Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / net / ethernet / intel / igbvf / netdev.c
1 /*******************************************************************************
2
3   Intel(R) 82576 Virtual Function Linux driver
4   Copyright(c) 2009 - 2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, see <http://www.gnu.org/licenses/>.
17
18   The full GNU General Public License is included in this distribution in
19   the file called "COPYING".
20
21   Contact Information:
22   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 *******************************************************************************/
26
27 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <linux/slab.h>
40 #include <net/checksum.h>
41 #include <net/ip6_checksum.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
44 #include <linux/if_vlan.h>
45 #include <linux/prefetch.h>
46
47 #include "igbvf.h"
48
49 #define DRV_VERSION "2.0.2-k"
50 char igbvf_driver_name[] = "igbvf";
51 const char igbvf_driver_version[] = DRV_VERSION;
52 static const char igbvf_driver_string[] =
53                   "Intel(R) Gigabit Virtual Function Network Driver";
54 static const char igbvf_copyright[] =
55                   "Copyright (c) 2009 - 2012 Intel Corporation.";
56
57 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
58 static int debug = -1;
59 module_param(debug, int, 0);
60 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
61
62 static int igbvf_poll(struct napi_struct *napi, int budget);
63 static void igbvf_reset(struct igbvf_adapter *);
64 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
65 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
66
67 static struct igbvf_info igbvf_vf_info = {
68         .mac            = e1000_vfadapt,
69         .flags          = 0,
70         .pba            = 10,
71         .init_ops       = e1000_init_function_pointers_vf,
72 };
73
74 static struct igbvf_info igbvf_i350_vf_info = {
75         .mac            = e1000_vfadapt_i350,
76         .flags          = 0,
77         .pba            = 10,
78         .init_ops       = e1000_init_function_pointers_vf,
79 };
80
81 static const struct igbvf_info *igbvf_info_tbl[] = {
82         [board_vf]      = &igbvf_vf_info,
83         [board_i350_vf] = &igbvf_i350_vf_info,
84 };
85
86 /**
87  * igbvf_desc_unused - calculate if we have unused descriptors
88  * @rx_ring: address of receive ring structure
89  **/
90 static int igbvf_desc_unused(struct igbvf_ring *ring)
91 {
92         if (ring->next_to_clean > ring->next_to_use)
93                 return ring->next_to_clean - ring->next_to_use - 1;
94
95         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
96 }
97
98 /**
99  * igbvf_receive_skb - helper function to handle Rx indications
100  * @adapter: board private structure
101  * @status: descriptor status field as written by hardware
102  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
103  * @skb: pointer to sk_buff to be indicated to stack
104  **/
105 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
106                               struct net_device *netdev,
107                               struct sk_buff *skb,
108                               u32 status, u16 vlan)
109 {
110         u16 vid;
111
112         if (status & E1000_RXD_STAT_VP) {
113                 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
114                     (status & E1000_RXDEXT_STATERR_LB))
115                         vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
116                 else
117                         vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
118                 if (test_bit(vid, adapter->active_vlans))
119                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
120         }
121
122         napi_gro_receive(&adapter->rx_ring->napi, skb);
123 }
124
125 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
126                                          u32 status_err, struct sk_buff *skb)
127 {
128         skb_checksum_none_assert(skb);
129
130         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
131         if ((status_err & E1000_RXD_STAT_IXSM) ||
132             (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
133                 return;
134
135         /* TCP/UDP checksum error bit is set */
136         if (status_err &
137             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
138                 /* let the stack verify checksum errors */
139                 adapter->hw_csum_err++;
140                 return;
141         }
142
143         /* It must be a TCP or UDP packet with a valid checksum */
144         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
145                 skb->ip_summed = CHECKSUM_UNNECESSARY;
146
147         adapter->hw_csum_good++;
148 }
149
150 /**
151  * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
152  * @rx_ring: address of ring structure to repopulate
153  * @cleaned_count: number of buffers to repopulate
154  **/
155 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
156                                    int cleaned_count)
157 {
158         struct igbvf_adapter *adapter = rx_ring->adapter;
159         struct net_device *netdev = adapter->netdev;
160         struct pci_dev *pdev = adapter->pdev;
161         union e1000_adv_rx_desc *rx_desc;
162         struct igbvf_buffer *buffer_info;
163         struct sk_buff *skb;
164         unsigned int i;
165         int bufsz;
166
167         i = rx_ring->next_to_use;
168         buffer_info = &rx_ring->buffer_info[i];
169
170         if (adapter->rx_ps_hdr_size)
171                 bufsz = adapter->rx_ps_hdr_size;
172         else
173                 bufsz = adapter->rx_buffer_len;
174
175         while (cleaned_count--) {
176                 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
177
178                 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
179                         if (!buffer_info->page) {
180                                 buffer_info->page = alloc_page(GFP_ATOMIC);
181                                 if (!buffer_info->page) {
182                                         adapter->alloc_rx_buff_failed++;
183                                         goto no_buffers;
184                                 }
185                                 buffer_info->page_offset = 0;
186                         } else {
187                                 buffer_info->page_offset ^= PAGE_SIZE / 2;
188                         }
189                         buffer_info->page_dma =
190                                 dma_map_page(&pdev->dev, buffer_info->page,
191                                              buffer_info->page_offset,
192                                              PAGE_SIZE / 2,
193                                              DMA_FROM_DEVICE);
194                         if (dma_mapping_error(&pdev->dev,
195                                               buffer_info->page_dma)) {
196                                 __free_page(buffer_info->page);
197                                 buffer_info->page = NULL;
198                                 dev_err(&pdev->dev, "RX DMA map failed\n");
199                                 break;
200                         }
201                 }
202
203                 if (!buffer_info->skb) {
204                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
205                         if (!skb) {
206                                 adapter->alloc_rx_buff_failed++;
207                                 goto no_buffers;
208                         }
209
210                         buffer_info->skb = skb;
211                         buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
212                                                           bufsz,
213                                                           DMA_FROM_DEVICE);
214                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
215                                 dev_kfree_skb(buffer_info->skb);
216                                 buffer_info->skb = NULL;
217                                 dev_err(&pdev->dev, "RX DMA map failed\n");
218                                 goto no_buffers;
219                         }
220                 }
221                 /* Refresh the desc even if buffer_addrs didn't change because
222                  * each write-back erases this info.
223                  */
224                 if (adapter->rx_ps_hdr_size) {
225                         rx_desc->read.pkt_addr =
226                              cpu_to_le64(buffer_info->page_dma);
227                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
228                 } else {
229                         rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
230                         rx_desc->read.hdr_addr = 0;
231                 }
232
233                 i++;
234                 if (i == rx_ring->count)
235                         i = 0;
236                 buffer_info = &rx_ring->buffer_info[i];
237         }
238
239 no_buffers:
240         if (rx_ring->next_to_use != i) {
241                 rx_ring->next_to_use = i;
242                 if (i == 0)
243                         i = (rx_ring->count - 1);
244                 else
245                         i--;
246
247                 /* Force memory writes to complete before letting h/w
248                  * know there are new descriptors to fetch.  (Only
249                  * applicable for weak-ordered memory model archs,
250                  * such as IA-64).
251                 */
252                 wmb();
253                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
254         }
255 }
256
257 /**
258  * igbvf_clean_rx_irq - Send received data up the network stack; legacy
259  * @adapter: board private structure
260  *
261  * the return value indicates whether actual cleaning was done, there
262  * is no guarantee that everything was cleaned
263  **/
264 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
265                                int *work_done, int work_to_do)
266 {
267         struct igbvf_ring *rx_ring = adapter->rx_ring;
268         struct net_device *netdev = adapter->netdev;
269         struct pci_dev *pdev = adapter->pdev;
270         union e1000_adv_rx_desc *rx_desc, *next_rxd;
271         struct igbvf_buffer *buffer_info, *next_buffer;
272         struct sk_buff *skb;
273         bool cleaned = false;
274         int cleaned_count = 0;
275         unsigned int total_bytes = 0, total_packets = 0;
276         unsigned int i;
277         u32 length, hlen, staterr;
278
279         i = rx_ring->next_to_clean;
280         rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
281         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
282
283         while (staterr & E1000_RXD_STAT_DD) {
284                 if (*work_done >= work_to_do)
285                         break;
286                 (*work_done)++;
287                 rmb(); /* read descriptor and rx_buffer_info after status DD */
288
289                 buffer_info = &rx_ring->buffer_info[i];
290
291                 /* HW will not DMA in data larger than the given buffer, even
292                  * if it parses the (NFS, of course) header to be larger.  In
293                  * that case, it fills the header buffer and spills the rest
294                  * into the page.
295                  */
296                 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
297                        & E1000_RXDADV_HDRBUFLEN_MASK) >>
298                        E1000_RXDADV_HDRBUFLEN_SHIFT;
299                 if (hlen > adapter->rx_ps_hdr_size)
300                         hlen = adapter->rx_ps_hdr_size;
301
302                 length = le16_to_cpu(rx_desc->wb.upper.length);
303                 cleaned = true;
304                 cleaned_count++;
305
306                 skb = buffer_info->skb;
307                 prefetch(skb->data - NET_IP_ALIGN);
308                 buffer_info->skb = NULL;
309                 if (!adapter->rx_ps_hdr_size) {
310                         dma_unmap_single(&pdev->dev, buffer_info->dma,
311                                          adapter->rx_buffer_len,
312                                          DMA_FROM_DEVICE);
313                         buffer_info->dma = 0;
314                         skb_put(skb, length);
315                         goto send_up;
316                 }
317
318                 if (!skb_shinfo(skb)->nr_frags) {
319                         dma_unmap_single(&pdev->dev, buffer_info->dma,
320                                          adapter->rx_ps_hdr_size,
321                                          DMA_FROM_DEVICE);
322                         skb_put(skb, hlen);
323                 }
324
325                 if (length) {
326                         dma_unmap_page(&pdev->dev, buffer_info->page_dma,
327                                        PAGE_SIZE / 2,
328                                        DMA_FROM_DEVICE);
329                         buffer_info->page_dma = 0;
330
331                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
332                                            buffer_info->page,
333                                            buffer_info->page_offset,
334                                            length);
335
336                         if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
337                             (page_count(buffer_info->page) != 1))
338                                 buffer_info->page = NULL;
339                         else
340                                 get_page(buffer_info->page);
341
342                         skb->len += length;
343                         skb->data_len += length;
344                         skb->truesize += PAGE_SIZE / 2;
345                 }
346 send_up:
347                 i++;
348                 if (i == rx_ring->count)
349                         i = 0;
350                 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
351                 prefetch(next_rxd);
352                 next_buffer = &rx_ring->buffer_info[i];
353
354                 if (!(staterr & E1000_RXD_STAT_EOP)) {
355                         buffer_info->skb = next_buffer->skb;
356                         buffer_info->dma = next_buffer->dma;
357                         next_buffer->skb = skb;
358                         next_buffer->dma = 0;
359                         goto next_desc;
360                 }
361
362                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
363                         dev_kfree_skb_irq(skb);
364                         goto next_desc;
365                 }
366
367                 total_bytes += skb->len;
368                 total_packets++;
369
370                 igbvf_rx_checksum_adv(adapter, staterr, skb);
371
372                 skb->protocol = eth_type_trans(skb, netdev);
373
374                 igbvf_receive_skb(adapter, netdev, skb, staterr,
375                                   rx_desc->wb.upper.vlan);
376
377 next_desc:
378                 rx_desc->wb.upper.status_error = 0;
379
380                 /* return some buffers to hardware, one at a time is too slow */
381                 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
382                         igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
383                         cleaned_count = 0;
384                 }
385
386                 /* use prefetched values */
387                 rx_desc = next_rxd;
388                 buffer_info = next_buffer;
389
390                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
391         }
392
393         rx_ring->next_to_clean = i;
394         cleaned_count = igbvf_desc_unused(rx_ring);
395
396         if (cleaned_count)
397                 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
398
399         adapter->total_rx_packets += total_packets;
400         adapter->total_rx_bytes += total_bytes;
401         adapter->net_stats.rx_bytes += total_bytes;
402         adapter->net_stats.rx_packets += total_packets;
403         return cleaned;
404 }
405
406 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
407                             struct igbvf_buffer *buffer_info)
408 {
409         if (buffer_info->dma) {
410                 if (buffer_info->mapped_as_page)
411                         dma_unmap_page(&adapter->pdev->dev,
412                                        buffer_info->dma,
413                                        buffer_info->length,
414                                        DMA_TO_DEVICE);
415                 else
416                         dma_unmap_single(&adapter->pdev->dev,
417                                          buffer_info->dma,
418                                          buffer_info->length,
419                                          DMA_TO_DEVICE);
420                 buffer_info->dma = 0;
421         }
422         if (buffer_info->skb) {
423                 dev_kfree_skb_any(buffer_info->skb);
424                 buffer_info->skb = NULL;
425         }
426         buffer_info->time_stamp = 0;
427 }
428
429 /**
430  * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
431  * @adapter: board private structure
432  *
433  * Return 0 on success, negative on failure
434  **/
435 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
436                              struct igbvf_ring *tx_ring)
437 {
438         struct pci_dev *pdev = adapter->pdev;
439         int size;
440
441         size = sizeof(struct igbvf_buffer) * tx_ring->count;
442         tx_ring->buffer_info = vzalloc(size);
443         if (!tx_ring->buffer_info)
444                 goto err;
445
446         /* round up to nearest 4K */
447         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
448         tx_ring->size = ALIGN(tx_ring->size, 4096);
449
450         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
451                                            &tx_ring->dma, GFP_KERNEL);
452         if (!tx_ring->desc)
453                 goto err;
454
455         tx_ring->adapter = adapter;
456         tx_ring->next_to_use = 0;
457         tx_ring->next_to_clean = 0;
458
459         return 0;
460 err:
461         vfree(tx_ring->buffer_info);
462         dev_err(&adapter->pdev->dev,
463                 "Unable to allocate memory for the transmit descriptor ring\n");
464         return -ENOMEM;
465 }
466
467 /**
468  * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
469  * @adapter: board private structure
470  *
471  * Returns 0 on success, negative on failure
472  **/
473 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
474                              struct igbvf_ring *rx_ring)
475 {
476         struct pci_dev *pdev = adapter->pdev;
477         int size, desc_len;
478
479         size = sizeof(struct igbvf_buffer) * rx_ring->count;
480         rx_ring->buffer_info = vzalloc(size);
481         if (!rx_ring->buffer_info)
482                 goto err;
483
484         desc_len = sizeof(union e1000_adv_rx_desc);
485
486         /* Round up to nearest 4K */
487         rx_ring->size = rx_ring->count * desc_len;
488         rx_ring->size = ALIGN(rx_ring->size, 4096);
489
490         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
491                                            &rx_ring->dma, GFP_KERNEL);
492         if (!rx_ring->desc)
493                 goto err;
494
495         rx_ring->next_to_clean = 0;
496         rx_ring->next_to_use = 0;
497
498         rx_ring->adapter = adapter;
499
500         return 0;
501
502 err:
503         vfree(rx_ring->buffer_info);
504         rx_ring->buffer_info = NULL;
505         dev_err(&adapter->pdev->dev,
506                 "Unable to allocate memory for the receive descriptor ring\n");
507         return -ENOMEM;
508 }
509
510 /**
511  * igbvf_clean_tx_ring - Free Tx Buffers
512  * @tx_ring: ring to be cleaned
513  **/
514 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
515 {
516         struct igbvf_adapter *adapter = tx_ring->adapter;
517         struct igbvf_buffer *buffer_info;
518         unsigned long size;
519         unsigned int i;
520
521         if (!tx_ring->buffer_info)
522                 return;
523
524         /* Free all the Tx ring sk_buffs */
525         for (i = 0; i < tx_ring->count; i++) {
526                 buffer_info = &tx_ring->buffer_info[i];
527                 igbvf_put_txbuf(adapter, buffer_info);
528         }
529
530         size = sizeof(struct igbvf_buffer) * tx_ring->count;
531         memset(tx_ring->buffer_info, 0, size);
532
533         /* Zero out the descriptor ring */
534         memset(tx_ring->desc, 0, tx_ring->size);
535
536         tx_ring->next_to_use = 0;
537         tx_ring->next_to_clean = 0;
538
539         writel(0, adapter->hw.hw_addr + tx_ring->head);
540         writel(0, adapter->hw.hw_addr + tx_ring->tail);
541 }
542
543 /**
544  * igbvf_free_tx_resources - Free Tx Resources per Queue
545  * @tx_ring: ring to free resources from
546  *
547  * Free all transmit software resources
548  **/
549 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
550 {
551         struct pci_dev *pdev = tx_ring->adapter->pdev;
552
553         igbvf_clean_tx_ring(tx_ring);
554
555         vfree(tx_ring->buffer_info);
556         tx_ring->buffer_info = NULL;
557
558         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
559                           tx_ring->dma);
560
561         tx_ring->desc = NULL;
562 }
563
564 /**
565  * igbvf_clean_rx_ring - Free Rx Buffers per Queue
566  * @adapter: board private structure
567  **/
568 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
569 {
570         struct igbvf_adapter *adapter = rx_ring->adapter;
571         struct igbvf_buffer *buffer_info;
572         struct pci_dev *pdev = adapter->pdev;
573         unsigned long size;
574         unsigned int i;
575
576         if (!rx_ring->buffer_info)
577                 return;
578
579         /* Free all the Rx ring sk_buffs */
580         for (i = 0; i < rx_ring->count; i++) {
581                 buffer_info = &rx_ring->buffer_info[i];
582                 if (buffer_info->dma) {
583                         if (adapter->rx_ps_hdr_size) {
584                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
585                                                  adapter->rx_ps_hdr_size,
586                                                  DMA_FROM_DEVICE);
587                         } else {
588                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
589                                                  adapter->rx_buffer_len,
590                                                  DMA_FROM_DEVICE);
591                         }
592                         buffer_info->dma = 0;
593                 }
594
595                 if (buffer_info->skb) {
596                         dev_kfree_skb(buffer_info->skb);
597                         buffer_info->skb = NULL;
598                 }
599
600                 if (buffer_info->page) {
601                         if (buffer_info->page_dma)
602                                 dma_unmap_page(&pdev->dev,
603                                                buffer_info->page_dma,
604                                                PAGE_SIZE / 2,
605                                                DMA_FROM_DEVICE);
606                         put_page(buffer_info->page);
607                         buffer_info->page = NULL;
608                         buffer_info->page_dma = 0;
609                         buffer_info->page_offset = 0;
610                 }
611         }
612
613         size = sizeof(struct igbvf_buffer) * rx_ring->count;
614         memset(rx_ring->buffer_info, 0, size);
615
616         /* Zero out the descriptor ring */
617         memset(rx_ring->desc, 0, rx_ring->size);
618
619         rx_ring->next_to_clean = 0;
620         rx_ring->next_to_use = 0;
621
622         writel(0, adapter->hw.hw_addr + rx_ring->head);
623         writel(0, adapter->hw.hw_addr + rx_ring->tail);
624 }
625
626 /**
627  * igbvf_free_rx_resources - Free Rx Resources
628  * @rx_ring: ring to clean the resources from
629  *
630  * Free all receive software resources
631  **/
632
633 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
634 {
635         struct pci_dev *pdev = rx_ring->adapter->pdev;
636
637         igbvf_clean_rx_ring(rx_ring);
638
639         vfree(rx_ring->buffer_info);
640         rx_ring->buffer_info = NULL;
641
642         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
643                           rx_ring->dma);
644         rx_ring->desc = NULL;
645 }
646
647 /**
648  * igbvf_update_itr - update the dynamic ITR value based on statistics
649  * @adapter: pointer to adapter
650  * @itr_setting: current adapter->itr
651  * @packets: the number of packets during this measurement interval
652  * @bytes: the number of bytes during this measurement interval
653  *
654  * Stores a new ITR value based on packets and byte counts during the last
655  * interrupt.  The advantage of per interrupt computation is faster updates
656  * and more accurate ITR for the current traffic pattern.  Constants in this
657  * function were computed based on theoretical maximum wire speed and thresholds
658  * were set based on testing data as well as attempting to minimize response
659  * time while increasing bulk throughput.
660  **/
661 static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
662                                            enum latency_range itr_setting,
663                                            int packets, int bytes)
664 {
665         enum latency_range retval = itr_setting;
666
667         if (packets == 0)
668                 goto update_itr_done;
669
670         switch (itr_setting) {
671         case lowest_latency:
672                 /* handle TSO and jumbo frames */
673                 if (bytes/packets > 8000)
674                         retval = bulk_latency;
675                 else if ((packets < 5) && (bytes > 512))
676                         retval = low_latency;
677                 break;
678         case low_latency:  /* 50 usec aka 20000 ints/s */
679                 if (bytes > 10000) {
680                         /* this if handles the TSO accounting */
681                         if (bytes/packets > 8000)
682                                 retval = bulk_latency;
683                         else if ((packets < 10) || ((bytes/packets) > 1200))
684                                 retval = bulk_latency;
685                         else if ((packets > 35))
686                                 retval = lowest_latency;
687                 } else if (bytes/packets > 2000) {
688                         retval = bulk_latency;
689                 } else if (packets <= 2 && bytes < 512) {
690                         retval = lowest_latency;
691                 }
692                 break;
693         case bulk_latency: /* 250 usec aka 4000 ints/s */
694                 if (bytes > 25000) {
695                         if (packets > 35)
696                                 retval = low_latency;
697                 } else if (bytes < 6000) {
698                         retval = low_latency;
699                 }
700                 break;
701         default:
702                 break;
703         }
704
705 update_itr_done:
706         return retval;
707 }
708
709 static int igbvf_range_to_itr(enum latency_range current_range)
710 {
711         int new_itr;
712
713         switch (current_range) {
714         /* counts and packets in update_itr are dependent on these numbers */
715         case lowest_latency:
716                 new_itr = IGBVF_70K_ITR;
717                 break;
718         case low_latency:
719                 new_itr = IGBVF_20K_ITR;
720                 break;
721         case bulk_latency:
722                 new_itr = IGBVF_4K_ITR;
723                 break;
724         default:
725                 new_itr = IGBVF_START_ITR;
726                 break;
727         }
728         return new_itr;
729 }
730
731 static void igbvf_set_itr(struct igbvf_adapter *adapter)
732 {
733         u32 new_itr;
734
735         adapter->tx_ring->itr_range =
736                         igbvf_update_itr(adapter,
737                                          adapter->tx_ring->itr_val,
738                                          adapter->total_tx_packets,
739                                          adapter->total_tx_bytes);
740
741         /* conservative mode (itr 3) eliminates the lowest_latency setting */
742         if (adapter->requested_itr == 3 &&
743             adapter->tx_ring->itr_range == lowest_latency)
744                 adapter->tx_ring->itr_range = low_latency;
745
746         new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
747
748         if (new_itr != adapter->tx_ring->itr_val) {
749                 u32 current_itr = adapter->tx_ring->itr_val;
750                 /* this attempts to bias the interrupt rate towards Bulk
751                  * by adding intermediate steps when interrupt rate is
752                  * increasing
753                  */
754                 new_itr = new_itr > current_itr ?
755                           min(current_itr + (new_itr >> 2), new_itr) :
756                           new_itr;
757                 adapter->tx_ring->itr_val = new_itr;
758
759                 adapter->tx_ring->set_itr = 1;
760         }
761
762         adapter->rx_ring->itr_range =
763                         igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
764                                          adapter->total_rx_packets,
765                                          adapter->total_rx_bytes);
766         if (adapter->requested_itr == 3 &&
767             adapter->rx_ring->itr_range == lowest_latency)
768                 adapter->rx_ring->itr_range = low_latency;
769
770         new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
771
772         if (new_itr != adapter->rx_ring->itr_val) {
773                 u32 current_itr = adapter->rx_ring->itr_val;
774
775                 new_itr = new_itr > current_itr ?
776                           min(current_itr + (new_itr >> 2), new_itr) :
777                           new_itr;
778                 adapter->rx_ring->itr_val = new_itr;
779
780                 adapter->rx_ring->set_itr = 1;
781         }
782 }
783
784 /**
785  * igbvf_clean_tx_irq - Reclaim resources after transmit completes
786  * @adapter: board private structure
787  *
788  * returns true if ring is completely cleaned
789  **/
790 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
791 {
792         struct igbvf_adapter *adapter = tx_ring->adapter;
793         struct net_device *netdev = adapter->netdev;
794         struct igbvf_buffer *buffer_info;
795         struct sk_buff *skb;
796         union e1000_adv_tx_desc *tx_desc, *eop_desc;
797         unsigned int total_bytes = 0, total_packets = 0;
798         unsigned int i, count = 0;
799         bool cleaned = false;
800
801         i = tx_ring->next_to_clean;
802         buffer_info = &tx_ring->buffer_info[i];
803         eop_desc = buffer_info->next_to_watch;
804
805         do {
806                 /* if next_to_watch is not set then there is no work pending */
807                 if (!eop_desc)
808                         break;
809
810                 /* prevent any other reads prior to eop_desc */
811                 read_barrier_depends();
812
813                 /* if DD is not set pending work has not been completed */
814                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
815                         break;
816
817                 /* clear next_to_watch to prevent false hangs */
818                 buffer_info->next_to_watch = NULL;
819
820                 for (cleaned = false; !cleaned; count++) {
821                         tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
822                         cleaned = (tx_desc == eop_desc);
823                         skb = buffer_info->skb;
824
825                         if (skb) {
826                                 unsigned int segs, bytecount;
827
828                                 /* gso_segs is currently only valid for tcp */
829                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
830                                 /* multiply data chunks by size of headers */
831                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
832                                             skb->len;
833                                 total_packets += segs;
834                                 total_bytes += bytecount;
835                         }
836
837                         igbvf_put_txbuf(adapter, buffer_info);
838                         tx_desc->wb.status = 0;
839
840                         i++;
841                         if (i == tx_ring->count)
842                                 i = 0;
843
844                         buffer_info = &tx_ring->buffer_info[i];
845                 }
846
847                 eop_desc = buffer_info->next_to_watch;
848         } while (count < tx_ring->count);
849
850         tx_ring->next_to_clean = i;
851
852         if (unlikely(count && netif_carrier_ok(netdev) &&
853             igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
854                 /* Make sure that anybody stopping the queue after this
855                  * sees the new next_to_clean.
856                  */
857                 smp_mb();
858                 if (netif_queue_stopped(netdev) &&
859                     !(test_bit(__IGBVF_DOWN, &adapter->state))) {
860                         netif_wake_queue(netdev);
861                         ++adapter->restart_queue;
862                 }
863         }
864
865         adapter->net_stats.tx_bytes += total_bytes;
866         adapter->net_stats.tx_packets += total_packets;
867         return count < tx_ring->count;
868 }
869
870 static irqreturn_t igbvf_msix_other(int irq, void *data)
871 {
872         struct net_device *netdev = data;
873         struct igbvf_adapter *adapter = netdev_priv(netdev);
874         struct e1000_hw *hw = &adapter->hw;
875
876         adapter->int_counter1++;
877
878         netif_carrier_off(netdev);
879         hw->mac.get_link_status = 1;
880         if (!test_bit(__IGBVF_DOWN, &adapter->state))
881                 mod_timer(&adapter->watchdog_timer, jiffies + 1);
882
883         ew32(EIMS, adapter->eims_other);
884
885         return IRQ_HANDLED;
886 }
887
888 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
889 {
890         struct net_device *netdev = data;
891         struct igbvf_adapter *adapter = netdev_priv(netdev);
892         struct e1000_hw *hw = &adapter->hw;
893         struct igbvf_ring *tx_ring = adapter->tx_ring;
894
895         if (tx_ring->set_itr) {
896                 writel(tx_ring->itr_val,
897                        adapter->hw.hw_addr + tx_ring->itr_register);
898                 adapter->tx_ring->set_itr = 0;
899         }
900
901         adapter->total_tx_bytes = 0;
902         adapter->total_tx_packets = 0;
903
904         /* auto mask will automatically re-enable the interrupt when we write
905          * EICS
906          */
907         if (!igbvf_clean_tx_irq(tx_ring))
908                 /* Ring was not completely cleaned, so fire another interrupt */
909                 ew32(EICS, tx_ring->eims_value);
910         else
911                 ew32(EIMS, tx_ring->eims_value);
912
913         return IRQ_HANDLED;
914 }
915
916 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
917 {
918         struct net_device *netdev = data;
919         struct igbvf_adapter *adapter = netdev_priv(netdev);
920
921         adapter->int_counter0++;
922
923         /* Write the ITR value calculated at the end of the
924          * previous interrupt.
925          */
926         if (adapter->rx_ring->set_itr) {
927                 writel(adapter->rx_ring->itr_val,
928                        adapter->hw.hw_addr + adapter->rx_ring->itr_register);
929                 adapter->rx_ring->set_itr = 0;
930         }
931
932         if (napi_schedule_prep(&adapter->rx_ring->napi)) {
933                 adapter->total_rx_bytes = 0;
934                 adapter->total_rx_packets = 0;
935                 __napi_schedule(&adapter->rx_ring->napi);
936         }
937
938         return IRQ_HANDLED;
939 }
940
941 #define IGBVF_NO_QUEUE -1
942
943 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
944                                 int tx_queue, int msix_vector)
945 {
946         struct e1000_hw *hw = &adapter->hw;
947         u32 ivar, index;
948
949         /* 82576 uses a table-based method for assigning vectors.
950          * Each queue has a single entry in the table to which we write
951          * a vector number along with a "valid" bit.  Sadly, the layout
952          * of the table is somewhat counterintuitive.
953          */
954         if (rx_queue > IGBVF_NO_QUEUE) {
955                 index = (rx_queue >> 1);
956                 ivar = array_er32(IVAR0, index);
957                 if (rx_queue & 0x1) {
958                         /* vector goes into third byte of register */
959                         ivar = ivar & 0xFF00FFFF;
960                         ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
961                 } else {
962                         /* vector goes into low byte of register */
963                         ivar = ivar & 0xFFFFFF00;
964                         ivar |= msix_vector | E1000_IVAR_VALID;
965                 }
966                 adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
967                 array_ew32(IVAR0, index, ivar);
968         }
969         if (tx_queue > IGBVF_NO_QUEUE) {
970                 index = (tx_queue >> 1);
971                 ivar = array_er32(IVAR0, index);
972                 if (tx_queue & 0x1) {
973                         /* vector goes into high byte of register */
974                         ivar = ivar & 0x00FFFFFF;
975                         ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
976                 } else {
977                         /* vector goes into second byte of register */
978                         ivar = ivar & 0xFFFF00FF;
979                         ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
980                 }
981                 adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
982                 array_ew32(IVAR0, index, ivar);
983         }
984 }
985
986 /**
987  * igbvf_configure_msix - Configure MSI-X hardware
988  * @adapter: board private structure
989  *
990  * igbvf_configure_msix sets up the hardware to properly
991  * generate MSI-X interrupts.
992  **/
993 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
994 {
995         u32 tmp;
996         struct e1000_hw *hw = &adapter->hw;
997         struct igbvf_ring *tx_ring = adapter->tx_ring;
998         struct igbvf_ring *rx_ring = adapter->rx_ring;
999         int vector = 0;
1000
1001         adapter->eims_enable_mask = 0;
1002
1003         igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
1004         adapter->eims_enable_mask |= tx_ring->eims_value;
1005         writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
1006         igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
1007         adapter->eims_enable_mask |= rx_ring->eims_value;
1008         writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
1009
1010         /* set vector for other causes, i.e. link changes */
1011
1012         tmp = (vector++ | E1000_IVAR_VALID);
1013
1014         ew32(IVAR_MISC, tmp);
1015
1016         adapter->eims_enable_mask = (1 << (vector)) - 1;
1017         adapter->eims_other = 1 << (vector - 1);
1018         e1e_flush();
1019 }
1020
1021 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1022 {
1023         if (adapter->msix_entries) {
1024                 pci_disable_msix(adapter->pdev);
1025                 kfree(adapter->msix_entries);
1026                 adapter->msix_entries = NULL;
1027         }
1028 }
1029
1030 /**
1031  * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1032  * @adapter: board private structure
1033  *
1034  * Attempt to configure interrupts using the best available
1035  * capabilities of the hardware and kernel.
1036  **/
1037 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1038 {
1039         int err = -ENOMEM;
1040         int i;
1041
1042         /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1043         adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1044                                         GFP_KERNEL);
1045         if (adapter->msix_entries) {
1046                 for (i = 0; i < 3; i++)
1047                         adapter->msix_entries[i].entry = i;
1048
1049                 err = pci_enable_msix_range(adapter->pdev,
1050                                             adapter->msix_entries, 3, 3);
1051         }
1052
1053         if (err < 0) {
1054                 /* MSI-X failed */
1055                 dev_err(&adapter->pdev->dev,
1056                         "Failed to initialize MSI-X interrupts.\n");
1057                 igbvf_reset_interrupt_capability(adapter);
1058         }
1059 }
1060
1061 /**
1062  * igbvf_request_msix - Initialize MSI-X interrupts
1063  * @adapter: board private structure
1064  *
1065  * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1066  * kernel.
1067  **/
1068 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1069 {
1070         struct net_device *netdev = adapter->netdev;
1071         int err = 0, vector = 0;
1072
1073         if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1074                 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1075                 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1076         } else {
1077                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1078                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1079         }
1080
1081         err = request_irq(adapter->msix_entries[vector].vector,
1082                           igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1083                           netdev);
1084         if (err)
1085                 goto out;
1086
1087         adapter->tx_ring->itr_register = E1000_EITR(vector);
1088         adapter->tx_ring->itr_val = adapter->current_itr;
1089         vector++;
1090
1091         err = request_irq(adapter->msix_entries[vector].vector,
1092                           igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1093                           netdev);
1094         if (err)
1095                 goto out;
1096
1097         adapter->rx_ring->itr_register = E1000_EITR(vector);
1098         adapter->rx_ring->itr_val = adapter->current_itr;
1099         vector++;
1100
1101         err = request_irq(adapter->msix_entries[vector].vector,
1102                           igbvf_msix_other, 0, netdev->name, netdev);
1103         if (err)
1104                 goto out;
1105
1106         igbvf_configure_msix(adapter);
1107         return 0;
1108 out:
1109         return err;
1110 }
1111
1112 /**
1113  * igbvf_alloc_queues - Allocate memory for all rings
1114  * @adapter: board private structure to initialize
1115  **/
1116 static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1117 {
1118         struct net_device *netdev = adapter->netdev;
1119
1120         adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1121         if (!adapter->tx_ring)
1122                 return -ENOMEM;
1123
1124         adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1125         if (!adapter->rx_ring) {
1126                 kfree(adapter->tx_ring);
1127                 return -ENOMEM;
1128         }
1129
1130         netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1131
1132         return 0;
1133 }
1134
1135 /**
1136  * igbvf_request_irq - initialize interrupts
1137  * @adapter: board private structure
1138  *
1139  * Attempts to configure interrupts using the best available
1140  * capabilities of the hardware and kernel.
1141  **/
1142 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1143 {
1144         int err = -1;
1145
1146         /* igbvf supports msi-x only */
1147         if (adapter->msix_entries)
1148                 err = igbvf_request_msix(adapter);
1149
1150         if (!err)
1151                 return err;
1152
1153         dev_err(&adapter->pdev->dev,
1154                 "Unable to allocate interrupt, Error: %d\n", err);
1155
1156         return err;
1157 }
1158
1159 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1160 {
1161         struct net_device *netdev = adapter->netdev;
1162         int vector;
1163
1164         if (adapter->msix_entries) {
1165                 for (vector = 0; vector < 3; vector++)
1166                         free_irq(adapter->msix_entries[vector].vector, netdev);
1167         }
1168 }
1169
1170 /**
1171  * igbvf_irq_disable - Mask off interrupt generation on the NIC
1172  * @adapter: board private structure
1173  **/
1174 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1175 {
1176         struct e1000_hw *hw = &adapter->hw;
1177
1178         ew32(EIMC, ~0);
1179
1180         if (adapter->msix_entries)
1181                 ew32(EIAC, 0);
1182 }
1183
1184 /**
1185  * igbvf_irq_enable - Enable default interrupt generation settings
1186  * @adapter: board private structure
1187  **/
1188 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1189 {
1190         struct e1000_hw *hw = &adapter->hw;
1191
1192         ew32(EIAC, adapter->eims_enable_mask);
1193         ew32(EIAM, adapter->eims_enable_mask);
1194         ew32(EIMS, adapter->eims_enable_mask);
1195 }
1196
1197 /**
1198  * igbvf_poll - NAPI Rx polling callback
1199  * @napi: struct associated with this polling callback
1200  * @budget: amount of packets driver is allowed to process this poll
1201  **/
1202 static int igbvf_poll(struct napi_struct *napi, int budget)
1203 {
1204         struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1205         struct igbvf_adapter *adapter = rx_ring->adapter;
1206         struct e1000_hw *hw = &adapter->hw;
1207         int work_done = 0;
1208
1209         igbvf_clean_rx_irq(adapter, &work_done, budget);
1210
1211         /* If not enough Rx work done, exit the polling mode */
1212         if (work_done < budget) {
1213                 napi_complete(napi);
1214
1215                 if (adapter->requested_itr & 3)
1216                         igbvf_set_itr(adapter);
1217
1218                 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1219                         ew32(EIMS, adapter->rx_ring->eims_value);
1220         }
1221
1222         return work_done;
1223 }
1224
1225 /**
1226  * igbvf_set_rlpml - set receive large packet maximum length
1227  * @adapter: board private structure
1228  *
1229  * Configure the maximum size of packets that will be received
1230  */
1231 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1232 {
1233         int max_frame_size;
1234         struct e1000_hw *hw = &adapter->hw;
1235
1236         max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1237         e1000_rlpml_set_vf(hw, max_frame_size);
1238 }
1239
1240 static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1241                                  __be16 proto, u16 vid)
1242 {
1243         struct igbvf_adapter *adapter = netdev_priv(netdev);
1244         struct e1000_hw *hw = &adapter->hw;
1245
1246         if (hw->mac.ops.set_vfta(hw, vid, true)) {
1247                 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1248                 return -EINVAL;
1249         }
1250         set_bit(vid, adapter->active_vlans);
1251         return 0;
1252 }
1253
1254 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1255                                   __be16 proto, u16 vid)
1256 {
1257         struct igbvf_adapter *adapter = netdev_priv(netdev);
1258         struct e1000_hw *hw = &adapter->hw;
1259
1260         if (hw->mac.ops.set_vfta(hw, vid, false)) {
1261                 dev_err(&adapter->pdev->dev,
1262                         "Failed to remove vlan id %d\n", vid);
1263                 return -EINVAL;
1264         }
1265         clear_bit(vid, adapter->active_vlans);
1266         return 0;
1267 }
1268
1269 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1270 {
1271         u16 vid;
1272
1273         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1274                 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1275 }
1276
1277 /**
1278  * igbvf_configure_tx - Configure Transmit Unit after Reset
1279  * @adapter: board private structure
1280  *
1281  * Configure the Tx unit of the MAC after a reset.
1282  **/
1283 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1284 {
1285         struct e1000_hw *hw = &adapter->hw;
1286         struct igbvf_ring *tx_ring = adapter->tx_ring;
1287         u64 tdba;
1288         u32 txdctl, dca_txctrl;
1289
1290         /* disable transmits */
1291         txdctl = er32(TXDCTL(0));
1292         ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1293         e1e_flush();
1294         msleep(10);
1295
1296         /* Setup the HW Tx Head and Tail descriptor pointers */
1297         ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1298         tdba = tx_ring->dma;
1299         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1300         ew32(TDBAH(0), (tdba >> 32));
1301         ew32(TDH(0), 0);
1302         ew32(TDT(0), 0);
1303         tx_ring->head = E1000_TDH(0);
1304         tx_ring->tail = E1000_TDT(0);
1305
1306         /* Turn off Relaxed Ordering on head write-backs.  The writebacks
1307          * MUST be delivered in order or it will completely screw up
1308          * our bookkeeping.
1309          */
1310         dca_txctrl = er32(DCA_TXCTRL(0));
1311         dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1312         ew32(DCA_TXCTRL(0), dca_txctrl);
1313
1314         /* enable transmits */
1315         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1316         ew32(TXDCTL(0), txdctl);
1317
1318         /* Setup Transmit Descriptor Settings for eop descriptor */
1319         adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1320
1321         /* enable Report Status bit */
1322         adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1323 }
1324
1325 /**
1326  * igbvf_setup_srrctl - configure the receive control registers
1327  * @adapter: Board private structure
1328  **/
1329 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1330 {
1331         struct e1000_hw *hw = &adapter->hw;
1332         u32 srrctl = 0;
1333
1334         srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1335                     E1000_SRRCTL_BSIZEHDR_MASK |
1336                     E1000_SRRCTL_BSIZEPKT_MASK);
1337
1338         /* Enable queue drop to avoid head of line blocking */
1339         srrctl |= E1000_SRRCTL_DROP_EN;
1340
1341         /* Setup buffer sizes */
1342         srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1343                   E1000_SRRCTL_BSIZEPKT_SHIFT;
1344
1345         if (adapter->rx_buffer_len < 2048) {
1346                 adapter->rx_ps_hdr_size = 0;
1347                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1348         } else {
1349                 adapter->rx_ps_hdr_size = 128;
1350                 srrctl |= adapter->rx_ps_hdr_size <<
1351                           E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1352                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1353         }
1354
1355         ew32(SRRCTL(0), srrctl);
1356 }
1357
1358 /**
1359  * igbvf_configure_rx - Configure Receive Unit after Reset
1360  * @adapter: board private structure
1361  *
1362  * Configure the Rx unit of the MAC after a reset.
1363  **/
1364 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1365 {
1366         struct e1000_hw *hw = &adapter->hw;
1367         struct igbvf_ring *rx_ring = adapter->rx_ring;
1368         u64 rdba;
1369         u32 rdlen, rxdctl;
1370
1371         /* disable receives */
1372         rxdctl = er32(RXDCTL(0));
1373         ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1374         e1e_flush();
1375         msleep(10);
1376
1377         rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1378
1379         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1380          * the Base and Length of the Rx Descriptor Ring
1381          */
1382         rdba = rx_ring->dma;
1383         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1384         ew32(RDBAH(0), (rdba >> 32));
1385         ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1386         rx_ring->head = E1000_RDH(0);
1387         rx_ring->tail = E1000_RDT(0);
1388         ew32(RDH(0), 0);
1389         ew32(RDT(0), 0);
1390
1391         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1392         rxdctl &= 0xFFF00000;
1393         rxdctl |= IGBVF_RX_PTHRESH;
1394         rxdctl |= IGBVF_RX_HTHRESH << 8;
1395         rxdctl |= IGBVF_RX_WTHRESH << 16;
1396
1397         igbvf_set_rlpml(adapter);
1398
1399         /* enable receives */
1400         ew32(RXDCTL(0), rxdctl);
1401 }
1402
1403 /**
1404  * igbvf_set_multi - Multicast and Promiscuous mode set
1405  * @netdev: network interface device structure
1406  *
1407  * The set_multi entry point is called whenever the multicast address
1408  * list or the network interface flags are updated.  This routine is
1409  * responsible for configuring the hardware for proper multicast,
1410  * promiscuous mode, and all-multi behavior.
1411  **/
1412 static void igbvf_set_multi(struct net_device *netdev)
1413 {
1414         struct igbvf_adapter *adapter = netdev_priv(netdev);
1415         struct e1000_hw *hw = &adapter->hw;
1416         struct netdev_hw_addr *ha;
1417         u8  *mta_list = NULL;
1418         int i;
1419
1420         if (!netdev_mc_empty(netdev)) {
1421                 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1422                                          GFP_ATOMIC);
1423                 if (!mta_list)
1424                         return;
1425         }
1426
1427         /* prepare a packed array of only addresses. */
1428         i = 0;
1429         netdev_for_each_mc_addr(ha, netdev)
1430                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1431
1432         hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1433         kfree(mta_list);
1434 }
1435
1436 /**
1437  * igbvf_configure - configure the hardware for Rx and Tx
1438  * @adapter: private board structure
1439  **/
1440 static void igbvf_configure(struct igbvf_adapter *adapter)
1441 {
1442         igbvf_set_multi(adapter->netdev);
1443
1444         igbvf_restore_vlan(adapter);
1445
1446         igbvf_configure_tx(adapter);
1447         igbvf_setup_srrctl(adapter);
1448         igbvf_configure_rx(adapter);
1449         igbvf_alloc_rx_buffers(adapter->rx_ring,
1450                                igbvf_desc_unused(adapter->rx_ring));
1451 }
1452
1453 /* igbvf_reset - bring the hardware into a known good state
1454  * @adapter: private board structure
1455  *
1456  * This function boots the hardware and enables some settings that
1457  * require a configuration cycle of the hardware - those cannot be
1458  * set/changed during runtime. After reset the device needs to be
1459  * properly configured for Rx, Tx etc.
1460  */
1461 static void igbvf_reset(struct igbvf_adapter *adapter)
1462 {
1463         struct e1000_mac_info *mac = &adapter->hw.mac;
1464         struct net_device *netdev = adapter->netdev;
1465         struct e1000_hw *hw = &adapter->hw;
1466
1467         /* Allow time for pending master requests to run */
1468         if (mac->ops.reset_hw(hw))
1469                 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1470
1471         mac->ops.init_hw(hw);
1472
1473         if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1474                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1475                        netdev->addr_len);
1476                 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1477                        netdev->addr_len);
1478         }
1479
1480         adapter->last_reset = jiffies;
1481 }
1482
1483 int igbvf_up(struct igbvf_adapter *adapter)
1484 {
1485         struct e1000_hw *hw = &adapter->hw;
1486
1487         /* hardware has been reset, we need to reload some things */
1488         igbvf_configure(adapter);
1489
1490         clear_bit(__IGBVF_DOWN, &adapter->state);
1491
1492         napi_enable(&adapter->rx_ring->napi);
1493         if (adapter->msix_entries)
1494                 igbvf_configure_msix(adapter);
1495
1496         /* Clear any pending interrupts. */
1497         er32(EICR);
1498         igbvf_irq_enable(adapter);
1499
1500         /* start the watchdog */
1501         hw->mac.get_link_status = 1;
1502         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1503
1504         return 0;
1505 }
1506
1507 void igbvf_down(struct igbvf_adapter *adapter)
1508 {
1509         struct net_device *netdev = adapter->netdev;
1510         struct e1000_hw *hw = &adapter->hw;
1511         u32 rxdctl, txdctl;
1512
1513         /* signal that we're down so the interrupt handler does not
1514          * reschedule our watchdog timer
1515          */
1516         set_bit(__IGBVF_DOWN, &adapter->state);
1517
1518         /* disable receives in the hardware */
1519         rxdctl = er32(RXDCTL(0));
1520         ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1521
1522         netif_carrier_off(netdev);
1523         netif_stop_queue(netdev);
1524
1525         /* disable transmits in the hardware */
1526         txdctl = er32(TXDCTL(0));
1527         ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1528
1529         /* flush both disables and wait for them to finish */
1530         e1e_flush();
1531         msleep(10);
1532
1533         napi_disable(&adapter->rx_ring->napi);
1534
1535         igbvf_irq_disable(adapter);
1536
1537         del_timer_sync(&adapter->watchdog_timer);
1538
1539         /* record the stats before reset*/
1540         igbvf_update_stats(adapter);
1541
1542         adapter->link_speed = 0;
1543         adapter->link_duplex = 0;
1544
1545         igbvf_reset(adapter);
1546         igbvf_clean_tx_ring(adapter->tx_ring);
1547         igbvf_clean_rx_ring(adapter->rx_ring);
1548 }
1549
1550 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1551 {
1552         might_sleep();
1553         while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1554                 usleep_range(1000, 2000);
1555         igbvf_down(adapter);
1556         igbvf_up(adapter);
1557         clear_bit(__IGBVF_RESETTING, &adapter->state);
1558 }
1559
1560 /**
1561  * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1562  * @adapter: board private structure to initialize
1563  *
1564  * igbvf_sw_init initializes the Adapter private data structure.
1565  * Fields are initialized based on PCI device information and
1566  * OS network device settings (MTU size).
1567  **/
1568 static int igbvf_sw_init(struct igbvf_adapter *adapter)
1569 {
1570         struct net_device *netdev = adapter->netdev;
1571         s32 rc;
1572
1573         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1574         adapter->rx_ps_hdr_size = 0;
1575         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1576         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1577
1578         adapter->tx_int_delay = 8;
1579         adapter->tx_abs_int_delay = 32;
1580         adapter->rx_int_delay = 0;
1581         adapter->rx_abs_int_delay = 8;
1582         adapter->requested_itr = 3;
1583         adapter->current_itr = IGBVF_START_ITR;
1584
1585         /* Set various function pointers */
1586         adapter->ei->init_ops(&adapter->hw);
1587
1588         rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1589         if (rc)
1590                 return rc;
1591
1592         rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1593         if (rc)
1594                 return rc;
1595
1596         igbvf_set_interrupt_capability(adapter);
1597
1598         if (igbvf_alloc_queues(adapter))
1599                 return -ENOMEM;
1600
1601         spin_lock_init(&adapter->tx_queue_lock);
1602
1603         /* Explicitly disable IRQ since the NIC can be in any state. */
1604         igbvf_irq_disable(adapter);
1605
1606         spin_lock_init(&adapter->stats_lock);
1607
1608         set_bit(__IGBVF_DOWN, &adapter->state);
1609         return 0;
1610 }
1611
1612 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1613 {
1614         struct e1000_hw *hw = &adapter->hw;
1615
1616         adapter->stats.last_gprc = er32(VFGPRC);
1617         adapter->stats.last_gorc = er32(VFGORC);
1618         adapter->stats.last_gptc = er32(VFGPTC);
1619         adapter->stats.last_gotc = er32(VFGOTC);
1620         adapter->stats.last_mprc = er32(VFMPRC);
1621         adapter->stats.last_gotlbc = er32(VFGOTLBC);
1622         adapter->stats.last_gptlbc = er32(VFGPTLBC);
1623         adapter->stats.last_gorlbc = er32(VFGORLBC);
1624         adapter->stats.last_gprlbc = er32(VFGPRLBC);
1625
1626         adapter->stats.base_gprc = er32(VFGPRC);
1627         adapter->stats.base_gorc = er32(VFGORC);
1628         adapter->stats.base_gptc = er32(VFGPTC);
1629         adapter->stats.base_gotc = er32(VFGOTC);
1630         adapter->stats.base_mprc = er32(VFMPRC);
1631         adapter->stats.base_gotlbc = er32(VFGOTLBC);
1632         adapter->stats.base_gptlbc = er32(VFGPTLBC);
1633         adapter->stats.base_gorlbc = er32(VFGORLBC);
1634         adapter->stats.base_gprlbc = er32(VFGPRLBC);
1635 }
1636
1637 /**
1638  * igbvf_open - Called when a network interface is made active
1639  * @netdev: network interface device structure
1640  *
1641  * Returns 0 on success, negative value on failure
1642  *
1643  * The open entry point is called when a network interface is made
1644  * active by the system (IFF_UP).  At this point all resources needed
1645  * for transmit and receive operations are allocated, the interrupt
1646  * handler is registered with the OS, the watchdog timer is started,
1647  * and the stack is notified that the interface is ready.
1648  **/
1649 static int igbvf_open(struct net_device *netdev)
1650 {
1651         struct igbvf_adapter *adapter = netdev_priv(netdev);
1652         struct e1000_hw *hw = &adapter->hw;
1653         int err;
1654
1655         /* disallow open during test */
1656         if (test_bit(__IGBVF_TESTING, &adapter->state))
1657                 return -EBUSY;
1658
1659         /* allocate transmit descriptors */
1660         err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1661         if (err)
1662                 goto err_setup_tx;
1663
1664         /* allocate receive descriptors */
1665         err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1666         if (err)
1667                 goto err_setup_rx;
1668
1669         /* before we allocate an interrupt, we must be ready to handle it.
1670          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1671          * as soon as we call pci_request_irq, so we have to setup our
1672          * clean_rx handler before we do so.
1673          */
1674         igbvf_configure(adapter);
1675
1676         err = igbvf_request_irq(adapter);
1677         if (err)
1678                 goto err_req_irq;
1679
1680         /* From here on the code is the same as igbvf_up() */
1681         clear_bit(__IGBVF_DOWN, &adapter->state);
1682
1683         napi_enable(&adapter->rx_ring->napi);
1684
1685         /* clear any pending interrupts */
1686         er32(EICR);
1687
1688         igbvf_irq_enable(adapter);
1689
1690         /* start the watchdog */
1691         hw->mac.get_link_status = 1;
1692         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1693
1694         return 0;
1695
1696 err_req_irq:
1697         igbvf_free_rx_resources(adapter->rx_ring);
1698 err_setup_rx:
1699         igbvf_free_tx_resources(adapter->tx_ring);
1700 err_setup_tx:
1701         igbvf_reset(adapter);
1702
1703         return err;
1704 }
1705
1706 /**
1707  * igbvf_close - Disables a network interface
1708  * @netdev: network interface device structure
1709  *
1710  * Returns 0, this is not allowed to fail
1711  *
1712  * The close entry point is called when an interface is de-activated
1713  * by the OS.  The hardware is still under the drivers control, but
1714  * needs to be disabled.  A global MAC reset is issued to stop the
1715  * hardware, and all transmit and receive resources are freed.
1716  **/
1717 static int igbvf_close(struct net_device *netdev)
1718 {
1719         struct igbvf_adapter *adapter = netdev_priv(netdev);
1720
1721         WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1722         igbvf_down(adapter);
1723
1724         igbvf_free_irq(adapter);
1725
1726         igbvf_free_tx_resources(adapter->tx_ring);
1727         igbvf_free_rx_resources(adapter->rx_ring);
1728
1729         return 0;
1730 }
1731
1732 /**
1733  * igbvf_set_mac - Change the Ethernet Address of the NIC
1734  * @netdev: network interface device structure
1735  * @p: pointer to an address structure
1736  *
1737  * Returns 0 on success, negative on failure
1738  **/
1739 static int igbvf_set_mac(struct net_device *netdev, void *p)
1740 {
1741         struct igbvf_adapter *adapter = netdev_priv(netdev);
1742         struct e1000_hw *hw = &adapter->hw;
1743         struct sockaddr *addr = p;
1744
1745         if (!is_valid_ether_addr(addr->sa_data))
1746                 return -EADDRNOTAVAIL;
1747
1748         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1749
1750         hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1751
1752         if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1753                 return -EADDRNOTAVAIL;
1754
1755         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1756
1757         return 0;
1758 }
1759
1760 #define UPDATE_VF_COUNTER(reg, name) \
1761 { \
1762         u32 current_counter = er32(reg); \
1763         if (current_counter < adapter->stats.last_##name) \
1764                 adapter->stats.name += 0x100000000LL; \
1765         adapter->stats.last_##name = current_counter; \
1766         adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1767         adapter->stats.name |= current_counter; \
1768 }
1769
1770 /**
1771  * igbvf_update_stats - Update the board statistics counters
1772  * @adapter: board private structure
1773 **/
1774 void igbvf_update_stats(struct igbvf_adapter *adapter)
1775 {
1776         struct e1000_hw *hw = &adapter->hw;
1777         struct pci_dev *pdev = adapter->pdev;
1778
1779         /* Prevent stats update while adapter is being reset, link is down
1780          * or if the pci connection is down.
1781          */
1782         if (adapter->link_speed == 0)
1783                 return;
1784
1785         if (test_bit(__IGBVF_RESETTING, &adapter->state))
1786                 return;
1787
1788         if (pci_channel_offline(pdev))
1789                 return;
1790
1791         UPDATE_VF_COUNTER(VFGPRC, gprc);
1792         UPDATE_VF_COUNTER(VFGORC, gorc);
1793         UPDATE_VF_COUNTER(VFGPTC, gptc);
1794         UPDATE_VF_COUNTER(VFGOTC, gotc);
1795         UPDATE_VF_COUNTER(VFMPRC, mprc);
1796         UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1797         UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1798         UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1799         UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1800
1801         /* Fill out the OS statistics structure */
1802         adapter->net_stats.multicast = adapter->stats.mprc;
1803 }
1804
1805 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1806 {
1807         dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1808                  adapter->link_speed,
1809                  adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1810 }
1811
1812 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1813 {
1814         struct e1000_hw *hw = &adapter->hw;
1815         s32 ret_val = E1000_SUCCESS;
1816         bool link_active;
1817
1818         /* If interface is down, stay link down */
1819         if (test_bit(__IGBVF_DOWN, &adapter->state))
1820                 return false;
1821
1822         ret_val = hw->mac.ops.check_for_link(hw);
1823         link_active = !hw->mac.get_link_status;
1824
1825         /* if check for link returns error we will need to reset */
1826         if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1827                 schedule_work(&adapter->reset_task);
1828
1829         return link_active;
1830 }
1831
1832 /**
1833  * igbvf_watchdog - Timer Call-back
1834  * @data: pointer to adapter cast into an unsigned long
1835  **/
1836 static void igbvf_watchdog(unsigned long data)
1837 {
1838         struct igbvf_adapter *adapter = (struct igbvf_adapter *)data;
1839
1840         /* Do the rest outside of interrupt context */
1841         schedule_work(&adapter->watchdog_task);
1842 }
1843
1844 static void igbvf_watchdog_task(struct work_struct *work)
1845 {
1846         struct igbvf_adapter *adapter = container_of(work,
1847                                                      struct igbvf_adapter,
1848                                                      watchdog_task);
1849         struct net_device *netdev = adapter->netdev;
1850         struct e1000_mac_info *mac = &adapter->hw.mac;
1851         struct igbvf_ring *tx_ring = adapter->tx_ring;
1852         struct e1000_hw *hw = &adapter->hw;
1853         u32 link;
1854         int tx_pending = 0;
1855
1856         link = igbvf_has_link(adapter);
1857
1858         if (link) {
1859                 if (!netif_carrier_ok(netdev)) {
1860                         mac->ops.get_link_up_info(&adapter->hw,
1861                                                   &adapter->link_speed,
1862                                                   &adapter->link_duplex);
1863                         igbvf_print_link_info(adapter);
1864
1865                         netif_carrier_on(netdev);
1866                         netif_wake_queue(netdev);
1867                 }
1868         } else {
1869                 if (netif_carrier_ok(netdev)) {
1870                         adapter->link_speed = 0;
1871                         adapter->link_duplex = 0;
1872                         dev_info(&adapter->pdev->dev, "Link is Down\n");
1873                         netif_carrier_off(netdev);
1874                         netif_stop_queue(netdev);
1875                 }
1876         }
1877
1878         if (netif_carrier_ok(netdev)) {
1879                 igbvf_update_stats(adapter);
1880         } else {
1881                 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1882                               tx_ring->count);
1883                 if (tx_pending) {
1884                         /* We've lost link, so the controller stops DMA,
1885                          * but we've got queued Tx work that's never going
1886                          * to get done, so reset controller to flush Tx.
1887                          * (Do the reset outside of interrupt context).
1888                          */
1889                         adapter->tx_timeout_count++;
1890                         schedule_work(&adapter->reset_task);
1891                 }
1892         }
1893
1894         /* Cause software interrupt to ensure Rx ring is cleaned */
1895         ew32(EICS, adapter->rx_ring->eims_value);
1896
1897         /* Reset the timer */
1898         if (!test_bit(__IGBVF_DOWN, &adapter->state))
1899                 mod_timer(&adapter->watchdog_timer,
1900                           round_jiffies(jiffies + (2 * HZ)));
1901 }
1902
1903 #define IGBVF_TX_FLAGS_CSUM             0x00000001
1904 #define IGBVF_TX_FLAGS_VLAN             0x00000002
1905 #define IGBVF_TX_FLAGS_TSO              0x00000004
1906 #define IGBVF_TX_FLAGS_IPV4             0x00000008
1907 #define IGBVF_TX_FLAGS_VLAN_MASK        0xffff0000
1908 #define IGBVF_TX_FLAGS_VLAN_SHIFT       16
1909
1910 static int igbvf_tso(struct igbvf_adapter *adapter,
1911                      struct igbvf_ring *tx_ring,
1912                      struct sk_buff *skb, u32 tx_flags, u8 *hdr_len,
1913                      __be16 protocol)
1914 {
1915         struct e1000_adv_tx_context_desc *context_desc;
1916         struct igbvf_buffer *buffer_info;
1917         u32 info = 0, tu_cmd = 0;
1918         u32 mss_l4len_idx, l4len;
1919         unsigned int i;
1920         int err;
1921
1922         *hdr_len = 0;
1923
1924         err = skb_cow_head(skb, 0);
1925         if (err < 0) {
1926                 dev_err(&adapter->pdev->dev, "igbvf_tso returning an error\n");
1927                 return err;
1928         }
1929
1930         l4len = tcp_hdrlen(skb);
1931         *hdr_len += l4len;
1932
1933         if (protocol == htons(ETH_P_IP)) {
1934                 struct iphdr *iph = ip_hdr(skb);
1935
1936                 iph->tot_len = 0;
1937                 iph->check = 0;
1938                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1939                                                          iph->daddr, 0,
1940                                                          IPPROTO_TCP,
1941                                                          0);
1942         } else if (skb_is_gso_v6(skb)) {
1943                 ipv6_hdr(skb)->payload_len = 0;
1944                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1945                                                        &ipv6_hdr(skb)->daddr,
1946                                                        0, IPPROTO_TCP, 0);
1947         }
1948
1949         i = tx_ring->next_to_use;
1950
1951         buffer_info = &tx_ring->buffer_info[i];
1952         context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1953         /* VLAN MACLEN IPLEN */
1954         if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1955                 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1956         info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1957         *hdr_len += skb_network_offset(skb);
1958         info |= (skb_transport_header(skb) - skb_network_header(skb));
1959         *hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1960         context_desc->vlan_macip_lens = cpu_to_le32(info);
1961
1962         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1963         tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1964
1965         if (protocol == htons(ETH_P_IP))
1966                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1967         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1968
1969         context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1970
1971         /* MSS L4LEN IDX */
1972         mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1973         mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1974
1975         context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1976         context_desc->seqnum_seed = 0;
1977
1978         buffer_info->time_stamp = jiffies;
1979         buffer_info->dma = 0;
1980         i++;
1981         if (i == tx_ring->count)
1982                 i = 0;
1983
1984         tx_ring->next_to_use = i;
1985
1986         return true;
1987 }
1988
1989 static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
1990                                  struct igbvf_ring *tx_ring,
1991                                  struct sk_buff *skb, u32 tx_flags,
1992                                  __be16 protocol)
1993 {
1994         struct e1000_adv_tx_context_desc *context_desc;
1995         unsigned int i;
1996         struct igbvf_buffer *buffer_info;
1997         u32 info = 0, tu_cmd = 0;
1998
1999         if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2000             (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
2001                 i = tx_ring->next_to_use;
2002                 buffer_info = &tx_ring->buffer_info[i];
2003                 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
2004
2005                 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2006                         info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
2007
2008                 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2009                 if (skb->ip_summed == CHECKSUM_PARTIAL)
2010                         info |= (skb_transport_header(skb) -
2011                                  skb_network_header(skb));
2012
2013                 context_desc->vlan_macip_lens = cpu_to_le32(info);
2014
2015                 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2016
2017                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2018                         switch (protocol) {
2019                         case htons(ETH_P_IP):
2020                                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2021                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2022                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2023                                 break;
2024                         case htons(ETH_P_IPV6):
2025                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2026                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2027                                 break;
2028                         default:
2029                                 break;
2030                         }
2031                 }
2032
2033                 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2034                 context_desc->seqnum_seed = 0;
2035                 context_desc->mss_l4len_idx = 0;
2036
2037                 buffer_info->time_stamp = jiffies;
2038                 buffer_info->dma = 0;
2039                 i++;
2040                 if (i == tx_ring->count)
2041                         i = 0;
2042                 tx_ring->next_to_use = i;
2043
2044                 return true;
2045         }
2046
2047         return false;
2048 }
2049
2050 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2051 {
2052         struct igbvf_adapter *adapter = netdev_priv(netdev);
2053
2054         /* there is enough descriptors then we don't need to worry  */
2055         if (igbvf_desc_unused(adapter->tx_ring) >= size)
2056                 return 0;
2057
2058         netif_stop_queue(netdev);
2059
2060         /* Herbert's original patch had:
2061          *  smp_mb__after_netif_stop_queue();
2062          * but since that doesn't exist yet, just open code it.
2063          */
2064         smp_mb();
2065
2066         /* We need to check again just in case room has been made available */
2067         if (igbvf_desc_unused(adapter->tx_ring) < size)
2068                 return -EBUSY;
2069
2070         netif_wake_queue(netdev);
2071
2072         ++adapter->restart_queue;
2073         return 0;
2074 }
2075
2076 #define IGBVF_MAX_TXD_PWR       16
2077 #define IGBVF_MAX_DATA_PER_TXD  (1 << IGBVF_MAX_TXD_PWR)
2078
2079 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2080                                    struct igbvf_ring *tx_ring,
2081                                    struct sk_buff *skb)
2082 {
2083         struct igbvf_buffer *buffer_info;
2084         struct pci_dev *pdev = adapter->pdev;
2085         unsigned int len = skb_headlen(skb);
2086         unsigned int count = 0, i;
2087         unsigned int f;
2088
2089         i = tx_ring->next_to_use;
2090
2091         buffer_info = &tx_ring->buffer_info[i];
2092         BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2093         buffer_info->length = len;
2094         /* set time_stamp *before* dma to help avoid a possible race */
2095         buffer_info->time_stamp = jiffies;
2096         buffer_info->mapped_as_page = false;
2097         buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2098                                           DMA_TO_DEVICE);
2099         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2100                 goto dma_error;
2101
2102         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2103                 const struct skb_frag_struct *frag;
2104
2105                 count++;
2106                 i++;
2107                 if (i == tx_ring->count)
2108                         i = 0;
2109
2110                 frag = &skb_shinfo(skb)->frags[f];
2111                 len = skb_frag_size(frag);
2112
2113                 buffer_info = &tx_ring->buffer_info[i];
2114                 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2115                 buffer_info->length = len;
2116                 buffer_info->time_stamp = jiffies;
2117                 buffer_info->mapped_as_page = true;
2118                 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2119                                                     DMA_TO_DEVICE);
2120                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2121                         goto dma_error;
2122         }
2123
2124         tx_ring->buffer_info[i].skb = skb;
2125
2126         return ++count;
2127
2128 dma_error:
2129         dev_err(&pdev->dev, "TX DMA map failed\n");
2130
2131         /* clear timestamp and dma mappings for failed buffer_info mapping */
2132         buffer_info->dma = 0;
2133         buffer_info->time_stamp = 0;
2134         buffer_info->length = 0;
2135         buffer_info->mapped_as_page = false;
2136         if (count)
2137                 count--;
2138
2139         /* clear timestamp and dma mappings for remaining portion of packet */
2140         while (count--) {
2141                 if (i == 0)
2142                         i += tx_ring->count;
2143                 i--;
2144                 buffer_info = &tx_ring->buffer_info[i];
2145                 igbvf_put_txbuf(adapter, buffer_info);
2146         }
2147
2148         return 0;
2149 }
2150
2151 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2152                                       struct igbvf_ring *tx_ring,
2153                                       int tx_flags, int count,
2154                                       unsigned int first, u32 paylen,
2155                                       u8 hdr_len)
2156 {
2157         union e1000_adv_tx_desc *tx_desc = NULL;
2158         struct igbvf_buffer *buffer_info;
2159         u32 olinfo_status = 0, cmd_type_len;
2160         unsigned int i;
2161
2162         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2163                         E1000_ADVTXD_DCMD_DEXT);
2164
2165         if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2166                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2167
2168         if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2169                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2170
2171                 /* insert tcp checksum */
2172                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2173
2174                 /* insert ip checksum */
2175                 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2176                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2177
2178         } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2179                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2180         }
2181
2182         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2183
2184         i = tx_ring->next_to_use;
2185         while (count--) {
2186                 buffer_info = &tx_ring->buffer_info[i];
2187                 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2188                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2189                 tx_desc->read.cmd_type_len =
2190                          cpu_to_le32(cmd_type_len | buffer_info->length);
2191                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2192                 i++;
2193                 if (i == tx_ring->count)
2194                         i = 0;
2195         }
2196
2197         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2198         /* Force memory writes to complete before letting h/w
2199          * know there are new descriptors to fetch.  (Only
2200          * applicable for weak-ordered memory model archs,
2201          * such as IA-64).
2202          */
2203         wmb();
2204
2205         tx_ring->buffer_info[first].next_to_watch = tx_desc;
2206         tx_ring->next_to_use = i;
2207         writel(i, adapter->hw.hw_addr + tx_ring->tail);
2208         /* we need this if more than one processor can write to our tail
2209          * at a time, it synchronizes IO on IA64/Altix systems
2210          */
2211         mmiowb();
2212 }
2213
2214 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2215                                              struct net_device *netdev,
2216                                              struct igbvf_ring *tx_ring)
2217 {
2218         struct igbvf_adapter *adapter = netdev_priv(netdev);
2219         unsigned int first, tx_flags = 0;
2220         u8 hdr_len = 0;
2221         int count = 0;
2222         int tso = 0;
2223         __be16 protocol = vlan_get_protocol(skb);
2224
2225         if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2226                 dev_kfree_skb_any(skb);
2227                 return NETDEV_TX_OK;
2228         }
2229
2230         if (skb->len <= 0) {
2231                 dev_kfree_skb_any(skb);
2232                 return NETDEV_TX_OK;
2233         }
2234
2235         /* need: count + 4 desc gap to keep tail from touching
2236          *       + 2 desc gap to keep tail from touching head,
2237          *       + 1 desc for skb->data,
2238          *       + 1 desc for context descriptor,
2239          * head, otherwise try next time
2240          */
2241         if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2242                 /* this is a hard error */
2243                 return NETDEV_TX_BUSY;
2244         }
2245
2246         if (skb_vlan_tag_present(skb)) {
2247                 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2248                 tx_flags |= (skb_vlan_tag_get(skb) <<
2249                              IGBVF_TX_FLAGS_VLAN_SHIFT);
2250         }
2251
2252         if (protocol == htons(ETH_P_IP))
2253                 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2254
2255         first = tx_ring->next_to_use;
2256
2257         tso = skb_is_gso(skb) ?
2258                 igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len, protocol) : 0;
2259         if (unlikely(tso < 0)) {
2260                 dev_kfree_skb_any(skb);
2261                 return NETDEV_TX_OK;
2262         }
2263
2264         if (tso)
2265                 tx_flags |= IGBVF_TX_FLAGS_TSO;
2266         else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags, protocol) &&
2267                  (skb->ip_summed == CHECKSUM_PARTIAL))
2268                 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2269
2270         /* count reflects descriptors mapped, if 0 then mapping error
2271          * has occurred and we need to rewind the descriptor queue
2272          */
2273         count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2274
2275         if (count) {
2276                 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2277                                    first, skb->len, hdr_len);
2278                 /* Make sure there is space in the ring for the next send. */
2279                 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2280         } else {
2281                 dev_kfree_skb_any(skb);
2282                 tx_ring->buffer_info[first].time_stamp = 0;
2283                 tx_ring->next_to_use = first;
2284         }
2285
2286         return NETDEV_TX_OK;
2287 }
2288
2289 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2290                                     struct net_device *netdev)
2291 {
2292         struct igbvf_adapter *adapter = netdev_priv(netdev);
2293         struct igbvf_ring *tx_ring;
2294
2295         if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2296                 dev_kfree_skb_any(skb);
2297                 return NETDEV_TX_OK;
2298         }
2299
2300         tx_ring = &adapter->tx_ring[0];
2301
2302         return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2303 }
2304
2305 /**
2306  * igbvf_tx_timeout - Respond to a Tx Hang
2307  * @netdev: network interface device structure
2308  **/
2309 static void igbvf_tx_timeout(struct net_device *netdev)
2310 {
2311         struct igbvf_adapter *adapter = netdev_priv(netdev);
2312
2313         /* Do the reset outside of interrupt context */
2314         adapter->tx_timeout_count++;
2315         schedule_work(&adapter->reset_task);
2316 }
2317
2318 static void igbvf_reset_task(struct work_struct *work)
2319 {
2320         struct igbvf_adapter *adapter;
2321
2322         adapter = container_of(work, struct igbvf_adapter, reset_task);
2323
2324         igbvf_reinit_locked(adapter);
2325 }
2326
2327 /**
2328  * igbvf_get_stats - Get System Network Statistics
2329  * @netdev: network interface device structure
2330  *
2331  * Returns the address of the device statistics structure.
2332  * The statistics are actually updated from the timer callback.
2333  **/
2334 static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2335 {
2336         struct igbvf_adapter *adapter = netdev_priv(netdev);
2337
2338         /* only return the current stats */
2339         return &adapter->net_stats;
2340 }
2341
2342 /**
2343  * igbvf_change_mtu - Change the Maximum Transfer Unit
2344  * @netdev: network interface device structure
2345  * @new_mtu: new value for maximum frame size
2346  *
2347  * Returns 0 on success, negative on failure
2348  **/
2349 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2350 {
2351         struct igbvf_adapter *adapter = netdev_priv(netdev);
2352         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2353
2354         if (new_mtu < 68 || new_mtu > INT_MAX - ETH_HLEN - ETH_FCS_LEN ||
2355             max_frame > MAX_JUMBO_FRAME_SIZE)
2356                 return -EINVAL;
2357
2358 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2359         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2360                 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2361                 return -EINVAL;
2362         }
2363
2364         while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2365                 usleep_range(1000, 2000);
2366         /* igbvf_down has a dependency on max_frame_size */
2367         adapter->max_frame_size = max_frame;
2368         if (netif_running(netdev))
2369                 igbvf_down(adapter);
2370
2371         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2372          * means we reserve 2 more, this pushes us to allocate from the next
2373          * larger slab size.
2374          * i.e. RXBUFFER_2048 --> size-4096 slab
2375          * However with the new *_jumbo_rx* routines, jumbo receives will use
2376          * fragmented skbs
2377          */
2378
2379         if (max_frame <= 1024)
2380                 adapter->rx_buffer_len = 1024;
2381         else if (max_frame <= 2048)
2382                 adapter->rx_buffer_len = 2048;
2383         else
2384 #if (PAGE_SIZE / 2) > 16384
2385                 adapter->rx_buffer_len = 16384;
2386 #else
2387                 adapter->rx_buffer_len = PAGE_SIZE / 2;
2388 #endif
2389
2390         /* adjust allocation if LPE protects us, and we aren't using SBP */
2391         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2392             (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2393                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2394                                          ETH_FCS_LEN;
2395
2396         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2397                  netdev->mtu, new_mtu);
2398         netdev->mtu = new_mtu;
2399
2400         if (netif_running(netdev))
2401                 igbvf_up(adapter);
2402         else
2403                 igbvf_reset(adapter);
2404
2405         clear_bit(__IGBVF_RESETTING, &adapter->state);
2406
2407         return 0;
2408 }
2409
2410 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2411 {
2412         switch (cmd) {
2413         default:
2414                 return -EOPNOTSUPP;
2415         }
2416 }
2417
2418 static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2419 {
2420         struct net_device *netdev = pci_get_drvdata(pdev);
2421         struct igbvf_adapter *adapter = netdev_priv(netdev);
2422 #ifdef CONFIG_PM
2423         int retval = 0;
2424 #endif
2425
2426         netif_device_detach(netdev);
2427
2428         if (netif_running(netdev)) {
2429                 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2430                 igbvf_down(adapter);
2431                 igbvf_free_irq(adapter);
2432         }
2433
2434 #ifdef CONFIG_PM
2435         retval = pci_save_state(pdev);
2436         if (retval)
2437                 return retval;
2438 #endif
2439
2440         pci_disable_device(pdev);
2441
2442         return 0;
2443 }
2444
2445 #ifdef CONFIG_PM
2446 static int igbvf_resume(struct pci_dev *pdev)
2447 {
2448         struct net_device *netdev = pci_get_drvdata(pdev);
2449         struct igbvf_adapter *adapter = netdev_priv(netdev);
2450         u32 err;
2451
2452         pci_restore_state(pdev);
2453         err = pci_enable_device_mem(pdev);
2454         if (err) {
2455                 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2456                 return err;
2457         }
2458
2459         pci_set_master(pdev);
2460
2461         if (netif_running(netdev)) {
2462                 err = igbvf_request_irq(adapter);
2463                 if (err)
2464                         return err;
2465         }
2466
2467         igbvf_reset(adapter);
2468
2469         if (netif_running(netdev))
2470                 igbvf_up(adapter);
2471
2472         netif_device_attach(netdev);
2473
2474         return 0;
2475 }
2476 #endif
2477
2478 static void igbvf_shutdown(struct pci_dev *pdev)
2479 {
2480         igbvf_suspend(pdev, PMSG_SUSPEND);
2481 }
2482
2483 #ifdef CONFIG_NET_POLL_CONTROLLER
2484 /* Polling 'interrupt' - used by things like netconsole to send skbs
2485  * without having to re-enable interrupts. It's not called while
2486  * the interrupt routine is executing.
2487  */
2488 static void igbvf_netpoll(struct net_device *netdev)
2489 {
2490         struct igbvf_adapter *adapter = netdev_priv(netdev);
2491
2492         disable_irq(adapter->pdev->irq);
2493
2494         igbvf_clean_tx_irq(adapter->tx_ring);
2495
2496         enable_irq(adapter->pdev->irq);
2497 }
2498 #endif
2499
2500 /**
2501  * igbvf_io_error_detected - called when PCI error is detected
2502  * @pdev: Pointer to PCI device
2503  * @state: The current pci connection state
2504  *
2505  * This function is called after a PCI bus error affecting
2506  * this device has been detected.
2507  */
2508 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2509                                                 pci_channel_state_t state)
2510 {
2511         struct net_device *netdev = pci_get_drvdata(pdev);
2512         struct igbvf_adapter *adapter = netdev_priv(netdev);
2513
2514         netif_device_detach(netdev);
2515
2516         if (state == pci_channel_io_perm_failure)
2517                 return PCI_ERS_RESULT_DISCONNECT;
2518
2519         if (netif_running(netdev))
2520                 igbvf_down(adapter);
2521         pci_disable_device(pdev);
2522
2523         /* Request a slot slot reset. */
2524         return PCI_ERS_RESULT_NEED_RESET;
2525 }
2526
2527 /**
2528  * igbvf_io_slot_reset - called after the pci bus has been reset.
2529  * @pdev: Pointer to PCI device
2530  *
2531  * Restart the card from scratch, as if from a cold-boot. Implementation
2532  * resembles the first-half of the igbvf_resume routine.
2533  */
2534 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2535 {
2536         struct net_device *netdev = pci_get_drvdata(pdev);
2537         struct igbvf_adapter *adapter = netdev_priv(netdev);
2538
2539         if (pci_enable_device_mem(pdev)) {
2540                 dev_err(&pdev->dev,
2541                         "Cannot re-enable PCI device after reset.\n");
2542                 return PCI_ERS_RESULT_DISCONNECT;
2543         }
2544         pci_set_master(pdev);
2545
2546         igbvf_reset(adapter);
2547
2548         return PCI_ERS_RESULT_RECOVERED;
2549 }
2550
2551 /**
2552  * igbvf_io_resume - called when traffic can start flowing again.
2553  * @pdev: Pointer to PCI device
2554  *
2555  * This callback is called when the error recovery driver tells us that
2556  * its OK to resume normal operation. Implementation resembles the
2557  * second-half of the igbvf_resume routine.
2558  */
2559 static void igbvf_io_resume(struct pci_dev *pdev)
2560 {
2561         struct net_device *netdev = pci_get_drvdata(pdev);
2562         struct igbvf_adapter *adapter = netdev_priv(netdev);
2563
2564         if (netif_running(netdev)) {
2565                 if (igbvf_up(adapter)) {
2566                         dev_err(&pdev->dev,
2567                                 "can't bring device back up after reset\n");
2568                         return;
2569                 }
2570         }
2571
2572         netif_device_attach(netdev);
2573 }
2574
2575 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2576 {
2577         struct e1000_hw *hw = &adapter->hw;
2578         struct net_device *netdev = adapter->netdev;
2579         struct pci_dev *pdev = adapter->pdev;
2580
2581         if (hw->mac.type == e1000_vfadapt_i350)
2582                 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2583         else
2584                 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2585         dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2586 }
2587
2588 static int igbvf_set_features(struct net_device *netdev,
2589                               netdev_features_t features)
2590 {
2591         struct igbvf_adapter *adapter = netdev_priv(netdev);
2592
2593         if (features & NETIF_F_RXCSUM)
2594                 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2595         else
2596                 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2597
2598         return 0;
2599 }
2600
2601 static const struct net_device_ops igbvf_netdev_ops = {
2602         .ndo_open               = igbvf_open,
2603         .ndo_stop               = igbvf_close,
2604         .ndo_start_xmit         = igbvf_xmit_frame,
2605         .ndo_get_stats          = igbvf_get_stats,
2606         .ndo_set_rx_mode        = igbvf_set_multi,
2607         .ndo_set_mac_address    = igbvf_set_mac,
2608         .ndo_change_mtu         = igbvf_change_mtu,
2609         .ndo_do_ioctl           = igbvf_ioctl,
2610         .ndo_tx_timeout         = igbvf_tx_timeout,
2611         .ndo_vlan_rx_add_vid    = igbvf_vlan_rx_add_vid,
2612         .ndo_vlan_rx_kill_vid   = igbvf_vlan_rx_kill_vid,
2613 #ifdef CONFIG_NET_POLL_CONTROLLER
2614         .ndo_poll_controller    = igbvf_netpoll,
2615 #endif
2616         .ndo_set_features       = igbvf_set_features,
2617 };
2618
2619 /**
2620  * igbvf_probe - Device Initialization Routine
2621  * @pdev: PCI device information struct
2622  * @ent: entry in igbvf_pci_tbl
2623  *
2624  * Returns 0 on success, negative on failure
2625  *
2626  * igbvf_probe initializes an adapter identified by a pci_dev structure.
2627  * The OS initialization, configuring of the adapter private structure,
2628  * and a hardware reset occur.
2629  **/
2630 static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2631 {
2632         struct net_device *netdev;
2633         struct igbvf_adapter *adapter;
2634         struct e1000_hw *hw;
2635         const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2636
2637         static int cards_found;
2638         int err, pci_using_dac;
2639
2640         err = pci_enable_device_mem(pdev);
2641         if (err)
2642                 return err;
2643
2644         pci_using_dac = 0;
2645         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2646         if (!err) {
2647                 pci_using_dac = 1;
2648         } else {
2649                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2650                 if (err) {
2651                         dev_err(&pdev->dev,
2652                                 "No usable DMA configuration, aborting\n");
2653                         goto err_dma;
2654                 }
2655         }
2656
2657         err = pci_request_regions(pdev, igbvf_driver_name);
2658         if (err)
2659                 goto err_pci_reg;
2660
2661         pci_set_master(pdev);
2662
2663         err = -ENOMEM;
2664         netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2665         if (!netdev)
2666                 goto err_alloc_etherdev;
2667
2668         SET_NETDEV_DEV(netdev, &pdev->dev);
2669
2670         pci_set_drvdata(pdev, netdev);
2671         adapter = netdev_priv(netdev);
2672         hw = &adapter->hw;
2673         adapter->netdev = netdev;
2674         adapter->pdev = pdev;
2675         adapter->ei = ei;
2676         adapter->pba = ei->pba;
2677         adapter->flags = ei->flags;
2678         adapter->hw.back = adapter;
2679         adapter->hw.mac.type = ei->mac;
2680         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2681
2682         /* PCI config space info */
2683
2684         hw->vendor_id = pdev->vendor;
2685         hw->device_id = pdev->device;
2686         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2687         hw->subsystem_device_id = pdev->subsystem_device;
2688         hw->revision_id = pdev->revision;
2689
2690         err = -EIO;
2691         adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2692                                       pci_resource_len(pdev, 0));
2693
2694         if (!adapter->hw.hw_addr)
2695                 goto err_ioremap;
2696
2697         if (ei->get_variants) {
2698                 err = ei->get_variants(adapter);
2699                 if (err)
2700                         goto err_get_variants;
2701         }
2702
2703         /* setup adapter struct */
2704         err = igbvf_sw_init(adapter);
2705         if (err)
2706                 goto err_sw_init;
2707
2708         /* construct the net_device struct */
2709         netdev->netdev_ops = &igbvf_netdev_ops;
2710
2711         igbvf_set_ethtool_ops(netdev);
2712         netdev->watchdog_timeo = 5 * HZ;
2713         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2714
2715         adapter->bd_number = cards_found++;
2716
2717         netdev->hw_features = NETIF_F_SG |
2718                            NETIF_F_IP_CSUM |
2719                            NETIF_F_IPV6_CSUM |
2720                            NETIF_F_TSO |
2721                            NETIF_F_TSO6 |
2722                            NETIF_F_RXCSUM;
2723
2724         netdev->features = netdev->hw_features |
2725                            NETIF_F_HW_VLAN_CTAG_TX |
2726                            NETIF_F_HW_VLAN_CTAG_RX |
2727                            NETIF_F_HW_VLAN_CTAG_FILTER;
2728
2729         if (pci_using_dac)
2730                 netdev->features |= NETIF_F_HIGHDMA;
2731
2732         netdev->vlan_features |= NETIF_F_TSO;
2733         netdev->vlan_features |= NETIF_F_TSO6;
2734         netdev->vlan_features |= NETIF_F_IP_CSUM;
2735         netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2736         netdev->vlan_features |= NETIF_F_SG;
2737
2738         /*reset the controller to put the device in a known good state */
2739         err = hw->mac.ops.reset_hw(hw);
2740         if (err) {
2741                 dev_info(&pdev->dev,
2742                          "PF still in reset state. Is the PF interface up?\n");
2743         } else {
2744                 err = hw->mac.ops.read_mac_addr(hw);
2745                 if (err)
2746                         dev_info(&pdev->dev, "Error reading MAC address.\n");
2747                 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2748                         dev_info(&pdev->dev,
2749                                  "MAC address not assigned by administrator.\n");
2750                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2751                        netdev->addr_len);
2752         }
2753
2754         if (!is_valid_ether_addr(netdev->dev_addr)) {
2755                 dev_info(&pdev->dev, "Assigning random MAC address.\n");
2756                 eth_hw_addr_random(netdev);
2757                 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2758                        netdev->addr_len);
2759         }
2760
2761         setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2762                     (unsigned long)adapter);
2763
2764         INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2765         INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2766
2767         /* ring size defaults */
2768         adapter->rx_ring->count = 1024;
2769         adapter->tx_ring->count = 1024;
2770
2771         /* reset the hardware with the new settings */
2772         igbvf_reset(adapter);
2773
2774         /* set hardware-specific flags */
2775         if (adapter->hw.mac.type == e1000_vfadapt_i350)
2776                 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2777
2778         strcpy(netdev->name, "eth%d");
2779         err = register_netdev(netdev);
2780         if (err)
2781                 goto err_hw_init;
2782
2783         /* tell the stack to leave us alone until igbvf_open() is called */
2784         netif_carrier_off(netdev);
2785         netif_stop_queue(netdev);
2786
2787         igbvf_print_device_info(adapter);
2788
2789         igbvf_initialize_last_counter_stats(adapter);
2790
2791         return 0;
2792
2793 err_hw_init:
2794         kfree(adapter->tx_ring);
2795         kfree(adapter->rx_ring);
2796 err_sw_init:
2797         igbvf_reset_interrupt_capability(adapter);
2798 err_get_variants:
2799         iounmap(adapter->hw.hw_addr);
2800 err_ioremap:
2801         free_netdev(netdev);
2802 err_alloc_etherdev:
2803         pci_release_regions(pdev);
2804 err_pci_reg:
2805 err_dma:
2806         pci_disable_device(pdev);
2807         return err;
2808 }
2809
2810 /**
2811  * igbvf_remove - Device Removal Routine
2812  * @pdev: PCI device information struct
2813  *
2814  * igbvf_remove is called by the PCI subsystem to alert the driver
2815  * that it should release a PCI device.  The could be caused by a
2816  * Hot-Plug event, or because the driver is going to be removed from
2817  * memory.
2818  **/
2819 static void igbvf_remove(struct pci_dev *pdev)
2820 {
2821         struct net_device *netdev = pci_get_drvdata(pdev);
2822         struct igbvf_adapter *adapter = netdev_priv(netdev);
2823         struct e1000_hw *hw = &adapter->hw;
2824
2825         /* The watchdog timer may be rescheduled, so explicitly
2826          * disable it from being rescheduled.
2827          */
2828         set_bit(__IGBVF_DOWN, &adapter->state);
2829         del_timer_sync(&adapter->watchdog_timer);
2830
2831         cancel_work_sync(&adapter->reset_task);
2832         cancel_work_sync(&adapter->watchdog_task);
2833
2834         unregister_netdev(netdev);
2835
2836         igbvf_reset_interrupt_capability(adapter);
2837
2838         /* it is important to delete the NAPI struct prior to freeing the
2839          * Rx ring so that you do not end up with null pointer refs
2840          */
2841         netif_napi_del(&adapter->rx_ring->napi);
2842         kfree(adapter->tx_ring);
2843         kfree(adapter->rx_ring);
2844
2845         iounmap(hw->hw_addr);
2846         if (hw->flash_address)
2847                 iounmap(hw->flash_address);
2848         pci_release_regions(pdev);
2849
2850         free_netdev(netdev);
2851
2852         pci_disable_device(pdev);
2853 }
2854
2855 /* PCI Error Recovery (ERS) */
2856 static const struct pci_error_handlers igbvf_err_handler = {
2857         .error_detected = igbvf_io_error_detected,
2858         .slot_reset = igbvf_io_slot_reset,
2859         .resume = igbvf_io_resume,
2860 };
2861
2862 static const struct pci_device_id igbvf_pci_tbl[] = {
2863         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2864         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2865         { } /* terminate list */
2866 };
2867 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2868
2869 /* PCI Device API Driver */
2870 static struct pci_driver igbvf_driver = {
2871         .name           = igbvf_driver_name,
2872         .id_table       = igbvf_pci_tbl,
2873         .probe          = igbvf_probe,
2874         .remove         = igbvf_remove,
2875 #ifdef CONFIG_PM
2876         /* Power Management Hooks */
2877         .suspend        = igbvf_suspend,
2878         .resume         = igbvf_resume,
2879 #endif
2880         .shutdown       = igbvf_shutdown,
2881         .err_handler    = &igbvf_err_handler
2882 };
2883
2884 /**
2885  * igbvf_init_module - Driver Registration Routine
2886  *
2887  * igbvf_init_module is the first routine called when the driver is
2888  * loaded. All it does is register with the PCI subsystem.
2889  **/
2890 static int __init igbvf_init_module(void)
2891 {
2892         int ret;
2893
2894         pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
2895         pr_info("%s\n", igbvf_copyright);
2896
2897         ret = pci_register_driver(&igbvf_driver);
2898
2899         return ret;
2900 }
2901 module_init(igbvf_init_module);
2902
2903 /**
2904  * igbvf_exit_module - Driver Exit Cleanup Routine
2905  *
2906  * igbvf_exit_module is called just before the driver is removed
2907  * from memory.
2908  **/
2909 static void __exit igbvf_exit_module(void)
2910 {
2911         pci_unregister_driver(&igbvf_driver);
2912 }
2913 module_exit(igbvf_exit_module);
2914
2915 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2916 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2917 MODULE_LICENSE("GPL");
2918 MODULE_VERSION(DRV_VERSION);
2919
2920 /* netdev.c */