Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / net / ethernet / intel / igb / igb_ptp.c
1 /* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
2  *
3  * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 #include <linux/module.h>
19 #include <linux/device.h>
20 #include <linux/pci.h>
21 #include <linux/ptp_classify.h>
22
23 #include "igb.h"
24
25 #define INCVALUE_MASK           0x7fffffff
26 #define ISGN                    0x80000000
27
28 /* The 82580 timesync updates the system timer every 8ns by 8ns,
29  * and this update value cannot be reprogrammed.
30  *
31  * Neither the 82576 nor the 82580 offer registers wide enough to hold
32  * nanoseconds time values for very long. For the 82580, SYSTIM always
33  * counts nanoseconds, but the upper 24 bits are not available. The
34  * frequency is adjusted by changing the 32 bit fractional nanoseconds
35  * register, TIMINCA.
36  *
37  * For the 82576, the SYSTIM register time unit is affect by the
38  * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
39  * field are needed to provide the nominal 16 nanosecond period,
40  * leaving 19 bits for fractional nanoseconds.
41  *
42  * We scale the NIC clock cycle by a large factor so that relatively
43  * small clock corrections can be added or subtracted at each clock
44  * tick. The drawbacks of a large factor are a) that the clock
45  * register overflows more quickly (not such a big deal) and b) that
46  * the increment per tick has to fit into 24 bits.  As a result we
47  * need to use a shift of 19 so we can fit a value of 16 into the
48  * TIMINCA register.
49  *
50  *
51  *             SYSTIMH            SYSTIML
52  *        +--------------+   +---+---+------+
53  *  82576 |      32      |   | 8 | 5 |  19  |
54  *        +--------------+   +---+---+------+
55  *         \________ 45 bits _______/  fract
56  *
57  *        +----------+---+   +--------------+
58  *  82580 |    24    | 8 |   |      32      |
59  *        +----------+---+   +--------------+
60  *          reserved  \______ 40 bits _____/
61  *
62  *
63  * The 45 bit 82576 SYSTIM overflows every
64  *   2^45 * 10^-9 / 3600 = 9.77 hours.
65  *
66  * The 40 bit 82580 SYSTIM overflows every
67  *   2^40 * 10^-9 /  60  = 18.3 minutes.
68  */
69
70 #define IGB_SYSTIM_OVERFLOW_PERIOD      (HZ * 60 * 9)
71 #define IGB_PTP_TX_TIMEOUT              (HZ * 15)
72 #define INCPERIOD_82576                 (1 << E1000_TIMINCA_16NS_SHIFT)
73 #define INCVALUE_82576_MASK             ((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
74 #define INCVALUE_82576                  (16 << IGB_82576_TSYNC_SHIFT)
75 #define IGB_NBITS_82580                 40
76
77 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
78
79 /* SYSTIM read access for the 82576 */
80 static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
81 {
82         struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
83         struct e1000_hw *hw = &igb->hw;
84         u64 val;
85         u32 lo, hi;
86
87         lo = rd32(E1000_SYSTIML);
88         hi = rd32(E1000_SYSTIMH);
89
90         val = ((u64) hi) << 32;
91         val |= lo;
92
93         return val;
94 }
95
96 /* SYSTIM read access for the 82580 */
97 static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
98 {
99         struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
100         struct e1000_hw *hw = &igb->hw;
101         u32 lo, hi;
102         u64 val;
103
104         /* The timestamp latches on lowest register read. For the 82580
105          * the lowest register is SYSTIMR instead of SYSTIML.  However we only
106          * need to provide nanosecond resolution, so we just ignore it.
107          */
108         rd32(E1000_SYSTIMR);
109         lo = rd32(E1000_SYSTIML);
110         hi = rd32(E1000_SYSTIMH);
111
112         val = ((u64) hi) << 32;
113         val |= lo;
114
115         return val;
116 }
117
118 /* SYSTIM read access for I210/I211 */
119 static void igb_ptp_read_i210(struct igb_adapter *adapter,
120                               struct timespec64 *ts)
121 {
122         struct e1000_hw *hw = &adapter->hw;
123         u32 sec, nsec;
124
125         /* The timestamp latches on lowest register read. For I210/I211, the
126          * lowest register is SYSTIMR. Since we only need to provide nanosecond
127          * resolution, we can ignore it.
128          */
129         rd32(E1000_SYSTIMR);
130         nsec = rd32(E1000_SYSTIML);
131         sec = rd32(E1000_SYSTIMH);
132
133         ts->tv_sec = sec;
134         ts->tv_nsec = nsec;
135 }
136
137 static void igb_ptp_write_i210(struct igb_adapter *adapter,
138                                const struct timespec64 *ts)
139 {
140         struct e1000_hw *hw = &adapter->hw;
141
142         /* Writing the SYSTIMR register is not necessary as it only provides
143          * sub-nanosecond resolution.
144          */
145         wr32(E1000_SYSTIML, ts->tv_nsec);
146         wr32(E1000_SYSTIMH, ts->tv_sec);
147 }
148
149 /**
150  * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
151  * @adapter: board private structure
152  * @hwtstamps: timestamp structure to update
153  * @systim: unsigned 64bit system time value.
154  *
155  * We need to convert the system time value stored in the RX/TXSTMP registers
156  * into a hwtstamp which can be used by the upper level timestamping functions.
157  *
158  * The 'tmreg_lock' spinlock is used to protect the consistency of the
159  * system time value. This is needed because reading the 64 bit time
160  * value involves reading two (or three) 32 bit registers. The first
161  * read latches the value. Ditto for writing.
162  *
163  * In addition, here have extended the system time with an overflow
164  * counter in software.
165  **/
166 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
167                                        struct skb_shared_hwtstamps *hwtstamps,
168                                        u64 systim)
169 {
170         unsigned long flags;
171         u64 ns;
172
173         switch (adapter->hw.mac.type) {
174         case e1000_82576:
175         case e1000_82580:
176         case e1000_i354:
177         case e1000_i350:
178                 spin_lock_irqsave(&adapter->tmreg_lock, flags);
179
180                 ns = timecounter_cyc2time(&adapter->tc, systim);
181
182                 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
183
184                 memset(hwtstamps, 0, sizeof(*hwtstamps));
185                 hwtstamps->hwtstamp = ns_to_ktime(ns);
186                 break;
187         case e1000_i210:
188         case e1000_i211:
189                 memset(hwtstamps, 0, sizeof(*hwtstamps));
190                 /* Upper 32 bits contain s, lower 32 bits contain ns. */
191                 hwtstamps->hwtstamp = ktime_set(systim >> 32,
192                                                 systim & 0xFFFFFFFF);
193                 break;
194         default:
195                 break;
196         }
197 }
198
199 /* PTP clock operations */
200 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
201 {
202         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
203                                                ptp_caps);
204         struct e1000_hw *hw = &igb->hw;
205         int neg_adj = 0;
206         u64 rate;
207         u32 incvalue;
208
209         if (ppb < 0) {
210                 neg_adj = 1;
211                 ppb = -ppb;
212         }
213         rate = ppb;
214         rate <<= 14;
215         rate = div_u64(rate, 1953125);
216
217         incvalue = 16 << IGB_82576_TSYNC_SHIFT;
218
219         if (neg_adj)
220                 incvalue -= rate;
221         else
222                 incvalue += rate;
223
224         wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
225
226         return 0;
227 }
228
229 static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
230 {
231         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
232                                                ptp_caps);
233         struct e1000_hw *hw = &igb->hw;
234         int neg_adj = 0;
235         u64 rate;
236         u32 inca;
237
238         if (ppb < 0) {
239                 neg_adj = 1;
240                 ppb = -ppb;
241         }
242         rate = ppb;
243         rate <<= 26;
244         rate = div_u64(rate, 1953125);
245
246         inca = rate & INCVALUE_MASK;
247         if (neg_adj)
248                 inca |= ISGN;
249
250         wr32(E1000_TIMINCA, inca);
251
252         return 0;
253 }
254
255 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
256 {
257         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
258                                                ptp_caps);
259         unsigned long flags;
260
261         spin_lock_irqsave(&igb->tmreg_lock, flags);
262         timecounter_adjtime(&igb->tc, delta);
263         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
264
265         return 0;
266 }
267
268 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
269 {
270         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
271                                                ptp_caps);
272         unsigned long flags;
273         struct timespec64 now, then = ns_to_timespec64(delta);
274
275         spin_lock_irqsave(&igb->tmreg_lock, flags);
276
277         igb_ptp_read_i210(igb, &now);
278         now = timespec64_add(now, then);
279         igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
280
281         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
282
283         return 0;
284 }
285
286 static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
287                                  struct timespec64 *ts)
288 {
289         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
290                                                ptp_caps);
291         unsigned long flags;
292         u64 ns;
293
294         spin_lock_irqsave(&igb->tmreg_lock, flags);
295
296         ns = timecounter_read(&igb->tc);
297
298         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
299
300         *ts = ns_to_timespec64(ns);
301
302         return 0;
303 }
304
305 static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
306                                 struct timespec64 *ts)
307 {
308         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
309                                                ptp_caps);
310         unsigned long flags;
311
312         spin_lock_irqsave(&igb->tmreg_lock, flags);
313
314         igb_ptp_read_i210(igb, ts);
315
316         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
317
318         return 0;
319 }
320
321 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
322                                  const struct timespec64 *ts)
323 {
324         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
325                                                ptp_caps);
326         unsigned long flags;
327         u64 ns;
328
329         ns = timespec64_to_ns(ts);
330
331         spin_lock_irqsave(&igb->tmreg_lock, flags);
332
333         timecounter_init(&igb->tc, &igb->cc, ns);
334
335         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
336
337         return 0;
338 }
339
340 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
341                                 const struct timespec64 *ts)
342 {
343         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
344                                                ptp_caps);
345         unsigned long flags;
346
347         spin_lock_irqsave(&igb->tmreg_lock, flags);
348
349         igb_ptp_write_i210(igb, ts);
350
351         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
352
353         return 0;
354 }
355
356 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
357 {
358         u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
359         static const u32 mask[IGB_N_SDP] = {
360                 E1000_CTRL_SDP0_DIR,
361                 E1000_CTRL_SDP1_DIR,
362                 E1000_CTRL_EXT_SDP2_DIR,
363                 E1000_CTRL_EXT_SDP3_DIR,
364         };
365
366         if (input)
367                 *ptr &= ~mask[pin];
368         else
369                 *ptr |= mask[pin];
370 }
371
372 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
373 {
374         static const u32 aux0_sel_sdp[IGB_N_SDP] = {
375                 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
376         };
377         static const u32 aux1_sel_sdp[IGB_N_SDP] = {
378                 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
379         };
380         static const u32 ts_sdp_en[IGB_N_SDP] = {
381                 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
382         };
383         struct e1000_hw *hw = &igb->hw;
384         u32 ctrl, ctrl_ext, tssdp = 0;
385
386         ctrl = rd32(E1000_CTRL);
387         ctrl_ext = rd32(E1000_CTRL_EXT);
388         tssdp = rd32(E1000_TSSDP);
389
390         igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
391
392         /* Make sure this pin is not enabled as an output. */
393         tssdp &= ~ts_sdp_en[pin];
394
395         if (chan == 1) {
396                 tssdp &= ~AUX1_SEL_SDP3;
397                 tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
398         } else {
399                 tssdp &= ~AUX0_SEL_SDP3;
400                 tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
401         }
402
403         wr32(E1000_TSSDP, tssdp);
404         wr32(E1000_CTRL, ctrl);
405         wr32(E1000_CTRL_EXT, ctrl_ext);
406 }
407
408 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin)
409 {
410         static const u32 aux0_sel_sdp[IGB_N_SDP] = {
411                 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
412         };
413         static const u32 aux1_sel_sdp[IGB_N_SDP] = {
414                 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
415         };
416         static const u32 ts_sdp_en[IGB_N_SDP] = {
417                 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
418         };
419         static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
420                 TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
421                 TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
422         };
423         static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
424                 TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
425                 TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
426         };
427         static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
428                 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
429                 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
430         };
431         struct e1000_hw *hw = &igb->hw;
432         u32 ctrl, ctrl_ext, tssdp = 0;
433
434         ctrl = rd32(E1000_CTRL);
435         ctrl_ext = rd32(E1000_CTRL_EXT);
436         tssdp = rd32(E1000_TSSDP);
437
438         igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
439
440         /* Make sure this pin is not enabled as an input. */
441         if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
442                 tssdp &= ~AUX0_TS_SDP_EN;
443
444         if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
445                 tssdp &= ~AUX1_TS_SDP_EN;
446
447         tssdp &= ~ts_sdp_sel_clr[pin];
448         if (chan == 1)
449                 tssdp |= ts_sdp_sel_tt1[pin];
450         else
451                 tssdp |= ts_sdp_sel_tt0[pin];
452
453         tssdp |= ts_sdp_en[pin];
454
455         wr32(E1000_TSSDP, tssdp);
456         wr32(E1000_CTRL, ctrl);
457         wr32(E1000_CTRL_EXT, ctrl_ext);
458 }
459
460 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
461                                        struct ptp_clock_request *rq, int on)
462 {
463         struct igb_adapter *igb =
464                 container_of(ptp, struct igb_adapter, ptp_caps);
465         struct e1000_hw *hw = &igb->hw;
466         u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh;
467         unsigned long flags;
468         struct timespec ts;
469         int pin = -1;
470         s64 ns;
471
472         switch (rq->type) {
473         case PTP_CLK_REQ_EXTTS:
474                 if (on) {
475                         pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
476                                            rq->extts.index);
477                         if (pin < 0)
478                                 return -EBUSY;
479                 }
480                 if (rq->extts.index == 1) {
481                         tsauxc_mask = TSAUXC_EN_TS1;
482                         tsim_mask = TSINTR_AUTT1;
483                 } else {
484                         tsauxc_mask = TSAUXC_EN_TS0;
485                         tsim_mask = TSINTR_AUTT0;
486                 }
487                 spin_lock_irqsave(&igb->tmreg_lock, flags);
488                 tsauxc = rd32(E1000_TSAUXC);
489                 tsim = rd32(E1000_TSIM);
490                 if (on) {
491                         igb_pin_extts(igb, rq->extts.index, pin);
492                         tsauxc |= tsauxc_mask;
493                         tsim |= tsim_mask;
494                 } else {
495                         tsauxc &= ~tsauxc_mask;
496                         tsim &= ~tsim_mask;
497                 }
498                 wr32(E1000_TSAUXC, tsauxc);
499                 wr32(E1000_TSIM, tsim);
500                 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
501                 return 0;
502
503         case PTP_CLK_REQ_PEROUT:
504                 if (on) {
505                         pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
506                                            rq->perout.index);
507                         if (pin < 0)
508                                 return -EBUSY;
509                 }
510                 ts.tv_sec = rq->perout.period.sec;
511                 ts.tv_nsec = rq->perout.period.nsec;
512                 ns = timespec_to_ns(&ts);
513                 ns = ns >> 1;
514                 if (on && ns < 500000LL) {
515                         /* 2k interrupts per second is an awful lot. */
516                         return -EINVAL;
517                 }
518                 ts = ns_to_timespec(ns);
519                 if (rq->perout.index == 1) {
520                         tsauxc_mask = TSAUXC_EN_TT1;
521                         tsim_mask = TSINTR_TT1;
522                         trgttiml = E1000_TRGTTIML1;
523                         trgttimh = E1000_TRGTTIMH1;
524                 } else {
525                         tsauxc_mask = TSAUXC_EN_TT0;
526                         tsim_mask = TSINTR_TT0;
527                         trgttiml = E1000_TRGTTIML0;
528                         trgttimh = E1000_TRGTTIMH0;
529                 }
530                 spin_lock_irqsave(&igb->tmreg_lock, flags);
531                 tsauxc = rd32(E1000_TSAUXC);
532                 tsim = rd32(E1000_TSIM);
533                 if (on) {
534                         int i = rq->perout.index;
535
536                         igb_pin_perout(igb, i, pin);
537                         igb->perout[i].start.tv_sec = rq->perout.start.sec;
538                         igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
539                         igb->perout[i].period.tv_sec = ts.tv_sec;
540                         igb->perout[i].period.tv_nsec = ts.tv_nsec;
541                         wr32(trgttimh, rq->perout.start.sec);
542                         wr32(trgttiml, rq->perout.start.nsec);
543                         tsauxc |= tsauxc_mask;
544                         tsim |= tsim_mask;
545                 } else {
546                         tsauxc &= ~tsauxc_mask;
547                         tsim &= ~tsim_mask;
548                 }
549                 wr32(E1000_TSAUXC, tsauxc);
550                 wr32(E1000_TSIM, tsim);
551                 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
552                 return 0;
553
554         case PTP_CLK_REQ_PPS:
555                 spin_lock_irqsave(&igb->tmreg_lock, flags);
556                 tsim = rd32(E1000_TSIM);
557                 if (on)
558                         tsim |= TSINTR_SYS_WRAP;
559                 else
560                         tsim &= ~TSINTR_SYS_WRAP;
561                 wr32(E1000_TSIM, tsim);
562                 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
563                 return 0;
564         }
565
566         return -EOPNOTSUPP;
567 }
568
569 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
570                                   struct ptp_clock_request *rq, int on)
571 {
572         return -EOPNOTSUPP;
573 }
574
575 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
576                               enum ptp_pin_function func, unsigned int chan)
577 {
578         switch (func) {
579         case PTP_PF_NONE:
580         case PTP_PF_EXTTS:
581         case PTP_PF_PEROUT:
582                 break;
583         case PTP_PF_PHYSYNC:
584                 return -1;
585         }
586         return 0;
587 }
588
589 /**
590  * igb_ptp_tx_work
591  * @work: pointer to work struct
592  *
593  * This work function polls the TSYNCTXCTL valid bit to determine when a
594  * timestamp has been taken for the current stored skb.
595  **/
596 static void igb_ptp_tx_work(struct work_struct *work)
597 {
598         struct igb_adapter *adapter = container_of(work, struct igb_adapter,
599                                                    ptp_tx_work);
600         struct e1000_hw *hw = &adapter->hw;
601         u32 tsynctxctl;
602
603         if (!adapter->ptp_tx_skb)
604                 return;
605
606         if (time_is_before_jiffies(adapter->ptp_tx_start +
607                                    IGB_PTP_TX_TIMEOUT)) {
608                 dev_kfree_skb_any(adapter->ptp_tx_skb);
609                 adapter->ptp_tx_skb = NULL;
610                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
611                 adapter->tx_hwtstamp_timeouts++;
612                 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
613                 return;
614         }
615
616         tsynctxctl = rd32(E1000_TSYNCTXCTL);
617         if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
618                 igb_ptp_tx_hwtstamp(adapter);
619         else
620                 /* reschedule to check later */
621                 schedule_work(&adapter->ptp_tx_work);
622 }
623
624 static void igb_ptp_overflow_check(struct work_struct *work)
625 {
626         struct igb_adapter *igb =
627                 container_of(work, struct igb_adapter, ptp_overflow_work.work);
628         struct timespec64 ts;
629
630         igb->ptp_caps.gettime64(&igb->ptp_caps, &ts);
631
632         pr_debug("igb overflow check at %lld.%09lu\n",
633                  (long long) ts.tv_sec, ts.tv_nsec);
634
635         schedule_delayed_work(&igb->ptp_overflow_work,
636                               IGB_SYSTIM_OVERFLOW_PERIOD);
637 }
638
639 /**
640  * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
641  * @adapter: private network adapter structure
642  *
643  * This watchdog task is scheduled to detect error case where hardware has
644  * dropped an Rx packet that was timestamped when the ring is full. The
645  * particular error is rare but leaves the device in a state unable to timestamp
646  * any future packets.
647  **/
648 void igb_ptp_rx_hang(struct igb_adapter *adapter)
649 {
650         struct e1000_hw *hw = &adapter->hw;
651         u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
652         unsigned long rx_event;
653
654         if (hw->mac.type != e1000_82576)
655                 return;
656
657         /* If we don't have a valid timestamp in the registers, just update the
658          * timeout counter and exit
659          */
660         if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
661                 adapter->last_rx_ptp_check = jiffies;
662                 return;
663         }
664
665         /* Determine the most recent watchdog or rx_timestamp event */
666         rx_event = adapter->last_rx_ptp_check;
667         if (time_after(adapter->last_rx_timestamp, rx_event))
668                 rx_event = adapter->last_rx_timestamp;
669
670         /* Only need to read the high RXSTMP register to clear the lock */
671         if (time_is_before_jiffies(rx_event + 5 * HZ)) {
672                 rd32(E1000_RXSTMPH);
673                 adapter->last_rx_ptp_check = jiffies;
674                 adapter->rx_hwtstamp_cleared++;
675                 dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
676         }
677 }
678
679 /**
680  * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
681  * @adapter: Board private structure.
682  *
683  * If we were asked to do hardware stamping and such a time stamp is
684  * available, then it must have been for this skb here because we only
685  * allow only one such packet into the queue.
686  **/
687 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
688 {
689         struct e1000_hw *hw = &adapter->hw;
690         struct skb_shared_hwtstamps shhwtstamps;
691         u64 regval;
692
693         regval = rd32(E1000_TXSTMPL);
694         regval |= (u64)rd32(E1000_TXSTMPH) << 32;
695
696         igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
697         skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
698         dev_kfree_skb_any(adapter->ptp_tx_skb);
699         adapter->ptp_tx_skb = NULL;
700         clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
701 }
702
703 /**
704  * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
705  * @q_vector: Pointer to interrupt specific structure
706  * @va: Pointer to address containing Rx buffer
707  * @skb: Buffer containing timestamp and packet
708  *
709  * This function is meant to retrieve a timestamp from the first buffer of an
710  * incoming frame.  The value is stored in little endian format starting on
711  * byte 8.
712  **/
713 void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector,
714                          unsigned char *va,
715                          struct sk_buff *skb)
716 {
717         __le64 *regval = (__le64 *)va;
718
719         /* The timestamp is recorded in little endian format.
720          * DWORD: 0        1        2        3
721          * Field: Reserved Reserved SYSTIML  SYSTIMH
722          */
723         igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
724                                    le64_to_cpu(regval[1]));
725 }
726
727 /**
728  * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
729  * @q_vector: Pointer to interrupt specific structure
730  * @skb: Buffer containing timestamp and packet
731  *
732  * This function is meant to retrieve a timestamp from the internal registers
733  * of the adapter and store it in the skb.
734  **/
735 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
736                          struct sk_buff *skb)
737 {
738         struct igb_adapter *adapter = q_vector->adapter;
739         struct e1000_hw *hw = &adapter->hw;
740         u64 regval;
741
742         /* If this bit is set, then the RX registers contain the time stamp. No
743          * other packet will be time stamped until we read these registers, so
744          * read the registers to make them available again. Because only one
745          * packet can be time stamped at a time, we know that the register
746          * values must belong to this one here and therefore we don't need to
747          * compare any of the additional attributes stored for it.
748          *
749          * If nothing went wrong, then it should have a shared tx_flags that we
750          * can turn into a skb_shared_hwtstamps.
751          */
752         if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
753                 return;
754
755         regval = rd32(E1000_RXSTMPL);
756         regval |= (u64)rd32(E1000_RXSTMPH) << 32;
757
758         igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
759
760         /* Update the last_rx_timestamp timer in order to enable watchdog check
761          * for error case of latched timestamp on a dropped packet.
762          */
763         adapter->last_rx_timestamp = jiffies;
764 }
765
766 /**
767  * igb_ptp_get_ts_config - get hardware time stamping config
768  * @netdev:
769  * @ifreq:
770  *
771  * Get the hwtstamp_config settings to return to the user. Rather than attempt
772  * to deconstruct the settings from the registers, just return a shadow copy
773  * of the last known settings.
774  **/
775 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
776 {
777         struct igb_adapter *adapter = netdev_priv(netdev);
778         struct hwtstamp_config *config = &adapter->tstamp_config;
779
780         return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
781                 -EFAULT : 0;
782 }
783
784 /**
785  * igb_ptp_set_timestamp_mode - setup hardware for timestamping
786  * @adapter: networking device structure
787  * @config: hwtstamp configuration
788  *
789  * Outgoing time stamping can be enabled and disabled. Play nice and
790  * disable it when requested, although it shouldn't case any overhead
791  * when no packet needs it. At most one packet in the queue may be
792  * marked for time stamping, otherwise it would be impossible to tell
793  * for sure to which packet the hardware time stamp belongs.
794  *
795  * Incoming time stamping has to be configured via the hardware
796  * filters. Not all combinations are supported, in particular event
797  * type has to be specified. Matching the kind of event packet is
798  * not supported, with the exception of "all V2 events regardless of
799  * level 2 or 4".
800  */
801 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
802                                       struct hwtstamp_config *config)
803 {
804         struct e1000_hw *hw = &adapter->hw;
805         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
806         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
807         u32 tsync_rx_cfg = 0;
808         bool is_l4 = false;
809         bool is_l2 = false;
810         u32 regval;
811
812         /* reserved for future extensions */
813         if (config->flags)
814                 return -EINVAL;
815
816         switch (config->tx_type) {
817         case HWTSTAMP_TX_OFF:
818                 tsync_tx_ctl = 0;
819         case HWTSTAMP_TX_ON:
820                 break;
821         default:
822                 return -ERANGE;
823         }
824
825         switch (config->rx_filter) {
826         case HWTSTAMP_FILTER_NONE:
827                 tsync_rx_ctl = 0;
828                 break;
829         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
830                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
831                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
832                 is_l4 = true;
833                 break;
834         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
835                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
836                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
837                 is_l4 = true;
838                 break;
839         case HWTSTAMP_FILTER_PTP_V2_EVENT:
840         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
841         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
842         case HWTSTAMP_FILTER_PTP_V2_SYNC:
843         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
844         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
845         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
846         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
847         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
848                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
849                 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
850                 is_l2 = true;
851                 is_l4 = true;
852                 break;
853         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
854         case HWTSTAMP_FILTER_ALL:
855                 /* 82576 cannot timestamp all packets, which it needs to do to
856                  * support both V1 Sync and Delay_Req messages
857                  */
858                 if (hw->mac.type != e1000_82576) {
859                         tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
860                         config->rx_filter = HWTSTAMP_FILTER_ALL;
861                         break;
862                 }
863                 /* fall through */
864         default:
865                 config->rx_filter = HWTSTAMP_FILTER_NONE;
866                 return -ERANGE;
867         }
868
869         if (hw->mac.type == e1000_82575) {
870                 if (tsync_rx_ctl | tsync_tx_ctl)
871                         return -EINVAL;
872                 return 0;
873         }
874
875         /* Per-packet timestamping only works if all packets are
876          * timestamped, so enable timestamping in all packets as
877          * long as one Rx filter was configured.
878          */
879         if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
880                 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
881                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
882                 config->rx_filter = HWTSTAMP_FILTER_ALL;
883                 is_l2 = true;
884                 is_l4 = true;
885
886                 if ((hw->mac.type == e1000_i210) ||
887                     (hw->mac.type == e1000_i211)) {
888                         regval = rd32(E1000_RXPBS);
889                         regval |= E1000_RXPBS_CFG_TS_EN;
890                         wr32(E1000_RXPBS, regval);
891                 }
892         }
893
894         /* enable/disable TX */
895         regval = rd32(E1000_TSYNCTXCTL);
896         regval &= ~E1000_TSYNCTXCTL_ENABLED;
897         regval |= tsync_tx_ctl;
898         wr32(E1000_TSYNCTXCTL, regval);
899
900         /* enable/disable RX */
901         regval = rd32(E1000_TSYNCRXCTL);
902         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
903         regval |= tsync_rx_ctl;
904         wr32(E1000_TSYNCRXCTL, regval);
905
906         /* define which PTP packets are time stamped */
907         wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
908
909         /* define ethertype filter for timestamped packets */
910         if (is_l2)
911                 wr32(E1000_ETQF(3),
912                      (E1000_ETQF_FILTER_ENABLE | /* enable filter */
913                       E1000_ETQF_1588 | /* enable timestamping */
914                       ETH_P_1588));     /* 1588 eth protocol type */
915         else
916                 wr32(E1000_ETQF(3), 0);
917
918         /* L4 Queue Filter[3]: filter by destination port and protocol */
919         if (is_l4) {
920                 u32 ftqf = (IPPROTO_UDP /* UDP */
921                         | E1000_FTQF_VF_BP /* VF not compared */
922                         | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
923                         | E1000_FTQF_MASK); /* mask all inputs */
924                 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
925
926                 wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
927                 wr32(E1000_IMIREXT(3),
928                      (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
929                 if (hw->mac.type == e1000_82576) {
930                         /* enable source port check */
931                         wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
932                         ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
933                 }
934                 wr32(E1000_FTQF(3), ftqf);
935         } else {
936                 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
937         }
938         wrfl();
939
940         /* clear TX/RX time stamp registers, just to be sure */
941         regval = rd32(E1000_TXSTMPL);
942         regval = rd32(E1000_TXSTMPH);
943         regval = rd32(E1000_RXSTMPL);
944         regval = rd32(E1000_RXSTMPH);
945
946         return 0;
947 }
948
949 /**
950  * igb_ptp_set_ts_config - set hardware time stamping config
951  * @netdev:
952  * @ifreq:
953  *
954  **/
955 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
956 {
957         struct igb_adapter *adapter = netdev_priv(netdev);
958         struct hwtstamp_config config;
959         int err;
960
961         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
962                 return -EFAULT;
963
964         err = igb_ptp_set_timestamp_mode(adapter, &config);
965         if (err)
966                 return err;
967
968         /* save these settings for future reference */
969         memcpy(&adapter->tstamp_config, &config,
970                sizeof(adapter->tstamp_config));
971
972         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
973                 -EFAULT : 0;
974 }
975
976 void igb_ptp_init(struct igb_adapter *adapter)
977 {
978         struct e1000_hw *hw = &adapter->hw;
979         struct net_device *netdev = adapter->netdev;
980         int i;
981
982         switch (hw->mac.type) {
983         case e1000_82576:
984                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
985                 adapter->ptp_caps.owner = THIS_MODULE;
986                 adapter->ptp_caps.max_adj = 999999881;
987                 adapter->ptp_caps.n_ext_ts = 0;
988                 adapter->ptp_caps.pps = 0;
989                 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
990                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
991                 adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
992                 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
993                 adapter->ptp_caps.enable = igb_ptp_feature_enable;
994                 adapter->cc.read = igb_ptp_read_82576;
995                 adapter->cc.mask = CYCLECOUNTER_MASK(64);
996                 adapter->cc.mult = 1;
997                 adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
998                 /* Dial the nominal frequency. */
999                 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1000                 break;
1001         case e1000_82580:
1002         case e1000_i354:
1003         case e1000_i350:
1004                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1005                 adapter->ptp_caps.owner = THIS_MODULE;
1006                 adapter->ptp_caps.max_adj = 62499999;
1007                 adapter->ptp_caps.n_ext_ts = 0;
1008                 adapter->ptp_caps.pps = 0;
1009                 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
1010                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1011                 adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1012                 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1013                 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1014                 adapter->cc.read = igb_ptp_read_82580;
1015                 adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1016                 adapter->cc.mult = 1;
1017                 adapter->cc.shift = 0;
1018                 /* Enable the timer functions by clearing bit 31. */
1019                 wr32(E1000_TSAUXC, 0x0);
1020                 break;
1021         case e1000_i210:
1022         case e1000_i211:
1023                 for (i = 0; i < IGB_N_SDP; i++) {
1024                         struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1025
1026                         snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1027                         ppd->index = i;
1028                         ppd->func = PTP_PF_NONE;
1029                 }
1030                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1031                 adapter->ptp_caps.owner = THIS_MODULE;
1032                 adapter->ptp_caps.max_adj = 62499999;
1033                 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1034                 adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1035                 adapter->ptp_caps.n_pins = IGB_N_SDP;
1036                 adapter->ptp_caps.pps = 1;
1037                 adapter->ptp_caps.pin_config = adapter->sdp_config;
1038                 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
1039                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1040                 adapter->ptp_caps.gettime64 = igb_ptp_gettime_i210;
1041                 adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1042                 adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1043                 adapter->ptp_caps.verify = igb_ptp_verify_pin;
1044                 /* Enable the timer functions by clearing bit 31. */
1045                 wr32(E1000_TSAUXC, 0x0);
1046                 break;
1047         default:
1048                 adapter->ptp_clock = NULL;
1049                 return;
1050         }
1051
1052         wrfl();
1053
1054         spin_lock_init(&adapter->tmreg_lock);
1055         INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1056
1057         /* Initialize the clock and overflow work for devices that need it. */
1058         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1059                 struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1060
1061                 igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
1062         } else {
1063                 timecounter_init(&adapter->tc, &adapter->cc,
1064                                  ktime_to_ns(ktime_get_real()));
1065
1066                 INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1067                                   igb_ptp_overflow_check);
1068
1069                 schedule_delayed_work(&adapter->ptp_overflow_work,
1070                                       IGB_SYSTIM_OVERFLOW_PERIOD);
1071         }
1072
1073         /* Initialize the time sync interrupts for devices that support it. */
1074         if (hw->mac.type >= e1000_82580) {
1075                 wr32(E1000_TSIM, TSYNC_INTERRUPTS);
1076                 wr32(E1000_IMS, E1000_IMS_TS);
1077         }
1078
1079         adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1080         adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1081
1082         adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1083                                                 &adapter->pdev->dev);
1084         if (IS_ERR(adapter->ptp_clock)) {
1085                 adapter->ptp_clock = NULL;
1086                 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1087         } else {
1088                 dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1089                          adapter->netdev->name);
1090                 adapter->flags |= IGB_FLAG_PTP;
1091         }
1092 }
1093
1094 /**
1095  * igb_ptp_stop - Disable PTP device and stop the overflow check.
1096  * @adapter: Board private structure.
1097  *
1098  * This function stops the PTP support and cancels the delayed work.
1099  **/
1100 void igb_ptp_stop(struct igb_adapter *adapter)
1101 {
1102         switch (adapter->hw.mac.type) {
1103         case e1000_82576:
1104         case e1000_82580:
1105         case e1000_i354:
1106         case e1000_i350:
1107                 cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1108                 break;
1109         case e1000_i210:
1110         case e1000_i211:
1111                 /* No delayed work to cancel. */
1112                 break;
1113         default:
1114                 return;
1115         }
1116
1117         cancel_work_sync(&adapter->ptp_tx_work);
1118         if (adapter->ptp_tx_skb) {
1119                 dev_kfree_skb_any(adapter->ptp_tx_skb);
1120                 adapter->ptp_tx_skb = NULL;
1121                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1122         }
1123
1124         if (adapter->ptp_clock) {
1125                 ptp_clock_unregister(adapter->ptp_clock);
1126                 dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1127                          adapter->netdev->name);
1128                 adapter->flags &= ~IGB_FLAG_PTP;
1129         }
1130 }
1131
1132 /**
1133  * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1134  * @adapter: Board private structure.
1135  *
1136  * This function handles the reset work required to re-enable the PTP device.
1137  **/
1138 void igb_ptp_reset(struct igb_adapter *adapter)
1139 {
1140         struct e1000_hw *hw = &adapter->hw;
1141         unsigned long flags;
1142
1143         if (!(adapter->flags & IGB_FLAG_PTP))
1144                 return;
1145
1146         /* reset the tstamp_config */
1147         igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1148
1149         spin_lock_irqsave(&adapter->tmreg_lock, flags);
1150
1151         switch (adapter->hw.mac.type) {
1152         case e1000_82576:
1153                 /* Dial the nominal frequency. */
1154                 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1155                 break;
1156         case e1000_82580:
1157         case e1000_i354:
1158         case e1000_i350:
1159         case e1000_i210:
1160         case e1000_i211:
1161                 wr32(E1000_TSAUXC, 0x0);
1162                 wr32(E1000_TSSDP, 0x0);
1163                 wr32(E1000_TSIM, TSYNC_INTERRUPTS);
1164                 wr32(E1000_IMS, E1000_IMS_TS);
1165                 break;
1166         default:
1167                 /* No work to do. */
1168                 goto out;
1169         }
1170
1171         /* Re-initialize the timer. */
1172         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1173                 struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1174
1175                 igb_ptp_write_i210(adapter, &ts);
1176         } else {
1177                 timecounter_init(&adapter->tc, &adapter->cc,
1178                                  ktime_to_ns(ktime_get_real()));
1179         }
1180 out:
1181         spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1182 }