Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / net / ethernet / micrel / ks8851_mll.c
1 /**
2  * drivers/net/ethernet/micrel/ks8851_mll.c
3  * Copyright (c) 2009 Micrel Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  */
18
19 /* Supports:
20  * KS8851 16bit MLL chip from Micrel Inc.
21  */
22
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25 #include <linux/interrupt.h>
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/netdevice.h>
29 #include <linux/etherdevice.h>
30 #include <linux/ethtool.h>
31 #include <linux/cache.h>
32 #include <linux/crc32.h>
33 #include <linux/mii.h>
34 #include <linux/platform_device.h>
35 #include <linux/delay.h>
36 #include <linux/slab.h>
37 #include <linux/ks8851_mll.h>
38 #include <linux/of.h>
39 #include <linux/of_device.h>
40 #include <linux/of_net.h>
41
42 #define DRV_NAME        "ks8851_mll"
43
44 static u8 KS_DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x86, 0x95, 0x11 };
45 #define MAX_RECV_FRAMES                 255
46 #define MAX_BUF_SIZE                    2048
47 #define TX_BUF_SIZE                     2000
48 #define RX_BUF_SIZE                     2000
49
50 #define KS_CCR                          0x08
51 #define CCR_EEPROM                      (1 << 9)
52 #define CCR_SPI                         (1 << 8)
53 #define CCR_8BIT                        (1 << 7)
54 #define CCR_16BIT                       (1 << 6)
55 #define CCR_32BIT                       (1 << 5)
56 #define CCR_SHARED                      (1 << 4)
57 #define CCR_32PIN                       (1 << 0)
58
59 /* MAC address registers */
60 #define KS_MARL                         0x10
61 #define KS_MARM                         0x12
62 #define KS_MARH                         0x14
63
64 #define KS_OBCR                         0x20
65 #define OBCR_ODS_16MA                   (1 << 6)
66
67 #define KS_EEPCR                        0x22
68 #define EEPCR_EESA                      (1 << 4)
69 #define EEPCR_EESB                      (1 << 3)
70 #define EEPCR_EEDO                      (1 << 2)
71 #define EEPCR_EESCK                     (1 << 1)
72 #define EEPCR_EECS                      (1 << 0)
73
74 #define KS_MBIR                         0x24
75 #define MBIR_TXMBF                      (1 << 12)
76 #define MBIR_TXMBFA                     (1 << 11)
77 #define MBIR_RXMBF                      (1 << 4)
78 #define MBIR_RXMBFA                     (1 << 3)
79
80 #define KS_GRR                          0x26
81 #define GRR_QMU                         (1 << 1)
82 #define GRR_GSR                         (1 << 0)
83
84 #define KS_WFCR                         0x2A
85 #define WFCR_MPRXE                      (1 << 7)
86 #define WFCR_WF3E                       (1 << 3)
87 #define WFCR_WF2E                       (1 << 2)
88 #define WFCR_WF1E                       (1 << 1)
89 #define WFCR_WF0E                       (1 << 0)
90
91 #define KS_WF0CRC0                      0x30
92 #define KS_WF0CRC1                      0x32
93 #define KS_WF0BM0                       0x34
94 #define KS_WF0BM1                       0x36
95 #define KS_WF0BM2                       0x38
96 #define KS_WF0BM3                       0x3A
97
98 #define KS_WF1CRC0                      0x40
99 #define KS_WF1CRC1                      0x42
100 #define KS_WF1BM0                       0x44
101 #define KS_WF1BM1                       0x46
102 #define KS_WF1BM2                       0x48
103 #define KS_WF1BM3                       0x4A
104
105 #define KS_WF2CRC0                      0x50
106 #define KS_WF2CRC1                      0x52
107 #define KS_WF2BM0                       0x54
108 #define KS_WF2BM1                       0x56
109 #define KS_WF2BM2                       0x58
110 #define KS_WF2BM3                       0x5A
111
112 #define KS_WF3CRC0                      0x60
113 #define KS_WF3CRC1                      0x62
114 #define KS_WF3BM0                       0x64
115 #define KS_WF3BM1                       0x66
116 #define KS_WF3BM2                       0x68
117 #define KS_WF3BM3                       0x6A
118
119 #define KS_TXCR                         0x70
120 #define TXCR_TCGICMP                    (1 << 8)
121 #define TXCR_TCGUDP                     (1 << 7)
122 #define TXCR_TCGTCP                     (1 << 6)
123 #define TXCR_TCGIP                      (1 << 5)
124 #define TXCR_FTXQ                       (1 << 4)
125 #define TXCR_TXFCE                      (1 << 3)
126 #define TXCR_TXPE                       (1 << 2)
127 #define TXCR_TXCRC                      (1 << 1)
128 #define TXCR_TXE                        (1 << 0)
129
130 #define KS_TXSR                         0x72
131 #define TXSR_TXLC                       (1 << 13)
132 #define TXSR_TXMC                       (1 << 12)
133 #define TXSR_TXFID_MASK                 (0x3f << 0)
134 #define TXSR_TXFID_SHIFT                (0)
135 #define TXSR_TXFID_GET(_v)              (((_v) >> 0) & 0x3f)
136
137
138 #define KS_RXCR1                        0x74
139 #define RXCR1_FRXQ                      (1 << 15)
140 #define RXCR1_RXUDPFCC                  (1 << 14)
141 #define RXCR1_RXTCPFCC                  (1 << 13)
142 #define RXCR1_RXIPFCC                   (1 << 12)
143 #define RXCR1_RXPAFMA                   (1 << 11)
144 #define RXCR1_RXFCE                     (1 << 10)
145 #define RXCR1_RXEFE                     (1 << 9)
146 #define RXCR1_RXMAFMA                   (1 << 8)
147 #define RXCR1_RXBE                      (1 << 7)
148 #define RXCR1_RXME                      (1 << 6)
149 #define RXCR1_RXUE                      (1 << 5)
150 #define RXCR1_RXAE                      (1 << 4)
151 #define RXCR1_RXINVF                    (1 << 1)
152 #define RXCR1_RXE                       (1 << 0)
153 #define RXCR1_FILTER_MASK               (RXCR1_RXINVF | RXCR1_RXAE | \
154                                          RXCR1_RXMAFMA | RXCR1_RXPAFMA)
155
156 #define KS_RXCR2                        0x76
157 #define RXCR2_SRDBL_MASK                (0x7 << 5)
158 #define RXCR2_SRDBL_SHIFT               (5)
159 #define RXCR2_SRDBL_4B                  (0x0 << 5)
160 #define RXCR2_SRDBL_8B                  (0x1 << 5)
161 #define RXCR2_SRDBL_16B                 (0x2 << 5)
162 #define RXCR2_SRDBL_32B                 (0x3 << 5)
163 /* #define RXCR2_SRDBL_FRAME            (0x4 << 5) */
164 #define RXCR2_IUFFP                     (1 << 4)
165 #define RXCR2_RXIUFCEZ                  (1 << 3)
166 #define RXCR2_UDPLFE                    (1 << 2)
167 #define RXCR2_RXICMPFCC                 (1 << 1)
168 #define RXCR2_RXSAF                     (1 << 0)
169
170 #define KS_TXMIR                        0x78
171
172 #define KS_RXFHSR                       0x7C
173 #define RXFSHR_RXFV                     (1 << 15)
174 #define RXFSHR_RXICMPFCS                (1 << 13)
175 #define RXFSHR_RXIPFCS                  (1 << 12)
176 #define RXFSHR_RXTCPFCS                 (1 << 11)
177 #define RXFSHR_RXUDPFCS                 (1 << 10)
178 #define RXFSHR_RXBF                     (1 << 7)
179 #define RXFSHR_RXMF                     (1 << 6)
180 #define RXFSHR_RXUF                     (1 << 5)
181 #define RXFSHR_RXMR                     (1 << 4)
182 #define RXFSHR_RXFT                     (1 << 3)
183 #define RXFSHR_RXFTL                    (1 << 2)
184 #define RXFSHR_RXRF                     (1 << 1)
185 #define RXFSHR_RXCE                     (1 << 0)
186 #define RXFSHR_ERR                      (RXFSHR_RXCE | RXFSHR_RXRF |\
187                                         RXFSHR_RXFTL | RXFSHR_RXMR |\
188                                         RXFSHR_RXICMPFCS | RXFSHR_RXIPFCS |\
189                                         RXFSHR_RXTCPFCS)
190 #define KS_RXFHBCR                      0x7E
191 #define RXFHBCR_CNT_MASK                0x0FFF
192
193 #define KS_TXQCR                        0x80
194 #define TXQCR_AETFE                     (1 << 2)
195 #define TXQCR_TXQMAM                    (1 << 1)
196 #define TXQCR_METFE                     (1 << 0)
197
198 #define KS_RXQCR                        0x82
199 #define RXQCR_RXDTTS                    (1 << 12)
200 #define RXQCR_RXDBCTS                   (1 << 11)
201 #define RXQCR_RXFCTS                    (1 << 10)
202 #define RXQCR_RXIPHTOE                  (1 << 9)
203 #define RXQCR_RXDTTE                    (1 << 7)
204 #define RXQCR_RXDBCTE                   (1 << 6)
205 #define RXQCR_RXFCTE                    (1 << 5)
206 #define RXQCR_ADRFE                     (1 << 4)
207 #define RXQCR_SDA                       (1 << 3)
208 #define RXQCR_RRXEF                     (1 << 0)
209 #define RXQCR_CMD_CNTL                  (RXQCR_RXFCTE|RXQCR_ADRFE)
210
211 #define KS_TXFDPR                       0x84
212 #define TXFDPR_TXFPAI                   (1 << 14)
213 #define TXFDPR_TXFP_MASK                (0x7ff << 0)
214 #define TXFDPR_TXFP_SHIFT               (0)
215
216 #define KS_RXFDPR                       0x86
217 #define RXFDPR_RXFPAI                   (1 << 14)
218
219 #define KS_RXDTTR                       0x8C
220 #define KS_RXDBCTR                      0x8E
221
222 #define KS_IER                          0x90
223 #define KS_ISR                          0x92
224 #define IRQ_LCI                         (1 << 15)
225 #define IRQ_TXI                         (1 << 14)
226 #define IRQ_RXI                         (1 << 13)
227 #define IRQ_RXOI                        (1 << 11)
228 #define IRQ_TXPSI                       (1 << 9)
229 #define IRQ_RXPSI                       (1 << 8)
230 #define IRQ_TXSAI                       (1 << 6)
231 #define IRQ_RXWFDI                      (1 << 5)
232 #define IRQ_RXMPDI                      (1 << 4)
233 #define IRQ_LDI                         (1 << 3)
234 #define IRQ_EDI                         (1 << 2)
235 #define IRQ_SPIBEI                      (1 << 1)
236 #define IRQ_DEDI                        (1 << 0)
237
238 #define KS_RXFCTR                       0x9C
239 #define RXFCTR_THRESHOLD_MASK           0x00FF
240
241 #define KS_RXFC                         0x9D
242 #define RXFCTR_RXFC_MASK                (0xff << 8)
243 #define RXFCTR_RXFC_SHIFT               (8)
244 #define RXFCTR_RXFC_GET(_v)             (((_v) >> 8) & 0xff)
245 #define RXFCTR_RXFCT_MASK               (0xff << 0)
246 #define RXFCTR_RXFCT_SHIFT              (0)
247
248 #define KS_TXNTFSR                      0x9E
249
250 #define KS_MAHTR0                       0xA0
251 #define KS_MAHTR1                       0xA2
252 #define KS_MAHTR2                       0xA4
253 #define KS_MAHTR3                       0xA6
254
255 #define KS_FCLWR                        0xB0
256 #define KS_FCHWR                        0xB2
257 #define KS_FCOWR                        0xB4
258
259 #define KS_CIDER                        0xC0
260 #define CIDER_ID                        0x8870
261 #define CIDER_REV_MASK                  (0x7 << 1)
262 #define CIDER_REV_SHIFT                 (1)
263 #define CIDER_REV_GET(_v)               (((_v) >> 1) & 0x7)
264
265 #define KS_CGCR                         0xC6
266 #define KS_IACR                         0xC8
267 #define IACR_RDEN                       (1 << 12)
268 #define IACR_TSEL_MASK                  (0x3 << 10)
269 #define IACR_TSEL_SHIFT                 (10)
270 #define IACR_TSEL_MIB                   (0x3 << 10)
271 #define IACR_ADDR_MASK                  (0x1f << 0)
272 #define IACR_ADDR_SHIFT                 (0)
273
274 #define KS_IADLR                        0xD0
275 #define KS_IAHDR                        0xD2
276
277 #define KS_PMECR                        0xD4
278 #define PMECR_PME_DELAY                 (1 << 14)
279 #define PMECR_PME_POL                   (1 << 12)
280 #define PMECR_WOL_WAKEUP                (1 << 11)
281 #define PMECR_WOL_MAGICPKT              (1 << 10)
282 #define PMECR_WOL_LINKUP                (1 << 9)
283 #define PMECR_WOL_ENERGY                (1 << 8)
284 #define PMECR_AUTO_WAKE_EN              (1 << 7)
285 #define PMECR_WAKEUP_NORMAL             (1 << 6)
286 #define PMECR_WKEVT_MASK                (0xf << 2)
287 #define PMECR_WKEVT_SHIFT               (2)
288 #define PMECR_WKEVT_GET(_v)             (((_v) >> 2) & 0xf)
289 #define PMECR_WKEVT_ENERGY              (0x1 << 2)
290 #define PMECR_WKEVT_LINK                (0x2 << 2)
291 #define PMECR_WKEVT_MAGICPKT            (0x4 << 2)
292 #define PMECR_WKEVT_FRAME               (0x8 << 2)
293 #define PMECR_PM_MASK                   (0x3 << 0)
294 #define PMECR_PM_SHIFT                  (0)
295 #define PMECR_PM_NORMAL                 (0x0 << 0)
296 #define PMECR_PM_ENERGY                 (0x1 << 0)
297 #define PMECR_PM_SOFTDOWN               (0x2 << 0)
298 #define PMECR_PM_POWERSAVE              (0x3 << 0)
299
300 /* Standard MII PHY data */
301 #define KS_P1MBCR                       0xE4
302 #define P1MBCR_FORCE_FDX                (1 << 8)
303
304 #define KS_P1MBSR                       0xE6
305 #define P1MBSR_AN_COMPLETE              (1 << 5)
306 #define P1MBSR_AN_CAPABLE               (1 << 3)
307 #define P1MBSR_LINK_UP                  (1 << 2)
308
309 #define KS_PHY1ILR                      0xE8
310 #define KS_PHY1IHR                      0xEA
311 #define KS_P1ANAR                       0xEC
312 #define KS_P1ANLPR                      0xEE
313
314 #define KS_P1SCLMD                      0xF4
315 #define P1SCLMD_LEDOFF                  (1 << 15)
316 #define P1SCLMD_TXIDS                   (1 << 14)
317 #define P1SCLMD_RESTARTAN               (1 << 13)
318 #define P1SCLMD_DISAUTOMDIX             (1 << 10)
319 #define P1SCLMD_FORCEMDIX               (1 << 9)
320 #define P1SCLMD_AUTONEGEN               (1 << 7)
321 #define P1SCLMD_FORCE100                (1 << 6)
322 #define P1SCLMD_FORCEFDX                (1 << 5)
323 #define P1SCLMD_ADV_FLOW                (1 << 4)
324 #define P1SCLMD_ADV_100BT_FDX           (1 << 3)
325 #define P1SCLMD_ADV_100BT_HDX           (1 << 2)
326 #define P1SCLMD_ADV_10BT_FDX            (1 << 1)
327 #define P1SCLMD_ADV_10BT_HDX            (1 << 0)
328
329 #define KS_P1CR                         0xF6
330 #define P1CR_HP_MDIX                    (1 << 15)
331 #define P1CR_REV_POL                    (1 << 13)
332 #define P1CR_OP_100M                    (1 << 10)
333 #define P1CR_OP_FDX                     (1 << 9)
334 #define P1CR_OP_MDI                     (1 << 7)
335 #define P1CR_AN_DONE                    (1 << 6)
336 #define P1CR_LINK_GOOD                  (1 << 5)
337 #define P1CR_PNTR_FLOW                  (1 << 4)
338 #define P1CR_PNTR_100BT_FDX             (1 << 3)
339 #define P1CR_PNTR_100BT_HDX             (1 << 2)
340 #define P1CR_PNTR_10BT_FDX              (1 << 1)
341 #define P1CR_PNTR_10BT_HDX              (1 << 0)
342
343 /* TX Frame control */
344
345 #define TXFR_TXIC                       (1 << 15)
346 #define TXFR_TXFID_MASK                 (0x3f << 0)
347 #define TXFR_TXFID_SHIFT                (0)
348
349 #define KS_P1SR                         0xF8
350 #define P1SR_HP_MDIX                    (1 << 15)
351 #define P1SR_REV_POL                    (1 << 13)
352 #define P1SR_OP_100M                    (1 << 10)
353 #define P1SR_OP_FDX                     (1 << 9)
354 #define P1SR_OP_MDI                     (1 << 7)
355 #define P1SR_AN_DONE                    (1 << 6)
356 #define P1SR_LINK_GOOD                  (1 << 5)
357 #define P1SR_PNTR_FLOW                  (1 << 4)
358 #define P1SR_PNTR_100BT_FDX             (1 << 3)
359 #define P1SR_PNTR_100BT_HDX             (1 << 2)
360 #define P1SR_PNTR_10BT_FDX              (1 << 1)
361 #define P1SR_PNTR_10BT_HDX              (1 << 0)
362
363 #define ENUM_BUS_NONE                   0
364 #define ENUM_BUS_8BIT                   1
365 #define ENUM_BUS_16BIT                  2
366 #define ENUM_BUS_32BIT                  3
367
368 #define MAX_MCAST_LST                   32
369 #define HW_MCAST_SIZE                   8
370
371 /**
372  * union ks_tx_hdr - tx header data
373  * @txb: The header as bytes
374  * @txw: The header as 16bit, little-endian words
375  *
376  * A dual representation of the tx header data to allow
377  * access to individual bytes, and to allow 16bit accesses
378  * with 16bit alignment.
379  */
380 union ks_tx_hdr {
381         u8      txb[4];
382         __le16  txw[2];
383 };
384
385 /**
386  * struct ks_net - KS8851 driver private data
387  * @net_device  : The network device we're bound to
388  * @hw_addr     : start address of data register.
389  * @hw_addr_cmd : start address of command register.
390  * @txh         : temporaly buffer to save status/length.
391  * @lock        : Lock to ensure that the device is not accessed when busy.
392  * @pdev        : Pointer to platform device.
393  * @mii         : The MII state information for the mii calls.
394  * @frame_head_info     : frame header information for multi-pkt rx.
395  * @statelock   : Lock on this structure for tx list.
396  * @msg_enable  : The message flags controlling driver output (see ethtool).
397  * @frame_cnt   : number of frames received.
398  * @bus_width   : i/o bus width.
399  * @rc_rxqcr    : Cached copy of KS_RXQCR.
400  * @rc_txcr     : Cached copy of KS_TXCR.
401  * @rc_ier      : Cached copy of KS_IER.
402  * @sharedbus   : Multipex(addr and data bus) mode indicator.
403  * @cmd_reg_cache       : command register cached.
404  * @cmd_reg_cache_int   : command register cached. Used in the irq handler.
405  * @promiscuous : promiscuous mode indicator.
406  * @all_mcast   : mutlicast indicator.
407  * @mcast_lst_size      : size of multicast list.
408  * @mcast_lst           : multicast list.
409  * @mcast_bits          : multicast enabed.
410  * @mac_addr            : MAC address assigned to this device.
411  * @fid                 : frame id.
412  * @extra_byte          : number of extra byte prepended rx pkt.
413  * @enabled             : indicator this device works.
414  *
415  * The @lock ensures that the chip is protected when certain operations are
416  * in progress. When the read or write packet transfer is in progress, most
417  * of the chip registers are not accessible until the transfer is finished and
418  * the DMA has been de-asserted.
419  *
420  * The @statelock is used to protect information in the structure which may
421  * need to be accessed via several sources, such as the network driver layer
422  * or one of the work queues.
423  *
424  */
425
426 /* Receive multiplex framer header info */
427 struct type_frame_head {
428         u16     sts;         /* Frame status */
429         u16     len;         /* Byte count */
430 };
431
432 struct ks_net {
433         struct net_device       *netdev;
434         void __iomem            *hw_addr;
435         void __iomem            *hw_addr_cmd;
436         union ks_tx_hdr         txh ____cacheline_aligned;
437         struct mutex            lock; /* spinlock to be interrupt safe */
438         struct platform_device *pdev;
439         struct mii_if_info      mii;
440         struct type_frame_head  *frame_head_info;
441         spinlock_t              statelock;
442         u32                     msg_enable;
443         u32                     frame_cnt;
444         int                     bus_width;
445
446         u16                     rc_rxqcr;
447         u16                     rc_txcr;
448         u16                     rc_ier;
449         u16                     sharedbus;
450         u16                     cmd_reg_cache;
451         u16                     cmd_reg_cache_int;
452         u16                     promiscuous;
453         u16                     all_mcast;
454         u16                     mcast_lst_size;
455         u8                      mcast_lst[MAX_MCAST_LST][ETH_ALEN];
456         u8                      mcast_bits[HW_MCAST_SIZE];
457         u8                      mac_addr[6];
458         u8                      fid;
459         u8                      extra_byte;
460         u8                      enabled;
461 };
462
463 static int msg_enable;
464
465 #define BE3             0x8000      /* Byte Enable 3 */
466 #define BE2             0x4000      /* Byte Enable 2 */
467 #define BE1             0x2000      /* Byte Enable 1 */
468 #define BE0             0x1000      /* Byte Enable 0 */
469
470 /* register read/write calls.
471  *
472  * All these calls issue transactions to access the chip's registers. They
473  * all require that the necessary lock is held to prevent accesses when the
474  * chip is busy transferring packet data (RX/TX FIFO accesses).
475  */
476
477 /**
478  * ks_rdreg8 - read 8 bit register from device
479  * @ks    : The chip information
480  * @offset: The register address
481  *
482  * Read a 8bit register from the chip, returning the result
483  */
484 static u8 ks_rdreg8(struct ks_net *ks, int offset)
485 {
486         u16 data;
487         u8 shift_bit = offset & 0x03;
488         u8 shift_data = (offset & 1) << 3;
489         ks->cmd_reg_cache = (u16) offset | (u16)(BE0 << shift_bit);
490         iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
491         data  = ioread16(ks->hw_addr);
492         return (u8)(data >> shift_data);
493 }
494
495 /**
496  * ks_rdreg16 - read 16 bit register from device
497  * @ks    : The chip information
498  * @offset: The register address
499  *
500  * Read a 16bit register from the chip, returning the result
501  */
502
503 static u16 ks_rdreg16(struct ks_net *ks, int offset)
504 {
505         ks->cmd_reg_cache = (u16)offset | ((BE1 | BE0) << (offset & 0x02));
506         iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
507         return ioread16(ks->hw_addr);
508 }
509
510 /**
511  * ks_wrreg8 - write 8bit register value to chip
512  * @ks: The chip information
513  * @offset: The register address
514  * @value: The value to write
515  *
516  */
517 static void ks_wrreg8(struct ks_net *ks, int offset, u8 value)
518 {
519         u8  shift_bit = (offset & 0x03);
520         u16 value_write = (u16)(value << ((offset & 1) << 3));
521         ks->cmd_reg_cache = (u16)offset | (BE0 << shift_bit);
522         iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
523         iowrite16(value_write, ks->hw_addr);
524 }
525
526 /**
527  * ks_wrreg16 - write 16bit register value to chip
528  * @ks: The chip information
529  * @offset: The register address
530  * @value: The value to write
531  *
532  */
533
534 static void ks_wrreg16(struct ks_net *ks, int offset, u16 value)
535 {
536         ks->cmd_reg_cache = (u16)offset | ((BE1 | BE0) << (offset & 0x02));
537         iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
538         iowrite16(value, ks->hw_addr);
539 }
540
541 /**
542  * ks_inblk - read a block of data from QMU. This is called after sudo DMA mode enabled.
543  * @ks: The chip state
544  * @wptr: buffer address to save data
545  * @len: length in byte to read
546  *
547  */
548 static inline void ks_inblk(struct ks_net *ks, u16 *wptr, u32 len)
549 {
550         len >>= 1;
551         while (len--)
552                 *wptr++ = (u16)ioread16(ks->hw_addr);
553 }
554
555 /**
556  * ks_outblk - write data to QMU. This is called after sudo DMA mode enabled.
557  * @ks: The chip information
558  * @wptr: buffer address
559  * @len: length in byte to write
560  *
561  */
562 static inline void ks_outblk(struct ks_net *ks, u16 *wptr, u32 len)
563 {
564         len >>= 1;
565         while (len--)
566                 iowrite16(*wptr++, ks->hw_addr);
567 }
568
569 static void ks_disable_int(struct ks_net *ks)
570 {
571         ks_wrreg16(ks, KS_IER, 0x0000);
572 }  /* ks_disable_int */
573
574 static void ks_enable_int(struct ks_net *ks)
575 {
576         ks_wrreg16(ks, KS_IER, ks->rc_ier);
577 }  /* ks_enable_int */
578
579 /**
580  * ks_tx_fifo_space - return the available hardware buffer size.
581  * @ks: The chip information
582  *
583  */
584 static inline u16 ks_tx_fifo_space(struct ks_net *ks)
585 {
586         return ks_rdreg16(ks, KS_TXMIR) & 0x1fff;
587 }
588
589 /**
590  * ks_save_cmd_reg - save the command register from the cache.
591  * @ks: The chip information
592  *
593  */
594 static inline void ks_save_cmd_reg(struct ks_net *ks)
595 {
596         /*ks8851 MLL has a bug to read back the command register.
597         * So rely on software to save the content of command register.
598         */
599         ks->cmd_reg_cache_int = ks->cmd_reg_cache;
600 }
601
602 /**
603  * ks_restore_cmd_reg - restore the command register from the cache and
604  *      write to hardware register.
605  * @ks: The chip information
606  *
607  */
608 static inline void ks_restore_cmd_reg(struct ks_net *ks)
609 {
610         ks->cmd_reg_cache = ks->cmd_reg_cache_int;
611         iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
612 }
613
614 /**
615  * ks_set_powermode - set power mode of the device
616  * @ks: The chip information
617  * @pwrmode: The power mode value to write to KS_PMECR.
618  *
619  * Change the power mode of the chip.
620  */
621 static void ks_set_powermode(struct ks_net *ks, unsigned pwrmode)
622 {
623         unsigned pmecr;
624
625         netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
626
627         ks_rdreg16(ks, KS_GRR);
628         pmecr = ks_rdreg16(ks, KS_PMECR);
629         pmecr &= ~PMECR_PM_MASK;
630         pmecr |= pwrmode;
631
632         ks_wrreg16(ks, KS_PMECR, pmecr);
633 }
634
635 /**
636  * ks_read_config - read chip configuration of bus width.
637  * @ks: The chip information
638  *
639  */
640 static void ks_read_config(struct ks_net *ks)
641 {
642         u16 reg_data = 0;
643
644         /* Regardless of bus width, 8 bit read should always work.*/
645         reg_data = ks_rdreg8(ks, KS_CCR) & 0x00FF;
646         reg_data |= ks_rdreg8(ks, KS_CCR+1) << 8;
647
648         /* addr/data bus are multiplexed */
649         ks->sharedbus = (reg_data & CCR_SHARED) == CCR_SHARED;
650
651         /* There are garbage data when reading data from QMU,
652         depending on bus-width.
653         */
654
655         if (reg_data & CCR_8BIT) {
656                 ks->bus_width = ENUM_BUS_8BIT;
657                 ks->extra_byte = 1;
658         } else if (reg_data & CCR_16BIT) {
659                 ks->bus_width = ENUM_BUS_16BIT;
660                 ks->extra_byte = 2;
661         } else {
662                 ks->bus_width = ENUM_BUS_32BIT;
663                 ks->extra_byte = 4;
664         }
665 }
666
667 /**
668  * ks_soft_reset - issue one of the soft reset to the device
669  * @ks: The device state.
670  * @op: The bit(s) to set in the GRR
671  *
672  * Issue the relevant soft-reset command to the device's GRR register
673  * specified by @op.
674  *
675  * Note, the delays are in there as a caution to ensure that the reset
676  * has time to take effect and then complete. Since the datasheet does
677  * not currently specify the exact sequence, we have chosen something
678  * that seems to work with our device.
679  */
680 static void ks_soft_reset(struct ks_net *ks, unsigned op)
681 {
682         /* Disable interrupt first */
683         ks_wrreg16(ks, KS_IER, 0x0000);
684         ks_wrreg16(ks, KS_GRR, op);
685         mdelay(10);     /* wait a short time to effect reset */
686         ks_wrreg16(ks, KS_GRR, 0);
687         mdelay(1);      /* wait for condition to clear */
688 }
689
690
691 static void ks_enable_qmu(struct ks_net *ks)
692 {
693         u16 w;
694
695         w = ks_rdreg16(ks, KS_TXCR);
696         /* Enables QMU Transmit (TXCR). */
697         ks_wrreg16(ks, KS_TXCR, w | TXCR_TXE);
698
699         /*
700          * RX Frame Count Threshold Enable and Auto-Dequeue RXQ Frame
701          * Enable
702          */
703
704         w = ks_rdreg16(ks, KS_RXQCR);
705         ks_wrreg16(ks, KS_RXQCR, w | RXQCR_RXFCTE);
706
707         /* Enables QMU Receive (RXCR1). */
708         w = ks_rdreg16(ks, KS_RXCR1);
709         ks_wrreg16(ks, KS_RXCR1, w | RXCR1_RXE);
710         ks->enabled = true;
711 }  /* ks_enable_qmu */
712
713 static void ks_disable_qmu(struct ks_net *ks)
714 {
715         u16     w;
716
717         w = ks_rdreg16(ks, KS_TXCR);
718
719         /* Disables QMU Transmit (TXCR). */
720         w  &= ~TXCR_TXE;
721         ks_wrreg16(ks, KS_TXCR, w);
722
723         /* Disables QMU Receive (RXCR1). */
724         w = ks_rdreg16(ks, KS_RXCR1);
725         w &= ~RXCR1_RXE ;
726         ks_wrreg16(ks, KS_RXCR1, w);
727
728         ks->enabled = false;
729
730 }  /* ks_disable_qmu */
731
732 /**
733  * ks_read_qmu - read 1 pkt data from the QMU.
734  * @ks: The chip information
735  * @buf: buffer address to save 1 pkt
736  * @len: Pkt length
737  * Here is the sequence to read 1 pkt:
738  *      1. set sudo DMA mode
739  *      2. read prepend data
740  *      3. read pkt data
741  *      4. reset sudo DMA Mode
742  */
743 static inline void ks_read_qmu(struct ks_net *ks, u16 *buf, u32 len)
744 {
745         u32 r =  ks->extra_byte & 0x1 ;
746         u32 w = ks->extra_byte - r;
747
748         /* 1. set sudo DMA mode */
749         ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);
750         ks_wrreg8(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_SDA) & 0xff);
751
752         /* 2. read prepend data */
753         /**
754          * read 4 + extra bytes and discard them.
755          * extra bytes for dummy, 2 for status, 2 for len
756          */
757
758         /* use likely(r) for 8 bit access for performance */
759         if (unlikely(r))
760                 ioread8(ks->hw_addr);
761         ks_inblk(ks, buf, w + 2 + 2);
762
763         /* 3. read pkt data */
764         ks_inblk(ks, buf, ALIGN(len, 4));
765
766         /* 4. reset sudo DMA Mode */
767         ks_wrreg8(ks, KS_RXQCR, ks->rc_rxqcr);
768 }
769
770 /**
771  * ks_rcv - read multiple pkts data from the QMU.
772  * @ks: The chip information
773  * @netdev: The network device being opened.
774  *
775  * Read all of header information before reading pkt content.
776  * It is not allowed only port of pkts in QMU after issuing
777  * interrupt ack.
778  */
779 static void ks_rcv(struct ks_net *ks, struct net_device *netdev)
780 {
781         u32     i;
782         struct type_frame_head *frame_hdr = ks->frame_head_info;
783         struct sk_buff *skb;
784
785         ks->frame_cnt = ks_rdreg16(ks, KS_RXFCTR) >> 8;
786
787         /* read all header information */
788         for (i = 0; i < ks->frame_cnt; i++) {
789                 /* Checking Received packet status */
790                 frame_hdr->sts = ks_rdreg16(ks, KS_RXFHSR);
791                 /* Get packet len from hardware */
792                 frame_hdr->len = ks_rdreg16(ks, KS_RXFHBCR);
793                 frame_hdr++;
794         }
795
796         frame_hdr = ks->frame_head_info;
797         while (ks->frame_cnt--) {
798                 if (unlikely(!(frame_hdr->sts & RXFSHR_RXFV) ||
799                              frame_hdr->len >= RX_BUF_SIZE ||
800                              frame_hdr->len <= 0)) {
801
802                         /* discard an invalid packet */
803                         ks_wrreg16(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_RRXEF));
804                         netdev->stats.rx_dropped++;
805                         if (!(frame_hdr->sts & RXFSHR_RXFV))
806                                 netdev->stats.rx_frame_errors++;
807                         else
808                                 netdev->stats.rx_length_errors++;
809                         frame_hdr++;
810                         continue;
811                 }
812
813                 skb = netdev_alloc_skb(netdev, frame_hdr->len + 16);
814                 if (likely(skb)) {
815                         skb_reserve(skb, 2);
816                         /* read data block including CRC 4 bytes */
817                         ks_read_qmu(ks, (u16 *)skb->data, frame_hdr->len);
818                         skb_put(skb, frame_hdr->len - 4);
819                         skb->protocol = eth_type_trans(skb, netdev);
820                         netif_rx(skb);
821                         /* exclude CRC size */
822                         netdev->stats.rx_bytes += frame_hdr->len - 4;
823                         netdev->stats.rx_packets++;
824                 } else {
825                         ks_wrreg16(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_RRXEF));
826                         netdev->stats.rx_dropped++;
827                 }
828                 frame_hdr++;
829         }
830 }
831
832 /**
833  * ks_update_link_status - link status update.
834  * @netdev: The network device being opened.
835  * @ks: The chip information
836  *
837  */
838
839 static void ks_update_link_status(struct net_device *netdev, struct ks_net *ks)
840 {
841         /* check the status of the link */
842         u32 link_up_status;
843         if (ks_rdreg16(ks, KS_P1SR) & P1SR_LINK_GOOD) {
844                 netif_carrier_on(netdev);
845                 link_up_status = true;
846         } else {
847                 netif_carrier_off(netdev);
848                 link_up_status = false;
849         }
850         netif_dbg(ks, link, ks->netdev,
851                   "%s: %s\n", __func__, link_up_status ? "UP" : "DOWN");
852 }
853
854 /**
855  * ks_irq - device interrupt handler
856  * @irq: Interrupt number passed from the IRQ handler.
857  * @pw: The private word passed to register_irq(), our struct ks_net.
858  *
859  * This is the handler invoked to find out what happened
860  *
861  * Read the interrupt status, work out what needs to be done and then clear
862  * any of the interrupts that are not needed.
863  */
864
865 static irqreturn_t ks_irq(int irq, void *pw)
866 {
867         struct net_device *netdev = pw;
868         struct ks_net *ks = netdev_priv(netdev);
869         u16 status;
870
871         /*this should be the first in IRQ handler */
872         ks_save_cmd_reg(ks);
873
874         status = ks_rdreg16(ks, KS_ISR);
875         if (unlikely(!status)) {
876                 ks_restore_cmd_reg(ks);
877                 return IRQ_NONE;
878         }
879
880         ks_wrreg16(ks, KS_ISR, status);
881
882         if (likely(status & IRQ_RXI))
883                 ks_rcv(ks, netdev);
884
885         if (unlikely(status & IRQ_LCI))
886                 ks_update_link_status(netdev, ks);
887
888         if (unlikely(status & IRQ_TXI))
889                 netif_wake_queue(netdev);
890
891         if (unlikely(status & IRQ_LDI)) {
892
893                 u16 pmecr = ks_rdreg16(ks, KS_PMECR);
894                 pmecr &= ~PMECR_WKEVT_MASK;
895                 ks_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
896         }
897
898         if (unlikely(status & IRQ_RXOI))
899                 ks->netdev->stats.rx_over_errors++;
900         /* this should be the last in IRQ handler*/
901         ks_restore_cmd_reg(ks);
902         return IRQ_HANDLED;
903 }
904
905
906 /**
907  * ks_net_open - open network device
908  * @netdev: The network device being opened.
909  *
910  * Called when the network device is marked active, such as a user executing
911  * 'ifconfig up' on the device.
912  */
913 static int ks_net_open(struct net_device *netdev)
914 {
915         struct ks_net *ks = netdev_priv(netdev);
916         int err;
917
918 #define KS_INT_FLAGS    IRQF_TRIGGER_LOW
919         /* lock the card, even if we may not actually do anything
920          * else at the moment.
921          */
922
923         netif_dbg(ks, ifup, ks->netdev, "%s - entry\n", __func__);
924
925         /* reset the HW */
926         err = request_irq(netdev->irq, ks_irq, KS_INT_FLAGS, DRV_NAME, netdev);
927
928         if (err) {
929                 pr_err("Failed to request IRQ: %d: %d\n", netdev->irq, err);
930                 return err;
931         }
932
933         /* wake up powermode to normal mode */
934         ks_set_powermode(ks, PMECR_PM_NORMAL);
935         mdelay(1);      /* wait for normal mode to take effect */
936
937         ks_wrreg16(ks, KS_ISR, 0xffff);
938         ks_enable_int(ks);
939         ks_enable_qmu(ks);
940         netif_start_queue(ks->netdev);
941
942         netif_dbg(ks, ifup, ks->netdev, "network device up\n");
943
944         return 0;
945 }
946
947 /**
948  * ks_net_stop - close network device
949  * @netdev: The device being closed.
950  *
951  * Called to close down a network device which has been active. Cancell any
952  * work, shutdown the RX and TX process and then place the chip into a low
953  * power state whilst it is not being used.
954  */
955 static int ks_net_stop(struct net_device *netdev)
956 {
957         struct ks_net *ks = netdev_priv(netdev);
958
959         netif_info(ks, ifdown, netdev, "shutting down\n");
960
961         netif_stop_queue(netdev);
962
963         mutex_lock(&ks->lock);
964
965         /* turn off the IRQs and ack any outstanding */
966         ks_wrreg16(ks, KS_IER, 0x0000);
967         ks_wrreg16(ks, KS_ISR, 0xffff);
968
969         /* shutdown RX/TX QMU */
970         ks_disable_qmu(ks);
971
972         /* set powermode to soft power down to save power */
973         ks_set_powermode(ks, PMECR_PM_SOFTDOWN);
974         free_irq(netdev->irq, netdev);
975         mutex_unlock(&ks->lock);
976         return 0;
977 }
978
979
980 /**
981  * ks_write_qmu - write 1 pkt data to the QMU.
982  * @ks: The chip information
983  * @pdata: buffer address to save 1 pkt
984  * @len: Pkt length in byte
985  * Here is the sequence to write 1 pkt:
986  *      1. set sudo DMA mode
987  *      2. write status/length
988  *      3. write pkt data
989  *      4. reset sudo DMA Mode
990  *      5. reset sudo DMA mode
991  *      6. Wait until pkt is out
992  */
993 static void ks_write_qmu(struct ks_net *ks, u8 *pdata, u16 len)
994 {
995         /* start header at txb[0] to align txw entries */
996         ks->txh.txw[0] = 0;
997         ks->txh.txw[1] = cpu_to_le16(len);
998
999         /* 1. set sudo-DMA mode */
1000         ks_wrreg8(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_SDA) & 0xff);
1001         /* 2. write status/lenth info */
1002         ks_outblk(ks, ks->txh.txw, 4);
1003         /* 3. write pkt data */
1004         ks_outblk(ks, (u16 *)pdata, ALIGN(len, 4));
1005         /* 4. reset sudo-DMA mode */
1006         ks_wrreg8(ks, KS_RXQCR, ks->rc_rxqcr);
1007         /* 5. Enqueue Tx(move the pkt from TX buffer into TXQ) */
1008         ks_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
1009         /* 6. wait until TXQCR_METFE is auto-cleared */
1010         while (ks_rdreg16(ks, KS_TXQCR) & TXQCR_METFE)
1011                 ;
1012 }
1013
1014 /**
1015  * ks_start_xmit - transmit packet
1016  * @skb         : The buffer to transmit
1017  * @netdev      : The device used to transmit the packet.
1018  *
1019  * Called by the network layer to transmit the @skb.
1020  * spin_lock_irqsave is required because tx and rx should be mutual exclusive.
1021  * So while tx is in-progress, prevent IRQ interrupt from happenning.
1022  */
1023 static int ks_start_xmit(struct sk_buff *skb, struct net_device *netdev)
1024 {
1025         int retv = NETDEV_TX_OK;
1026         struct ks_net *ks = netdev_priv(netdev);
1027
1028         disable_irq(netdev->irq);
1029         ks_disable_int(ks);
1030         spin_lock(&ks->statelock);
1031
1032         /* Extra space are required:
1033         *  4 byte for alignment, 4 for status/length, 4 for CRC
1034         */
1035
1036         if (likely(ks_tx_fifo_space(ks) >= skb->len + 12)) {
1037                 ks_write_qmu(ks, skb->data, skb->len);
1038                 /* add tx statistics */
1039                 netdev->stats.tx_bytes += skb->len;
1040                 netdev->stats.tx_packets++;
1041                 dev_kfree_skb(skb);
1042         } else
1043                 retv = NETDEV_TX_BUSY;
1044         spin_unlock(&ks->statelock);
1045         ks_enable_int(ks);
1046         enable_irq(netdev->irq);
1047         return retv;
1048 }
1049
1050 /**
1051  * ks_start_rx - ready to serve pkts
1052  * @ks          : The chip information
1053  *
1054  */
1055 static void ks_start_rx(struct ks_net *ks)
1056 {
1057         u16 cntl;
1058
1059         /* Enables QMU Receive (RXCR1). */
1060         cntl = ks_rdreg16(ks, KS_RXCR1);
1061         cntl |= RXCR1_RXE ;
1062         ks_wrreg16(ks, KS_RXCR1, cntl);
1063 }  /* ks_start_rx */
1064
1065 /**
1066  * ks_stop_rx - stop to serve pkts
1067  * @ks          : The chip information
1068  *
1069  */
1070 static void ks_stop_rx(struct ks_net *ks)
1071 {
1072         u16 cntl;
1073
1074         /* Disables QMU Receive (RXCR1). */
1075         cntl = ks_rdreg16(ks, KS_RXCR1);
1076         cntl &= ~RXCR1_RXE ;
1077         ks_wrreg16(ks, KS_RXCR1, cntl);
1078
1079 }  /* ks_stop_rx */
1080
1081 static unsigned long const ethernet_polynomial = 0x04c11db7U;
1082
1083 static unsigned long ether_gen_crc(int length, u8 *data)
1084 {
1085         long crc = -1;
1086         while (--length >= 0) {
1087                 u8 current_octet = *data++;
1088                 int bit;
1089
1090                 for (bit = 0; bit < 8; bit++, current_octet >>= 1) {
1091                         crc = (crc << 1) ^
1092                                 ((crc < 0) ^ (current_octet & 1) ?
1093                         ethernet_polynomial : 0);
1094                 }
1095         }
1096         return (unsigned long)crc;
1097 }  /* ether_gen_crc */
1098
1099 /**
1100 * ks_set_grpaddr - set multicast information
1101 * @ks : The chip information
1102 */
1103
1104 static void ks_set_grpaddr(struct ks_net *ks)
1105 {
1106         u8      i;
1107         u32     index, position, value;
1108
1109         memset(ks->mcast_bits, 0, sizeof(u8) * HW_MCAST_SIZE);
1110
1111         for (i = 0; i < ks->mcast_lst_size; i++) {
1112                 position = (ether_gen_crc(6, ks->mcast_lst[i]) >> 26) & 0x3f;
1113                 index = position >> 3;
1114                 value = 1 << (position & 7);
1115                 ks->mcast_bits[index] |= (u8)value;
1116         }
1117
1118         for (i  = 0; i < HW_MCAST_SIZE; i++) {
1119                 if (i & 1) {
1120                         ks_wrreg16(ks, (u16)((KS_MAHTR0 + i) & ~1),
1121                                 (ks->mcast_bits[i] << 8) |
1122                                 ks->mcast_bits[i - 1]);
1123                 }
1124         }
1125 }  /* ks_set_grpaddr */
1126
1127 /**
1128 * ks_clear_mcast - clear multicast information
1129 *
1130 * @ks : The chip information
1131 * This routine removes all mcast addresses set in the hardware.
1132 */
1133
1134 static void ks_clear_mcast(struct ks_net *ks)
1135 {
1136         u16     i, mcast_size;
1137         for (i = 0; i < HW_MCAST_SIZE; i++)
1138                 ks->mcast_bits[i] = 0;
1139
1140         mcast_size = HW_MCAST_SIZE >> 2;
1141         for (i = 0; i < mcast_size; i++)
1142                 ks_wrreg16(ks, KS_MAHTR0 + (2*i), 0);
1143 }
1144
1145 static void ks_set_promis(struct ks_net *ks, u16 promiscuous_mode)
1146 {
1147         u16             cntl;
1148         ks->promiscuous = promiscuous_mode;
1149         ks_stop_rx(ks);  /* Stop receiving for reconfiguration */
1150         cntl = ks_rdreg16(ks, KS_RXCR1);
1151
1152         cntl &= ~RXCR1_FILTER_MASK;
1153         if (promiscuous_mode)
1154                 /* Enable Promiscuous mode */
1155                 cntl |= RXCR1_RXAE | RXCR1_RXINVF;
1156         else
1157                 /* Disable Promiscuous mode (default normal mode) */
1158                 cntl |= RXCR1_RXPAFMA;
1159
1160         ks_wrreg16(ks, KS_RXCR1, cntl);
1161
1162         if (ks->enabled)
1163                 ks_start_rx(ks);
1164
1165 }  /* ks_set_promis */
1166
1167 static void ks_set_mcast(struct ks_net *ks, u16 mcast)
1168 {
1169         u16     cntl;
1170
1171         ks->all_mcast = mcast;
1172         ks_stop_rx(ks);  /* Stop receiving for reconfiguration */
1173         cntl = ks_rdreg16(ks, KS_RXCR1);
1174         cntl &= ~RXCR1_FILTER_MASK;
1175         if (mcast)
1176                 /* Enable "Perfect with Multicast address passed mode" */
1177                 cntl |= (RXCR1_RXAE | RXCR1_RXMAFMA | RXCR1_RXPAFMA);
1178         else
1179                 /**
1180                  * Disable "Perfect with Multicast address passed
1181                  * mode" (normal mode).
1182                  */
1183                 cntl |= RXCR1_RXPAFMA;
1184
1185         ks_wrreg16(ks, KS_RXCR1, cntl);
1186
1187         if (ks->enabled)
1188                 ks_start_rx(ks);
1189 }  /* ks_set_mcast */
1190
1191 static void ks_set_rx_mode(struct net_device *netdev)
1192 {
1193         struct ks_net *ks = netdev_priv(netdev);
1194         struct netdev_hw_addr *ha;
1195
1196         /* Turn on/off promiscuous mode. */
1197         if ((netdev->flags & IFF_PROMISC) == IFF_PROMISC)
1198                 ks_set_promis(ks,
1199                         (u16)((netdev->flags & IFF_PROMISC) == IFF_PROMISC));
1200         /* Turn on/off all mcast mode. */
1201         else if ((netdev->flags & IFF_ALLMULTI) == IFF_ALLMULTI)
1202                 ks_set_mcast(ks,
1203                         (u16)((netdev->flags & IFF_ALLMULTI) == IFF_ALLMULTI));
1204         else
1205                 ks_set_promis(ks, false);
1206
1207         if ((netdev->flags & IFF_MULTICAST) && netdev_mc_count(netdev)) {
1208                 if (netdev_mc_count(netdev) <= MAX_MCAST_LST) {
1209                         int i = 0;
1210
1211                         netdev_for_each_mc_addr(ha, netdev) {
1212                                 if (i >= MAX_MCAST_LST)
1213                                         break;
1214                                 memcpy(ks->mcast_lst[i++], ha->addr, ETH_ALEN);
1215                         }
1216                         ks->mcast_lst_size = (u8)i;
1217                         ks_set_grpaddr(ks);
1218                 } else {
1219                         /**
1220                          * List too big to support so
1221                          * turn on all mcast mode.
1222                          */
1223                         ks->mcast_lst_size = MAX_MCAST_LST;
1224                         ks_set_mcast(ks, true);
1225                 }
1226         } else {
1227                 ks->mcast_lst_size = 0;
1228                 ks_clear_mcast(ks);
1229         }
1230 } /* ks_set_rx_mode */
1231
1232 static void ks_set_mac(struct ks_net *ks, u8 *data)
1233 {
1234         u16 *pw = (u16 *)data;
1235         u16 w, u;
1236
1237         ks_stop_rx(ks);  /* Stop receiving for reconfiguration */
1238
1239         u = *pw++;
1240         w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
1241         ks_wrreg16(ks, KS_MARH, w);
1242
1243         u = *pw++;
1244         w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
1245         ks_wrreg16(ks, KS_MARM, w);
1246
1247         u = *pw;
1248         w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
1249         ks_wrreg16(ks, KS_MARL, w);
1250
1251         memcpy(ks->mac_addr, data, ETH_ALEN);
1252
1253         if (ks->enabled)
1254                 ks_start_rx(ks);
1255 }
1256
1257 static int ks_set_mac_address(struct net_device *netdev, void *paddr)
1258 {
1259         struct ks_net *ks = netdev_priv(netdev);
1260         struct sockaddr *addr = paddr;
1261         u8 *da;
1262
1263         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1264
1265         da = (u8 *)netdev->dev_addr;
1266
1267         ks_set_mac(ks, da);
1268         return 0;
1269 }
1270
1271 static int ks_net_ioctl(struct net_device *netdev, struct ifreq *req, int cmd)
1272 {
1273         struct ks_net *ks = netdev_priv(netdev);
1274
1275         if (!netif_running(netdev))
1276                 return -EINVAL;
1277
1278         return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1279 }
1280
1281 static const struct net_device_ops ks_netdev_ops = {
1282         .ndo_open               = ks_net_open,
1283         .ndo_stop               = ks_net_stop,
1284         .ndo_do_ioctl           = ks_net_ioctl,
1285         .ndo_start_xmit         = ks_start_xmit,
1286         .ndo_set_mac_address    = ks_set_mac_address,
1287         .ndo_set_rx_mode        = ks_set_rx_mode,
1288         .ndo_change_mtu         = eth_change_mtu,
1289         .ndo_validate_addr      = eth_validate_addr,
1290 };
1291
1292 /* ethtool support */
1293
1294 static void ks_get_drvinfo(struct net_device *netdev,
1295                                struct ethtool_drvinfo *di)
1296 {
1297         strlcpy(di->driver, DRV_NAME, sizeof(di->driver));
1298         strlcpy(di->version, "1.00", sizeof(di->version));
1299         strlcpy(di->bus_info, dev_name(netdev->dev.parent),
1300                 sizeof(di->bus_info));
1301 }
1302
1303 static u32 ks_get_msglevel(struct net_device *netdev)
1304 {
1305         struct ks_net *ks = netdev_priv(netdev);
1306         return ks->msg_enable;
1307 }
1308
1309 static void ks_set_msglevel(struct net_device *netdev, u32 to)
1310 {
1311         struct ks_net *ks = netdev_priv(netdev);
1312         ks->msg_enable = to;
1313 }
1314
1315 static int ks_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
1316 {
1317         struct ks_net *ks = netdev_priv(netdev);
1318         return mii_ethtool_gset(&ks->mii, cmd);
1319 }
1320
1321 static int ks_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
1322 {
1323         struct ks_net *ks = netdev_priv(netdev);
1324         return mii_ethtool_sset(&ks->mii, cmd);
1325 }
1326
1327 static u32 ks_get_link(struct net_device *netdev)
1328 {
1329         struct ks_net *ks = netdev_priv(netdev);
1330         return mii_link_ok(&ks->mii);
1331 }
1332
1333 static int ks_nway_reset(struct net_device *netdev)
1334 {
1335         struct ks_net *ks = netdev_priv(netdev);
1336         return mii_nway_restart(&ks->mii);
1337 }
1338
1339 static const struct ethtool_ops ks_ethtool_ops = {
1340         .get_drvinfo    = ks_get_drvinfo,
1341         .get_msglevel   = ks_get_msglevel,
1342         .set_msglevel   = ks_set_msglevel,
1343         .get_settings   = ks_get_settings,
1344         .set_settings   = ks_set_settings,
1345         .get_link       = ks_get_link,
1346         .nway_reset     = ks_nway_reset,
1347 };
1348
1349 /* MII interface controls */
1350
1351 /**
1352  * ks_phy_reg - convert MII register into a KS8851 register
1353  * @reg: MII register number.
1354  *
1355  * Return the KS8851 register number for the corresponding MII PHY register
1356  * if possible. Return zero if the MII register has no direct mapping to the
1357  * KS8851 register set.
1358  */
1359 static int ks_phy_reg(int reg)
1360 {
1361         switch (reg) {
1362         case MII_BMCR:
1363                 return KS_P1MBCR;
1364         case MII_BMSR:
1365                 return KS_P1MBSR;
1366         case MII_PHYSID1:
1367                 return KS_PHY1ILR;
1368         case MII_PHYSID2:
1369                 return KS_PHY1IHR;
1370         case MII_ADVERTISE:
1371                 return KS_P1ANAR;
1372         case MII_LPA:
1373                 return KS_P1ANLPR;
1374         }
1375
1376         return 0x0;
1377 }
1378
1379 /**
1380  * ks_phy_read - MII interface PHY register read.
1381  * @netdev: The network device the PHY is on.
1382  * @phy_addr: Address of PHY (ignored as we only have one)
1383  * @reg: The register to read.
1384  *
1385  * This call reads data from the PHY register specified in @reg. Since the
1386  * device does not support all the MII registers, the non-existent values
1387  * are always returned as zero.
1388  *
1389  * We return zero for unsupported registers as the MII code does not check
1390  * the value returned for any error status, and simply returns it to the
1391  * caller. The mii-tool that the driver was tested with takes any -ve error
1392  * as real PHY capabilities, thus displaying incorrect data to the user.
1393  */
1394 static int ks_phy_read(struct net_device *netdev, int phy_addr, int reg)
1395 {
1396         struct ks_net *ks = netdev_priv(netdev);
1397         int ksreg;
1398         int result;
1399
1400         ksreg = ks_phy_reg(reg);
1401         if (!ksreg)
1402                 return 0x0;     /* no error return allowed, so use zero */
1403
1404         mutex_lock(&ks->lock);
1405         result = ks_rdreg16(ks, ksreg);
1406         mutex_unlock(&ks->lock);
1407
1408         return result;
1409 }
1410
1411 static void ks_phy_write(struct net_device *netdev,
1412                              int phy, int reg, int value)
1413 {
1414         struct ks_net *ks = netdev_priv(netdev);
1415         int ksreg;
1416
1417         ksreg = ks_phy_reg(reg);
1418         if (ksreg) {
1419                 mutex_lock(&ks->lock);
1420                 ks_wrreg16(ks, ksreg, value);
1421                 mutex_unlock(&ks->lock);
1422         }
1423 }
1424
1425 /**
1426  * ks_read_selftest - read the selftest memory info.
1427  * @ks: The device state
1428  *
1429  * Read and check the TX/RX memory selftest information.
1430  */
1431 static int ks_read_selftest(struct ks_net *ks)
1432 {
1433         unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1434         int ret = 0;
1435         unsigned rd;
1436
1437         rd = ks_rdreg16(ks, KS_MBIR);
1438
1439         if ((rd & both_done) != both_done) {
1440                 netdev_warn(ks->netdev, "Memory selftest not finished\n");
1441                 return 0;
1442         }
1443
1444         if (rd & MBIR_TXMBFA) {
1445                 netdev_err(ks->netdev, "TX memory selftest fails\n");
1446                 ret |= 1;
1447         }
1448
1449         if (rd & MBIR_RXMBFA) {
1450                 netdev_err(ks->netdev, "RX memory selftest fails\n");
1451                 ret |= 2;
1452         }
1453
1454         netdev_info(ks->netdev, "the selftest passes\n");
1455         return ret;
1456 }
1457
1458 static void ks_setup(struct ks_net *ks)
1459 {
1460         u16     w;
1461
1462         /**
1463          * Configure QMU Transmit
1464          */
1465
1466         /* Setup Transmit Frame Data Pointer Auto-Increment (TXFDPR) */
1467         ks_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
1468
1469         /* Setup Receive Frame Data Pointer Auto-Increment */
1470         ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);
1471
1472         /* Setup Receive Frame Threshold - 1 frame (RXFCTFC) */
1473         ks_wrreg16(ks, KS_RXFCTR, 1 & RXFCTR_THRESHOLD_MASK);
1474
1475         /* Setup RxQ Command Control (RXQCR) */
1476         ks->rc_rxqcr = RXQCR_CMD_CNTL;
1477         ks_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
1478
1479         /**
1480          * set the force mode to half duplex, default is full duplex
1481          *  because if the auto-negotiation fails, most switch uses
1482          *  half-duplex.
1483          */
1484
1485         w = ks_rdreg16(ks, KS_P1MBCR);
1486         w &= ~P1MBCR_FORCE_FDX;
1487         ks_wrreg16(ks, KS_P1MBCR, w);
1488
1489         w = TXCR_TXFCE | TXCR_TXPE | TXCR_TXCRC | TXCR_TCGIP;
1490         ks_wrreg16(ks, KS_TXCR, w);
1491
1492         w = RXCR1_RXFCE | RXCR1_RXBE | RXCR1_RXUE | RXCR1_RXME | RXCR1_RXIPFCC;
1493
1494         if (ks->promiscuous)         /* bPromiscuous */
1495                 w |= (RXCR1_RXAE | RXCR1_RXINVF);
1496         else if (ks->all_mcast) /* Multicast address passed mode */
1497                 w |= (RXCR1_RXAE | RXCR1_RXMAFMA | RXCR1_RXPAFMA);
1498         else                                   /* Normal mode */
1499                 w |= RXCR1_RXPAFMA;
1500
1501         ks_wrreg16(ks, KS_RXCR1, w);
1502 }  /*ks_setup */
1503
1504
1505 static void ks_setup_int(struct ks_net *ks)
1506 {
1507         ks->rc_ier = 0x00;
1508         /* Clear the interrupts status of the hardware. */
1509         ks_wrreg16(ks, KS_ISR, 0xffff);
1510
1511         /* Enables the interrupts of the hardware. */
1512         ks->rc_ier = (IRQ_LCI | IRQ_TXI | IRQ_RXI);
1513 }  /* ks_setup_int */
1514
1515 static int ks_hw_init(struct ks_net *ks)
1516 {
1517 #define MHEADER_SIZE    (sizeof(struct type_frame_head) * MAX_RECV_FRAMES)
1518         ks->promiscuous = 0;
1519         ks->all_mcast = 0;
1520         ks->mcast_lst_size = 0;
1521
1522         ks->frame_head_info = devm_kmalloc(&ks->pdev->dev, MHEADER_SIZE,
1523                                            GFP_KERNEL);
1524         if (!ks->frame_head_info)
1525                 return false;
1526
1527         ks_set_mac(ks, KS_DEFAULT_MAC_ADDRESS);
1528         return true;
1529 }
1530
1531 #if defined(CONFIG_OF)
1532 static const struct of_device_id ks8851_ml_dt_ids[] = {
1533         { .compatible = "micrel,ks8851-mll" },
1534         { /* sentinel */ }
1535 };
1536 MODULE_DEVICE_TABLE(of, ks8851_ml_dt_ids);
1537 #endif
1538
1539 static int ks8851_probe(struct platform_device *pdev)
1540 {
1541         int err;
1542         struct resource *io_d, *io_c;
1543         struct net_device *netdev;
1544         struct ks_net *ks;
1545         u16 id, data;
1546         const char *mac;
1547
1548         netdev = alloc_etherdev(sizeof(struct ks_net));
1549         if (!netdev)
1550                 return -ENOMEM;
1551
1552         SET_NETDEV_DEV(netdev, &pdev->dev);
1553
1554         ks = netdev_priv(netdev);
1555         ks->netdev = netdev;
1556
1557         io_d = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1558         ks->hw_addr = devm_ioremap_resource(&pdev->dev, io_d);
1559         if (IS_ERR(ks->hw_addr)) {
1560                 err = PTR_ERR(ks->hw_addr);
1561                 goto err_free;
1562         }
1563
1564         io_c = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1565         ks->hw_addr_cmd = devm_ioremap_resource(&pdev->dev, io_c);
1566         if (IS_ERR(ks->hw_addr_cmd)) {
1567                 err = PTR_ERR(ks->hw_addr_cmd);
1568                 goto err_free;
1569         }
1570
1571         netdev->irq = platform_get_irq(pdev, 0);
1572
1573         if ((int)netdev->irq < 0) {
1574                 err = netdev->irq;
1575                 goto err_free;
1576         }
1577
1578         ks->pdev = pdev;
1579
1580         mutex_init(&ks->lock);
1581         spin_lock_init(&ks->statelock);
1582
1583         netdev->netdev_ops = &ks_netdev_ops;
1584         netdev->ethtool_ops = &ks_ethtool_ops;
1585
1586         /* setup mii state */
1587         ks->mii.dev             = netdev;
1588         ks->mii.phy_id          = 1,
1589         ks->mii.phy_id_mask     = 1;
1590         ks->mii.reg_num_mask    = 0xf;
1591         ks->mii.mdio_read       = ks_phy_read;
1592         ks->mii.mdio_write      = ks_phy_write;
1593
1594         netdev_info(netdev, "message enable is %d\n", msg_enable);
1595         /* set the default message enable */
1596         ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1597                                                      NETIF_MSG_PROBE |
1598                                                      NETIF_MSG_LINK));
1599         ks_read_config(ks);
1600
1601         /* simple check for a valid chip being connected to the bus */
1602         if ((ks_rdreg16(ks, KS_CIDER) & ~CIDER_REV_MASK) != CIDER_ID) {
1603                 netdev_err(netdev, "failed to read device ID\n");
1604                 err = -ENODEV;
1605                 goto err_free;
1606         }
1607
1608         if (ks_read_selftest(ks)) {
1609                 netdev_err(netdev, "failed to read device ID\n");
1610                 err = -ENODEV;
1611                 goto err_free;
1612         }
1613
1614         err = register_netdev(netdev);
1615         if (err)
1616                 goto err_free;
1617
1618         platform_set_drvdata(pdev, netdev);
1619
1620         ks_soft_reset(ks, GRR_GSR);
1621         ks_hw_init(ks);
1622         ks_disable_qmu(ks);
1623         ks_setup(ks);
1624         ks_setup_int(ks);
1625
1626         data = ks_rdreg16(ks, KS_OBCR);
1627         ks_wrreg16(ks, KS_OBCR, data | OBCR_ODS_16MA);
1628
1629         /* overwriting the default MAC address */
1630         if (pdev->dev.of_node) {
1631                 mac = of_get_mac_address(pdev->dev.of_node);
1632                 if (mac)
1633                         memcpy(ks->mac_addr, mac, ETH_ALEN);
1634         } else {
1635                 struct ks8851_mll_platform_data *pdata;
1636
1637                 pdata = dev_get_platdata(&pdev->dev);
1638                 if (!pdata) {
1639                         netdev_err(netdev, "No platform data\n");
1640                         err = -ENODEV;
1641                         goto err_pdata;
1642                 }
1643                 memcpy(ks->mac_addr, pdata->mac_addr, ETH_ALEN);
1644         }
1645         if (!is_valid_ether_addr(ks->mac_addr)) {
1646                 /* Use random MAC address if none passed */
1647                 eth_random_addr(ks->mac_addr);
1648                 netdev_info(netdev, "Using random mac address\n");
1649         }
1650         netdev_info(netdev, "Mac address is: %pM\n", ks->mac_addr);
1651
1652         memcpy(netdev->dev_addr, ks->mac_addr, ETH_ALEN);
1653
1654         ks_set_mac(ks, netdev->dev_addr);
1655
1656         id = ks_rdreg16(ks, KS_CIDER);
1657
1658         netdev_info(netdev, "Found chip, family: 0x%x, id: 0x%x, rev: 0x%x\n",
1659                     (id >> 8) & 0xff, (id >> 4) & 0xf, (id >> 1) & 0x7);
1660         return 0;
1661
1662 err_pdata:
1663         unregister_netdev(netdev);
1664 err_free:
1665         free_netdev(netdev);
1666         return err;
1667 }
1668
1669 static int ks8851_remove(struct platform_device *pdev)
1670 {
1671         struct net_device *netdev = platform_get_drvdata(pdev);
1672
1673         unregister_netdev(netdev);
1674         free_netdev(netdev);
1675         return 0;
1676
1677 }
1678
1679 static struct platform_driver ks8851_platform_driver = {
1680         .driver = {
1681                 .name = DRV_NAME,
1682                 .of_match_table = of_match_ptr(ks8851_ml_dt_ids),
1683         },
1684         .probe = ks8851_probe,
1685         .remove = ks8851_remove,
1686 };
1687
1688 module_platform_driver(ks8851_platform_driver);
1689
1690 MODULE_DESCRIPTION("KS8851 MLL Network driver");
1691 MODULE_AUTHOR("David Choi <david.choi@micrel.com>");
1692 MODULE_LICENSE("GPL");
1693 module_param_named(message, msg_enable, int, 0);
1694 MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
1695