats_mem) {
1004                 swstats->mem_freed += mac_control->stats_mem_sz;
1005                 pci_free_consistent(nic->pdev,
1006                                     mac_control->stats_mem_sz,
1007                                     mac_control->stats_mem,
1008                                     mac_control->stats_mem_phy);
1009         }
1010 }
1011
1012 /**
1013  * s2io_verify_pci_mode -
1014  */
1015
1016 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1017 {
1018         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1019         register u64 val64 = 0;
1020         int     mode;
1021
1022         val64 = readq(&bar0->pci_mode);
1023         mode = (u8)GET_PCI_MODE(val64);
1024
1025         if (val64 & PCI_MODE_UNKNOWN_MODE)
1026                 return -1;      /* Unknown PCI mode */
1027         return mode;
1028 }
1029
1030 #define NEC_VENID   0x1033
1031 #define NEC_DEVID   0x0125
1032 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1033 {
1034         struct pci_dev *tdev = NULL;
1035         for_each_pci_dev(tdev) {
1036                 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1037                         if (tdev->bus == s2io_pdev->bus->parent) {
1038                                 pci_dev_put(tdev);
1039                                 return 1;
1040                         }
1041                 }
1042         }
1043         return 0;
1044 }
1045
1046 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1047 /**
1048  * s2io_print_pci_mode -
1049  */
1050 static int s2io_print_pci_mode(struct s2io_nic *nic)
1051 {
1052         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1053         register u64 val64 = 0;
1054         int     mode;
1055         struct config_param *config = &nic->config;
1056         const char *pcimode;
1057
1058         val64 = readq(&bar0->pci_mode);
1059         mode = (u8)GET_PCI_MODE(val64);
1060
1061         if (val64 & PCI_MODE_UNKNOWN_MODE)
1062                 return -1;      /* Unknown PCI mode */
1063
1064         config->bus_speed = bus_speed[mode];
1065
1066         if (s2io_on_nec_bridge(nic->pdev)) {
1067                 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1068                           nic->dev->name);
1069                 return mode;
1070         }
1071
1072         switch (mode) {
1073         case PCI_MODE_PCI_33:
1074                 pcimode = "33MHz PCI bus";
1075                 break;
1076         case PCI_MODE_PCI_66:
1077                 pcimode = "66MHz PCI bus";
1078                 break;
1079         case PCI_MODE_PCIX_M1_66:
1080                 pcimode = "66MHz PCIX(M1) bus";
1081                 break;
1082         case PCI_MODE_PCIX_M1_100:
1083                 pcimode = "100MHz PCIX(M1) bus";
1084                 break;
1085         case PCI_MODE_PCIX_M1_133:
1086                 pcimode = "133MHz PCIX(M1) bus";
1087                 break;
1088         case PCI_MODE_PCIX_M2_66:
1089                 pcimode = "133MHz PCIX(M2) bus";
1090                 break;
1091         case PCI_MODE_PCIX_M2_100:
1092                 pcimode = "200MHz PCIX(M2) bus";
1093                 break;
1094         case PCI_MODE_PCIX_M2_133:
1095                 pcimode = "266MHz PCIX(M2) bus";
1096                 break;
1097         default:
1098                 pcimode = "unsupported bus!";
1099                 mode = -1;
1100         }
1101
1102         DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1103                   nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1104
1105         return mode;
1106 }
1107
1108 /**
1109  *  init_tti - Initialization transmit traffic interrupt scheme
1110  *  @nic: device private variable
1111  *  @link: link status (UP/DOWN) used to enable/disable continuous
1112  *  transmit interrupts
1113  *  Description: The function configures transmit traffic interrupts
1114  *  Return Value:  SUCCESS on success and
1115  *  '-1' on failure
1116  */
1117
1118 static int init_tti(struct s2io_nic *nic, int link)
1119 {
1120         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1121         register u64 val64 = 0;
1122         int i;
1123         struct config_param *config = &nic->config;
1124
1125         for (i = 0; i < config->tx_fifo_num; i++) {
1126                 /*
1127                  * TTI Initialization. Default Tx timer gets us about
1128                  * 250 interrupts per sec. Continuous interrupts are enabled
1129                  * by default.
1130                  */
1131                 if (nic->device_type == XFRAME_II_DEVICE) {
1132                         int count = (nic->config.bus_speed * 125)/2;
1133                         val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1134                 } else
1135                         val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1136
1137                 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1138                         TTI_DATA1_MEM_TX_URNG_B(0x10) |
1139                         TTI_DATA1_MEM_TX_URNG_C(0x30) |
1140                         TTI_DATA1_MEM_TX_TIMER_AC_EN;
1141                 if (i == 0)
1142                         if (use_continuous_tx_intrs && (link == LINK_UP))
1143                                 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1144                 writeq(val64, &bar0->tti_data1_mem);
1145
1146                 if (nic->config.intr_type == MSI_X) {
1147                         val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1148                                 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1149                                 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1150                                 TTI_DATA2_MEM_TX_UFC_D(0x300);
1151                 } else {
1152                         if ((nic->config.tx_steering_type ==
1153                              TX_DEFAULT_STEERING) &&
1154                             (config->tx_fifo_num > 1) &&
1155                             (i >= nic->udp_fifo_idx) &&
1156                             (i < (nic->udp_fifo_idx +
1157                                   nic->total_udp_fifos)))
1158                                 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1159                                         TTI_DATA2_MEM_TX_UFC_B(0x80) |
1160                                         TTI_DATA2_MEM_TX_UFC_C(0x100) |
1161                                         TTI_DATA2_MEM_TX_UFC_D(0x120);
1162                         else
1163                                 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1164                                         TTI_DATA2_MEM_TX_UFC_B(0x20) |
1165                                         TTI_DATA2_MEM_TX_UFC_C(0x40) |
1166                                         TTI_DATA2_MEM_TX_UFC_D(0x80);
1167                 }
1168
1169                 writeq(val64, &bar0->tti_data2_mem);
1170
1171                 val64 = TTI_CMD_MEM_WE |
1172                         TTI_CMD_MEM_STROBE_NEW_CMD |
1173                         TTI_CMD_MEM_OFFSET(i);
1174                 writeq(val64, &bar0->tti_command_mem);
1175
1176                 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1177                                           TTI_CMD_MEM_STROBE_NEW_CMD,
1178                                           S2IO_BIT_RESET) != SUCCESS)
1179                         return FAILURE;
1180         }
1181
1182         return SUCCESS;
1183 }
1184
1185 /**
1186  *  init_nic - Initialization of hardware
1187  *  @nic: device private variable
1188  *  Description: The function sequentially configures every block
1189  *  of the H/W from their reset values.
1190  *  Return Value:  SUCCESS on success and
1191  *  '-1' on failure (endian settings incorrect).
1192  */
1193
1194 static int init_nic(struct s2io_nic *nic)
1195 {
1196         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1197         struct net_device *dev = nic->dev;
1198         register u64 val64 = 0;
1199         void __iomem *add;
1200         u32 time;
1201         int i, j;
1202         int dtx_cnt = 0;
1203         unsigned long long mem_share;
1204         int mem_size;
1205         struct config_param *config = &nic->config;
1206         struct mac_info *mac_control = &nic->mac_control;
1207
1208         /* to set the swapper controle on the card */
1209         if (s2io_set_swapper(nic)) {
1210                 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
1211                 return -EIO;
1212         }
1213
1214         /*
1215          * Herc requires EOI to be removed from reset before XGXS, so..
1216          */
1217         if (nic->device_type & XFRAME_II_DEVICE) {
1218                 val64 = 0xA500000000ULL;
1219                 writeq(val64, &bar0->sw_reset);
1220                 msleep(500);
1221                 val64 = readq(&bar0->sw_reset);
1222         }
1223
1224         /* Remove XGXS from reset state */
1225         val64 = 0;
1226         writeq(val64, &bar0->sw_reset);
1227         msleep(500);
1228         val64 = readq(&bar0->sw_reset);
1229
1230         /* Ensure that it's safe to access registers by checking
1231          * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1232          */
1233         if (nic->device_type == XFRAME_II_DEVICE) {
1234                 for (i = 0; i < 50; i++) {
1235                         val64 = readq(&bar0->adapter_status);
1236                         if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1237                                 break;
1238                         msleep(10);
1239                 }
1240                 if (i == 50)
1241                         return -ENODEV;
1242         }
1243
1244         /*  Enable Receiving broadcasts */
1245         add = &bar0->mac_cfg;
1246         val64 = readq(&bar0->mac_cfg);
1247         val64 |= MAC_RMAC_BCAST_ENABLE;
1248         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1249         writel((u32)val64, add);
1250         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1251         writel((u32) (val64 >> 32), (add + 4));
1252
1253         /* Read registers in all blocks */
1254         val64 = readq(&bar0->mac_int_mask);
1255         val64 = readq(&bar0->mc_int_mask);
1256         val64 = readq(&bar0->xgxs_int_mask);
1257
1258         /*  Set MTU */
1259         val64 = dev->mtu;
1260         writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1261
1262         if (nic->device_type & XFRAME_II_DEVICE) {
1263                 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1264                         SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1265                                           &bar0->dtx_control, UF);
1266                         if (dtx_cnt & 0x1)
1267                                 msleep(1); /* Necessary!! */
1268                         dtx_cnt++;
1269                 }
1270         } else {
1271                 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1272                         SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1273                                           &bar0->dtx_control, UF);
1274                         val64 = readq(&bar0->dtx_control);
1275                         dtx_cnt++;
1276                 }
1277         }
1278
1279         /*  Tx DMA Initialization */
1280         val64 = 0;
1281         writeq(val64, &bar0->tx_fifo_partition_0);
1282         writeq(val64, &bar0->tx_fifo_partition_1);
1283         writeq(val64, &bar0->tx_fifo_partition_2);
1284         writeq(val64, &bar0->tx_fifo_partition_3);
1285
1286         for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1287                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1288
1289                 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1290                         vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1291
1292                 if (i == (config->tx_fifo_num - 1)) {
1293                         if (i % 2 == 0)
1294                                 i++;
1295                 }
1296
1297                 switch (i) {
1298                 case 1:
1299                         writeq(val64, &bar0->tx_fifo_partition_0);
1300                         val64 = 0;
1301                         j = 0;
1302                         break;
1303                 case 3:
1304                         writeq(val64, &bar0->tx_fifo_partition_1);
1305                         val64 = 0;
1306                         j = 0;
1307                         break;
1308                 case 5:
1309                         writeq(val64, &bar0->tx_fifo_partition_2);
1310                         val64 = 0;
1311                         j = 0;
1312                         break;
1313                 case 7:
1314                         writeq(val64, &bar0->tx_fifo_partition_3);
1315                         val64 = 0;
1316                         j = 0;
1317                         break;
1318                 default:
1319                         j++;
1320                         break;
1321                 }
1322         }
1323
1324         /*
1325          * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1326          * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1327          */
1328         if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
1329                 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1330
1331         val64 = readq(&bar0->tx_fifo_partition_0);
1332         DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1333                   &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1334
1335         /*
1336          * Initialization of Tx_PA_CONFIG register to ignore packet
1337          * integrity checking.
1338          */
1339         val64 = readq(&bar0->tx_pa_cfg);
1340         val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1341                 TX_PA_CFG_IGNORE_SNAP_OUI |
1342                 TX_PA_CFG_IGNORE_LLC_CTRL |
1343                 TX_PA_CFG_IGNORE_L2_ERR;
1344         writeq(val64, &bar0->tx_pa_cfg);
1345
1346         /* Rx DMA initialization. */
1347         val64 = 0;
1348         for (i = 0; i < config->rx_ring_num; i++) {
1349                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1350
1351                 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1352         }
1353         writeq(val64, &bar0->rx_queue_priority);
1354
1355         /*
1356          * Allocating equal share of memory to all the
1357          * configured Rings.
1358          */
1359         val64 = 0;
1360         if (nic->device_type & XFRAME_II_DEVICE)
1361                 mem_size = 32;
1362         else
1363                 mem_size = 64;
1364
1365         for (i = 0; i < config->rx_ring_num; i++) {
1366                 switch (i) {
1367                 case 0:
1368                         mem_share = (mem_size / config->rx_ring_num +
1369                                      mem_size % config->rx_ring_num);
1370                         val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1371                         continue;
1372                 case 1:
1373                         mem_share = (mem_size / config->rx_ring_num);
1374                         val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1375                         continue;
1376                 case 2:
1377                         mem_share = (mem_size / config->rx_ring_num);
1378                         val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1379                         continue;
1380                 case 3:
1381                         mem_share = (mem_size / config->rx_ring_num);
1382                         val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1383                         continue;
1384                 case 4:
1385                         mem_share = (mem_size / config->rx_ring_num);
1386                         val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1387                         continue;
1388                 case 5:
1389                         mem_share = (mem_size / config->rx_ring_num);
1390                         val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1391                         continue;
1392                 case 6:
1393                         mem_share = (mem_size / config->rx_ring_num);
1394                         val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1395                         continue;
1396                 case 7:
1397                         mem_share = (mem_size / config->rx_ring_num);
1398                         val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1399                         continue;
1400                 }
1401         }
1402         writeq(val64, &bar0->rx_queue_cfg);
1403
1404         /*
1405          * Filling Tx round robin registers
1406          * as per the number of FIFOs for equal scheduling priority
1407          */
1408         switch (config->tx_fifo_num) {
1409         case 1:
1410                 val64 = 0x0;
1411                 writeq(val64, &bar0->tx_w_round_robin_0);
1412                 writeq(val64, &bar0->tx_w_round_robin_1);
1413                 writeq(val64, &bar0->tx_w_round_robin_2);
1414                 writeq(val64, &bar0->tx_w_round_robin_3);
1415                 writeq(val64, &bar0->tx_w_round_robin_4);
1416                 break;
1417         case 2:
1418                 val64 = 0x0001000100010001ULL;
1419                 writeq(val64, &bar0->tx_w_round_robin_0);
1420                 writeq(val64, &bar0->tx_w_round_robin_1);
1421                 writeq(val64, &bar0->tx_w_round_robin_2);
1422                 writeq(val64, &bar0->tx_w_round_robin_3);
1423                 val64 = 0x0001000100000000ULL;
1424                 writeq(val64, &bar0->tx_w_round_robin_4);
1425                 break;
1426         case 3:
1427                 val64 = 0x0001020001020001ULL;
1428                 writeq(val64, &bar0->tx_w_round_robin_0);
1429                 val64 = 0x0200010200010200ULL;
1430                 writeq(val64, &bar0->tx_w_round_robin_1);
1431                 val64 = 0x0102000102000102ULL;
1432                 writeq(val64, &bar0->tx_w_round_robin_2);
1433                 val64 = 0x0001020001020001ULL;
1434                 writeq(val64, &bar0->tx_w_round_robin_3);
1435                 val64 = 0x0200010200000000ULL;
1436                 writeq(val64, &bar0->tx_w_round_robin_4);
1437                 break;
1438         case 4:
1439                 val64 = 0x0001020300010203ULL;
1440                 writeq(val64, &bar0->tx_w_round_robin_0);
1441                 writeq(val64, &bar0->tx_w_round_robin_1);
1442                 writeq(val64, &bar0->tx_w_round_robin_2);
1443                 writeq(val64, &bar0->tx_w_round_robin_3);
1444                 val64 = 0x0001020300000000ULL;
1445                 writeq(val64, &bar0->tx_w_round_robin_4);
1446                 break;
1447         case 5:
1448                 val64 = 0x0001020304000102ULL;
1449                 writeq(val64, &bar0->tx_w_round_robin_0);
1450                 val64 = 0x0304000102030400ULL;
1451                 writeq(val64, &bar0->tx_w_round_robin_1);
1452                 val64 = 0x0102030400010203ULL;
1453                 writeq(val64, &bar0->tx_w_round_robin_2);
1454                 val64 = 0x0400010203040001ULL;
1455                 writeq(val64, &bar0->tx_w_round_robin_3);
1456                 val64 = 0x0203040000000000ULL;
1457                 writeq(val64, &bar0->tx_w_round_robin_4);
1458                 break;
1459         case 6:
1460                 val64 = 0x0001020304050001ULL;
1461                 writeq(val64, &bar0->tx_w_round_robin_0);
1462                 val64 = 0x0203040500010203ULL;
1463                 writeq(val64, &bar0->tx_w_round_robin_1);
1464                 val64 = 0x0405000102030405ULL;
1465                 writeq(val64, &bar0->tx_w_round_robin_2);
1466                 val64 = 0x0001020304050001ULL;
1467                 writeq(val64, &bar0->tx_w_round_robin_3);
1468                 val64 = 0x0203040500000000ULL;
1469                 writeq(val64, &bar0->tx_w_round_robin_4);
1470                 break;
1471         case 7:
1472                 val64 = 0x0001020304050600ULL;
1473                 writeq(val64, &bar0->tx_w_round_robin_0);
1474                 val64 = 0x0102030405060001ULL;
1475                 writeq(val64, &bar0->tx_w_round_robin_1);
1476                 val64 = 0x0203040506000102ULL;
1477                 writeq(val64, &bar0->tx_w_round_robin_2);
1478                 val64 = 0x0304050600010203ULL;
1479                 writeq(val64, &bar0->tx_w_round_robin_3);
1480                 val64 = 0x0405060000000000ULL;
1481                 writeq(val64, &bar0->tx_w_round_robin_4);
1482                 break;
1483         case 8:
1484                 val64 = 0x0001020304050607ULL;
1485                 writeq(val64, &bar0->tx_w_round_robin_0);
1486                 writeq(val64, &bar0->tx_w_round_robin_1);
1487                 writeq(val64, &bar0->tx_w_round_robin_2);
1488                 writeq(val64, &bar0->tx_w_round_robin_3);
1489                 val64 = 0x0001020300000000ULL;
1490                 writeq(val64, &bar0->tx_w_round_robin_4);
1491                 break;
1492         }
1493
1494         /* Enable all configured Tx FIFO partitions */
1495         val64 = readq(&bar0->tx_fifo_partition_0);
1496         val64 |= (TX_FIFO_PARTITION_EN);
1497         writeq(val64, &bar0->tx_fifo_partition_0);
1498
1499         /* Filling the Rx round robin registers as per the
1500          * number of Rings and steering based on QoS with
1501          * equal priority.
1502          */
1503         switch (config->rx_ring_num) {
1504         case 1:
1505                 val64 = 0x0;
1506                 writeq(val64, &bar0->rx_w_round_robin_0);
1507                 writeq(val64, &bar0->rx_w_round_robin_1);
1508                 writeq(val64, &bar0->rx_w_round_robin_2);
1509                 writeq(val64, &bar0->rx_w_round_robin_3);
1510                 writeq(val64, &bar0->rx_w_round_robin_4);
1511
1512                 val64 = 0x8080808080808080ULL;
1513                 writeq(val64, &bar0->rts_qos_steering);
1514                 break;
1515         case 2:
1516                 val64 = 0x0001000100010001ULL;
1517                 writeq(val64, &bar0->rx_w_round_robin_0);
1518                 writeq(val64, &bar0->rx_w_round_robin_1);
1519                 writeq(val64, &bar0->rx_w_round_robin_2);
1520                 writeq(val64, &bar0->rx_w_round_robin_3);
1521                 val64 = 0x0001000100000000ULL;
1522                 writeq(val64, &bar0->rx_w_round_robin_4);
1523
1524                 val64 = 0x8080808040404040ULL;
1525                 writeq(val64, &bar0->rts_qos_steering);
1526                 break;
1527         case 3:
1528                 val64 = 0x0001020001020001ULL;
1529                 writeq(val64, &bar0->rx_w_round_robin_0);
1530                 val64 = 0x0200010200010200ULL;
1531                 writeq(val64, &bar0->rx_w_round_robin_1);
1532                 val64 = 0x0102000102000102ULL;
1533                 writeq(val64, &bar0->rx_w_round_robin_2);
1534                 val64 = 0x0001020001020001ULL;
1535                 writeq(val64, &bar0->rx_w_round_robin_3);
1536                 val64 = 0x0200010200000000ULL;
1537                 writeq(val64, &bar0->rx_w_round_robin_4);
1538
1539                 val64 = 0x8080804040402020ULL;
1540                 writeq(val64, &bar0->rts_qos_steering);
1541                 break;
1542         case 4:
1543                 val64 = 0x0001020300010203ULL;
1544                 writeq(val64, &bar0->rx_w_round_robin_0);
1545                 writeq(val64, &bar0->rx_w_round_robin_1);
1546                 writeq(val64, &bar0->rx_w_round_robin_2);
1547                 writeq(val64, &bar0->rx_w_round_robin_3);
1548                 val64 = 0x0001020300000000ULL;
1549                 writeq(val64, &bar0->rx_w_round_robin_4);
1550
1551                 val64 = 0x8080404020201010ULL;
1552                 writeq(val64, &bar0->rts_qos_steering);
1553                 break;
1554         case 5:
1555                 val64 = 0x0001020304000102ULL;
1556                 writeq(val64, &bar0->rx_w_round_robin_0);
1557                 val64 = 0x0304000102030400ULL;
1558                 writeq(val64, &bar0->rx_w_round_robin_1);
1559                 val64 = 0x0102030400010203ULL;
1560                 writeq(val64, &bar0->rx_w_round_robin_2);
1561                 val64 = 0x0400010203040001ULL;
1562                 writeq(val64, &bar0->rx_w_round_robin_3);
1563                 val64 = 0x0203040000000000ULL;
1564                 writeq(val64, &bar0->rx_w_round_robin_4);
1565
1566                 val64 = 0x8080404020201008ULL;
1567                 writeq(val64, &bar0->rts_qos_steering);
1568                 break;
1569         case 6:
1570                 val64 = 0x0001020304050001ULL;
1571                 writeq(val64, &bar0->rx_w_round_robin_0);
1572                 val64 = 0x0203040500010203ULL;
1573                 writeq(val64, &bar0->rx_w_round_robin_1);
1574                 val64 = 0x0405000102030405ULL;
1575                 writeq(val64, &bar0->rx_w_round_robin_2);
1576                 val64 = 0x0001020304050001ULL;
1577                 writeq(val64, &bar0->rx_w_round_robin_3);
1578                 val64 = 0x0203040500000000ULL;
1579                 writeq(val64, &bar0->rx_w_round_robin_4);
1580
1581                 val64 = 0x8080404020100804ULL;
1582                 writeq(val64, &bar0->rts_qos_steering);
1583                 break;
1584         case 7:
1585                 val64 = 0x0001020304050600ULL;
1586                 writeq(val64, &bar0->rx_w_round_robin_0);
1587                 val64 = 0x0102030405060001ULL;
1588                 writeq(val64, &bar0->rx_w_round_robin_1);
1589                 val64 = 0x0203040506000102ULL;
1590                 writeq(val64, &bar0->rx_w_round_robin_2);
1591                 val64 = 0x0304050600010203ULL;
1592                 writeq(val64, &bar0->rx_w_round_robin_3);
1593                 val64 = 0x0405060000000000ULL;
1594                 writeq(val64, &bar0->rx_w_round_robin_4);
1595
1596                 val64 = 0x8080402010080402ULL;
1597                 writeq(val64, &bar0->rts_qos_steering);
1598                 break;
1599         case 8:
1600                 val64 = 0x0001020304050607ULL;
1601                 writeq(val64, &bar0->rx_w_round_robin_0);
1602                 writeq(val64, &bar0->rx_w_round_robin_1);
1603                 writeq(val64, &bar0->rx_w_round_robin_2);
1604                 writeq(val64, &bar0->rx_w_round_robin_3);
1605                 val64 = 0x0001020300000000ULL;
1606                 writeq(val64, &bar0->rx_w_round_robin_4);
1607
1608                 val64 = 0x8040201008040201ULL;
1609                 writeq(val64, &bar0->rts_qos_steering);
1610                 break;
1611         }
1612
1613         /* UDP Fix */
1614         val64 = 0;
1615         for (i = 0; i < 8; i++)
1616                 writeq(val64, &bar0->rts_frm_len_n[i]);
1617
1618         /* Set the default rts frame length for the rings configured */
1619         val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1620         for (i = 0 ; i < config->rx_ring_num ; i++)
1621                 writeq(val64, &bar0->rts_frm_len_n[i]);
1622
1623         /* Set the frame length for the configured rings
1624          * desired by the user
1625          */
1626         for (i = 0; i < config->rx_ring_num; i++) {
1627                 /* If rts_frm_len[i] == 0 then it is assumed that user not
1628                  * specified frame length steering.
1629                  * If the user provides the frame length then program
1630                  * the rts_frm_len register for those values or else
1631                  * leave it as it is.
1632                  */
1633                 if (rts_frm_len[i] != 0) {
1634                         writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1635                                &bar0->rts_frm_len_n[i]);
1636                 }
1637         }
1638
1639         /* Disable differentiated services steering logic */
1640         for (i = 0; i < 64; i++) {
1641                 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1642                         DBG_PRINT(ERR_DBG,
1643                                   "%s: rts_ds_steer failed on codepoint %d\n",
1644                                   dev->name, i);
1645                         return -ENODEV;
1646                 }
1647         }
1648
1649         /* Program statistics memory */
1650         writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1651
1652         if (nic->device_type == XFRAME_II_DEVICE) {
1653                 val64 = STAT_BC(0x320);
1654                 writeq(val64, &bar0->stat_byte_cnt);
1655         }
1656
1657         /*
1658          * Initializing the sampling rate for the device to calculate the
1659          * bandwidth utilization.
1660          */
1661         val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1662                 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1663         writeq(val64, &bar0->mac_link_util);
1664
1665         /*
1666          * Initializing the Transmit and Receive Traffic Interrupt
1667          * Scheme.
1668          */
1669
1670         /* Initialize TTI */
1671         if (SUCCESS != init_tti(nic, nic->last_link_state))
1672                 return -ENODEV;
1673
1674         /* RTI Initialization */
1675         if (nic->device_type == XFRAME_II_DEVICE) {
1676                 /*
1677                  * Programmed to generate Apprx 500 Intrs per
1678                  * second
1679                  */
1680                 int count = (nic->config.bus_speed * 125)/4;
1681                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1682         } else
1683                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1684         val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1685                 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1686                 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1687                 RTI_DATA1_MEM_RX_TIMER_AC_EN;
1688
1689         writeq(val64, &bar0->rti_data1_mem);
1690
1691         val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1692                 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1693         if (nic->config.intr_type == MSI_X)
1694                 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1695                           RTI_DATA2_MEM_RX_UFC_D(0x40));
1696         else
1697                 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1698                           RTI_DATA2_MEM_RX_UFC_D(0x80));
1699         writeq(val64, &bar0->rti_data2_mem);
1700
1701         for (i = 0; i < config->rx_ring_num; i++) {
1702                 val64 = RTI_CMD_MEM_WE |
1703                         RTI_CMD_MEM_STROBE_NEW_CMD |
1704                         RTI_CMD_MEM_OFFSET(i);
1705                 writeq(val64, &bar0->rti_command_mem);
1706
1707                 /*
1708                  * Once the operation completes, the Strobe bit of the
1709                  * command register will be reset. We poll for this
1710                  * particular condition. We wait for a maximum of 500ms
1711                  * for the operation to complete, if it's not complete
1712                  * by then we return error.
1713                  */
1714                 time = 0;
1715                 while (true) {
1716                         val64 = readq(&bar0->rti_command_mem);
1717                         if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1718                                 break;
1719
1720                         if (time > 10) {
1721                                 DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
1722                                           dev->name);
1723                                 return -ENODEV;
1724                         }
1725                         time++;
1726                         msleep(50);
1727                 }
1728         }
1729
1730         /*
1731          * Initializing proper values as Pause threshold into all
1732          * the 8 Queues on Rx side.
1733          */
1734         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1735         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1736
1737         /* Disable RMAC PAD STRIPPING */
1738         add = &bar0->mac_cfg;
1739         val64 = readq(&bar0->mac_cfg);
1740         val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1741         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1742         writel((u32) (val64), add);
1743         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1744         writel((u32) (val64 >> 32), (add + 4));
1745         val64 = readq(&bar0->mac_cfg);
1746
1747         /* Enable FCS stripping by adapter */
1748         add = &bar0->mac_cfg;
1749         val64 = readq(&bar0->mac_cfg);
1750         val64 |= MAC_CFG_RMAC_STRIP_FCS;
1751         if (nic->device_type == XFRAME_II_DEVICE)
1752                 writeq(val64, &bar0->mac_cfg);
1753         else {
1754                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1755                 writel((u32) (val64), add);
1756                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1757                 writel((u32) (val64 >> 32), (add + 4));
1758         }
1759
1760         /*
1761          * Set the time value to be inserted in the pause frame
1762          * generated by xena.
1763          */
1764         val64 = readq(&bar0->rmac_pause_cfg);
1765         val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1766         val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1767         writeq(val64, &bar0->rmac_pause_cfg);
1768
1769         /*
1770          * Set the Threshold Limit for Generating the pause frame
1771          * If the amount of data in any Queue exceeds ratio of
1772          * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1773          * pause frame is generated
1774          */
1775         val64 = 0;
1776         for (i = 0; i < 4; i++) {
1777                 val64 |= (((u64)0xFF00 |
1778                            nic->mac_control.mc_pause_threshold_q0q3)
1779                           << (i * 2 * 8));
1780         }
1781         writeq(val64, &bar0->mc_pause_thresh_q0q3);
1782
1783         val64 = 0;
1784         for (i = 0; i < 4; i++) {
1785                 val64 |= (((u64)0xFF00 |
1786                            nic->mac_control.mc_pause_threshold_q4q7)
1787                           << (i * 2 * 8));
1788         }
1789         writeq(val64, &bar0->mc_pause_thresh_q4q7);
1790
1791         /*
1792          * TxDMA will stop Read request if the number of read split has
1793          * exceeded the limit pointed by shared_splits
1794          */
1795         val64 = readq(&bar0->pic_control);
1796         val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1797         writeq(val64, &bar0->pic_control);
1798
1799         if (nic->config.bus_speed == 266) {
1800                 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1801                 writeq(0x0, &bar0->read_retry_delay);
1802                 writeq(0x0, &bar0->write_retry_delay);
1803         }
1804
1805         /*
1806          * Programming the Herc to split every write transaction
1807          * that does not start on an ADB to reduce disconnects.
1808          */
1809         if (nic->device_type == XFRAME_II_DEVICE) {
1810                 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1811                         MISC_LINK_STABILITY_PRD(3);
1812                 writeq(val64, &bar0->misc_control);
1813                 val64 = readq(&bar0->pic_control2);
1814                 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1815                 writeq(val64, &bar0->pic_control2);
1816         }
1817         if (strstr(nic->product_name, "CX4")) {
1818                 val64 = TMAC_AVG_IPG(0x17);
1819                 writeq(val64, &bar0->tmac_avg_ipg);
1820         }
1821
1822         return SUCCESS;
1823 }
1824 #define LINK_UP_DOWN_INTERRUPT          1
1825 #define MAC_RMAC_ERR_TIMER              2
1826
1827 static int s2io_link_fault_indication(struct s2io_nic *nic)
1828 {
1829         if (nic->device_type == XFRAME_II_DEVICE)
1830                 return LINK_UP_DOWN_INTERRUPT;
1831         else
1832                 return MAC_RMAC_ERR_TIMER;
1833 }
1834
1835 /**
1836  *  do_s2io_write_bits -  update alarm bits in alarm register
1837  *  @value: alarm bits
1838  *  @flag: interrupt status
1839  *  @addr: address value
1840  *  Description: update alarm bits in alarm register
1841  *  Return Value:
1842  *  NONE.
1843  */
1844 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1845 {
1846         u64 temp64;
1847
1848         temp64 = readq(addr);
1849
1850         if (flag == ENABLE_INTRS)
1851                 temp64 &= ~((u64)value);
1852         else
1853                 temp64 |= ((u64)value);
1854         writeq(temp64, addr);
1855 }
1856
1857 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1858 {
1859         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1860         register u64 gen_int_mask = 0;
1861         u64 interruptible;
1862
1863         writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1864         if (mask & TX_DMA_INTR) {
1865                 gen_int_mask |= TXDMA_INT_M;
1866
1867                 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1868                                    TXDMA_PCC_INT | TXDMA_TTI_INT |
1869                                    TXDMA_LSO_INT | TXDMA_TPA_INT |
1870                                    TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1871
1872                 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1873                                    PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1874                                    PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1875                                    &bar0->pfc_err_mask);
1876
1877                 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1878                                    TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1879                                    TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1880
1881                 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1882                                    PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1883                                    PCC_N_SERR | PCC_6_COF_OV_ERR |
1884                                    PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1885                                    PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1886                                    PCC_TXB_ECC_SG_ERR,
1887                                    flag, &bar0->pcc_err_mask);
1888
1889                 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1890                                    TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1891
1892                 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1893                                    LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1894                                    LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1895                                    flag, &bar0->lso_err_mask);
1896
1897                 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1898                                    flag, &bar0->tpa_err_mask);
1899
1900                 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1901         }
1902
1903         if (mask & TX_MAC_INTR) {
1904                 gen_int_mask |= TXMAC_INT_M;
1905                 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1906                                    &bar0->mac_int_mask);
1907                 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1908                                    TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1909                                    TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1910                                    flag, &bar0->mac_tmac_err_mask);
1911         }
1912
1913         if (mask & TX_XGXS_INTR) {
1914                 gen_int_mask |= TXXGXS_INT_M;
1915                 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1916                                    &bar0->xgxs_int_mask);
1917                 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1918                                    TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1919                                    flag, &bar0->xgxs_txgxs_err_mask);
1920         }
1921
1922         if (mask & RX_DMA_INTR) {
1923                 gen_int_mask |= RXDMA_INT_M;
1924                 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1925                                    RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1926                                    flag, &bar0->rxdma_int_mask);
1927                 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1928                                    RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1929                                    RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1930                                    RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1931                 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1932                                    PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1933                                    PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1934                                    &bar0->prc_pcix_err_mask);
1935                 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1936                                    RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1937                                    &bar0->rpa_err_mask);
1938                 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1939                                    RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1940                                    RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1941                                    RDA_FRM_ECC_SG_ERR |
1942                                    RDA_MISC_ERR|RDA_PCIX_ERR,
1943                                    flag, &bar0->rda_err_mask);
1944                 do_s2io_write_bits(RTI_SM_ERR_ALARM |
1945                                    RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1946                                    flag, &bar0->rti_err_mask);
1947         }
1948
1949         if (mask & RX_MAC_INTR) {
1950                 gen_int_mask |= RXMAC_INT_M;
1951                 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
1952                                    &bar0->mac_int_mask);
1953                 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1954                                  RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1955                                  RMAC_DOUBLE_ECC_ERR);
1956                 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
1957                         interruptible |= RMAC_LINK_STATE_CHANGE_INT;
1958                 do_s2io_write_bits(interruptible,
1959                                    flag, &bar0->mac_rmac_err_mask);
1960         }
1961
1962         if (mask & RX_XGXS_INTR) {
1963                 gen_int_mask |= RXXGXS_INT_M;
1964                 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
1965                                    &bar0->xgxs_int_mask);
1966                 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
1967                                    &bar0->xgxs_rxgxs_err_mask);
1968         }
1969
1970         if (mask & MC_INTR) {
1971                 gen_int_mask |= MC_INT_M;
1972                 do_s2io_write_bits(MC_INT_MASK_MC_INT,
1973                                    flag, &bar0->mc_int_mask);
1974                 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
1975                                    MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1976                                    &bar0->mc_err_mask);
1977         }
1978         nic->general_int_mask = gen_int_mask;
1979
1980         /* Remove this line when alarm interrupts are enabled */
1981         nic->general_int_mask = 0;
1982 }
1983
1984 /**
1985  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
1986  *  @nic: device private variable,
1987  *  @mask: A mask indicating which Intr block must be modified and,
1988  *  @flag: A flag indicating whether to enable or disable the Intrs.
1989  *  Description: This function will either disable or enable the interrupts
1990  *  depending on the flag argument. The mask argument can be used to
1991  *  enable/disable any Intr block.
1992  *  Return Value: NONE.
1993  */
1994
1995 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1996 {
1997         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1998         register u64 temp64 = 0, intr_mask = 0;
1999
2000         intr_mask = nic->general_int_mask;
2001
2002         /*  Top level interrupt classification */
2003         /*  PIC Interrupts */
2004         if (mask & TX_PIC_INTR) {
2005                 /*  Enable PIC Intrs in the general intr mask register */
2006                 intr_mask |= TXPIC_INT_M;
2007                 if (flag == ENABLE_INTRS) {
2008                         /*
2009                          * If Hercules adapter enable GPIO otherwise
2010                          * disable all PCIX, Flash, MDIO, IIC and GPIO
2011                          * interrupts for now.
2012                          * TODO
2013                          */
2014                         if (s2io_link_fault_indication(nic) ==
2015                             LINK_UP_DOWN_INTERRUPT) {
2016                                 do_s2io_write_bits(PIC_INT_GPIO, flag,
2017                                                    &bar0->pic_int_mask);
2018                                 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2019                                                    &bar0->gpio_int_mask);
2020                         } else
2021                                 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2022                 } else if (flag == DISABLE_INTRS) {
2023                         /*
2024                          * Disable PIC Intrs in the general
2025                          * intr mask register
2026                          */
2027                         writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2028                 }
2029         }
2030
2031         /*  Tx traffic interrupts */
2032         if (mask & TX_TRAFFIC_INTR) {
2033                 intr_mask |= TXTRAFFIC_INT_M;
2034                 if (flag == ENABLE_INTRS) {
2035                         /*
2036                          * Enable all the Tx side interrupts
2037                          * writing 0 Enables all 64 TX interrupt levels
2038                          */
2039                         writeq(0x0, &bar0->tx_traffic_mask);
2040                 } else if (flag == DISABLE_INTRS) {
2041                         /*
2042                          * Disable Tx Traffic Intrs in the general intr mask
2043                          * register.
2044                          */
2045                         writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2046                 }
2047         }
2048
2049         /*  Rx traffic interrupts */
2050         if (mask & RX_TRAFFIC_INTR) {
2051                 intr_mask |= RXTRAFFIC_INT_M;
2052                 if (flag == ENABLE_INTRS) {
2053                         /* writing 0 Enables all 8 RX interrupt levels */
2054                         writeq(0x0, &bar0->rx_traffic_mask);
2055                 } else if (flag == DISABLE_INTRS) {
2056                         /*
2057                          * Disable Rx Traffic Intrs in the general intr mask
2058                          * register.
2059                          */
2060                         writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2061                 }
2062         }
2063
2064         temp64 = readq(&bar0->general_int_mask);
2065         if (flag == ENABLE_INTRS)
2066                 temp64 &= ~((u64)intr_mask);
2067         else
2068                 temp64 = DISABLE_ALL_INTRS;
2069         writeq(temp64, &bar0->general_int_mask);
2070
2071         nic->general_int_mask = readq(&bar0->general_int_mask);
2072 }
2073
2074 /**
2075  *  verify_pcc_quiescent- Checks for PCC quiescent state
2076  *  Return: 1 If PCC is quiescence
2077  *          0 If PCC is not quiescence
2078  */
2079 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2080 {
2081         int ret = 0, herc;
2082         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2083         u64 val64 = readq(&bar0->adapter_status);
2084
2085         herc = (sp->device_type == XFRAME_II_DEVICE);
2086
2087         if (flag == false) {
2088                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2089                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2090                                 ret = 1;
2091                 } else {
2092                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2093                                 ret = 1;
2094                 }
2095         } else {
2096                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2097                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2098                              ADAPTER_STATUS_RMAC_PCC_IDLE))
2099                                 ret = 1;
2100                 } else {
2101                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2102                              ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2103                                 ret = 1;
2104                 }
2105         }
2106
2107         return ret;
2108 }
2109 /**
2110  *  verify_xena_quiescence - Checks whether the H/W is ready
2111  *  Description: Returns whether the H/W is ready to go or not. Depending
2112  *  on whether adapter enable bit was written or not the comparison
2113  *  differs and the calling function passes the input argument flag to
2114  *  indicate this.
2115  *  Return: 1 If xena is quiescence
2116  *          0 If Xena is not quiescence
2117  */
2118
2119 static int verify_xena_quiescence(struct s2io_nic *sp)
2120 {
2121         int  mode;
2122         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2123         u64 val64 = readq(&bar0->adapter_status);
2124         mode = s2io_verify_pci_mode(sp);
2125
2126         if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2127                 DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
2128                 return 0;
2129         }
2130         if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2131                 DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
2132                 return 0;
2133         }
2134         if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2135                 DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
2136                 return 0;
2137         }
2138         if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2139                 DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
2140                 return 0;
2141         }
2142         if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2143                 DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
2144                 return 0;
2145         }
2146         if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2147                 DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
2148                 return 0;
2149         }
2150         if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2151                 DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
2152                 return 0;
2153         }
2154         if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2155                 DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
2156                 return 0;
2157         }
2158
2159         /*
2160          * In PCI 33 mode, the P_PLL is not used, and therefore,
2161          * the the P_PLL_LOCK bit in the adapter_status register will
2162          * not be asserted.
2163          */
2164         if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2165             sp->device_type == XFRAME_II_DEVICE &&
2166             mode != PCI_MODE_PCI_33) {
2167                 DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
2168                 return 0;
2169         }
2170         if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2171               ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2172                 DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
2173                 return 0;
2174         }
2175         return 1;
2176 }
2177
2178 /**
2179  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
2180  * @sp: Pointer to device specifc structure
2181  * Description :
2182  * New procedure to clear mac address reading  problems on Alpha platforms
2183  *
2184  */
2185
2186 static void fix_mac_address(struct s2io_nic *sp)
2187 {
2188         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2189         int i = 0;
2190
2191         while (fix_mac[i] != END_SIGN) {
2192                 writeq(fix_mac[i++], &bar0->gpio_control);
2193                 udelay(10);
2194                 (void) readq(&bar0->gpio_control);
2195         }
2196 }
2197
2198 /**
2199  *  start_nic - Turns the device on
2200  *  @nic : device private variable.
2201  *  Description:
2202  *  This function actually turns the device on. Before this  function is
2203  *  called,all Registers are configured from their reset states
2204  *  and shared memory is allocated but the NIC is still quiescent. On
2205  *  calling this function, the device interrupts are cleared and the NIC is
2206  *  literally switched on by writing into the adapter control register.
2207  *  Return Value:
2208  *  SUCCESS on success and -1 on failure.
2209  */
2210
2211 static int start_nic(struct s2io_nic *nic)
2212 {
2213         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2214         struct net_device *dev = nic->dev;
2215         register u64 val64 = 0;
2216         u16 subid, i;
2217         struct config_param *config = &nic->config;
2218         struct mac_info *mac_control = &nic->mac_control;
2219
2220         /*  PRC Initialization and configuration */
2221         for (i = 0; i < config->rx_ring_num; i++) {
2222                 struct ring_info *ring = &mac_control->rings[i];
2223
2224                 writeq((u64)ring->rx_blocks[0].block_dma_addr,
2225                        &bar0->prc_rxd0_n[i]);
2226
2227                 val64 = readq(&bar0->prc_ctrl_n[i]);
2228                 if (nic->rxd_mode == RXD_MODE_1)
2229                         val64 |= PRC_CTRL_RC_ENABLED;
2230                 else
2231                         val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2232                 if (nic->device_type == XFRAME_II_DEVICE)
2233                         val64 |= PRC_CTRL_GROUP_READS;
2234                 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2235                 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2236                 writeq(val64, &bar0->prc_ctrl_n[i]);
2237         }
2238
2239         if (nic->rxd_mode == RXD_MODE_3B) {
2240                 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2241                 val64 = readq(&bar0->rx_pa_cfg);
2242                 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2243                 writeq(val64, &bar0->rx_pa_cfg);
2244         }
2245
2246         if (vlan_tag_strip == 0) {
2247                 val64 = readq(&bar0->rx_pa_cfg);
2248                 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2249                 writeq(val64, &bar0->rx_pa_cfg);
2250                 nic->vlan_strip_flag = 0;
2251         }
2252
2253         /*
2254          * Enabling MC-RLDRAM. After enabling the device, we timeout
2255          * for around 100ms, which is approximately the time required
2256          * for the device to be ready for operation.
2257          */
2258         val64 = readq(&bar0->mc_rldram_mrs);
2259         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2260         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2261         val64 = readq(&bar0->mc_rldram_mrs);
2262
2263         msleep(100);    /* Delay by around 100 ms. */
2264
2265         /* Enabling ECC Protection. */
2266         val64 = readq(&bar0->adapter_control);
2267         val64 &= ~ADAPTER_ECC_EN;
2268         writeq(val64, &bar0->adapter_control);
2269
2270         /*
2271          * Verify if the device is ready to be enabled, if so enable
2272          * it.
2273          */
2274         val64 = readq(&bar0->adapter_status);
2275         if (!verify_xena_quiescence(nic)) {
2276                 DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2277                           "Adapter status reads: 0x%llx\n",
2278                           dev->name, (unsigned long long)val64);
2279                 return FAILURE;
2280         }
2281
2282         /*
2283          * With some switches, link might be already up at this point.
2284          * Because of this weird behavior, when we enable laser,
2285          * we may not get link. We need to handle this. We cannot
2286          * figure out which switch is misbehaving. So we are forced to
2287          * make a global change.
2288          */
2289
2290         /* Enabling Laser. */
2291         val64 = readq(&bar0->adapter_control);
2292         val64 |= ADAPTER_EOI_TX_ON;
2293         writeq(val64, &bar0->adapter_control);
2294
2295         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2296                 /*
2297                  * Dont see link state interrupts initially on some switches,
2298                  * so directly scheduling the link state task here.
2299                  */
2300                 schedule_work(&nic->set_link_task);
2301         }
2302         /* SXE-002: Initialize link and activity LED */
2303         subid = nic->pdev->subsystem_device;
2304         if (((subid & 0xFF) >= 0x07) &&
2305             (nic->device_type == XFRAME_I_DEVICE)) {
2306                 val64 = readq(&bar0->gpio_control);
2307                 val64 |= 0x0000800000000000ULL;
2308                 writeq(val64, &bar0->gpio_control);
2309                 val64 = 0x0411040400000000ULL;
2310                 writeq(val64, (void __iomem *)bar0 + 0x2700);
2311         }
2312
2313         return SUCCESS;
2314 }
2315 /**
2316  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2317  */
2318 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2319                                         struct TxD *txdlp, int get_off)
2320 {
2321         struct s2io_nic *nic = fifo_data->nic;
2322         struct sk_buff *skb;
2323         struct TxD *txds;
2324         u16 j, frg_cnt;
2325
2326         txds = txdlp;
2327         if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2328                 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2329                                  sizeof(u64), PCI_DMA_TODEVICE);
2330                 txds++;
2331         }
2332
2333         skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
2334         if (!skb) {
2335                 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2336                 return NULL;
2337         }
2338         pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2339                          skb_headlen(skb), PCI_DMA_TODEVICE);
2340         frg_cnt = skb_shinfo(skb)->nr_frags;
2341         if (frg_cnt) {
2342                 txds++;
2343                 for (j = 0; j < frg_cnt; j++, txds++) {
2344                         const skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2345                         if (!txds->Buffer_Pointer)
2346                                 break;
2347                         pci_unmap_page(nic->pdev,
2348                                        (dma_addr_t)txds->Buffer_Pointer,
2349                                        skb_frag_size(frag), PCI_DMA_TODEVICE);
2350                 }
2351         }
2352         memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2353         return skb;
2354 }
2355
2356 /**
2357  *  free_tx_buffers - Free all queued Tx buffers
2358  *  @nic : device private variable.
2359  *  Description:
2360  *  Free all queued Tx buffers.
2361  *  Return Value: void
2362  */
2363
2364 static void free_tx_buffers(struct s2io_nic *nic)
2365 {
2366         struct net_device *dev = nic->dev;
2367         struct sk_buff *skb;
2368         struct TxD *txdp;
2369         int i, j;
2370         int cnt = 0;
2371         struct config_param *config = &nic->config;
2372         struct mac_info *mac_control = &nic->mac_control;
2373         struct stat_block *stats = mac_control->stats_info;
2374         struct swStat *swstats = &stats->sw_stat;
2375
2376         for (i = 0; i < config->tx_fifo_num; i++) {
2377                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2378                 struct fifo_info *fifo = &mac_control->fifos[i];
2379                 unsigned long flags;
2380
2381                 spin_lock_irqsave(&fifo->tx_lock, flags);
2382                 for (j = 0; j < tx_cfg->fifo_len; j++) {
2383                         txdp = fifo->list_info[j].list_virt_addr;
2384                         skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2385                         if (skb) {
2386                                 swstats->mem_freed += skb->truesize;
2387                                 dev_kfree_skb(skb);
2388                                 cnt++;
2389                         }
2390                 }
2391                 DBG_PRINT(INTR_DBG,
2392                           "%s: forcibly freeing %d skbs on FIFO%d\n",
2393                           dev->name, cnt, i);
2394                 fifo->tx_curr_get_info.offset = 0;
2395                 fifo->tx_curr_put_info.offset = 0;
2396                 spin_unlock_irqrestore(&fifo->tx_lock, flags);
2397         }
2398 }
2399
2400 /**
2401  *   stop_nic -  To stop the nic
2402  *   @nic ; device private variable.
2403  *   Description:
2404  *   This function does exactly the opposite of what the start_nic()
2405  *   function does. This function is called to stop the device.
2406  *   Return Value:
2407  *   void.
2408  */
2409
2410 static void stop_nic(struct s2io_nic *nic)
2411 {
2412         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2413         register u64 val64 = 0;
2414         u16 interruptible;
2415
2416         /*  Disable all interrupts */
2417         en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2418         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2419         interruptible |= TX_PIC_INTR;
2420         en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2421
2422         /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2423         val64 = readq(&bar0->adapter_control);
2424         val64 &= ~(ADAPTER_CNTL_EN);
2425         writeq(val64, &bar0->adapter_control);
2426 }
2427
2428 /**
2429  *  fill_rx_buffers - Allocates the Rx side skbs
2430  *  @ring_info: per ring structure
2431  *  @from_card_up: If this is true, we will map the buffer to get
2432  *     the dma address for buf0 and buf1 to give it to the card.
2433  *     Else we will sync the already mapped buffer to give it to the card.
2434  *  Description:
2435  *  The function allocates Rx side skbs and puts the physical
2436  *  address of these buffers into the RxD buffer pointers, so that the NIC
2437  *  can DMA the received frame into these locations.
2438  *  The NIC supports 3 receive modes, viz
2439  *  1. single buffer,
2440  *  2. three buffer and
2441  *  3. Five buffer modes.
2442  *  Each mode defines how many fragments the received frame will be split
2443  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2444  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2445  *  is split into 3 fragments. As of now only single buffer mode is
2446  *  supported.
2447  *   Return Value:
2448  *  SUCCESS on success or an appropriate -ve value on failure.
2449  */
2450 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2451                            int from_card_up)
2452 {
2453         struct sk_buff *skb;
2454         struct RxD_t *rxdp;
2455         int off, size, block_no, block_no1;
2456         u32 alloc_tab = 0;
2457         u32 alloc_cnt;
2458         u64 tmp;
2459         struct buffAdd *ba;
2460         struct RxD_t *first_rxdp = NULL;
2461         u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2462         int rxd_index = 0;
2463         struct RxD1 *rxdp1;
2464         struct RxD3 *rxdp3;
2465         struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
2466
2467         alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2468
2469         block_no1 = ring->rx_curr_get_info.block_index;
2470         while (alloc_tab < alloc_cnt) {
2471                 block_no = ring->rx_curr_put_info.block_index;
2472
2473                 off = ring->rx_curr_put_info.offset;
2474
2475                 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2476
2477                 rxd_index = off + 1;
2478                 if (block_no)
2479                         rxd_index += (block_no * ring->rxd_count);
2480
2481                 if ((block_no == block_no1) &&
2482                     (off == ring->rx_curr_get_info.offset) &&
2483                     (rxdp->Host_Control)) {
2484                         DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2485                                   ring->dev->name);
2486                         goto end;
2487                 }
2488                 if (off && (off == ring->rxd_count)) {
2489                         ring->rx_curr_put_info.block_index++;
2490                         if (ring->rx_curr_put_info.block_index ==
2491                             ring->block_count)
2492                                 ring->rx_curr_put_info.block_index = 0;
2493                         block_no = ring->rx_curr_put_info.block_index;
2494                         off = 0;
2495                         ring->rx_curr_put_info.offset = off;
2496                         rxdp = ring->rx_blocks[block_no].block_virt_addr;
2497                         DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2498                                   ring->dev->name, rxdp);
2499
2500                 }
2501
2502                 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2503                     ((ring->rxd_mode == RXD_MODE_3B) &&
2504                      (rxdp->Control_2 & s2BIT(0)))) {
2505                         ring->rx_curr_put_info.offset = off;
2506                         goto end;
2507                 }
2508                 /* calculate size of skb based on ring mode */
2509                 size = ring->mtu +
2510                         HEADER_ETHERNET_II_802_3_SIZE +
2511                         HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2512                 if (ring->rxd_mode == RXD_MODE_1)
2513                         size += NET_IP_ALIGN;
2514                 else
2515                         size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2516
2517                 /* allocate skb */
2518                 skb = netdev_alloc_skb(nic->dev, size);
2519                 if (!skb) {
2520                         DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2521                                   ring->dev->name);
2522                         if (first_rxdp) {
2523                                 dma_wmb();
2524                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2525                         }
2526                         swstats->mem_alloc_fail_cnt++;
2527
2528                         return -ENOMEM ;
2529                 }
2530                 swstats->mem_allocated += skb->truesize;
2531
2532                 if (ring->rxd_mode == RXD_MODE_1) {
2533                         /* 1 buffer mode - normal operation mode */
2534                         rxdp1 = (struct RxD1 *)rxdp;
2535                         memset(rxdp, 0, sizeof(struct RxD1));
2536                         skb_reserve(skb, NET_IP_ALIGN);
2537                         rxdp1->Buffer0_ptr =
2538                                 pci_map_single(ring->pdev, skb->data,
2539                                                size - NET_IP_ALIGN,
2540                                                PCI_DMA_FROMDEVICE);
2541                         if (pci_dma_mapping_error(nic->pdev,
2542                                                   rxdp1->Buffer0_ptr))
2543                                 goto pci_map_failed;
2544
2545                         rxdp->Control_2 =
2546                                 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2547                         rxdp->Host_Control = (unsigned long)skb;
2548                 } else if (ring->rxd_mode == RXD_MODE_3B) {
2549                         /*
2550                          * 2 buffer mode -
2551                          * 2 buffer mode provides 128
2552                          * byte aligned receive buffers.
2553                          */
2554
2555                         rxdp3 = (struct RxD3 *)rxdp;
2556                         /* save buffer pointers to avoid frequent dma mapping */
2557                         Buffer0_ptr = rxdp3->Buffer0_ptr;
2558                         Buffer1_ptr = rxdp3->Buffer1_ptr;
2559                         memset(rxdp, 0, sizeof(struct RxD3));
2560                         /* restore the buffer pointers for dma sync*/
2561                         rxdp3->Buffer0_ptr = Buffer0_ptr;
2562                         rxdp3->Buffer1_ptr = Buffer1_ptr;
2563
2564                         ba = &ring->ba[block_no][off];
2565                         skb_reserve(skb, BUF0_LEN);
2566                         tmp = (u64)(unsigned long)skb->data;
2567                         tmp += ALIGN_SIZE;
2568                         tmp &= ~ALIGN_SIZE;
2569                         skb->data = (void *) (unsigned long)tmp;
2570                         skb_reset_tail_pointer(skb);
2571
2572                         if (from_card_up) {
2573                                 rxdp3->Buffer0_ptr =
2574                                         pci_map_single(ring->pdev, ba->ba_0,
2575                                                        BUF0_LEN,
2576                                                        PCI_DMA_FROMDEVICE);
2577                                 if (pci_dma_mapping_error(nic->pdev,
2578                                                           rxdp3->Buffer0_ptr))
2579                                         goto pci_map_failed;
2580                         } else
2581                                 pci_dma_sync_single_for_device(ring->pdev,
2582                                                                (dma_addr_t)rxdp3->Buffer0_ptr,
2583                                                                BUF0_LEN,
2584                                                                PCI_DMA_FROMDEVICE);
2585
2586                         rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2587                         if (ring->rxd_mode == RXD_MODE_3B) {
2588                                 /* Two buffer mode */
2589
2590                                 /*
2591                                  * Buffer2 will have L3/L4 header plus
2592                                  * L4 payload
2593                                  */
2594                                 rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2595                                                                     skb->data,
2596                                                                     ring->mtu + 4,
2597                                                                     PCI_DMA_FROMDEVICE);
2598
2599                                 if (pci_dma_mapping_error(nic->pdev,
2600                                                           rxdp3->Buffer2_ptr))
2601                                         goto pci_map_failed;
2602
2603                                 if (from_card_up) {
2604                                         rxdp3->Buffer1_ptr =
2605                                                 pci_map_single(ring->pdev,
2606                                                                ba->ba_1,
2607                                                                BUF1_LEN,
2608                                                                PCI_DMA_FROMDEVICE);
2609
2610                                         if (pci_dma_mapping_error(nic->pdev,
2611                                                                   rxdp3->Buffer1_ptr)) {
2612                                                 pci_unmap_single(ring->pdev,
2613                                                                  (dma_addr_t)(unsigned long)
2614                                                                  skb->data,
2615                                                                  ring->mtu + 4,
2616                                                                  PCI_DMA_FROMDEVICE);
2617                                                 goto pci_map_failed;
2618                                         }
2619                                 }
2620                                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2621                                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2622                                         (ring->mtu + 4);
2623                         }
2624                         rxdp->Control_2 |= s2BIT(0);
2625                         rxdp->Host_Control = (unsigned long) (skb);
2626                 }
2627                 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2628                         rxdp->Control_1 |= RXD_OWN_XENA;
2629                 off++;
2630                 if (off == (ring->rxd_count + 1))
2631                         off = 0;
2632                 ring->rx_curr_put_info.offset = off;
2633
2634                 rxdp->Control_2 |= SET_RXD_MARKER;
2635                 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2636                         if (first_rxdp) {
2637                                 dma_wmb();
2638                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2639                         }
2640                         first_rxdp = rxdp;
2641                 }
2642                 ring->rx_bufs_left += 1;
2643                 alloc_tab++;
2644         }
2645
2646 end:
2647         /* Transfer ownership of first descriptor to adapter just before
2648          * exiting. Before that, use memory barrier so that ownership
2649          * and other fields are seen by adapter correctly.
2650          */
2651         if (first_rxdp) {
2652                 dma_wmb();
2653                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2654         }
2655
2656         return SUCCESS;
2657
2658 pci_map_failed:
2659         swstats->pci_map_fail_cnt++;
2660         swstats->mem_freed += skb->truesize;
2661         dev_kfree_skb_irq(skb);
2662         return -ENOMEM;
2663 }
2664
2665 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2666 {
2667         struct net_device *dev = sp->dev;
2668         int j;
2669         struct sk_buff *skb;
2670         struct RxD_t *rxdp;
2671         struct RxD1 *rxdp1;
2672         struct RxD3 *rxdp3;
2673         struct mac_info *mac_control = &sp->mac_control;
2674         struct stat_block *stats = mac_control->stats_info;
2675         struct swStat *swstats = &stats->sw_stat;
2676
2677         for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2678                 rxdp = mac_control->rings[ring_no].
2679                         rx_blocks[blk].rxds[j].virt_addr;
2680                 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2681                 if (!skb)
2682                         continue;
2683                 if (sp->rxd_mode == RXD_MODE_1) {
2684                         rxdp1 = (struct RxD1 *)rxdp;
2685                         pci_unmap_single(sp->pdev,
2686                                          (dma_addr_t)rxdp1->Buffer0_ptr,
2687                                          dev->mtu +
2688                                          HEADER_ETHERNET_II_802_3_SIZE +
2689                                          HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2690                                          PCI_DMA_FROMDEVICE);
2691                         memset(rxdp, 0, sizeof(struct RxD1));
2692                 } else if (sp->rxd_mode == RXD_MODE_3B) {
2693                         rxdp3 = (struct RxD3 *)rxdp;
2694                         pci_unmap_single(sp->pdev,
2695                                          (dma_addr_t)rxdp3->Buffer0_ptr,
2696                                          BUF0_LEN,
2697                                          PCI_DMA_FROMDEVICE);
2698                         pci_unmap_single(sp->pdev,
2699                                          (dma_addr_t)rxdp3->Buffer1_ptr,
2700                                          BUF1_LEN,
2701                                          PCI_DMA_FROMDEVICE);
2702                         pci_unmap_single(sp->pdev,
2703                                          (dma_addr_t)rxdp3->Buffer2_ptr,
2704                                          dev->mtu + 4,
2705                                          PCI_DMA_FROMDEVICE);
2706                         memset(rxdp, 0, sizeof(struct RxD3));
2707                 }
2708                 swstats->mem_freed += skb->truesize;
2709                 dev_kfree_skb(skb);
2710                 mac_control->rings[ring_no].rx_bufs_left -= 1;
2711         }
2712 }
2713
2714 /**
2715  *  free_rx_buffers - Frees all Rx buffers
2716  *  @sp: device private variable.
2717  *  Description:
2718  *  This function will free all Rx buffers allocated by host.
2719  *  Return Value:
2720  *  NONE.
2721  */
2722
2723 static void free_rx_buffers(struct s2io_nic *sp)
2724 {
2725         struct net_device *dev = sp->dev;
2726         int i, blk = 0, buf_cnt = 0;
2727         struct config_param *config = &sp->config;
2728         struct mac_info *mac_control = &sp->mac_control;
2729
2730         for (i = 0; i < config->rx_ring_num; i++) {
2731                 struct ring_info *ring = &mac_control->rings[i];
2732
2733                 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2734                         free_rxd_blk(sp, i, blk);
2735
2736                 ring->rx_curr_put_info.block_index = 0;
2737                 ring->rx_curr_get_info.block_index = 0;
2738                 ring->rx_curr_put_info.offset = 0;
2739                 ring->rx_curr_get_info.offset = 0;
2740                 ring->rx_bufs_left = 0;
2741                 DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2742                           dev->name, buf_cnt, i);
2743         }
2744 }
2745
2746 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2747 {
2748         if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2749                 DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2750                           ring->dev->name);
2751         }
2752         return 0;
2753 }
2754
2755 /**
2756  * s2io_poll - Rx interrupt handler for NAPI support
2757  * @napi : pointer to the napi structure.
2758  * @budget : The number of packets that were budgeted to be processed
2759  * during  one pass through the 'Poll" function.
2760  * Description:
2761  * Comes into picture only if NAPI support has been incorporated. It does
2762  * the same thing that rx_intr_handler does, but not in a interrupt context
2763  * also It will process only a given number of packets.
2764  * Return value:
2765  * 0 on success and 1 if there are No Rx packets to be processed.
2766  */
2767
2768 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2769 {
2770         struct ring_info *ring = container_of(napi, struct ring_info, napi);
2771         struct net_device *dev = ring->dev;
2772         int pkts_processed = 0;
2773         u8 __iomem *addr = NULL;
2774         u8 val8 = 0;
2775         struct s2io_nic *nic = netdev_priv(dev);
2776         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2777         int budget_org = budget;
2778
2779         if (unlikely(!is_s2io_card_up(nic)))
2780                 return 0;
2781
2782         pkts_processed = rx_intr_handler(ring, budget);
2783         s2io_chk_rx_buffers(nic, ring);
2784
2785         if (pkts_processed < budget_org) {
2786                 napi_complete(napi);
2787                 /*Re Enable MSI-Rx Vector*/
2788                 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2789                 addr += 7 - ring->ring_no;
2790                 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2791                 writeb(val8, addr);
2792                 val8 = readb(addr);
2793         }
2794         return pkts_processed;
2795 }
2796
2797 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2798 {
2799         struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2800         int pkts_processed = 0;
2801         int ring_pkts_processed, i;
2802         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2803         int budget_org = budget;
2804         struct config_param *config = &nic->config;
2805         struct mac_info *mac_control = &nic->mac_control;
2806
2807         if (unlikely(!is_s2io_card_up(nic)))
2808                 return 0;
2809
2810         for (i = 0; i < config->rx_ring_num; i++) {
2811                 struct ring_info *ring = &mac_control->rings[i];
2812                 ring_pkts_processed = rx_intr_handler(ring, budget);
2813                 s2io_chk_rx_buffers(nic, ring);
2814                 pkts_processed += ring_pkts_processed;
2815                 budget -= ring_pkts_processed;
2816                 if (budget <= 0)
2817                         break;
2818         }
2819         if (pkts_processed < budget_org) {
2820                 napi_complete(napi);
2821                 /* Re enable the Rx interrupts for the ring */
2822                 writeq(0, &bar0->rx_traffic_mask);
2823                 readl(&bar0->rx_traffic_mask);
2824         }
2825         return pkts_processed;
2826 }
2827
2828 #ifdef CONFIG_NET_POLL_CONTROLLER
2829 /**
2830  * s2io_netpoll - netpoll event handler entry point
2831  * @dev : pointer to the device structure.
2832  * Description:
2833  *      This function will be called by upper layer to check for events on the
2834  * interface in situations where interrupts are disabled. It is used for
2835  * specific in-kernel networking tasks, such as remote consoles and kernel
2836  * debugging over the network (example netdump in RedHat).
2837  */
2838 static void s2io_netpoll(struct net_device *dev)
2839 {
2840         struct s2io_nic *nic = netdev_priv(dev);
2841         const int irq = nic->pdev->irq;
2842         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2843         u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2844         int i;
2845         struct config_param *config = &nic->config;
2846         struct mac_info *mac_control = &nic->mac_control;
2847
2848         if (pci_channel_offline(nic->pdev))
2849                 return;
2850
2851         disable_irq(irq);
2852
2853         writeq(val64, &bar0->rx_traffic_int);
2854         writeq(val64, &bar0->tx_traffic_int);
2855
2856         /* we need to free up the transmitted skbufs or else netpoll will
2857          * run out of skbs and will fail and eventually netpoll application such
2858          * as netdump will fail.
2859          */
2860         for (i = 0; i < config->tx_fifo_num; i++)
2861                 tx_intr_handler(&mac_control->fifos[i]);
2862
2863         /* check for received packet and indicate up to network */
2864         for (i = 0; i < config->rx_ring_num; i++) {
2865                 struct ring_info *ring = &mac_control->rings[i];
2866
2867                 rx_intr_handler(ring, 0);
2868         }
2869
2870         for (i = 0; i < config->rx_ring_num; i++) {
2871                 struct ring_info *ring = &mac_control->rings[i];
2872
2873                 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2874                         DBG_PRINT(INFO_DBG,
2875                                   "%s: Out of memory in Rx Netpoll!!\n",
2876                                   dev->name);
2877                         break;
2878                 }
2879         }
2880         enable_irq(irq);
2881 }
2882 #endif
2883
2884 /**
2885  *  rx_intr_handler - Rx interrupt handler
2886  *  @ring_info: per ring structure.
2887  *  @budget: budget for napi processing.
2888  *  Description:
2889  *  If the interrupt is because of a received frame or if the
2890  *  receive ring contains fresh as yet un-processed frames,this function is
2891  *  called. It picks out the RxD at which place the last Rx processing had
2892  *  stopped and sends the skb to the OSM's Rx handler and then increments
2893  *  the offset.
2894  *  Return Value:
2895  *  No. of napi packets processed.
2896  */
2897 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2898 {
2899         int get_block, put_block;
2900         struct rx_curr_get_info get_info, put_info;
2901         struct RxD_t *rxdp;
2902         struct sk_buff *skb;
2903         int pkt_cnt = 0, napi_pkts = 0;
2904         int i;
2905         struct RxD1 *rxdp1;
2906         struct RxD3 *rxdp3;
2907
2908         if (budget <= 0)
2909                 return napi_pkts;
2910
2911         get_info = ring_data->rx_curr_get_info;
2912         get_block = get_info.block_index;
2913         memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2914         put_block = put_info.block_index;
2915         rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2916
2917         while (RXD_IS_UP2DT(rxdp)) {
2918                 /*
2919                  * If your are next to put index then it's
2920                  * FIFO full condition
2921                  */
2922                 if ((get_block == put_block) &&
2923                     (get_info.offset + 1) == put_info.offset) {
2924                         DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2925                                   ring_data->dev->name);
2926                         break;
2927                 }
2928                 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2929                 if (skb == NULL) {
2930                         DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
2931                                   ring_data->dev->name);
2932                         return 0;
2933                 }
2934                 if (ring_data->rxd_mode == RXD_MODE_1) {
2935                         rxdp1 = (struct RxD1 *)rxdp;
2936                         pci_unmap_single(ring_data->pdev, (dma_addr_t)
2937                                          rxdp1->Buffer0_ptr,
2938                                          ring_data->mtu +
2939                                          HEADER_ETHERNET_II_802_3_SIZE +
2940                                          HEADER_802_2_SIZE +
2941                                          HEADER_SNAP_SIZE,
2942                                          PCI_DMA_FROMDEVICE);
2943                 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
2944                         rxdp3 = (struct RxD3 *)rxdp;
2945                         pci_dma_sync_single_for_cpu(ring_data->pdev,
2946                                                     (dma_addr_t)rxdp3->Buffer0_ptr,
2947                                                     BUF0_LEN,
2948                                                     PCI_DMA_FROMDEVICE);
2949                         pci_unmap_single(ring_data->pdev,
2950                                          (dma_addr_t)rxdp3->Buffer2_ptr,
2951                                          ring_data->mtu + 4,
2952                                          PCI_DMA_FROMDEVICE);
2953                 }
2954                 prefetch(skb->data);
2955                 rx_osm_handler(ring_data, rxdp);
2956                 get_info.offset++;
2957                 ring_data->rx_curr_get_info.offset = get_info.offset;
2958                 rxdp = ring_data->rx_blocks[get_block].
2959                         rxds[get_info.offset].virt_addr;
2960                 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
2961                         get_info.offset = 0;
2962                         ring_data->rx_curr_get_info.offset = get_info.offset;
2963                         get_block++;
2964                         if (get_block == ring_data->block_count)
2965                                 get_block = 0;
2966                         ring_data->rx_curr_get_info.block_index = get_block;
2967                         rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2968                 }
2969
2970                 if (ring_data->nic->config.napi) {
2971                         budget--;
2972                         napi_pkts++;
2973                         if (!budget)
2974                                 break;
2975                 }
2976                 pkt_cnt++;
2977                 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2978                         break;
2979         }
2980         if (ring_data->lro) {
2981                 /* Clear all LRO sessions before exiting */
2982                 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
2983                         struct lro *lro = &ring_data->lro0_n[i];
2984                         if (lro->in_use) {
2985                                 update_L3L4_header(ring_data->nic, lro);
2986                                 queue_rx_frame(lro->parent, lro->vlan_tag);
2987                                 clear_lro_session(lro);
2988                         }
2989                 }
2990         }
2991         return napi_pkts;
2992 }
2993
2994 /**
2995  *  tx_intr_handler - Transmit interrupt handler
2996  *  @nic : device private variable
2997  *  Description:
2998  *  If an interrupt was raised to indicate DMA complete of the
2999  *  Tx packet, this function is called. It identifies the last TxD
3000  *  whose buffer was freed and frees all skbs whose data have already
3001  *  DMA'ed into the NICs internal memory.
3002  *  Return Value:
3003  *  NONE
3004  */
3005
3006 static void tx_intr_handler(struct fifo_info *fifo_data)
3007 {
3008         struct s2io_nic *nic = fifo_data->nic;
3009         struct tx_curr_get_info get_info, put_info;
3010         struct sk_buff *skb = NULL;
3011         struct TxD *txdlp;
3012         int pkt_cnt = 0;
3013         unsigned long flags = 0;
3014         u8 err_mask;
3015         struct stat_block *stats = nic->mac_control.stats_info;
3016         struct swStat *swstats = &stats->sw_stat;
3017
3018         if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3019                 return;
3020
3021         get_info = fifo_data->tx_curr_get_info;
3022         memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3023         txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3024         while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3025                (get_info.offset != put_info.offset) &&
3026                (txdlp->Host_Control)) {
3027                 /* Check for TxD errors */
3028                 if (txdlp->Control_1 & TXD_T_CODE) {
3029                         unsigned long long err;
3030                         err = txdlp->Control_1 & TXD_T_CODE;
3031                         if (err & 0x1) {
3032                                 swstats->parity_err_cnt++;
3033                         }
3034
3035                         /* update t_code statistics */
3036                         err_mask = err >> 48;
3037                         switch (err_mask) {
3038                         case 2:
3039                                 swstats->tx_buf_abort_cnt++;
3040                                 break;
3041
3042                         case 3:
3043                                 swstats->tx_desc_abort_cnt++;
3044                                 break;
3045
3046                         case 7:
3047                                 swstats->tx_parity_err_cnt++;
3048                                 break;
3049
3050                         case 10:
3051                                 swstats->tx_link_loss_cnt++;
3052                                 break;
3053
3054                         case 15:
3055                                 swstats->tx_list_proc_err_cnt++;
3056                                 break;
3057                         }
3058                 }
3059
3060                 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3061                 if (skb == NULL) {
3062                         spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3063                         DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3064                                   __func__);
3065                         return;
3066                 }
3067                 pkt_cnt++;
3068
3069                 /* Updating the statistics block */
3070                 swstats->mem_freed += skb->truesize;
3071                 dev_kfree_skb_irq(skb);
3072
3073                 get_info.offset++;
3074                 if (get_info.offset == get_info.fifo_len + 1)
3075                         get_info.offset = 0;
3076                 txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3077                 fifo_data->tx_curr_get_info.offset = get_info.offset;
3078         }
3079
3080         s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3081
3082         spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3083 }
3084
3085 /**
3086  *  s2io_mdio_write - Function to write in to MDIO registers
3087  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3088  *  @addr     : address value
3089  *  @value    : data value
3090  *  @dev      : pointer to net_device structure
3091  *  Description:
3092  *  This function is used to write values to the MDIO registers
3093  *  NONE
3094  */
3095 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3096                             struct net_device *dev)
3097 {
3098         u64 val64;
3099         struct s2io_nic *sp = netdev_priv(dev);
3100         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3101
3102         /* address transaction */
3103         val64 = MDIO_MMD_INDX_ADDR(addr) |
3104                 MDIO_MMD_DEV_ADDR(mmd_type) |
3105                 MDIO_MMS_PRT_ADDR(0x0);
3106         writeq(val64, &bar0->mdio_control);
3107         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3108         writeq(val64, &bar0->mdio_control);
3109         udelay(100);
3110
3111         /* Data transaction */
3112         val64 = MDIO_MMD_INDX_ADDR(addr) |
3113                 MDIO_MMD_DEV_ADDR(mmd_type) |
3114                 MDIO_MMS_PRT_ADDR(0x0) |
3115                 MDIO_MDIO_DATA(value) |
3116                 MDIO_OP(MDIO_OP_WRITE_TRANS);
3117         writeq(val64, &bar0->mdio_control);
3118         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3119         writeq(val64, &bar0->mdio_control);
3120         udelay(100);
3121
3122         val64 = MDIO_MMD_INDX_ADDR(addr) |
3123                 MDIO_MMD_DEV_ADDR(mmd_type) |
3124                 MDIO_MMS_PRT_ADDR(0x0) |
3125                 MDIO_OP(MDIO_OP_READ_TRANS);
3126         writeq(val64, &bar0->mdio_control);
3127         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3128         writeq(val64, &bar0->mdio_control);
3129         udelay(100);
3130 }
3131
3132 /**
3133  *  s2io_mdio_read - Function to write in to MDIO registers
3134  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3135  *  @addr     : address value
3136  *  @dev      : pointer to net_device structure
3137  *  Description:
3138  *  This function is used to read values to the MDIO registers
3139  *  NONE
3140  */
3141 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3142 {
3143         u64 val64 = 0x0;
3144         u64 rval64 = 0x0;
3145         struct s2io_nic *sp = netdev_priv(dev);
3146         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3147
3148         /* address transaction */
3149         val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3150                          | MDIO_MMD_DEV_ADDR(mmd_type)
3151                          | MDIO_MMS_PRT_ADDR(0x0));
3152         writeq(val64, &bar0->mdio_control);
3153         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3154         writeq(val64, &bar0->mdio_control);
3155         udelay(100);
3156
3157         /* Data transaction */
3158         val64 = MDIO_MMD_INDX_ADDR(addr) |
3159                 MDIO_MMD_DEV_ADDR(mmd_type) |
3160                 MDIO_MMS_PRT_ADDR(0x0) |
3161                 MDIO_OP(MDIO_OP_READ_TRANS);
3162         writeq(val64, &bar0->mdio_control);
3163         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3164         writeq(val64, &bar0->mdio_control);
3165         udelay(100);
3166
3167         /* Read the value from regs */
3168         rval64 = readq(&bar0->mdio_control);
3169         rval64 = rval64 & 0xFFFF0000;
3170         rval64 = rval64 >> 16;
3171         return rval64;
3172 }
3173
3174 /**
3175  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3176  *  @counter      : counter value to be updated
3177  *  @flag         : flag to indicate the status
3178  *  @type         : counter type
3179  *  Description:
3180  *  This function is to check the status of the xpak counters value
3181  *  NONE
3182  */
3183
3184 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3185                                   u16 flag, u16 type)
3186 {
3187         u64 mask = 0x3;
3188         u64 val64;
3189         int i;
3190         for (i = 0; i < index; i++)
3191                 mask = mask << 0x2;
3192
3193         if (flag > 0) {
3194                 *counter = *counter + 1;
3195                 val64 = *regs_stat & mask;
3196                 val64 = val64 >> (index * 0x2);
3197                 val64 = val64 + 1;
3198                 if (val64 == 3) {
3199                         switch (type) {
3200                         case 1:
3201                                 DBG_PRINT(ERR_DBG,
3202                                           "Take Xframe NIC out of service.\n");
3203                                 DBG_PRINT(ERR_DBG,
3204 "Excessive temperatures may result in premature transceiver failure.\n");
3205                                 break;
3206                         case 2:
3207                                 DBG_PRINT(ERR_DBG,
3208                                           "Take Xframe NIC out of service.\n");
3209                                 DBG_PRINT(ERR_DBG,
3210 "Excessive bias currents may indicate imminent laser diode failure.\n");
3211                                 break;
3212                         case 3:
3213                                 DBG_PRINT(ERR_DBG,
3214                                           "Take Xframe NIC out of service.\n");
3215                                 DBG_PRINT(ERR_DBG,
3216 "Excessive laser output power may saturate far-end receiver.\n");
3217                                 break;
3218                         default:
3219                                 DBG_PRINT(ERR_DBG,
3220                                           "Incorrect XPAK Alarm type\n");
3221                         }
3222                         val64 = 0x0;
3223                 }
3224                 val64 = val64 << (index * 0x2);
3225                 *regs_stat = (*regs_stat & (~mask)) | (val64);
3226
3227         } else {
3228                 *regs_stat = *regs_stat & (~mask);
3229         }
3230 }
3231
3232 /**
3233  *  s2io_updt_xpak_counter - Function to update the xpak counters
3234  *  @dev         : pointer to net_device struct
3235  *  Description:
3236  *  This function is to upate the status of the xpak counters value
3237  *  NONE
3238  */
3239 static void s2io_updt_xpak_counter(struct net_device *dev)
3240 {
3241         u16 flag  = 0x0;
3242         u16 type  = 0x0;
3243         u16 val16 = 0x0;
3244         u64 val64 = 0x0;
3245         u64 addr  = 0x0;
3246
3247         struct s2io_nic *sp = netdev_priv(dev);
3248         struct stat_block *stats = sp->mac_control.stats_info;
3249         struct xpakStat *xstats = &stats->xpak_stat;
3250
3251         /* Check the communication with the MDIO slave */
3252         addr = MDIO_CTRL1;
3253         val64 = 0x0;
3254         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3255         if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
3256                 DBG_PRINT(ERR_DBG,
3257                           "ERR: MDIO slave access failed - Returned %llx\n",
3258                           (unsigned long long)val64);
3259                 return;
3260         }
3261
3262         /* Check for the expected value of control reg 1 */
3263         if (val64 != MDIO_CTRL1_SPEED10G) {
3264                 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3265                           "Returned: %llx- Expected: 0x%x\n",
3266                           (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3267                 return;
3268         }
3269
3270         /* Loading the DOM register to MDIO register */
3271         addr = 0xA100;
3272         s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3273         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3274
3275         /* Reading the Alarm flags */
3276         addr = 0xA070;
3277         val64 = 0x0;
3278         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3279
3280         flag = CHECKBIT(val64, 0x7);
3281         type = 1;
3282         s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3283                               &xstats->xpak_regs_stat,
3284                               0x0, flag, type);
3285
3286         if (CHECKBIT(val64, 0x6))
3287                 xstats->alarm_transceiver_temp_low++;
3288
3289         flag = CHECKBIT(val64, 0x3);
3290         type = 2;
3291         s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3292                               &xstats->xpak_regs_stat,
3293                               0x2, flag, type);
3294
3295         if (CHECKBIT(val64, 0x2))
3296                 xstats->alarm_laser_bias_current_low++;
3297
3298         flag = CHECKBIT(val64, 0x1);
3299         type = 3;
3300         s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3301                               &xstats->xpak_regs_stat,
3302                               0x4, flag, type);
3303
3304         if (CHECKBIT(val64, 0x0))
3305                 xstats->alarm_laser_output_power_low++;
3306
3307         /* Reading the Warning flags */
3308         addr = 0xA074;
3309         val64 = 0x0;
3310         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3311
3312         if (CHECKBIT(val64, 0x7))
3313                 xstats->warn_transceiver_temp_high++;
3314
3315         if (CHECKBIT(val64, 0x6))
3316                 xstats->warn_transceiver_temp_low++;
3317
3318         if (CHECKBIT(val64, 0x3))
3319                 xstats->warn_laser_bias_current_high++;
3320
3321         if (CHECKBIT(val64, 0x2))
3322                 xstats->warn_laser_bias_current_low++;
3323
3324         if (CHECKBIT(val64, 0x1))
3325                 xstats->warn_laser_output_power_high++;
3326
3327         if (CHECKBIT(val64, 0x0))
3328                 xstats->warn_laser_output_power_low++;
3329 }
3330
3331 /**
3332  *  wait_for_cmd_complete - waits for a command to complete.
3333  *  @sp : private member of the device structure, which is a pointer to the
3334  *  s2io_nic structure.
3335  *  Description: Function that waits for a command to Write into RMAC
3336  *  ADDR DATA registers to be completed and returns either success or
3337  *  error depending on whether the command was complete or not.
3338  *  Return value:
3339  *   SUCCESS on success and FAILURE on failure.
3340  */
3341
3342 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3343                                  int bit_state)
3344 {
3345         int ret = FAILURE, cnt = 0, delay = 1;
3346         u64 val64;
3347
3348         if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3349                 return FAILURE;
3350
3351         do {
3352                 val64 = readq(addr);
3353                 if (bit_state == S2IO_BIT_RESET) {
3354                         if (!(val64 & busy_bit)) {
3355                                 ret = SUCCESS;
3356                                 break;
3357                         }
3358                 } else {
3359                         if (val64 & busy_bit) {
3360                                 ret = SUCCESS;
3361                                 break;
3362                         }
3363                 }
3364
3365                 if (in_interrupt())
3366                         mdelay(delay);
3367                 else
3368                         msleep(delay);
3369
3370                 if (++cnt >= 10)
3371                         delay = 50;
3372         } while (cnt < 20);
3373         return ret;
3374 }
3375 /**
3376  * check_pci_device_id - Checks if the device id is supported
3377  * @id : device id
3378  * Description: Function to check if the pci device id is supported by driver.
3379  * Return value: Actual device id if supported else PCI_ANY_ID
3380  */
3381 static u16 check_pci_device_id(u16 id)
3382 {
3383         switch (id) {
3384         case PCI_DEVICE_ID_HERC_WIN:
3385         case PCI_DEVICE_ID_HERC_UNI:
3386                 return XFRAME_II_DEVICE;
3387         case PCI_DEVICE_ID_S2IO_UNI:
3388         case PCI_DEVICE_ID_S2IO_WIN:
3389                 return XFRAME_I_DEVICE;
3390         default:
3391                 return PCI_ANY_ID;
3392         }
3393 }
3394
3395 /**
3396  *  s2io_reset - Resets the card.
3397  *  @sp : private member of the device structure.
3398  *  Description: Function to Reset the card. This function then also
3399  *  restores the previously saved PCI configuration space registers as
3400  *  the card reset also resets the configuration space.
3401  *  Return value:
3402  *  void.
3403  */
3404
3405 static void s2io_reset(struct s2io_nic *sp)
3406 {
3407         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3408         u64 val64;
3409         u16 subid, pci_cmd;
3410         int i;
3411         u16 val16;
3412         unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3413         unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3414         struct stat_block *stats;
3415         struct swStat *swstats;
3416
3417         DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3418                   __func__, pci_name(sp->pdev));
3419
3420         /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3421         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3422
3423         val64 = SW_RESET_ALL;
3424         writeq(val64, &bar0->sw_reset);
3425         if (strstr(sp->product_name, "CX4"))
3426                 msleep(750);
3427         msleep(250);
3428         for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3429
3430                 /* Restore the PCI state saved during initialization. */
3431                 pci_restore_state(sp->pdev);
3432                 pci_save_state(sp->pdev);
3433                 pci_read_config_word(sp->pdev, 0x2, &val16);
3434                 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3435                         break;
3436                 msleep(200);
3437         }
3438
3439         if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3440                 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
3441
3442         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3443
3444         s2io_init_pci(sp);
3445
3446         /* Set swapper to enable I/O register access */
3447         s2io_set_swapper(sp);
3448
3449         /* restore mac_addr entries */
3450         do_s2io_restore_unicast_mc(sp);
3451
3452         /* Restore the MSIX table entries from local variables */
3453         restore_xmsi_data(sp);
3454
3455         /* Clear certain PCI/PCI-X fields after reset */
3456         if (sp->device_type == XFRAME_II_DEVICE) {
3457                 /* Clear "detected parity error" bit */
3458                 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3459
3460                 /* Clearing PCIX Ecc status register */
3461                 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3462
3463                 /* Clearing PCI_STATUS error reflected here */
3464                 writeq(s2BIT(62), &bar0->txpic_int_reg);
3465         }
3466
3467         /* Reset device statistics maintained by OS */
3468         memset(&sp->stats, 0, sizeof(struct net_device_stats));
3469
3470         stats = sp->mac_control.stats_info;
3471         swstats = &stats->sw_stat;
3472
3473         /* save link up/down time/cnt, reset/memory/watchdog cnt */
3474         up_cnt = swstats->link_up_cnt;
3475         down_cnt = swstats->link_down_cnt;
3476         up_time = swstats->link_up_time;
3477         down_time = swstats->link_down_time;
3478         reset_cnt = swstats->soft_reset_cnt;
3479         mem_alloc_cnt = swstats->mem_allocated;
3480         mem_free_cnt = swstats->mem_freed;
3481         watchdog_cnt = swstats->watchdog_timer_cnt;
3482
3483         memset(stats, 0, sizeof(struct stat_block));
3484
3485         /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3486         swstats->link_up_cnt = up_cnt;
3487         swstats->link_down_cnt = down_cnt;
3488         swstats->link_up_time = up_time;
3489         swstats->link_down_time = down_time;
3490         swstats->soft_reset_cnt = reset_cnt;
3491         swstats->mem_allocated = mem_alloc_cnt;
3492         swstats->mem_freed = mem_free_cnt;
3493         swstats->watchdog_timer_cnt = watchdog_cnt;
3494
3495         /* SXE-002: Configure link and activity LED to turn it off */
3496         subid = sp->pdev->subsystem_device;
3497         if (((subid & 0xFF) >= 0x07) &&
3498             (sp->device_type == XFRAME_I_DEVICE)) {
3499                 val64 = readq(&bar0->gpio_control);
3500                 val64 |= 0x0000800000000000ULL;
3501                 writeq(val64, &bar0->gpio_control);
3502                 val64 = 0x0411040400000000ULL;
3503                 writeq(val64, (void __iomem *)bar0 + 0x2700);
3504         }
3505
3506         /*
3507          * Clear spurious ECC interrupts that would have occurred on
3508          * XFRAME II cards after reset.
3509          */
3510         if (sp->device_type == XFRAME_II_DEVICE) {
3511                 val64 = readq(&bar0->pcc_err_reg);
3512                 writeq(val64, &bar0->pcc_err_reg);
3513         }
3514
3515         sp->device_enabled_once = false;
3516 }
3517
3518 /**
3519  *  s2io_set_swapper - to set the swapper controle on the card
3520  *  @sp : private member of the device structure,
3521  *  pointer to the s2io_nic structure.
3522  *  Description: Function to set the swapper control on the card
3523  *  correctly depending on the 'endianness' of the system.
3524  *  Return value:
3525  *  SUCCESS on success and FAILURE on failure.
3526  */
3527
3528 static int s2io_set_swapper(struct s2io_nic *sp)
3529 {
3530         struct net_device *dev = sp->dev;
3531         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3532         u64 val64, valt, valr;
3533
3534         /*
3535          * Set proper endian settings and verify the same by reading
3536          * the PIF Feed-back register.
3537          */
3538
3539         val64 = readq(&bar0->pif_rd_swapper_fb);
3540         if (val64 != 0x0123456789ABCDEFULL) {
3541                 int i = 0;
3542                 static const u64 value[] = {
3543                         0xC30000C3C30000C3ULL,  /* FE=1, SE=1 */
3544                         0x8100008181000081ULL,  /* FE=1, SE=0 */
3545                         0x4200004242000042ULL,  /* FE=0, SE=1 */
3546                         0                       /* FE=0, SE=0 */
3547                 };
3548
3549                 while (i < 4) {
3550                         writeq(value[i], &bar0->swapper_ctrl);
3551                         val64 = readq(&bar0->pif_rd_swapper_fb);
3552                         if (val64 == 0x0123456789ABCDEFULL)
3553                                 break;
3554                         i++;
3555                 }
3556                 if (i == 4) {
3557                         DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3558                                   "feedback read %llx\n",
3559                                   dev->name, (unsigned long long)val64);
3560                         return FAILURE;
3561                 }
3562                 valr = value[i];
3563         } else {
3564                 valr = readq(&bar0->swapper_ctrl);
3565         }
3566
3567         valt = 0x0123456789ABCDEFULL;
3568         writeq(valt, &bar0->xmsi_address);
3569         val64 = readq(&bar0->xmsi_address);
3570
3571         if (val64 != valt) {
3572                 int i = 0;
3573                 static const u64 value[] = {
3574                         0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
3575                         0x0081810000818100ULL,  /* FE=1, SE=0 */
3576                         0x0042420000424200ULL,  /* FE=0, SE=1 */
3577                         0                       /* FE=0, SE=0 */
3578                 };
3579
3580                 while (i < 4) {
3581                         writeq((value[i] | valr), &bar0->swapper_ctrl);
3582                         writeq(valt, &bar0->xmsi_address);
3583                         val64 = readq(&bar0->xmsi_address);
3584                         if (val64 == valt)
3585                                 break;
3586                         i++;
3587                 }
3588                 if (i == 4) {
3589                         unsigned long long x = val64;
3590                         DBG_PRINT(ERR_DBG,
3591                                   "Write failed, Xmsi_addr reads:0x%llx\n", x);
3592                         return FAILURE;
3593                 }
3594         }
3595         val64 = readq(&bar0->swapper_ctrl);
3596         val64 &= 0xFFFF000000000000ULL;
3597
3598 #ifdef __BIG_ENDIAN
3599         /*
3600          * The device by default set to a big endian format, so a
3601          * big endian driver need not set anything.
3602          */
3603         val64 |= (SWAPPER_CTRL_TXP_FE |
3604                   SWAPPER_CTRL_TXP_SE |
3605                   SWAPPER_CTRL_TXD_R_FE |
3606                   SWAPPER_CTRL_TXD_W_FE |
3607                   SWAPPER_CTRL_TXF_R_FE |
3608                   SWAPPER_CTRL_RXD_R_FE |
3609                   SWAPPER_CTRL_RXD_W_FE |
3610                   SWAPPER_CTRL_RXF_W_FE |
3611                   SWAPPER_CTRL_XMSI_FE |
3612                   SWAPPER_CTRL_STATS_FE |
3613                   SWAPPER_CTRL_STATS_SE);
3614         if (sp->config.intr_type == INTA)
3615                 val64 |= SWAPPER_CTRL_XMSI_SE;
3616         writeq(val64, &bar0->swapper_ctrl);
3617 #else
3618         /*
3619          * Initially we enable all bits to make it accessible by the
3620          * driver, then we selectively enable only those bits that
3621          * we want to set.
3622          */
3623         val64 |= (SWAPPER_CTRL_TXP_FE |
3624                   SWAPPER_CTRL_TXP_SE |
3625                   SWAPPER_CTRL_TXD_R_FE |
3626                   SWAPPER_CTRL_TXD_R_SE |
3627                   SWAPPER_CTRL_TXD_W_FE |
3628                   SWAPPER_CTRL_TXD_W_SE |
3629                   SWAPPER_CTRL_TXF_R_FE |
3630                   SWAPPER_CTRL_RXD_R_FE |
3631                   SWAPPER_CTRL_RXD_R_SE |
3632                   SWAPPER_CTRL_RXD_W_FE |
3633                   SWAPPER_CTRL_RXD_W_SE |
3634                   SWAPPER_CTRL_RXF_W_FE |
3635                   SWAPPER_CTRL_XMSI_FE |
3636                   SWAPPER_CTRL_STATS_FE |
3637                   SWAPPER_CTRL_STATS_SE);
3638         if (sp->config.intr_type == INTA)
3639                 val64 |= SWAPPER_CTRL_XMSI_SE;
3640         writeq(val64, &bar0->swapper_ctrl);
3641 #endif
3642         val64 = readq(&bar0->swapper_ctrl);
3643
3644         /*
3645          * Verifying if endian settings are accurate by reading a
3646          * feedback register.
3647          */
3648         val64 = readq(&bar0->pif_rd_swapper_fb);
3649         if (val64 != 0x0123456789ABCDEFULL) {
3650                 /* Endian settings are incorrect, calls for another dekko. */
3651                 DBG_PRINT(ERR_DBG,
3652                           "%s: Endian settings are wrong, feedback read %llx\n",
3653                           dev->name, (unsigned long long)val64);
3654                 return FAILURE;
3655         }
3656
3657         return SUCCESS;
3658 }
3659
3660 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3661 {
3662         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3663         u64 val64;
3664         int ret = 0, cnt = 0;
3665
3666         do {
3667                 val64 = readq(&bar0->xmsi_access);
3668                 if (!(val64 & s2BIT(15)))
3669                         break;
3670                 mdelay(1);
3671                 cnt++;
3672         } while (cnt < 5);
3673         if (cnt == 5) {
3674                 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3675                 ret = 1;
3676         }
3677
3678         return ret;
3679 }
3680
3681 static void restore_xmsi_data(struct s2io_nic *nic)
3682 {
3683         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3684         u64 val64;
3685         int i, msix_index;
3686
3687         if (nic->device_type == XFRAME_I_DEVICE)
3688                 return;
3689
3690         for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3691                 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3692                 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3693                 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3694                 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3695                 writeq(val64, &bar0->xmsi_access);
3696                 if (wait_for_msix_trans(nic, msix_index)) {
3697                         DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3698                                   __func__, msix_index);
3699                         continue;
3700                 }
3701         }
3702 }
3703
3704 static void store_xmsi_data(struct s2io_nic *nic)
3705 {
3706         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3707         u64 val64, addr, data;
3708         int i, msix_index;
3709
3710         if (nic->device_type == XFRAME_I_DEVICE)
3711                 return;
3712
3713         /* Store and display */
3714         for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3715                 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3716                 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3717                 writeq(val64, &bar0->xmsi_access);
3718                 if (wait_for_msix_trans(nic, msix_index)) {
3719                         DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3720                                   __func__, msix_index);
3721                         continue;
3722                 }
3723                 addr = readq(&bar0->xmsi_address);
3724                 data = readq(&bar0->xmsi_data);
3725                 if (addr && data) {
3726                         nic->msix_info[i].addr = addr;
3727                         nic->msix_info[i].data = data;
3728                 }
3729         }
3730 }
3731
3732 static int s2io_enable_msi_x(struct s2io_nic *nic)
3733 {
3734         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3735         u64 rx_mat;
3736         u16 msi_control; /* Temp variable */
3737         int ret, i, j, msix_indx = 1;
3738         int size;
3739         struct stat_block *stats = nic->mac_control.stats_info;
3740         struct swStat *swstats = &stats->sw_stat;
3741
3742         size = nic->num_entries * sizeof(struct msix_entry);
3743         nic->entries = kzalloc(size, GFP_KERNEL);
3744         if (!nic->entries) {
3745                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3746                           __func__);
3747                 swstats->mem_alloc_fail_cnt++;
3748                 return -ENOMEM;
3749         }
3750         swstats->mem_allocated += size;
3751
3752         size = nic->num_entries * sizeof(struct s2io_msix_entry);
3753         nic->s2io_entries = kzalloc(size, GFP_KERNEL);
3754         if (!nic->s2io_entries) {
3755                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3756                           __func__);
3757                 swstats->mem_alloc_fail_cnt++;
3758                 kfree(nic->entries);
3759                 swstats->mem_freed
3760                         += (nic->num_entries * sizeof(struct msix_entry));
3761                 return -ENOMEM;
3762         }
3763         swstats->mem_allocated += size;
3764
3765         nic->entries[0].entry = 0;
3766         nic->s2io_entries[0].entry = 0;
3767         nic->s2io_entries[0].in_use = MSIX_FLG;
3768         nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3769         nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3770
3771         for (i = 1; i < nic->num_entries; i++) {
3772                 nic->entries[i].entry = ((i - 1) * 8) + 1;
3773                 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3774                 nic->s2io_entries[i].arg = NULL;
3775                 nic->s2io_entries[i].in_use = 0;
3776         }
3777
3778         rx_mat = readq(&bar0->rx_mat);
3779         for (j = 0; j < nic->config.rx_ring_num; j++) {
3780                 rx_mat |= RX_MAT_SET(j, msix_indx);
3781                 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3782                 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3783                 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3784                 msix_indx += 8;
3785         }
3786         writeq(rx_mat, &bar0->rx_mat);
3787         readq(&bar0->rx_mat);
3788
3789         ret = pci_enable_msix_range(nic->pdev, nic->entries,
3790                                     nic->num_entries, nic->num_entries);
3791         /* We fail init if error or we get less vectors than min required */
3792         if (ret < 0) {
3793                 DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
3794                 kfree(nic->entries);
3795                 swstats->mem_freed += nic->num_entries *
3796                         sizeof(struct msix_entry);
3797                 kfree(nic->s2io_entries);
3798                 swstats->mem_freed += nic->num_entries *
3799                         sizeof(struct s2io_msix_entry);
3800                 nic->entries = NULL;
3801                 nic->s2io_entries = NULL;
3802                 return -ENOMEM;
3803         }
3804
3805         /*
3806          * To enable MSI-X, MSI also needs to be enabled, due to a bug
3807          * in the herc NIC. (Temp change, needs to be removed later)
3808          */
3809         pci_read_config_word(nic->pdev, 0x42, &msi_control);
3810         msi_control |= 0x1; /* Enable MSI */
3811         pci_write_config_word(nic->pdev, 0x42, msi_control);
3812
3813         return 0;
3814 }
3815
3816 /* Handle software interrupt used during MSI(X) test */
3817 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3818 {
3819         struct s2io_nic *sp = dev_id;
3820
3821         sp->msi_detected = 1;
3822         wake_up(&sp->msi_wait);
3823
3824         return IRQ_HANDLED;
3825 }
3826
3827 /* Test interrupt path by forcing a a software IRQ */
3828 static int s2io_test_msi(struct s2io_nic *sp)
3829 {
3830         struct pci_dev *pdev = sp->pdev;
3831         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3832         int err;
3833         u64 val64, saved64;
3834
3835         err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3836                           sp->name, sp);
3837         if (err) {
3838                 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3839                           sp->dev->name, pci_name(pdev), pdev->irq);
3840                 return err;
3841         }
3842
3843         init_waitqueue_head(&sp->msi_wait);
3844         sp->msi_detected = 0;
3845
3846         saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3847         val64 |= SCHED_INT_CTRL_ONE_SHOT;
3848         val64 |= SCHED_INT_CTRL_TIMER_EN;
3849         val64 |= SCHED_INT_CTRL_INT2MSI(1);
3850         writeq(val64, &bar0->scheduled_int_ctrl);
3851
3852         wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3853
3854         if (!sp->msi_detected) {
3855                 /* MSI(X) test failed, go back to INTx mode */
3856                 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3857                           "using MSI(X) during test\n",
3858                           sp->dev->name, pci_name(pdev));
3859
3860                 err = -EOPNOTSUPP;
3861         }
3862
3863         free_irq(sp->entries[1].vector, sp);
3864
3865         writeq(saved64, &bar0->scheduled_int_ctrl);
3866
3867         return err;
3868 }
3869
3870 static void remove_msix_isr(struct s2io_nic *sp)
3871 {
3872         int i;
3873         u16 msi_control;
3874
3875         for (i = 0; i < sp->num_entries; i++) {
3876                 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
3877                         int vector = sp->entries[i].vector;
3878                         void *arg = sp->s2io_entries[i].arg;
3879                         free_irq(vector, arg);
3880                 }
3881         }
3882
3883         kfree(sp->entries);
3884         kfree(sp->s2io_entries);
3885         sp->entries = NULL;
3886         sp->s2io_entries = NULL;
3887
3888         pci_read_config_word(sp->pdev, 0x42, &msi_control);
3889         msi_control &= 0xFFFE; /* Disable MSI */
3890         pci_write_config_word(sp->pdev, 0x42, msi_control);
3891
3892         pci_disable_msix(sp->pdev);
3893 }
3894
3895 static void remove_inta_isr(struct s2io_nic *sp)
3896 {
3897         free_irq(sp->pdev->irq, sp->dev);
3898 }
3899
3900 /* ********************************************************* *
3901  * Functions defined below concern the OS part of the driver *
3902  * ********************************************************* */
3903
3904 /**
3905  *  s2io_open - open entry point of the driver
3906  *  @dev : pointer to the device structure.
3907  *  Description:
3908  *  This function is the open entry point of the driver. It mainly calls a
3909  *  function to allocate Rx buffers and inserts them into the buffer
3910  *  descriptors and then enables the Rx part of the NIC.
3911  *  Return value:
3912  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3913  *   file on failure.
3914  */
3915
3916 static int s2io_open(struct net_device *dev)
3917 {
3918         struct s2io_nic *sp = netdev_priv(dev);
3919         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
3920         int err = 0;
3921
3922         /*
3923          * Make sure you have link off by default every time
3924          * Nic is initialized
3925          */
3926         netif_carrier_off(dev);
3927         sp->last_link_state = 0;
3928
3929         /* Initialize H/W and enable interrupts */
3930         err = s2io_card_up(sp);
3931         if (err) {
3932                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3933                           dev->name);
3934                 goto hw_init_failed;
3935         }
3936
3937         if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3938                 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3939                 s2io_card_down(sp);
3940                 err = -ENODEV;
3941                 goto hw_init_failed;
3942         }
3943         s2io_start_all_tx_queue(sp);
3944         return 0;
3945
3946 hw_init_failed:
3947         if (sp->config.intr_type == MSI_X) {
3948                 if (sp->entries) {
3949                         kfree(sp->entries);
3950                         swstats->mem_freed += sp->num_entries *
3951                                 sizeof(struct msix_entry);
3952                 }
3953                 if (sp->s2io_entries) {
3954                         kfree(sp->s2io_entries);
3955                         swstats->mem_freed += sp->num_entries *
3956                                 sizeof(struct s2io_msix_entry);
3957                 }
3958         }
3959         return err;
3960 }
3961
3962 /**
3963  *  s2io_close -close entry point of the driver
3964  *  @dev : device pointer.
3965  *  Description:
3966  *  This is the stop entry point of the driver. It needs to undo exactly
3967  *  whatever was done by the open entry point,thus it's usually referred to
3968  *  as the close function.Among other things this function mainly stops the
3969  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3970  *  Return value:
3971  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3972  *  file on failure.
3973  */
3974
3975 static int s2io_close(struct net_device *dev)
3976 {
3977         struct s2io_nic *sp = netdev_priv(dev);
3978         struct config_param *config = &sp->config;
3979         u64 tmp64;
3980         int offset;
3981
3982         /* Return if the device is already closed               *
3983          *  Can happen when s2io_card_up failed in change_mtu    *
3984          */
3985         if (!is_s2io_card_up(sp))
3986                 return 0;
3987
3988         s2io_stop_all_tx_queue(sp);
3989         /* delete all populated mac entries */
3990         for (offset = 1; offset < config->max_mc_addr; offset++) {
3991                 tmp64 = do_s2io_read_unicast_mc(sp, offset);
3992                 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
3993                         do_s2io_delete_unicast_mc(sp, tmp64);
3994         }
3995
3996         s2io_card_down(sp);
3997
3998         return 0;
3999 }
4000
4001 /**
4002  *  s2io_xmit - Tx entry point of te driver
4003  *  @skb : the socket buffer containing the Tx data.
4004  *  @dev : device pointer.
4005  *  Description :
4006  *  This function is the Tx entry point of the driver. S2IO NIC supports
4007  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
4008  *  NOTE: when device can't queue the pkt,just the trans_start variable will
4009  *  not be upadted.
4010  *  Return value:
4011  *  0 on success & 1 on failure.
4012  */
4013
4014 static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4015 {
4016         struct s2io_nic *sp = netdev_priv(dev);
4017         u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4018         register u64 val64;
4019         struct TxD *txdp;
4020         struct TxFIFO_element __iomem *tx_fifo;
4021         unsigned long flags = 0;
4022         u16 vlan_tag = 0;
4023         struct fifo_info *fifo = NULL;
4024         int do_spin_lock = 1;
4025         int offload_type;
4026         int enable_per_list_interrupt = 0;
4027         struct config_param *config = &sp->config;
4028         struct mac_info *mac_control = &sp->mac_control;
4029         struct stat_block *stats = mac_control->stats_info;
4030         struct swStat *swstats = &stats->sw_stat;
4031
4032         DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4033
4034         if (unlikely(skb->len <= 0)) {
4035                 DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
4036                 dev_kfree_skb_any(skb);
4037                 return NETDEV_TX_OK;
4038         }
4039
4040         if (!is_s2io_card_up(sp)) {
4041                 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4042                           dev->name);
4043                 dev_kfree_skb_any(skb);
4044                 return NETDEV_TX_OK;
4045         }
4046
4047         queue = 0;
4048         if (skb_vlan_tag_present(skb))
4049                 vlan_tag = skb_vlan_tag_get(skb);
4050         if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4051                 if (skb->protocol == htons(ETH_P_IP)) {
4052                         struct iphdr *ip;
4053                         struct tcphdr *th;
4054                         ip = ip_hdr(skb);
4055
4056                         if (!ip_is_fragment(ip)) {
4057                                 th = (struct tcphdr *)(((unsigned char *)ip) +
4058                                                        ip->ihl*4);
4059
4060                                 if (ip->protocol == IPPROTO_TCP) {
4061                                         queue_len = sp->total_tcp_fifos;
4062                                         queue = (ntohs(th->source) +
4063                                                  ntohs(th->dest)) &
4064                                                 sp->fifo_selector[queue_len - 1];
4065                                         if (queue >= queue_len)
4066                                                 queue = queue_len - 1;
4067                                 } else if (ip->protocol == IPPROTO_UDP) {
4068                                         queue_len = sp->total_udp_fifos;
4069                                         queue = (ntohs(th->source) +
4070                                                  ntohs(th->dest)) &
4071                                                 sp->fifo_selector[queue_len - 1];
4072                                         if (queue >= queue_len)
4073                                                 queue = queue_len - 1;
4074                                         queue += sp->udp_fifo_idx;
4075                                         if (skb->len > 1024)
4076                                                 enable_per_list_interrupt = 1;
4077                                         do_spin_lock = 0;
4078                                 }
4079                         }
4080                 }
4081         } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4082                 /* get fifo number based on skb->priority value */
4083                 queue = config->fifo_mapping
4084                         [skb->priority & (MAX_TX_FIFOS - 1)];
4085         fifo = &mac_control->fifos[queue];
4086
4087         spin_lock_irqsave(&fifo->tx_lock, flags);
4088
4089         if (sp->config.multiq) {
4090                 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4091                         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4092                         return NETDEV_TX_BUSY;
4093                 }
4094         } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4095                 if (netif_queue_stopped(dev)) {
4096                         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4097                         return NETDEV_TX_BUSY;
4098                 }
4099         }
4100
4101         put_off = (u16)fifo->tx_curr_put_info.offset;
4102         get_off = (u16)fifo->tx_curr_get_info.offset;
4103         txdp = fifo->list_info[put_off].list_virt_addr;
4104
4105         queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4106         /* Avoid "put" pointer going beyond "get" pointer */
4107         if (txdp->Host_Control ||
4108             ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4109                 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4110                 s2io_stop_tx_queue(sp, fifo->fifo_no);
4111                 dev_kfree_skb_any(skb);
4112                 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4113                 return NETDEV_TX_OK;
4114         }
4115
4116         offload_type = s2io_offload_type(skb);
4117         if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4118                 txdp->Control_1 |= TXD_TCP_LSO_EN;
4119                 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4120         }
4121         if (skb->ip_summed == CHECKSUM_PARTIAL) {
4122                 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4123                                     TXD_TX_CKO_TCP_EN |
4124                                     TXD_TX_CKO_UDP_EN);
4125         }
4126         txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4127         txdp->Control_1 |= TXD_LIST_OWN_XENA;
4128         txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4129         if (enable_per_list_interrupt)
4130                 if (put_off & (queue_len >> 5))
4131                         txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4132         if (vlan_tag) {
4133                 txdp->Control_2 |= TXD_VLAN_ENABLE;
4134                 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4135         }
4136
4137         frg_len = skb_headlen(skb);
4138         if (offload_type == SKB_GSO_UDP) {
4139                 int ufo_size;
4140
4141                 ufo_size = s2io_udp_mss(skb);
4142                 ufo_size &= ~7;
4143                 txdp->Control_1 |= TXD_UFO_EN;
4144                 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4145                 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4146 #ifdef __BIG_ENDIAN
4147                 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4148                 fifo->ufo_in_band_v[put_off] =
4149                         (__force u64)skb_shinfo(skb)->ip6_frag_id;
4150 #else
4151                 fifo->ufo_in_band_v[put_off] =
4152                         (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4153 #endif
4154                 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4155                 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4156                                                       fifo->ufo_in_band_v,
4157                                                       sizeof(u64),
4158                                                       PCI_DMA_TODEVICE);
4159                 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4160                         goto pci_map_failed;
4161                 txdp++;
4162         }
4163
4164         txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4165                                               frg_len, PCI_DMA_TODEVICE);
4166         if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4167                 goto pci_map_failed;
4168
4169         txdp->Host_Control = (unsigned long)skb;
4170         txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4171         if (offload_type == SKB_GSO_UDP)
4172                 txdp->Control_1 |= TXD_UFO_EN;
4173
4174         frg_cnt = skb_shinfo(skb)->nr_frags;
4175         /* For fragmented SKB. */
4176         for (i = 0; i < frg_cnt; i++) {
4177                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4178                 /* A '0' length fragment will be ignored */
4179                 if (!skb_frag_size(frag))
4180                         continue;
4181                 txdp++;
4182                 txdp->Buffer_Pointer = (u64)skb_frag_dma_map(&sp->pdev->dev,
4183                                                              frag, 0,
4184                                                              skb_frag_size(frag),
4185                                                              DMA_TO_DEVICE);
4186                 txdp->Control_1 = TXD_BUFFER0_SIZE(skb_frag_size(frag));
4187                 if (offload_type == SKB_GSO_UDP)
4188                         txdp->Control_1 |= TXD_UFO_EN;
4189         }
4190         txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4191
4192         if (offload_type == SKB_GSO_UDP)
4193                 frg_cnt++; /* as Txd0 was used for inband header */
4194
4195         tx_fifo = mac_control->tx_FIFO_start[queue];
4196         val64 = fifo->list_info[put_off].list_phy_addr;
4197         writeq(val64, &tx_fifo->TxDL_Pointer);
4198
4199         val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4200                  TX_FIFO_LAST_LIST);
4201         if (offload_type)
4202                 val64 |= TX_FIFO_SPECIAL_FUNC;
4203
4204         writeq(val64, &tx_fifo->List_Control);
4205
4206         mmiowb();
4207
4208         put_off++;
4209         if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4210                 put_off = 0;
4211         fifo->tx_curr_put_info.offset = put_off;
4212
4213         /* Avoid "put" pointer going beyond "get" pointer */
4214         if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4215                 swstats->fifo_full_cnt++;
4216                 DBG_PRINT(TX_DBG,
4217                           "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4218                           put_off, get_off);
4219                 s2io_stop_tx_queue(sp, fifo->fifo_no);
4220         }
4221         swstats->mem_allocated += skb->truesize;
4222         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4223
4224         if (sp->config.intr_type == MSI_X)
4225                 tx_intr_handler(fifo);
4226
4227         return NETDEV_TX_OK;
4228
4229 pci_map_failed:
4230         swstats->pci_map_fail_cnt++;
4231         s2io_stop_tx_queue(sp, fifo->fifo_no);
4232         swstats->mem_freed += skb->truesize;
4233         dev_kfree_skb_any(skb);
4234         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4235         return NETDEV_TX_OK;
4236 }
4237
4238 static void
4239 s2io_alarm_handle(unsigned long data)
4240 {
4241         struct s2io_nic *sp = (struct s2io_nic *)data;
4242         struct net_device *dev = sp->dev;
4243
4244         s2io_handle_errors(dev);
4245         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4246 }
4247
4248 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4249 {
4250         struct ring_info *ring = (struct ring_info *)dev_id;
4251         struct s2io_nic *sp = ring->nic;
4252         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4253
4254         if (unlikely(!is_s2io_card_up(sp)))
4255                 return IRQ_HANDLED;
4256
4257         if (sp->config.napi) {
4258                 u8 __iomem *addr = NULL;
4259                 u8 val8 = 0;
4260
4261                 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4262                 addr += (7 - ring->ring_no);
4263                 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4264                 writeb(val8, addr);
4265                 val8 = readb(addr);
4266                 napi_schedule(&ring->napi);
4267         } else {
4268                 rx_intr_handler(ring, 0);
4269                 s2io_chk_rx_buffers(sp, ring);
4270         }
4271
4272         return IRQ_HANDLED;
4273 }
4274
4275 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4276 {
4277         int i;
4278         struct fifo_info *fifos = (struct fifo_info *)dev_id;
4279         struct s2io_nic *sp = fifos->nic;
4280         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4281         struct config_param *config  = &sp->config;
4282         u64 reason;
4283
4284         if (unlikely(!is_s2io_card_up(sp)))
4285                 return IRQ_NONE;
4286
4287         reason = readq(&bar0->general_int_status);
4288         if (unlikely(reason == S2IO_MINUS_ONE))
4289                 /* Nothing much can be done. Get out */
4290                 return IRQ_HANDLED;
4291
4292         if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4293                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4294
4295                 if (reason & GEN_INTR_TXPIC)
4296                         s2io_txpic_intr_handle(sp);
4297
4298                 if (reason & GEN_INTR_TXTRAFFIC)
4299                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4300
4301                 for (i = 0; i < config->tx_fifo_num; i++)
4302                         tx_intr_handler(&fifos[i]);
4303
4304                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4305                 readl(&bar0->general_int_status);
4306                 return IRQ_HANDLED;
4307         }
4308         /* The interrupt was not raised by us */
4309         return IRQ_NONE;
4310 }
4311
4312 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4313 {
4314         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4315         u64 val64;
4316
4317         val64 = readq(&bar0->pic_int_status);
4318         if (val64 & PIC_INT_GPIO) {
4319                 val64 = readq(&bar0->gpio_int_reg);
4320                 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4321                     (val64 & GPIO_INT_REG_LINK_UP)) {
4322                         /*
4323                          * This is unstable state so clear both up/down
4324                          * interrupt and adapter to re-evaluate the link state.
4325                          */
4326                         val64 |= GPIO_INT_REG_LINK_DOWN;
4327                         val64 |= GPIO_INT_REG_LINK_UP;
4328                         writeq(val64, &bar0->gpio_int_reg);
4329                         val64 = readq(&bar0->gpio_int_mask);
4330                         val64 &= ~(GPIO_INT_MASK_LINK_UP |
4331                                    GPIO_INT_MASK_LINK_DOWN);
4332                         writeq(val64, &bar0->gpio_int_mask);
4333                 } else if (val64 & GPIO_INT_REG_LINK_UP) {
4334                         val64 = readq(&bar0->adapter_status);
4335                         /* Enable Adapter */
4336                         val64 = readq(&bar0->adapter_control);
4337                         val64 |= ADAPTER_CNTL_EN;
4338                         writeq(val64, &bar0->adapter_control);
4339                         val64 |= ADAPTER_LED_ON;
4340                         writeq(val64, &bar0->adapter_control);
4341                         if (!sp->device_enabled_once)
4342                                 sp->device_enabled_once = 1;
4343
4344                         s2io_link(sp, LINK_UP);
4345                         /*
4346                          * unmask link down interrupt and mask link-up
4347                          * intr
4348                          */
4349                         val64 = readq(&bar0->gpio_int_mask);
4350                         val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4351                         val64 |= GPIO_INT_MASK_LINK_UP;
4352                         writeq(val64, &bar0->gpio_int_mask);
4353
4354                 } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4355                         val64 = readq(&bar0->adapter_status);
4356                         s2io_link(sp, LINK_DOWN);
4357                         /* Link is down so unmaks link up interrupt */
4358                         val64 = readq(&bar0->gpio_int_mask);
4359                         val64 &= ~GPIO_INT_MASK_LINK_UP;
4360                         val64 |= GPIO_INT_MASK_LINK_DOWN;
4361                         writeq(val64, &bar0->gpio_int_mask);
4362
4363                         /* turn off LED */
4364                         val64 = readq(&bar0->adapter_control);
4365                         val64 = val64 & (~ADAPTER_LED_ON);
4366                         writeq(val64, &bar0->adapter_control);
4367                 }
4368         }
4369         val64 = readq(&bar0->gpio_int_mask);
4370 }
4371
4372 /**
4373  *  do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4374  *  @value: alarm bits
4375  *  @addr: address value
4376  *  @cnt: counter variable
4377  *  Description: Check for alarm and increment the counter
4378  *  Return Value:
4379  *  1 - if alarm bit set
4380  *  0 - if alarm bit is not set
4381  */
4382 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4383                                  unsigned long long *cnt)
4384 {
4385         u64 val64;
4386         val64 = readq(addr);
4387         if (val64 & value) {
4388                 writeq(val64, addr);
4389                 (*cnt)++;
4390                 return 1;
4391         }
4392         return 0;
4393
4394 }
4395
4396 /**
4397  *  s2io_handle_errors - Xframe error indication handler
4398  *  @nic: device private variable
4399  *  Description: Handle alarms such as loss of link, single or
4400  *  double ECC errors, critical and serious errors.
4401  *  Return Value:
4402  *  NONE
4403  */
4404 static void s2io_handle_errors(void *dev_id)
4405 {
4406         struct net_device *dev = (struct net_device *)dev_id;
4407         struct s2io_nic *sp = netdev_priv(dev);
4408         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4409         u64 temp64 = 0, val64 = 0;
4410         int i = 0;
4411
4412         struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4413         struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4414
4415         if (!is_s2io_card_up(sp))
4416                 return;
4417
4418         if (pci_channel_offline(sp->pdev))
4419                 return;
4420
4421         memset(&sw_stat->ring_full_cnt, 0,
4422                sizeof(sw_stat->ring_full_cnt));
4423
4424         /* Handling the XPAK counters update */
4425         if (stats->xpak_timer_count < 72000) {
4426                 /* waiting for an hour */
4427                 stats->xpak_timer_count++;
4428         } else {
4429                 s2io_updt_xpak_counter(dev);
4430                 /* reset the count to zero */
4431                 stats->xpak_timer_count = 0;
4432         }
4433
4434         /* Handling link status change error Intr */
4435         if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4436                 val64 = readq(&bar0->mac_rmac_err_reg);
4437                 writeq(val64, &bar0->mac_rmac_err_reg);
4438                 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4439                         schedule_work(&sp->set_link_task);
4440         }
4441
4442         /* In case of a serious error, the device will be Reset. */
4443         if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4444                                   &sw_stat->serious_err_cnt))
4445                 goto reset;
4446
4447         /* Check for data parity error */
4448         if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4449                                   &sw_stat->parity_err_cnt))
4450                 goto reset;
4451
4452         /* Check for ring full counter */
4453         if (sp->device_type == XFRAME_II_DEVICE) {
4454                 val64 = readq(&bar0->ring_bump_counter1);
4455                 for (i = 0; i < 4; i++) {
4456                         temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4457                         temp64 >>= 64 - ((i+1)*16);
4458                         sw_stat->ring_full_cnt[i] += temp64;
4459                 }
4460
4461                 val64 = readq(&bar0->ring_bump_counter2);
4462                 for (i = 0; i < 4; i++) {
4463                         temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4464                         temp64 >>= 64 - ((i+1)*16);
4465                         sw_stat->ring_full_cnt[i+4] += temp64;
4466                 }
4467         }
4468
4469         val64 = readq(&bar0->txdma_int_status);
4470         /*check for pfc_err*/
4471         if (val64 & TXDMA_PFC_INT) {
4472                 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4473                                           PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4474                                           PFC_PCIX_ERR,
4475                                           &bar0->pfc_err_reg,
4476                                           &sw_stat->pfc_err_cnt))
4477                         goto reset;
4478                 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4479                                       &bar0->pfc_err_reg,
4480                                       &sw_stat->pfc_err_cnt);
4481         }
4482
4483         /*check for tda_err*/
4484         if (val64 & TXDMA_TDA_INT) {
4485                 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4486                                           TDA_SM0_ERR_ALARM |
4487                                           TDA_SM1_ERR_ALARM,
4488                                           &bar0->tda_err_reg,
4489                                           &sw_stat->tda_err_cnt))
4490                         goto reset;
4491                 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4492                                       &bar0->tda_err_reg,
4493                                       &sw_stat->tda_err_cnt);
4494         }
4495         /*check for pcc_err*/
4496         if (val64 & TXDMA_PCC_INT) {
4497                 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4498                                           PCC_N_SERR | PCC_6_COF_OV_ERR |
4499                                           PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4500                                           PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4501                                           PCC_TXB_ECC_DB_ERR,
4502                                           &bar0->pcc_err_reg,
4503                                           &sw_stat->pcc_err_cnt))
4504                         goto reset;
4505                 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4506                                       &bar0->pcc_err_reg,
4507                                       &sw_stat->pcc_err_cnt);
4508         }
4509
4510         /*check for tti_err*/
4511         if (val64 & TXDMA_TTI_INT) {
4512                 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4513                                           &bar0->tti_err_reg,
4514                                           &sw_stat->tti_err_cnt))
4515                         goto reset;
4516                 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4517                                       &bar0->tti_err_reg,
4518                                       &sw_stat->tti_err_cnt);
4519         }
4520
4521         /*check for lso_err*/
4522         if (val64 & TXDMA_LSO_INT) {
4523                 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4524                                           LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4525                                           &bar0->lso_err_reg,
4526                                           &sw_stat->lso_err_cnt))
4527                         goto reset;
4528                 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4529                                       &bar0->lso_err_reg,
4530                                       &sw_stat->lso_err_cnt);
4531         }
4532
4533         /*check for tpa_err*/
4534         if (val64 & TXDMA_TPA_INT) {
4535                 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4536                                           &bar0->tpa_err_reg,
4537                                           &sw_stat->tpa_err_cnt))
4538                         goto reset;
4539                 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4540                                       &bar0->tpa_err_reg,
4541                                       &sw_stat->tpa_err_cnt);
4542         }
4543
4544         /*check for sm_err*/
4545         if (val64 & TXDMA_SM_INT) {
4546                 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4547                                           &bar0->sm_err_reg,
4548                                           &sw_stat->sm_err_cnt))
4549                         goto reset;
4550         }
4551
4552         val64 = readq(&bar0->mac_int_status);
4553         if (val64 & MAC_INT_STATUS_TMAC_INT) {
4554                 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4555                                           &bar0->mac_tmac_err_reg,
4556                                           &sw_stat->mac_tmac_err_cnt))
4557                         goto reset;
4558                 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4559                                       TMAC_DESC_ECC_SG_ERR |
4560                                       TMAC_DESC_ECC_DB_ERR,
4561                                       &bar0->mac_tmac_err_reg,
4562                                       &sw_stat->mac_tmac_err_cnt);
4563         }
4564
4565         val64 = readq(&bar0->xgxs_int_status);
4566         if (val64 & XGXS_INT_STATUS_TXGXS) {
4567                 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4568                                           &bar0->xgxs_txgxs_err_reg,
4569                                           &sw_stat->xgxs_txgxs_err_cnt))
4570                         goto reset;
4571                 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4572                                       &bar0->xgxs_txgxs_err_reg,
4573                                       &sw_stat->xgxs_txgxs_err_cnt);
4574         }
4575
4576         val64 = readq(&bar0->rxdma_int_status);
4577         if (val64 & RXDMA_INT_RC_INT_M) {
4578                 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4579                                           RC_FTC_ECC_DB_ERR |
4580                                           RC_PRCn_SM_ERR_ALARM |
4581                                           RC_FTC_SM_ERR_ALARM,
4582                                           &bar0->rc_err_reg,
4583                                           &sw_stat->rc_err_cnt))
4584                         goto reset;
4585                 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4586                                       RC_FTC_ECC_SG_ERR |
4587                                       RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4588                                       &sw_stat->rc_err_cnt);
4589                 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4590                                           PRC_PCI_AB_WR_Rn |
4591                                           PRC_PCI_AB_F_WR_Rn,
4592                                           &bar0->prc_pcix_err_reg,
4593                                           &sw_stat->prc_pcix_err_cnt))
4594                         goto reset;
4595                 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4596                                       PRC_PCI_DP_WR_Rn |
4597                                       PRC_PCI_DP_F_WR_Rn,
4598                                       &bar0->prc_pcix_err_reg,
4599                                       &sw_stat->prc_pcix_err_cnt);
4600         }
4601
4602         if (val64 & RXDMA_INT_RPA_INT_M) {
4603                 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4604                                           &bar0->rpa_err_reg,
4605                                           &sw_stat->rpa_err_cnt))
4606                         goto reset;
4607                 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4608                                       &bar0->rpa_err_reg,
4609                                       &sw_stat->rpa_err_cnt);
4610         }
4611
4612         if (val64 & RXDMA_INT_RDA_INT_M) {
4613                 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4614                                           RDA_FRM_ECC_DB_N_AERR |
4615                                           RDA_SM1_ERR_ALARM |
4616                                           RDA_SM0_ERR_ALARM |
4617                                           RDA_RXD_ECC_DB_SERR,
4618                                           &bar0->rda_err_reg,
4619                                           &sw_stat->rda_err_cnt))
4620                         goto reset;
4621                 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4622                                       RDA_FRM_ECC_SG_ERR |
4623                                       RDA_MISC_ERR |
4624                                       RDA_PCIX_ERR,
4625                                       &bar0->rda_err_reg,
4626                                       &sw_stat->rda_err_cnt);
4627         }
4628
4629         if (val64 & RXDMA_INT_RTI_INT_M) {
4630                 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4631                                           &bar0->rti_err_reg,
4632                                           &sw_stat->rti_err_cnt))
4633                         goto reset;
4634                 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4635                                       &bar0->rti_err_reg,
4636                                       &sw_stat->rti_err_cnt);
4637         }
4638
4639         val64 = readq(&bar0->mac_int_status);
4640         if (val64 & MAC_INT_STATUS_RMAC_INT) {
4641                 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4642                                           &bar0->mac_rmac_err_reg,
4643                                           &sw_stat->mac_rmac_err_cnt))
4644                         goto reset;
4645                 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4646                                       RMAC_SINGLE_ECC_ERR |
4647                                       RMAC_DOUBLE_ECC_ERR,
4648                                       &bar0->mac_rmac_err_reg,
4649                                       &sw_stat->mac_rmac_err_cnt);
4650         }
4651
4652         val64 = readq(&bar0->xgxs_int_status);
4653         if (val64 & XGXS_INT_STATUS_RXGXS) {
4654                 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4655                                           &bar0->xgxs_rxgxs_err_reg,
4656                                           &sw_stat->xgxs_rxgxs_err_cnt))
4657                         goto reset;
4658         }
4659
4660         val64 = readq(&bar0->mc_int_status);
4661         if (val64 & MC_INT_STATUS_MC_INT) {
4662                 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4663                                           &bar0->mc_err_reg,
4664                                           &sw_stat->mc_err_cnt))
4665                         goto reset;
4666
4667                 /* Handling Ecc errors */
4668                 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4669                         writeq(val64, &bar0->mc_err_reg);
4670                         if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4671                                 sw_stat->double_ecc_errs++;
4672                                 if (sp->device_type != XFRAME_II_DEVICE) {
4673                                         /*
4674                                          * Reset XframeI only if critical error
4675                                          */
4676                                         if (val64 &
4677                                             (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4678                                              MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4679                                                 goto reset;
4680                                 }
4681                         } else
4682                                 sw_stat->single_ecc_errs++;
4683                 }
4684         }
4685         return;
4686
4687 reset:
4688         s2io_stop_all_tx_queue(sp);
4689         schedule_work(&sp->rst_timer_task);
4690         sw_stat->soft_reset_cnt++;
4691 }
4692
4693 /**
4694  *  s2io_isr - ISR handler of the device .
4695  *  @irq: the irq of the device.
4696  *  @dev_id: a void pointer to the dev structure of the NIC.
4697  *  Description:  This function is the ISR handler of the device. It
4698  *  identifies the reason for the interrupt and calls the relevant
4699  *  service routines. As a contongency measure, this ISR allocates the
4700  *  recv buffers, if their numbers are below the panic value which is
4701  *  presently set to 25% of the original number of rcv buffers allocated.
4702  *  Return value:
4703  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4704  *   IRQ_NONE: will be returned if interrupt is not from our device
4705  */
4706 static irqreturn_t s2io_isr(int irq, void *dev_id)
4707 {
4708         struct net_device *dev = (struct net_device *)dev_id;
4709         struct s2io_nic *sp = netdev_priv(dev);
4710         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4711         int i;
4712         u64 reason = 0;
4713         struct mac_info *mac_control;
4714         struct config_param *config;
4715
4716         /* Pretend we handled any irq's from a disconnected card */
4717         if (pci_channel_offline(sp->pdev))
4718                 return IRQ_NONE;
4719
4720         if (!is_s2io_card_up(sp))
4721                 return IRQ_NONE;
4722
4723         config = &sp->config;
4724         mac_control = &sp->mac_control;
4725
4726         /*
4727          * Identify the cause for interrupt and call the appropriate
4728          * interrupt handler. Causes for the interrupt could be;
4729          * 1. Rx of packet.
4730          * 2. Tx complete.
4731          * 3. Link down.
4732          */
4733         reason = readq(&bar0->general_int_status);
4734
4735         if (unlikely(reason == S2IO_MINUS_ONE))
4736                 return IRQ_HANDLED;     /* Nothing much can be done. Get out */
4737
4738         if (reason &
4739             (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
4740                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4741
4742                 if (config->napi) {
4743                         if (reason & GEN_INTR_RXTRAFFIC) {
4744                                 napi_schedule(&sp->napi);
4745                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4746                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4747                                 readl(&bar0->rx_traffic_int);
4748                         }
4749                 } else {
4750                         /*
4751                          * rx_traffic_int reg is an R1 register, writing all 1's
4752                          * will ensure that the actual interrupt causing bit
4753                          * get's cleared and hence a read can be avoided.
4754                          */
4755                         if (reason & GEN_INTR_RXTRAFFIC)
4756                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4757
4758                         for (i = 0; i < config->rx_ring_num; i++) {
4759                                 struct ring_info *ring = &mac_control->rings[i];
4760
4761                                 rx_intr_handler(ring, 0);
4762                         }
4763                 }
4764
4765                 /*
4766                  * tx_traffic_int reg is an R1 register, writing all 1's
4767                  * will ensure that the actual interrupt causing bit get's
4768                  * cleared and hence a read can be avoided.
4769                  */
4770                 if (reason & GEN_INTR_TXTRAFFIC)
4771                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4772
4773                 for (i = 0; i < config->tx_fifo_num; i++)
4774                         tx_intr_handler(&mac_control->fifos[i]);
4775
4776                 if (reason & GEN_INTR_TXPIC)
4777                         s2io_txpic_intr_handle(sp);
4778
4779                 /*
4780                  * Reallocate the buffers from the interrupt handler itself.
4781                  */
4782                 if (!config->napi) {
4783                         for (i = 0; i < config->rx_ring_num; i++) {
4784                                 struct ring_info *ring = &mac_control->rings[i];
4785
4786                                 s2io_chk_rx_buffers(sp, ring);
4787                         }
4788                 }
4789                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4790                 readl(&bar0->general_int_status);
4791
4792                 return IRQ_HANDLED;
4793
4794         } else if (!reason) {
4795                 /* The interrupt was not raised by us */
4796                 return IRQ_NONE;
4797         }
4798
4799         return IRQ_HANDLED;
4800 }
4801
4802 /**
4803  * s2io_updt_stats -
4804  */
4805 static void s2io_updt_stats(struct s2io_nic *sp)
4806 {
4807         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4808         u64 val64;
4809         int cnt = 0;
4810
4811         if (is_s2io_card_up(sp)) {
4812                 /* Apprx 30us on a 133 MHz bus */
4813                 val64 = SET_UPDT_CLICKS(10) |
4814                         STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4815                 writeq(val64, &bar0->stat_cfg);
4816                 do {
4817                         udelay(100);
4818                         val64 = readq(&bar0->stat_cfg);
4819                         if (!(val64 & s2BIT(0)))
4820                                 break;
4821                         cnt++;
4822                         if (cnt == 5)
4823                                 break; /* Updt failed */
4824                 } while (1);
4825         }
4826 }
4827
4828 /**
4829  *  s2io_get_stats - Updates the device statistics structure.
4830  *  @dev : pointer to the device structure.
4831  *  Description:
4832  *  This function updates the device statistics structure in the s2io_nic
4833  *  structure and returns a pointer to the same.
4834  *  Return value:
4835  *  pointer to the updated net_device_stats structure.
4836  */
4837 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4838 {
4839         struct s2io_nic *sp = netdev_priv(dev);
4840         struct mac_info *mac_control = &sp->mac_control;
4841         struct stat_block *stats = mac_control->stats_info;
4842         u64 delta;
4843
4844         /* Configure Stats for immediate updt */
4845         s2io_updt_stats(sp);
4846
4847         /* A device reset will cause the on-adapter statistics to be zero'ed.
4848          * This can be done while running by changing the MTU.  To prevent the
4849          * system from having the stats zero'ed, the driver keeps a copy of the
4850          * last update to the system (which is also zero'ed on reset).  This
4851          * enables the driver to accurately know the delta between the last
4852          * update and the current update.
4853          */
4854         delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
4855                 le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
4856         sp->stats.rx_packets += delta;
4857         dev->stats.rx_packets += delta;
4858
4859         delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
4860                 le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
4861         sp->stats.tx_packets += delta;
4862         dev->stats.tx_packets += delta;
4863
4864         delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
4865                 le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
4866         sp->stats.rx_bytes += delta;
4867         dev->stats.rx_bytes += delta;
4868
4869         delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
4870                 le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
4871         sp->stats.tx_bytes += delta;
4872         dev->stats.tx_bytes += delta;
4873
4874         delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
4875         sp->stats.rx_errors += delta;
4876         dev->stats.rx_errors += delta;
4877
4878         delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
4879                 le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
4880         sp->stats.tx_errors += delta;
4881         dev->stats.tx_errors += delta;
4882
4883         delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
4884         sp->stats.rx_dropped += delta;
4885         dev->stats.rx_dropped += delta;
4886
4887         delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
4888         sp->stats.tx_dropped += delta;
4889         dev->stats.tx_dropped += delta;
4890
4891         /* The adapter MAC interprets pause frames as multicast packets, but
4892          * does not pass them up.  This erroneously increases the multicast
4893          * packet count and needs to be deducted when the multicast frame count
4894          * is queried.
4895          */
4896         delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
4897                 le32_to_cpu(stats->rmac_vld_mcst_frms);
4898         delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
4899         delta -= sp->stats.multicast;
4900         sp->stats.multicast += delta;
4901         dev->stats.multicast += delta;
4902
4903         delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
4904                 le32_to_cpu(stats->rmac_usized_frms)) +
4905                 le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
4906         sp->stats.rx_length_errors += delta;
4907         dev->stats.rx_length_errors += delta;
4908
4909         delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
4910         sp->stats.rx_crc_errors += delta;
4911         dev->stats.rx_crc_errors += delta;
4912
4913         return &dev->stats;
4914 }
4915
4916 /**
4917  *  s2io_set_multicast - entry point for multicast address enable/disable.
4918  *  @dev : pointer to the device structure
4919  *  Description:
4920  *  This function is a driver entry point which gets called by the kernel
4921  *  whenever multicast addresses must be enabled/disabled. This also gets
4922  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4923  *  determine, if multicast address must be enabled or if promiscuous mode
4924  *  is to be disabled etc.
4925  *  Return value:
4926  *  void.
4927  */
4928
4929 static void s2io_set_multicast(struct net_device *dev)
4930 {
4931         int i, j, prev_cnt;
4932         struct netdev_hw_addr *ha;
4933         struct s2io_nic *sp = netdev_priv(dev);
4934         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4935         u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4936                 0xfeffffffffffULL;
4937         u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4938         void __iomem *add;
4939         struct config_param *config = &sp->config;
4940
4941         if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4942                 /*  Enable all Multicast addresses */
4943                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4944                        &bar0->rmac_addr_data0_mem);
4945                 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4946                        &bar0->rmac_addr_data1_mem);
4947                 val64 = RMAC_ADDR_CMD_MEM_WE |
4948                         RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4949                         RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4950                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4951                 /* Wait till command completes */
4952                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4953                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4954                                       S2IO_BIT_RESET);
4955
4956                 sp->m_cast_flg = 1;
4957                 sp->all_multi_pos = config->max_mc_addr - 1;
4958         } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4959                 /*  Disable all Multicast addresses */
4960                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4961                        &bar0->rmac_addr_data0_mem);
4962                 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4963                        &bar0->rmac_addr_data1_mem);
4964                 val64 = RMAC_ADDR_CMD_MEM_WE |
4965                         RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4966                         RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4967                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4968                 /* Wait till command completes */
4969                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4970                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4971                                       S2IO_BIT_RESET);
4972
4973                 sp->m_cast_flg = 0;
4974                 sp->all_multi_pos = 0;
4975         }
4976
4977         if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4978                 /*  Put the NIC into promiscuous mode */
4979                 add = &bar0->mac_cfg;
4980                 val64 = readq(&bar0->mac_cfg);
4981                 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4982
4983                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4984                 writel((u32)val64, add);
4985                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4986                 writel((u32) (val64 >> 32), (add + 4));
4987
4988                 if (vlan_tag_strip != 1) {
4989                         val64 = readq(&bar0->rx_pa_cfg);
4990                         val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4991                         writeq(val64, &bar0->rx_pa_cfg);
4992                         sp->vlan_strip_flag = 0;
4993                 }
4994
4995                 val64 = readq(&bar0->mac_cfg);
4996                 sp->promisc_flg = 1;
4997                 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4998                           dev->name);
4999         } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5000                 /*  Remove the NIC from promiscuous mode */
5001                 add = &bar0->mac_cfg;
5002                 val64 = readq(&bar0->mac_cfg);
5003                 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5004
5005                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5006                 writel((u32)val64, add);
5007                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5008                 writel((u32) (val64 >> 32), (add + 4));
5009
5010                 if (vlan_tag_strip != 0) {
5011                         val64 = readq(&bar0->rx_pa_cfg);
5012                         val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5013                         writeq(val64, &bar0->rx_pa_cfg);
5014                         sp->vlan_strip_flag = 1;
5015                 }
5016
5017                 val64 = readq(&bar0->mac_cfg);
5018                 sp->promisc_flg = 0;
5019                 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
5020         }
5021
5022         /*  Update individual M_CAST address list */
5023         if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
5024                 if (netdev_mc_count(dev) >
5025                     (config->max_mc_addr - config->max_mac_addr)) {
5026                         DBG_PRINT(ERR_DBG,
5027                                   "%s: No more Rx filters can be added - "
5028                                   "please enable ALL_MULTI instead\n",
5029                                   dev->name);
5030                         return;
5031                 }
5032
5033                 prev_cnt = sp->mc_addr_count;
5034                 sp->mc_addr_count = netdev_mc_count(dev);
5035
5036                 /* Clear out the previous list of Mc in the H/W. */
5037                 for (i = 0; i < prev_cnt; i++) {
5038                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5039                                &bar0->rmac_addr_data0_mem);
5040                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5041                                &bar0->rmac_addr_data1_mem);
5042                         val64 = RMAC_ADDR_CMD_MEM_WE |
5043                                 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5044                                 RMAC_ADDR_CMD_MEM_OFFSET
5045                                 (config->mc_start_offset + i);
5046                         writeq(val64, &bar0->rmac_addr_cmd_mem);
5047
5048                         /* Wait for command completes */
5049                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5050                                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5051                                                   S2IO_BIT_RESET)) {
5052                                 DBG_PRINT(ERR_DBG,
5053                                           "%s: Adding Multicasts failed\n",
5054                                           dev->name);
5055                                 return;
5056                         }
5057                 }
5058
5059                 /* Create the new Rx filter list and update the same in H/W. */
5060                 i = 0;
5061                 netdev_for_each_mc_addr(ha, dev) {
5062                         mac_addr = 0;
5063                         for (j = 0; j < ETH_ALEN; j++) {
5064                                 mac_addr |= ha->addr[j];
5065                                 mac_addr <<= 8;
5066                         }
5067                         mac_addr >>= 8;
5068                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5069                                &bar0->rmac_addr_data0_mem);
5070                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5071                                &bar0->rmac_addr_data1_mem);
5072                         val64 = RMAC_ADDR_CMD_MEM_WE |
5073                                 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5074                                 RMAC_ADDR_CMD_MEM_OFFSET
5075                                 (i + config->mc_start_offset);
5076                         writeq(val64, &bar0->rmac_addr_cmd_mem);
5077
5078                         /* Wait for command completes */
5079                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5080                                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5081                                                   S2IO_BIT_RESET)) {
5082                                 DBG_PRINT(ERR_DBG,
5083                                           "%s: Adding Multicasts failed\n",
5084                                           dev->name);
5085                                 return;
5086                         }
5087                         i++;
5088                 }
5089         }
5090 }
5091
5092 /* read from CAM unicast & multicast addresses and store it in
5093  * def_mac_addr structure
5094  */
5095 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5096 {
5097         int offset;
5098         u64 mac_addr = 0x0;
5099         struct config_param *config = &sp->config;
5100
5101         /* store unicast & multicast mac addresses */
5102         for (offset = 0; offset < config->max_mc_addr; offset++) {
5103                 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5104                 /* if read fails disable the entry */
5105                 if (mac_addr == FAILURE)
5106                         mac_addr = S2IO_DISABLE_MAC_ENTRY;
5107                 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5108         }
5109 }
5110
5111 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5112 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5113 {
5114         int offset;
5115         struct config_param *config = &sp->config;
5116         /* restore unicast mac address */
5117         for (offset = 0; offset < config->max_mac_addr; offset++)
5118                 do_s2io_prog_unicast(sp->dev,
5119                                      sp->def_mac_addr[offset].mac_addr);
5120
5121         /* restore multicast mac address */
5122         for (offset = config->mc_start_offset;
5123              offset < config->max_mc_addr; offset++)
5124                 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5125 }
5126
5127 /* add a multicast MAC address to CAM */
5128 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5129 {
5130         int i;
5131         u64 mac_addr = 0;
5132         struct config_param *config = &sp->config;
5133
5134         for (i = 0; i < ETH_ALEN; i++) {
5135                 mac_addr <<= 8;
5136                 mac_addr |= addr[i];
5137         }
5138         if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5139                 return SUCCESS;
5140
5141         /* check if the multicast mac already preset in CAM */
5142         for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5143                 u64 tmp64;
5144                 tmp64 = do_s2io_read_unicast_mc(sp, i);
5145                 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5146                         break;
5147
5148                 if (tmp64 == mac_addr)
5149                         return SUCCESS;
5150         }
5151         if (i == config->max_mc_addr) {
5152                 DBG_PRINT(ERR_DBG,
5153                           "CAM full no space left for multicast MAC\n");
5154                 return FAILURE;
5155         }
5156         /* Update the internal structure with this new mac address */
5157         do_s2io_copy_mac_addr(sp, i, mac_addr);
5158
5159         return do_s2io_add_mac(sp, mac_addr, i);
5160 }
5161
5162 /* add MAC address to CAM */
5163 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5164 {
5165         u64 val64;
5166         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5167
5168         writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5169                &bar0->rmac_addr_data0_mem);
5170
5171         val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5172                 RMAC_ADDR_CMD_MEM_OFFSET(off);
5173         writeq(val64, &bar0->rmac_addr_cmd_mem);
5174
5175         /* Wait till command completes */
5176         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5177                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5178                                   S2IO_BIT_RESET)) {
5179                 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5180                 return FAILURE;
5181         }
5182         return SUCCESS;
5183 }
5184 /* deletes a specified unicast/multicast mac entry from CAM */
5185 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5186 {
5187         int offset;
5188         u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5189         struct config_param *config = &sp->config;
5190
5191         for (offset = 1;
5192              offset < config->max_mc_addr; offset++) {
5193                 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5194                 if (tmp64 == addr) {
5195                         /* disable the entry by writing  0xffffffffffffULL */
5196                         if (do_s2io_add_mac(sp, dis_addr, offset) ==  FAILURE)
5197                                 return FAILURE;
5198                         /* store the new mac list from CAM */
5199                         do_s2io_store_unicast_mc(sp);
5200                         return SUCCESS;
5201                 }
5202         }
5203         DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5204                   (unsigned long long)addr);
5205         return FAILURE;
5206 }
5207
5208 /* read mac entries from CAM */
5209 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5210 {
5211         u64 tmp64 = 0xffffffffffff0000ULL, val64;
5212         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5213
5214         /* read mac addr */
5215         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5216                 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5217         writeq(val64, &bar0->rmac_addr_cmd_mem);
5218
5219         /* Wait till command completes */
5220         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5221                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5222                                   S2IO_BIT_RESET)) {
5223                 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5224                 return FAILURE;
5225         }
5226         tmp64 = readq(&bar0->rmac_addr_data0_mem);
5227
5228         return tmp64 >> 16;
5229 }
5230
5231 /**
5232  * s2io_set_mac_addr - driver entry point
5233  */
5234
5235 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5236 {
5237         struct sockaddr *addr = p;
5238
5239         if (!is_valid_ether_addr(addr->sa_data))
5240                 return -EADDRNOTAVAIL;
5241
5242         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5243
5244         /* store the MAC address in CAM */
5245         return do_s2io_prog_unicast(dev, dev->dev_addr);
5246 }
5247 /**
5248  *  do_s2io_prog_unicast - Programs the Xframe mac address
5249  *  @dev : pointer to the device structure.
5250  *  @addr: a uchar pointer to the new mac address which is to be set.
5251  *  Description : This procedure will program the Xframe to receive
5252  *  frames with new Mac Address
5253  *  Return value: SUCCESS on success and an appropriate (-)ve integer
5254  *  as defined in errno.h file on failure.
5255  */
5256
5257 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5258 {
5259         struct s2io_nic *sp = netdev_priv(dev);
5260         register u64 mac_addr = 0, perm_addr = 0;
5261         int i;
5262         u64 tmp64;
5263         struct config_param *config = &sp->config;
5264
5265         /*
5266          * Set the new MAC address as the new unicast filter and reflect this
5267          * change on the device address registered with the OS. It will be
5268          * at offset 0.
5269          */
5270         for (i = 0; i < ETH_ALEN; i++) {
5271                 mac_addr <<= 8;
5272                 mac_addr |= addr[i];
5273                 perm_addr <<= 8;
5274                 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5275         }
5276
5277         /* check if the dev_addr is different than perm_addr */
5278         if (mac_addr == perm_addr)
5279                 return SUCCESS;
5280
5281         /* check if the mac already preset in CAM */
5282         for (i = 1; i < config->max_mac_addr; i++) {
5283                 tmp64 = do_s2io_read_unicast_mc(sp, i);
5284                 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5285                         break;
5286
5287                 if (tmp64 == mac_addr) {
5288                         DBG_PRINT(INFO_DBG,
5289                                   "MAC addr:0x%llx already present in CAM\n",
5290                                   (unsigned long long)mac_addr);
5291                         return SUCCESS;
5292                 }
5293         }
5294         if (i == config->max_mac_addr) {
5295                 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5296                 return FAILURE;
5297         }
5298         /* Update the internal structure with this new mac address */
5299         do_s2io_copy_mac_addr(sp, i, mac_addr);
5300
5301         return do_s2io_add_mac(sp, mac_addr, i);
5302 }
5303
5304 /**
5305  * s2io_ethtool_sset - Sets different link parameters.
5306  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
5307  * @info: pointer to the structure with parameters given by ethtool to set
5308  * link information.
5309  * Description:
5310  * The function sets different link parameters provided by the user onto
5311  * the NIC.
5312  * Return value:
5313  * 0 on success.
5314  */
5315
5316 static int s2io_ethtool_sset(struct net_device *dev,
5317                              struct ethtool_cmd *info)
5318 {
5319         struct s2io_nic *sp = netdev_priv(dev);
5320         if ((info->autoneg == AUTONEG_ENABLE) ||
5321             (ethtool_cmd_speed(info) != SPEED_10000) ||
5322             (info->duplex != DUPLEX_FULL))
5323                 return -EINVAL;
5324         else {
5325                 s2io_close(sp->dev);
5326                 s2io_open(sp->dev);
5327         }
5328
5329         return 0;
5330 }
5331
5332 /**
5333  * s2io_ethtol_gset - Return link specific information.
5334  * @sp : private member of the device structure, pointer to the
5335  *      s2io_nic structure.
5336  * @info : pointer to the structure with parameters given by ethtool
5337  * to return link information.
5338  * Description:
5339  * Returns link specific information like speed, duplex etc.. to ethtool.
5340  * Return value :
5341  * return 0 on success.
5342  */
5343
5344 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5345 {
5346         struct s2io_nic *sp = netdev_priv(dev);
5347         info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5348         info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5349         info->port = PORT_FIBRE;
5350
5351         /* info->transceiver */
5352         info->transceiver = XCVR_EXTERNAL;
5353
5354         if (netif_carrier_ok(sp->dev)) {
5355                 ethtool_cmd_speed_set(info, SPEED_10000);
5356                 info->duplex = DUPLEX_FULL;
5357         } else {
5358                 ethtool_cmd_speed_set(info, SPEED_UNKNOWN);
5359                 info->duplex = DUPLEX_UNKNOWN;
5360         }
5361
5362         info->autoneg = AUTONEG_DISABLE;
5363         return 0;
5364 }
5365
5366 /**
5367  * s2io_ethtool_gdrvinfo - Returns driver specific information.
5368  * @sp : private member of the device structure, which is a pointer to the
5369  * s2io_nic structure.
5370  * @info : pointer to the structure with parameters given by ethtool to
5371  * return driver information.
5372  * Description:
5373  * Returns driver specefic information like name, version etc.. to ethtool.
5374  * Return value:
5375  *  void
5376  */
5377
5378 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5379                                   struct ethtool_drvinfo *info)
5380 {
5381         struct s2io_nic *sp = netdev_priv(dev);
5382
5383         strlcpy(info->driver, s2io_driver_name, sizeof(info->driver));
5384         strlcpy(info->version, s2io_driver_version, sizeof(info->version));
5385         strlcpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5386         info->regdump_len = XENA_REG_SPACE;
5387         info->eedump_len = XENA_EEPROM_SPACE;
5388 }
5389
5390 /**
5391  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5392  *  @sp: private member of the device structure, which is a pointer to the
5393  *  s2io_nic structure.
5394  *  @regs : pointer to the structure with parameters given by ethtool for
5395  *  dumping the registers.
5396  *  @reg_space: The input argumnet into which all the registers are dumped.
5397  *  Description:
5398  *  Dumps the entire register space of xFrame NIC into the user given
5399  *  buffer area.
5400  * Return value :
5401  * void .
5402  */
5403
5404 static void s2io_ethtool_gregs(struct net_device *dev,
5405                                struct ethtool_regs *regs, void *space)
5406 {
5407         int i;
5408         u64 reg;
5409         u8 *reg_space = (u8 *)space;
5410         struct s2io_nic *sp = netdev_priv(dev);
5411
5412         regs->len = XENA_REG_SPACE;
5413         regs->version = sp->pdev->subsystem_device;
5414
5415         for (i = 0; i < regs->len; i += 8) {
5416                 reg = readq(sp->bar0 + i);
5417                 memcpy((reg_space + i), &reg, 8);
5418         }
5419 }
5420
5421 /*
5422  *  s2io_set_led - control NIC led
5423  */
5424 static void s2io_set_led(struct s2io_nic *sp, bool on)
5425 {
5426         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5427         u16 subid = sp->pdev->subsystem_device;
5428         u64 val64;
5429
5430         if ((sp->device_type == XFRAME_II_DEVICE) ||
5431             ((subid & 0xFF) >= 0x07)) {
5432                 val64 = readq(&bar0->gpio_control);
5433                 if (on)
5434                         val64 |= GPIO_CTRL_GPIO_0;
5435                 else
5436                         val64 &= ~GPIO_CTRL_GPIO_0;
5437
5438                 writeq(val64, &bar0->gpio_control);
5439         } else {
5440                 val64 = readq(&bar0->adapter_control);
5441                 if (on)
5442                         val64 |= ADAPTER_LED_ON;
5443                 else
5444                         val64 &= ~ADAPTER_LED_ON;
5445
5446                 writeq(val64, &bar0->adapter_control);
5447         }
5448
5449 }
5450
5451 /**
5452  * s2io_ethtool_set_led - To physically identify the nic on the system.
5453  * @dev : network device
5454  * @state: led setting
5455  *
5456  * Description: Used to physically identify the NIC on the system.
5457  * The Link LED will blink for a time specified by the user for
5458  * identification.
5459  * NOTE: The Link has to be Up to be able to blink the LED. Hence
5460  * identification is possible only if it's link is up.
5461  */
5462
5463 static int s2io_ethtool_set_led(struct net_device *dev,
5464                                 enum ethtool_phys_id_state state)
5465 {
5466         struct s2io_nic *sp = netdev_priv(dev);
5467         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5468         u16 subid = sp->pdev->subsystem_device;
5469
5470         if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
5471                 u64 val64 = readq(&bar0->adapter_control);
5472                 if (!(val64 & ADAPTER_CNTL_EN)) {
5473                         pr_err("Adapter Link down, cannot blink LED\n");
5474                         return -EAGAIN;
5475                 }
5476         }
5477
5478         switch (state) {
5479         case ETHTOOL_ID_ACTIVE:
5480                 sp->adapt_ctrl_org = readq(&bar0->gpio_control);
5481                 return 1;       /* cycle on/off once per second */
5482
5483         case ETHTOOL_ID_ON:
5484                 s2io_set_led(sp, true);
5485                 break;
5486
5487         case ETHTOOL_ID_OFF:
5488                 s2io_set_led(sp, false);
5489                 break;
5490
5491         case ETHTOOL_ID_INACTIVE:
5492                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid))
5493                         writeq(sp->adapt_ctrl_org, &bar0->gpio_control);
5494         }
5495
5496         return 0;
5497 }
5498
5499 static void s2io_ethtool_gringparam(struct net_device *dev,
5500                                     struct ethtool_ringparam *ering)
5501 {
5502         struct s2io_nic *sp = netdev_priv(dev);
5503         int i, tx_desc_count = 0, rx_desc_count = 0;
5504
5505         if (sp->rxd_mode == RXD_MODE_1) {
5506                 ering->rx_max_pending = MAX_RX_DESC_1;
5507                 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5508         } else {
5509                 ering->rx_max_pending = MAX_RX_DESC_2;
5510                 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5511         }
5512
5513         ering->tx_max_pending = MAX_TX_DESC;
5514
5515         for (i = 0; i < sp->config.rx_ring_num; i++)
5516                 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5517         ering->rx_pending = rx_desc_count;
5518         ering->rx_jumbo_pending = rx_desc_count;
5519
5520         for (i = 0; i < sp->config.tx_fifo_num; i++)
5521                 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5522         ering->tx_pending = tx_desc_count;
5523         DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
5524 }
5525
5526 /**
5527  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5528  * @sp : private member of the device structure, which is a pointer to the
5529  *      s2io_nic structure.
5530  * @ep : pointer to the structure with pause parameters given by ethtool.
5531  * Description:
5532  * Returns the Pause frame generation and reception capability of the NIC.
5533  * Return value:
5534  *  void
5535  */
5536 static void s2io_ethtool_getpause_data(struct net_device *dev,
5537                                        struct ethtool_pauseparam *ep)
5538 {
5539         u64 val64;
5540         struct s2io_nic *sp = netdev_priv(dev);
5541         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5542
5543         val64 = readq(&bar0->rmac_pause_cfg);
5544         if (val64 & RMAC_PAUSE_GEN_ENABLE)
5545                 ep->tx_pause = true;
5546         if (val64 & RMAC_PAUSE_RX_ENABLE)
5547                 ep->rx_pause = true;
5548         ep->autoneg = false;
5549 }
5550
5551 /**
5552  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
5553  * @sp : private member of the device structure, which is a pointer to the
5554  *      s2io_nic structure.
5555  * @ep : pointer to the structure with pause parameters given by ethtool.
5556  * Description:
5557  * It can be used to set or reset Pause frame generation or reception
5558  * support of the NIC.
5559  * Return value:
5560  * int, returns 0 on Success
5561  */
5562
5563 static int s2io_ethtool_setpause_data(struct net_device *dev,
5564                                       struct ethtool_pauseparam *ep)
5565 {
5566         u64 val64;
5567         struct s2io_nic *sp = netdev_priv(dev);
5568         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5569
5570         val64 = readq(&bar0->rmac_pause_cfg);
5571         if (ep->tx_pause)
5572                 val64 |= RMAC_PAUSE_GEN_ENABLE;
5573         else
5574                 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5575         if (ep->rx_pause)
5576                 val64 |= RMAC_PAUSE_RX_ENABLE;
5577         else
5578                 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5579         writeq(val64, &bar0->rmac_pause_cfg);
5580         return 0;
5581 }
5582
5583 /**
5584  * read_eeprom - reads 4 bytes of data from user given offset.
5585  * @sp : private member of the device structure, which is a pointer to the
5586  *      s2io_nic structure.
5587  * @off : offset at which the data must be written
5588  * @data : Its an output parameter where the data read at the given
5589  *      offset is stored.
5590  * Description:
5591  * Will read 4 bytes of data from the user given offset and return the
5592  * read data.
5593  * NOTE: Will allow to read only part of the EEPROM visible through the
5594  *   I2C bus.
5595  * Return value:
5596  *  -1 on failure and 0 on success.
5597  */
5598
5599 #define S2IO_DEV_ID             5
5600 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
5601 {
5602         int ret = -1;
5603         u32 exit_cnt = 0;
5604         u64 val64;
5605         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5606
5607         if (sp->device_type == XFRAME_I_DEVICE) {
5608                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5609                         I2C_CONTROL_ADDR(off) |
5610                         I2C_CONTROL_BYTE_CNT(0x3) |
5611                         I2C_CONTROL_READ |
5612                         I2C_CONTROL_CNTL_START;
5613                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5614
5615                 while (exit_cnt < 5) {
5616                         val64 = readq(&bar0->i2c_control);
5617                         if (I2C_CONTROL_CNTL_END(val64)) {
5618                                 *data = I2C_CONTROL_GET_DATA(val64);
5619                                 ret = 0;
5620                                 break;
5621                         }
5622                         msleep(50);
5623                         exit_cnt++;
5624                 }
5625         }
5626
5627         if (sp->device_type == XFRAME_II_DEVICE) {
5628                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5629                         SPI_CONTROL_BYTECNT(0x3) |
5630                         SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5631                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5632                 val64 |= SPI_CONTROL_REQ;
5633                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5634                 while (exit_cnt < 5) {
5635                         val64 = readq(&bar0->spi_control);
5636                         if (val64 & SPI_CONTROL_NACK) {
5637                                 ret = 1;
5638                                 break;
5639                         } else if (val64 & SPI_CONTROL_DONE) {
5640                                 *data = readq(&bar0->spi_data);
5641                                 *data &= 0xffffff;
5642                                 ret = 0;
5643                                 break;
5644                         }
5645                         msleep(50);
5646                         exit_cnt++;
5647                 }
5648         }
5649         return ret;
5650 }
5651
5652 /**
5653  *  write_eeprom - actually writes the relevant part of the data value.
5654  *  @sp : private member of the device structure, which is a pointer to the
5655  *       s2io_nic structure.
5656  *  @off : offset at which the data must be written
5657  *  @data : The data that is to be written
5658  *  @cnt : Number of bytes of the data that are actually to be written into
5659  *  the Eeprom. (max of 3)
5660  * Description:
5661  *  Actually writes the relevant part of the data value into the Eeprom
5662  *  through the I2C bus.
5663  * Return value:
5664  *  0 on success, -1 on failure.
5665  */
5666
5667 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
5668 {
5669         int exit_cnt = 0, ret = -1;
5670         u64 val64;
5671         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5672
5673         if (sp->device_type == XFRAME_I_DEVICE) {
5674                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5675                         I2C_CONTROL_ADDR(off) |
5676                         I2C_CONTROL_BYTE_CNT(cnt) |
5677                         I2C_CONTROL_SET_DATA((u32)data) |
5678                         I2C_CONTROL_CNTL_START;
5679                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5680
5681                 while (exit_cnt < 5) {
5682                         val64 = readq(&bar0->i2c_control);
5683                         if (I2C_CONTROL_CNTL_END(val64)) {
5684                                 if (!(val64 & I2C_CONTROL_NACK))
5685                                         ret = 0;
5686                                 break;
5687                         }
5688                         msleep(50);
5689                         exit_cnt++;
5690                 }
5691         }
5692
5693         if (sp->device_type == XFRAME_II_DEVICE) {
5694                 int write_cnt = (cnt == 8) ? 0 : cnt;
5695                 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
5696
5697                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5698                         SPI_CONTROL_BYTECNT(write_cnt) |
5699                         SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5700                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5701                 val64 |= SPI_CONTROL_REQ;
5702                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5703                 while (exit_cnt < 5) {
5704                         val64 = readq(&bar0->spi_control);
5705                         if (val64 & SPI_CONTROL_NACK) {
5706                                 ret = 1;
5707                                 break;
5708                         } else if (val64 & SPI_CONTROL_DONE) {
5709                                 ret = 0;
5710                                 break;
5711                         }
5712                         msleep(50);
5713                         exit_cnt++;
5714                 }
5715         }
5716         return ret;
5717 }
5718 static void s2io_vpd_read(struct s2io_nic *nic)
5719 {
5720         u8 *vpd_data;
5721         u8 data;
5722         int i = 0, cnt, len, fail = 0;
5723         int vpd_addr = 0x80;
5724         struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
5725
5726         if (nic->device_type == XFRAME_II_DEVICE) {
5727                 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5728                 vpd_addr = 0x80;
5729         } else {
5730                 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5731                 vpd_addr = 0x50;
5732         }
5733         strcpy(nic->serial_num, "NOT AVAILABLE");
5734
5735         vpd_data = kmalloc(256, GFP_KERNEL);
5736         if (!vpd_data) {
5737                 swstats->mem_alloc_fail_cnt++;
5738                 return;
5739         }
5740         swstats->mem_allocated += 256;
5741
5742         for (i = 0; i < 256; i += 4) {
5743                 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5744                 pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5745                 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5746                 for (cnt = 0; cnt < 5; cnt++) {
5747                         msleep(2);
5748                         pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5749                         if (data == 0x80)
5750                                 break;
5751                 }
5752                 if (cnt >= 5) {
5753                         DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5754                         fail = 1;
5755                         break;
5756                 }
5757                 pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5758                                       (u32 *)&vpd_data[i]);
5759         }
5760
5761         if (!fail) {
5762                 /* read serial number of adapter */
5763                 for (cnt = 0; cnt < 252; cnt++) {
5764                         if ((vpd_data[cnt] == 'S') &&
5765                             (vpd_data[cnt+1] == 'N')) {
5766                                 len = vpd_data[cnt+2];
5767                                 if (len < min(VPD_STRING_LEN, 256-cnt-2)) {
5768                                         memcpy(nic->serial_num,
5769                                                &vpd_data[cnt + 3],
5770                                                len);
5771                                         memset(nic->serial_num+len,
5772                                                0,
5773                                                VPD_STRING_LEN-len);
5774                                         break;
5775                                 }
5776                         }
5777                 }
5778         }
5779
5780         if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5781                 len = vpd_data[1];
5782                 memcpy(nic->product_name, &vpd_data[3], len);
5783                 nic->product_name[len] = 0;
5784         }
5785         kfree(vpd_data);
5786         swstats->mem_freed += 256;
5787 }
5788
5789 /**
5790  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5791  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
5792  *  @eeprom : pointer to the user level structure provided by ethtool,
5793  *  containing all relevant information.
5794  *  @data_buf : user defined value to be written into Eeprom.
5795  *  Description: Reads the values stored in the Eeprom at given offset
5796  *  for a given length. Stores these values int the input argument data
5797  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5798  *  Return value:
5799  *  int  0 on success
5800  */
5801
5802 static int s2io_ethtool_geeprom(struct net_device *dev,
5803                                 struct ethtool_eeprom *eeprom, u8 * data_buf)
5804 {
5805         u32 i, valid;
5806         u64 data;
5807         struct s2io_nic *sp = netdev_priv(dev);
5808
5809         eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5810
5811         if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5812                 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5813
5814         for (i = 0; i < eeprom->len; i += 4) {
5815                 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5816                         DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5817                         return -EFAULT;
5818                 }
5819                 valid = INV(data);
5820                 memcpy((data_buf + i), &valid, 4);
5821         }
5822         return 0;
5823 }
5824
5825 /**
5826  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5827  *  @sp : private member of the device structure, which is a pointer to the
5828  *  s2io_nic structure.
5829  *  @eeprom : pointer to the user level structure provided by ethtool,
5830  *  containing all relevant information.
5831  *  @data_buf ; user defined value to be written into Eeprom.
5832  *  Description:
5833  *  Tries to write the user provided value in the Eeprom, at the offset
5834  *  given by the user.
5835  *  Return value:
5836  *  0 on success, -EFAULT on failure.
5837  */
5838
5839 static int s2io_ethtool_seeprom(struct net_device *dev,
5840                                 struct ethtool_eeprom *eeprom,
5841                                 u8 *data_buf)
5842 {
5843         int len = eeprom->len, cnt = 0;
5844         u64 valid = 0, data;
5845         struct s2io_nic *sp = netdev_priv(dev);
5846
5847         if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5848                 DBG_PRINT(ERR_DBG,
5849                           "ETHTOOL_WRITE_EEPROM Err: "
5850                           "Magic value is wrong, it is 0x%x should be 0x%x\n",
5851                           (sp->pdev->vendor | (sp->pdev->device << 16)),
5852                           eeprom->magic);
5853                 return -EFAULT;
5854         }
5855
5856         while (len) {
5857                 data = (u32)data_buf[cnt] & 0x000000FF;
5858                 if (data)
5859                         valid = (u32)(data << 24);
5860                 else
5861                         valid = data;
5862
5863                 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5864                         DBG_PRINT(ERR_DBG,
5865                                   "ETHTOOL_WRITE_EEPROM Err: "
5866                                   "Cannot write into the specified offset\n");
5867                         return -EFAULT;
5868                 }
5869                 cnt++;
5870                 len--;
5871         }
5872
5873         return 0;
5874 }
5875
5876 /**
5877  * s2io_register_test - reads and writes into all clock domains.
5878  * @sp : private member of the device structure, which is a pointer to the
5879  * s2io_nic structure.
5880  * @data : variable that returns the result of each of the test conducted b
5881  * by the driver.
5882  * Description:
5883  * Read and write into all clock domains. The NIC has 3 clock domains,
5884  * see that registers in all the three regions are accessible.
5885  * Return value:
5886  * 0 on success.
5887  */
5888
5889 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
5890 {
5891         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5892         u64 val64 = 0, exp_val;
5893         int fail = 0;
5894
5895         val64 = readq(&bar0->pif_rd_swapper_fb);
5896         if (val64 != 0x123456789abcdefULL) {
5897                 fail = 1;
5898                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
5899         }
5900
5901         val64 = readq(&bar0->rmac_pause_cfg);
5902         if (val64 != 0xc000ffff00000000ULL) {
5903                 fail = 1;
5904                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
5905         }
5906
5907         val64 = readq(&bar0->rx_queue_cfg);
5908         if (sp->device_type == XFRAME_II_DEVICE)
5909                 exp_val = 0x0404040404040404ULL;
5910         else
5911                 exp_val = 0x0808080808080808ULL;
5912         if (val64 != exp_val) {
5913                 fail = 1;
5914                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
5915         }
5916
5917         val64 = readq(&bar0->xgxs_efifo_cfg);
5918         if (val64 != 0x000000001923141EULL) {
5919                 fail = 1;
5920                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
5921         }
5922
5923         val64 = 0x5A5A5A5A5A5A5A5AULL;
5924         writeq(val64, &bar0->xmsi_data);
5925         val64 = readq(&bar0->xmsi_data);
5926         if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5927                 fail = 1;
5928                 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
5929         }
5930
5931         val64 = 0xA5A5A5A5A5A5A5A5ULL;
5932         writeq(val64, &bar0->xmsi_data);
5933         val64 = readq(&bar0->xmsi_data);
5934         if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5935                 fail = 1;
5936                 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
5937         }
5938
5939         *data = fail;
5940         return fail;
5941 }
5942
5943 /**
5944  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5945  * @sp : private member of the device structure, which is a pointer to the
5946  * s2io_nic structure.
5947  * @data:variable that returns the result of each of the test conducted by
5948  * the driver.
5949  * Description:
5950  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5951  * register.
5952  * Return value:
5953  * 0 on success.
5954  */
5955
5956 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
5957 {
5958         int fail = 0;
5959         u64 ret_data, org_4F0, org_7F0;
5960         u8 saved_4F0 = 0, saved_7F0 = 0;
5961         struct net_device *dev = sp->dev;
5962
5963         /* Test Write Error at offset 0 */
5964         /* Note that SPI interface allows write access to all areas
5965          * of EEPROM. Hence doing all negative testing only for Xframe I.
5966          */
5967         if (sp->device_type == XFRAME_I_DEVICE)
5968                 if (!write_eeprom(sp, 0, 0, 3))
5969                         fail = 1;
5970
5971         /* Save current values at offsets 0x4F0 and 0x7F0 */
5972         if (!read_eeprom(sp, 0x4F0, &org_4F0))
5973                 saved_4F0 = 1;
5974         if (!read_eeprom(sp, 0x7F0, &org_7F0))
5975                 saved_7F0 = 1;
5976
5977         /* Test Write at offset 4f0 */
5978         if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5979                 fail = 1;
5980         if (read_eeprom(sp, 0x4F0, &ret_data))
5981                 fail = 1;
5982
5983         if (ret_data != 0x012345) {
5984                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5985                           "Data written %llx Data read %llx\n",
5986                           dev->name, (unsigned long long)0x12345,
5987                           (unsigned long long)ret_data);
5988                 fail = 1;
5989         }
5990
5991         /* Reset the EEPROM data go FFFF */
5992         write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5993
5994         /* Test Write Request Error at offset 0x7c */
5995         if (sp->device_type == XFRAME_I_DEVICE)
5996                 if (!write_eeprom(sp, 0x07C, 0, 3))
5997                         fail = 1;
5998
5999         /* Test Write Request at offset 0x7f0 */
6000         if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6001                 fail = 1;
6002         if (read_eeprom(sp, 0x7F0, &ret_data))
6003                 fail = 1;
6004
6005         if (ret_data != 0x012345) {
6006                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6007                           "Data written %llx Data read %llx\n",
6008                           dev->name, (unsigned long long)0x12345,
6009                           (unsigned long long)ret_data);
6010                 fail = 1;
6011         }
6012
6013         /* Reset the EEPROM data go FFFF */
6014         write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6015
6016         if (sp->device_type == XFRAME_I_DEVICE) {
6017                 /* Test Write Error at offset 0x80 */
6018                 if (!write_eeprom(sp, 0x080, 0, 3))
6019                         fail = 1;
6020
6021                 /* Test Write Error at offset 0xfc */
6022                 if (!write_eeprom(sp, 0x0FC, 0, 3))
6023                         fail = 1;
6024
6025                 /* Test Write Error at offset 0x100 */
6026                 if (!write_eeprom(sp, 0x100, 0, 3))
6027                         fail = 1;
6028
6029                 /* Test Write Error at offset 4ec */
6030                 if (!write_eeprom(sp, 0x4EC, 0, 3))
6031                         fail = 1;
6032         }
6033
6034         /* Restore values at offsets 0x4F0 and 0x7F0 */
6035         if (saved_4F0)
6036                 write_eeprom(sp, 0x4F0, org_4F0, 3);
6037         if (saved_7F0)
6038                 write_eeprom(sp, 0x7F0, org_7F0, 3);
6039
6040         *data = fail;
6041         return fail;
6042 }
6043
6044 /**
6045  * s2io_bist_test - invokes the MemBist test of the card .
6046  * @sp : private member of the device structure, which is a pointer to the
6047  * s2io_nic structure.
6048  * @data:variable that returns the result of each of the test conducted by
6049  * the driver.
6050  * Description:
6051  * This invokes the MemBist test of the card. We give around
6052  * 2 secs time for the Test to complete. If it's still not complete
6053  * within this peiod, we consider that the test failed.
6054  * Return value:
6055  * 0 on success and -1 on failure.
6056  */
6057
6058 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
6059 {
6060         u8 bist = 0;
6061         int cnt = 0, ret = -1;
6062
6063         pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6064         bist |= PCI_BIST_START;
6065         pci_write_config_word(sp->pdev, PCI_BIST, bist);
6066
6067         while (cnt < 20) {
6068                 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6069                 if (!(bist & PCI_BIST_START)) {
6070                         *data = (bist & PCI_BIST_CODE_MASK);
6071                         ret = 0;
6072                         break;
6073                 }
6074                 msleep(100);
6075                 cnt++;
6076         }
6077
6078         return ret;
6079 }
6080
6081 /**
6082  * s2io_link_test - verifies the link state of the nic
6083  * @sp ; private member of the device structure, which is a pointer to the
6084  * s2io_nic structure.
6085  * @data: variable that returns the result of each of the test conducted by
6086  * the driver.
6087  * Description:
6088  * The function verifies the link state of the NIC and updates the input
6089  * argument 'data' appropriately.
6090  * Return value:
6091  * 0 on success.
6092  */
6093
6094 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
6095 {
6096         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6097         u64 val64;
6098
6099         val64 = readq(&bar0->adapter_status);
6100         if (!(LINK_IS_UP(val64)))
6101                 *data = 1;
6102         else
6103                 *data = 0;
6104
6105         return *data;
6106 }
6107
6108 /**
6109  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6110  * @sp: private member of the device structure, which is a pointer to the
6111  * s2io_nic structure.
6112  * @data: variable that returns the result of each of the test
6113  * conducted by the driver.
6114  * Description:
6115  *  This is one of the offline test that tests the read and write
6116  *  access to the RldRam chip on the NIC.
6117  * Return value:
6118  *  0 on success.
6119  */
6120
6121 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
6122 {
6123         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6124         u64 val64;
6125         int cnt, iteration = 0, test_fail = 0;
6126
6127         val64 = readq(&bar0->adapter_control);
6128         val64 &= ~ADAPTER_ECC_EN;
6129         writeq(val64, &bar0->adapter_control);
6130
6131         val64 = readq(&bar0->mc_rldram_test_ctrl);
6132         val64 |= MC_RLDRAM_TEST_MODE;
6133         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6134
6135         val64 = readq(&bar0->mc_rldram_mrs);
6136         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6137         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6138
6139         val64 |= MC_RLDRAM_MRS_ENABLE;
6140         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6141
6142         while (iteration < 2) {
6143                 val64 = 0x55555555aaaa0000ULL;
6144                 if (iteration == 1)
6145                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6146                 writeq(val64, &bar0->mc_rldram_test_d0);
6147
6148                 val64 = 0xaaaa5a5555550000ULL;
6149                 if (iteration == 1)
6150                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6151                 writeq(val64, &bar0->mc_rldram_test_d1);
6152
6153                 val64 = 0x55aaaaaaaa5a0000ULL;
6154                 if (iteration == 1)
6155                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6156                 writeq(val64, &bar0->mc_rldram_test_d2);
6157
6158                 val64 = (u64) (0x0000003ffffe0100ULL);
6159                 writeq(val64, &bar0->mc_rldram_test_add);
6160
6161                 val64 = MC_RLDRAM_TEST_MODE |
6162                         MC_RLDRAM_TEST_WRITE |
6163                         MC_RLDRAM_TEST_GO;
6164                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6165
6166                 for (cnt = 0; cnt < 5; cnt++) {
6167                         val64 = readq(&bar0->mc_rldram_test_ctrl);
6168                         if (val64 & MC_RLDRAM_TEST_DONE)
6169                                 break;
6170                         msleep(200);
6171                 }
6172
6173                 if (cnt == 5)
6174                         break;
6175
6176                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6177                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6178
6179                 for (cnt = 0; cnt < 5; cnt++) {
6180                         val64 = readq(&bar0->mc_rldram_test_ctrl);
6181                         if (val64 & MC_RLDRAM_TEST_DONE)
6182                                 break;
6183                         msleep(500);
6184                 }
6185
6186                 if (cnt == 5)
6187                         break;
6188
6189                 val64 = readq(&bar0->mc_rldram_test_ctrl);
6190                 if (!(val64 & MC_RLDRAM_TEST_PASS))
6191                         test_fail = 1;
6192
6193                 iteration++;
6194         }
6195
6196         *data = test_fail;
6197
6198         /* Bring the adapter out of test mode */
6199         SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6200
6201         return test_fail;
6202 }
6203
6204 /**
6205  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6206  *  @sp : private member of the device structure, which is a pointer to the
6207  *  s2io_nic structure.
6208  *  @ethtest : pointer to a ethtool command specific structure that will be
6209  *  returned to the user.
6210  *  @data : variable that returns the result of each of the test
6211  * conducted by the driver.
6212  * Description:
6213  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
6214  *  the health of the card.
6215  * Return value:
6216  *  void
6217  */
6218
6219 static void s2io_ethtool_test(struct net_device *dev,
6220                               struct ethtool_test *ethtest,
6221                               uint64_t *data)
6222 {
6223         struct s2io_nic *sp = netdev_priv(dev);
6224         int orig_state = netif_running(sp->dev);
6225
6226         if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6227                 /* Offline Tests. */
6228                 if (orig_state)
6229                         s2io_close(sp->dev);
6230
6231                 if (s2io_register_test(sp, &data[0]))
6232                         ethtest->flags |= ETH_TEST_FL_FAILED;
6233
6234                 s2io_reset(sp);
6235
6236                 if (s2io_rldram_test(sp, &data[3]))
6237                         ethtest->flags |= ETH_TEST_FL_FAILED;
6238
6239                 s2io_reset(sp);
6240
6241                 if (s2io_eeprom_test(sp, &data[1]))
6242                         ethtest->flags |= ETH_TEST_FL_FAILED;
6243
6244                 if (s2io_bist_test(sp, &data[4]))
6245                         ethtest->flags |= ETH_TEST_FL_FAILED;
6246
6247                 if (orig_state)
6248                         s2io_open(sp->dev);
6249
6250                 data[2] = 0;
6251         } else {
6252                 /* Online Tests. */
6253                 if (!orig_state) {
6254                         DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
6255                                   dev->name);
6256                         data[0] = -1;
6257                         data[1] = -1;
6258                         data[2] = -1;
6259                         data[3] = -1;
6260                         data[4] = -1;
6261                 }
6262
6263                 if (s2io_link_test(sp, &data[2]))
6264                         ethtest->flags |= ETH_TEST_FL_FAILED;
6265
6266                 data[0] = 0;
6267                 data[1] = 0;
6268                 data[3] = 0;
6269                 data[4] = 0;
6270         }
6271 }
6272
6273 static void s2io_get_ethtool_stats(struct net_device *dev,
6274                                    struct ethtool_stats *estats,
6275                                    u64 *tmp_stats)
6276 {
6277         int i = 0, k;
6278         struct s2io_nic *sp = netdev_priv(dev);
6279         struct stat_block *stats = sp->mac_control.stats_info;
6280         struct swStat *swstats = &stats->sw_stat;
6281         struct xpakStat *xstats = &stats->xpak_stat;
6282
6283         s2io_updt_stats(sp);
6284         tmp_stats[i++] =
6285                 (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32  |
6286                 le32_to_cpu(stats->tmac_frms);
6287         tmp_stats[i++] =
6288                 (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6289                 le32_to_cpu(stats->tmac_data_octets);
6290         tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
6291         tmp_stats[i++] =
6292                 (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6293                 le32_to_cpu(stats->tmac_mcst_frms);
6294         tmp_stats[i++] =
6295                 (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6296                 le32_to_cpu(stats->tmac_bcst_frms);
6297         tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
6298         tmp_stats[i++] =
6299                 (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6300                 le32_to_cpu(stats->tmac_ttl_octets);
6301         tmp_stats[i++] =
6302                 (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6303                 le32_to_cpu(stats->tmac_ucst_frms);
6304         tmp_stats[i++] =
6305                 (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6306                 le32_to_cpu(stats->tmac_nucst_frms);
6307         tmp_stats[i++] =
6308                 (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6309                 le32_to_cpu(stats->tmac_any_err_frms);
6310         tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6311         tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
6312         tmp_stats[i++] =
6313                 (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6314                 le32_to_cpu(stats->tmac_vld_ip);
6315         tmp_stats[i++] =
6316                 (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6317                 le32_to_cpu(stats->tmac_drop_ip);
6318         tmp_stats[i++] =
6319                 (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6320                 le32_to_cpu(stats->tmac_icmp);
6321         tmp_stats[i++] =
6322                 (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6323                 le32_to_cpu(stats->tmac_rst_tcp);
6324         tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6325         tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6326                 le32_to_cpu(stats->tmac_udp);
6327         tmp_stats[i++] =
6328                 (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6329                 le32_to_cpu(stats->rmac_vld_frms);
6330         tmp_stats[i++] =
6331                 (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6332                 le32_to_cpu(stats->rmac_data_octets);
6333         tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6334         tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
6335         tmp_stats[i++] =
6336                 (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6337                 le32_to_cpu(stats->rmac_vld_mcst_frms);
6338         tmp_stats[i++] =
6339                 (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6340                 le32_to_cpu(stats->rmac_vld_bcst_frms);
6341         tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6342         tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6343         tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6344         tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6345         tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
6346         tmp_stats[i++] =
6347                 (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6348                 le32_to_cpu(stats->rmac_ttl_octets);
6349         tmp_stats[i++] =
6350                 (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6351                 | le32_to_cpu(stats->rmac_accepted_ucst_frms);
6352         tmp_stats[i++] =
6353                 (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6354                 << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
6355         tmp_stats[i++] =
6356                 (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6357                 le32_to_cpu(stats->rmac_discarded_frms);
6358         tmp_stats[i++] =
6359                 (u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6360                 << 32 | le32_to_cpu(stats->rmac_drop_events);
6361         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6362         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
6363         tmp_stats[i++] =
6364                 (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6365                 le32_to_cpu(stats->rmac_usized_frms);
6366         tmp_stats[i++] =
6367                 (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6368                 le32_to_cpu(stats->rmac_osized_frms);
6369         tmp_stats[i++] =
6370                 (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6371                 le32_to_cpu(stats->rmac_frag_frms);
6372         tmp_stats[i++] =
6373                 (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6374                 le32_to_cpu(stats->rmac_jabber_frms);
6375         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6376         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6377         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6378         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6379         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6380         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
6381         tmp_stats[i++] =
6382                 (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6383                 le32_to_cpu(stats->rmac_ip);
6384         tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6385         tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
6386         tmp_stats[i++] =
6387                 (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6388                 le32_to_cpu(stats->rmac_drop_ip);
6389         tmp_stats[i++] =
6390                 (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6391                 le32_to_cpu(stats->rmac_icmp);
6392         tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
6393         tmp_stats[i++] =
6394                 (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6395                 le32_to_cpu(stats->rmac_udp);
6396         tmp_stats[i++] =
6397                 (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6398                 le32_to_cpu(stats->rmac_err_drp_udp);
6399         tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6400         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6401         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6402         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6403         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6404         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6405         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6406         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6407         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6408         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6409         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6410         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6411         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6412         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6413         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6414         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6415         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
6416         tmp_stats[i++] =
6417                 (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6418                 le32_to_cpu(stats->rmac_pause_cnt);
6419         tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6420         tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
6421         tmp_stats[i++] =
6422                 (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6423                 le32_to_cpu(stats->rmac_accepted_ip);
6424         tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6425         tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6426         tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6427         tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6428         tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6429         tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6430         tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6431         tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6432         tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6433         tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6434         tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6435         tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6436         tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6437         tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6438         tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6439         tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6440         tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6441         tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6442         tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
6443
6444         /* Enhanced statistics exist only for Hercules */
6445         if (sp->device_type == XFRAME_II_DEVICE) {
6446                 tmp_stats[i++] =
6447                         le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
6448                 tmp_stats[i++] =
6449                         le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
6450                 tmp_stats[i++] =
6451                         le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6452                 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6453                 tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6454                 tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6455                 tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6456                 tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6457                 tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6458                 tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6459                 tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6460                 tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6461                 tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6462                 tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6463                 tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6464                 tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
6465         }
6466
6467         tmp_stats[i++] = 0;
6468         tmp_stats[i++] = swstats->single_ecc_errs;
6469         tmp_stats[i++] = swstats->double_ecc_errs;
6470         tmp_stats[i++] = swstats->parity_err_cnt;
6471         tmp_stats[i++] = swstats->serious_err_cnt;
6472         tmp_stats[i++] = swstats->soft_reset_cnt;
6473         tmp_stats[i++] = swstats->fifo_full_cnt;
6474         for (k = 0; k < MAX_RX_RINGS; k++)
6475                 tmp_stats[i++] = swstats->ring_full_cnt[k];
6476         tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6477         tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6478         tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6479         tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6480         tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6481         tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6482         tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6483         tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6484         tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6485         tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6486         tmp_stats[i++] = xstats->warn_laser_output_power_high;
6487         tmp_stats[i++] = xstats->warn_laser_output_power_low;
6488         tmp_stats[i++] = swstats->clubbed_frms_cnt;
6489         tmp_stats[i++] = swstats->sending_both;
6490         tmp_stats[i++] = swstats->outof_sequence_pkts;
6491         tmp_stats[i++] = swstats->flush_max_pkts;
6492         if (swstats->num_aggregations) {
6493                 u64 tmp = swstats->sum_avg_pkts_aggregated;
6494                 int count = 0;
6495                 /*
6496                  * Since 64-bit divide does not work on all platforms,
6497                  * do repeated subtraction.
6498                  */
6499                 while (tmp >= swstats->num_aggregations) {
6500                         tmp -= swstats->num_aggregations;
6501                         count++;
6502                 }
6503                 tmp_stats[i++] = count;
6504         } else
6505                 tmp_stats[i++] = 0;
6506         tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6507         tmp_stats[i++] = swstats->pci_map_fail_cnt;
6508         tmp_stats[i++] = swstats->watchdog_timer_cnt;
6509         tmp_stats[i++] = swstats->mem_allocated;
6510         tmp_stats[i++] = swstats->mem_freed;
6511         tmp_stats[i++] = swstats->link_up_cnt;
6512         tmp_stats[i++] = swstats->link_down_cnt;
6513         tmp_stats[i++] = swstats->link_up_time;
6514         tmp_stats[i++] = swstats->link_down_time;
6515
6516         tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6517         tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6518         tmp_stats[i++] = swstats->tx_parity_err_cnt;
6519         tmp_stats[i++] = swstats->tx_link_loss_cnt;
6520         tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6521
6522         tmp_stats[i++] = swstats->rx_parity_err_cnt;
6523         tmp_stats[i++] = swstats->rx_abort_cnt;
6524         tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6525         tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6526         tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6527         tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6528         tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6529         tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6530         tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6531         tmp_stats[i++] = swstats->tda_err_cnt;
6532         tmp_stats[i++] = swstats->pfc_err_cnt;
6533         tmp_stats[i++] = swstats->pcc_err_cnt;
6534         tmp_stats[i++] = swstats->tti_err_cnt;
6535         tmp_stats[i++] = swstats->tpa_err_cnt;
6536         tmp_stats[i++] = swstats->sm_err_cnt;
6537         tmp_stats[i++] = swstats->lso_err_cnt;
6538         tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6539         tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6540         tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6541         tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6542         tmp_stats[i++] = swstats->rc_err_cnt;
6543         tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6544         tmp_stats[i++] = swstats->rpa_err_cnt;
6545         tmp_stats[i++] = swstats->rda_err_cnt;
6546         tmp_stats[i++] = swstats->rti_err_cnt;
6547         tmp_stats[i++] = swstats->mc_err_cnt;
6548 }
6549
6550 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6551 {
6552         return XENA_REG_SPACE;
6553 }
6554
6555
6556 static int s2io_get_eeprom_len(struct net_device *dev)
6557 {
6558         return XENA_EEPROM_SPACE;
6559 }
6560
6561 static int s2io_get_sset_count(struct net_device *dev, int sset)
6562 {
6563         struct s2io_nic *sp = netdev_priv(dev);
6564
6565         switch (sset) {
6566         case ETH_SS_TEST:
6567                 return S2IO_TEST_LEN;
6568         case ETH_SS_STATS:
6569                 switch (sp->device_type) {
6570                 case XFRAME_I_DEVICE:
6571                         return XFRAME_I_STAT_LEN;
6572                 case XFRAME_II_DEVICE:
6573                         return XFRAME_II_STAT_LEN;
6574                 default:
6575                         return 0;
6576                 }
6577         default:
6578                 return -EOPNOTSUPP;
6579         }
6580 }
6581
6582 static void s2io_ethtool_get_strings(struct net_device *dev,
6583                                      u32 stringset, u8 *data)
6584 {
6585         int stat_size = 0;
6586         struct s2io_nic *sp = netdev_priv(dev);
6587
6588         switch (stringset) {
6589         case ETH_SS_TEST:
6590                 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6591                 break;
6592         case ETH_SS_STATS:
6593                 stat_size = sizeof(ethtool_xena_stats_keys);
6594                 memcpy(data, &ethtool_xena_stats_keys, stat_size);
6595                 if (sp->device_type == XFRAME_II_DEVICE) {
6596                         memcpy(data + stat_size,
6597                                &ethtool_enhanced_stats_keys,
6598                                sizeof(ethtool_enhanced_stats_keys));
6599                         stat_size += sizeof(ethtool_enhanced_stats_keys);
6600                 }
6601
6602                 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6603                        sizeof(ethtool_driver_stats_keys));
6604         }
6605 }
6606
6607 static int s2io_set_features(struct net_device *dev, netdev_features_t features)
6608 {
6609         struct s2io_nic *sp = netdev_priv(dev);
6610         netdev_features_t changed = (features ^ dev->features) & NETIF_F_LRO;
6611
6612         if (changed && netif_running(dev)) {
6613                 int rc;
6614
6615                 s2io_stop_all_tx_queue(sp);
6616                 s2io_card_down(sp);
6617                 dev->features = features;
6618                 rc = s2io_card_up(sp);
6619                 if (rc)
6620                         s2io_reset(sp);
6621                 else
6622                         s2io_start_all_tx_queue(sp);
6623
6624                 return rc ? rc : 1;
6625         }
6626
6627         return 0;
6628 }
6629
6630 static const struct ethtool_ops netdev_ethtool_ops = {
6631         .get_settings = s2io_ethtool_gset,
6632         .set_settings = s2io_ethtool_sset,
6633         .get_drvinfo = s2io_ethtool_gdrvinfo,
6634         .get_regs_len = s2io_ethtool_get_regs_len,
6635         .get_regs = s2io_ethtool_gregs,
6636         .get_link = ethtool_op_get_link,
6637         .get_eeprom_len = s2io_get_eeprom_len,
6638         .get_eeprom = s2io_ethtool_geeprom,
6639         .set_eeprom = s2io_ethtool_seeprom,
6640         .get_ringparam = s2io_ethtool_gringparam,
6641         .get_pauseparam = s2io_ethtool_getpause_data,
6642         .set_pauseparam = s2io_ethtool_setpause_data,
6643         .self_test = s2io_ethtool_test,
6644         .get_strings = s2io_ethtool_get_strings,
6645         .set_phys_id = s2io_ethtool_set_led,
6646         .get_ethtool_stats = s2io_get_ethtool_stats,
6647         .get_sset_count = s2io_get_sset_count,
6648 };
6649
6650 /**
6651  *  s2io_ioctl - Entry point for the Ioctl
6652  *  @dev :  Device pointer.
6653  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
6654  *  a proprietary structure used to pass information to the driver.
6655  *  @cmd :  This is used to distinguish between the different commands that
6656  *  can be passed to the IOCTL functions.
6657  *  Description:
6658  *  Currently there are no special functionality supported in IOCTL, hence
6659  *  function always return EOPNOTSUPPORTED
6660  */
6661
6662 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6663 {
6664         return -EOPNOTSUPP;
6665 }
6666
6667 /**
6668  *  s2io_change_mtu - entry point to change MTU size for the device.
6669  *   @dev : device pointer.
6670  *   @new_mtu : the new MTU size for the device.
6671  *   Description: A driver entry point to change MTU size for the device.
6672  *   Before changing the MTU the device must be stopped.
6673  *  Return value:
6674  *   0 on success and an appropriate (-)ve integer as defined in errno.h
6675  *   file on failure.
6676  */
6677
6678 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6679 {
6680         struct s2io_nic *sp = netdev_priv(dev);
6681         int ret = 0;
6682
6683         if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6684                 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
6685                 return -EPERM;
6686         }
6687
6688         dev->mtu = new_mtu;
6689         if (netif_running(dev)) {
6690                 s2io_stop_all_tx_queue(sp);
6691                 s2io_card_down(sp);
6692                 ret = s2io_card_up(sp);
6693                 if (ret) {
6694                         DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6695                                   __func__);
6696                         return ret;
6697                 }
6698                 s2io_wake_all_tx_queue(sp);
6699         } else { /* Device is down */
6700                 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6701                 u64 val64 = new_mtu;
6702
6703                 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6704         }
6705
6706         return ret;
6707 }
6708
6709 /**
6710  * s2io_set_link - Set the LInk status
6711  * @data: long pointer to device private structue
6712  * Description: Sets the link status for the adapter
6713  */
6714
6715 static void s2io_set_link(struct work_struct *work)
6716 {
6717         struct s2io_nic *nic = container_of(work, struct s2io_nic,
6718                                             set_link_task);
6719         struct net_device *dev = nic->dev;
6720         struct XENA_dev_config __iomem *bar0 = nic->bar0;
6721         register u64 val64;
6722         u16 subid;
6723
6724         rtnl_lock();
6725
6726         if (!netif_running(dev))
6727                 goto out_unlock;
6728
6729         if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6730                 /* The card is being reset, no point doing anything */
6731                 goto out_unlock;
6732         }
6733
6734         subid = nic->pdev->subsystem_device;
6735         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6736                 /*
6737                  * Allow a small delay for the NICs self initiated
6738                  * cleanup to complete.
6739                  */
6740                 msleep(100);
6741         }
6742
6743         val64 = readq(&bar0->adapter_status);
6744         if (LINK_IS_UP(val64)) {
6745                 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6746                         if (verify_xena_quiescence(nic)) {
6747                                 val64 = readq(&bar0->adapter_control);
6748                                 val64 |= ADAPTER_CNTL_EN;
6749                                 writeq(val64, &bar0->adapter_control);
6750                                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6751                                             nic->device_type, subid)) {
6752                                         val64 = readq(&bar0->gpio_control);
6753                                         val64 |= GPIO_CTRL_GPIO_0;
6754                                         writeq(val64, &bar0->gpio_control);
6755                                         val64 = readq(&bar0->gpio_control);
6756                                 } else {
6757                                         val64 |= ADAPTER_LED_ON;
6758                                         writeq(val64, &bar0->adapter_control);
6759                                 }
6760                                 nic->device_enabled_once = true;
6761                         } else {
6762                                 DBG_PRINT(ERR_DBG,
6763                                           "%s: Error: device is not Quiescent\n",
6764                                           dev->name);
6765                                 s2io_stop_all_tx_queue(nic);
6766                         }
6767                 }
6768                 val64 = readq(&bar0->adapter_control);
6769                 val64 |= ADAPTER_LED_ON;
6770                 writeq(val64, &bar0->adapter_control);
6771                 s2io_link(nic, LINK_UP);
6772         } else {
6773                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6774                                                       subid)) {
6775                         val64 = readq(&bar0->gpio_control);
6776                         val64 &= ~GPIO_CTRL_GPIO_0;
6777                         writeq(val64, &bar0->gpio_control);
6778                         val64 = readq(&bar0->gpio_control);
6779                 }
6780                 /* turn off LED */
6781                 val64 = readq(&bar0->adapter_control);
6782                 val64 = val64 & (~ADAPTER_LED_ON);
6783                 writeq(val64, &bar0->adapter_control);
6784                 s2io_link(nic, LINK_DOWN);
6785         }
6786         clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6787
6788 out_unlock:
6789         rtnl_unlock();
6790 }
6791
6792 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6793                                   struct buffAdd *ba,
6794                                   struct sk_buff **skb, u64 *temp0, u64 *temp1,
6795                                   u64 *temp2, int size)
6796 {
6797         struct net_device *dev = sp->dev;
6798         struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6799
6800         if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6801                 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6802                 /* allocate skb */
6803                 if (*skb) {
6804                         DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6805                         /*
6806                          * As Rx frame are not going to be processed,
6807                          * using same mapped address for the Rxd
6808                          * buffer pointer
6809                          */
6810                         rxdp1->Buffer0_ptr = *temp0;
6811                 } else {
6812                         *skb = netdev_alloc_skb(dev, size);
6813                         if (!(*skb)) {
6814                                 DBG_PRINT(INFO_DBG,
6815                                           "%s: Out of memory to allocate %s\n",
6816                                           dev->name, "1 buf mode SKBs");
6817                                 stats->mem_alloc_fail_cnt++;
6818                                 return -ENOMEM ;
6819                         }
6820                         stats->mem_allocated += (*skb)->truesize;
6821                         /* storing the mapped addr in a temp variable
6822                          * such it will be used for next rxd whose
6823                          * Host Control is NULL
6824                          */
6825                         rxdp1->Buffer0_ptr = *temp0 =
6826                                 pci_map_single(sp->pdev, (*skb)->data,
6827                                                size - NET_IP_ALIGN,
6828                                                PCI_DMA_FROMDEVICE);
6829                         if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6830                                 goto memalloc_failed;
6831                         rxdp->Host_Control = (unsigned long) (*skb);
6832                 }
6833         } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6834                 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6835                 /* Two buffer Mode */
6836                 if (*skb) {
6837                         rxdp3->Buffer2_ptr = *temp2;
6838                         rxdp3->Buffer0_ptr = *temp0;
6839                         rxdp3->Buffer1_ptr = *temp1;
6840                 } else {
6841                         *skb = netdev_alloc_skb(dev, size);
6842                         if (!(*skb)) {
6843                                 DBG_PRINT(INFO_DBG,
6844                                           "%s: Out of memory to allocate %s\n",
6845                                           dev->name,
6846                                           "2 buf mode SKBs");
6847                                 stats->mem_alloc_fail_cnt++;
6848                                 return -ENOMEM;
6849                         }
6850                         stats->mem_allocated += (*skb)->truesize;
6851                         rxdp3->Buffer2_ptr = *temp2 =
6852                                 pci_map_single(sp->pdev, (*skb)->data,
6853                                                dev->mtu + 4,
6854                                                PCI_DMA_FROMDEVICE);
6855                         if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6856                                 goto memalloc_failed;
6857                         rxdp3->Buffer0_ptr = *temp0 =
6858                                 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6859                                                PCI_DMA_FROMDEVICE);
6860                         if (pci_dma_mapping_error(sp->pdev,
6861                                                   rxdp3->Buffer0_ptr)) {
6862                                 pci_unmap_single(sp->pdev,
6863                                                  (dma_addr_t)rxdp3->Buffer2_ptr,
6864                                                  dev->mtu + 4,
6865                                                  PCI_DMA_FROMDEVICE);
6866                                 goto memalloc_failed;
6867                         }
6868                         rxdp->Host_Control = (unsigned long) (*skb);
6869
6870                         /* Buffer-1 will be dummy buffer not used */
6871                         rxdp3->Buffer1_ptr = *temp1 =
6872                                 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6873                                                PCI_DMA_FROMDEVICE);
6874                         if (pci_dma_mapping_error(sp->pdev,
6875                                                   rxdp3->Buffer1_ptr)) {
6876                                 pci_unmap_single(sp->pdev,
6877                                                  (dma_addr_t)rxdp3->Buffer0_ptr,
6878                                                  BUF0_LEN, PCI_DMA_FROMDEVICE);
6879                                 pci_unmap_single(sp->pdev,
6880                                                  (dma_addr_t)rxdp3->Buffer2_ptr,
6881                                                  dev->mtu + 4,
6882                                                  PCI_DMA_FROMDEVICE);
6883                                 goto memalloc_failed;
6884                         }
6885                 }
6886         }
6887         return 0;
6888
6889 memalloc_failed:
6890         stats->pci_map_fail_cnt++;
6891         stats->mem_freed += (*skb)->truesize;
6892         dev_kfree_skb(*skb);
6893         return -ENOMEM;
6894 }
6895
6896 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6897                                 int size)
6898 {
6899         struct net_device *dev = sp->dev;
6900         if (sp->rxd_mode == RXD_MODE_1) {
6901                 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
6902         } else if (sp->rxd_mode == RXD_MODE_3B) {
6903                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6904                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6905                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
6906         }
6907 }
6908
6909 static  int rxd_owner_bit_reset(struct s2io_nic *sp)
6910 {
6911         int i, j, k, blk_cnt = 0, size;
6912         struct config_param *config = &sp->config;
6913         struct mac_info *mac_control = &sp->mac_control;
6914         struct net_device *dev = sp->dev;
6915         struct RxD_t *rxdp = NULL;
6916         struct sk_buff *skb = NULL;
6917         struct buffAdd *ba = NULL;
6918         u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6919
6920         /* Calculate the size based on ring mode */
6921         size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6922                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6923         if (sp->rxd_mode == RXD_MODE_1)
6924                 size += NET_IP_ALIGN;
6925         else if (sp->rxd_mode == RXD_MODE_3B)
6926                 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6927
6928         for (i = 0; i < config->rx_ring_num; i++) {
6929                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
6930                 struct ring_info *ring = &mac_control->rings[i];
6931
6932                 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
6933
6934                 for (j = 0; j < blk_cnt; j++) {
6935                         for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6936                                 rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
6937                                 if (sp->rxd_mode == RXD_MODE_3B)
6938                                         ba = &ring->ba[j][k];
6939                                 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
6940                                                            &temp0_64,
6941                                                            &temp1_64,
6942                                                            &temp2_64,
6943                                                            size) == -ENOMEM) {
6944                                         return 0;
6945                                 }
6946
6947                                 set_rxd_buffer_size(sp, rxdp, size);
6948                                 dma_wmb();
6949                                 /* flip the Ownership bit to Hardware */
6950                                 rxdp->Control_1 |= RXD_OWN_XENA;
6951                         }
6952                 }
6953         }
6954         return 0;
6955
6956 }
6957
6958 static int s2io_add_isr(struct s2io_nic *sp)
6959 {
6960         int ret = 0;
6961         struct net_device *dev = sp->dev;
6962         int err = 0;
6963
6964         if (sp->config.intr_type == MSI_X)
6965                 ret = s2io_enable_msi_x(sp);
6966         if (ret) {
6967                 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6968                 sp->config.intr_type = INTA;
6969         }
6970
6971         /*
6972          * Store the values of the MSIX table in
6973          * the struct s2io_nic structure
6974          */
6975         store_xmsi_data(sp);
6976
6977         /* After proper initialization of H/W, register ISR */
6978         if (sp->config.intr_type == MSI_X) {
6979                 int i, msix_rx_cnt = 0;
6980
6981                 for (i = 0; i < sp->num_entries; i++) {
6982                         if (sp->s2io_entries[i].in_use == MSIX_FLG) {
6983                                 if (sp->s2io_entries[i].type ==
6984                                     MSIX_RING_TYPE) {
6985                                         snprintf(sp->desc[i],
6986                                                 sizeof(sp->desc[i]),
6987                                                 "%s:MSI-X-%d-RX",
6988                                                 dev->name, i);
6989                                         err = request_irq(sp->entries[i].vector,
6990                                                           s2io_msix_ring_handle,
6991                                                           0,
6992                                                           sp->desc[i],
6993                                                           sp->s2io_entries[i].arg);
6994                                 } else if (sp->s2io_entries[i].type ==
6995                                            MSIX_ALARM_TYPE) {
6996                                         snprintf(sp->desc[i],
6997                                                 sizeof(sp->desc[i]),
6998                                                 "%s:MSI-X-%d-TX",
6999                                                 dev->name, i);
7000                                         err = request_irq(sp->entries[i].vector,
7001                                                           s2io_msix_fifo_handle,
7002                                                           0,
7003                                                           sp->desc[i],
7004                                                           sp->s2io_entries[i].arg);
7005
7006                                 }
7007                                 /* if either data or addr is zero print it. */
7008                                 if (!(sp->msix_info[i].addr &&
7009                                       sp->msix_info[i].data)) {
7010                                         DBG_PRINT(ERR_DBG,
7011                                                   "%s @Addr:0x%llx Data:0x%llx\n",
7012                                                   sp->desc[i],
7013                                                   (unsigned long long)
7014                                                   sp->msix_info[i].addr,
7015                                                   (unsigned long long)
7016                                                   ntohl(sp->msix_info[i].data));
7017                                 } else
7018                                         msix_rx_cnt++;
7019                                 if (err) {
7020                                         remove_msix_isr(sp);
7021
7022                                         DBG_PRINT(ERR_DBG,
7023                                                   "%s:MSI-X-%d registration "
7024                                                   "failed\n", dev->name, i);
7025
7026                                         DBG_PRINT(ERR_DBG,
7027                                                   "%s: Defaulting to INTA\n",
7028                                                   dev->name);
7029                                         sp->config.intr_type = INTA;
7030                                         break;
7031                                 }
7032                                 sp->s2io_entries[i].in_use =
7033                                         MSIX_REGISTERED_SUCCESS;
7034                         }
7035                 }
7036                 if (!err) {
7037                         pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
7038                         DBG_PRINT(INFO_DBG,
7039                                   "MSI-X-TX entries enabled through alarm vector\n");
7040                 }
7041         }
7042         if (sp->config.intr_type == INTA) {
7043                 err = request_irq(sp->pdev->irq, s2io_isr, IRQF_SHARED,
7044                                   sp->name, dev);
7045                 if (err) {
7046                         DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7047                                   dev->name);
7048                         return -1;
7049                 }
7050         }
7051         return 0;
7052 }
7053
7054 static void s2io_rem_isr(struct s2io_nic *sp)
7055 {
7056         if (sp->config.intr_type == MSI_X)
7057                 remove_msix_isr(sp);
7058         else
7059                 remove_inta_isr(sp);
7060 }
7061
7062 static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
7063 {
7064         int cnt = 0;
7065         struct XENA_dev_config __iomem *bar0 = sp->bar0;
7066         register u64 val64 = 0;
7067         struct config_param *config;
7068         config = &sp->config;
7069
7070         if (!is_s2io_card_up(sp))
7071                 return;
7072
7073         del_timer_sync(&sp->alarm_timer);
7074         /* If s2io_set_link task is executing, wait till it completes. */
7075         while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
7076                 msleep(50);
7077         clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7078
7079         /* Disable napi */
7080         if (sp->config.napi) {
7081                 int off = 0;
7082                 if (config->intr_type ==  MSI_X) {
7083                         for (; off < sp->config.rx_ring_num; off++)
7084                                 napi_disable(&sp->mac_control.rings[off].napi);
7085                 }
7086                 else
7087                         napi_disable(&sp->napi);
7088         }
7089
7090         /* disable Tx and Rx traffic on the NIC */
7091         if (do_io)
7092                 stop_nic(sp);
7093
7094         s2io_rem_isr(sp);
7095
7096         /* stop the tx queue, indicate link down */
7097         s2io_link(sp, LINK_DOWN);
7098
7099         /* Check if the device is Quiescent and then Reset the NIC */
7100         while (do_io) {
7101                 /* As per the HW requirement we need to replenish the
7102                  * receive buffer to avoid the ring bump. Since there is
7103                  * no intention of processing the Rx frame at this pointwe are
7104                  * just setting the ownership bit of rxd in Each Rx
7105                  * ring to HW and set the appropriate buffer size
7106                  * based on the ring mode
7107                  */
7108                 rxd_owner_bit_reset(sp);
7109
7110                 val64 = readq(&bar0->adapter_status);
7111                 if (verify_xena_quiescence(sp)) {
7112                         if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7113                                 break;
7114                 }
7115
7116                 msleep(50);
7117                 cnt++;
7118                 if (cnt == 10) {
7119                         DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7120                                   "adapter status reads 0x%llx\n",
7121                                   (unsigned long long)val64);
7122                         break;
7123                 }
7124         }
7125         if (do_io)
7126                 s2io_reset(sp);
7127
7128         /* Free all Tx buffers */
7129         free_tx_buffers(sp);
7130
7131         /* Free all Rx buffers */
7132         free_rx_buffers(sp);
7133
7134         clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7135 }
7136
7137 static void s2io_card_down(struct s2io_nic *sp)
7138 {
7139         do_s2io_card_down(sp, 1);
7140 }
7141
7142 static int s2io_card_up(struct s2io_nic *sp)
7143 {
7144         int i, ret = 0;
7145         struct config_param *config;
7146         struct mac_info *mac_control;
7147         struct net_device *dev = sp->dev;
7148         u16 interruptible;
7149
7150         /* Initialize the H/W I/O registers */
7151         ret = init_nic(sp);
7152         if (ret != 0) {
7153                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7154                           dev->name);
7155                 if (ret != -EIO)
7156                         s2io_reset(sp);
7157                 return ret;
7158         }
7159
7160         /*
7161          * Initializing the Rx buffers. For now we are considering only 1
7162          * Rx ring and initializing buffers into 30 Rx blocks
7163          */
7164         config = &sp->config;
7165         mac_control = &sp->mac_control;
7166
7167         for (i = 0; i < config->rx_ring_num; i++) {
7168                 struct ring_info *ring = &mac_control->rings[i];
7169
7170                 ring->mtu = dev->mtu;
7171                 ring->lro = !!(dev->features & NETIF_F_LRO);
7172                 ret = fill_rx_buffers(sp, ring, 1);
7173                 if (ret) {
7174                         DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7175                                   dev->name);
7176                         s2io_reset(sp);
7177                         free_rx_buffers(sp);
7178                         return -ENOMEM;
7179                 }
7180                 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7181                           ring->rx_bufs_left);
7182         }
7183
7184         /* Initialise napi */
7185         if (config->napi) {
7186                 if (config->intr_type ==  MSI_X) {
7187                         for (i = 0; i < sp->config.rx_ring_num; i++)
7188                                 napi_enable(&sp->mac_control.rings[i].napi);
7189                 } else {
7190                         napi_enable(&sp->napi);
7191                 }
7192         }
7193
7194         /* Maintain the state prior to the open */
7195         if (sp->promisc_flg)
7196                 sp->promisc_flg = 0;
7197         if (sp->m_cast_flg) {
7198                 sp->m_cast_flg = 0;
7199                 sp->all_multi_pos = 0;
7200         }
7201
7202         /* Setting its receive mode */
7203         s2io_set_multicast(dev);
7204
7205         if (dev->features & NETIF_F_LRO) {
7206                 /* Initialize max aggregatable pkts per session based on MTU */
7207                 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7208                 /* Check if we can use (if specified) user provided value */
7209                 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7210                         sp->lro_max_aggr_per_sess = lro_max_pkts;
7211         }
7212
7213         /* Enable Rx Traffic and interrupts on the NIC */
7214         if (start_nic(sp)) {
7215                 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7216                 s2io_reset(sp);
7217                 free_rx_buffers(sp);
7218                 return -ENODEV;
7219         }
7220
7221         /* Add interrupt service routine */
7222         if (s2io_add_isr(sp) != 0) {
7223                 if (sp->config.intr_type == MSI_X)
7224                         s2io_rem_isr(sp);
7225                 s2io_reset(sp);
7226                 free_rx_buffers(sp);
7227                 return -ENODEV;
7228         }
7229
7230         S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7231
7232         set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7233
7234         /*  Enable select interrupts */
7235         en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7236         if (sp->config.intr_type != INTA) {
7237                 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7238                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7239         } else {
7240                 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7241                 interruptible |= TX_PIC_INTR;
7242                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7243         }
7244
7245         return 0;
7246 }
7247
7248 /**
7249  * s2io_restart_nic - Resets the NIC.
7250  * @data : long pointer to the device private structure
7251  * Description:
7252  * This function is scheduled to be run by the s2io_tx_watchdog
7253  * function after 0.5 secs to reset the NIC. The idea is to reduce
7254  * the run time of the watch dog routine which is run holding a
7255  * spin lock.
7256  */
7257
7258 static void s2io_restart_nic(struct work_struct *work)
7259 {
7260         struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7261         struct net_device *dev = sp->dev;
7262
7263         rtnl_lock();
7264
7265         if (!netif_running(dev))
7266                 goto out_unlock;
7267
7268         s2io_card_down(sp);
7269         if (s2io_card_up(sp)) {
7270                 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
7271         }
7272         s2io_wake_all_tx_queue(sp);
7273         DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
7274 out_unlock:
7275         rtnl_unlock();
7276 }
7277
7278 /**
7279  *  s2io_tx_watchdog - Watchdog for transmit side.
7280  *  @dev : Pointer to net device structure
7281  *  Description:
7282  *  This function is triggered if the Tx Queue is stopped
7283  *  for a pre-defined amount of time when the Interface is still up.
7284  *  If the Interface is jammed in such a situation, the hardware is
7285  *  reset (by s2io_close) and restarted again (by s2io_open) to
7286  *  overcome any problem that might have been caused in the hardware.
7287  *  Return value:
7288  *  void
7289  */
7290
7291 static void s2io_tx_watchdog(struct net_device *dev)
7292 {
7293         struct s2io_nic *sp = netdev_priv(dev);
7294         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7295
7296         if (netif_carrier_ok(dev)) {
7297                 swstats->watchdog_timer_cnt++;
7298                 schedule_work(&sp->rst_timer_task);
7299                 swstats->soft_reset_cnt++;
7300         }
7301 }
7302
7303 /**
7304  *   rx_osm_handler - To perform some OS related operations on SKB.
7305  *   @sp: private member of the device structure,pointer to s2io_nic structure.
7306  *   @skb : the socket buffer pointer.
7307  *   @len : length of the packet
7308  *   @cksum : FCS checksum of the frame.
7309  *   @ring_no : the ring from which this RxD was extracted.
7310  *   Description:
7311  *   This function is called by the Rx interrupt serivce routine to perform
7312  *   some OS related operations on the SKB before passing it to the upper
7313  *   layers. It mainly checks if the checksum is OK, if so adds it to the
7314  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
7315  *   to the upper layer. If the checksum is wrong, it increments the Rx
7316  *   packet error count, frees the SKB and returns error.
7317  *   Return value:
7318  *   SUCCESS on success and -1 on failure.
7319  */
7320 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7321 {
7322         struct s2io_nic *sp = ring_data->nic;
7323         struct net_device *dev = ring_data->dev;
7324         struct sk_buff *skb = (struct sk_buff *)
7325                 ((unsigned long)rxdp->Host_Control);
7326         int ring_no = ring_data->ring_no;
7327         u16 l3_csum, l4_csum;
7328         unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7329         struct lro *uninitialized_var(lro);
7330         u8 err_mask;
7331         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7332
7333         skb->dev = dev;
7334
7335         if (err) {
7336                 /* Check for parity error */
7337                 if (err & 0x1)
7338                         swstats->parity_err_cnt++;
7339
7340                 err_mask = err >> 48;
7341                 switch (err_mask) {
7342                 case 1:
7343                         swstats->rx_parity_err_cnt++;
7344                         break;
7345
7346                 case 2:
7347                         swstats->rx_abort_cnt++;
7348                         break;
7349
7350                 case 3:
7351                         swstats->rx_parity_abort_cnt++;
7352                         break;
7353
7354                 case 4:
7355                         swstats->rx_rda_fail_cnt++;
7356                         break;
7357
7358                 case 5:
7359                         swstats->rx_unkn_prot_cnt++;
7360                         break;
7361
7362                 case 6:
7363                         swstats->rx_fcs_err_cnt++;
7364                         break;
7365
7366                 case 7:
7367                         swstats->rx_buf_size_err_cnt++;
7368                         break;
7369
7370                 case 8:
7371                         swstats->rx_rxd_corrupt_cnt++;
7372                         break;
7373
7374                 case 15:
7375                         swstats->rx_unkn_err_cnt++;
7376                         break;
7377                 }
7378                 /*
7379                  * Drop the packet if bad transfer code. Exception being
7380                  * 0x5, which could be due to unsupported IPv6 extension header.
7381                  * In this case, we let stack handle the packet.
7382                  * Note that in this case, since checksum will be incorrect,
7383                  * stack will validate the same.
7384                  */
7385                 if (err_mask != 0x5) {
7386                         DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7387                                   dev->name, err_mask);
7388                         dev->stats.rx_crc_errors++;
7389                         swstats->mem_freed
7390                                 += skb->truesize;
7391                         dev_kfree_skb(skb);
7392                         ring_data->rx_bufs_left -= 1;
7393                         rxdp->Host_Control = 0;
7394                         return 0;
7395                 }
7396         }
7397
7398         rxdp->Host_Control = 0;
7399         if (sp->rxd_mode == RXD_MODE_1) {
7400                 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7401
7402                 skb_put(skb, len);
7403         } else if (sp->rxd_mode == RXD_MODE_3B) {
7404                 int get_block = ring_data->rx_curr_get_info.block_index;
7405                 int get_off = ring_data->rx_curr_get_info.offset;
7406                 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7407                 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7408                 unsigned char *buff = skb_push(skb, buf0_len);
7409
7410                 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7411                 memcpy(buff, ba->ba_0, buf0_len);
7412                 skb_put(skb, buf2_len);
7413         }
7414
7415         if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7416             ((!ring_data->lro) ||
7417              (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7418             (dev->features & NETIF_F_RXCSUM)) {
7419                 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7420                 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7421                 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7422                         /*
7423                          * NIC verifies if the Checksum of the received
7424                          * frame is Ok or not and accordingly returns
7425                          * a flag in the RxD.
7426                          */
7427                         skb->ip_summed = CHECKSUM_UNNECESSARY;
7428                         if (ring_data->lro) {
7429                                 u32 tcp_len = 0;
7430                                 u8 *tcp;
7431                                 int ret = 0;
7432
7433                                 ret = s2io_club_tcp_session(ring_data,
7434                                                             skb->data, &tcp,
7435                                                             &tcp_len, &lro,
7436                                                             rxdp, sp);
7437                                 switch (ret) {
7438                                 case 3: /* Begin anew */
7439                                         lro->parent = skb;
7440                                         goto aggregate;
7441                                 case 1: /* Aggregate */
7442                                         lro_append_pkt(sp, lro, skb, tcp_len);
7443                                         goto aggregate;
7444                                 case 4: /* Flush session */
7445                                         lro_append_pkt(sp, lro, skb, tcp_len);
7446                                         queue_rx_frame(lro->parent,
7447                                                        lro->vlan_tag);
7448                                         clear_lro_session(lro);
7449                                         swstats->flush_max_pkts++;
7450                                         goto aggregate;
7451                                 case 2: /* Flush both */
7452                                         lro->parent->data_len = lro->frags_len;
7453                                         swstats->sending_both++;
7454                                         queue_rx_frame(lro->parent,
7455                                                        lro->vlan_tag);
7456                                         clear_lro_session(lro);
7457                                         goto send_up;
7458                                 case 0: /* sessions exceeded */
7459                                 case -1: /* non-TCP or not L2 aggregatable */
7460                                 case 5: /*
7461                                          * First pkt in session not
7462                                          * L3/L4 aggregatable
7463                                          */
7464                                         break;
7465                                 default:
7466                                         DBG_PRINT(ERR_DBG,
7467                                                   "%s: Samadhana!!\n",
7468                                                   __func__);
7469                                         BUG();
7470                                 }
7471                         }
7472                 } else {
7473                         /*
7474                          * Packet with erroneous checksum, let the
7475                          * upper layers deal with it.
7476                          */
7477                         skb_checksum_none_assert(skb);
7478                 }
7479         } else
7480                 skb_checksum_none_assert(skb);
7481
7482         swstats->mem_freed += skb->truesize;
7483 send_up:
7484         skb_record_rx_queue(skb, ring_no);
7485         queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7486 aggregate:
7487         sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7488         return SUCCESS;
7489 }
7490
7491 /**
7492  *  s2io_link - stops/starts the Tx queue.
7493  *  @sp : private member of the device structure, which is a pointer to the
7494  *  s2io_nic structure.
7495  *  @link : inidicates whether link is UP/DOWN.
7496  *  Description:
7497  *  This function stops/starts the Tx queue depending on whether the link
7498  *  status of the NIC is is down or up. This is called by the Alarm
7499  *  interrupt handler whenever a link change interrupt comes up.
7500  *  Return value:
7501  *  void.
7502  */
7503
7504 static void s2io_link(struct s2io_nic *sp, int link)
7505 {
7506         struct net_device *dev = sp->dev;
7507         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7508
7509         if (link != sp->last_link_state) {
7510                 init_tti(sp, link);
7511                 if (link == LINK_DOWN) {
7512                         DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7513                         s2io_stop_all_tx_queue(sp);
7514                         netif_carrier_off(dev);
7515                         if (swstats->link_up_cnt)
7516                                 swstats->link_up_time =
7517                                         jiffies - sp->start_time;
7518                         swstats->link_down_cnt++;
7519                 } else {
7520                         DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7521                         if (swstats->link_down_cnt)
7522                                 swstats->link_down_time =
7523                                         jiffies - sp->start_time;
7524                         swstats->link_up_cnt++;
7525                         netif_carrier_on(dev);
7526                         s2io_wake_all_tx_queue(sp);
7527                 }
7528         }
7529         sp->last_link_state = link;
7530         sp->start_time = jiffies;
7531 }
7532
7533 /**
7534  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7535  *  @sp : private member of the device structure, which is a pointer to the
7536  *  s2io_nic structure.
7537  *  Description:
7538  *  This function initializes a few of the PCI and PCI-X configuration registers
7539  *  with recommended values.
7540  *  Return value:
7541  *  void
7542  */
7543
7544 static void s2io_init_pci(struct s2io_nic *sp)
7545 {
7546         u16 pci_cmd = 0, pcix_cmd = 0;
7547
7548         /* Enable Data Parity Error Recovery in PCI-X command register. */
7549         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7550                              &(pcix_cmd));
7551         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7552                               (pcix_cmd | 1));
7553         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7554                              &(pcix_cmd));
7555
7556         /* Set the PErr Response bit in PCI command register. */
7557         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7558         pci_write_config_word(sp->pdev, PCI_COMMAND,
7559                               (pci_cmd | PCI_COMMAND_PARITY));
7560         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7561 }
7562
7563 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7564                             u8 *dev_multiq)
7565 {
7566         int i;
7567
7568         if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
7569                 DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
7570                           "(%d) not supported\n", tx_fifo_num);
7571
7572                 if (tx_fifo_num < 1)
7573                         tx_fifo_num = 1;
7574                 else
7575                         tx_fifo_num = MAX_TX_FIFOS;
7576
7577                 DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
7578         }
7579
7580         if (multiq)
7581                 *dev_multiq = multiq;
7582
7583         if (tx_steering_type && (1 == tx_fifo_num)) {
7584                 if (tx_steering_type != TX_DEFAULT_STEERING)
7585                         DBG_PRINT(ERR_DBG,
7586                                   "Tx steering is not supported with "
7587                                   "one fifo. Disabling Tx steering.\n");
7588                 tx_steering_type = NO_STEERING;
7589         }
7590
7591         if ((tx_steering_type < NO_STEERING) ||
7592             (tx_steering_type > TX_DEFAULT_STEERING)) {
7593                 DBG_PRINT(ERR_DBG,
7594                           "Requested transmit steering not supported\n");
7595                 DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
7596                 tx_steering_type = NO_STEERING;
7597         }
7598
7599         if (rx_ring_num > MAX_RX_RINGS) {
7600                 DBG_PRINT(ERR_DBG,
7601                           "Requested number of rx rings not supported\n");
7602                 DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
7603                           MAX_RX_RINGS);
7604                 rx_ring_num = MAX_RX_RINGS;
7605         }
7606
7607         if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7608                 DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
7609                           "Defaulting to INTA\n");
7610                 *dev_intr_type = INTA;
7611         }
7612
7613         if ((*dev_intr_type == MSI_X) &&
7614             ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7615              (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7616                 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
7617                           "Defaulting to INTA\n");
7618                 *dev_intr_type = INTA;
7619         }
7620
7621         if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7622                 DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7623                 DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
7624                 rx_ring_mode = 1;
7625         }
7626
7627         for (i = 0; i < MAX_RX_RINGS; i++)
7628                 if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) {
7629                         DBG_PRINT(ERR_DBG, "Requested rx ring size not "
7630                                   "supported\nDefaulting to %d\n",
7631                                   MAX_RX_BLOCKS_PER_RING);
7632                         rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING;
7633                 }
7634
7635         return SUCCESS;
7636 }
7637
7638 /**
7639  * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7640  * or Traffic class respectively.
7641  * @nic: device private variable
7642  * Description: The function configures the receive steering to
7643  * desired receive ring.
7644  * Return Value:  SUCCESS on success and
7645  * '-1' on failure (endian settings incorrect).
7646  */
7647 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7648 {
7649         struct XENA_dev_config __iomem *bar0 = nic->bar0;
7650         register u64 val64 = 0;
7651
7652         if (ds_codepoint > 63)
7653                 return FAILURE;
7654
7655         val64 = RTS_DS_MEM_DATA(ring);
7656         writeq(val64, &bar0->rts_ds_mem_data);
7657
7658         val64 = RTS_DS_MEM_CTRL_WE |
7659                 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7660                 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7661
7662         writeq(val64, &bar0->rts_ds_mem_ctrl);
7663
7664         return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7665                                      RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7666                                      S2IO_BIT_RESET);
7667 }
7668
7669 static const struct net_device_ops s2io_netdev_ops = {
7670         .ndo_open               = s2io_open,
7671         .ndo_stop               = s2io_close,
7672         .ndo_get_stats          = s2io_get_stats,
7673         .ndo_start_xmit         = s2io_xmit,
7674         .ndo_validate_addr      = eth_validate_addr,
7675         .ndo_set_rx_mode        = s2io_set_multicast,
7676         .ndo_do_ioctl           = s2io_ioctl,
7677         .ndo_set_mac_address    = s2io_set_mac_addr,
7678         .ndo_change_mtu         = s2io_change_mtu,
7679         .ndo_set_features       = s2io_set_features,
7680         .ndo_tx_timeout         = s2io_tx_watchdog,
7681 #ifdef CONFIG_NET_POLL_CONTROLLER
7682         .ndo_poll_controller    = s2io_netpoll,
7683 #endif
7684 };
7685
7686 /**
7687  *  s2io_init_nic - Initialization of the adapter .
7688  *  @pdev : structure containing the PCI related information of the device.
7689  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7690  *  Description:
7691  *  The function initializes an adapter identified by the pci_dec structure.
7692  *  All OS related initialization including memory and device structure and
7693  *  initlaization of the device private variable is done. Also the swapper
7694  *  control register is initialized to enable read and write into the I/O
7695  *  registers of the device.
7696  *  Return value:
7697  *  returns 0 on success and negative on failure.
7698  */
7699
7700 static int
7701 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7702 {
7703         struct s2io_nic *sp;
7704         struct net_device *dev;
7705         int i, j, ret;
7706         int dma_flag = false;
7707         u32 mac_up, mac_down;
7708         u64 val64 = 0, tmp64 = 0;
7709         struct XENA_dev_config __iomem *bar0 = NULL;
7710         u16 subid;
7711         struct config_param *config;
7712         struct mac_info *mac_control;
7713         int mode;
7714         u8 dev_intr_type = intr_type;
7715         u8 dev_multiq = 0;
7716
7717         ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7718         if (ret)
7719                 return ret;
7720
7721         ret = pci_enable_device(pdev);
7722         if (ret) {
7723                 DBG_PRINT(ERR_DBG,
7724                           "%s: pci_enable_device failed\n", __func__);
7725                 return ret;
7726         }
7727
7728         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
7729                 DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
7730                 dma_flag = true;
7731                 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
7732                         DBG_PRINT(ERR_DBG,
7733                                   "Unable to obtain 64bit DMA "
7734                                   "for consistent allocations\n");
7735                         pci_disable_device(pdev);
7736                         return -ENOMEM;
7737                 }
7738         } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
7739                 DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
7740         } else {
7741                 pci_disable_device(pdev);
7742                 return -ENOMEM;
7743         }
7744         ret = pci_request_regions(pdev, s2io_driver_name);
7745         if (ret) {
7746                 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
7747                           __func__, ret);
7748                 pci_disable_device(pdev);
7749                 return -ENODEV;
7750         }
7751         if (dev_multiq)
7752                 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7753         else
7754                 dev = alloc_etherdev(sizeof(struct s2io_nic));
7755         if (dev == NULL) {
7756                 pci_disable_device(pdev);
7757                 pci_release_regions(pdev);
7758                 return -ENODEV;
7759         }
7760
7761         pci_set_master(pdev);
7762         pci_set_drvdata(pdev, dev);
7763         SET_NETDEV_DEV(dev, &pdev->dev);
7764
7765         /*  Private member variable initialized to s2io NIC structure */
7766         sp = netdev_priv(dev);
7767         sp->dev = dev;
7768         sp->pdev = pdev;
7769         sp->high_dma_flag = dma_flag;
7770         sp->device_enabled_once = false;
7771         if (rx_ring_mode == 1)
7772                 sp->rxd_mode = RXD_MODE_1;
7773         if (rx_ring_mode == 2)
7774                 sp->rxd_mode = RXD_MODE_3B;
7775
7776         sp->config.intr_type = dev_intr_type;
7777
7778         if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7779             (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7780                 sp->device_type = XFRAME_II_DEVICE;
7781         else
7782                 sp->device_type = XFRAME_I_DEVICE;
7783
7784
7785         /* Initialize some PCI/PCI-X fields of the NIC. */
7786         s2io_init_pci(sp);
7787
7788         /*
7789          * Setting the device configuration parameters.
7790          * Most of these parameters can be specified by the user during
7791          * module insertion as they are module loadable parameters. If
7792          * these parameters are not not specified during load time, they
7793          * are initialized with default values.
7794          */
7795         config = &sp->config;
7796         mac_control = &sp->mac_control;
7797
7798         config->napi = napi;
7799         config->tx_steering_type = tx_steering_type;
7800
7801         /* Tx side parameters. */
7802         if (config->tx_steering_type == TX_PRIORITY_STEERING)
7803                 config->tx_fifo_num = MAX_TX_FIFOS;
7804         else
7805                 config->tx_fifo_num = tx_fifo_num;
7806
7807         /* Initialize the fifos used for tx steering */
7808         if (config->tx_fifo_num < 5) {
7809                 if (config->tx_fifo_num  == 1)
7810                         sp->total_tcp_fifos = 1;
7811                 else
7812                         sp->total_tcp_fifos = config->tx_fifo_num - 1;
7813                 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7814                 sp->total_udp_fifos = 1;
7815                 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7816         } else {
7817                 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7818                                        FIFO_OTHER_MAX_NUM);
7819                 sp->udp_fifo_idx = sp->total_tcp_fifos;
7820                 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7821                 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7822         }
7823
7824         config->multiq = dev_multiq;
7825         for (i = 0; i < config->tx_fifo_num; i++) {
7826                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7827
7828                 tx_cfg->fifo_len = tx_fifo_len[i];
7829                 tx_cfg->fifo_priority = i;
7830         }
7831
7832         /* mapping the QoS priority to the configured fifos */
7833         for (i = 0; i < MAX_TX_FIFOS; i++)
7834                 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7835
7836         /* map the hashing selector table to the configured fifos */
7837         for (i = 0; i < config->tx_fifo_num; i++)
7838                 sp->fifo_selector[i] = fifo_selector[i];
7839
7840
7841         config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7842         for (i = 0; i < config->tx_fifo_num; i++) {
7843                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7844
7845                 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7846                 if (tx_cfg->fifo_len < 65) {
7847                         config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7848                         break;
7849                 }
7850         }
7851         /* + 2 because one Txd for skb->data and one Txd for UFO */
7852         config->max_txds = MAX_SKB_FRAGS + 2;
7853
7854         /* Rx side parameters. */
7855         config->rx_ring_num = rx_ring_num;
7856         for (i = 0; i < config->rx_ring_num; i++) {
7857                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7858                 struct ring_info *ring = &mac_control->rings[i];
7859
7860                 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7861                 rx_cfg->ring_priority = i;
7862                 ring->rx_bufs_left = 0;
7863                 ring->rxd_mode = sp->rxd_mode;
7864                 ring->rxd_count = rxd_count[sp->rxd_mode];
7865                 ring->pdev = sp->pdev;
7866                 ring->dev = sp->dev;
7867         }
7868
7869         for (i = 0; i < rx_ring_num; i++) {
7870                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7871
7872                 rx_cfg->ring_org = RING_ORG_BUFF1;
7873                 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7874         }
7875
7876         /*  Setting Mac Control parameters */
7877         mac_control->rmac_pause_time = rmac_pause_time;
7878         mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7879         mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7880
7881
7882         /*  initialize the shared memory used by the NIC and the host */
7883         if (init_shared_mem(sp)) {
7884                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
7885                 ret = -ENOMEM;
7886                 goto mem_alloc_failed;
7887         }
7888
7889         sp->bar0 = pci_ioremap_bar(pdev, 0);
7890         if (!sp->bar0) {
7891                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7892                           dev->name);
7893                 ret = -ENOMEM;
7894                 goto bar0_remap_failed;
7895         }
7896
7897         sp->bar1 = pci_ioremap_bar(pdev, 2);
7898         if (!sp->bar1) {
7899                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7900                           dev->name);
7901                 ret = -ENOMEM;
7902                 goto bar1_remap_failed;
7903         }
7904
7905         /* Initializing the BAR1 address as the start of the FIFO pointer. */
7906         for (j = 0; j < MAX_TX_FIFOS; j++) {
7907                 mac_control->tx_FIFO_start[j] = sp->bar1 + (j * 0x00020000);
7908         }
7909
7910         /*  Driver entry points */
7911         dev->netdev_ops = &s2io_netdev_ops;
7912         dev->ethtool_ops = &netdev_ethtool_ops;
7913         dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
7914                 NETIF_F_TSO | NETIF_F_TSO6 |
7915                 NETIF_F_RXCSUM | NETIF_F_LRO;
7916         dev->features |= dev->hw_features |
7917                 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
7918         if (sp->device_type & XFRAME_II_DEVICE) {
7919                 dev->hw_features |= NETIF_F_UFO;
7920                 if (ufo)
7921                         dev->features |= NETIF_F_UFO;
7922         }
7923         if (sp->high_dma_flag == true)
7924                 dev->features |= NETIF_F_HIGHDMA;
7925         dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7926         INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7927         INIT_WORK(&sp->set_link_task, s2io_set_link);
7928
7929         pci_save_state(sp->pdev);
7930
7931         /* Setting swapper control on the NIC, for proper reset operation */
7932         if (s2io_set_swapper(sp)) {
7933                 DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
7934                           dev->name);
7935                 ret = -EAGAIN;
7936                 goto set_swap_failed;
7937         }
7938
7939         /* Verify if the Herc works on the slot its placed into */
7940         if (sp->device_type & XFRAME_II_DEVICE) {
7941                 mode = s2io_verify_pci_mode(sp);
7942                 if (mode < 0) {
7943                         DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
7944                                   __func__);
7945                         ret = -EBADSLT;
7946                         goto set_swap_failed;
7947                 }
7948         }
7949
7950         if (sp->config.intr_type == MSI_X) {
7951                 sp->num_entries = config->rx_ring_num + 1;
7952                 ret = s2io_enable_msi_x(sp);
7953
7954                 if (!ret) {
7955                         ret = s2io_test_msi(sp);
7956                         /* rollback MSI-X, will re-enable during add_isr() */
7957                         remove_msix_isr(sp);
7958                 }
7959                 if (ret) {
7960
7961                         DBG_PRINT(ERR_DBG,
7962                                   "MSI-X requested but failed to enable\n");
7963                         sp->config.intr_type = INTA;
7964                 }
7965         }
7966
7967         if (config->intr_type ==  MSI_X) {
7968                 for (i = 0; i < config->rx_ring_num ; i++) {
7969                         struct ring_info *ring = &mac_control->rings[i];
7970
7971                         netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
7972                 }
7973         } else {
7974                 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
7975         }
7976
7977         /* Not needed for Herc */
7978         if (sp->device_type & XFRAME_I_DEVICE) {
7979                 /*
7980                  * Fix for all "FFs" MAC address problems observed on
7981                  * Alpha platforms
7982                  */
7983                 fix_mac_address(sp);
7984                 s2io_reset(sp);
7985         }
7986
7987         /*
7988          * MAC address initialization.
7989          * For now only one mac address will be read and used.
7990          */
7991         bar0 = sp->bar0;
7992         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7993                 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
7994         writeq(val64, &bar0->rmac_addr_cmd_mem);
7995         wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7996                               RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
7997                               S2IO_BIT_RESET);
7998         tmp64 = readq(&bar0->rmac_addr_data0_mem);
7999         mac_down = (u32)tmp64;
8000         mac_up = (u32) (tmp64 >> 32);
8001
8002         sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8003         sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8004         sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8005         sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8006         sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8007         sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8008
8009         /*  Set the factory defined MAC address initially   */
8010         dev->addr_len = ETH_ALEN;
8011         memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8012
8013         /* initialize number of multicast & unicast MAC entries variables */
8014         if (sp->device_type == XFRAME_I_DEVICE) {
8015                 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8016                 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8017                 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8018         } else if (sp->device_type == XFRAME_II_DEVICE) {
8019                 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8020                 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8021                 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8022         }
8023
8024         /* store mac addresses from CAM to s2io_nic structure */
8025         do_s2io_store_unicast_mc(sp);
8026
8027         /* Configure MSIX vector for number of rings configured plus one */
8028         if ((sp->device_type == XFRAME_II_DEVICE) &&
8029             (config->intr_type == MSI_X))
8030                 sp->num_entries = config->rx_ring_num + 1;
8031
8032         /* Store the values of the MSIX table in the s2io_nic structure */
8033         store_xmsi_data(sp);
8034         /* reset Nic and bring it to known state */
8035         s2io_reset(sp);
8036
8037         /*
8038          * Initialize link state flags
8039          * and the card state parameter
8040          */
8041         sp->state = 0;
8042
8043         /* Initialize spinlocks */
8044         for (i = 0; i < sp->config.tx_fifo_num; i++) {
8045                 struct fifo_info *fifo = &mac_control->fifos[i];
8046
8047                 spin_lock_init(&fifo->tx_lock);
8048         }
8049
8050         /*
8051          * SXE-002: Configure link and activity LED to init state
8052          * on driver load.
8053          */
8054         subid = sp->pdev->subsystem_device;
8055         if ((subid & 0xFF) >= 0x07) {
8056                 val64 = readq(&bar0->gpio_control);
8057                 val64 |= 0x0000800000000000ULL;
8058                 writeq(val64, &bar0->gpio_control);
8059                 val64 = 0x0411040400000000ULL;
8060                 writeq(val64, (void __iomem *)bar0 + 0x2700);
8061                 val64 = readq(&bar0->gpio_control);
8062         }
8063
8064         sp->rx_csum = 1;        /* Rx chksum verify enabled by default */
8065
8066         if (register_netdev(dev)) {
8067                 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8068                 ret = -ENODEV;
8069                 goto register_failed;
8070         }
8071         s2io_vpd_read(sp);
8072         DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n");
8073         DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
8074                   sp->product_name, pdev->revision);
8075         DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8076                   s2io_driver_version);
8077         DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8078         DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
8079         if (sp->device_type & XFRAME_II_DEVICE) {
8080                 mode = s2io_print_pci_mode(sp);
8081                 if (mode < 0) {
8082                         ret = -EBADSLT;
8083                         unregister_netdev(dev);
8084                         goto set_swap_failed;
8085                 }
8086         }
8087         switch (sp->rxd_mode) {
8088         case RXD_MODE_1:
8089                 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8090                           dev->name);
8091                 break;
8092         case RXD_MODE_3B:
8093                 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8094                           dev->name);
8095                 break;
8096         }
8097
8098         switch (sp->config.napi) {
8099         case 0:
8100                 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8101                 break;
8102         case 1:
8103                 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8104                 break;
8105         }
8106
8107         DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8108                   sp->config.tx_fifo_num);
8109
8110         DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8111                   sp->config.rx_ring_num);
8112
8113         switch (sp->config.intr_type) {
8114         case INTA:
8115                 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8116                 break;
8117         case MSI_X:
8118                 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8119                 break;
8120         }
8121         if (sp->config.multiq) {
8122                 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8123                         struct fifo_info *fifo = &mac_control->fifos[i];
8124
8125                         fifo->multiq = config->multiq;
8126                 }
8127                 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8128                           dev->name);
8129         } else
8130                 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8131                           dev->name);
8132
8133         switch (sp->config.tx_steering_type) {
8134         case NO_STEERING:
8135                 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8136                           dev->name);
8137                 break;
8138         case TX_PRIORITY_STEERING:
8139                 DBG_PRINT(ERR_DBG,
8140                           "%s: Priority steering enabled for transmit\n",
8141                           dev->name);
8142                 break;
8143         case TX_DEFAULT_STEERING:
8144                 DBG_PRINT(ERR_DBG,
8145                           "%s: Default steering enabled for transmit\n",
8146                           dev->name);
8147         }
8148
8149         DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8150                   dev->name);
8151         if (ufo)
8152                 DBG_PRINT(ERR_DBG,
8153                           "%s: UDP Fragmentation Offload(UFO) enabled\n",
8154                           dev->name);
8155         /* Initialize device name */
8156         snprintf(sp->name, sizeof(sp->name), "%s Neterion %s", dev->name,
8157                  sp->product_name);
8158
8159         if (vlan_tag_strip)
8160                 sp->vlan_strip_flag = 1;
8161         else
8162                 sp->vlan_strip_flag = 0;
8163
8164         /*
8165          * Make Link state as off at this point, when the Link change
8166          * interrupt comes the state will be automatically changed to
8167          * the right state.
8168          */
8169         netif_carrier_off(dev);
8170
8171         return 0;
8172
8173 register_failed:
8174 set_swap_failed:
8175         iounmap(sp->bar1);
8176 bar1_remap_failed:
8177         iounmap(sp->bar0);
8178 bar0_remap_failed:
8179 mem_alloc_failed:
8180         free_shared_mem(sp);
8181         pci_disable_device(pdev);
8182         pci_release_regions(pdev);
8183         free_netdev(dev);
8184
8185         return ret;
8186 }
8187
8188 /**
8189  * s2io_rem_nic - Free the PCI device
8190  * @pdev: structure containing the PCI related information of the device.
8191  * Description: This function is called by the Pci subsystem to release a
8192  * PCI device and free up all resource held up by the device. This could
8193  * be in response to a Hot plug event or when the driver is to be removed
8194  * from memory.
8195  */
8196
8197 static void s2io_rem_nic(struct pci_dev *pdev)
8198 {
8199         struct net_device *dev = pci_get_drvdata(pdev);
8200         struct s2io_nic *sp;
8201
8202         if (dev == NULL) {
8203                 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8204                 return;
8205         }
8206
8207         sp = netdev_priv(dev);
8208
8209         cancel_work_sync(&sp->rst_timer_task);
8210         cancel_work_sync(&sp->set_link_task);
8211
8212         unregister_netdev(dev);
8213
8214         free_shared_mem(sp);
8215         iounmap(sp->bar0);
8216         iounmap(sp->bar1);
8217         pci_release_regions(pdev);
8218         free_netdev(dev);
8219         pci_disable_device(pdev);
8220 }
8221
8222 /**
8223  * s2io_starter - Entry point for the driver
8224  * Description: This function is the entry point for the driver. It verifies
8225  * the module loadable parameters and initializes PCI configuration space.
8226  */
8227
8228 static int __init s2io_starter(void)
8229 {
8230         return pci_register_driver(&s2io_driver);
8231 }
8232
8233 /**
8234  * s2io_closer - Cleanup routine for the driver
8235  * Description: This function is the cleanup routine for the driver. It
8236  * unregisters the driver.
8237  */
8238
8239 static __exit void s2io_closer(void)
8240 {
8241         pci_unregister_driver(&s2io_driver);
8242         DBG_PRINT(INIT_DBG, "cleanup done\n");
8243 }
8244
8245 module_init(s2io_starter);
8246 module_exit(s2io_closer);
8247
8248 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8249                                 struct tcphdr **tcp, struct RxD_t *rxdp,
8250                                 struct s2io_nic *sp)
8251 {
8252         int ip_off;
8253         u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8254
8255         if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8256                 DBG_PRINT(INIT_DBG,
8257                           "%s: Non-TCP frames not supported for LRO\n",
8258                           __func__);
8259                 return -1;
8260         }
8261
8262         /* Checking for DIX type or DIX type with VLAN */
8263         if ((l2_type == 0) || (l2_type == 4)) {
8264                 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8265                 /*
8266                  * If vlan stripping is disabled and the frame is VLAN tagged,
8267                  * shift the offset by the VLAN header size bytes.
8268                  */
8269                 if ((!sp->vlan_strip_flag) &&
8270                     (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8271                         ip_off += HEADER_VLAN_SIZE;
8272         } else {
8273                 /* LLC, SNAP etc are considered non-mergeable */
8274                 return -1;
8275         }
8276
8277         *ip = (struct iphdr *)(buffer + ip_off);
8278         ip_len = (u8)((*ip)->ihl);
8279         ip_len <<= 2;
8280         *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8281
8282         return 0;
8283 }
8284
8285 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8286                                   struct tcphdr *tcp)
8287 {
8288         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8289         if ((lro->iph->saddr != ip->saddr) ||
8290             (lro->iph->daddr != ip->daddr) ||
8291             (lro->tcph->source != tcp->source) ||
8292             (lro->tcph->dest != tcp->dest))
8293                 return -1;
8294         return 0;
8295 }
8296
8297 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8298 {
8299         return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
8300 }
8301
8302 static void initiate_new_session(struct lro *lro, u8 *l2h,
8303                                  struct iphdr *ip, struct tcphdr *tcp,
8304                                  u32 tcp_pyld_len, u16 vlan_tag)
8305 {
8306         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8307         lro->l2h = l2h;
8308         lro->iph = ip;
8309         lro->tcph = tcp;
8310         lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8311         lro->tcp_ack = tcp->ack_seq;
8312         lro->sg_num = 1;
8313         lro->total_len = ntohs(ip->tot_len);
8314         lro->frags_len = 0;
8315         lro->vlan_tag = vlan_tag;
8316         /*
8317          * Check if we saw TCP timestamp.
8318          * Other consistency checks have already been done.
8319          */
8320         if (tcp->doff == 8) {
8321                 __be32 *ptr;
8322                 ptr = (__be32 *)(tcp+1);
8323                 lro->saw_ts = 1;
8324                 lro->cur_tsval = ntohl(*(ptr+1));
8325                 lro->cur_tsecr = *(ptr+2);
8326         }
8327         lro->in_use = 1;
8328 }
8329
8330 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8331 {
8332         struct iphdr *ip = lro->iph;
8333         struct tcphdr *tcp = lro->tcph;
8334         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8335
8336         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8337
8338         /* Update L3 header */
8339         csum_replace2(&ip->check, ip->tot_len, htons(lro->total_len));
8340         ip->tot_len = htons(lro->total_len);
8341
8342         /* Update L4 header */
8343         tcp->ack_seq = lro->tcp_ack;
8344         tcp->window = lro->window;
8345
8346         /* Update tsecr field if this session has timestamps enabled */
8347         if (lro->saw_ts) {
8348                 __be32 *ptr = (__be32 *)(tcp + 1);
8349                 *(ptr+2) = lro->cur_tsecr;
8350         }
8351
8352         /* Update counters required for calculation of
8353          * average no. of packets aggregated.
8354          */
8355         swstats->sum_avg_pkts_aggregated += lro->sg_num;
8356         swstats->num_aggregations++;
8357 }
8358
8359 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8360                              struct tcphdr *tcp, u32 l4_pyld)
8361 {
8362         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8363         lro->total_len += l4_pyld;
8364         lro->frags_len += l4_pyld;
8365         lro->tcp_next_seq += l4_pyld;
8366         lro->sg_num++;
8367
8368         /* Update ack seq no. and window ad(from this pkt) in LRO object */
8369         lro->tcp_ack = tcp->ack_seq;
8370         lro->window = tcp->window;
8371
8372         if (lro->saw_ts) {
8373                 __be32 *ptr;
8374                 /* Update tsecr and tsval from this packet */
8375                 ptr = (__be32 *)(tcp+1);
8376                 lro->cur_tsval = ntohl(*(ptr+1));
8377                 lro->cur_tsecr = *(ptr + 2);
8378         }
8379 }
8380
8381 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8382                                     struct tcphdr *tcp, u32 tcp_pyld_len)
8383 {
8384         u8 *ptr;
8385
8386         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8387
8388         if (!tcp_pyld_len) {
8389                 /* Runt frame or a pure ack */
8390                 return -1;
8391         }
8392
8393         if (ip->ihl != 5) /* IP has options */
8394                 return -1;
8395
8396         /* If we see CE codepoint in IP header, packet is not mergeable */
8397         if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8398                 return -1;
8399
8400         /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8401         if (tcp->urg || tcp->psh || tcp->rst ||
8402             tcp->syn || tcp->fin ||
8403             tcp->ece || tcp->cwr || !tcp->ack) {
8404                 /*
8405                  * Currently recognize only the ack control word and
8406                  * any other control field being set would result in
8407                  * flushing the LRO session
8408                  */
8409                 return -1;
8410         }
8411
8412         /*
8413          * Allow only one TCP timestamp option. Don't aggregate if
8414          * any other options are detected.
8415          */
8416         if (tcp->doff != 5 && tcp->doff != 8)
8417                 return -1;
8418
8419         if (tcp->doff == 8) {
8420                 ptr = (u8 *)(tcp + 1);
8421                 while (*ptr == TCPOPT_NOP)
8422                         ptr++;
8423                 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8424                         return -1;
8425
8426                 /* Ensure timestamp value increases monotonically */
8427                 if (l_lro)
8428                         if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8429                                 return -1;
8430
8431                 /* timestamp echo reply should be non-zero */
8432                 if (*((__be32 *)(ptr+6)) == 0)
8433                         return -1;
8434         }
8435
8436         return 0;
8437 }
8438
8439 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8440                                  u8 **tcp, u32 *tcp_len, struct lro **lro,
8441                                  struct RxD_t *rxdp, struct s2io_nic *sp)
8442 {
8443         struct iphdr *ip;
8444         struct tcphdr *tcph;
8445         int ret = 0, i;
8446         u16 vlan_tag = 0;
8447         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8448
8449         ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8450                                    rxdp, sp);
8451         if (ret)
8452                 return ret;
8453
8454         DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8455
8456         vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8457         tcph = (struct tcphdr *)*tcp;
8458         *tcp_len = get_l4_pyld_length(ip, tcph);
8459         for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8460                 struct lro *l_lro = &ring_data->lro0_n[i];
8461                 if (l_lro->in_use) {
8462                         if (check_for_socket_match(l_lro, ip, tcph))
8463                                 continue;
8464                         /* Sock pair matched */
8465                         *lro = l_lro;
8466
8467                         if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8468                                 DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8469                                           "expected 0x%x, actual 0x%x\n",
8470                                           __func__,
8471                                           (*lro)->tcp_next_seq,
8472                                           ntohl(tcph->seq));
8473
8474                                 swstats->outof_sequence_pkts++;
8475                                 ret = 2;
8476                                 break;
8477                         }
8478
8479                         if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8480                                                       *tcp_len))
8481                                 ret = 1; /* Aggregate */
8482                         else
8483                                 ret = 2; /* Flush both */
8484                         break;
8485                 }
8486         }
8487
8488         if (ret == 0) {
8489                 /* Before searching for available LRO objects,
8490                  * check if the pkt is L3/L4 aggregatable. If not
8491                  * don't create new LRO session. Just send this
8492                  * packet up.
8493                  */
8494                 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
8495                         return 5;
8496
8497                 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8498                         struct lro *l_lro = &ring_data->lro0_n[i];
8499                         if (!(l_lro->in_use)) {
8500                                 *lro = l_lro;
8501                                 ret = 3; /* Begin anew */
8502                                 break;
8503                         }
8504                 }
8505         }
8506
8507         if (ret == 0) { /* sessions exceeded */
8508                 DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
8509                           __func__);
8510                 *lro = NULL;
8511                 return ret;
8512         }
8513
8514         switch (ret) {
8515         case 3:
8516                 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8517                                      vlan_tag);
8518                 break;
8519         case 2:
8520                 update_L3L4_header(sp, *lro);
8521                 break;
8522         case 1:
8523                 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8524                 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8525                         update_L3L4_header(sp, *lro);
8526                         ret = 4; /* Flush the LRO */
8527                 }
8528                 break;
8529         default:
8530                 DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
8531                 break;
8532         }
8533
8534         return ret;
8535 }
8536
8537 static void clear_lro_session(struct lro *lro)
8538 {
8539         static u16 lro_struct_size = sizeof(struct lro);
8540
8541         memset(lro, 0, lro_struct_size);
8542 }
8543
8544 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8545 {
8546         struct net_device *dev = skb->dev;
8547         struct s2io_nic *sp = netdev_priv(dev);
8548
8549         skb->protocol = eth_type_trans(skb, dev);
8550         if (vlan_tag && sp->vlan_strip_flag)
8551                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
8552         if (sp->config.napi)
8553                 netif_receive_skb(skb);
8554         else
8555                 netif_rx(skb);
8556 }
8557
8558 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8559                            struct sk_buff *skb, u32 tcp_len)
8560 {
8561         struct sk_buff *first = lro->parent;
8562         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8563
8564         first->len += tcp_len;
8565         first->data_len = lro->frags_len;
8566         skb_pull(skb, (skb->len - tcp_len));
8567         if (skb_shinfo(first)->frag_list)
8568                 lro->last_frag->next = skb;
8569         else
8570                 skb_shinfo(first)->frag_list = skb;
8571         first->truesize += skb->truesize;
8572         lro->last_frag = skb;
8573         swstats->clubbed_frms_cnt++;
8574 }
8575
8576 /**
8577  * s2io_io_error_detected - called when PCI error is detected
8578  * @pdev: Pointer to PCI device
8579  * @state: The current pci connection state
8580  *
8581  * This function is called after a PCI bus error affecting
8582  * this device has been detected.
8583  */
8584 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8585                                                pci_channel_state_t state)
8586 {
8587         struct net_device *netdev = pci_get_drvdata(pdev);
8588         struct s2io_nic *sp = netdev_priv(netdev);
8589
8590         netif_device_detach(netdev);
8591
8592         if (state == pci_channel_io_perm_failure)
8593                 return PCI_ERS_RESULT_DISCONNECT;
8594
8595         if (netif_running(netdev)) {
8596                 /* Bring down the card, while avoiding PCI I/O */
8597                 do_s2io_card_down(sp, 0);
8598         }
8599         pci_disable_device(pdev);
8600
8601         return PCI_ERS_RESULT_NEED_RESET;
8602 }
8603
8604 /**
8605  * s2io_io_slot_reset - called after the pci bus has been reset.
8606  * @pdev: Pointer to PCI device
8607  *
8608  * Restart the card from scratch, as if from a cold-boot.
8609  * At this point, the card has exprienced a hard reset,
8610  * followed by fixups by BIOS, and has its config space
8611  * set up identically to what it was at cold boot.
8612  */
8613 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8614 {
8615         struct net_device *netdev = pci_get_drvdata(pdev);
8616         struct s2io_nic *sp = netdev_priv(netdev);
8617
8618         if (pci_enable_device(pdev)) {
8619                 pr_err("Cannot re-enable PCI device after reset.\n");
8620                 return PCI_ERS_RESULT_DISCONNECT;
8621         }
8622
8623         pci_set_master(pdev);
8624         s2io_reset(sp);
8625
8626         return PCI_ERS_RESULT_RECOVERED;
8627 }
8628
8629 /**
8630  * s2io_io_resume - called when traffic can start flowing again.
8631  * @pdev: Pointer to PCI device
8632  *
8633  * This callback is called when the error recovery driver tells
8634  * us that its OK to resume normal operation.
8635  */
8636 static void s2io_io_resume(struct pci_dev *pdev)
8637 {
8638         struct net_device *netdev = pci_get_drvdata(pdev);
8639         struct s2io_nic *sp = netdev_priv(netdev);
8640
8641         if (netif_running(netdev)) {
8642                 if (s2io_card_up(sp)) {
8643                         pr_err("Can't bring device back up after reset.\n");
8644                         return;
8645                 }
8646
8647                 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8648                         s2io_card_down(sp);
8649                         pr_err("Can't restore mac addr after reset.\n");
8650                         return;
8651                 }
8652         }
8653
8654         netif_device_attach(netdev);
8655         netif_tx_wake_all_queues(netdev);
8656 }