Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / net / ethernet / intel / igb / igb_main.c
1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <linux/bitops.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pagemap.h>
32 #include <linux/netdevice.h>
33 #include <linux/ipv6.h>
34 #include <linux/slab.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/ip.h>
47 #include <linux/tcp.h>
48 #include <linux/sctp.h>
49 #include <linux/if_ether.h>
50 #include <linux/aer.h>
51 #include <linux/prefetch.h>
52 #include <linux/pm_runtime.h>
53 #ifdef CONFIG_IGB_DCA
54 #include <linux/dca.h>
55 #endif
56 #include <linux/i2c.h>
57 #include "igb.h"
58
59 #define MAJ 5
60 #define MIN 2
61 #define BUILD 15
62 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
63 __stringify(BUILD) "-k"
64 char igb_driver_name[] = "igb";
65 char igb_driver_version[] = DRV_VERSION;
66 static const char igb_driver_string[] =
67                                 "Intel(R) Gigabit Ethernet Network Driver";
68 static const char igb_copyright[] =
69                                 "Copyright (c) 2007-2014 Intel Corporation.";
70
71 static const struct e1000_info *igb_info_tbl[] = {
72         [board_82575] = &e1000_82575_info,
73 };
74
75 static const struct pci_device_id igb_pci_tbl[] = {
76         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
77         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
78         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
79         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
80         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
81         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
82         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
83         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
84         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
85         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
86         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
87         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
88         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
89         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
90         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
91         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
92         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
93         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
94         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
95         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
96         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
97         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
98         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
99         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
100         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
101         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
102         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
103         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
104         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
105         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
106         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
107         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
108         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
109         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
110         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
111         /* required last entry */
112         {0, }
113 };
114
115 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
116
117 static int igb_setup_all_tx_resources(struct igb_adapter *);
118 static int igb_setup_all_rx_resources(struct igb_adapter *);
119 static void igb_free_all_tx_resources(struct igb_adapter *);
120 static void igb_free_all_rx_resources(struct igb_adapter *);
121 static void igb_setup_mrqc(struct igb_adapter *);
122 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
123 static void igb_remove(struct pci_dev *pdev);
124 static int igb_sw_init(struct igb_adapter *);
125 static int igb_open(struct net_device *);
126 static int igb_close(struct net_device *);
127 static void igb_configure(struct igb_adapter *);
128 static void igb_configure_tx(struct igb_adapter *);
129 static void igb_configure_rx(struct igb_adapter *);
130 static void igb_clean_all_tx_rings(struct igb_adapter *);
131 static void igb_clean_all_rx_rings(struct igb_adapter *);
132 static void igb_clean_tx_ring(struct igb_ring *);
133 static void igb_clean_rx_ring(struct igb_ring *);
134 static void igb_set_rx_mode(struct net_device *);
135 static void igb_update_phy_info(unsigned long);
136 static void igb_watchdog(unsigned long);
137 static void igb_watchdog_task(struct work_struct *);
138 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
139 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
140                                           struct rtnl_link_stats64 *stats);
141 static int igb_change_mtu(struct net_device *, int);
142 static int igb_set_mac(struct net_device *, void *);
143 static void igb_set_uta(struct igb_adapter *adapter);
144 static irqreturn_t igb_intr(int irq, void *);
145 static irqreturn_t igb_intr_msi(int irq, void *);
146 static irqreturn_t igb_msix_other(int irq, void *);
147 static irqreturn_t igb_msix_ring(int irq, void *);
148 #ifdef CONFIG_IGB_DCA
149 static void igb_update_dca(struct igb_q_vector *);
150 static void igb_setup_dca(struct igb_adapter *);
151 #endif /* CONFIG_IGB_DCA */
152 static int igb_poll(struct napi_struct *, int);
153 static bool igb_clean_tx_irq(struct igb_q_vector *);
154 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
155 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
156 static void igb_tx_timeout(struct net_device *);
157 static void igb_reset_task(struct work_struct *);
158 static void igb_vlan_mode(struct net_device *netdev,
159                           netdev_features_t features);
160 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
161 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
162 static void igb_restore_vlan(struct igb_adapter *);
163 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
164 static void igb_ping_all_vfs(struct igb_adapter *);
165 static void igb_msg_task(struct igb_adapter *);
166 static void igb_vmm_control(struct igb_adapter *);
167 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
168 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
169 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
170 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
171                                int vf, u16 vlan, u8 qos);
172 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
173 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
174                                    bool setting);
175 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176                                  struct ifla_vf_info *ivi);
177 static void igb_check_vf_rate_limit(struct igb_adapter *);
178
179 #ifdef CONFIG_PCI_IOV
180 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
181 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
182 #endif
183
184 #ifdef CONFIG_PM
185 #ifdef CONFIG_PM_SLEEP
186 static int igb_suspend(struct device *);
187 #endif
188 static int igb_resume(struct device *);
189 static int igb_runtime_suspend(struct device *dev);
190 static int igb_runtime_resume(struct device *dev);
191 static int igb_runtime_idle(struct device *dev);
192 static const struct dev_pm_ops igb_pm_ops = {
193         SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
194         SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
195                         igb_runtime_idle)
196 };
197 #endif
198 static void igb_shutdown(struct pci_dev *);
199 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
200 #ifdef CONFIG_IGB_DCA
201 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
202 static struct notifier_block dca_notifier = {
203         .notifier_call  = igb_notify_dca,
204         .next           = NULL,
205         .priority       = 0
206 };
207 #endif
208 #ifdef CONFIG_NET_POLL_CONTROLLER
209 /* for netdump / net console */
210 static void igb_netpoll(struct net_device *);
211 #endif
212 #ifdef CONFIG_PCI_IOV
213 static unsigned int max_vfs;
214 module_param(max_vfs, uint, 0);
215 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
216 #endif /* CONFIG_PCI_IOV */
217
218 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
219                      pci_channel_state_t);
220 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
221 static void igb_io_resume(struct pci_dev *);
222
223 static const struct pci_error_handlers igb_err_handler = {
224         .error_detected = igb_io_error_detected,
225         .slot_reset = igb_io_slot_reset,
226         .resume = igb_io_resume,
227 };
228
229 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
230
231 static struct pci_driver igb_driver = {
232         .name     = igb_driver_name,
233         .id_table = igb_pci_tbl,
234         .probe    = igb_probe,
235         .remove   = igb_remove,
236 #ifdef CONFIG_PM
237         .driver.pm = &igb_pm_ops,
238 #endif
239         .shutdown = igb_shutdown,
240         .sriov_configure = igb_pci_sriov_configure,
241         .err_handler = &igb_err_handler
242 };
243
244 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
245 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
246 MODULE_LICENSE("GPL");
247 MODULE_VERSION(DRV_VERSION);
248
249 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
250 static int debug = -1;
251 module_param(debug, int, 0);
252 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
253
254 struct igb_reg_info {
255         u32 ofs;
256         char *name;
257 };
258
259 static const struct igb_reg_info igb_reg_info_tbl[] = {
260
261         /* General Registers */
262         {E1000_CTRL, "CTRL"},
263         {E1000_STATUS, "STATUS"},
264         {E1000_CTRL_EXT, "CTRL_EXT"},
265
266         /* Interrupt Registers */
267         {E1000_ICR, "ICR"},
268
269         /* RX Registers */
270         {E1000_RCTL, "RCTL"},
271         {E1000_RDLEN(0), "RDLEN"},
272         {E1000_RDH(0), "RDH"},
273         {E1000_RDT(0), "RDT"},
274         {E1000_RXDCTL(0), "RXDCTL"},
275         {E1000_RDBAL(0), "RDBAL"},
276         {E1000_RDBAH(0), "RDBAH"},
277
278         /* TX Registers */
279         {E1000_TCTL, "TCTL"},
280         {E1000_TDBAL(0), "TDBAL"},
281         {E1000_TDBAH(0), "TDBAH"},
282         {E1000_TDLEN(0), "TDLEN"},
283         {E1000_TDH(0), "TDH"},
284         {E1000_TDT(0), "TDT"},
285         {E1000_TXDCTL(0), "TXDCTL"},
286         {E1000_TDFH, "TDFH"},
287         {E1000_TDFT, "TDFT"},
288         {E1000_TDFHS, "TDFHS"},
289         {E1000_TDFPC, "TDFPC"},
290
291         /* List Terminator */
292         {}
293 };
294
295 /* igb_regdump - register printout routine */
296 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
297 {
298         int n = 0;
299         char rname[16];
300         u32 regs[8];
301
302         switch (reginfo->ofs) {
303         case E1000_RDLEN(0):
304                 for (n = 0; n < 4; n++)
305                         regs[n] = rd32(E1000_RDLEN(n));
306                 break;
307         case E1000_RDH(0):
308                 for (n = 0; n < 4; n++)
309                         regs[n] = rd32(E1000_RDH(n));
310                 break;
311         case E1000_RDT(0):
312                 for (n = 0; n < 4; n++)
313                         regs[n] = rd32(E1000_RDT(n));
314                 break;
315         case E1000_RXDCTL(0):
316                 for (n = 0; n < 4; n++)
317                         regs[n] = rd32(E1000_RXDCTL(n));
318                 break;
319         case E1000_RDBAL(0):
320                 for (n = 0; n < 4; n++)
321                         regs[n] = rd32(E1000_RDBAL(n));
322                 break;
323         case E1000_RDBAH(0):
324                 for (n = 0; n < 4; n++)
325                         regs[n] = rd32(E1000_RDBAH(n));
326                 break;
327         case E1000_TDBAL(0):
328                 for (n = 0; n < 4; n++)
329                         regs[n] = rd32(E1000_RDBAL(n));
330                 break;
331         case E1000_TDBAH(0):
332                 for (n = 0; n < 4; n++)
333                         regs[n] = rd32(E1000_TDBAH(n));
334                 break;
335         case E1000_TDLEN(0):
336                 for (n = 0; n < 4; n++)
337                         regs[n] = rd32(E1000_TDLEN(n));
338                 break;
339         case E1000_TDH(0):
340                 for (n = 0; n < 4; n++)
341                         regs[n] = rd32(E1000_TDH(n));
342                 break;
343         case E1000_TDT(0):
344                 for (n = 0; n < 4; n++)
345                         regs[n] = rd32(E1000_TDT(n));
346                 break;
347         case E1000_TXDCTL(0):
348                 for (n = 0; n < 4; n++)
349                         regs[n] = rd32(E1000_TXDCTL(n));
350                 break;
351         default:
352                 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
353                 return;
354         }
355
356         snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
357         pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
358                 regs[2], regs[3]);
359 }
360
361 /* igb_dump - Print registers, Tx-rings and Rx-rings */
362 static void igb_dump(struct igb_adapter *adapter)
363 {
364         struct net_device *netdev = adapter->netdev;
365         struct e1000_hw *hw = &adapter->hw;
366         struct igb_reg_info *reginfo;
367         struct igb_ring *tx_ring;
368         union e1000_adv_tx_desc *tx_desc;
369         struct my_u0 { u64 a; u64 b; } *u0;
370         struct igb_ring *rx_ring;
371         union e1000_adv_rx_desc *rx_desc;
372         u32 staterr;
373         u16 i, n;
374
375         if (!netif_msg_hw(adapter))
376                 return;
377
378         /* Print netdevice Info */
379         if (netdev) {
380                 dev_info(&adapter->pdev->dev, "Net device Info\n");
381                 pr_info("Device Name     state            trans_start      last_rx\n");
382                 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
383                         netdev->state, netdev->trans_start, netdev->last_rx);
384         }
385
386         /* Print Registers */
387         dev_info(&adapter->pdev->dev, "Register Dump\n");
388         pr_info(" Register Name   Value\n");
389         for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
390              reginfo->name; reginfo++) {
391                 igb_regdump(hw, reginfo);
392         }
393
394         /* Print TX Ring Summary */
395         if (!netdev || !netif_running(netdev))
396                 goto exit;
397
398         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
399         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
400         for (n = 0; n < adapter->num_tx_queues; n++) {
401                 struct igb_tx_buffer *buffer_info;
402                 tx_ring = adapter->tx_ring[n];
403                 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
404                 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
405                         n, tx_ring->next_to_use, tx_ring->next_to_clean,
406                         (u64)dma_unmap_addr(buffer_info, dma),
407                         dma_unmap_len(buffer_info, len),
408                         buffer_info->next_to_watch,
409                         (u64)buffer_info->time_stamp);
410         }
411
412         /* Print TX Rings */
413         if (!netif_msg_tx_done(adapter))
414                 goto rx_ring_summary;
415
416         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
417
418         /* Transmit Descriptor Formats
419          *
420          * Advanced Transmit Descriptor
421          *   +--------------------------------------------------------------+
422          * 0 |         Buffer Address [63:0]                                |
423          *   +--------------------------------------------------------------+
424          * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
425          *   +--------------------------------------------------------------+
426          *   63      46 45    40 39 38 36 35 32 31   24             15       0
427          */
428
429         for (n = 0; n < adapter->num_tx_queues; n++) {
430                 tx_ring = adapter->tx_ring[n];
431                 pr_info("------------------------------------\n");
432                 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
433                 pr_info("------------------------------------\n");
434                 pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
435
436                 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
437                         const char *next_desc;
438                         struct igb_tx_buffer *buffer_info;
439                         tx_desc = IGB_TX_DESC(tx_ring, i);
440                         buffer_info = &tx_ring->tx_buffer_info[i];
441                         u0 = (struct my_u0 *)tx_desc;
442                         if (i == tx_ring->next_to_use &&
443                             i == tx_ring->next_to_clean)
444                                 next_desc = " NTC/U";
445                         else if (i == tx_ring->next_to_use)
446                                 next_desc = " NTU";
447                         else if (i == tx_ring->next_to_clean)
448                                 next_desc = " NTC";
449                         else
450                                 next_desc = "";
451
452                         pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
453                                 i, le64_to_cpu(u0->a),
454                                 le64_to_cpu(u0->b),
455                                 (u64)dma_unmap_addr(buffer_info, dma),
456                                 dma_unmap_len(buffer_info, len),
457                                 buffer_info->next_to_watch,
458                                 (u64)buffer_info->time_stamp,
459                                 buffer_info->skb, next_desc);
460
461                         if (netif_msg_pktdata(adapter) && buffer_info->skb)
462                                 print_hex_dump(KERN_INFO, "",
463                                         DUMP_PREFIX_ADDRESS,
464                                         16, 1, buffer_info->skb->data,
465                                         dma_unmap_len(buffer_info, len),
466                                         true);
467                 }
468         }
469
470         /* Print RX Rings Summary */
471 rx_ring_summary:
472         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
473         pr_info("Queue [NTU] [NTC]\n");
474         for (n = 0; n < adapter->num_rx_queues; n++) {
475                 rx_ring = adapter->rx_ring[n];
476                 pr_info(" %5d %5X %5X\n",
477                         n, rx_ring->next_to_use, rx_ring->next_to_clean);
478         }
479
480         /* Print RX Rings */
481         if (!netif_msg_rx_status(adapter))
482                 goto exit;
483
484         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
485
486         /* Advanced Receive Descriptor (Read) Format
487          *    63                                           1        0
488          *    +-----------------------------------------------------+
489          *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
490          *    +----------------------------------------------+------+
491          *  8 |       Header Buffer Address [63:1]           |  DD  |
492          *    +-----------------------------------------------------+
493          *
494          *
495          * Advanced Receive Descriptor (Write-Back) Format
496          *
497          *   63       48 47    32 31  30      21 20 17 16   4 3     0
498          *   +------------------------------------------------------+
499          * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
500          *   | Checksum   Ident  |   |           |    | Type | Type |
501          *   +------------------------------------------------------+
502          * 8 | VLAN Tag | Length | Extended Error | Extended Status |
503          *   +------------------------------------------------------+
504          *   63       48 47    32 31            20 19               0
505          */
506
507         for (n = 0; n < adapter->num_rx_queues; n++) {
508                 rx_ring = adapter->rx_ring[n];
509                 pr_info("------------------------------------\n");
510                 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
511                 pr_info("------------------------------------\n");
512                 pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
513                 pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
514
515                 for (i = 0; i < rx_ring->count; i++) {
516                         const char *next_desc;
517                         struct igb_rx_buffer *buffer_info;
518                         buffer_info = &rx_ring->rx_buffer_info[i];
519                         rx_desc = IGB_RX_DESC(rx_ring, i);
520                         u0 = (struct my_u0 *)rx_desc;
521                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
522
523                         if (i == rx_ring->next_to_use)
524                                 next_desc = " NTU";
525                         else if (i == rx_ring->next_to_clean)
526                                 next_desc = " NTC";
527                         else
528                                 next_desc = "";
529
530                         if (staterr & E1000_RXD_STAT_DD) {
531                                 /* Descriptor Done */
532                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
533                                         "RWB", i,
534                                         le64_to_cpu(u0->a),
535                                         le64_to_cpu(u0->b),
536                                         next_desc);
537                         } else {
538                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
539                                         "R  ", i,
540                                         le64_to_cpu(u0->a),
541                                         le64_to_cpu(u0->b),
542                                         (u64)buffer_info->dma,
543                                         next_desc);
544
545                                 if (netif_msg_pktdata(adapter) &&
546                                     buffer_info->dma && buffer_info->page) {
547                                         print_hex_dump(KERN_INFO, "",
548                                           DUMP_PREFIX_ADDRESS,
549                                           16, 1,
550                                           page_address(buffer_info->page) +
551                                                       buffer_info->page_offset,
552                                           IGB_RX_BUFSZ, true);
553                                 }
554                         }
555                 }
556         }
557
558 exit:
559         return;
560 }
561
562 /**
563  *  igb_get_i2c_data - Reads the I2C SDA data bit
564  *  @hw: pointer to hardware structure
565  *  @i2cctl: Current value of I2CCTL register
566  *
567  *  Returns the I2C data bit value
568  **/
569 static int igb_get_i2c_data(void *data)
570 {
571         struct igb_adapter *adapter = (struct igb_adapter *)data;
572         struct e1000_hw *hw = &adapter->hw;
573         s32 i2cctl = rd32(E1000_I2CPARAMS);
574
575         return !!(i2cctl & E1000_I2C_DATA_IN);
576 }
577
578 /**
579  *  igb_set_i2c_data - Sets the I2C data bit
580  *  @data: pointer to hardware structure
581  *  @state: I2C data value (0 or 1) to set
582  *
583  *  Sets the I2C data bit
584  **/
585 static void igb_set_i2c_data(void *data, int state)
586 {
587         struct igb_adapter *adapter = (struct igb_adapter *)data;
588         struct e1000_hw *hw = &adapter->hw;
589         s32 i2cctl = rd32(E1000_I2CPARAMS);
590
591         if (state)
592                 i2cctl |= E1000_I2C_DATA_OUT;
593         else
594                 i2cctl &= ~E1000_I2C_DATA_OUT;
595
596         i2cctl &= ~E1000_I2C_DATA_OE_N;
597         i2cctl |= E1000_I2C_CLK_OE_N;
598         wr32(E1000_I2CPARAMS, i2cctl);
599         wrfl();
600
601 }
602
603 /**
604  *  igb_set_i2c_clk - Sets the I2C SCL clock
605  *  @data: pointer to hardware structure
606  *  @state: state to set clock
607  *
608  *  Sets the I2C clock line to state
609  **/
610 static void igb_set_i2c_clk(void *data, int state)
611 {
612         struct igb_adapter *adapter = (struct igb_adapter *)data;
613         struct e1000_hw *hw = &adapter->hw;
614         s32 i2cctl = rd32(E1000_I2CPARAMS);
615
616         if (state) {
617                 i2cctl |= E1000_I2C_CLK_OUT;
618                 i2cctl &= ~E1000_I2C_CLK_OE_N;
619         } else {
620                 i2cctl &= ~E1000_I2C_CLK_OUT;
621                 i2cctl &= ~E1000_I2C_CLK_OE_N;
622         }
623         wr32(E1000_I2CPARAMS, i2cctl);
624         wrfl();
625 }
626
627 /**
628  *  igb_get_i2c_clk - Gets the I2C SCL clock state
629  *  @data: pointer to hardware structure
630  *
631  *  Gets the I2C clock state
632  **/
633 static int igb_get_i2c_clk(void *data)
634 {
635         struct igb_adapter *adapter = (struct igb_adapter *)data;
636         struct e1000_hw *hw = &adapter->hw;
637         s32 i2cctl = rd32(E1000_I2CPARAMS);
638
639         return !!(i2cctl & E1000_I2C_CLK_IN);
640 }
641
642 static const struct i2c_algo_bit_data igb_i2c_algo = {
643         .setsda         = igb_set_i2c_data,
644         .setscl         = igb_set_i2c_clk,
645         .getsda         = igb_get_i2c_data,
646         .getscl         = igb_get_i2c_clk,
647         .udelay         = 5,
648         .timeout        = 20,
649 };
650
651 /**
652  *  igb_get_hw_dev - return device
653  *  @hw: pointer to hardware structure
654  *
655  *  used by hardware layer to print debugging information
656  **/
657 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
658 {
659         struct igb_adapter *adapter = hw->back;
660         return adapter->netdev;
661 }
662
663 /**
664  *  igb_init_module - Driver Registration Routine
665  *
666  *  igb_init_module is the first routine called when the driver is
667  *  loaded. All it does is register with the PCI subsystem.
668  **/
669 static int __init igb_init_module(void)
670 {
671         int ret;
672
673         pr_info("%s - version %s\n",
674                igb_driver_string, igb_driver_version);
675         pr_info("%s\n", igb_copyright);
676
677 #ifdef CONFIG_IGB_DCA
678         dca_register_notify(&dca_notifier);
679 #endif
680         ret = pci_register_driver(&igb_driver);
681         return ret;
682 }
683
684 module_init(igb_init_module);
685
686 /**
687  *  igb_exit_module - Driver Exit Cleanup Routine
688  *
689  *  igb_exit_module is called just before the driver is removed
690  *  from memory.
691  **/
692 static void __exit igb_exit_module(void)
693 {
694 #ifdef CONFIG_IGB_DCA
695         dca_unregister_notify(&dca_notifier);
696 #endif
697         pci_unregister_driver(&igb_driver);
698 }
699
700 module_exit(igb_exit_module);
701
702 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
703 /**
704  *  igb_cache_ring_register - Descriptor ring to register mapping
705  *  @adapter: board private structure to initialize
706  *
707  *  Once we know the feature-set enabled for the device, we'll cache
708  *  the register offset the descriptor ring is assigned to.
709  **/
710 static void igb_cache_ring_register(struct igb_adapter *adapter)
711 {
712         int i = 0, j = 0;
713         u32 rbase_offset = adapter->vfs_allocated_count;
714
715         switch (adapter->hw.mac.type) {
716         case e1000_82576:
717                 /* The queues are allocated for virtualization such that VF 0
718                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
719                  * In order to avoid collision we start at the first free queue
720                  * and continue consuming queues in the same sequence
721                  */
722                 if (adapter->vfs_allocated_count) {
723                         for (; i < adapter->rss_queues; i++)
724                                 adapter->rx_ring[i]->reg_idx = rbase_offset +
725                                                                Q_IDX_82576(i);
726                 }
727                 /* Fall through */
728         case e1000_82575:
729         case e1000_82580:
730         case e1000_i350:
731         case e1000_i354:
732         case e1000_i210:
733         case e1000_i211:
734                 /* Fall through */
735         default:
736                 for (; i < adapter->num_rx_queues; i++)
737                         adapter->rx_ring[i]->reg_idx = rbase_offset + i;
738                 for (; j < adapter->num_tx_queues; j++)
739                         adapter->tx_ring[j]->reg_idx = rbase_offset + j;
740                 break;
741         }
742 }
743
744 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
745 {
746         struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
747         u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
748         u32 value = 0;
749
750         if (E1000_REMOVED(hw_addr))
751                 return ~value;
752
753         value = readl(&hw_addr[reg]);
754
755         /* reads should not return all F's */
756         if (!(~value) && (!reg || !(~readl(hw_addr)))) {
757                 struct net_device *netdev = igb->netdev;
758                 hw->hw_addr = NULL;
759                 netif_device_detach(netdev);
760                 netdev_err(netdev, "PCIe link lost, device now detached\n");
761         }
762
763         return value;
764 }
765
766 /**
767  *  igb_write_ivar - configure ivar for given MSI-X vector
768  *  @hw: pointer to the HW structure
769  *  @msix_vector: vector number we are allocating to a given ring
770  *  @index: row index of IVAR register to write within IVAR table
771  *  @offset: column offset of in IVAR, should be multiple of 8
772  *
773  *  This function is intended to handle the writing of the IVAR register
774  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
775  *  each containing an cause allocation for an Rx and Tx ring, and a
776  *  variable number of rows depending on the number of queues supported.
777  **/
778 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
779                            int index, int offset)
780 {
781         u32 ivar = array_rd32(E1000_IVAR0, index);
782
783         /* clear any bits that are currently set */
784         ivar &= ~((u32)0xFF << offset);
785
786         /* write vector and valid bit */
787         ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
788
789         array_wr32(E1000_IVAR0, index, ivar);
790 }
791
792 #define IGB_N0_QUEUE -1
793 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
794 {
795         struct igb_adapter *adapter = q_vector->adapter;
796         struct e1000_hw *hw = &adapter->hw;
797         int rx_queue = IGB_N0_QUEUE;
798         int tx_queue = IGB_N0_QUEUE;
799         u32 msixbm = 0;
800
801         if (q_vector->rx.ring)
802                 rx_queue = q_vector->rx.ring->reg_idx;
803         if (q_vector->tx.ring)
804                 tx_queue = q_vector->tx.ring->reg_idx;
805
806         switch (hw->mac.type) {
807         case e1000_82575:
808                 /* The 82575 assigns vectors using a bitmask, which matches the
809                  * bitmask for the EICR/EIMS/EIMC registers.  To assign one
810                  * or more queues to a vector, we write the appropriate bits
811                  * into the MSIXBM register for that vector.
812                  */
813                 if (rx_queue > IGB_N0_QUEUE)
814                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
815                 if (tx_queue > IGB_N0_QUEUE)
816                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
817                 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
818                         msixbm |= E1000_EIMS_OTHER;
819                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
820                 q_vector->eims_value = msixbm;
821                 break;
822         case e1000_82576:
823                 /* 82576 uses a table that essentially consists of 2 columns
824                  * with 8 rows.  The ordering is column-major so we use the
825                  * lower 3 bits as the row index, and the 4th bit as the
826                  * column offset.
827                  */
828                 if (rx_queue > IGB_N0_QUEUE)
829                         igb_write_ivar(hw, msix_vector,
830                                        rx_queue & 0x7,
831                                        (rx_queue & 0x8) << 1);
832                 if (tx_queue > IGB_N0_QUEUE)
833                         igb_write_ivar(hw, msix_vector,
834                                        tx_queue & 0x7,
835                                        ((tx_queue & 0x8) << 1) + 8);
836                 q_vector->eims_value = 1 << msix_vector;
837                 break;
838         case e1000_82580:
839         case e1000_i350:
840         case e1000_i354:
841         case e1000_i210:
842         case e1000_i211:
843                 /* On 82580 and newer adapters the scheme is similar to 82576
844                  * however instead of ordering column-major we have things
845                  * ordered row-major.  So we traverse the table by using
846                  * bit 0 as the column offset, and the remaining bits as the
847                  * row index.
848                  */
849                 if (rx_queue > IGB_N0_QUEUE)
850                         igb_write_ivar(hw, msix_vector,
851                                        rx_queue >> 1,
852                                        (rx_queue & 0x1) << 4);
853                 if (tx_queue > IGB_N0_QUEUE)
854                         igb_write_ivar(hw, msix_vector,
855                                        tx_queue >> 1,
856                                        ((tx_queue & 0x1) << 4) + 8);
857                 q_vector->eims_value = 1 << msix_vector;
858                 break;
859         default:
860                 BUG();
861                 break;
862         }
863
864         /* add q_vector eims value to global eims_enable_mask */
865         adapter->eims_enable_mask |= q_vector->eims_value;
866
867         /* configure q_vector to set itr on first interrupt */
868         q_vector->set_itr = 1;
869 }
870
871 /**
872  *  igb_configure_msix - Configure MSI-X hardware
873  *  @adapter: board private structure to initialize
874  *
875  *  igb_configure_msix sets up the hardware to properly
876  *  generate MSI-X interrupts.
877  **/
878 static void igb_configure_msix(struct igb_adapter *adapter)
879 {
880         u32 tmp;
881         int i, vector = 0;
882         struct e1000_hw *hw = &adapter->hw;
883
884         adapter->eims_enable_mask = 0;
885
886         /* set vector for other causes, i.e. link changes */
887         switch (hw->mac.type) {
888         case e1000_82575:
889                 tmp = rd32(E1000_CTRL_EXT);
890                 /* enable MSI-X PBA support*/
891                 tmp |= E1000_CTRL_EXT_PBA_CLR;
892
893                 /* Auto-Mask interrupts upon ICR read. */
894                 tmp |= E1000_CTRL_EXT_EIAME;
895                 tmp |= E1000_CTRL_EXT_IRCA;
896
897                 wr32(E1000_CTRL_EXT, tmp);
898
899                 /* enable msix_other interrupt */
900                 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
901                 adapter->eims_other = E1000_EIMS_OTHER;
902
903                 break;
904
905         case e1000_82576:
906         case e1000_82580:
907         case e1000_i350:
908         case e1000_i354:
909         case e1000_i210:
910         case e1000_i211:
911                 /* Turn on MSI-X capability first, or our settings
912                  * won't stick.  And it will take days to debug.
913                  */
914                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
915                      E1000_GPIE_PBA | E1000_GPIE_EIAME |
916                      E1000_GPIE_NSICR);
917
918                 /* enable msix_other interrupt */
919                 adapter->eims_other = 1 << vector;
920                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
921
922                 wr32(E1000_IVAR_MISC, tmp);
923                 break;
924         default:
925                 /* do nothing, since nothing else supports MSI-X */
926                 break;
927         } /* switch (hw->mac.type) */
928
929         adapter->eims_enable_mask |= adapter->eims_other;
930
931         for (i = 0; i < adapter->num_q_vectors; i++)
932                 igb_assign_vector(adapter->q_vector[i], vector++);
933
934         wrfl();
935 }
936
937 /**
938  *  igb_request_msix - Initialize MSI-X interrupts
939  *  @adapter: board private structure to initialize
940  *
941  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
942  *  kernel.
943  **/
944 static int igb_request_msix(struct igb_adapter *adapter)
945 {
946         struct net_device *netdev = adapter->netdev;
947         struct e1000_hw *hw = &adapter->hw;
948         int i, err = 0, vector = 0, free_vector = 0;
949
950         err = request_irq(adapter->msix_entries[vector].vector,
951                           igb_msix_other, 0, netdev->name, adapter);
952         if (err)
953                 goto err_out;
954
955         for (i = 0; i < adapter->num_q_vectors; i++) {
956                 struct igb_q_vector *q_vector = adapter->q_vector[i];
957
958                 vector++;
959
960                 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
961
962                 if (q_vector->rx.ring && q_vector->tx.ring)
963                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
964                                 q_vector->rx.ring->queue_index);
965                 else if (q_vector->tx.ring)
966                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
967                                 q_vector->tx.ring->queue_index);
968                 else if (q_vector->rx.ring)
969                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
970                                 q_vector->rx.ring->queue_index);
971                 else
972                         sprintf(q_vector->name, "%s-unused", netdev->name);
973
974                 err = request_irq(adapter->msix_entries[vector].vector,
975                                   igb_msix_ring, 0, q_vector->name,
976                                   q_vector);
977                 if (err)
978                         goto err_free;
979         }
980
981         igb_configure_msix(adapter);
982         return 0;
983
984 err_free:
985         /* free already assigned IRQs */
986         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
987
988         vector--;
989         for (i = 0; i < vector; i++) {
990                 free_irq(adapter->msix_entries[free_vector++].vector,
991                          adapter->q_vector[i]);
992         }
993 err_out:
994         return err;
995 }
996
997 /**
998  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
999  *  @adapter: board private structure to initialize
1000  *  @v_idx: Index of vector to be freed
1001  *
1002  *  This function frees the memory allocated to the q_vector.
1003  **/
1004 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1005 {
1006         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1007
1008         adapter->q_vector[v_idx] = NULL;
1009
1010         /* igb_get_stats64() might access the rings on this vector,
1011          * we must wait a grace period before freeing it.
1012          */
1013         if (q_vector)
1014                 kfree_rcu(q_vector, rcu);
1015 }
1016
1017 /**
1018  *  igb_reset_q_vector - Reset config for interrupt vector
1019  *  @adapter: board private structure to initialize
1020  *  @v_idx: Index of vector to be reset
1021  *
1022  *  If NAPI is enabled it will delete any references to the
1023  *  NAPI struct. This is preparation for igb_free_q_vector.
1024  **/
1025 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1026 {
1027         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1028
1029         /* Coming from igb_set_interrupt_capability, the vectors are not yet
1030          * allocated. So, q_vector is NULL so we should stop here.
1031          */
1032         if (!q_vector)
1033                 return;
1034
1035         if (q_vector->tx.ring)
1036                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1037
1038         if (q_vector->rx.ring)
1039                 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1040
1041         netif_napi_del(&q_vector->napi);
1042
1043 }
1044
1045 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1046 {
1047         int v_idx = adapter->num_q_vectors;
1048
1049         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1050                 pci_disable_msix(adapter->pdev);
1051         else if (adapter->flags & IGB_FLAG_HAS_MSI)
1052                 pci_disable_msi(adapter->pdev);
1053
1054         while (v_idx--)
1055                 igb_reset_q_vector(adapter, v_idx);
1056 }
1057
1058 /**
1059  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1060  *  @adapter: board private structure to initialize
1061  *
1062  *  This function frees the memory allocated to the q_vectors.  In addition if
1063  *  NAPI is enabled it will delete any references to the NAPI struct prior
1064  *  to freeing the q_vector.
1065  **/
1066 static void igb_free_q_vectors(struct igb_adapter *adapter)
1067 {
1068         int v_idx = adapter->num_q_vectors;
1069
1070         adapter->num_tx_queues = 0;
1071         adapter->num_rx_queues = 0;
1072         adapter->num_q_vectors = 0;
1073
1074         while (v_idx--) {
1075                 igb_reset_q_vector(adapter, v_idx);
1076                 igb_free_q_vector(adapter, v_idx);
1077         }
1078 }
1079
1080 /**
1081  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1082  *  @adapter: board private structure to initialize
1083  *
1084  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1085  *  MSI-X interrupts allocated.
1086  */
1087 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1088 {
1089         igb_free_q_vectors(adapter);
1090         igb_reset_interrupt_capability(adapter);
1091 }
1092
1093 /**
1094  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1095  *  @adapter: board private structure to initialize
1096  *  @msix: boolean value of MSIX capability
1097  *
1098  *  Attempt to configure interrupts using the best available
1099  *  capabilities of the hardware and kernel.
1100  **/
1101 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1102 {
1103         int err;
1104         int numvecs, i;
1105
1106         if (!msix)
1107                 goto msi_only;
1108         adapter->flags |= IGB_FLAG_HAS_MSIX;
1109
1110         /* Number of supported queues. */
1111         adapter->num_rx_queues = adapter->rss_queues;
1112         if (adapter->vfs_allocated_count)
1113                 adapter->num_tx_queues = 1;
1114         else
1115                 adapter->num_tx_queues = adapter->rss_queues;
1116
1117         /* start with one vector for every Rx queue */
1118         numvecs = adapter->num_rx_queues;
1119
1120         /* if Tx handler is separate add 1 for every Tx queue */
1121         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1122                 numvecs += adapter->num_tx_queues;
1123
1124         /* store the number of vectors reserved for queues */
1125         adapter->num_q_vectors = numvecs;
1126
1127         /* add 1 vector for link status interrupts */
1128         numvecs++;
1129         for (i = 0; i < numvecs; i++)
1130                 adapter->msix_entries[i].entry = i;
1131
1132         err = pci_enable_msix_range(adapter->pdev,
1133                                     adapter->msix_entries,
1134                                     numvecs,
1135                                     numvecs);
1136         if (err > 0)
1137                 return;
1138
1139         igb_reset_interrupt_capability(adapter);
1140
1141         /* If we can't do MSI-X, try MSI */
1142 msi_only:
1143         adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1144 #ifdef CONFIG_PCI_IOV
1145         /* disable SR-IOV for non MSI-X configurations */
1146         if (adapter->vf_data) {
1147                 struct e1000_hw *hw = &adapter->hw;
1148                 /* disable iov and allow time for transactions to clear */
1149                 pci_disable_sriov(adapter->pdev);
1150                 msleep(500);
1151
1152                 kfree(adapter->vf_data);
1153                 adapter->vf_data = NULL;
1154                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1155                 wrfl();
1156                 msleep(100);
1157                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1158         }
1159 #endif
1160         adapter->vfs_allocated_count = 0;
1161         adapter->rss_queues = 1;
1162         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1163         adapter->num_rx_queues = 1;
1164         adapter->num_tx_queues = 1;
1165         adapter->num_q_vectors = 1;
1166         if (!pci_enable_msi(adapter->pdev))
1167                 adapter->flags |= IGB_FLAG_HAS_MSI;
1168 }
1169
1170 static void igb_add_ring(struct igb_ring *ring,
1171                          struct igb_ring_container *head)
1172 {
1173         head->ring = ring;
1174         head->count++;
1175 }
1176
1177 /**
1178  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1179  *  @adapter: board private structure to initialize
1180  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1181  *  @v_idx: index of vector in adapter struct
1182  *  @txr_count: total number of Tx rings to allocate
1183  *  @txr_idx: index of first Tx ring to allocate
1184  *  @rxr_count: total number of Rx rings to allocate
1185  *  @rxr_idx: index of first Rx ring to allocate
1186  *
1187  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1188  **/
1189 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1190                               int v_count, int v_idx,
1191                               int txr_count, int txr_idx,
1192                               int rxr_count, int rxr_idx)
1193 {
1194         struct igb_q_vector *q_vector;
1195         struct igb_ring *ring;
1196         int ring_count, size;
1197
1198         /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1199         if (txr_count > 1 || rxr_count > 1)
1200                 return -ENOMEM;
1201
1202         ring_count = txr_count + rxr_count;
1203         size = sizeof(struct igb_q_vector) +
1204                (sizeof(struct igb_ring) * ring_count);
1205
1206         /* allocate q_vector and rings */
1207         q_vector = adapter->q_vector[v_idx];
1208         if (!q_vector)
1209                 q_vector = kzalloc(size, GFP_KERNEL);
1210         else
1211                 memset(q_vector, 0, size);
1212         if (!q_vector)
1213                 return -ENOMEM;
1214
1215         /* initialize NAPI */
1216         netif_napi_add(adapter->netdev, &q_vector->napi,
1217                        igb_poll, 64);
1218
1219         /* tie q_vector and adapter together */
1220         adapter->q_vector[v_idx] = q_vector;
1221         q_vector->adapter = adapter;
1222
1223         /* initialize work limits */
1224         q_vector->tx.work_limit = adapter->tx_work_limit;
1225
1226         /* initialize ITR configuration */
1227         q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1228         q_vector->itr_val = IGB_START_ITR;
1229
1230         /* initialize pointer to rings */
1231         ring = q_vector->ring;
1232
1233         /* intialize ITR */
1234         if (rxr_count) {
1235                 /* rx or rx/tx vector */
1236                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1237                         q_vector->itr_val = adapter->rx_itr_setting;
1238         } else {
1239                 /* tx only vector */
1240                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1241                         q_vector->itr_val = adapter->tx_itr_setting;
1242         }
1243
1244         if (txr_count) {
1245                 /* assign generic ring traits */
1246                 ring->dev = &adapter->pdev->dev;
1247                 ring->netdev = adapter->netdev;
1248
1249                 /* configure backlink on ring */
1250                 ring->q_vector = q_vector;
1251
1252                 /* update q_vector Tx values */
1253                 igb_add_ring(ring, &q_vector->tx);
1254
1255                 /* For 82575, context index must be unique per ring. */
1256                 if (adapter->hw.mac.type == e1000_82575)
1257                         set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1258
1259                 /* apply Tx specific ring traits */
1260                 ring->count = adapter->tx_ring_count;
1261                 ring->queue_index = txr_idx;
1262
1263                 u64_stats_init(&ring->tx_syncp);
1264                 u64_stats_init(&ring->tx_syncp2);
1265
1266                 /* assign ring to adapter */
1267                 adapter->tx_ring[txr_idx] = ring;
1268
1269                 /* push pointer to next ring */
1270                 ring++;
1271         }
1272
1273         if (rxr_count) {
1274                 /* assign generic ring traits */
1275                 ring->dev = &adapter->pdev->dev;
1276                 ring->netdev = adapter->netdev;
1277
1278                 /* configure backlink on ring */
1279                 ring->q_vector = q_vector;
1280
1281                 /* update q_vector Rx values */
1282                 igb_add_ring(ring, &q_vector->rx);
1283
1284                 /* set flag indicating ring supports SCTP checksum offload */
1285                 if (adapter->hw.mac.type >= e1000_82576)
1286                         set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1287
1288                 /* On i350, i354, i210, and i211, loopback VLAN packets
1289                  * have the tag byte-swapped.
1290                  */
1291                 if (adapter->hw.mac.type >= e1000_i350)
1292                         set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1293
1294                 /* apply Rx specific ring traits */
1295                 ring->count = adapter->rx_ring_count;
1296                 ring->queue_index = rxr_idx;
1297
1298                 u64_stats_init(&ring->rx_syncp);
1299
1300                 /* assign ring to adapter */
1301                 adapter->rx_ring[rxr_idx] = ring;
1302         }
1303
1304         return 0;
1305 }
1306
1307
1308 /**
1309  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1310  *  @adapter: board private structure to initialize
1311  *
1312  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1313  *  return -ENOMEM.
1314  **/
1315 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1316 {
1317         int q_vectors = adapter->num_q_vectors;
1318         int rxr_remaining = adapter->num_rx_queues;
1319         int txr_remaining = adapter->num_tx_queues;
1320         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1321         int err;
1322
1323         if (q_vectors >= (rxr_remaining + txr_remaining)) {
1324                 for (; rxr_remaining; v_idx++) {
1325                         err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1326                                                  0, 0, 1, rxr_idx);
1327
1328                         if (err)
1329                                 goto err_out;
1330
1331                         /* update counts and index */
1332                         rxr_remaining--;
1333                         rxr_idx++;
1334                 }
1335         }
1336
1337         for (; v_idx < q_vectors; v_idx++) {
1338                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1339                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1340
1341                 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1342                                          tqpv, txr_idx, rqpv, rxr_idx);
1343
1344                 if (err)
1345                         goto err_out;
1346
1347                 /* update counts and index */
1348                 rxr_remaining -= rqpv;
1349                 txr_remaining -= tqpv;
1350                 rxr_idx++;
1351                 txr_idx++;
1352         }
1353
1354         return 0;
1355
1356 err_out:
1357         adapter->num_tx_queues = 0;
1358         adapter->num_rx_queues = 0;
1359         adapter->num_q_vectors = 0;
1360
1361         while (v_idx--)
1362                 igb_free_q_vector(adapter, v_idx);
1363
1364         return -ENOMEM;
1365 }
1366
1367 /**
1368  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1369  *  @adapter: board private structure to initialize
1370  *  @msix: boolean value of MSIX capability
1371  *
1372  *  This function initializes the interrupts and allocates all of the queues.
1373  **/
1374 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1375 {
1376         struct pci_dev *pdev = adapter->pdev;
1377         int err;
1378
1379         igb_set_interrupt_capability(adapter, msix);
1380
1381         err = igb_alloc_q_vectors(adapter);
1382         if (err) {
1383                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1384                 goto err_alloc_q_vectors;
1385         }
1386
1387         igb_cache_ring_register(adapter);
1388
1389         return 0;
1390
1391 err_alloc_q_vectors:
1392         igb_reset_interrupt_capability(adapter);
1393         return err;
1394 }
1395
1396 /**
1397  *  igb_request_irq - initialize interrupts
1398  *  @adapter: board private structure to initialize
1399  *
1400  *  Attempts to configure interrupts using the best available
1401  *  capabilities of the hardware and kernel.
1402  **/
1403 static int igb_request_irq(struct igb_adapter *adapter)
1404 {
1405         struct net_device *netdev = adapter->netdev;
1406         struct pci_dev *pdev = adapter->pdev;
1407         int err = 0;
1408
1409         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1410                 err = igb_request_msix(adapter);
1411                 if (!err)
1412                         goto request_done;
1413                 /* fall back to MSI */
1414                 igb_free_all_tx_resources(adapter);
1415                 igb_free_all_rx_resources(adapter);
1416
1417                 igb_clear_interrupt_scheme(adapter);
1418                 err = igb_init_interrupt_scheme(adapter, false);
1419                 if (err)
1420                         goto request_done;
1421
1422                 igb_setup_all_tx_resources(adapter);
1423                 igb_setup_all_rx_resources(adapter);
1424                 igb_configure(adapter);
1425         }
1426
1427         igb_assign_vector(adapter->q_vector[0], 0);
1428
1429         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1430                 err = request_irq(pdev->irq, igb_intr_msi, 0,
1431                                   netdev->name, adapter);
1432                 if (!err)
1433                         goto request_done;
1434
1435                 /* fall back to legacy interrupts */
1436                 igb_reset_interrupt_capability(adapter);
1437                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1438         }
1439
1440         err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1441                           netdev->name, adapter);
1442
1443         if (err)
1444                 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1445                         err);
1446
1447 request_done:
1448         return err;
1449 }
1450
1451 static void igb_free_irq(struct igb_adapter *adapter)
1452 {
1453         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1454                 int vector = 0, i;
1455
1456                 free_irq(adapter->msix_entries[vector++].vector, adapter);
1457
1458                 for (i = 0; i < adapter->num_q_vectors; i++)
1459                         free_irq(adapter->msix_entries[vector++].vector,
1460                                  adapter->q_vector[i]);
1461         } else {
1462                 free_irq(adapter->pdev->irq, adapter);
1463         }
1464 }
1465
1466 /**
1467  *  igb_irq_disable - Mask off interrupt generation on the NIC
1468  *  @adapter: board private structure
1469  **/
1470 static void igb_irq_disable(struct igb_adapter *adapter)
1471 {
1472         struct e1000_hw *hw = &adapter->hw;
1473
1474         /* we need to be careful when disabling interrupts.  The VFs are also
1475          * mapped into these registers and so clearing the bits can cause
1476          * issues on the VF drivers so we only need to clear what we set
1477          */
1478         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1479                 u32 regval = rd32(E1000_EIAM);
1480
1481                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1482                 wr32(E1000_EIMC, adapter->eims_enable_mask);
1483                 regval = rd32(E1000_EIAC);
1484                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1485         }
1486
1487         wr32(E1000_IAM, 0);
1488         wr32(E1000_IMC, ~0);
1489         wrfl();
1490         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1491                 int i;
1492
1493                 for (i = 0; i < adapter->num_q_vectors; i++)
1494                         synchronize_irq(adapter->msix_entries[i].vector);
1495         } else {
1496                 synchronize_irq(adapter->pdev->irq);
1497         }
1498 }
1499
1500 /**
1501  *  igb_irq_enable - Enable default interrupt generation settings
1502  *  @adapter: board private structure
1503  **/
1504 static void igb_irq_enable(struct igb_adapter *adapter)
1505 {
1506         struct e1000_hw *hw = &adapter->hw;
1507
1508         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1509                 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1510                 u32 regval = rd32(E1000_EIAC);
1511
1512                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1513                 regval = rd32(E1000_EIAM);
1514                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1515                 wr32(E1000_EIMS, adapter->eims_enable_mask);
1516                 if (adapter->vfs_allocated_count) {
1517                         wr32(E1000_MBVFIMR, 0xFF);
1518                         ims |= E1000_IMS_VMMB;
1519                 }
1520                 wr32(E1000_IMS, ims);
1521         } else {
1522                 wr32(E1000_IMS, IMS_ENABLE_MASK |
1523                                 E1000_IMS_DRSTA);
1524                 wr32(E1000_IAM, IMS_ENABLE_MASK |
1525                                 E1000_IMS_DRSTA);
1526         }
1527 }
1528
1529 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1530 {
1531         struct e1000_hw *hw = &adapter->hw;
1532         u16 vid = adapter->hw.mng_cookie.vlan_id;
1533         u16 old_vid = adapter->mng_vlan_id;
1534
1535         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1536                 /* add VID to filter table */
1537                 igb_vfta_set(hw, vid, true);
1538                 adapter->mng_vlan_id = vid;
1539         } else {
1540                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1541         }
1542
1543         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1544             (vid != old_vid) &&
1545             !test_bit(old_vid, adapter->active_vlans)) {
1546                 /* remove VID from filter table */
1547                 igb_vfta_set(hw, old_vid, false);
1548         }
1549 }
1550
1551 /**
1552  *  igb_release_hw_control - release control of the h/w to f/w
1553  *  @adapter: address of board private structure
1554  *
1555  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1556  *  For ASF and Pass Through versions of f/w this means that the
1557  *  driver is no longer loaded.
1558  **/
1559 static void igb_release_hw_control(struct igb_adapter *adapter)
1560 {
1561         struct e1000_hw *hw = &adapter->hw;
1562         u32 ctrl_ext;
1563
1564         /* Let firmware take over control of h/w */
1565         ctrl_ext = rd32(E1000_CTRL_EXT);
1566         wr32(E1000_CTRL_EXT,
1567                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1568 }
1569
1570 /**
1571  *  igb_get_hw_control - get control of the h/w from f/w
1572  *  @adapter: address of board private structure
1573  *
1574  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1575  *  For ASF and Pass Through versions of f/w this means that
1576  *  the driver is loaded.
1577  **/
1578 static void igb_get_hw_control(struct igb_adapter *adapter)
1579 {
1580         struct e1000_hw *hw = &adapter->hw;
1581         u32 ctrl_ext;
1582
1583         /* Let firmware know the driver has taken over */
1584         ctrl_ext = rd32(E1000_CTRL_EXT);
1585         wr32(E1000_CTRL_EXT,
1586                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1587 }
1588
1589 /**
1590  *  igb_configure - configure the hardware for RX and TX
1591  *  @adapter: private board structure
1592  **/
1593 static void igb_configure(struct igb_adapter *adapter)
1594 {
1595         struct net_device *netdev = adapter->netdev;
1596         int i;
1597
1598         igb_get_hw_control(adapter);
1599         igb_set_rx_mode(netdev);
1600
1601         igb_restore_vlan(adapter);
1602
1603         igb_setup_tctl(adapter);
1604         igb_setup_mrqc(adapter);
1605         igb_setup_rctl(adapter);
1606
1607         igb_configure_tx(adapter);
1608         igb_configure_rx(adapter);
1609
1610         igb_rx_fifo_flush_82575(&adapter->hw);
1611
1612         /* call igb_desc_unused which always leaves
1613          * at least 1 descriptor unused to make sure
1614          * next_to_use != next_to_clean
1615          */
1616         for (i = 0; i < adapter->num_rx_queues; i++) {
1617                 struct igb_ring *ring = adapter->rx_ring[i];
1618                 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1619         }
1620 }
1621
1622 /**
1623  *  igb_power_up_link - Power up the phy/serdes link
1624  *  @adapter: address of board private structure
1625  **/
1626 void igb_power_up_link(struct igb_adapter *adapter)
1627 {
1628         igb_reset_phy(&adapter->hw);
1629
1630         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1631                 igb_power_up_phy_copper(&adapter->hw);
1632         else
1633                 igb_power_up_serdes_link_82575(&adapter->hw);
1634
1635         igb_setup_link(&adapter->hw);
1636 }
1637
1638 /**
1639  *  igb_power_down_link - Power down the phy/serdes link
1640  *  @adapter: address of board private structure
1641  */
1642 static void igb_power_down_link(struct igb_adapter *adapter)
1643 {
1644         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1645                 igb_power_down_phy_copper_82575(&adapter->hw);
1646         else
1647                 igb_shutdown_serdes_link_82575(&adapter->hw);
1648 }
1649
1650 /**
1651  * Detect and switch function for Media Auto Sense
1652  * @adapter: address of the board private structure
1653  **/
1654 static void igb_check_swap_media(struct igb_adapter *adapter)
1655 {
1656         struct e1000_hw *hw = &adapter->hw;
1657         u32 ctrl_ext, connsw;
1658         bool swap_now = false;
1659
1660         ctrl_ext = rd32(E1000_CTRL_EXT);
1661         connsw = rd32(E1000_CONNSW);
1662
1663         /* need to live swap if current media is copper and we have fiber/serdes
1664          * to go to.
1665          */
1666
1667         if ((hw->phy.media_type == e1000_media_type_copper) &&
1668             (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1669                 swap_now = true;
1670         } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1671                 /* copper signal takes time to appear */
1672                 if (adapter->copper_tries < 4) {
1673                         adapter->copper_tries++;
1674                         connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1675                         wr32(E1000_CONNSW, connsw);
1676                         return;
1677                 } else {
1678                         adapter->copper_tries = 0;
1679                         if ((connsw & E1000_CONNSW_PHYSD) &&
1680                             (!(connsw & E1000_CONNSW_PHY_PDN))) {
1681                                 swap_now = true;
1682                                 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1683                                 wr32(E1000_CONNSW, connsw);
1684                         }
1685                 }
1686         }
1687
1688         if (!swap_now)
1689                 return;
1690
1691         switch (hw->phy.media_type) {
1692         case e1000_media_type_copper:
1693                 netdev_info(adapter->netdev,
1694                         "MAS: changing media to fiber/serdes\n");
1695                 ctrl_ext |=
1696                         E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1697                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1698                 adapter->copper_tries = 0;
1699                 break;
1700         case e1000_media_type_internal_serdes:
1701         case e1000_media_type_fiber:
1702                 netdev_info(adapter->netdev,
1703                         "MAS: changing media to copper\n");
1704                 ctrl_ext &=
1705                         ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1706                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1707                 break;
1708         default:
1709                 /* shouldn't get here during regular operation */
1710                 netdev_err(adapter->netdev,
1711                         "AMS: Invalid media type found, returning\n");
1712                 break;
1713         }
1714         wr32(E1000_CTRL_EXT, ctrl_ext);
1715 }
1716
1717 /**
1718  *  igb_up - Open the interface and prepare it to handle traffic
1719  *  @adapter: board private structure
1720  **/
1721 int igb_up(struct igb_adapter *adapter)
1722 {
1723         struct e1000_hw *hw = &adapter->hw;
1724         int i;
1725
1726         /* hardware has been reset, we need to reload some things */
1727         igb_configure(adapter);
1728
1729         clear_bit(__IGB_DOWN, &adapter->state);
1730
1731         for (i = 0; i < adapter->num_q_vectors; i++)
1732                 napi_enable(&(adapter->q_vector[i]->napi));
1733
1734         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1735                 igb_configure_msix(adapter);
1736         else
1737                 igb_assign_vector(adapter->q_vector[0], 0);
1738
1739         /* Clear any pending interrupts. */
1740         rd32(E1000_ICR);
1741         igb_irq_enable(adapter);
1742
1743         /* notify VFs that reset has been completed */
1744         if (adapter->vfs_allocated_count) {
1745                 u32 reg_data = rd32(E1000_CTRL_EXT);
1746
1747                 reg_data |= E1000_CTRL_EXT_PFRSTD;
1748                 wr32(E1000_CTRL_EXT, reg_data);
1749         }
1750
1751         netif_tx_start_all_queues(adapter->netdev);
1752
1753         /* start the watchdog. */
1754         hw->mac.get_link_status = 1;
1755         schedule_work(&adapter->watchdog_task);
1756
1757         if ((adapter->flags & IGB_FLAG_EEE) &&
1758             (!hw->dev_spec._82575.eee_disable))
1759                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1760
1761         return 0;
1762 }
1763
1764 void igb_down(struct igb_adapter *adapter)
1765 {
1766         struct net_device *netdev = adapter->netdev;
1767         struct e1000_hw *hw = &adapter->hw;
1768         u32 tctl, rctl;
1769         int i;
1770
1771         /* signal that we're down so the interrupt handler does not
1772          * reschedule our watchdog timer
1773          */
1774         set_bit(__IGB_DOWN, &adapter->state);
1775
1776         /* disable receives in the hardware */
1777         rctl = rd32(E1000_RCTL);
1778         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1779         /* flush and sleep below */
1780
1781         netif_carrier_off(netdev);
1782         netif_tx_stop_all_queues(netdev);
1783
1784         /* disable transmits in the hardware */
1785         tctl = rd32(E1000_TCTL);
1786         tctl &= ~E1000_TCTL_EN;
1787         wr32(E1000_TCTL, tctl);
1788         /* flush both disables and wait for them to finish */
1789         wrfl();
1790         usleep_range(10000, 11000);
1791
1792         igb_irq_disable(adapter);
1793
1794         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1795
1796         for (i = 0; i < adapter->num_q_vectors; i++) {
1797                 if (adapter->q_vector[i]) {
1798                         napi_synchronize(&adapter->q_vector[i]->napi);
1799                         napi_disable(&adapter->q_vector[i]->napi);
1800                 }
1801         }
1802
1803         del_timer_sync(&adapter->watchdog_timer);
1804         del_timer_sync(&adapter->phy_info_timer);
1805
1806         /* record the stats before reset*/
1807         spin_lock(&adapter->stats64_lock);
1808         igb_update_stats(adapter, &adapter->stats64);
1809         spin_unlock(&adapter->stats64_lock);
1810
1811         adapter->link_speed = 0;
1812         adapter->link_duplex = 0;
1813
1814         if (!pci_channel_offline(adapter->pdev))
1815                 igb_reset(adapter);
1816         igb_clean_all_tx_rings(adapter);
1817         igb_clean_all_rx_rings(adapter);
1818 #ifdef CONFIG_IGB_DCA
1819
1820         /* since we reset the hardware DCA settings were cleared */
1821         igb_setup_dca(adapter);
1822 #endif
1823 }
1824
1825 void igb_reinit_locked(struct igb_adapter *adapter)
1826 {
1827         WARN_ON(in_interrupt());
1828         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1829                 usleep_range(1000, 2000);
1830         igb_down(adapter);
1831         igb_up(adapter);
1832         clear_bit(__IGB_RESETTING, &adapter->state);
1833 }
1834
1835 /** igb_enable_mas - Media Autosense re-enable after swap
1836  *
1837  * @adapter: adapter struct
1838  **/
1839 static s32 igb_enable_mas(struct igb_adapter *adapter)
1840 {
1841         struct e1000_hw *hw = &adapter->hw;
1842         u32 connsw;
1843         s32 ret_val = 0;
1844
1845         connsw = rd32(E1000_CONNSW);
1846         if (!(hw->phy.media_type == e1000_media_type_copper))
1847                 return ret_val;
1848
1849         /* configure for SerDes media detect */
1850         if (!(connsw & E1000_CONNSW_SERDESD)) {
1851                 connsw |= E1000_CONNSW_ENRGSRC;
1852                 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1853                 wr32(E1000_CONNSW, connsw);
1854                 wrfl();
1855         } else if (connsw & E1000_CONNSW_SERDESD) {
1856                 /* already SerDes, no need to enable anything */
1857                 return ret_val;
1858         } else {
1859                 netdev_info(adapter->netdev,
1860                         "MAS: Unable to configure feature, disabling..\n");
1861                 adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
1862         }
1863         return ret_val;
1864 }
1865
1866 void igb_reset(struct igb_adapter *adapter)
1867 {
1868         struct pci_dev *pdev = adapter->pdev;
1869         struct e1000_hw *hw = &adapter->hw;
1870         struct e1000_mac_info *mac = &hw->mac;
1871         struct e1000_fc_info *fc = &hw->fc;
1872         u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1873
1874         /* Repartition Pba for greater than 9k mtu
1875          * To take effect CTRL.RST is required.
1876          */
1877         switch (mac->type) {
1878         case e1000_i350:
1879         case e1000_i354:
1880         case e1000_82580:
1881                 pba = rd32(E1000_RXPBS);
1882                 pba = igb_rxpbs_adjust_82580(pba);
1883                 break;
1884         case e1000_82576:
1885                 pba = rd32(E1000_RXPBS);
1886                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1887                 break;
1888         case e1000_82575:
1889         case e1000_i210:
1890         case e1000_i211:
1891         default:
1892                 pba = E1000_PBA_34K;
1893                 break;
1894         }
1895
1896         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1897             (mac->type < e1000_82576)) {
1898                 /* adjust PBA for jumbo frames */
1899                 wr32(E1000_PBA, pba);
1900
1901                 /* To maintain wire speed transmits, the Tx FIFO should be
1902                  * large enough to accommodate two full transmit packets,
1903                  * rounded up to the next 1KB and expressed in KB.  Likewise,
1904                  * the Rx FIFO should be large enough to accommodate at least
1905                  * one full receive packet and is similarly rounded up and
1906                  * expressed in KB.
1907                  */
1908                 pba = rd32(E1000_PBA);
1909                 /* upper 16 bits has Tx packet buffer allocation size in KB */
1910                 tx_space = pba >> 16;
1911                 /* lower 16 bits has Rx packet buffer allocation size in KB */
1912                 pba &= 0xffff;
1913                 /* the Tx fifo also stores 16 bytes of information about the Tx
1914                  * but don't include ethernet FCS because hardware appends it
1915                  */
1916                 min_tx_space = (adapter->max_frame_size +
1917                                 sizeof(union e1000_adv_tx_desc) -
1918                                 ETH_FCS_LEN) * 2;
1919                 min_tx_space = ALIGN(min_tx_space, 1024);
1920                 min_tx_space >>= 10;
1921                 /* software strips receive CRC, so leave room for it */
1922                 min_rx_space = adapter->max_frame_size;
1923                 min_rx_space = ALIGN(min_rx_space, 1024);
1924                 min_rx_space >>= 10;
1925
1926                 /* If current Tx allocation is less than the min Tx FIFO size,
1927                  * and the min Tx FIFO size is less than the current Rx FIFO
1928                  * allocation, take space away from current Rx allocation
1929                  */
1930                 if (tx_space < min_tx_space &&
1931                     ((min_tx_space - tx_space) < pba)) {
1932                         pba = pba - (min_tx_space - tx_space);
1933
1934                         /* if short on Rx space, Rx wins and must trump Tx
1935                          * adjustment
1936                          */
1937                         if (pba < min_rx_space)
1938                                 pba = min_rx_space;
1939                 }
1940                 wr32(E1000_PBA, pba);
1941         }
1942
1943         /* flow control settings */
1944         /* The high water mark must be low enough to fit one full frame
1945          * (or the size used for early receive) above it in the Rx FIFO.
1946          * Set it to the lower of:
1947          * - 90% of the Rx FIFO size, or
1948          * - the full Rx FIFO size minus one full frame
1949          */
1950         hwm = min(((pba << 10) * 9 / 10),
1951                         ((pba << 10) - 2 * adapter->max_frame_size));
1952
1953         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
1954         fc->low_water = fc->high_water - 16;
1955         fc->pause_time = 0xFFFF;
1956         fc->send_xon = 1;
1957         fc->current_mode = fc->requested_mode;
1958
1959         /* disable receive for all VFs and wait one second */
1960         if (adapter->vfs_allocated_count) {
1961                 int i;
1962
1963                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1964                         adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1965
1966                 /* ping all the active vfs to let them know we are going down */
1967                 igb_ping_all_vfs(adapter);
1968
1969                 /* disable transmits and receives */
1970                 wr32(E1000_VFRE, 0);
1971                 wr32(E1000_VFTE, 0);
1972         }
1973
1974         /* Allow time for pending master requests to run */
1975         hw->mac.ops.reset_hw(hw);
1976         wr32(E1000_WUC, 0);
1977
1978         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1979                 /* need to resetup here after media swap */
1980                 adapter->ei.get_invariants(hw);
1981                 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1982         }
1983         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
1984                 if (igb_enable_mas(adapter))
1985                         dev_err(&pdev->dev,
1986                                 "Error enabling Media Auto Sense\n");
1987         }
1988         if (hw->mac.ops.init_hw(hw))
1989                 dev_err(&pdev->dev, "Hardware Error\n");
1990
1991         /* Flow control settings reset on hardware reset, so guarantee flow
1992          * control is off when forcing speed.
1993          */
1994         if (!hw->mac.autoneg)
1995                 igb_force_mac_fc(hw);
1996
1997         igb_init_dmac(adapter, pba);
1998 #ifdef CONFIG_IGB_HWMON
1999         /* Re-initialize the thermal sensor on i350 devices. */
2000         if (!test_bit(__IGB_DOWN, &adapter->state)) {
2001                 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2002                         /* If present, re-initialize the external thermal sensor
2003                          * interface.
2004                          */
2005                         if (adapter->ets)
2006                                 mac->ops.init_thermal_sensor_thresh(hw);
2007                 }
2008         }
2009 #endif
2010         /* Re-establish EEE setting */
2011         if (hw->phy.media_type == e1000_media_type_copper) {
2012                 switch (mac->type) {
2013                 case e1000_i350:
2014                 case e1000_i210:
2015                 case e1000_i211:
2016                         igb_set_eee_i350(hw, true, true);
2017                         break;
2018                 case e1000_i354:
2019                         igb_set_eee_i354(hw, true, true);
2020                         break;
2021                 default:
2022                         break;
2023                 }
2024         }
2025         if (!netif_running(adapter->netdev))
2026                 igb_power_down_link(adapter);
2027
2028         igb_update_mng_vlan(adapter);
2029
2030         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2031         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2032
2033         /* Re-enable PTP, where applicable. */
2034         igb_ptp_reset(adapter);
2035
2036         igb_get_phy_info(hw);
2037 }
2038
2039 static netdev_features_t igb_fix_features(struct net_device *netdev,
2040         netdev_features_t features)
2041 {
2042         /* Since there is no support for separate Rx/Tx vlan accel
2043          * enable/disable make sure Tx flag is always in same state as Rx.
2044          */
2045         if (features & NETIF_F_HW_VLAN_CTAG_RX)
2046                 features |= NETIF_F_HW_VLAN_CTAG_TX;
2047         else
2048                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2049
2050         return features;
2051 }
2052
2053 static int igb_set_features(struct net_device *netdev,
2054         netdev_features_t features)
2055 {
2056         netdev_features_t changed = netdev->features ^ features;
2057         struct igb_adapter *adapter = netdev_priv(netdev);
2058
2059         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2060                 igb_vlan_mode(netdev, features);
2061
2062         if (!(changed & NETIF_F_RXALL))
2063                 return 0;
2064
2065         netdev->features = features;
2066
2067         if (netif_running(netdev))
2068                 igb_reinit_locked(adapter);
2069         else
2070                 igb_reset(adapter);
2071
2072         return 0;
2073 }
2074
2075 static const struct net_device_ops igb_netdev_ops = {
2076         .ndo_open               = igb_open,
2077         .ndo_stop               = igb_close,
2078         .ndo_start_xmit         = igb_xmit_frame,
2079         .ndo_get_stats64        = igb_get_stats64,
2080         .ndo_set_rx_mode        = igb_set_rx_mode,
2081         .ndo_set_mac_address    = igb_set_mac,
2082         .ndo_change_mtu         = igb_change_mtu,
2083         .ndo_do_ioctl           = igb_ioctl,
2084         .ndo_tx_timeout         = igb_tx_timeout,
2085         .ndo_validate_addr      = eth_validate_addr,
2086         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
2087         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
2088         .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
2089         .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
2090         .ndo_set_vf_rate        = igb_ndo_set_vf_bw,
2091         .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
2092         .ndo_get_vf_config      = igb_ndo_get_vf_config,
2093 #ifdef CONFIG_NET_POLL_CONTROLLER
2094         .ndo_poll_controller    = igb_netpoll,
2095 #endif
2096         .ndo_fix_features       = igb_fix_features,
2097         .ndo_set_features       = igb_set_features,
2098         .ndo_features_check     = passthru_features_check,
2099 };
2100
2101 /**
2102  * igb_set_fw_version - Configure version string for ethtool
2103  * @adapter: adapter struct
2104  **/
2105 void igb_set_fw_version(struct igb_adapter *adapter)
2106 {
2107         struct e1000_hw *hw = &adapter->hw;
2108         struct e1000_fw_version fw;
2109
2110         igb_get_fw_version(hw, &fw);
2111
2112         switch (hw->mac.type) {
2113         case e1000_i210:
2114         case e1000_i211:
2115                 if (!(igb_get_flash_presence_i210(hw))) {
2116                         snprintf(adapter->fw_version,
2117                                  sizeof(adapter->fw_version),
2118                                  "%2d.%2d-%d",
2119                                  fw.invm_major, fw.invm_minor,
2120                                  fw.invm_img_type);
2121                         break;
2122                 }
2123                 /* fall through */
2124         default:
2125                 /* if option is rom valid, display its version too */
2126                 if (fw.or_valid) {
2127                         snprintf(adapter->fw_version,
2128                                  sizeof(adapter->fw_version),
2129                                  "%d.%d, 0x%08x, %d.%d.%d",
2130                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
2131                                  fw.or_major, fw.or_build, fw.or_patch);
2132                 /* no option rom */
2133                 } else if (fw.etrack_id != 0X0000) {
2134                         snprintf(adapter->fw_version,
2135                             sizeof(adapter->fw_version),
2136                             "%d.%d, 0x%08x",
2137                             fw.eep_major, fw.eep_minor, fw.etrack_id);
2138                 } else {
2139                 snprintf(adapter->fw_version,
2140                     sizeof(adapter->fw_version),
2141                     "%d.%d.%d",
2142                     fw.eep_major, fw.eep_minor, fw.eep_build);
2143                 }
2144                 break;
2145         }
2146 }
2147
2148 /**
2149  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2150  *
2151  * @adapter: adapter struct
2152  **/
2153 static void igb_init_mas(struct igb_adapter *adapter)
2154 {
2155         struct e1000_hw *hw = &adapter->hw;
2156         u16 eeprom_data;
2157
2158         hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2159         switch (hw->bus.func) {
2160         case E1000_FUNC_0:
2161                 if (eeprom_data & IGB_MAS_ENABLE_0) {
2162                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2163                         netdev_info(adapter->netdev,
2164                                 "MAS: Enabling Media Autosense for port %d\n",
2165                                 hw->bus.func);
2166                 }
2167                 break;
2168         case E1000_FUNC_1:
2169                 if (eeprom_data & IGB_MAS_ENABLE_1) {
2170                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2171                         netdev_info(adapter->netdev,
2172                                 "MAS: Enabling Media Autosense for port %d\n",
2173                                 hw->bus.func);
2174                 }
2175                 break;
2176         case E1000_FUNC_2:
2177                 if (eeprom_data & IGB_MAS_ENABLE_2) {
2178                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2179                         netdev_info(adapter->netdev,
2180                                 "MAS: Enabling Media Autosense for port %d\n",
2181                                 hw->bus.func);
2182                 }
2183                 break;
2184         case E1000_FUNC_3:
2185                 if (eeprom_data & IGB_MAS_ENABLE_3) {
2186                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2187                         netdev_info(adapter->netdev,
2188                                 "MAS: Enabling Media Autosense for port %d\n",
2189                                 hw->bus.func);
2190                 }
2191                 break;
2192         default:
2193                 /* Shouldn't get here */
2194                 netdev_err(adapter->netdev,
2195                         "MAS: Invalid port configuration, returning\n");
2196                 break;
2197         }
2198 }
2199
2200 /**
2201  *  igb_init_i2c - Init I2C interface
2202  *  @adapter: pointer to adapter structure
2203  **/
2204 static s32 igb_init_i2c(struct igb_adapter *adapter)
2205 {
2206         s32 status = 0;
2207
2208         /* I2C interface supported on i350 devices */
2209         if (adapter->hw.mac.type != e1000_i350)
2210                 return 0;
2211
2212         /* Initialize the i2c bus which is controlled by the registers.
2213          * This bus will use the i2c_algo_bit structue that implements
2214          * the protocol through toggling of the 4 bits in the register.
2215          */
2216         adapter->i2c_adap.owner = THIS_MODULE;
2217         adapter->i2c_algo = igb_i2c_algo;
2218         adapter->i2c_algo.data = adapter;
2219         adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2220         adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2221         strlcpy(adapter->i2c_adap.name, "igb BB",
2222                 sizeof(adapter->i2c_adap.name));
2223         status = i2c_bit_add_bus(&adapter->i2c_adap);
2224         return status;
2225 }
2226
2227 /**
2228  *  igb_probe - Device Initialization Routine
2229  *  @pdev: PCI device information struct
2230  *  @ent: entry in igb_pci_tbl
2231  *
2232  *  Returns 0 on success, negative on failure
2233  *
2234  *  igb_probe initializes an adapter identified by a pci_dev structure.
2235  *  The OS initialization, configuring of the adapter private structure,
2236  *  and a hardware reset occur.
2237  **/
2238 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2239 {
2240         struct net_device *netdev;
2241         struct igb_adapter *adapter;
2242         struct e1000_hw *hw;
2243         u16 eeprom_data = 0;
2244         s32 ret_val;
2245         static int global_quad_port_a; /* global quad port a indication */
2246         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2247         int err, pci_using_dac;
2248         u8 part_str[E1000_PBANUM_LENGTH];
2249
2250         /* Catch broken hardware that put the wrong VF device ID in
2251          * the PCIe SR-IOV capability.
2252          */
2253         if (pdev->is_virtfn) {
2254                 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2255                         pci_name(pdev), pdev->vendor, pdev->device);
2256                 return -EINVAL;
2257         }
2258
2259         err = pci_enable_device_mem(pdev);
2260         if (err)
2261                 return err;
2262
2263         pci_using_dac = 0;
2264         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2265         if (!err) {
2266                 pci_using_dac = 1;
2267         } else {
2268                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2269                 if (err) {
2270                         dev_err(&pdev->dev,
2271                                 "No usable DMA configuration, aborting\n");
2272                         goto err_dma;
2273                 }
2274         }
2275
2276         err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2277                                            IORESOURCE_MEM),
2278                                            igb_driver_name);
2279         if (err)
2280                 goto err_pci_reg;
2281
2282         pci_enable_pcie_error_reporting(pdev);
2283
2284         pci_set_master(pdev);
2285         pci_save_state(pdev);
2286
2287         err = -ENOMEM;
2288         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2289                                    IGB_MAX_TX_QUEUES);
2290         if (!netdev)
2291                 goto err_alloc_etherdev;
2292
2293         SET_NETDEV_DEV(netdev, &pdev->dev);
2294
2295         pci_set_drvdata(pdev, netdev);
2296         adapter = netdev_priv(netdev);
2297         adapter->netdev = netdev;
2298         adapter->pdev = pdev;
2299         hw = &adapter->hw;
2300         hw->back = adapter;
2301         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2302
2303         err = -EIO;
2304         hw->hw_addr = pci_iomap(pdev, 0, 0);
2305         if (!hw->hw_addr)
2306                 goto err_ioremap;
2307
2308         netdev->netdev_ops = &igb_netdev_ops;
2309         igb_set_ethtool_ops(netdev);
2310         netdev->watchdog_timeo = 5 * HZ;
2311
2312         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2313
2314         netdev->mem_start = pci_resource_start(pdev, 0);
2315         netdev->mem_end = pci_resource_end(pdev, 0);
2316
2317         /* PCI config space info */
2318         hw->vendor_id = pdev->vendor;
2319         hw->device_id = pdev->device;
2320         hw->revision_id = pdev->revision;
2321         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2322         hw->subsystem_device_id = pdev->subsystem_device;
2323
2324         /* Copy the default MAC, PHY and NVM function pointers */
2325         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2326         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2327         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2328         /* Initialize skew-specific constants */
2329         err = ei->get_invariants(hw);
2330         if (err)
2331                 goto err_sw_init;
2332
2333         /* setup the private structure */
2334         err = igb_sw_init(adapter);
2335         if (err)
2336                 goto err_sw_init;
2337
2338         igb_get_bus_info_pcie(hw);
2339
2340         hw->phy.autoneg_wait_to_complete = false;
2341
2342         /* Copper options */
2343         if (hw->phy.media_type == e1000_media_type_copper) {
2344                 hw->phy.mdix = AUTO_ALL_MODES;
2345                 hw->phy.disable_polarity_correction = false;
2346                 hw->phy.ms_type = e1000_ms_hw_default;
2347         }
2348
2349         if (igb_check_reset_block(hw))
2350                 dev_info(&pdev->dev,
2351                         "PHY reset is blocked due to SOL/IDER session.\n");
2352
2353         /* features is initialized to 0 in allocation, it might have bits
2354          * set by igb_sw_init so we should use an or instead of an
2355          * assignment.
2356          */
2357         netdev->features |= NETIF_F_SG |
2358                             NETIF_F_IP_CSUM |
2359                             NETIF_F_IPV6_CSUM |
2360                             NETIF_F_TSO |
2361                             NETIF_F_TSO6 |
2362                             NETIF_F_RXHASH |
2363                             NETIF_F_RXCSUM |
2364                             NETIF_F_HW_VLAN_CTAG_RX |
2365                             NETIF_F_HW_VLAN_CTAG_TX;
2366
2367         /* copy netdev features into list of user selectable features */
2368         netdev->hw_features |= netdev->features;
2369         netdev->hw_features |= NETIF_F_RXALL;
2370
2371         /* set this bit last since it cannot be part of hw_features */
2372         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2373
2374         netdev->vlan_features |= NETIF_F_TSO |
2375                                  NETIF_F_TSO6 |
2376                                  NETIF_F_IP_CSUM |
2377                                  NETIF_F_IPV6_CSUM |
2378                                  NETIF_F_SG;
2379
2380         netdev->priv_flags |= IFF_SUPP_NOFCS;
2381
2382         if (pci_using_dac) {
2383                 netdev->features |= NETIF_F_HIGHDMA;
2384                 netdev->vlan_features |= NETIF_F_HIGHDMA;
2385         }
2386
2387         if (hw->mac.type >= e1000_82576) {
2388                 netdev->hw_features |= NETIF_F_SCTP_CSUM;
2389                 netdev->features |= NETIF_F_SCTP_CSUM;
2390         }
2391
2392         netdev->priv_flags |= IFF_UNICAST_FLT;
2393
2394         adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2395
2396         /* before reading the NVM, reset the controller to put the device in a
2397          * known good starting state
2398          */
2399         hw->mac.ops.reset_hw(hw);
2400
2401         /* make sure the NVM is good , i211/i210 parts can have special NVM
2402          * that doesn't contain a checksum
2403          */
2404         switch (hw->mac.type) {
2405         case e1000_i210:
2406         case e1000_i211:
2407                 if (igb_get_flash_presence_i210(hw)) {
2408                         if (hw->nvm.ops.validate(hw) < 0) {
2409                                 dev_err(&pdev->dev,
2410                                         "The NVM Checksum Is Not Valid\n");
2411                                 err = -EIO;
2412                                 goto err_eeprom;
2413                         }
2414                 }
2415                 break;
2416         default:
2417                 if (hw->nvm.ops.validate(hw) < 0) {
2418                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2419                         err = -EIO;
2420                         goto err_eeprom;
2421                 }
2422                 break;
2423         }
2424
2425         /* copy the MAC address out of the NVM */
2426         if (hw->mac.ops.read_mac_addr(hw))
2427                 dev_err(&pdev->dev, "NVM Read Error\n");
2428
2429         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2430
2431         if (!is_valid_ether_addr(netdev->dev_addr)) {
2432                 dev_err(&pdev->dev, "Invalid MAC Address\n");
2433                 err = -EIO;
2434                 goto err_eeprom;
2435         }
2436
2437         /* get firmware version for ethtool -i */
2438         igb_set_fw_version(adapter);
2439
2440         /* configure RXPBSIZE and TXPBSIZE */
2441         if (hw->mac.type == e1000_i210) {
2442                 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2443                 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2444         }
2445
2446         setup_timer(&adapter->watchdog_timer, igb_watchdog,
2447                     (unsigned long) adapter);
2448         setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2449                     (unsigned long) adapter);
2450
2451         INIT_WORK(&adapter->reset_task, igb_reset_task);
2452         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2453
2454         /* Initialize link properties that are user-changeable */
2455         adapter->fc_autoneg = true;
2456         hw->mac.autoneg = true;
2457         hw->phy.autoneg_advertised = 0x2f;
2458
2459         hw->fc.requested_mode = e1000_fc_default;
2460         hw->fc.current_mode = e1000_fc_default;
2461
2462         igb_validate_mdi_setting(hw);
2463
2464         /* By default, support wake on port A */
2465         if (hw->bus.func == 0)
2466                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2467
2468         /* Check the NVM for wake support on non-port A ports */
2469         if (hw->mac.type >= e1000_82580)
2470                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2471                                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2472                                  &eeprom_data);
2473         else if (hw->bus.func == 1)
2474                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2475
2476         if (eeprom_data & IGB_EEPROM_APME)
2477                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2478
2479         /* now that we have the eeprom settings, apply the special cases where
2480          * the eeprom may be wrong or the board simply won't support wake on
2481          * lan on a particular port
2482          */
2483         switch (pdev->device) {
2484         case E1000_DEV_ID_82575GB_QUAD_COPPER:
2485                 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2486                 break;
2487         case E1000_DEV_ID_82575EB_FIBER_SERDES:
2488         case E1000_DEV_ID_82576_FIBER:
2489         case E1000_DEV_ID_82576_SERDES:
2490                 /* Wake events only supported on port A for dual fiber
2491                  * regardless of eeprom setting
2492                  */
2493                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2494                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2495                 break;
2496         case E1000_DEV_ID_82576_QUAD_COPPER:
2497         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2498                 /* if quad port adapter, disable WoL on all but port A */
2499                 if (global_quad_port_a != 0)
2500                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2501                 else
2502                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2503                 /* Reset for multiple quad port adapters */
2504                 if (++global_quad_port_a == 4)
2505                         global_quad_port_a = 0;
2506                 break;
2507         default:
2508                 /* If the device can't wake, don't set software support */
2509                 if (!device_can_wakeup(&adapter->pdev->dev))
2510                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2511         }
2512
2513         /* initialize the wol settings based on the eeprom settings */
2514         if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2515                 adapter->wol |= E1000_WUFC_MAG;
2516
2517         /* Some vendors want WoL disabled by default, but still supported */
2518         if ((hw->mac.type == e1000_i350) &&
2519             (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2520                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2521                 adapter->wol = 0;
2522         }
2523
2524         device_set_wakeup_enable(&adapter->pdev->dev,
2525                                  adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2526
2527         /* reset the hardware with the new settings */
2528         igb_reset(adapter);
2529
2530         /* Init the I2C interface */
2531         err = igb_init_i2c(adapter);
2532         if (err) {
2533                 dev_err(&pdev->dev, "failed to init i2c interface\n");
2534                 goto err_eeprom;
2535         }
2536
2537         /* let the f/w know that the h/w is now under the control of the
2538          * driver.
2539          */
2540         igb_get_hw_control(adapter);
2541
2542         strcpy(netdev->name, "eth%d");
2543         err = register_netdev(netdev);
2544         if (err)
2545                 goto err_register;
2546
2547         /* carrier off reporting is important to ethtool even BEFORE open */
2548         netif_carrier_off(netdev);
2549
2550 #ifdef CONFIG_IGB_DCA
2551         if (dca_add_requester(&pdev->dev) == 0) {
2552                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2553                 dev_info(&pdev->dev, "DCA enabled\n");
2554                 igb_setup_dca(adapter);
2555         }
2556
2557 #endif
2558 #ifdef CONFIG_IGB_HWMON
2559         /* Initialize the thermal sensor on i350 devices. */
2560         if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2561                 u16 ets_word;
2562
2563                 /* Read the NVM to determine if this i350 device supports an
2564                  * external thermal sensor.
2565                  */
2566                 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2567                 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2568                         adapter->ets = true;
2569                 else
2570                         adapter->ets = false;
2571                 if (igb_sysfs_init(adapter))
2572                         dev_err(&pdev->dev,
2573                                 "failed to allocate sysfs resources\n");
2574         } else {
2575                 adapter->ets = false;
2576         }
2577 #endif
2578         /* Check if Media Autosense is enabled */
2579         adapter->ei = *ei;
2580         if (hw->dev_spec._82575.mas_capable)
2581                 igb_init_mas(adapter);
2582
2583         /* do hw tstamp init after resetting */
2584         igb_ptp_init(adapter);
2585
2586         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2587         /* print bus type/speed/width info, not applicable to i354 */
2588         if (hw->mac.type != e1000_i354) {
2589                 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2590                          netdev->name,
2591                          ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2592                           (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2593                            "unknown"),
2594                          ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2595                           "Width x4" :
2596                           (hw->bus.width == e1000_bus_width_pcie_x2) ?
2597                           "Width x2" :
2598                           (hw->bus.width == e1000_bus_width_pcie_x1) ?
2599                           "Width x1" : "unknown"), netdev->dev_addr);
2600         }
2601
2602         if ((hw->mac.type >= e1000_i210 ||
2603              igb_get_flash_presence_i210(hw))) {
2604                 ret_val = igb_read_part_string(hw, part_str,
2605                                                E1000_PBANUM_LENGTH);
2606         } else {
2607                 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2608         }
2609
2610         if (ret_val)
2611                 strcpy(part_str, "Unknown");
2612         dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2613         dev_info(&pdev->dev,
2614                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2615                 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2616                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2617                 adapter->num_rx_queues, adapter->num_tx_queues);
2618         if (hw->phy.media_type == e1000_media_type_copper) {
2619                 switch (hw->mac.type) {
2620                 case e1000_i350:
2621                 case e1000_i210:
2622                 case e1000_i211:
2623                         /* Enable EEE for internal copper PHY devices */
2624                         err = igb_set_eee_i350(hw, true, true);
2625                         if ((!err) &&
2626                             (!hw->dev_spec._82575.eee_disable)) {
2627                                 adapter->eee_advert =
2628                                         MDIO_EEE_100TX | MDIO_EEE_1000T;
2629                                 adapter->flags |= IGB_FLAG_EEE;
2630                         }
2631                         break;
2632                 case e1000_i354:
2633                         if ((rd32(E1000_CTRL_EXT) &
2634                             E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2635                                 err = igb_set_eee_i354(hw, true, true);
2636                                 if ((!err) &&
2637                                         (!hw->dev_spec._82575.eee_disable)) {
2638                                         adapter->eee_advert =
2639                                            MDIO_EEE_100TX | MDIO_EEE_1000T;
2640                                         adapter->flags |= IGB_FLAG_EEE;
2641                                 }
2642                         }
2643                         break;
2644                 default:
2645                         break;
2646                 }
2647         }
2648         pm_runtime_put_noidle(&pdev->dev);
2649         return 0;
2650
2651 err_register:
2652         igb_release_hw_control(adapter);
2653         memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2654 err_eeprom:
2655         if (!igb_check_reset_block(hw))
2656                 igb_reset_phy(hw);
2657
2658         if (hw->flash_address)
2659                 iounmap(hw->flash_address);
2660 err_sw_init:
2661         igb_clear_interrupt_scheme(adapter);
2662         pci_iounmap(pdev, hw->hw_addr);
2663 err_ioremap:
2664         free_netdev(netdev);
2665 err_alloc_etherdev:
2666         pci_release_selected_regions(pdev,
2667                                      pci_select_bars(pdev, IORESOURCE_MEM));
2668 err_pci_reg:
2669 err_dma:
2670         pci_disable_device(pdev);
2671         return err;
2672 }
2673
2674 #ifdef CONFIG_PCI_IOV
2675 static int igb_disable_sriov(struct pci_dev *pdev)
2676 {
2677         struct net_device *netdev = pci_get_drvdata(pdev);
2678         struct igb_adapter *adapter = netdev_priv(netdev);
2679         struct e1000_hw *hw = &adapter->hw;
2680
2681         /* reclaim resources allocated to VFs */
2682         if (adapter->vf_data) {
2683                 /* disable iov and allow time for transactions to clear */
2684                 if (pci_vfs_assigned(pdev)) {
2685                         dev_warn(&pdev->dev,
2686                                  "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2687                         return -EPERM;
2688                 } else {
2689                         pci_disable_sriov(pdev);
2690                         msleep(500);
2691                 }
2692
2693                 kfree(adapter->vf_data);
2694                 adapter->vf_data = NULL;
2695                 adapter->vfs_allocated_count = 0;
2696                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2697                 wrfl();
2698                 msleep(100);
2699                 dev_info(&pdev->dev, "IOV Disabled\n");
2700
2701                 /* Re-enable DMA Coalescing flag since IOV is turned off */
2702                 adapter->flags |= IGB_FLAG_DMAC;
2703         }
2704
2705         return 0;
2706 }
2707
2708 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2709 {
2710         struct net_device *netdev = pci_get_drvdata(pdev);
2711         struct igb_adapter *adapter = netdev_priv(netdev);
2712         int old_vfs = pci_num_vf(pdev);
2713         int err = 0;
2714         int i;
2715
2716         if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2717                 err = -EPERM;
2718                 goto out;
2719         }
2720         if (!num_vfs)
2721                 goto out;
2722
2723         if (old_vfs) {
2724                 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2725                          old_vfs, max_vfs);
2726                 adapter->vfs_allocated_count = old_vfs;
2727         } else
2728                 adapter->vfs_allocated_count = num_vfs;
2729
2730         adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2731                                 sizeof(struct vf_data_storage), GFP_KERNEL);
2732
2733         /* if allocation failed then we do not support SR-IOV */
2734         if (!adapter->vf_data) {
2735                 adapter->vfs_allocated_count = 0;
2736                 dev_err(&pdev->dev,
2737                         "Unable to allocate memory for VF Data Storage\n");
2738                 err = -ENOMEM;
2739                 goto out;
2740         }
2741
2742         /* only call pci_enable_sriov() if no VFs are allocated already */
2743         if (!old_vfs) {
2744                 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2745                 if (err)
2746                         goto err_out;
2747         }
2748         dev_info(&pdev->dev, "%d VFs allocated\n",
2749                  adapter->vfs_allocated_count);
2750         for (i = 0; i < adapter->vfs_allocated_count; i++)
2751                 igb_vf_configure(adapter, i);
2752
2753         /* DMA Coalescing is not supported in IOV mode. */
2754         adapter->flags &= ~IGB_FLAG_DMAC;
2755         goto out;
2756
2757 err_out:
2758         kfree(adapter->vf_data);
2759         adapter->vf_data = NULL;
2760         adapter->vfs_allocated_count = 0;
2761 out:
2762         return err;
2763 }
2764
2765 #endif
2766 /**
2767  *  igb_remove_i2c - Cleanup  I2C interface
2768  *  @adapter: pointer to adapter structure
2769  **/
2770 static void igb_remove_i2c(struct igb_adapter *adapter)
2771 {
2772         /* free the adapter bus structure */
2773         i2c_del_adapter(&adapter->i2c_adap);
2774 }
2775
2776 /**
2777  *  igb_remove - Device Removal Routine
2778  *  @pdev: PCI device information struct
2779  *
2780  *  igb_remove is called by the PCI subsystem to alert the driver
2781  *  that it should release a PCI device.  The could be caused by a
2782  *  Hot-Plug event, or because the driver is going to be removed from
2783  *  memory.
2784  **/
2785 static void igb_remove(struct pci_dev *pdev)
2786 {
2787         struct net_device *netdev = pci_get_drvdata(pdev);
2788         struct igb_adapter *adapter = netdev_priv(netdev);
2789         struct e1000_hw *hw = &adapter->hw;
2790
2791         pm_runtime_get_noresume(&pdev->dev);
2792 #ifdef CONFIG_IGB_HWMON
2793         igb_sysfs_exit(adapter);
2794 #endif
2795         igb_remove_i2c(adapter);
2796         igb_ptp_stop(adapter);
2797         /* The watchdog timer may be rescheduled, so explicitly
2798          * disable watchdog from being rescheduled.
2799          */
2800         set_bit(__IGB_DOWN, &adapter->state);
2801         del_timer_sync(&adapter->watchdog_timer);
2802         del_timer_sync(&adapter->phy_info_timer);
2803
2804         cancel_work_sync(&adapter->reset_task);
2805         cancel_work_sync(&adapter->watchdog_task);
2806
2807 #ifdef CONFIG_IGB_DCA
2808         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2809                 dev_info(&pdev->dev, "DCA disabled\n");
2810                 dca_remove_requester(&pdev->dev);
2811                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2812                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2813         }
2814 #endif
2815
2816         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
2817          * would have already happened in close and is redundant.
2818          */
2819         igb_release_hw_control(adapter);
2820
2821         unregister_netdev(netdev);
2822
2823         igb_clear_interrupt_scheme(adapter);
2824
2825 #ifdef CONFIG_PCI_IOV
2826         igb_disable_sriov(pdev);
2827 #endif
2828
2829         pci_iounmap(pdev, hw->hw_addr);
2830         if (hw->flash_address)
2831                 iounmap(hw->flash_address);
2832         pci_release_selected_regions(pdev,
2833                                      pci_select_bars(pdev, IORESOURCE_MEM));
2834
2835         kfree(adapter->shadow_vfta);
2836         free_netdev(netdev);
2837
2838         pci_disable_pcie_error_reporting(pdev);
2839
2840         pci_disable_device(pdev);
2841 }
2842
2843 /**
2844  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2845  *  @adapter: board private structure to initialize
2846  *
2847  *  This function initializes the vf specific data storage and then attempts to
2848  *  allocate the VFs.  The reason for ordering it this way is because it is much
2849  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2850  *  the memory for the VFs.
2851  **/
2852 static void igb_probe_vfs(struct igb_adapter *adapter)
2853 {
2854 #ifdef CONFIG_PCI_IOV
2855         struct pci_dev *pdev = adapter->pdev;
2856         struct e1000_hw *hw = &adapter->hw;
2857
2858         /* Virtualization features not supported on i210 family. */
2859         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2860                 return;
2861
2862         pci_sriov_set_totalvfs(pdev, 7);
2863         igb_pci_enable_sriov(pdev, max_vfs);
2864
2865 #endif /* CONFIG_PCI_IOV */
2866 }
2867
2868 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2869 {
2870         struct e1000_hw *hw = &adapter->hw;
2871         u32 max_rss_queues;
2872
2873         /* Determine the maximum number of RSS queues supported. */
2874         switch (hw->mac.type) {
2875         case e1000_i211:
2876                 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2877                 break;
2878         case e1000_82575:
2879         case e1000_i210:
2880                 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2881                 break;
2882         case e1000_i350:
2883                 /* I350 cannot do RSS and SR-IOV at the same time */
2884                 if (!!adapter->vfs_allocated_count) {
2885                         max_rss_queues = 1;
2886                         break;
2887                 }
2888                 /* fall through */
2889         case e1000_82576:
2890                 if (!!adapter->vfs_allocated_count) {
2891                         max_rss_queues = 2;
2892                         break;
2893                 }
2894                 /* fall through */
2895         case e1000_82580:
2896         case e1000_i354:
2897         default:
2898                 max_rss_queues = IGB_MAX_RX_QUEUES;
2899                 break;
2900         }
2901
2902         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2903
2904         /* Determine if we need to pair queues. */
2905         switch (hw->mac.type) {
2906         case e1000_82575:
2907         case e1000_i211:
2908                 /* Device supports enough interrupts without queue pairing. */
2909                 break;
2910         case e1000_82576:
2911                 /* If VFs are going to be allocated with RSS queues then we
2912                  * should pair the queues in order to conserve interrupts due
2913                  * to limited supply.
2914                  */
2915                 if ((adapter->rss_queues > 1) &&
2916                     (adapter->vfs_allocated_count > 6))
2917                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2918                 /* fall through */
2919         case e1000_82580:
2920         case e1000_i350:
2921         case e1000_i354:
2922         case e1000_i210:
2923         default:
2924                 /* If rss_queues > half of max_rss_queues, pair the queues in
2925                  * order to conserve interrupts due to limited supply.
2926                  */
2927                 if (adapter->rss_queues > (max_rss_queues / 2))
2928                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2929                 break;
2930         }
2931 }
2932
2933 /**
2934  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2935  *  @adapter: board private structure to initialize
2936  *
2937  *  igb_sw_init initializes the Adapter private data structure.
2938  *  Fields are initialized based on PCI device information and
2939  *  OS network device settings (MTU size).
2940  **/
2941 static int igb_sw_init(struct igb_adapter *adapter)
2942 {
2943         struct e1000_hw *hw = &adapter->hw;
2944         struct net_device *netdev = adapter->netdev;
2945         struct pci_dev *pdev = adapter->pdev;
2946
2947         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2948
2949         /* set default ring sizes */
2950         adapter->tx_ring_count = IGB_DEFAULT_TXD;
2951         adapter->rx_ring_count = IGB_DEFAULT_RXD;
2952
2953         /* set default ITR values */
2954         adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2955         adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2956
2957         /* set default work limits */
2958         adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2959
2960         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2961                                   VLAN_HLEN;
2962         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2963
2964         spin_lock_init(&adapter->stats64_lock);
2965 #ifdef CONFIG_PCI_IOV
2966         switch (hw->mac.type) {
2967         case e1000_82576:
2968         case e1000_i350:
2969                 if (max_vfs > 7) {
2970                         dev_warn(&pdev->dev,
2971                                  "Maximum of 7 VFs per PF, using max\n");
2972                         max_vfs = adapter->vfs_allocated_count = 7;
2973                 } else
2974                         adapter->vfs_allocated_count = max_vfs;
2975                 if (adapter->vfs_allocated_count)
2976                         dev_warn(&pdev->dev,
2977                                  "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2978                 break;
2979         default:
2980                 break;
2981         }
2982 #endif /* CONFIG_PCI_IOV */
2983
2984         igb_init_queue_configuration(adapter);
2985
2986         /* Setup and initialize a copy of the hw vlan table array */
2987         adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2988                                        GFP_ATOMIC);
2989
2990         /* This call may decrease the number of queues */
2991         if (igb_init_interrupt_scheme(adapter, true)) {
2992                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2993                 return -ENOMEM;
2994         }
2995
2996         igb_probe_vfs(adapter);
2997
2998         /* Explicitly disable IRQ since the NIC can be in any state. */
2999         igb_irq_disable(adapter);
3000
3001         if (hw->mac.type >= e1000_i350)
3002                 adapter->flags &= ~IGB_FLAG_DMAC;
3003
3004         set_bit(__IGB_DOWN, &adapter->state);
3005         return 0;
3006 }
3007
3008 /**
3009  *  igb_open - Called when a network interface is made active
3010  *  @netdev: network interface device structure
3011  *
3012  *  Returns 0 on success, negative value on failure
3013  *
3014  *  The open entry point is called when a network interface is made
3015  *  active by the system (IFF_UP).  At this point all resources needed
3016  *  for transmit and receive operations are allocated, the interrupt
3017  *  handler is registered with the OS, the watchdog timer is started,
3018  *  and the stack is notified that the interface is ready.
3019  **/
3020 static int __igb_open(struct net_device *netdev, bool resuming)
3021 {
3022         struct igb_adapter *adapter = netdev_priv(netdev);
3023         struct e1000_hw *hw = &adapter->hw;
3024         struct pci_dev *pdev = adapter->pdev;
3025         int err;
3026         int i;
3027
3028         /* disallow open during test */
3029         if (test_bit(__IGB_TESTING, &adapter->state)) {
3030                 WARN_ON(resuming);
3031                 return -EBUSY;
3032         }
3033
3034         if (!resuming)
3035                 pm_runtime_get_sync(&pdev->dev);
3036
3037         netif_carrier_off(netdev);
3038
3039         /* allocate transmit descriptors */
3040         err = igb_setup_all_tx_resources(adapter);
3041         if (err)
3042                 goto err_setup_tx;
3043
3044         /* allocate receive descriptors */
3045         err = igb_setup_all_rx_resources(adapter);
3046         if (err)
3047                 goto err_setup_rx;
3048
3049         igb_power_up_link(adapter);
3050
3051         /* before we allocate an interrupt, we must be ready to handle it.
3052          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3053          * as soon as we call pci_request_irq, so we have to setup our
3054          * clean_rx handler before we do so.
3055          */
3056         igb_configure(adapter);
3057
3058         err = igb_request_irq(adapter);
3059         if (err)
3060                 goto err_req_irq;
3061
3062         /* Notify the stack of the actual queue counts. */
3063         err = netif_set_real_num_tx_queues(adapter->netdev,
3064                                            adapter->num_tx_queues);
3065         if (err)
3066                 goto err_set_queues;
3067
3068         err = netif_set_real_num_rx_queues(adapter->netdev,
3069                                            adapter->num_rx_queues);
3070         if (err)
3071                 goto err_set_queues;
3072
3073         /* From here on the code is the same as igb_up() */
3074         clear_bit(__IGB_DOWN, &adapter->state);
3075
3076         for (i = 0; i < adapter->num_q_vectors; i++)
3077                 napi_enable(&(adapter->q_vector[i]->napi));
3078
3079         /* Clear any pending interrupts. */
3080         rd32(E1000_ICR);
3081
3082         igb_irq_enable(adapter);
3083
3084         /* notify VFs that reset has been completed */
3085         if (adapter->vfs_allocated_count) {
3086                 u32 reg_data = rd32(E1000_CTRL_EXT);
3087
3088                 reg_data |= E1000_CTRL_EXT_PFRSTD;
3089                 wr32(E1000_CTRL_EXT, reg_data);
3090         }
3091
3092         netif_tx_start_all_queues(netdev);
3093
3094         if (!resuming)
3095                 pm_runtime_put(&pdev->dev);
3096
3097         /* start the watchdog. */
3098         hw->mac.get_link_status = 1;
3099         schedule_work(&adapter->watchdog_task);
3100
3101         return 0;
3102
3103 err_set_queues:
3104         igb_free_irq(adapter);
3105 err_req_irq:
3106         igb_release_hw_control(adapter);
3107         igb_power_down_link(adapter);
3108         igb_free_all_rx_resources(adapter);
3109 err_setup_rx:
3110         igb_free_all_tx_resources(adapter);
3111 err_setup_tx:
3112         igb_reset(adapter);
3113         if (!resuming)
3114                 pm_runtime_put(&pdev->dev);
3115
3116         return err;
3117 }
3118
3119 static int igb_open(struct net_device *netdev)
3120 {
3121         return __igb_open(netdev, false);
3122 }
3123
3124 /**
3125  *  igb_close - Disables a network interface
3126  *  @netdev: network interface device structure
3127  *
3128  *  Returns 0, this is not allowed to fail
3129  *
3130  *  The close entry point is called when an interface is de-activated
3131  *  by the OS.  The hardware is still under the driver's control, but
3132  *  needs to be disabled.  A global MAC reset is issued to stop the
3133  *  hardware, and all transmit and receive resources are freed.
3134  **/
3135 static int __igb_close(struct net_device *netdev, bool suspending)
3136 {
3137         struct igb_adapter *adapter = netdev_priv(netdev);
3138         struct pci_dev *pdev = adapter->pdev;
3139
3140         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3141
3142         if (!suspending)
3143                 pm_runtime_get_sync(&pdev->dev);
3144
3145         igb_down(adapter);
3146         igb_free_irq(adapter);
3147
3148         igb_free_all_tx_resources(adapter);
3149         igb_free_all_rx_resources(adapter);
3150
3151         if (!suspending)
3152                 pm_runtime_put_sync(&pdev->dev);
3153         return 0;
3154 }
3155
3156 static int igb_close(struct net_device *netdev)
3157 {
3158         return __igb_close(netdev, false);
3159 }
3160
3161 /**
3162  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3163  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3164  *
3165  *  Return 0 on success, negative on failure
3166  **/
3167 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3168 {
3169         struct device *dev = tx_ring->dev;
3170         int size;
3171
3172         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3173
3174         tx_ring->tx_buffer_info = vzalloc(size);
3175         if (!tx_ring->tx_buffer_info)
3176                 goto err;
3177
3178         /* round up to nearest 4K */
3179         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3180         tx_ring->size = ALIGN(tx_ring->size, 4096);
3181
3182         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3183                                            &tx_ring->dma, GFP_KERNEL);
3184         if (!tx_ring->desc)
3185                 goto err;
3186
3187         tx_ring->next_to_use = 0;
3188         tx_ring->next_to_clean = 0;
3189
3190         return 0;
3191
3192 err:
3193         vfree(tx_ring->tx_buffer_info);
3194         tx_ring->tx_buffer_info = NULL;
3195         dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3196         return -ENOMEM;
3197 }
3198
3199 /**
3200  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3201  *                               (Descriptors) for all queues
3202  *  @adapter: board private structure
3203  *
3204  *  Return 0 on success, negative on failure
3205  **/
3206 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3207 {
3208         struct pci_dev *pdev = adapter->pdev;
3209         int i, err = 0;
3210
3211         for (i = 0; i < adapter->num_tx_queues; i++) {
3212                 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3213                 if (err) {
3214                         dev_err(&pdev->dev,
3215                                 "Allocation for Tx Queue %u failed\n", i);
3216                         for (i--; i >= 0; i--)
3217                                 igb_free_tx_resources(adapter->tx_ring[i]);
3218                         break;
3219                 }
3220         }
3221
3222         return err;
3223 }
3224
3225 /**
3226  *  igb_setup_tctl - configure the transmit control registers
3227  *  @adapter: Board private structure
3228  **/
3229 void igb_setup_tctl(struct igb_adapter *adapter)
3230 {
3231         struct e1000_hw *hw = &adapter->hw;
3232         u32 tctl;
3233
3234         /* disable queue 0 which is enabled by default on 82575 and 82576 */
3235         wr32(E1000_TXDCTL(0), 0);
3236
3237         /* Program the Transmit Control Register */
3238         tctl = rd32(E1000_TCTL);
3239         tctl &= ~E1000_TCTL_CT;
3240         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3241                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3242
3243         igb_config_collision_dist(hw);
3244
3245         /* Enable transmits */
3246         tctl |= E1000_TCTL_EN;
3247
3248         wr32(E1000_TCTL, tctl);
3249 }
3250
3251 /**
3252  *  igb_configure_tx_ring - Configure transmit ring after Reset
3253  *  @adapter: board private structure
3254  *  @ring: tx ring to configure
3255  *
3256  *  Configure a transmit ring after a reset.
3257  **/
3258 void igb_configure_tx_ring(struct igb_adapter *adapter,
3259                            struct igb_ring *ring)
3260 {
3261         struct e1000_hw *hw = &adapter->hw;
3262         u32 txdctl = 0;
3263         u64 tdba = ring->dma;
3264         int reg_idx = ring->reg_idx;
3265
3266         /* disable the queue */
3267         wr32(E1000_TXDCTL(reg_idx), 0);
3268         wrfl();
3269         mdelay(10);
3270
3271         wr32(E1000_TDLEN(reg_idx),
3272              ring->count * sizeof(union e1000_adv_tx_desc));
3273         wr32(E1000_TDBAL(reg_idx),
3274              tdba & 0x00000000ffffffffULL);
3275         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3276
3277         ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3278         wr32(E1000_TDH(reg_idx), 0);
3279         writel(0, ring->tail);
3280
3281         txdctl |= IGB_TX_PTHRESH;
3282         txdctl |= IGB_TX_HTHRESH << 8;
3283         txdctl |= IGB_TX_WTHRESH << 16;
3284
3285         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3286         wr32(E1000_TXDCTL(reg_idx), txdctl);
3287 }
3288
3289 /**
3290  *  igb_configure_tx - Configure transmit Unit after Reset
3291  *  @adapter: board private structure
3292  *
3293  *  Configure the Tx unit of the MAC after a reset.
3294  **/
3295 static void igb_configure_tx(struct igb_adapter *adapter)
3296 {
3297         int i;
3298
3299         for (i = 0; i < adapter->num_tx_queues; i++)
3300                 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3301 }
3302
3303 /**
3304  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3305  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3306  *
3307  *  Returns 0 on success, negative on failure
3308  **/
3309 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3310 {
3311         struct device *dev = rx_ring->dev;
3312         int size;
3313
3314         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3315
3316         rx_ring->rx_buffer_info = vzalloc(size);
3317         if (!rx_ring->rx_buffer_info)
3318                 goto err;
3319
3320         /* Round up to nearest 4K */
3321         rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3322         rx_ring->size = ALIGN(rx_ring->size, 4096);
3323
3324         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3325                                            &rx_ring->dma, GFP_KERNEL);
3326         if (!rx_ring->desc)
3327                 goto err;
3328
3329         rx_ring->next_to_alloc = 0;
3330         rx_ring->next_to_clean = 0;
3331         rx_ring->next_to_use = 0;
3332
3333         return 0;
3334
3335 err:
3336         vfree(rx_ring->rx_buffer_info);
3337         rx_ring->rx_buffer_info = NULL;
3338         dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3339         return -ENOMEM;
3340 }
3341
3342 /**
3343  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3344  *                               (Descriptors) for all queues
3345  *  @adapter: board private structure
3346  *
3347  *  Return 0 on success, negative on failure
3348  **/
3349 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3350 {
3351         struct pci_dev *pdev = adapter->pdev;
3352         int i, err = 0;
3353
3354         for (i = 0; i < adapter->num_rx_queues; i++) {
3355                 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3356                 if (err) {
3357                         dev_err(&pdev->dev,
3358                                 "Allocation for Rx Queue %u failed\n", i);
3359                         for (i--; i >= 0; i--)
3360                                 igb_free_rx_resources(adapter->rx_ring[i]);
3361                         break;
3362                 }
3363         }
3364
3365         return err;
3366 }
3367
3368 /**
3369  *  igb_setup_mrqc - configure the multiple receive queue control registers
3370  *  @adapter: Board private structure
3371  **/
3372 static void igb_setup_mrqc(struct igb_adapter *adapter)
3373 {
3374         struct e1000_hw *hw = &adapter->hw;
3375         u32 mrqc, rxcsum;
3376         u32 j, num_rx_queues;
3377         u32 rss_key[10];
3378
3379         netdev_rss_key_fill(rss_key, sizeof(rss_key));
3380         for (j = 0; j < 10; j++)
3381                 wr32(E1000_RSSRK(j), rss_key[j]);
3382
3383         num_rx_queues = adapter->rss_queues;
3384
3385         switch (hw->mac.type) {
3386         case e1000_82576:
3387                 /* 82576 supports 2 RSS queues for SR-IOV */
3388                 if (adapter->vfs_allocated_count)
3389                         num_rx_queues = 2;
3390                 break;
3391         default:
3392                 break;
3393         }
3394
3395         if (adapter->rss_indir_tbl_init != num_rx_queues) {
3396                 for (j = 0; j < IGB_RETA_SIZE; j++)
3397                         adapter->rss_indir_tbl[j] =
3398                         (j * num_rx_queues) / IGB_RETA_SIZE;
3399                 adapter->rss_indir_tbl_init = num_rx_queues;
3400         }
3401         igb_write_rss_indir_tbl(adapter);
3402
3403         /* Disable raw packet checksumming so that RSS hash is placed in
3404          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3405          * offloads as they are enabled by default
3406          */
3407         rxcsum = rd32(E1000_RXCSUM);
3408         rxcsum |= E1000_RXCSUM_PCSD;
3409
3410         if (adapter->hw.mac.type >= e1000_82576)
3411                 /* Enable Receive Checksum Offload for SCTP */
3412                 rxcsum |= E1000_RXCSUM_CRCOFL;
3413
3414         /* Don't need to set TUOFL or IPOFL, they default to 1 */
3415         wr32(E1000_RXCSUM, rxcsum);
3416
3417         /* Generate RSS hash based on packet types, TCP/UDP
3418          * port numbers and/or IPv4/v6 src and dst addresses
3419          */
3420         mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3421                E1000_MRQC_RSS_FIELD_IPV4_TCP |
3422                E1000_MRQC_RSS_FIELD_IPV6 |
3423                E1000_MRQC_RSS_FIELD_IPV6_TCP |
3424                E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3425
3426         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3427                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3428         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3429                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3430
3431         /* If VMDq is enabled then we set the appropriate mode for that, else
3432          * we default to RSS so that an RSS hash is calculated per packet even
3433          * if we are only using one queue
3434          */
3435         if (adapter->vfs_allocated_count) {
3436                 if (hw->mac.type > e1000_82575) {
3437                         /* Set the default pool for the PF's first queue */
3438                         u32 vtctl = rd32(E1000_VT_CTL);
3439
3440                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3441                                    E1000_VT_CTL_DISABLE_DEF_POOL);
3442                         vtctl |= adapter->vfs_allocated_count <<
3443                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3444                         wr32(E1000_VT_CTL, vtctl);
3445                 }
3446                 if (adapter->rss_queues > 1)
3447                         mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3448                 else
3449                         mrqc |= E1000_MRQC_ENABLE_VMDQ;
3450         } else {
3451                 if (hw->mac.type != e1000_i211)
3452                         mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3453         }
3454         igb_vmm_control(adapter);
3455
3456         wr32(E1000_MRQC, mrqc);
3457 }
3458
3459 /**
3460  *  igb_setup_rctl - configure the receive control registers
3461  *  @adapter: Board private structure
3462  **/
3463 void igb_setup_rctl(struct igb_adapter *adapter)
3464 {
3465         struct e1000_hw *hw = &adapter->hw;
3466         u32 rctl;
3467
3468         rctl = rd32(E1000_RCTL);
3469
3470         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3471         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3472
3473         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3474                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3475
3476         /* enable stripping of CRC. It's unlikely this will break BMC
3477          * redirection as it did with e1000. Newer features require
3478          * that the HW strips the CRC.
3479          */
3480         rctl |= E1000_RCTL_SECRC;
3481
3482         /* disable store bad packets and clear size bits. */
3483         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3484
3485         /* enable LPE to prevent packets larger than max_frame_size */
3486         rctl |= E1000_RCTL_LPE;
3487
3488         /* disable queue 0 to prevent tail write w/o re-config */
3489         wr32(E1000_RXDCTL(0), 0);
3490
3491         /* Attention!!!  For SR-IOV PF driver operations you must enable
3492          * queue drop for all VF and PF queues to prevent head of line blocking
3493          * if an un-trusted VF does not provide descriptors to hardware.
3494          */
3495         if (adapter->vfs_allocated_count) {
3496                 /* set all queue drop enable bits */
3497                 wr32(E1000_QDE, ALL_QUEUES);
3498         }
3499
3500         /* This is useful for sniffing bad packets. */
3501         if (adapter->netdev->features & NETIF_F_RXALL) {
3502                 /* UPE and MPE will be handled by normal PROMISC logic
3503                  * in e1000e_set_rx_mode
3504                  */
3505                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3506                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
3507                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3508
3509                 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3510                           E1000_RCTL_DPF | /* Allow filtered pause */
3511                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3512                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3513                  * and that breaks VLANs.
3514                  */
3515         }
3516
3517         wr32(E1000_RCTL, rctl);
3518 }
3519
3520 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3521                                    int vfn)
3522 {
3523         struct e1000_hw *hw = &adapter->hw;
3524         u32 vmolr;
3525
3526         /* if it isn't the PF check to see if VFs are enabled and
3527          * increase the size to support vlan tags
3528          */
3529         if (vfn < adapter->vfs_allocated_count &&
3530             adapter->vf_data[vfn].vlans_enabled)
3531                 size += VLAN_TAG_SIZE;
3532
3533         vmolr = rd32(E1000_VMOLR(vfn));
3534         vmolr &= ~E1000_VMOLR_RLPML_MASK;
3535         vmolr |= size | E1000_VMOLR_LPE;
3536         wr32(E1000_VMOLR(vfn), vmolr);
3537
3538         return 0;
3539 }
3540
3541 /**
3542  *  igb_rlpml_set - set maximum receive packet size
3543  *  @adapter: board private structure
3544  *
3545  *  Configure maximum receivable packet size.
3546  **/
3547 static void igb_rlpml_set(struct igb_adapter *adapter)
3548 {
3549         u32 max_frame_size = adapter->max_frame_size;
3550         struct e1000_hw *hw = &adapter->hw;
3551         u16 pf_id = adapter->vfs_allocated_count;
3552
3553         if (pf_id) {
3554                 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3555                 /* If we're in VMDQ or SR-IOV mode, then set global RLPML
3556                  * to our max jumbo frame size, in case we need to enable
3557                  * jumbo frames on one of the rings later.
3558                  * This will not pass over-length frames into the default
3559                  * queue because it's gated by the VMOLR.RLPML.
3560                  */
3561                 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3562         }
3563
3564         wr32(E1000_RLPML, max_frame_size);
3565 }
3566
3567 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3568                                  int vfn, bool aupe)
3569 {
3570         struct e1000_hw *hw = &adapter->hw;
3571         u32 vmolr;
3572
3573         /* This register exists only on 82576 and newer so if we are older then
3574          * we should exit and do nothing
3575          */
3576         if (hw->mac.type < e1000_82576)
3577                 return;
3578
3579         vmolr = rd32(E1000_VMOLR(vfn));
3580         vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3581         if (hw->mac.type == e1000_i350) {
3582                 u32 dvmolr;
3583
3584                 dvmolr = rd32(E1000_DVMOLR(vfn));
3585                 dvmolr |= E1000_DVMOLR_STRVLAN;
3586                 wr32(E1000_DVMOLR(vfn), dvmolr);
3587         }
3588         if (aupe)
3589                 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3590         else
3591                 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3592
3593         /* clear all bits that might not be set */
3594         vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3595
3596         if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3597                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3598         /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3599          * multicast packets
3600          */
3601         if (vfn <= adapter->vfs_allocated_count)
3602                 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3603
3604         wr32(E1000_VMOLR(vfn), vmolr);
3605 }
3606
3607 /**
3608  *  igb_configure_rx_ring - Configure a receive ring after Reset
3609  *  @adapter: board private structure
3610  *  @ring: receive ring to be configured
3611  *
3612  *  Configure the Rx unit of the MAC after a reset.
3613  **/
3614 void igb_configure_rx_ring(struct igb_adapter *adapter,
3615                            struct igb_ring *ring)
3616 {
3617         struct e1000_hw *hw = &adapter->hw;
3618         u64 rdba = ring->dma;
3619         int reg_idx = ring->reg_idx;
3620         u32 srrctl = 0, rxdctl = 0;
3621
3622         /* disable the queue */
3623         wr32(E1000_RXDCTL(reg_idx), 0);
3624
3625         /* Set DMA base address registers */
3626         wr32(E1000_RDBAL(reg_idx),
3627              rdba & 0x00000000ffffffffULL);
3628         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3629         wr32(E1000_RDLEN(reg_idx),
3630              ring->count * sizeof(union e1000_adv_rx_desc));
3631
3632         /* initialize head and tail */
3633         ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3634         wr32(E1000_RDH(reg_idx), 0);
3635         writel(0, ring->tail);
3636
3637         /* set descriptor configuration */
3638         srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3639         srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3640         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3641         if (hw->mac.type >= e1000_82580)
3642                 srrctl |= E1000_SRRCTL_TIMESTAMP;
3643         /* Only set Drop Enable if we are supporting multiple queues */
3644         if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3645                 srrctl |= E1000_SRRCTL_DROP_EN;
3646
3647         wr32(E1000_SRRCTL(reg_idx), srrctl);
3648
3649         /* set filtering for VMDQ pools */
3650         igb_set_vmolr(adapter, reg_idx & 0x7, true);
3651
3652         rxdctl |= IGB_RX_PTHRESH;
3653         rxdctl |= IGB_RX_HTHRESH << 8;
3654         rxdctl |= IGB_RX_WTHRESH << 16;
3655
3656         /* enable receive descriptor fetching */
3657         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3658         wr32(E1000_RXDCTL(reg_idx), rxdctl);
3659 }
3660
3661 /**
3662  *  igb_configure_rx - Configure receive Unit after Reset
3663  *  @adapter: board private structure
3664  *
3665  *  Configure the Rx unit of the MAC after a reset.
3666  **/
3667 static void igb_configure_rx(struct igb_adapter *adapter)
3668 {
3669         int i;
3670
3671         /* set UTA to appropriate mode */
3672         igb_set_uta(adapter);
3673
3674         /* set the correct pool for the PF default MAC address in entry 0 */
3675         igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3676                          adapter->vfs_allocated_count);
3677
3678         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3679          * the Base and Length of the Rx Descriptor Ring
3680          */
3681         for (i = 0; i < adapter->num_rx_queues; i++)
3682                 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3683 }
3684
3685 /**
3686  *  igb_free_tx_resources - Free Tx Resources per Queue
3687  *  @tx_ring: Tx descriptor ring for a specific queue
3688  *
3689  *  Free all transmit software resources
3690  **/
3691 void igb_free_tx_resources(struct igb_ring *tx_ring)
3692 {
3693         igb_clean_tx_ring(tx_ring);
3694
3695         vfree(tx_ring->tx_buffer_info);
3696         tx_ring->tx_buffer_info = NULL;
3697
3698         /* if not set, then don't free */
3699         if (!tx_ring->desc)
3700                 return;
3701
3702         dma_free_coherent(tx_ring->dev, tx_ring->size,
3703                           tx_ring->desc, tx_ring->dma);
3704
3705         tx_ring->desc = NULL;
3706 }
3707
3708 /**
3709  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3710  *  @adapter: board private structure
3711  *
3712  *  Free all transmit software resources
3713  **/
3714 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3715 {
3716         int i;
3717
3718         for (i = 0; i < adapter->num_tx_queues; i++)
3719                 if (adapter->tx_ring[i])
3720                         igb_free_tx_resources(adapter->tx_ring[i]);
3721 }
3722
3723 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3724                                     struct igb_tx_buffer *tx_buffer)
3725 {
3726         if (tx_buffer->skb) {
3727                 dev_kfree_skb_any(tx_buffer->skb);
3728                 if (dma_unmap_len(tx_buffer, len))
3729                         dma_unmap_single(ring->dev,
3730                                          dma_unmap_addr(tx_buffer, dma),
3731                                          dma_unmap_len(tx_buffer, len),
3732                                          DMA_TO_DEVICE);
3733         } else if (dma_unmap_len(tx_buffer, len)) {
3734                 dma_unmap_page(ring->dev,
3735                                dma_unmap_addr(tx_buffer, dma),
3736                                dma_unmap_len(tx_buffer, len),
3737                                DMA_TO_DEVICE);
3738         }
3739         tx_buffer->next_to_watch = NULL;
3740         tx_buffer->skb = NULL;
3741         dma_unmap_len_set(tx_buffer, len, 0);
3742         /* buffer_info must be completely set up in the transmit path */
3743 }
3744
3745 /**
3746  *  igb_clean_tx_ring - Free Tx Buffers
3747  *  @tx_ring: ring to be cleaned
3748  **/
3749 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3750 {
3751         struct igb_tx_buffer *buffer_info;
3752         unsigned long size;
3753         u16 i;
3754
3755         if (!tx_ring->tx_buffer_info)
3756                 return;
3757         /* Free all the Tx ring sk_buffs */
3758
3759         for (i = 0; i < tx_ring->count; i++) {
3760                 buffer_info = &tx_ring->tx_buffer_info[i];
3761                 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3762         }
3763
3764         netdev_tx_reset_queue(txring_txq(tx_ring));
3765
3766         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3767         memset(tx_ring->tx_buffer_info, 0, size);
3768
3769         /* Zero out the descriptor ring */
3770         memset(tx_ring->desc, 0, tx_ring->size);
3771
3772         tx_ring->next_to_use = 0;
3773         tx_ring->next_to_clean = 0;
3774 }
3775
3776 /**
3777  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3778  *  @adapter: board private structure
3779  **/
3780 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3781 {
3782         int i;
3783
3784         for (i = 0; i < adapter->num_tx_queues; i++)
3785                 if (adapter->tx_ring[i])
3786                         igb_clean_tx_ring(adapter->tx_ring[i]);
3787 }
3788
3789 /**
3790  *  igb_free_rx_resources - Free Rx Resources
3791  *  @rx_ring: ring to clean the resources from
3792  *
3793  *  Free all receive software resources
3794  **/
3795 void igb_free_rx_resources(struct igb_ring *rx_ring)
3796 {
3797         igb_clean_rx_ring(rx_ring);
3798
3799         vfree(rx_ring->rx_buffer_info);
3800         rx_ring->rx_buffer_info = NULL;
3801
3802         /* if not set, then don't free */
3803         if (!rx_ring->desc)
3804                 return;
3805
3806         dma_free_coherent(rx_ring->dev, rx_ring->size,
3807                           rx_ring->desc, rx_ring->dma);
3808
3809         rx_ring->desc = NULL;
3810 }
3811
3812 /**
3813  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3814  *  @adapter: board private structure
3815  *
3816  *  Free all receive software resources
3817  **/
3818 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3819 {
3820         int i;
3821
3822         for (i = 0; i < adapter->num_rx_queues; i++)
3823                 if (adapter->rx_ring[i])
3824                         igb_free_rx_resources(adapter->rx_ring[i]);
3825 }
3826
3827 /**
3828  *  igb_clean_rx_ring - Free Rx Buffers per Queue
3829  *  @rx_ring: ring to free buffers from
3830  **/
3831 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3832 {
3833         unsigned long size;
3834         u16 i;
3835
3836         if (rx_ring->skb)
3837                 dev_kfree_skb(rx_ring->skb);
3838         rx_ring->skb = NULL;
3839
3840         if (!rx_ring->rx_buffer_info)
3841                 return;
3842
3843         /* Free all the Rx ring sk_buffs */
3844         for (i = 0; i < rx_ring->count; i++) {
3845                 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3846
3847                 if (!buffer_info->page)
3848                         continue;
3849
3850                 dma_unmap_page(rx_ring->dev,
3851                                buffer_info->dma,
3852                                PAGE_SIZE,
3853                                DMA_FROM_DEVICE);
3854                 __free_page(buffer_info->page);
3855
3856                 buffer_info->page = NULL;
3857         }
3858
3859         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3860         memset(rx_ring->rx_buffer_info, 0, size);
3861
3862         /* Zero out the descriptor ring */
3863         memset(rx_ring->desc, 0, rx_ring->size);
3864
3865         rx_ring->next_to_alloc = 0;
3866         rx_ring->next_to_clean = 0;
3867         rx_ring->next_to_use = 0;
3868 }
3869
3870 /**
3871  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3872  *  @adapter: board private structure
3873  **/
3874 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3875 {
3876         int i;
3877
3878         for (i = 0; i < adapter->num_rx_queues; i++)
3879                 if (adapter->rx_ring[i])
3880                         igb_clean_rx_ring(adapter->rx_ring[i]);
3881 }
3882
3883 /**
3884  *  igb_set_mac - Change the Ethernet Address of the NIC
3885  *  @netdev: network interface device structure
3886  *  @p: pointer to an address structure
3887  *
3888  *  Returns 0 on success, negative on failure
3889  **/
3890 static int igb_set_mac(struct net_device *netdev, void *p)
3891 {
3892         struct igb_adapter *adapter = netdev_priv(netdev);
3893         struct e1000_hw *hw = &adapter->hw;
3894         struct sockaddr *addr = p;
3895
3896         if (!is_valid_ether_addr(addr->sa_data))
3897                 return -EADDRNOTAVAIL;
3898
3899         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3900         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3901
3902         /* set the correct pool for the new PF MAC address in entry 0 */
3903         igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3904                          adapter->vfs_allocated_count);
3905
3906         return 0;
3907 }
3908
3909 /**
3910  *  igb_write_mc_addr_list - write multicast addresses to MTA
3911  *  @netdev: network interface device structure
3912  *
3913  *  Writes multicast address list to the MTA hash table.
3914  *  Returns: -ENOMEM on failure
3915  *           0 on no addresses written
3916  *           X on writing X addresses to MTA
3917  **/
3918 static int igb_write_mc_addr_list(struct net_device *netdev)
3919 {
3920         struct igb_adapter *adapter = netdev_priv(netdev);
3921         struct e1000_hw *hw = &adapter->hw;
3922         struct netdev_hw_addr *ha;
3923         u8  *mta_list;
3924         int i;
3925
3926         if (netdev_mc_empty(netdev)) {
3927                 /* nothing to program, so clear mc list */
3928                 igb_update_mc_addr_list(hw, NULL, 0);
3929                 igb_restore_vf_multicasts(adapter);
3930                 return 0;
3931         }
3932
3933         mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3934         if (!mta_list)
3935                 return -ENOMEM;
3936
3937         /* The shared function expects a packed array of only addresses. */
3938         i = 0;
3939         netdev_for_each_mc_addr(ha, netdev)
3940                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3941
3942         igb_update_mc_addr_list(hw, mta_list, i);
3943         kfree(mta_list);
3944
3945         return netdev_mc_count(netdev);
3946 }
3947
3948 /**
3949  *  igb_write_uc_addr_list - write unicast addresses to RAR table
3950  *  @netdev: network interface device structure
3951  *
3952  *  Writes unicast address list to the RAR table.
3953  *  Returns: -ENOMEM on failure/insufficient address space
3954  *           0 on no addresses written
3955  *           X on writing X addresses to the RAR table
3956  **/
3957 static int igb_write_uc_addr_list(struct net_device *netdev)
3958 {
3959         struct igb_adapter *adapter = netdev_priv(netdev);
3960         struct e1000_hw *hw = &adapter->hw;
3961         unsigned int vfn = adapter->vfs_allocated_count;
3962         unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3963         int count = 0;
3964
3965         /* return ENOMEM indicating insufficient memory for addresses */
3966         if (netdev_uc_count(netdev) > rar_entries)
3967                 return -ENOMEM;
3968
3969         if (!netdev_uc_empty(netdev) && rar_entries) {
3970                 struct netdev_hw_addr *ha;
3971
3972                 netdev_for_each_uc_addr(ha, netdev) {
3973                         if (!rar_entries)
3974                                 break;
3975                         igb_rar_set_qsel(adapter, ha->addr,
3976                                          rar_entries--,
3977                                          vfn);
3978                         count++;
3979                 }
3980         }
3981         /* write the addresses in reverse order to avoid write combining */
3982         for (; rar_entries > 0 ; rar_entries--) {
3983                 wr32(E1000_RAH(rar_entries), 0);
3984                 wr32(E1000_RAL(rar_entries), 0);
3985         }
3986         wrfl();
3987
3988         return count;
3989 }
3990
3991 /**
3992  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3993  *  @netdev: network interface device structure
3994  *
3995  *  The set_rx_mode entry point is called whenever the unicast or multicast
3996  *  address lists or the network interface flags are updated.  This routine is
3997  *  responsible for configuring the hardware for proper unicast, multicast,
3998  *  promiscuous mode, and all-multi behavior.
3999  **/
4000 static void igb_set_rx_mode(struct net_device *netdev)
4001 {
4002         struct igb_adapter *adapter = netdev_priv(netdev);
4003         struct e1000_hw *hw = &adapter->hw;
4004         unsigned int vfn = adapter->vfs_allocated_count;
4005         u32 rctl, vmolr = 0;
4006         int count;
4007
4008         /* Check for Promiscuous and All Multicast modes */
4009         rctl = rd32(E1000_RCTL);
4010
4011         /* clear the effected bits */
4012         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
4013
4014         if (netdev->flags & IFF_PROMISC) {
4015                 /* retain VLAN HW filtering if in VT mode */
4016                 if (adapter->vfs_allocated_count)
4017                         rctl |= E1000_RCTL_VFE;
4018                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
4019                 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
4020         } else {
4021                 if (netdev->flags & IFF_ALLMULTI) {
4022                         rctl |= E1000_RCTL_MPE;
4023                         vmolr |= E1000_VMOLR_MPME;
4024                 } else {
4025                         /* Write addresses to the MTA, if the attempt fails
4026                          * then we should just turn on promiscuous mode so
4027                          * that we can at least receive multicast traffic
4028                          */
4029                         count = igb_write_mc_addr_list(netdev);
4030                         if (count < 0) {
4031                                 rctl |= E1000_RCTL_MPE;
4032                                 vmolr |= E1000_VMOLR_MPME;
4033                         } else if (count) {
4034                                 vmolr |= E1000_VMOLR_ROMPE;
4035                         }
4036                 }
4037                 /* Write addresses to available RAR registers, if there is not
4038                  * sufficient space to store all the addresses then enable
4039                  * unicast promiscuous mode
4040                  */
4041                 count = igb_write_uc_addr_list(netdev);
4042                 if (count < 0) {
4043                         rctl |= E1000_RCTL_UPE;
4044                         vmolr |= E1000_VMOLR_ROPE;
4045                 }
4046                 rctl |= E1000_RCTL_VFE;
4047         }
4048         wr32(E1000_RCTL, rctl);
4049
4050         /* In order to support SR-IOV and eventually VMDq it is necessary to set
4051          * the VMOLR to enable the appropriate modes.  Without this workaround
4052          * we will have issues with VLAN tag stripping not being done for frames
4053          * that are only arriving because we are the default pool
4054          */
4055         if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4056                 return;
4057
4058         vmolr |= rd32(E1000_VMOLR(vfn)) &
4059                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4060         wr32(E1000_VMOLR(vfn), vmolr);
4061         igb_restore_vf_multicasts(adapter);
4062 }
4063
4064 static void igb_check_wvbr(struct igb_adapter *adapter)
4065 {
4066         struct e1000_hw *hw = &adapter->hw;
4067         u32 wvbr = 0;
4068
4069         switch (hw->mac.type) {
4070         case e1000_82576:
4071         case e1000_i350:
4072                 wvbr = rd32(E1000_WVBR);
4073                 if (!wvbr)
4074                         return;
4075                 break;
4076         default:
4077                 break;
4078         }
4079
4080         adapter->wvbr |= wvbr;
4081 }
4082
4083 #define IGB_STAGGERED_QUEUE_OFFSET 8
4084
4085 static void igb_spoof_check(struct igb_adapter *adapter)
4086 {
4087         int j;
4088
4089         if (!adapter->wvbr)
4090                 return;
4091
4092         for (j = 0; j < adapter->vfs_allocated_count; j++) {
4093                 if (adapter->wvbr & (1 << j) ||
4094                     adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4095                         dev_warn(&adapter->pdev->dev,
4096                                 "Spoof event(s) detected on VF %d\n", j);
4097                         adapter->wvbr &=
4098                                 ~((1 << j) |
4099                                   (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4100                 }
4101         }
4102 }
4103
4104 /* Need to wait a few seconds after link up to get diagnostic information from
4105  * the phy
4106  */
4107 static void igb_update_phy_info(unsigned long data)
4108 {
4109         struct igb_adapter *adapter = (struct igb_adapter *) data;
4110         igb_get_phy_info(&adapter->hw);
4111 }
4112
4113 /**
4114  *  igb_has_link - check shared code for link and determine up/down
4115  *  @adapter: pointer to driver private info
4116  **/
4117 bool igb_has_link(struct igb_adapter *adapter)
4118 {
4119         struct e1000_hw *hw = &adapter->hw;
4120         bool link_active = false;
4121
4122         /* get_link_status is set on LSC (link status) interrupt or
4123          * rx sequence error interrupt.  get_link_status will stay
4124          * false until the e1000_check_for_link establishes link
4125          * for copper adapters ONLY
4126          */
4127         switch (hw->phy.media_type) {
4128         case e1000_media_type_copper:
4129                 if (!hw->mac.get_link_status)
4130                         return true;
4131         case e1000_media_type_internal_serdes:
4132                 hw->mac.ops.check_for_link(hw);
4133                 link_active = !hw->mac.get_link_status;
4134                 break;
4135         default:
4136         case e1000_media_type_unknown:
4137                 break;
4138         }
4139
4140         if (((hw->mac.type == e1000_i210) ||
4141              (hw->mac.type == e1000_i211)) &&
4142              (hw->phy.id == I210_I_PHY_ID)) {
4143                 if (!netif_carrier_ok(adapter->netdev)) {
4144                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4145                 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4146                         adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4147                         adapter->link_check_timeout = jiffies;
4148                 }
4149         }
4150
4151         return link_active;
4152 }
4153
4154 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4155 {
4156         bool ret = false;
4157         u32 ctrl_ext, thstat;
4158
4159         /* check for thermal sensor event on i350 copper only */
4160         if (hw->mac.type == e1000_i350) {
4161                 thstat = rd32(E1000_THSTAT);
4162                 ctrl_ext = rd32(E1000_CTRL_EXT);
4163
4164                 if ((hw->phy.media_type == e1000_media_type_copper) &&
4165                     !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4166                         ret = !!(thstat & event);
4167         }
4168
4169         return ret;
4170 }
4171
4172 /**
4173  *  igb_check_lvmmc - check for malformed packets received
4174  *  and indicated in LVMMC register
4175  *  @adapter: pointer to adapter
4176  **/
4177 static void igb_check_lvmmc(struct igb_adapter *adapter)
4178 {
4179         struct e1000_hw *hw = &adapter->hw;
4180         u32 lvmmc;
4181
4182         lvmmc = rd32(E1000_LVMMC);
4183         if (lvmmc) {
4184                 if (unlikely(net_ratelimit())) {
4185                         netdev_warn(adapter->netdev,
4186                                     "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4187                                     lvmmc);
4188                 }
4189         }
4190 }
4191
4192 /**
4193  *  igb_watchdog - Timer Call-back
4194  *  @data: pointer to adapter cast into an unsigned long
4195  **/
4196 static void igb_watchdog(unsigned long data)
4197 {
4198         struct igb_adapter *adapter = (struct igb_adapter *)data;
4199         /* Do the rest outside of interrupt context */
4200         schedule_work(&adapter->watchdog_task);
4201 }
4202
4203 static void igb_watchdog_task(struct work_struct *work)
4204 {
4205         struct igb_adapter *adapter = container_of(work,
4206                                                    struct igb_adapter,
4207                                                    watchdog_task);
4208         struct e1000_hw *hw = &adapter->hw;
4209         struct e1000_phy_info *phy = &hw->phy;
4210         struct net_device *netdev = adapter->netdev;
4211         u32 link;
4212         int i;
4213         u32 connsw;
4214
4215         link = igb_has_link(adapter);
4216
4217         if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4218                 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4219                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4220                 else
4221                         link = false;
4222         }
4223
4224         /* Force link down if we have fiber to swap to */
4225         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4226                 if (hw->phy.media_type == e1000_media_type_copper) {
4227                         connsw = rd32(E1000_CONNSW);
4228                         if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4229                                 link = 0;
4230                 }
4231         }
4232         if (link) {
4233                 /* Perform a reset if the media type changed. */
4234                 if (hw->dev_spec._82575.media_changed) {
4235                         hw->dev_spec._82575.media_changed = false;
4236                         adapter->flags |= IGB_FLAG_MEDIA_RESET;
4237                         igb_reset(adapter);
4238                 }
4239                 /* Cancel scheduled suspend requests. */
4240                 pm_runtime_resume(netdev->dev.parent);
4241
4242                 if (!netif_carrier_ok(netdev)) {
4243                         u32 ctrl;
4244
4245                         hw->mac.ops.get_speed_and_duplex(hw,
4246                                                          &adapter->link_speed,
4247                                                          &adapter->link_duplex);
4248
4249                         ctrl = rd32(E1000_CTRL);
4250                         /* Links status message must follow this format */
4251                         netdev_info(netdev,
4252                                "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4253                                netdev->name,
4254                                adapter->link_speed,
4255                                adapter->link_duplex == FULL_DUPLEX ?
4256                                "Full" : "Half",
4257                                (ctrl & E1000_CTRL_TFCE) &&
4258                                (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4259                                (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4260                                (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4261
4262                         /* disable EEE if enabled */
4263                         if ((adapter->flags & IGB_FLAG_EEE) &&
4264                                 (adapter->link_duplex == HALF_DUPLEX)) {
4265                                 dev_info(&adapter->pdev->dev,
4266                                 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4267                                 adapter->hw.dev_spec._82575.eee_disable = true;
4268                                 adapter->flags &= ~IGB_FLAG_EEE;
4269                         }
4270
4271                         /* check if SmartSpeed worked */
4272                         igb_check_downshift(hw);
4273                         if (phy->speed_downgraded)
4274                                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4275
4276                         /* check for thermal sensor event */
4277                         if (igb_thermal_sensor_event(hw,
4278                             E1000_THSTAT_LINK_THROTTLE))
4279                                 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4280
4281                         /* adjust timeout factor according to speed/duplex */
4282                         adapter->tx_timeout_factor = 1;
4283                         switch (adapter->link_speed) {
4284                         case SPEED_10:
4285                                 adapter->tx_timeout_factor = 14;
4286                                 break;
4287                         case SPEED_100:
4288                                 /* maybe add some timeout factor ? */
4289                                 break;
4290                         }
4291
4292                         netif_carrier_on(netdev);
4293
4294                         igb_ping_all_vfs(adapter);
4295                         igb_check_vf_rate_limit(adapter);
4296
4297                         /* link state has changed, schedule phy info update */
4298                         if (!test_bit(__IGB_DOWN, &adapter->state))
4299                                 mod_timer(&adapter->phy_info_timer,
4300                                           round_jiffies(jiffies + 2 * HZ));
4301                 }
4302         } else {
4303                 if (netif_carrier_ok(netdev)) {
4304                         adapter->link_speed = 0;
4305                         adapter->link_duplex = 0;
4306
4307                         /* check for thermal sensor event */
4308                         if (igb_thermal_sensor_event(hw,
4309                             E1000_THSTAT_PWR_DOWN)) {
4310                                 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4311                         }
4312
4313                         /* Links status message must follow this format */
4314                         netdev_info(netdev, "igb: %s NIC Link is Down\n",
4315                                netdev->name);
4316                         netif_carrier_off(netdev);
4317
4318                         igb_ping_all_vfs(adapter);
4319
4320                         /* link state has changed, schedule phy info update */
4321                         if (!test_bit(__IGB_DOWN, &adapter->state))
4322                                 mod_timer(&adapter->phy_info_timer,
4323                                           round_jiffies(jiffies + 2 * HZ));
4324
4325                         /* link is down, time to check for alternate media */
4326                         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4327                                 igb_check_swap_media(adapter);
4328                                 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4329                                         schedule_work(&adapter->reset_task);
4330                                         /* return immediately */
4331                                         return;
4332                                 }
4333                         }
4334                         pm_schedule_suspend(netdev->dev.parent,
4335                                             MSEC_PER_SEC * 5);
4336
4337                 /* also check for alternate media here */
4338                 } else if (!netif_carrier_ok(netdev) &&
4339                            (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4340                         igb_check_swap_media(adapter);
4341                         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4342                                 schedule_work(&adapter->reset_task);
4343                                 /* return immediately */
4344                                 return;
4345                         }
4346                 }
4347         }
4348
4349         spin_lock(&adapter->stats64_lock);
4350         igb_update_stats(adapter, &adapter->stats64);
4351         spin_unlock(&adapter->stats64_lock);
4352
4353         for (i = 0; i < adapter->num_tx_queues; i++) {
4354                 struct igb_ring *tx_ring = adapter->tx_ring[i];
4355                 if (!netif_carrier_ok(netdev)) {
4356                         /* We've lost link, so the controller stops DMA,
4357                          * but we've got queued Tx work that's never going
4358                          * to get done, so reset controller to flush Tx.
4359                          * (Do the reset outside of interrupt context).
4360                          */
4361                         if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4362                                 adapter->tx_timeout_count++;
4363                                 schedule_work(&adapter->reset_task);
4364                                 /* return immediately since reset is imminent */
4365                                 return;
4366                         }
4367                 }
4368
4369                 /* Force detection of hung controller every watchdog period */
4370                 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4371         }
4372
4373         /* Cause software interrupt to ensure Rx ring is cleaned */
4374         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4375                 u32 eics = 0;
4376
4377                 for (i = 0; i < adapter->num_q_vectors; i++)
4378                         eics |= adapter->q_vector[i]->eims_value;
4379                 wr32(E1000_EICS, eics);
4380         } else {
4381                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4382         }
4383
4384         igb_spoof_check(adapter);
4385         igb_ptp_rx_hang(adapter);
4386
4387         /* Check LVMMC register on i350/i354 only */
4388         if ((adapter->hw.mac.type == e1000_i350) ||
4389             (adapter->hw.mac.type == e1000_i354))
4390                 igb_check_lvmmc(adapter);
4391
4392         /* Reset the timer */
4393         if (!test_bit(__IGB_DOWN, &adapter->state)) {
4394                 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4395                         mod_timer(&adapter->watchdog_timer,
4396                                   round_jiffies(jiffies +  HZ));
4397                 else
4398                         mod_timer(&adapter->watchdog_timer,
4399                                   round_jiffies(jiffies + 2 * HZ));
4400         }
4401 }
4402
4403 enum latency_range {
4404         lowest_latency = 0,
4405         low_latency = 1,
4406         bulk_latency = 2,
4407         latency_invalid = 255
4408 };
4409
4410 /**
4411  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4412  *  @q_vector: pointer to q_vector
4413  *
4414  *  Stores a new ITR value based on strictly on packet size.  This
4415  *  algorithm is less sophisticated than that used in igb_update_itr,
4416  *  due to the difficulty of synchronizing statistics across multiple
4417  *  receive rings.  The divisors and thresholds used by this function
4418  *  were determined based on theoretical maximum wire speed and testing
4419  *  data, in order to minimize response time while increasing bulk
4420  *  throughput.
4421  *  This functionality is controlled by ethtool's coalescing settings.
4422  *  NOTE:  This function is called only when operating in a multiqueue
4423  *         receive environment.
4424  **/
4425 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4426 {
4427         int new_val = q_vector->itr_val;
4428         int avg_wire_size = 0;
4429         struct igb_adapter *adapter = q_vector->adapter;
4430         unsigned int packets;
4431
4432         /* For non-gigabit speeds, just fix the interrupt rate at 4000
4433          * ints/sec - ITR timer value of 120 ticks.
4434          */
4435         if (adapter->link_speed != SPEED_1000) {
4436                 new_val = IGB_4K_ITR;
4437                 goto set_itr_val;
4438         }
4439
4440         packets = q_vector->rx.total_packets;
4441         if (packets)
4442                 avg_wire_size = q_vector->rx.total_bytes / packets;
4443
4444         packets = q_vector->tx.total_packets;
4445         if (packets)
4446                 avg_wire_size = max_t(u32, avg_wire_size,
4447                                       q_vector->tx.total_bytes / packets);
4448
4449         /* if avg_wire_size isn't set no work was done */
4450         if (!avg_wire_size)
4451                 goto clear_counts;
4452
4453         /* Add 24 bytes to size to account for CRC, preamble, and gap */
4454         avg_wire_size += 24;
4455
4456         /* Don't starve jumbo frames */
4457         avg_wire_size = min(avg_wire_size, 3000);
4458
4459         /* Give a little boost to mid-size frames */
4460         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4461                 new_val = avg_wire_size / 3;
4462         else
4463                 new_val = avg_wire_size / 2;
4464
4465         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4466         if (new_val < IGB_20K_ITR &&
4467             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4468              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4469                 new_val = IGB_20K_ITR;
4470
4471 set_itr_val:
4472         if (new_val != q_vector->itr_val) {
4473                 q_vector->itr_val = new_val;
4474                 q_vector->set_itr = 1;
4475         }
4476 clear_counts:
4477         q_vector->rx.total_bytes = 0;
4478         q_vector->rx.total_packets = 0;
4479         q_vector->tx.total_bytes = 0;
4480         q_vector->tx.total_packets = 0;
4481 }
4482
4483 /**
4484  *  igb_update_itr - update the dynamic ITR value based on statistics
4485  *  @q_vector: pointer to q_vector
4486  *  @ring_container: ring info to update the itr for
4487  *
4488  *  Stores a new ITR value based on packets and byte
4489  *  counts during the last interrupt.  The advantage of per interrupt
4490  *  computation is faster updates and more accurate ITR for the current
4491  *  traffic pattern.  Constants in this function were computed
4492  *  based on theoretical maximum wire speed and thresholds were set based
4493  *  on testing data as well as attempting to minimize response time
4494  *  while increasing bulk throughput.
4495  *  This functionality is controlled by ethtool's coalescing settings.
4496  *  NOTE:  These calculations are only valid when operating in a single-
4497  *         queue environment.
4498  **/
4499 static void igb_update_itr(struct igb_q_vector *q_vector,
4500                            struct igb_ring_container *ring_container)
4501 {
4502         unsigned int packets = ring_container->total_packets;
4503         unsigned int bytes = ring_container->total_bytes;
4504         u8 itrval = ring_container->itr;
4505
4506         /* no packets, exit with status unchanged */
4507         if (packets == 0)
4508                 return;
4509
4510         switch (itrval) {
4511         case lowest_latency:
4512                 /* handle TSO and jumbo frames */
4513                 if (bytes/packets > 8000)
4514                         itrval = bulk_latency;
4515                 else if ((packets < 5) && (bytes > 512))
4516                         itrval = low_latency;
4517                 break;
4518         case low_latency:  /* 50 usec aka 20000 ints/s */
4519                 if (bytes > 10000) {
4520                         /* this if handles the TSO accounting */
4521                         if (bytes/packets > 8000)
4522                                 itrval = bulk_latency;
4523                         else if ((packets < 10) || ((bytes/packets) > 1200))
4524                                 itrval = bulk_latency;
4525                         else if ((packets > 35))
4526                                 itrval = lowest_latency;
4527                 } else if (bytes/packets > 2000) {
4528                         itrval = bulk_latency;
4529                 } else if (packets <= 2 && bytes < 512) {
4530                         itrval = lowest_latency;
4531                 }
4532                 break;
4533         case bulk_latency: /* 250 usec aka 4000 ints/s */
4534                 if (bytes > 25000) {
4535                         if (packets > 35)
4536                                 itrval = low_latency;
4537                 } else if (bytes < 1500) {
4538                         itrval = low_latency;
4539                 }
4540                 break;
4541         }
4542
4543         /* clear work counters since we have the values we need */
4544         ring_container->total_bytes = 0;
4545         ring_container->total_packets = 0;
4546
4547         /* write updated itr to ring container */
4548         ring_container->itr = itrval;
4549 }
4550
4551 static void igb_set_itr(struct igb_q_vector *q_vector)
4552 {
4553         struct igb_adapter *adapter = q_vector->adapter;
4554         u32 new_itr = q_vector->itr_val;
4555         u8 current_itr = 0;
4556
4557         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4558         if (adapter->link_speed != SPEED_1000) {
4559                 current_itr = 0;
4560                 new_itr = IGB_4K_ITR;
4561                 goto set_itr_now;
4562         }
4563
4564         igb_update_itr(q_vector, &q_vector->tx);
4565         igb_update_itr(q_vector, &q_vector->rx);
4566
4567         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4568
4569         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4570         if (current_itr == lowest_latency &&
4571             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4572              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4573                 current_itr = low_latency;
4574
4575         switch (current_itr) {
4576         /* counts and packets in update_itr are dependent on these numbers */
4577         case lowest_latency:
4578                 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4579                 break;
4580         case low_latency:
4581                 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4582                 break;
4583         case bulk_latency:
4584                 new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4585                 break;
4586         default:
4587                 break;
4588         }
4589
4590 set_itr_now:
4591         if (new_itr != q_vector->itr_val) {
4592                 /* this attempts to bias the interrupt rate towards Bulk
4593                  * by adding intermediate steps when interrupt rate is
4594                  * increasing
4595                  */
4596                 new_itr = new_itr > q_vector->itr_val ?
4597                           max((new_itr * q_vector->itr_val) /
4598                           (new_itr + (q_vector->itr_val >> 2)),
4599                           new_itr) : new_itr;
4600                 /* Don't write the value here; it resets the adapter's
4601                  * internal timer, and causes us to delay far longer than
4602                  * we should between interrupts.  Instead, we write the ITR
4603                  * value at the beginning of the next interrupt so the timing
4604                  * ends up being correct.
4605                  */
4606                 q_vector->itr_val = new_itr;
4607                 q_vector->set_itr = 1;
4608         }
4609 }
4610
4611 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4612                             u32 type_tucmd, u32 mss_l4len_idx)
4613 {
4614         struct e1000_adv_tx_context_desc *context_desc;
4615         u16 i = tx_ring->next_to_use;
4616
4617         context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4618
4619         i++;
4620         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4621
4622         /* set bits to identify this as an advanced context descriptor */
4623         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4624
4625         /* For 82575, context index must be unique per ring. */
4626         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4627                 mss_l4len_idx |= tx_ring->reg_idx << 4;
4628
4629         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
4630         context_desc->seqnum_seed       = 0;
4631         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
4632         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
4633 }
4634
4635 static int igb_tso(struct igb_ring *tx_ring,
4636                    struct igb_tx_buffer *first,
4637                    u8 *hdr_len)
4638 {
4639         struct sk_buff *skb = first->skb;
4640         u32 vlan_macip_lens, type_tucmd;
4641         u32 mss_l4len_idx, l4len;
4642         int err;
4643
4644         if (skb->ip_summed != CHECKSUM_PARTIAL)
4645                 return 0;
4646
4647         if (!skb_is_gso(skb))
4648                 return 0;
4649
4650         err = skb_cow_head(skb, 0);
4651         if (err < 0)
4652                 return err;
4653
4654         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4655         type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4656
4657         if (first->protocol == htons(ETH_P_IP)) {
4658                 struct iphdr *iph = ip_hdr(skb);
4659                 iph->tot_len = 0;
4660                 iph->check = 0;
4661                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4662                                                          iph->daddr, 0,
4663                                                          IPPROTO_TCP,
4664                                                          0);
4665                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4666                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4667                                    IGB_TX_FLAGS_CSUM |
4668                                    IGB_TX_FLAGS_IPV4;
4669         } else if (skb_is_gso_v6(skb)) {
4670                 ipv6_hdr(skb)->payload_len = 0;
4671                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4672                                                        &ipv6_hdr(skb)->daddr,
4673                                                        0, IPPROTO_TCP, 0);
4674                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4675                                    IGB_TX_FLAGS_CSUM;
4676         }
4677
4678         /* compute header lengths */
4679         l4len = tcp_hdrlen(skb);
4680         *hdr_len = skb_transport_offset(skb) + l4len;
4681
4682         /* update gso size and bytecount with header size */
4683         first->gso_segs = skb_shinfo(skb)->gso_segs;
4684         first->bytecount += (first->gso_segs - 1) * *hdr_len;
4685
4686         /* MSS L4LEN IDX */
4687         mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4688         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4689
4690         /* VLAN MACLEN IPLEN */
4691         vlan_macip_lens = skb_network_header_len(skb);
4692         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4693         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4694
4695         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4696
4697         return 1;
4698 }
4699
4700 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4701 {
4702         struct sk_buff *skb = first->skb;
4703         u32 vlan_macip_lens = 0;
4704         u32 mss_l4len_idx = 0;
4705         u32 type_tucmd = 0;
4706
4707         if (skb->ip_summed != CHECKSUM_PARTIAL) {
4708                 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4709                         return;
4710         } else {
4711                 u8 l4_hdr = 0;
4712
4713                 switch (first->protocol) {
4714                 case htons(ETH_P_IP):
4715                         vlan_macip_lens |= skb_network_header_len(skb);
4716                         type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4717                         l4_hdr = ip_hdr(skb)->protocol;
4718                         break;
4719                 case htons(ETH_P_IPV6):
4720                         vlan_macip_lens |= skb_network_header_len(skb);
4721                         l4_hdr = ipv6_hdr(skb)->nexthdr;
4722                         break;
4723                 default:
4724                         if (unlikely(net_ratelimit())) {
4725                                 dev_warn(tx_ring->dev,
4726                                          "partial checksum but proto=%x!\n",
4727                                          first->protocol);
4728                         }
4729                         break;
4730                 }
4731
4732                 switch (l4_hdr) {
4733                 case IPPROTO_TCP:
4734                         type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4735                         mss_l4len_idx = tcp_hdrlen(skb) <<
4736                                         E1000_ADVTXD_L4LEN_SHIFT;
4737                         break;
4738                 case IPPROTO_SCTP:
4739                         type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4740                         mss_l4len_idx = sizeof(struct sctphdr) <<
4741                                         E1000_ADVTXD_L4LEN_SHIFT;
4742                         break;
4743                 case IPPROTO_UDP:
4744                         mss_l4len_idx = sizeof(struct udphdr) <<
4745                                         E1000_ADVTXD_L4LEN_SHIFT;
4746                         break;
4747                 default:
4748                         if (unlikely(net_ratelimit())) {
4749                                 dev_warn(tx_ring->dev,
4750                                          "partial checksum but l4 proto=%x!\n",
4751                                          l4_hdr);
4752                         }
4753                         break;
4754                 }
4755
4756                 /* update TX checksum flag */
4757                 first->tx_flags |= IGB_TX_FLAGS_CSUM;
4758         }
4759
4760         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4761         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4762
4763         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4764 }
4765
4766 #define IGB_SET_FLAG(_input, _flag, _result) \
4767         ((_flag <= _result) ? \
4768          ((u32)(_input & _flag) * (_result / _flag)) : \
4769          ((u32)(_input & _flag) / (_flag / _result)))
4770
4771 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4772 {
4773         /* set type for advanced descriptor with frame checksum insertion */
4774         u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4775                        E1000_ADVTXD_DCMD_DEXT |
4776                        E1000_ADVTXD_DCMD_IFCS;
4777
4778         /* set HW vlan bit if vlan is present */
4779         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4780                                  (E1000_ADVTXD_DCMD_VLE));
4781
4782         /* set segmentation bits for TSO */
4783         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4784                                  (E1000_ADVTXD_DCMD_TSE));
4785
4786         /* set timestamp bit if present */
4787         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4788                                  (E1000_ADVTXD_MAC_TSTAMP));
4789
4790         /* insert frame checksum */
4791         cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4792
4793         return cmd_type;
4794 }
4795
4796 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4797                                  union e1000_adv_tx_desc *tx_desc,
4798                                  u32 tx_flags, unsigned int paylen)
4799 {
4800         u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4801
4802         /* 82575 requires a unique index per ring */
4803         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4804                 olinfo_status |= tx_ring->reg_idx << 4;
4805
4806         /* insert L4 checksum */
4807         olinfo_status |= IGB_SET_FLAG(tx_flags,
4808                                       IGB_TX_FLAGS_CSUM,
4809                                       (E1000_TXD_POPTS_TXSM << 8));
4810
4811         /* insert IPv4 checksum */
4812         olinfo_status |= IGB_SET_FLAG(tx_flags,
4813                                       IGB_TX_FLAGS_IPV4,
4814                                       (E1000_TXD_POPTS_IXSM << 8));
4815
4816         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4817 }
4818
4819 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4820 {
4821         struct net_device *netdev = tx_ring->netdev;
4822
4823         netif_stop_subqueue(netdev, tx_ring->queue_index);
4824
4825         /* Herbert's original patch had:
4826          *  smp_mb__after_netif_stop_queue();
4827          * but since that doesn't exist yet, just open code it.
4828          */
4829         smp_mb();
4830
4831         /* We need to check again in a case another CPU has just
4832          * made room available.
4833          */
4834         if (igb_desc_unused(tx_ring) < size)
4835                 return -EBUSY;
4836
4837         /* A reprieve! */
4838         netif_wake_subqueue(netdev, tx_ring->queue_index);
4839
4840         u64_stats_update_begin(&tx_ring->tx_syncp2);
4841         tx_ring->tx_stats.restart_queue2++;
4842         u64_stats_update_end(&tx_ring->tx_syncp2);
4843
4844         return 0;
4845 }
4846
4847 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4848 {
4849         if (igb_desc_unused(tx_ring) >= size)
4850                 return 0;
4851         return __igb_maybe_stop_tx(tx_ring, size);
4852 }
4853
4854 static void igb_tx_map(struct igb_ring *tx_ring,
4855                        struct igb_tx_buffer *first,
4856                        const u8 hdr_len)
4857 {
4858         struct sk_buff *skb = first->skb;
4859         struct igb_tx_buffer *tx_buffer;
4860         union e1000_adv_tx_desc *tx_desc;
4861         struct skb_frag_struct *frag;
4862         dma_addr_t dma;
4863         unsigned int data_len, size;
4864         u32 tx_flags = first->tx_flags;
4865         u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4866         u16 i = tx_ring->next_to_use;
4867
4868         tx_desc = IGB_TX_DESC(tx_ring, i);
4869
4870         igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4871
4872         size = skb_headlen(skb);
4873         data_len = skb->data_len;
4874
4875         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4876
4877         tx_buffer = first;
4878
4879         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4880                 if (dma_mapping_error(tx_ring->dev, dma))
4881                         goto dma_error;
4882
4883                 /* record length, and DMA address */
4884                 dma_unmap_len_set(tx_buffer, len, size);
4885                 dma_unmap_addr_set(tx_buffer, dma, dma);
4886
4887                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4888
4889                 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4890                         tx_desc->read.cmd_type_len =
4891                                 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4892
4893                         i++;
4894                         tx_desc++;
4895                         if (i == tx_ring->count) {
4896                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
4897                                 i = 0;
4898                         }
4899                         tx_desc->read.olinfo_status = 0;
4900
4901                         dma += IGB_MAX_DATA_PER_TXD;
4902                         size -= IGB_MAX_DATA_PER_TXD;
4903
4904                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
4905                 }
4906
4907                 if (likely(!data_len))
4908                         break;
4909
4910                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4911
4912                 i++;
4913                 tx_desc++;
4914                 if (i == tx_ring->count) {
4915                         tx_desc = IGB_TX_DESC(tx_ring, 0);
4916                         i = 0;
4917                 }
4918                 tx_desc->read.olinfo_status = 0;
4919
4920                 size = skb_frag_size(frag);
4921                 data_len -= size;
4922
4923                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4924                                        size, DMA_TO_DEVICE);
4925
4926                 tx_buffer = &tx_ring->tx_buffer_info[i];
4927         }
4928
4929         /* write last descriptor with RS and EOP bits */
4930         cmd_type |= size | IGB_TXD_DCMD;
4931         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4932
4933         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4934
4935         /* set the timestamp */
4936         first->time_stamp = jiffies;
4937
4938         /* Force memory writes to complete before letting h/w know there
4939          * are new descriptors to fetch.  (Only applicable for weak-ordered
4940          * memory model archs, such as IA-64).
4941          *
4942          * We also need this memory barrier to make certain all of the
4943          * status bits have been updated before next_to_watch is written.
4944          */
4945         wmb();
4946
4947         /* set next_to_watch value indicating a packet is present */
4948         first->next_to_watch = tx_desc;
4949
4950         i++;
4951         if (i == tx_ring->count)
4952                 i = 0;
4953
4954         tx_ring->next_to_use = i;
4955
4956         /* Make sure there is space in the ring for the next send. */
4957         igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4958
4959         if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
4960                 writel(i, tx_ring->tail);
4961
4962                 /* we need this if more than one processor can write to our tail
4963                  * at a time, it synchronizes IO on IA64/Altix systems
4964                  */
4965                 mmiowb();
4966         }
4967         return;
4968
4969 dma_error:
4970         dev_err(tx_ring->dev, "TX DMA map failed\n");
4971
4972         /* clear dma mappings for failed tx_buffer_info map */
4973         for (;;) {
4974                 tx_buffer = &tx_ring->tx_buffer_info[i];
4975                 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4976                 if (tx_buffer == first)
4977                         break;
4978                 if (i == 0)
4979                         i = tx_ring->count;
4980                 i--;
4981         }
4982
4983         tx_ring->next_to_use = i;
4984 }
4985
4986 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4987                                 struct igb_ring *tx_ring)
4988 {
4989         struct igb_tx_buffer *first;
4990         int tso;
4991         u32 tx_flags = 0;
4992         u16 count = TXD_USE_COUNT(skb_headlen(skb));
4993         __be16 protocol = vlan_get_protocol(skb);
4994         u8 hdr_len = 0;
4995
4996         /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4997          *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4998          *       + 2 desc gap to keep tail from touching head,
4999          *       + 1 desc for context descriptor,
5000          * otherwise try next time
5001          */
5002         if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
5003                 unsigned short f;
5004
5005                 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5006                         count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5007         } else {
5008                 count += skb_shinfo(skb)->nr_frags;
5009         }
5010
5011         if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5012                 /* this is a hard error */
5013                 return NETDEV_TX_BUSY;
5014         }
5015
5016         /* record the location of the first descriptor for this packet */
5017         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5018         first->skb = skb;
5019         first->bytecount = skb->len;
5020         first->gso_segs = 1;
5021
5022         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5023                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5024
5025                 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5026                                            &adapter->state)) {
5027                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5028                         tx_flags |= IGB_TX_FLAGS_TSTAMP;
5029
5030                         adapter->ptp_tx_skb = skb_get(skb);
5031                         adapter->ptp_tx_start = jiffies;
5032                         if (adapter->hw.mac.type == e1000_82576)
5033                                 schedule_work(&adapter->ptp_tx_work);
5034                 }
5035         }
5036
5037         skb_tx_timestamp(skb);
5038
5039         if (skb_vlan_tag_present(skb)) {
5040                 tx_flags |= IGB_TX_FLAGS_VLAN;
5041                 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5042         }
5043
5044         /* record initial flags and protocol */
5045         first->tx_flags = tx_flags;
5046         first->protocol = protocol;
5047
5048         tso = igb_tso(tx_ring, first, &hdr_len);
5049         if (tso < 0)
5050                 goto out_drop;
5051         else if (!tso)
5052                 igb_tx_csum(tx_ring, first);
5053
5054         igb_tx_map(tx_ring, first, hdr_len);
5055
5056         return NETDEV_TX_OK;
5057
5058 out_drop:
5059         igb_unmap_and_free_tx_resource(tx_ring, first);
5060
5061         return NETDEV_TX_OK;
5062 }
5063
5064 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5065                                                     struct sk_buff *skb)
5066 {
5067         unsigned int r_idx = skb->queue_mapping;
5068
5069         if (r_idx >= adapter->num_tx_queues)
5070                 r_idx = r_idx % adapter->num_tx_queues;
5071
5072         return adapter->tx_ring[r_idx];
5073 }
5074
5075 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5076                                   struct net_device *netdev)
5077 {
5078         struct igb_adapter *adapter = netdev_priv(netdev);
5079
5080         if (test_bit(__IGB_DOWN, &adapter->state)) {
5081                 dev_kfree_skb_any(skb);
5082                 return NETDEV_TX_OK;
5083         }
5084
5085         if (skb->len <= 0) {
5086                 dev_kfree_skb_any(skb);
5087                 return NETDEV_TX_OK;
5088         }
5089
5090         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5091          * in order to meet this minimum size requirement.
5092          */
5093         if (skb_put_padto(skb, 17))
5094                 return NETDEV_TX_OK;
5095
5096         return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5097 }
5098
5099 /**
5100  *  igb_tx_timeout - Respond to a Tx Hang
5101  *  @netdev: network interface device structure
5102  **/
5103 static void igb_tx_timeout(struct net_device *netdev)
5104 {
5105         struct igb_adapter *adapter = netdev_priv(netdev);
5106         struct e1000_hw *hw = &adapter->hw;
5107
5108         /* Do the reset outside of interrupt context */
5109         adapter->tx_timeout_count++;
5110
5111         if (hw->mac.type >= e1000_82580)
5112                 hw->dev_spec._82575.global_device_reset = true;
5113
5114         schedule_work(&adapter->reset_task);
5115         wr32(E1000_EICS,
5116              (adapter->eims_enable_mask & ~adapter->eims_other));
5117 }
5118
5119 static void igb_reset_task(struct work_struct *work)
5120 {
5121         struct igb_adapter *adapter;
5122         adapter = container_of(work, struct igb_adapter, reset_task);
5123
5124         igb_dump(adapter);
5125         netdev_err(adapter->netdev, "Reset adapter\n");
5126         igb_reinit_locked(adapter);
5127 }
5128
5129 /**
5130  *  igb_get_stats64 - Get System Network Statistics
5131  *  @netdev: network interface device structure
5132  *  @stats: rtnl_link_stats64 pointer
5133  **/
5134 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5135                                                 struct rtnl_link_stats64 *stats)
5136 {
5137         struct igb_adapter *adapter = netdev_priv(netdev);
5138
5139         spin_lock(&adapter->stats64_lock);
5140         igb_update_stats(adapter, &adapter->stats64);
5141         memcpy(stats, &adapter->stats64, sizeof(*stats));
5142         spin_unlock(&adapter->stats64_lock);
5143
5144         return stats;
5145 }
5146
5147 /**
5148  *  igb_change_mtu - Change the Maximum Transfer Unit
5149  *  @netdev: network interface device structure
5150  *  @new_mtu: new value for maximum frame size
5151  *
5152  *  Returns 0 on success, negative on failure
5153  **/
5154 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5155 {
5156         struct igb_adapter *adapter = netdev_priv(netdev);
5157         struct pci_dev *pdev = adapter->pdev;
5158         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5159
5160         if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5161                 dev_err(&pdev->dev, "Invalid MTU setting\n");
5162                 return -EINVAL;
5163         }
5164
5165 #define MAX_STD_JUMBO_FRAME_SIZE 9238
5166         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5167                 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5168                 return -EINVAL;
5169         }
5170
5171         /* adjust max frame to be at least the size of a standard frame */
5172         if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5173                 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5174
5175         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5176                 usleep_range(1000, 2000);
5177
5178         /* igb_down has a dependency on max_frame_size */
5179         adapter->max_frame_size = max_frame;
5180
5181         if (netif_running(netdev))
5182                 igb_down(adapter);
5183
5184         dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5185                  netdev->mtu, new_mtu);
5186         netdev->mtu = new_mtu;
5187
5188         if (netif_running(netdev))
5189                 igb_up(adapter);
5190         else
5191                 igb_reset(adapter);
5192
5193         clear_bit(__IGB_RESETTING, &adapter->state);
5194
5195         return 0;
5196 }
5197
5198 /**
5199  *  igb_update_stats - Update the board statistics counters
5200  *  @adapter: board private structure
5201  **/
5202 void igb_update_stats(struct igb_adapter *adapter,
5203                       struct rtnl_link_stats64 *net_stats)
5204 {
5205         struct e1000_hw *hw = &adapter->hw;
5206         struct pci_dev *pdev = adapter->pdev;
5207         u32 reg, mpc;
5208         int i;
5209         u64 bytes, packets;
5210         unsigned int start;
5211         u64 _bytes, _packets;
5212
5213         /* Prevent stats update while adapter is being reset, or if the pci
5214          * connection is down.
5215          */
5216         if (adapter->link_speed == 0)
5217                 return;
5218         if (pci_channel_offline(pdev))
5219                 return;
5220
5221         bytes = 0;
5222         packets = 0;
5223
5224         rcu_read_lock();
5225         for (i = 0; i < adapter->num_rx_queues; i++) {
5226                 struct igb_ring *ring = adapter->rx_ring[i];
5227                 u32 rqdpc = rd32(E1000_RQDPC(i));
5228                 if (hw->mac.type >= e1000_i210)
5229                         wr32(E1000_RQDPC(i), 0);
5230
5231                 if (rqdpc) {
5232                         ring->rx_stats.drops += rqdpc;
5233                         net_stats->rx_fifo_errors += rqdpc;
5234                 }
5235
5236                 do {
5237                         start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5238                         _bytes = ring->rx_stats.bytes;
5239                         _packets = ring->rx_stats.packets;
5240                 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5241                 bytes += _bytes;
5242                 packets += _packets;
5243         }
5244
5245         net_stats->rx_bytes = bytes;
5246         net_stats->rx_packets = packets;
5247
5248         bytes = 0;
5249         packets = 0;
5250         for (i = 0; i < adapter->num_tx_queues; i++) {
5251                 struct igb_ring *ring = adapter->tx_ring[i];
5252                 do {
5253                         start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5254                         _bytes = ring->tx_stats.bytes;
5255                         _packets = ring->tx_stats.packets;
5256                 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5257                 bytes += _bytes;
5258                 packets += _packets;
5259         }
5260         net_stats->tx_bytes = bytes;
5261         net_stats->tx_packets = packets;
5262         rcu_read_unlock();
5263
5264         /* read stats registers */
5265         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5266         adapter->stats.gprc += rd32(E1000_GPRC);
5267         adapter->stats.gorc += rd32(E1000_GORCL);
5268         rd32(E1000_GORCH); /* clear GORCL */
5269         adapter->stats.bprc += rd32(E1000_BPRC);
5270         adapter->stats.mprc += rd32(E1000_MPRC);
5271         adapter->stats.roc += rd32(E1000_ROC);
5272
5273         adapter->stats.prc64 += rd32(E1000_PRC64);
5274         adapter->stats.prc127 += rd32(E1000_PRC127);
5275         adapter->stats.prc255 += rd32(E1000_PRC255);
5276         adapter->stats.prc511 += rd32(E1000_PRC511);
5277         adapter->stats.prc1023 += rd32(E1000_PRC1023);
5278         adapter->stats.prc1522 += rd32(E1000_PRC1522);
5279         adapter->stats.symerrs += rd32(E1000_SYMERRS);
5280         adapter->stats.sec += rd32(E1000_SEC);
5281
5282         mpc = rd32(E1000_MPC);
5283         adapter->stats.mpc += mpc;
5284         net_stats->rx_fifo_errors += mpc;
5285         adapter->stats.scc += rd32(E1000_SCC);
5286         adapter->stats.ecol += rd32(E1000_ECOL);
5287         adapter->stats.mcc += rd32(E1000_MCC);
5288         adapter->stats.latecol += rd32(E1000_LATECOL);
5289         adapter->stats.dc += rd32(E1000_DC);
5290         adapter->stats.rlec += rd32(E1000_RLEC);
5291         adapter->stats.xonrxc += rd32(E1000_XONRXC);
5292         adapter->stats.xontxc += rd32(E1000_XONTXC);
5293         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5294         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5295         adapter->stats.fcruc += rd32(E1000_FCRUC);
5296         adapter->stats.gptc += rd32(E1000_GPTC);
5297         adapter->stats.gotc += rd32(E1000_GOTCL);
5298         rd32(E1000_GOTCH); /* clear GOTCL */
5299         adapter->stats.rnbc += rd32(E1000_RNBC);
5300         adapter->stats.ruc += rd32(E1000_RUC);
5301         adapter->stats.rfc += rd32(E1000_RFC);
5302         adapter->stats.rjc += rd32(E1000_RJC);
5303         adapter->stats.tor += rd32(E1000_TORH);
5304         adapter->stats.tot += rd32(E1000_TOTH);
5305         adapter->stats.tpr += rd32(E1000_TPR);
5306
5307         adapter->stats.ptc64 += rd32(E1000_PTC64);
5308         adapter->stats.ptc127 += rd32(E1000_PTC127);
5309         adapter->stats.ptc255 += rd32(E1000_PTC255);
5310         adapter->stats.ptc511 += rd32(E1000_PTC511);
5311         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5312         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5313
5314         adapter->stats.mptc += rd32(E1000_MPTC);
5315         adapter->stats.bptc += rd32(E1000_BPTC);
5316
5317         adapter->stats.tpt += rd32(E1000_TPT);
5318         adapter->stats.colc += rd32(E1000_COLC);
5319
5320         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5321         /* read internal phy specific stats */
5322         reg = rd32(E1000_CTRL_EXT);
5323         if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5324                 adapter->stats.rxerrc += rd32(E1000_RXERRC);
5325
5326                 /* this stat has invalid values on i210/i211 */
5327                 if ((hw->mac.type != e1000_i210) &&
5328                     (hw->mac.type != e1000_i211))
5329                         adapter->stats.tncrs += rd32(E1000_TNCRS);
5330         }
5331
5332         adapter->stats.tsctc += rd32(E1000_TSCTC);
5333         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5334
5335         adapter->stats.iac += rd32(E1000_IAC);
5336         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5337         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5338         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5339         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5340         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5341         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5342         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5343         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5344
5345         /* Fill out the OS statistics structure */
5346         net_stats->multicast = adapter->stats.mprc;
5347         net_stats->collisions = adapter->stats.colc;
5348
5349         /* Rx Errors */
5350
5351         /* RLEC on some newer hardware can be incorrect so build
5352          * our own version based on RUC and ROC
5353          */
5354         net_stats->rx_errors = adapter->stats.rxerrc +
5355                 adapter->stats.crcerrs + adapter->stats.algnerrc +
5356                 adapter->stats.ruc + adapter->stats.roc +
5357                 adapter->stats.cexterr;
5358         net_stats->rx_length_errors = adapter->stats.ruc +
5359                                       adapter->stats.roc;
5360         net_stats->rx_crc_errors = adapter->stats.crcerrs;
5361         net_stats->rx_frame_errors = adapter->stats.algnerrc;
5362         net_stats->rx_missed_errors = adapter->stats.mpc;
5363
5364         /* Tx Errors */
5365         net_stats->tx_errors = adapter->stats.ecol +
5366                                adapter->stats.latecol;
5367         net_stats->tx_aborted_errors = adapter->stats.ecol;
5368         net_stats->tx_window_errors = adapter->stats.latecol;
5369         net_stats->tx_carrier_errors = adapter->stats.tncrs;
5370
5371         /* Tx Dropped needs to be maintained elsewhere */
5372
5373         /* Management Stats */
5374         adapter->stats.mgptc += rd32(E1000_MGTPTC);
5375         adapter->stats.mgprc += rd32(E1000_MGTPRC);
5376         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5377
5378         /* OS2BMC Stats */
5379         reg = rd32(E1000_MANC);
5380         if (reg & E1000_MANC_EN_BMC2OS) {
5381                 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5382                 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5383                 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5384                 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5385         }
5386 }
5387
5388 static void igb_tsync_interrupt(struct igb_adapter *adapter)
5389 {
5390         struct e1000_hw *hw = &adapter->hw;
5391         struct ptp_clock_event event;
5392         struct timespec ts;
5393         u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
5394
5395         if (tsicr & TSINTR_SYS_WRAP) {
5396                 event.type = PTP_CLOCK_PPS;
5397                 if (adapter->ptp_caps.pps)
5398                         ptp_clock_event(adapter->ptp_clock, &event);
5399                 else
5400                         dev_err(&adapter->pdev->dev, "unexpected SYS WRAP");
5401                 ack |= TSINTR_SYS_WRAP;
5402         }
5403
5404         if (tsicr & E1000_TSICR_TXTS) {
5405                 /* retrieve hardware timestamp */
5406                 schedule_work(&adapter->ptp_tx_work);
5407                 ack |= E1000_TSICR_TXTS;
5408         }
5409
5410         if (tsicr & TSINTR_TT0) {
5411                 spin_lock(&adapter->tmreg_lock);
5412                 ts = timespec_add(adapter->perout[0].start,
5413                                   adapter->perout[0].period);
5414                 wr32(E1000_TRGTTIML0, ts.tv_nsec);
5415                 wr32(E1000_TRGTTIMH0, ts.tv_sec);
5416                 tsauxc = rd32(E1000_TSAUXC);
5417                 tsauxc |= TSAUXC_EN_TT0;
5418                 wr32(E1000_TSAUXC, tsauxc);
5419                 adapter->perout[0].start = ts;
5420                 spin_unlock(&adapter->tmreg_lock);
5421                 ack |= TSINTR_TT0;
5422         }
5423
5424         if (tsicr & TSINTR_TT1) {
5425                 spin_lock(&adapter->tmreg_lock);
5426                 ts = timespec_add(adapter->perout[1].start,
5427                                   adapter->perout[1].period);
5428                 wr32(E1000_TRGTTIML1, ts.tv_nsec);
5429                 wr32(E1000_TRGTTIMH1, ts.tv_sec);
5430                 tsauxc = rd32(E1000_TSAUXC);
5431                 tsauxc |= TSAUXC_EN_TT1;
5432                 wr32(E1000_TSAUXC, tsauxc);
5433                 adapter->perout[1].start = ts;
5434                 spin_unlock(&adapter->tmreg_lock);
5435                 ack |= TSINTR_TT1;
5436         }
5437
5438         if (tsicr & TSINTR_AUTT0) {
5439                 nsec = rd32(E1000_AUXSTMPL0);
5440                 sec  = rd32(E1000_AUXSTMPH0);
5441                 event.type = PTP_CLOCK_EXTTS;
5442                 event.index = 0;
5443                 event.timestamp = sec * 1000000000ULL + nsec;
5444                 ptp_clock_event(adapter->ptp_clock, &event);
5445                 ack |= TSINTR_AUTT0;
5446         }
5447
5448         if (tsicr & TSINTR_AUTT1) {
5449                 nsec = rd32(E1000_AUXSTMPL1);
5450                 sec  = rd32(E1000_AUXSTMPH1);
5451                 event.type = PTP_CLOCK_EXTTS;
5452                 event.index = 1;
5453                 event.timestamp = sec * 1000000000ULL + nsec;
5454                 ptp_clock_event(adapter->ptp_clock, &event);
5455                 ack |= TSINTR_AUTT1;
5456         }
5457
5458         /* acknowledge the interrupts */
5459         wr32(E1000_TSICR, ack);
5460 }
5461
5462 static irqreturn_t igb_msix_other(int irq, void *data)
5463 {
5464         struct igb_adapter *adapter = data;
5465         struct e1000_hw *hw = &adapter->hw;
5466         u32 icr = rd32(E1000_ICR);
5467         /* reading ICR causes bit 31 of EICR to be cleared */
5468
5469         if (icr & E1000_ICR_DRSTA)
5470                 schedule_work(&adapter->reset_task);
5471
5472         if (icr & E1000_ICR_DOUTSYNC) {
5473                 /* HW is reporting DMA is out of sync */
5474                 adapter->stats.doosync++;
5475                 /* The DMA Out of Sync is also indication of a spoof event
5476                  * in IOV mode. Check the Wrong VM Behavior register to
5477                  * see if it is really a spoof event.
5478                  */
5479                 igb_check_wvbr(adapter);
5480         }
5481
5482         /* Check for a mailbox event */
5483         if (icr & E1000_ICR_VMMB)
5484                 igb_msg_task(adapter);
5485
5486         if (icr & E1000_ICR_LSC) {
5487                 hw->mac.get_link_status = 1;
5488                 /* guard against interrupt when we're going down */
5489                 if (!test_bit(__IGB_DOWN, &adapter->state))
5490                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5491         }
5492
5493         if (icr & E1000_ICR_TS)
5494                 igb_tsync_interrupt(adapter);
5495
5496         wr32(E1000_EIMS, adapter->eims_other);
5497
5498         return IRQ_HANDLED;
5499 }
5500
5501 static void igb_write_itr(struct igb_q_vector *q_vector)
5502 {
5503         struct igb_adapter *adapter = q_vector->adapter;
5504         u32 itr_val = q_vector->itr_val & 0x7FFC;
5505
5506         if (!q_vector->set_itr)
5507                 return;
5508
5509         if (!itr_val)
5510                 itr_val = 0x4;
5511
5512         if (adapter->hw.mac.type == e1000_82575)
5513                 itr_val |= itr_val << 16;
5514         else
5515                 itr_val |= E1000_EITR_CNT_IGNR;
5516
5517         writel(itr_val, q_vector->itr_register);
5518         q_vector->set_itr = 0;
5519 }
5520
5521 static irqreturn_t igb_msix_ring(int irq, void *data)
5522 {
5523         struct igb_q_vector *q_vector = data;
5524
5525         /* Write the ITR value calculated from the previous interrupt. */
5526         igb_write_itr(q_vector);
5527
5528         napi_schedule(&q_vector->napi);
5529
5530         return IRQ_HANDLED;
5531 }
5532
5533 #ifdef CONFIG_IGB_DCA
5534 static void igb_update_tx_dca(struct igb_adapter *adapter,
5535                               struct igb_ring *tx_ring,
5536                               int cpu)
5537 {
5538         struct e1000_hw *hw = &adapter->hw;
5539         u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5540
5541         if (hw->mac.type != e1000_82575)
5542                 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5543
5544         /* We can enable relaxed ordering for reads, but not writes when
5545          * DCA is enabled.  This is due to a known issue in some chipsets
5546          * which will cause the DCA tag to be cleared.
5547          */
5548         txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5549                   E1000_DCA_TXCTRL_DATA_RRO_EN |
5550                   E1000_DCA_TXCTRL_DESC_DCA_EN;
5551
5552         wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5553 }
5554
5555 static void igb_update_rx_dca(struct igb_adapter *adapter,
5556                               struct igb_ring *rx_ring,
5557                               int cpu)
5558 {
5559         struct e1000_hw *hw = &adapter->hw;
5560         u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5561
5562         if (hw->mac.type != e1000_82575)
5563                 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5564
5565         /* We can enable relaxed ordering for reads, but not writes when
5566          * DCA is enabled.  This is due to a known issue in some chipsets
5567          * which will cause the DCA tag to be cleared.
5568          */
5569         rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5570                   E1000_DCA_RXCTRL_DESC_DCA_EN;
5571
5572         wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5573 }
5574
5575 static void igb_update_dca(struct igb_q_vector *q_vector)
5576 {
5577         struct igb_adapter *adapter = q_vector->adapter;
5578         int cpu = get_cpu();
5579
5580         if (q_vector->cpu == cpu)
5581                 goto out_no_update;
5582
5583         if (q_vector->tx.ring)
5584                 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5585
5586         if (q_vector->rx.ring)
5587                 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5588
5589         q_vector->cpu = cpu;
5590 out_no_update:
5591         put_cpu();
5592 }
5593
5594 static void igb_setup_dca(struct igb_adapter *adapter)
5595 {
5596         struct e1000_hw *hw = &adapter->hw;
5597         int i;
5598
5599         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5600                 return;
5601
5602         /* Always use CB2 mode, difference is masked in the CB driver. */
5603         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5604
5605         for (i = 0; i < adapter->num_q_vectors; i++) {
5606                 adapter->q_vector[i]->cpu = -1;
5607                 igb_update_dca(adapter->q_vector[i]);
5608         }
5609 }
5610
5611 static int __igb_notify_dca(struct device *dev, void *data)
5612 {
5613         struct net_device *netdev = dev_get_drvdata(dev);
5614         struct igb_adapter *adapter = netdev_priv(netdev);
5615         struct pci_dev *pdev = adapter->pdev;
5616         struct e1000_hw *hw = &adapter->hw;
5617         unsigned long event = *(unsigned long *)data;
5618
5619         switch (event) {
5620         case DCA_PROVIDER_ADD:
5621                 /* if already enabled, don't do it again */
5622                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5623                         break;
5624                 if (dca_add_requester(dev) == 0) {
5625                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
5626                         dev_info(&pdev->dev, "DCA enabled\n");
5627                         igb_setup_dca(adapter);
5628                         break;
5629                 }
5630                 /* Fall Through since DCA is disabled. */
5631         case DCA_PROVIDER_REMOVE:
5632                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5633                         /* without this a class_device is left
5634                          * hanging around in the sysfs model
5635                          */
5636                         dca_remove_requester(dev);
5637                         dev_info(&pdev->dev, "DCA disabled\n");
5638                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5639                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5640                 }
5641                 break;
5642         }
5643
5644         return 0;
5645 }
5646
5647 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5648                           void *p)
5649 {
5650         int ret_val;
5651
5652         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5653                                          __igb_notify_dca);
5654
5655         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5656 }
5657 #endif /* CONFIG_IGB_DCA */
5658
5659 #ifdef CONFIG_PCI_IOV
5660 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5661 {
5662         unsigned char mac_addr[ETH_ALEN];
5663
5664         eth_zero_addr(mac_addr);
5665         igb_set_vf_mac(adapter, vf, mac_addr);
5666
5667         /* By default spoof check is enabled for all VFs */
5668         adapter->vf_data[vf].spoofchk_enabled = true;
5669
5670         return 0;
5671 }
5672
5673 #endif
5674 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5675 {
5676         struct e1000_hw *hw = &adapter->hw;
5677         u32 ping;
5678         int i;
5679
5680         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5681                 ping = E1000_PF_CONTROL_MSG;
5682                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5683                         ping |= E1000_VT_MSGTYPE_CTS;
5684                 igb_write_mbx(hw, &ping, 1, i);
5685         }
5686 }
5687
5688 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5689 {
5690         struct e1000_hw *hw = &adapter->hw;
5691         u32 vmolr = rd32(E1000_VMOLR(vf));
5692         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5693
5694         vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5695                             IGB_VF_FLAG_MULTI_PROMISC);
5696         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5697
5698         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5699                 vmolr |= E1000_VMOLR_MPME;
5700                 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5701                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5702         } else {
5703                 /* if we have hashes and we are clearing a multicast promisc
5704                  * flag we need to write the hashes to the MTA as this step
5705                  * was previously skipped
5706                  */
5707                 if (vf_data->num_vf_mc_hashes > 30) {
5708                         vmolr |= E1000_VMOLR_MPME;
5709                 } else if (vf_data->num_vf_mc_hashes) {
5710                         int j;
5711
5712                         vmolr |= E1000_VMOLR_ROMPE;
5713                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5714                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5715                 }
5716         }
5717
5718         wr32(E1000_VMOLR(vf), vmolr);
5719
5720         /* there are flags left unprocessed, likely not supported */
5721         if (*msgbuf & E1000_VT_MSGINFO_MASK)
5722                 return -EINVAL;
5723
5724         return 0;
5725 }
5726
5727 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5728                                   u32 *msgbuf, u32 vf)
5729 {
5730         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5731         u16 *hash_list = (u16 *)&msgbuf[1];
5732         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5733         int i;
5734
5735         /* salt away the number of multicast addresses assigned
5736          * to this VF for later use to restore when the PF multi cast
5737          * list changes
5738          */
5739         vf_data->num_vf_mc_hashes = n;
5740
5741         /* only up to 30 hash values supported */
5742         if (n > 30)
5743                 n = 30;
5744
5745         /* store the hashes for later use */
5746         for (i = 0; i < n; i++)
5747                 vf_data->vf_mc_hashes[i] = hash_list[i];
5748
5749         /* Flush and reset the mta with the new values */
5750         igb_set_rx_mode(adapter->netdev);
5751
5752         return 0;
5753 }
5754
5755 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5756 {
5757         struct e1000_hw *hw = &adapter->hw;
5758         struct vf_data_storage *vf_data;
5759         int i, j;
5760
5761         for (i = 0; i < adapter->vfs_allocated_count; i++) {
5762                 u32 vmolr = rd32(E1000_VMOLR(i));
5763
5764                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5765
5766                 vf_data = &adapter->vf_data[i];
5767
5768                 if ((vf_data->num_vf_mc_hashes > 30) ||
5769                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5770                         vmolr |= E1000_VMOLR_MPME;
5771                 } else if (vf_data->num_vf_mc_hashes) {
5772                         vmolr |= E1000_VMOLR_ROMPE;
5773                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5774                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5775                 }
5776                 wr32(E1000_VMOLR(i), vmolr);
5777         }
5778 }
5779
5780 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5781 {
5782         struct e1000_hw *hw = &adapter->hw;
5783         u32 pool_mask, reg, vid;
5784         int i;
5785
5786         pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5787
5788         /* Find the vlan filter for this id */
5789         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5790                 reg = rd32(E1000_VLVF(i));
5791
5792                 /* remove the vf from the pool */
5793                 reg &= ~pool_mask;
5794
5795                 /* if pool is empty then remove entry from vfta */
5796                 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5797                     (reg & E1000_VLVF_VLANID_ENABLE)) {
5798                         reg = 0;
5799                         vid = reg & E1000_VLVF_VLANID_MASK;
5800                         igb_vfta_set(hw, vid, false);
5801                 }
5802
5803                 wr32(E1000_VLVF(i), reg);
5804         }
5805
5806         adapter->vf_data[vf].vlans_enabled = 0;
5807 }
5808
5809 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5810 {
5811         struct e1000_hw *hw = &adapter->hw;
5812         u32 reg, i;
5813
5814         /* The vlvf table only exists on 82576 hardware and newer */
5815         if (hw->mac.type < e1000_82576)
5816                 return -1;
5817
5818         /* we only need to do this if VMDq is enabled */
5819         if (!adapter->vfs_allocated_count)
5820                 return -1;
5821
5822         /* Find the vlan filter for this id */
5823         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5824                 reg = rd32(E1000_VLVF(i));
5825                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5826                     vid == (reg & E1000_VLVF_VLANID_MASK))
5827                         break;
5828         }
5829
5830         if (add) {
5831                 if (i == E1000_VLVF_ARRAY_SIZE) {
5832                         /* Did not find a matching VLAN ID entry that was
5833                          * enabled.  Search for a free filter entry, i.e.
5834                          * one without the enable bit set
5835                          */
5836                         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5837                                 reg = rd32(E1000_VLVF(i));
5838                                 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5839                                         break;
5840                         }
5841                 }
5842                 if (i < E1000_VLVF_ARRAY_SIZE) {
5843                         /* Found an enabled/available entry */
5844                         reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5845
5846                         /* if !enabled we need to set this up in vfta */
5847                         if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5848                                 /* add VID to filter table */
5849                                 igb_vfta_set(hw, vid, true);
5850                                 reg |= E1000_VLVF_VLANID_ENABLE;
5851                         }
5852                         reg &= ~E1000_VLVF_VLANID_MASK;
5853                         reg |= vid;
5854                         wr32(E1000_VLVF(i), reg);
5855
5856                         /* do not modify RLPML for PF devices */
5857                         if (vf >= adapter->vfs_allocated_count)
5858                                 return 0;
5859
5860                         if (!adapter->vf_data[vf].vlans_enabled) {
5861                                 u32 size;
5862
5863                                 reg = rd32(E1000_VMOLR(vf));
5864                                 size = reg & E1000_VMOLR_RLPML_MASK;
5865                                 size += 4;
5866                                 reg &= ~E1000_VMOLR_RLPML_MASK;
5867                                 reg |= size;
5868                                 wr32(E1000_VMOLR(vf), reg);
5869                         }
5870
5871                         adapter->vf_data[vf].vlans_enabled++;
5872                 }
5873         } else {
5874                 if (i < E1000_VLVF_ARRAY_SIZE) {
5875                         /* remove vf from the pool */
5876                         reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5877                         /* if pool is empty then remove entry from vfta */
5878                         if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5879                                 reg = 0;
5880                                 igb_vfta_set(hw, vid, false);
5881                         }
5882                         wr32(E1000_VLVF(i), reg);
5883
5884                         /* do not modify RLPML for PF devices */
5885                         if (vf >= adapter->vfs_allocated_count)
5886                                 return 0;
5887
5888                         adapter->vf_data[vf].vlans_enabled--;
5889                         if (!adapter->vf_data[vf].vlans_enabled) {
5890                                 u32 size;
5891
5892                                 reg = rd32(E1000_VMOLR(vf));
5893                                 size = reg & E1000_VMOLR_RLPML_MASK;
5894                                 size -= 4;
5895                                 reg &= ~E1000_VMOLR_RLPML_MASK;
5896                                 reg |= size;
5897                                 wr32(E1000_VMOLR(vf), reg);
5898                         }
5899                 }
5900         }
5901         return 0;
5902 }
5903
5904 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5905 {
5906         struct e1000_hw *hw = &adapter->hw;
5907
5908         if (vid)
5909                 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5910         else
5911                 wr32(E1000_VMVIR(vf), 0);
5912 }
5913
5914 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5915                                int vf, u16 vlan, u8 qos)
5916 {
5917         int err = 0;
5918         struct igb_adapter *adapter = netdev_priv(netdev);
5919
5920         if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5921                 return -EINVAL;
5922         if (vlan || qos) {
5923                 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5924                 if (err)
5925                         goto out;
5926                 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5927                 igb_set_vmolr(adapter, vf, !vlan);
5928                 adapter->vf_data[vf].pf_vlan = vlan;
5929                 adapter->vf_data[vf].pf_qos = qos;
5930                 dev_info(&adapter->pdev->dev,
5931                          "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5932                 if (test_bit(__IGB_DOWN, &adapter->state)) {
5933                         dev_warn(&adapter->pdev->dev,
5934                                  "The VF VLAN has been set, but the PF device is not up.\n");
5935                         dev_warn(&adapter->pdev->dev,
5936                                  "Bring the PF device up before attempting to use the VF device.\n");
5937                 }
5938         } else {
5939                 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5940                              false, vf);
5941                 igb_set_vmvir(adapter, vlan, vf);
5942                 igb_set_vmolr(adapter, vf, true);
5943                 adapter->vf_data[vf].pf_vlan = 0;
5944                 adapter->vf_data[vf].pf_qos = 0;
5945         }
5946 out:
5947         return err;
5948 }
5949
5950 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5951 {
5952         struct e1000_hw *hw = &adapter->hw;
5953         int i;
5954         u32 reg;
5955
5956         /* Find the vlan filter for this id */
5957         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5958                 reg = rd32(E1000_VLVF(i));
5959                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5960                     vid == (reg & E1000_VLVF_VLANID_MASK))
5961                         break;
5962         }
5963
5964         if (i >= E1000_VLVF_ARRAY_SIZE)
5965                 i = -1;
5966
5967         return i;
5968 }
5969
5970 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5971 {
5972         struct e1000_hw *hw = &adapter->hw;
5973         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5974         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5975         int err = 0;
5976
5977         /* If in promiscuous mode we need to make sure the PF also has
5978          * the VLAN filter set.
5979          */
5980         if (add && (adapter->netdev->flags & IFF_PROMISC))
5981                 err = igb_vlvf_set(adapter, vid, add,
5982                                    adapter->vfs_allocated_count);
5983         if (err)
5984                 goto out;
5985
5986         err = igb_vlvf_set(adapter, vid, add, vf);
5987
5988         if (err)
5989                 goto out;
5990
5991         /* Go through all the checks to see if the VLAN filter should
5992          * be wiped completely.
5993          */
5994         if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5995                 u32 vlvf, bits;
5996                 int regndx = igb_find_vlvf_entry(adapter, vid);
5997
5998                 if (regndx < 0)
5999                         goto out;
6000                 /* See if any other pools are set for this VLAN filter
6001                  * entry other than the PF.
6002                  */
6003                 vlvf = bits = rd32(E1000_VLVF(regndx));
6004                 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
6005                               adapter->vfs_allocated_count);
6006                 /* If the filter was removed then ensure PF pool bit
6007                  * is cleared if the PF only added itself to the pool
6008                  * because the PF is in promiscuous mode.
6009                  */
6010                 if ((vlvf & VLAN_VID_MASK) == vid &&
6011                     !test_bit(vid, adapter->active_vlans) &&
6012                     !bits)
6013                         igb_vlvf_set(adapter, vid, add,
6014                                      adapter->vfs_allocated_count);
6015         }
6016
6017 out:
6018         return err;
6019 }
6020
6021 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6022 {
6023         /* clear flags - except flag that indicates PF has set the MAC */
6024         adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
6025         adapter->vf_data[vf].last_nack = jiffies;
6026
6027         /* reset offloads to defaults */
6028         igb_set_vmolr(adapter, vf, true);
6029
6030         /* reset vlans for device */
6031         igb_clear_vf_vfta(adapter, vf);
6032         if (adapter->vf_data[vf].pf_vlan)
6033                 igb_ndo_set_vf_vlan(adapter->netdev, vf,
6034                                     adapter->vf_data[vf].pf_vlan,
6035                                     adapter->vf_data[vf].pf_qos);
6036         else
6037                 igb_clear_vf_vfta(adapter, vf);
6038
6039         /* reset multicast table array for vf */
6040         adapter->vf_data[vf].num_vf_mc_hashes = 0;
6041
6042         /* Flush and reset the mta with the new values */
6043         igb_set_rx_mode(adapter->netdev);
6044 }
6045
6046 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6047 {
6048         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6049
6050         /* clear mac address as we were hotplug removed/added */
6051         if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6052                 eth_zero_addr(vf_mac);
6053
6054         /* process remaining reset events */
6055         igb_vf_reset(adapter, vf);
6056 }
6057
6058 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6059 {
6060         struct e1000_hw *hw = &adapter->hw;
6061         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6062         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6063         u32 reg, msgbuf[3];
6064         u8 *addr = (u8 *)(&msgbuf[1]);
6065
6066         /* process all the same items cleared in a function level reset */
6067         igb_vf_reset(adapter, vf);
6068
6069         /* set vf mac address */
6070         igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
6071
6072         /* enable transmit and receive for vf */
6073         reg = rd32(E1000_VFTE);
6074         wr32(E1000_VFTE, reg | (1 << vf));
6075         reg = rd32(E1000_VFRE);
6076         wr32(E1000_VFRE, reg | (1 << vf));
6077
6078         adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6079
6080         /* reply to reset with ack and vf mac address */
6081         if (!is_zero_ether_addr(vf_mac)) {
6082                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6083                 memcpy(addr, vf_mac, ETH_ALEN);
6084         } else {
6085                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6086         }
6087         igb_write_mbx(hw, msgbuf, 3, vf);
6088 }
6089
6090 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6091 {
6092         /* The VF MAC Address is stored in a packed array of bytes
6093          * starting at the second 32 bit word of the msg array
6094          */
6095         unsigned char *addr = (char *)&msg[1];
6096         int err = -1;
6097
6098         if (is_valid_ether_addr(addr))
6099                 err = igb_set_vf_mac(adapter, vf, addr);
6100
6101         return err;
6102 }
6103
6104 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6105 {
6106         struct e1000_hw *hw = &adapter->hw;
6107         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6108         u32 msg = E1000_VT_MSGTYPE_NACK;
6109
6110         /* if device isn't clear to send it shouldn't be reading either */
6111         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6112             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6113                 igb_write_mbx(hw, &msg, 1, vf);
6114                 vf_data->last_nack = jiffies;
6115         }
6116 }
6117
6118 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6119 {
6120         struct pci_dev *pdev = adapter->pdev;
6121         u32 msgbuf[E1000_VFMAILBOX_SIZE];
6122         struct e1000_hw *hw = &adapter->hw;
6123         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6124         s32 retval;
6125
6126         retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6127
6128         if (retval) {
6129                 /* if receive failed revoke VF CTS stats and restart init */
6130                 dev_err(&pdev->dev, "Error receiving message from VF\n");
6131                 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6132                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6133                         return;
6134                 goto out;
6135         }
6136
6137         /* this is a message we already processed, do nothing */
6138         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6139                 return;
6140
6141         /* until the vf completes a reset it should not be
6142          * allowed to start any configuration.
6143          */
6144         if (msgbuf[0] == E1000_VF_RESET) {
6145                 igb_vf_reset_msg(adapter, vf);
6146                 return;
6147         }
6148
6149         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6150                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6151                         return;
6152                 retval = -1;
6153                 goto out;
6154         }
6155
6156         switch ((msgbuf[0] & 0xFFFF)) {
6157         case E1000_VF_SET_MAC_ADDR:
6158                 retval = -EINVAL;
6159                 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6160                         retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6161                 else
6162                         dev_warn(&pdev->dev,
6163                                  "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6164                                  vf);
6165                 break;
6166         case E1000_VF_SET_PROMISC:
6167                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6168                 break;
6169         case E1000_VF_SET_MULTICAST:
6170                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6171                 break;
6172         case E1000_VF_SET_LPE:
6173                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6174                 break;
6175         case E1000_VF_SET_VLAN:
6176                 retval = -1;
6177                 if (vf_data->pf_vlan)
6178                         dev_warn(&pdev->dev,
6179                                  "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6180                                  vf);
6181                 else
6182                         retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6183                 break;
6184         default:
6185                 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6186                 retval = -1;
6187                 break;
6188         }
6189
6190         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6191 out:
6192         /* notify the VF of the results of what it sent us */
6193         if (retval)
6194                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6195         else
6196                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6197
6198         igb_write_mbx(hw, msgbuf, 1, vf);
6199 }
6200
6201 static void igb_msg_task(struct igb_adapter *adapter)
6202 {
6203         struct e1000_hw *hw = &adapter->hw;
6204         u32 vf;
6205
6206         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6207                 /* process any reset requests */
6208                 if (!igb_check_for_rst(hw, vf))
6209                         igb_vf_reset_event(adapter, vf);
6210
6211                 /* process any messages pending */
6212                 if (!igb_check_for_msg(hw, vf))
6213                         igb_rcv_msg_from_vf(adapter, vf);
6214
6215                 /* process any acks */
6216                 if (!igb_check_for_ack(hw, vf))
6217                         igb_rcv_ack_from_vf(adapter, vf);
6218         }
6219 }
6220
6221 /**
6222  *  igb_set_uta - Set unicast filter table address
6223  *  @adapter: board private structure
6224  *
6225  *  The unicast table address is a register array of 32-bit registers.
6226  *  The table is meant to be used in a way similar to how the MTA is used
6227  *  however due to certain limitations in the hardware it is necessary to
6228  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6229  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6230  **/
6231 static void igb_set_uta(struct igb_adapter *adapter)
6232 {
6233         struct e1000_hw *hw = &adapter->hw;
6234         int i;
6235
6236         /* The UTA table only exists on 82576 hardware and newer */
6237         if (hw->mac.type < e1000_82576)
6238                 return;
6239
6240         /* we only need to do this if VMDq is enabled */
6241         if (!adapter->vfs_allocated_count)
6242                 return;
6243
6244         for (i = 0; i < hw->mac.uta_reg_count; i++)
6245                 array_wr32(E1000_UTA, i, ~0);
6246 }
6247
6248 /**
6249  *  igb_intr_msi - Interrupt Handler
6250  *  @irq: interrupt number
6251  *  @data: pointer to a network interface device structure
6252  **/
6253 static irqreturn_t igb_intr_msi(int irq, void *data)
6254 {
6255         struct igb_adapter *adapter = data;
6256         struct igb_q_vector *q_vector = adapter->q_vector[0];
6257         struct e1000_hw *hw = &adapter->hw;
6258         /* read ICR disables interrupts using IAM */
6259         u32 icr = rd32(E1000_ICR);
6260
6261         igb_write_itr(q_vector);
6262
6263         if (icr & E1000_ICR_DRSTA)
6264                 schedule_work(&adapter->reset_task);
6265
6266         if (icr & E1000_ICR_DOUTSYNC) {
6267                 /* HW is reporting DMA is out of sync */
6268                 adapter->stats.doosync++;
6269         }
6270
6271         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6272                 hw->mac.get_link_status = 1;
6273                 if (!test_bit(__IGB_DOWN, &adapter->state))
6274                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6275         }
6276
6277         if (icr & E1000_ICR_TS)
6278                 igb_tsync_interrupt(adapter);
6279
6280         napi_schedule(&q_vector->napi);
6281
6282         return IRQ_HANDLED;
6283 }
6284
6285 /**
6286  *  igb_intr - Legacy Interrupt Handler
6287  *  @irq: interrupt number
6288  *  @data: pointer to a network interface device structure
6289  **/
6290 static irqreturn_t igb_intr(int irq, void *data)
6291 {
6292         struct igb_adapter *adapter = data;
6293         struct igb_q_vector *q_vector = adapter->q_vector[0];
6294         struct e1000_hw *hw = &adapter->hw;
6295         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6296          * need for the IMC write
6297          */
6298         u32 icr = rd32(E1000_ICR);
6299
6300         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6301          * not set, then the adapter didn't send an interrupt
6302          */
6303         if (!(icr & E1000_ICR_INT_ASSERTED))
6304                 return IRQ_NONE;
6305
6306         igb_write_itr(q_vector);
6307
6308         if (icr & E1000_ICR_DRSTA)
6309                 schedule_work(&adapter->reset_task);
6310
6311         if (icr & E1000_ICR_DOUTSYNC) {
6312                 /* HW is reporting DMA is out of sync */
6313                 adapter->stats.doosync++;
6314         }
6315
6316         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6317                 hw->mac.get_link_status = 1;
6318                 /* guard against interrupt when we're going down */
6319                 if (!test_bit(__IGB_DOWN, &adapter->state))
6320                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6321         }
6322
6323         if (icr & E1000_ICR_TS)
6324                 igb_tsync_interrupt(adapter);
6325
6326         napi_schedule(&q_vector->napi);
6327
6328         return IRQ_HANDLED;
6329 }
6330
6331 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6332 {
6333         struct igb_adapter *adapter = q_vector->adapter;
6334         struct e1000_hw *hw = &adapter->hw;
6335
6336         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6337             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6338                 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6339                         igb_set_itr(q_vector);
6340                 else
6341                         igb_update_ring_itr(q_vector);
6342         }
6343
6344         if (!test_bit(__IGB_DOWN, &adapter->state)) {
6345                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
6346                         wr32(E1000_EIMS, q_vector->eims_value);
6347                 else
6348                         igb_irq_enable(adapter);
6349         }
6350 }
6351
6352 /**
6353  *  igb_poll - NAPI Rx polling callback
6354  *  @napi: napi polling structure
6355  *  @budget: count of how many packets we should handle
6356  **/
6357 static int igb_poll(struct napi_struct *napi, int budget)
6358 {
6359         struct igb_q_vector *q_vector = container_of(napi,
6360                                                      struct igb_q_vector,
6361                                                      napi);
6362         bool clean_complete = true;
6363
6364 #ifdef CONFIG_IGB_DCA
6365         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6366                 igb_update_dca(q_vector);
6367 #endif
6368         if (q_vector->tx.ring)
6369                 clean_complete = igb_clean_tx_irq(q_vector);
6370
6371         if (q_vector->rx.ring)
6372                 clean_complete &= igb_clean_rx_irq(q_vector, budget);
6373
6374         /* If all work not completed, return budget and keep polling */
6375         if (!clean_complete)
6376                 return budget;
6377
6378         /* If not enough Rx work done, exit the polling mode */
6379         napi_complete(napi);
6380         igb_ring_irq_enable(q_vector);
6381
6382         return 0;
6383 }
6384
6385 /**
6386  *  igb_clean_tx_irq - Reclaim resources after transmit completes
6387  *  @q_vector: pointer to q_vector containing needed info
6388  *
6389  *  returns true if ring is completely cleaned
6390  **/
6391 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6392 {
6393         struct igb_adapter *adapter = q_vector->adapter;
6394         struct igb_ring *tx_ring = q_vector->tx.ring;
6395         struct igb_tx_buffer *tx_buffer;
6396         union e1000_adv_tx_desc *tx_desc;
6397         unsigned int total_bytes = 0, total_packets = 0;
6398         unsigned int budget = q_vector->tx.work_limit;
6399         unsigned int i = tx_ring->next_to_clean;
6400
6401         if (test_bit(__IGB_DOWN, &adapter->state))
6402                 return true;
6403
6404         tx_buffer = &tx_ring->tx_buffer_info[i];
6405         tx_desc = IGB_TX_DESC(tx_ring, i);
6406         i -= tx_ring->count;
6407
6408         do {
6409                 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6410
6411                 /* if next_to_watch is not set then there is no work pending */
6412                 if (!eop_desc)
6413                         break;
6414
6415                 /* prevent any other reads prior to eop_desc */
6416                 read_barrier_depends();
6417
6418                 /* if DD is not set pending work has not been completed */
6419                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6420                         break;
6421
6422                 /* clear next_to_watch to prevent false hangs */
6423                 tx_buffer->next_to_watch = NULL;
6424
6425                 /* update the statistics for this packet */
6426                 total_bytes += tx_buffer->bytecount;
6427                 total_packets += tx_buffer->gso_segs;
6428
6429                 /* free the skb */
6430                 dev_consume_skb_any(tx_buffer->skb);
6431
6432                 /* unmap skb header data */
6433                 dma_unmap_single(tx_ring->dev,
6434                                  dma_unmap_addr(tx_buffer, dma),
6435                                  dma_unmap_len(tx_buffer, len),
6436                                  DMA_TO_DEVICE);
6437
6438                 /* clear tx_buffer data */
6439                 tx_buffer->skb = NULL;
6440                 dma_unmap_len_set(tx_buffer, len, 0);
6441
6442                 /* clear last DMA location and unmap remaining buffers */
6443                 while (tx_desc != eop_desc) {
6444                         tx_buffer++;
6445                         tx_desc++;
6446                         i++;
6447                         if (unlikely(!i)) {
6448                                 i -= tx_ring->count;
6449                                 tx_buffer = tx_ring->tx_buffer_info;
6450                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
6451                         }
6452
6453                         /* unmap any remaining paged data */
6454                         if (dma_unmap_len(tx_buffer, len)) {
6455                                 dma_unmap_page(tx_ring->dev,
6456                                                dma_unmap_addr(tx_buffer, dma),
6457                                                dma_unmap_len(tx_buffer, len),
6458                                                DMA_TO_DEVICE);
6459                                 dma_unmap_len_set(tx_buffer, len, 0);
6460                         }
6461                 }
6462
6463                 /* move us one more past the eop_desc for start of next pkt */
6464                 tx_buffer++;
6465                 tx_desc++;
6466                 i++;
6467                 if (unlikely(!i)) {
6468                         i -= tx_ring->count;
6469                         tx_buffer = tx_ring->tx_buffer_info;
6470                         tx_desc = IGB_TX_DESC(tx_ring, 0);
6471                 }
6472
6473                 /* issue prefetch for next Tx descriptor */
6474                 prefetch(tx_desc);
6475
6476                 /* update budget accounting */
6477                 budget--;
6478         } while (likely(budget));
6479
6480         netdev_tx_completed_queue(txring_txq(tx_ring),
6481                                   total_packets, total_bytes);
6482         i += tx_ring->count;
6483         tx_ring->next_to_clean = i;
6484         u64_stats_update_begin(&tx_ring->tx_syncp);
6485         tx_ring->tx_stats.bytes += total_bytes;
6486         tx_ring->tx_stats.packets += total_packets;
6487         u64_stats_update_end(&tx_ring->tx_syncp);
6488         q_vector->tx.total_bytes += total_bytes;
6489         q_vector->tx.total_packets += total_packets;
6490
6491         if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6492                 struct e1000_hw *hw = &adapter->hw;
6493
6494                 /* Detect a transmit hang in hardware, this serializes the
6495                  * check with the clearing of time_stamp and movement of i
6496                  */
6497                 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6498                 if (tx_buffer->next_to_watch &&
6499                     time_after(jiffies, tx_buffer->time_stamp +
6500                                (adapter->tx_timeout_factor * HZ)) &&
6501                     !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6502
6503                         /* detected Tx unit hang */
6504                         dev_err(tx_ring->dev,
6505                                 "Detected Tx Unit Hang\n"
6506                                 "  Tx Queue             <%d>\n"
6507                                 "  TDH                  <%x>\n"
6508                                 "  TDT                  <%x>\n"
6509                                 "  next_to_use          <%x>\n"
6510                                 "  next_to_clean        <%x>\n"
6511                                 "buffer_info[next_to_clean]\n"
6512                                 "  time_stamp           <%lx>\n"
6513                                 "  next_to_watch        <%p>\n"
6514                                 "  jiffies              <%lx>\n"
6515                                 "  desc.status          <%x>\n",
6516                                 tx_ring->queue_index,
6517                                 rd32(E1000_TDH(tx_ring->reg_idx)),
6518                                 readl(tx_ring->tail),
6519                                 tx_ring->next_to_use,
6520                                 tx_ring->next_to_clean,
6521                                 tx_buffer->time_stamp,
6522                                 tx_buffer->next_to_watch,
6523                                 jiffies,
6524                                 tx_buffer->next_to_watch->wb.status);
6525                         netif_stop_subqueue(tx_ring->netdev,
6526                                             tx_ring->queue_index);
6527
6528                         /* we are about to reset, no point in enabling stuff */
6529                         return true;
6530                 }
6531         }
6532
6533 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6534         if (unlikely(total_packets &&
6535             netif_carrier_ok(tx_ring->netdev) &&
6536             igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6537                 /* Make sure that anybody stopping the queue after this
6538                  * sees the new next_to_clean.
6539                  */
6540                 smp_mb();
6541                 if (__netif_subqueue_stopped(tx_ring->netdev,
6542                                              tx_ring->queue_index) &&
6543                     !(test_bit(__IGB_DOWN, &adapter->state))) {
6544                         netif_wake_subqueue(tx_ring->netdev,
6545                                             tx_ring->queue_index);
6546
6547                         u64_stats_update_begin(&tx_ring->tx_syncp);
6548                         tx_ring->tx_stats.restart_queue++;
6549                         u64_stats_update_end(&tx_ring->tx_syncp);
6550                 }
6551         }
6552
6553         return !!budget;
6554 }
6555
6556 /**
6557  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6558  *  @rx_ring: rx descriptor ring to store buffers on
6559  *  @old_buff: donor buffer to have page reused
6560  *
6561  *  Synchronizes page for reuse by the adapter
6562  **/
6563 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6564                               struct igb_rx_buffer *old_buff)
6565 {
6566         struct igb_rx_buffer *new_buff;
6567         u16 nta = rx_ring->next_to_alloc;
6568
6569         new_buff = &rx_ring->rx_buffer_info[nta];
6570
6571         /* update, and store next to alloc */
6572         nta++;
6573         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6574
6575         /* transfer page from old buffer to new buffer */
6576         *new_buff = *old_buff;
6577
6578         /* sync the buffer for use by the device */
6579         dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6580                                          old_buff->page_offset,
6581                                          IGB_RX_BUFSZ,
6582                                          DMA_FROM_DEVICE);
6583 }
6584
6585 static inline bool igb_page_is_reserved(struct page *page)
6586 {
6587         return (page_to_nid(page) != numa_mem_id()) || page->pfmemalloc;
6588 }
6589
6590 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6591                                   struct page *page,
6592                                   unsigned int truesize)
6593 {
6594         /* avoid re-using remote pages */
6595         if (unlikely(igb_page_is_reserved(page)))
6596                 return false;
6597
6598 #if (PAGE_SIZE < 8192)
6599         /* if we are only owner of page we can reuse it */
6600         if (unlikely(page_count(page) != 1))
6601                 return false;
6602
6603         /* flip page offset to other buffer */
6604         rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6605 #else
6606         /* move offset up to the next cache line */
6607         rx_buffer->page_offset += truesize;
6608
6609         if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6610                 return false;
6611 #endif
6612
6613         /* Even if we own the page, we are not allowed to use atomic_set()
6614          * This would break get_page_unless_zero() users.
6615          */
6616         atomic_inc(&page->_count);
6617
6618         return true;
6619 }
6620
6621 /**
6622  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6623  *  @rx_ring: rx descriptor ring to transact packets on
6624  *  @rx_buffer: buffer containing page to add
6625  *  @rx_desc: descriptor containing length of buffer written by hardware
6626  *  @skb: sk_buff to place the data into
6627  *
6628  *  This function will add the data contained in rx_buffer->page to the skb.
6629  *  This is done either through a direct copy if the data in the buffer is
6630  *  less than the skb header size, otherwise it will just attach the page as
6631  *  a frag to the skb.
6632  *
6633  *  The function will then update the page offset if necessary and return
6634  *  true if the buffer can be reused by the adapter.
6635  **/
6636 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6637                             struct igb_rx_buffer *rx_buffer,
6638                             union e1000_adv_rx_desc *rx_desc,
6639                             struct sk_buff *skb)
6640 {
6641         struct page *page = rx_buffer->page;
6642         unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6643 #if (PAGE_SIZE < 8192)
6644         unsigned int truesize = IGB_RX_BUFSZ;
6645 #else
6646         unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6647 #endif
6648
6649         if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6650                 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6651
6652                 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6653                         igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6654                         va += IGB_TS_HDR_LEN;
6655                         size -= IGB_TS_HDR_LEN;
6656                 }
6657
6658                 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6659
6660                 /* page is not reserved, we can reuse buffer as-is */
6661                 if (likely(!igb_page_is_reserved(page)))
6662                         return true;
6663
6664                 /* this page cannot be reused so discard it */
6665                 __free_page(page);
6666                 return false;
6667         }
6668
6669         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6670                         rx_buffer->page_offset, size, truesize);
6671
6672         return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6673 }
6674
6675 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6676                                            union e1000_adv_rx_desc *rx_desc,
6677                                            struct sk_buff *skb)
6678 {
6679         struct igb_rx_buffer *rx_buffer;
6680         struct page *page;
6681
6682         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6683         page = rx_buffer->page;
6684         prefetchw(page);
6685
6686         if (likely(!skb)) {
6687                 void *page_addr = page_address(page) +
6688                                   rx_buffer->page_offset;
6689
6690                 /* prefetch first cache line of first page */
6691                 prefetch(page_addr);
6692 #if L1_CACHE_BYTES < 128
6693                 prefetch(page_addr + L1_CACHE_BYTES);
6694 #endif
6695
6696                 /* allocate a skb to store the frags */
6697                 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
6698                 if (unlikely(!skb)) {
6699                         rx_ring->rx_stats.alloc_failed++;
6700                         return NULL;
6701                 }
6702
6703                 /* we will be copying header into skb->data in
6704                  * pskb_may_pull so it is in our interest to prefetch
6705                  * it now to avoid a possible cache miss
6706                  */
6707                 prefetchw(skb->data);
6708         }
6709
6710         /* we are reusing so sync this buffer for CPU use */
6711         dma_sync_single_range_for_cpu(rx_ring->dev,
6712                                       rx_buffer->dma,
6713                                       rx_buffer->page_offset,
6714                                       IGB_RX_BUFSZ,
6715                                       DMA_FROM_DEVICE);
6716
6717         /* pull page into skb */
6718         if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6719                 /* hand second half of page back to the ring */
6720                 igb_reuse_rx_page(rx_ring, rx_buffer);
6721         } else {
6722                 /* we are not reusing the buffer so unmap it */
6723                 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6724                                PAGE_SIZE, DMA_FROM_DEVICE);
6725         }
6726
6727         /* clear contents of rx_buffer */
6728         rx_buffer->page = NULL;
6729
6730         return skb;
6731 }
6732
6733 static inline void igb_rx_checksum(struct igb_ring *ring,
6734                                    union e1000_adv_rx_desc *rx_desc,
6735                                    struct sk_buff *skb)
6736 {
6737         skb_checksum_none_assert(skb);
6738
6739         /* Ignore Checksum bit is set */
6740         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6741                 return;
6742
6743         /* Rx checksum disabled via ethtool */
6744         if (!(ring->netdev->features & NETIF_F_RXCSUM))
6745                 return;
6746
6747         /* TCP/UDP checksum error bit is set */
6748         if (igb_test_staterr(rx_desc,
6749                              E1000_RXDEXT_STATERR_TCPE |
6750                              E1000_RXDEXT_STATERR_IPE)) {
6751                 /* work around errata with sctp packets where the TCPE aka
6752                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6753                  * packets, (aka let the stack check the crc32c)
6754                  */
6755                 if (!((skb->len == 60) &&
6756                       test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6757                         u64_stats_update_begin(&ring->rx_syncp);
6758                         ring->rx_stats.csum_err++;
6759                         u64_stats_update_end(&ring->rx_syncp);
6760                 }
6761                 /* let the stack verify checksum errors */
6762                 return;
6763         }
6764         /* It must be a TCP or UDP packet with a valid checksum */
6765         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6766                                       E1000_RXD_STAT_UDPCS))
6767                 skb->ip_summed = CHECKSUM_UNNECESSARY;
6768
6769         dev_dbg(ring->dev, "cksum success: bits %08X\n",
6770                 le32_to_cpu(rx_desc->wb.upper.status_error));
6771 }
6772
6773 static inline void igb_rx_hash(struct igb_ring *ring,
6774                                union e1000_adv_rx_desc *rx_desc,
6775                                struct sk_buff *skb)
6776 {
6777         if (ring->netdev->features & NETIF_F_RXHASH)
6778                 skb_set_hash(skb,
6779                              le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6780                              PKT_HASH_TYPE_L3);
6781 }
6782
6783 /**
6784  *  igb_is_non_eop - process handling of non-EOP buffers
6785  *  @rx_ring: Rx ring being processed
6786  *  @rx_desc: Rx descriptor for current buffer
6787  *  @skb: current socket buffer containing buffer in progress
6788  *
6789  *  This function updates next to clean.  If the buffer is an EOP buffer
6790  *  this function exits returning false, otherwise it will place the
6791  *  sk_buff in the next buffer to be chained and return true indicating
6792  *  that this is in fact a non-EOP buffer.
6793  **/
6794 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6795                            union e1000_adv_rx_desc *rx_desc)
6796 {
6797         u32 ntc = rx_ring->next_to_clean + 1;
6798
6799         /* fetch, update, and store next to clean */
6800         ntc = (ntc < rx_ring->count) ? ntc : 0;
6801         rx_ring->next_to_clean = ntc;
6802
6803         prefetch(IGB_RX_DESC(rx_ring, ntc));
6804
6805         if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6806                 return false;
6807
6808         return true;
6809 }
6810
6811 /**
6812  *  igb_pull_tail - igb specific version of skb_pull_tail
6813  *  @rx_ring: rx descriptor ring packet is being transacted on
6814  *  @rx_desc: pointer to the EOP Rx descriptor
6815  *  @skb: pointer to current skb being adjusted
6816  *
6817  *  This function is an igb specific version of __pskb_pull_tail.  The
6818  *  main difference between this version and the original function is that
6819  *  this function can make several assumptions about the state of things
6820  *  that allow for significant optimizations versus the standard function.
6821  *  As a result we can do things like drop a frag and maintain an accurate
6822  *  truesize for the skb.
6823  */
6824 static void igb_pull_tail(struct igb_ring *rx_ring,
6825                           union e1000_adv_rx_desc *rx_desc,
6826                           struct sk_buff *skb)
6827 {
6828         struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6829         unsigned char *va;
6830         unsigned int pull_len;
6831
6832         /* it is valid to use page_address instead of kmap since we are
6833          * working with pages allocated out of the lomem pool per
6834          * alloc_page(GFP_ATOMIC)
6835          */
6836         va = skb_frag_address(frag);
6837
6838         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6839                 /* retrieve timestamp from buffer */
6840                 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6841
6842                 /* update pointers to remove timestamp header */
6843                 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6844                 frag->page_offset += IGB_TS_HDR_LEN;
6845                 skb->data_len -= IGB_TS_HDR_LEN;
6846                 skb->len -= IGB_TS_HDR_LEN;
6847
6848                 /* move va to start of packet data */
6849                 va += IGB_TS_HDR_LEN;
6850         }
6851
6852         /* we need the header to contain the greater of either ETH_HLEN or
6853          * 60 bytes if the skb->len is less than 60 for skb_pad.
6854          */
6855         pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
6856
6857         /* align pull length to size of long to optimize memcpy performance */
6858         skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6859
6860         /* update all of the pointers */
6861         skb_frag_size_sub(frag, pull_len);
6862         frag->page_offset += pull_len;
6863         skb->data_len -= pull_len;
6864         skb->tail += pull_len;
6865 }
6866
6867 /**
6868  *  igb_cleanup_headers - Correct corrupted or empty headers
6869  *  @rx_ring: rx descriptor ring packet is being transacted on
6870  *  @rx_desc: pointer to the EOP Rx descriptor
6871  *  @skb: pointer to current skb being fixed
6872  *
6873  *  Address the case where we are pulling data in on pages only
6874  *  and as such no data is present in the skb header.
6875  *
6876  *  In addition if skb is not at least 60 bytes we need to pad it so that
6877  *  it is large enough to qualify as a valid Ethernet frame.
6878  *
6879  *  Returns true if an error was encountered and skb was freed.
6880  **/
6881 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6882                                 union e1000_adv_rx_desc *rx_desc,
6883                                 struct sk_buff *skb)
6884 {
6885         if (unlikely((igb_test_staterr(rx_desc,
6886                                        E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6887                 struct net_device *netdev = rx_ring->netdev;
6888                 if (!(netdev->features & NETIF_F_RXALL)) {
6889                         dev_kfree_skb_any(skb);
6890                         return true;
6891                 }
6892         }
6893
6894         /* place header in linear portion of buffer */
6895         if (skb_is_nonlinear(skb))
6896                 igb_pull_tail(rx_ring, rx_desc, skb);
6897
6898         /* if eth_skb_pad returns an error the skb was freed */
6899         if (eth_skb_pad(skb))
6900                 return true;
6901
6902         return false;
6903 }
6904
6905 /**
6906  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6907  *  @rx_ring: rx descriptor ring packet is being transacted on
6908  *  @rx_desc: pointer to the EOP Rx descriptor
6909  *  @skb: pointer to current skb being populated
6910  *
6911  *  This function checks the ring, descriptor, and packet information in
6912  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6913  *  other fields within the skb.
6914  **/
6915 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6916                                    union e1000_adv_rx_desc *rx_desc,
6917                                    struct sk_buff *skb)
6918 {
6919         struct net_device *dev = rx_ring->netdev;
6920
6921         igb_rx_hash(rx_ring, rx_desc, skb);
6922
6923         igb_rx_checksum(rx_ring, rx_desc, skb);
6924
6925         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
6926             !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
6927                 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
6928
6929         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6930             igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6931                 u16 vid;
6932
6933                 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6934                     test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6935                         vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6936                 else
6937                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6938
6939                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6940         }
6941
6942         skb_record_rx_queue(skb, rx_ring->queue_index);
6943
6944         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6945 }
6946
6947 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6948 {
6949         struct igb_ring *rx_ring = q_vector->rx.ring;
6950         struct sk_buff *skb = rx_ring->skb;
6951         unsigned int total_bytes = 0, total_packets = 0;
6952         u16 cleaned_count = igb_desc_unused(rx_ring);
6953
6954         while (likely(total_packets < budget)) {
6955                 union e1000_adv_rx_desc *rx_desc;
6956
6957                 /* return some buffers to hardware, one at a time is too slow */
6958                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6959                         igb_alloc_rx_buffers(rx_ring, cleaned_count);
6960                         cleaned_count = 0;
6961                 }
6962
6963                 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6964
6965                 if (!rx_desc->wb.upper.status_error)
6966                         break;
6967
6968                 /* This memory barrier is needed to keep us from reading
6969                  * any other fields out of the rx_desc until we know the
6970                  * descriptor has been written back
6971                  */
6972                 dma_rmb();
6973
6974                 /* retrieve a buffer from the ring */
6975                 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6976
6977                 /* exit if we failed to retrieve a buffer */
6978                 if (!skb)
6979                         break;
6980
6981                 cleaned_count++;
6982
6983                 /* fetch next buffer in frame if non-eop */
6984                 if (igb_is_non_eop(rx_ring, rx_desc))
6985                         continue;
6986
6987                 /* verify the packet layout is correct */
6988                 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6989                         skb = NULL;
6990                         continue;
6991                 }
6992
6993                 /* probably a little skewed due to removing CRC */
6994                 total_bytes += skb->len;
6995
6996                 /* populate checksum, timestamp, VLAN, and protocol */
6997                 igb_process_skb_fields(rx_ring, rx_desc, skb);
6998
6999                 napi_gro_receive(&q_vector->napi, skb);
7000
7001                 /* reset skb pointer */
7002                 skb = NULL;
7003
7004                 /* update budget accounting */
7005                 total_packets++;
7006         }
7007
7008         /* place incomplete frames back on ring for completion */
7009         rx_ring->skb = skb;
7010
7011         u64_stats_update_begin(&rx_ring->rx_syncp);
7012         rx_ring->rx_stats.packets += total_packets;
7013         rx_ring->rx_stats.bytes += total_bytes;
7014         u64_stats_update_end(&rx_ring->rx_syncp);
7015         q_vector->rx.total_packets += total_packets;
7016         q_vector->rx.total_bytes += total_bytes;
7017
7018         if (cleaned_count)
7019                 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7020
7021         return total_packets < budget;
7022 }
7023
7024 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7025                                   struct igb_rx_buffer *bi)
7026 {
7027         struct page *page = bi->page;
7028         dma_addr_t dma;
7029
7030         /* since we are recycling buffers we should seldom need to alloc */
7031         if (likely(page))
7032                 return true;
7033
7034         /* alloc new page for storage */
7035         page = dev_alloc_page();
7036         if (unlikely(!page)) {
7037                 rx_ring->rx_stats.alloc_failed++;
7038                 return false;
7039         }
7040
7041         /* map page for use */
7042         dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7043
7044         /* if mapping failed free memory back to system since
7045          * there isn't much point in holding memory we can't use
7046          */
7047         if (dma_mapping_error(rx_ring->dev, dma)) {
7048                 __free_page(page);
7049
7050                 rx_ring->rx_stats.alloc_failed++;
7051                 return false;
7052         }
7053
7054         bi->dma = dma;
7055         bi->page = page;
7056         bi->page_offset = 0;
7057
7058         return true;
7059 }
7060
7061 /**
7062  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7063  *  @adapter: address of board private structure
7064  **/
7065 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7066 {
7067         union e1000_adv_rx_desc *rx_desc;
7068         struct igb_rx_buffer *bi;
7069         u16 i = rx_ring->next_to_use;
7070
7071         /* nothing to do */
7072         if (!cleaned_count)
7073                 return;
7074
7075         rx_desc = IGB_RX_DESC(rx_ring, i);
7076         bi = &rx_ring->rx_buffer_info[i];
7077         i -= rx_ring->count;
7078
7079         do {
7080                 if (!igb_alloc_mapped_page(rx_ring, bi))
7081                         break;
7082
7083                 /* Refresh the desc even if buffer_addrs didn't change
7084                  * because each write-back erases this info.
7085                  */
7086                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7087
7088                 rx_desc++;
7089                 bi++;
7090                 i++;
7091                 if (unlikely(!i)) {
7092                         rx_desc = IGB_RX_DESC(rx_ring, 0);
7093                         bi = rx_ring->rx_buffer_info;
7094                         i -= rx_ring->count;
7095                 }
7096
7097                 /* clear the status bits for the next_to_use descriptor */
7098                 rx_desc->wb.upper.status_error = 0;
7099
7100                 cleaned_count--;
7101         } while (cleaned_count);
7102
7103         i += rx_ring->count;
7104
7105         if (rx_ring->next_to_use != i) {
7106                 /* record the next descriptor to use */
7107                 rx_ring->next_to_use = i;
7108
7109                 /* update next to alloc since we have filled the ring */
7110                 rx_ring->next_to_alloc = i;
7111
7112                 /* Force memory writes to complete before letting h/w
7113                  * know there are new descriptors to fetch.  (Only
7114                  * applicable for weak-ordered memory model archs,
7115                  * such as IA-64).
7116                  */
7117                 wmb();
7118                 writel(i, rx_ring->tail);
7119         }
7120 }
7121
7122 /**
7123  * igb_mii_ioctl -
7124  * @netdev:
7125  * @ifreq:
7126  * @cmd:
7127  **/
7128 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7129 {
7130         struct igb_adapter *adapter = netdev_priv(netdev);
7131         struct mii_ioctl_data *data = if_mii(ifr);
7132
7133         if (adapter->hw.phy.media_type != e1000_media_type_copper)
7134                 return -EOPNOTSUPP;
7135
7136         switch (cmd) {
7137         case SIOCGMIIPHY:
7138                 data->phy_id = adapter->hw.phy.addr;
7139                 break;
7140         case SIOCGMIIREG:
7141                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7142                                      &data->val_out))
7143                         return -EIO;
7144                 break;
7145         case SIOCSMIIREG:
7146         default:
7147                 return -EOPNOTSUPP;
7148         }
7149         return 0;
7150 }
7151
7152 /**
7153  * igb_ioctl -
7154  * @netdev:
7155  * @ifreq:
7156  * @cmd:
7157  **/
7158 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7159 {
7160         switch (cmd) {
7161         case SIOCGMIIPHY:
7162         case SIOCGMIIREG:
7163         case SIOCSMIIREG:
7164                 return igb_mii_ioctl(netdev, ifr, cmd);
7165         case SIOCGHWTSTAMP:
7166                 return igb_ptp_get_ts_config(netdev, ifr);
7167         case SIOCSHWTSTAMP:
7168                 return igb_ptp_set_ts_config(netdev, ifr);
7169         default:
7170                 return -EOPNOTSUPP;
7171         }
7172 }
7173
7174 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7175 {
7176         struct igb_adapter *adapter = hw->back;
7177
7178         pci_read_config_word(adapter->pdev, reg, value);
7179 }
7180
7181 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7182 {
7183         struct igb_adapter *adapter = hw->back;
7184
7185         pci_write_config_word(adapter->pdev, reg, *value);
7186 }
7187
7188 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7189 {
7190         struct igb_adapter *adapter = hw->back;
7191
7192         if (pcie_capability_read_word(adapter->pdev, reg, value))
7193                 return -E1000_ERR_CONFIG;
7194
7195         return 0;
7196 }
7197
7198 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7199 {
7200         struct igb_adapter *adapter = hw->back;
7201
7202         if (pcie_capability_write_word(adapter->pdev, reg, *value))
7203                 return -E1000_ERR_CONFIG;
7204
7205         return 0;
7206 }
7207
7208 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7209 {
7210         struct igb_adapter *adapter = netdev_priv(netdev);
7211         struct e1000_hw *hw = &adapter->hw;
7212         u32 ctrl, rctl;
7213         bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7214
7215         if (enable) {
7216                 /* enable VLAN tag insert/strip */
7217                 ctrl = rd32(E1000_CTRL);
7218                 ctrl |= E1000_CTRL_VME;
7219                 wr32(E1000_CTRL, ctrl);
7220
7221                 /* Disable CFI check */
7222                 rctl = rd32(E1000_RCTL);
7223                 rctl &= ~E1000_RCTL_CFIEN;
7224                 wr32(E1000_RCTL, rctl);
7225         } else {
7226                 /* disable VLAN tag insert/strip */
7227                 ctrl = rd32(E1000_CTRL);
7228                 ctrl &= ~E1000_CTRL_VME;
7229                 wr32(E1000_CTRL, ctrl);
7230         }
7231
7232         igb_rlpml_set(adapter);
7233 }
7234
7235 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7236                                __be16 proto, u16 vid)
7237 {
7238         struct igb_adapter *adapter = netdev_priv(netdev);
7239         struct e1000_hw *hw = &adapter->hw;
7240         int pf_id = adapter->vfs_allocated_count;
7241
7242         /* attempt to add filter to vlvf array */
7243         igb_vlvf_set(adapter, vid, true, pf_id);
7244
7245         /* add the filter since PF can receive vlans w/o entry in vlvf */
7246         igb_vfta_set(hw, vid, true);
7247
7248         set_bit(vid, adapter->active_vlans);
7249
7250         return 0;
7251 }
7252
7253 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7254                                 __be16 proto, u16 vid)
7255 {
7256         struct igb_adapter *adapter = netdev_priv(netdev);
7257         struct e1000_hw *hw = &adapter->hw;
7258         int pf_id = adapter->vfs_allocated_count;
7259         s32 err;
7260
7261         /* remove vlan from VLVF table array */
7262         err = igb_vlvf_set(adapter, vid, false, pf_id);
7263
7264         /* if vid was not present in VLVF just remove it from table */
7265         if (err)
7266                 igb_vfta_set(hw, vid, false);
7267
7268         clear_bit(vid, adapter->active_vlans);
7269
7270         return 0;
7271 }
7272
7273 static void igb_restore_vlan(struct igb_adapter *adapter)
7274 {
7275         u16 vid;
7276
7277         igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7278
7279         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7280                 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7281 }
7282
7283 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7284 {
7285         struct pci_dev *pdev = adapter->pdev;
7286         struct e1000_mac_info *mac = &adapter->hw.mac;
7287
7288         mac->autoneg = 0;
7289
7290         /* Make sure dplx is at most 1 bit and lsb of speed is not set
7291          * for the switch() below to work
7292          */
7293         if ((spd & 1) || (dplx & ~1))
7294                 goto err_inval;
7295
7296         /* Fiber NIC's only allow 1000 gbps Full duplex
7297          * and 100Mbps Full duplex for 100baseFx sfp
7298          */
7299         if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7300                 switch (spd + dplx) {
7301                 case SPEED_10 + DUPLEX_HALF:
7302                 case SPEED_10 + DUPLEX_FULL:
7303                 case SPEED_100 + DUPLEX_HALF:
7304                         goto err_inval;
7305                 default:
7306                         break;
7307                 }
7308         }
7309
7310         switch (spd + dplx) {
7311         case SPEED_10 + DUPLEX_HALF:
7312                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7313                 break;
7314         case SPEED_10 + DUPLEX_FULL:
7315                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7316                 break;
7317         case SPEED_100 + DUPLEX_HALF:
7318                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7319                 break;
7320         case SPEED_100 + DUPLEX_FULL:
7321                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7322                 break;
7323         case SPEED_1000 + DUPLEX_FULL:
7324                 mac->autoneg = 1;
7325                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7326                 break;
7327         case SPEED_1000 + DUPLEX_HALF: /* not supported */
7328         default:
7329                 goto err_inval;
7330         }
7331
7332         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7333         adapter->hw.phy.mdix = AUTO_ALL_MODES;
7334
7335         return 0;
7336
7337 err_inval:
7338         dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7339         return -EINVAL;
7340 }
7341
7342 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7343                           bool runtime)
7344 {
7345         struct net_device *netdev = pci_get_drvdata(pdev);
7346         struct igb_adapter *adapter = netdev_priv(netdev);
7347         struct e1000_hw *hw = &adapter->hw;
7348         u32 ctrl, rctl, status;
7349         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7350 #ifdef CONFIG_PM
7351         int retval = 0;
7352 #endif
7353
7354         netif_device_detach(netdev);
7355
7356         if (netif_running(netdev))
7357                 __igb_close(netdev, true);
7358
7359         igb_clear_interrupt_scheme(adapter);
7360
7361 #ifdef CONFIG_PM
7362         retval = pci_save_state(pdev);
7363         if (retval)
7364                 return retval;
7365 #endif
7366
7367         status = rd32(E1000_STATUS);
7368         if (status & E1000_STATUS_LU)
7369                 wufc &= ~E1000_WUFC_LNKC;
7370
7371         if (wufc) {
7372                 igb_setup_rctl(adapter);
7373                 igb_set_rx_mode(netdev);
7374
7375                 /* turn on all-multi mode if wake on multicast is enabled */
7376                 if (wufc & E1000_WUFC_MC) {
7377                         rctl = rd32(E1000_RCTL);
7378                         rctl |= E1000_RCTL_MPE;
7379                         wr32(E1000_RCTL, rctl);
7380                 }
7381
7382                 ctrl = rd32(E1000_CTRL);
7383                 /* advertise wake from D3Cold */
7384                 #define E1000_CTRL_ADVD3WUC 0x00100000
7385                 /* phy power management enable */
7386                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7387                 ctrl |= E1000_CTRL_ADVD3WUC;
7388                 wr32(E1000_CTRL, ctrl);
7389
7390                 /* Allow time for pending master requests to run */
7391                 igb_disable_pcie_master(hw);
7392
7393                 wr32(E1000_WUC, E1000_WUC_PME_EN);
7394                 wr32(E1000_WUFC, wufc);
7395         } else {
7396                 wr32(E1000_WUC, 0);
7397                 wr32(E1000_WUFC, 0);
7398         }
7399
7400         *enable_wake = wufc || adapter->en_mng_pt;
7401         if (!*enable_wake)
7402                 igb_power_down_link(adapter);
7403         else
7404                 igb_power_up_link(adapter);
7405
7406         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7407          * would have already happened in close and is redundant.
7408          */
7409         igb_release_hw_control(adapter);
7410
7411         pci_disable_device(pdev);
7412
7413         return 0;
7414 }
7415
7416 #ifdef CONFIG_PM
7417 #ifdef CONFIG_PM_SLEEP
7418 static int igb_suspend(struct device *dev)
7419 {
7420         int retval;
7421         bool wake;
7422         struct pci_dev *pdev = to_pci_dev(dev);
7423
7424         retval = __igb_shutdown(pdev, &wake, 0);
7425         if (retval)
7426                 return retval;
7427
7428         if (wake) {
7429                 pci_prepare_to_sleep(pdev);
7430         } else {
7431                 pci_wake_from_d3(pdev, false);
7432                 pci_set_power_state(pdev, PCI_D3hot);
7433         }
7434
7435         return 0;
7436 }
7437 #endif /* CONFIG_PM_SLEEP */
7438
7439 static int igb_resume(struct device *dev)
7440 {
7441         struct pci_dev *pdev = to_pci_dev(dev);
7442         struct net_device *netdev = pci_get_drvdata(pdev);
7443         struct igb_adapter *adapter = netdev_priv(netdev);
7444         struct e1000_hw *hw = &adapter->hw;
7445         u32 err;
7446
7447         pci_set_power_state(pdev, PCI_D0);
7448         pci_restore_state(pdev);
7449         pci_save_state(pdev);
7450
7451         if (!pci_device_is_present(pdev))
7452                 return -ENODEV;
7453         err = pci_enable_device_mem(pdev);
7454         if (err) {
7455                 dev_err(&pdev->dev,
7456                         "igb: Cannot enable PCI device from suspend\n");
7457                 return err;
7458         }
7459         pci_set_master(pdev);
7460
7461         pci_enable_wake(pdev, PCI_D3hot, 0);
7462         pci_enable_wake(pdev, PCI_D3cold, 0);
7463
7464         if (igb_init_interrupt_scheme(adapter, true)) {
7465                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7466                 return -ENOMEM;
7467         }
7468
7469         igb_reset(adapter);
7470
7471         /* let the f/w know that the h/w is now under the control of the
7472          * driver.
7473          */
7474         igb_get_hw_control(adapter);
7475
7476         wr32(E1000_WUS, ~0);
7477
7478         if (netdev->flags & IFF_UP) {
7479                 rtnl_lock();
7480                 err = __igb_open(netdev, true);
7481                 rtnl_unlock();
7482                 if (err)
7483                         return err;
7484         }
7485
7486         netif_device_attach(netdev);
7487         return 0;
7488 }
7489
7490 static int igb_runtime_idle(struct device *dev)
7491 {
7492         struct pci_dev *pdev = to_pci_dev(dev);
7493         struct net_device *netdev = pci_get_drvdata(pdev);
7494         struct igb_adapter *adapter = netdev_priv(netdev);
7495
7496         if (!igb_has_link(adapter))
7497                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7498
7499         return -EBUSY;
7500 }
7501
7502 static int igb_runtime_suspend(struct device *dev)
7503 {
7504         struct pci_dev *pdev = to_pci_dev(dev);
7505         int retval;
7506         bool wake;
7507
7508         retval = __igb_shutdown(pdev, &wake, 1);
7509         if (retval)
7510                 return retval;
7511
7512         if (wake) {
7513                 pci_prepare_to_sleep(pdev);
7514         } else {
7515                 pci_wake_from_d3(pdev, false);
7516                 pci_set_power_state(pdev, PCI_D3hot);
7517         }
7518
7519         return 0;
7520 }
7521
7522 static int igb_runtime_resume(struct device *dev)
7523 {
7524         return igb_resume(dev);
7525 }
7526 #endif /* CONFIG_PM */
7527
7528 static void igb_shutdown(struct pci_dev *pdev)
7529 {
7530         bool wake;
7531
7532         __igb_shutdown(pdev, &wake, 0);
7533
7534         if (system_state == SYSTEM_POWER_OFF) {
7535                 pci_wake_from_d3(pdev, wake);
7536                 pci_set_power_state(pdev, PCI_D3hot);
7537         }
7538 }
7539
7540 #ifdef CONFIG_PCI_IOV
7541 static int igb_sriov_reinit(struct pci_dev *dev)
7542 {
7543         struct net_device *netdev = pci_get_drvdata(dev);
7544         struct igb_adapter *adapter = netdev_priv(netdev);
7545         struct pci_dev *pdev = adapter->pdev;
7546
7547         rtnl_lock();
7548
7549         if (netif_running(netdev))
7550                 igb_close(netdev);
7551         else
7552                 igb_reset(adapter);
7553
7554         igb_clear_interrupt_scheme(adapter);
7555
7556         igb_init_queue_configuration(adapter);
7557
7558         if (igb_init_interrupt_scheme(adapter, true)) {
7559                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7560                 return -ENOMEM;
7561         }
7562
7563         if (netif_running(netdev))
7564                 igb_open(netdev);
7565
7566         rtnl_unlock();
7567
7568         return 0;
7569 }
7570
7571 static int igb_pci_disable_sriov(struct pci_dev *dev)
7572 {
7573         int err = igb_disable_sriov(dev);
7574
7575         if (!err)
7576                 err = igb_sriov_reinit(dev);
7577
7578         return err;
7579 }
7580
7581 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7582 {
7583         int err = igb_enable_sriov(dev, num_vfs);
7584
7585         if (err)
7586                 goto out;
7587
7588         err = igb_sriov_reinit(dev);
7589         if (!err)
7590                 return num_vfs;
7591
7592 out:
7593         return err;
7594 }
7595
7596 #endif
7597 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7598 {
7599 #ifdef CONFIG_PCI_IOV
7600         if (num_vfs == 0)
7601                 return igb_pci_disable_sriov(dev);
7602         else
7603                 return igb_pci_enable_sriov(dev, num_vfs);
7604 #endif
7605         return 0;
7606 }
7607
7608 #ifdef CONFIG_NET_POLL_CONTROLLER
7609 /* Polling 'interrupt' - used by things like netconsole to send skbs
7610  * without having to re-enable interrupts. It's not called while
7611  * the interrupt routine is executing.
7612  */
7613 static void igb_netpoll(struct net_device *netdev)
7614 {
7615         struct igb_adapter *adapter = netdev_priv(netdev);
7616         struct e1000_hw *hw = &adapter->hw;
7617         struct igb_q_vector *q_vector;
7618         int i;
7619
7620         for (i = 0; i < adapter->num_q_vectors; i++) {
7621                 q_vector = adapter->q_vector[i];
7622                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7623                         wr32(E1000_EIMC, q_vector->eims_value);
7624                 else
7625                         igb_irq_disable(adapter);
7626                 napi_schedule(&q_vector->napi);
7627         }
7628 }
7629 #endif /* CONFIG_NET_POLL_CONTROLLER */
7630
7631 /**
7632  *  igb_io_error_detected - called when PCI error is detected
7633  *  @pdev: Pointer to PCI device
7634  *  @state: The current pci connection state
7635  *
7636  *  This function is called after a PCI bus error affecting
7637  *  this device has been detected.
7638  **/
7639 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7640                                               pci_channel_state_t state)
7641 {
7642         struct net_device *netdev = pci_get_drvdata(pdev);
7643         struct igb_adapter *adapter = netdev_priv(netdev);
7644
7645         netif_device_detach(netdev);
7646
7647         if (state == pci_channel_io_perm_failure)
7648                 return PCI_ERS_RESULT_DISCONNECT;
7649
7650         if (netif_running(netdev))
7651                 igb_down(adapter);
7652         pci_disable_device(pdev);
7653
7654         /* Request a slot slot reset. */
7655         return PCI_ERS_RESULT_NEED_RESET;
7656 }
7657
7658 /**
7659  *  igb_io_slot_reset - called after the pci bus has been reset.
7660  *  @pdev: Pointer to PCI device
7661  *
7662  *  Restart the card from scratch, as if from a cold-boot. Implementation
7663  *  resembles the first-half of the igb_resume routine.
7664  **/
7665 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7666 {
7667         struct net_device *netdev = pci_get_drvdata(pdev);
7668         struct igb_adapter *adapter = netdev_priv(netdev);
7669         struct e1000_hw *hw = &adapter->hw;
7670         pci_ers_result_t result;
7671         int err;
7672
7673         if (pci_enable_device_mem(pdev)) {
7674                 dev_err(&pdev->dev,
7675                         "Cannot re-enable PCI device after reset.\n");
7676                 result = PCI_ERS_RESULT_DISCONNECT;
7677         } else {
7678                 pci_set_master(pdev);
7679                 pci_restore_state(pdev);
7680                 pci_save_state(pdev);
7681
7682                 pci_enable_wake(pdev, PCI_D3hot, 0);
7683                 pci_enable_wake(pdev, PCI_D3cold, 0);
7684
7685                 igb_reset(adapter);
7686                 wr32(E1000_WUS, ~0);
7687                 result = PCI_ERS_RESULT_RECOVERED;
7688         }
7689
7690         err = pci_cleanup_aer_uncorrect_error_status(pdev);
7691         if (err) {
7692                 dev_err(&pdev->dev,
7693                         "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7694                         err);
7695                 /* non-fatal, continue */
7696         }
7697
7698         return result;
7699 }
7700
7701 /**
7702  *  igb_io_resume - called when traffic can start flowing again.
7703  *  @pdev: Pointer to PCI device
7704  *
7705  *  This callback is called when the error recovery driver tells us that
7706  *  its OK to resume normal operation. Implementation resembles the
7707  *  second-half of the igb_resume routine.
7708  */
7709 static void igb_io_resume(struct pci_dev *pdev)
7710 {
7711         struct net_device *netdev = pci_get_drvdata(pdev);
7712         struct igb_adapter *adapter = netdev_priv(netdev);
7713
7714         if (netif_running(netdev)) {
7715                 if (igb_up(adapter)) {
7716                         dev_err(&pdev->dev, "igb_up failed after reset\n");
7717                         return;
7718                 }
7719         }
7720
7721         netif_device_attach(netdev);
7722
7723         /* let the f/w know that the h/w is now under the control of the
7724          * driver.
7725          */
7726         igb_get_hw_control(adapter);
7727 }
7728
7729 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7730                              u8 qsel)
7731 {
7732         u32 rar_low, rar_high;
7733         struct e1000_hw *hw = &adapter->hw;
7734
7735         /* HW expects these in little endian so we reverse the byte order
7736          * from network order (big endian) to little endian
7737          */
7738         rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7739                    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7740         rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7741
7742         /* Indicate to hardware the Address is Valid. */
7743         rar_high |= E1000_RAH_AV;
7744
7745         if (hw->mac.type == e1000_82575)
7746                 rar_high |= E1000_RAH_POOL_1 * qsel;
7747         else
7748                 rar_high |= E1000_RAH_POOL_1 << qsel;
7749
7750         wr32(E1000_RAL(index), rar_low);
7751         wrfl();
7752         wr32(E1000_RAH(index), rar_high);
7753         wrfl();
7754 }
7755
7756 static int igb_set_vf_mac(struct igb_adapter *adapter,
7757                           int vf, unsigned char *mac_addr)
7758 {
7759         struct e1000_hw *hw = &adapter->hw;
7760         /* VF MAC addresses start at end of receive addresses and moves
7761          * towards the first, as a result a collision should not be possible
7762          */
7763         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7764
7765         memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7766
7767         igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7768
7769         return 0;
7770 }
7771
7772 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7773 {
7774         struct igb_adapter *adapter = netdev_priv(netdev);
7775         if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7776                 return -EINVAL;
7777         adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7778         dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7779         dev_info(&adapter->pdev->dev,
7780                  "Reload the VF driver to make this change effective.");
7781         if (test_bit(__IGB_DOWN, &adapter->state)) {
7782                 dev_warn(&adapter->pdev->dev,
7783                          "The VF MAC address has been set, but the PF device is not up.\n");
7784                 dev_warn(&adapter->pdev->dev,
7785                          "Bring the PF device up before attempting to use the VF device.\n");
7786         }
7787         return igb_set_vf_mac(adapter, vf, mac);
7788 }
7789
7790 static int igb_link_mbps(int internal_link_speed)
7791 {
7792         switch (internal_link_speed) {
7793         case SPEED_100:
7794                 return 100;
7795         case SPEED_1000:
7796                 return 1000;
7797         default:
7798                 return 0;
7799         }
7800 }
7801
7802 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7803                                   int link_speed)
7804 {
7805         int rf_dec, rf_int;
7806         u32 bcnrc_val;
7807
7808         if (tx_rate != 0) {
7809                 /* Calculate the rate factor values to set */
7810                 rf_int = link_speed / tx_rate;
7811                 rf_dec = (link_speed - (rf_int * tx_rate));
7812                 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7813                          tx_rate;
7814
7815                 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7816                 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7817                               E1000_RTTBCNRC_RF_INT_MASK);
7818                 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7819         } else {
7820                 bcnrc_val = 0;
7821         }
7822
7823         wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7824         /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7825          * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7826          */
7827         wr32(E1000_RTTBCNRM, 0x14);
7828         wr32(E1000_RTTBCNRC, bcnrc_val);
7829 }
7830
7831 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7832 {
7833         int actual_link_speed, i;
7834         bool reset_rate = false;
7835
7836         /* VF TX rate limit was not set or not supported */
7837         if ((adapter->vf_rate_link_speed == 0) ||
7838             (adapter->hw.mac.type != e1000_82576))
7839                 return;
7840
7841         actual_link_speed = igb_link_mbps(adapter->link_speed);
7842         if (actual_link_speed != adapter->vf_rate_link_speed) {
7843                 reset_rate = true;
7844                 adapter->vf_rate_link_speed = 0;
7845                 dev_info(&adapter->pdev->dev,
7846                          "Link speed has been changed. VF Transmit rate is disabled\n");
7847         }
7848
7849         for (i = 0; i < adapter->vfs_allocated_count; i++) {
7850                 if (reset_rate)
7851                         adapter->vf_data[i].tx_rate = 0;
7852
7853                 igb_set_vf_rate_limit(&adapter->hw, i,
7854                                       adapter->vf_data[i].tx_rate,
7855                                       actual_link_speed);
7856         }
7857 }
7858
7859 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
7860                              int min_tx_rate, int max_tx_rate)
7861 {
7862         struct igb_adapter *adapter = netdev_priv(netdev);
7863         struct e1000_hw *hw = &adapter->hw;
7864         int actual_link_speed;
7865
7866         if (hw->mac.type != e1000_82576)
7867                 return -EOPNOTSUPP;
7868
7869         if (min_tx_rate)
7870                 return -EINVAL;
7871
7872         actual_link_speed = igb_link_mbps(adapter->link_speed);
7873         if ((vf >= adapter->vfs_allocated_count) ||
7874             (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7875             (max_tx_rate < 0) ||
7876             (max_tx_rate > actual_link_speed))
7877                 return -EINVAL;
7878
7879         adapter->vf_rate_link_speed = actual_link_speed;
7880         adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
7881         igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
7882
7883         return 0;
7884 }
7885
7886 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7887                                    bool setting)
7888 {
7889         struct igb_adapter *adapter = netdev_priv(netdev);
7890         struct e1000_hw *hw = &adapter->hw;
7891         u32 reg_val, reg_offset;
7892
7893         if (!adapter->vfs_allocated_count)
7894                 return -EOPNOTSUPP;
7895
7896         if (vf >= adapter->vfs_allocated_count)
7897                 return -EINVAL;
7898
7899         reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7900         reg_val = rd32(reg_offset);
7901         if (setting)
7902                 reg_val |= ((1 << vf) |
7903                             (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7904         else
7905                 reg_val &= ~((1 << vf) |
7906                              (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7907         wr32(reg_offset, reg_val);
7908
7909         adapter->vf_data[vf].spoofchk_enabled = setting;
7910         return 0;
7911 }
7912
7913 static int igb_ndo_get_vf_config(struct net_device *netdev,
7914                                  int vf, struct ifla_vf_info *ivi)
7915 {
7916         struct igb_adapter *adapter = netdev_priv(netdev);
7917         if (vf >= adapter->vfs_allocated_count)
7918                 return -EINVAL;
7919         ivi->vf = vf;
7920         memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7921         ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
7922         ivi->min_tx_rate = 0;
7923         ivi->vlan = adapter->vf_data[vf].pf_vlan;
7924         ivi->qos = adapter->vf_data[vf].pf_qos;
7925         ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7926         return 0;
7927 }
7928
7929 static void igb_vmm_control(struct igb_adapter *adapter)
7930 {
7931         struct e1000_hw *hw = &adapter->hw;
7932         u32 reg;
7933
7934         switch (hw->mac.type) {
7935         case e1000_82575:
7936         case e1000_i210:
7937         case e1000_i211:
7938         case e1000_i354:
7939         default:
7940                 /* replication is not supported for 82575 */
7941                 return;
7942         case e1000_82576:
7943                 /* notify HW that the MAC is adding vlan tags */
7944                 reg = rd32(E1000_DTXCTL);
7945                 reg |= E1000_DTXCTL_VLAN_ADDED;
7946                 wr32(E1000_DTXCTL, reg);
7947                 /* Fall through */
7948         case e1000_82580:
7949                 /* enable replication vlan tag stripping */
7950                 reg = rd32(E1000_RPLOLR);
7951                 reg |= E1000_RPLOLR_STRVLAN;
7952                 wr32(E1000_RPLOLR, reg);
7953                 /* Fall through */
7954         case e1000_i350:
7955                 /* none of the above registers are supported by i350 */
7956                 break;
7957         }
7958
7959         if (adapter->vfs_allocated_count) {
7960                 igb_vmdq_set_loopback_pf(hw, true);
7961                 igb_vmdq_set_replication_pf(hw, true);
7962                 igb_vmdq_set_anti_spoofing_pf(hw, true,
7963                                               adapter->vfs_allocated_count);
7964         } else {
7965                 igb_vmdq_set_loopback_pf(hw, false);
7966                 igb_vmdq_set_replication_pf(hw, false);
7967         }
7968 }
7969
7970 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7971 {
7972         struct e1000_hw *hw = &adapter->hw;
7973         u32 dmac_thr;
7974         u16 hwm;
7975
7976         if (hw->mac.type > e1000_82580) {
7977                 if (adapter->flags & IGB_FLAG_DMAC) {
7978                         u32 reg;
7979
7980                         /* force threshold to 0. */
7981                         wr32(E1000_DMCTXTH, 0);
7982
7983                         /* DMA Coalescing high water mark needs to be greater
7984                          * than the Rx threshold. Set hwm to PBA - max frame
7985                          * size in 16B units, capping it at PBA - 6KB.
7986                          */
7987                         hwm = 64 * pba - adapter->max_frame_size / 16;
7988                         if (hwm < 64 * (pba - 6))
7989                                 hwm = 64 * (pba - 6);
7990                         reg = rd32(E1000_FCRTC);
7991                         reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7992                         reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7993                                 & E1000_FCRTC_RTH_COAL_MASK);
7994                         wr32(E1000_FCRTC, reg);
7995
7996                         /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7997                          * frame size, capping it at PBA - 10KB.
7998                          */
7999                         dmac_thr = pba - adapter->max_frame_size / 512;
8000                         if (dmac_thr < pba - 10)
8001                                 dmac_thr = pba - 10;
8002                         reg = rd32(E1000_DMACR);
8003                         reg &= ~E1000_DMACR_DMACTHR_MASK;
8004                         reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8005                                 & E1000_DMACR_DMACTHR_MASK);
8006
8007                         /* transition to L0x or L1 if available..*/
8008                         reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8009
8010                         /* watchdog timer= +-1000 usec in 32usec intervals */
8011                         reg |= (1000 >> 5);
8012
8013                         /* Disable BMC-to-OS Watchdog Enable */
8014                         if (hw->mac.type != e1000_i354)
8015                                 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8016
8017                         wr32(E1000_DMACR, reg);
8018
8019                         /* no lower threshold to disable
8020                          * coalescing(smart fifb)-UTRESH=0
8021                          */
8022                         wr32(E1000_DMCRTRH, 0);
8023
8024                         reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8025
8026                         wr32(E1000_DMCTLX, reg);
8027
8028                         /* free space in tx packet buffer to wake from
8029                          * DMA coal
8030                          */
8031                         wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8032                              (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8033
8034                         /* make low power state decision controlled
8035                          * by DMA coal
8036                          */
8037                         reg = rd32(E1000_PCIEMISC);
8038                         reg &= ~E1000_PCIEMISC_LX_DECISION;
8039                         wr32(E1000_PCIEMISC, reg);
8040                 } /* endif adapter->dmac is not disabled */
8041         } else if (hw->mac.type == e1000_82580) {
8042                 u32 reg = rd32(E1000_PCIEMISC);
8043
8044                 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8045                 wr32(E1000_DMACR, 0);
8046         }
8047 }
8048
8049 /**
8050  *  igb_read_i2c_byte - Reads 8 bit word over I2C
8051  *  @hw: pointer to hardware structure
8052  *  @byte_offset: byte offset to read
8053  *  @dev_addr: device address
8054  *  @data: value read
8055  *
8056  *  Performs byte read operation over I2C interface at
8057  *  a specified device address.
8058  **/
8059 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8060                       u8 dev_addr, u8 *data)
8061 {
8062         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8063         struct i2c_client *this_client = adapter->i2c_client;
8064         s32 status;
8065         u16 swfw_mask = 0;
8066
8067         if (!this_client)
8068                 return E1000_ERR_I2C;
8069
8070         swfw_mask = E1000_SWFW_PHY0_SM;
8071
8072         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8073                 return E1000_ERR_SWFW_SYNC;
8074
8075         status = i2c_smbus_read_byte_data(this_client, byte_offset);
8076         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8077
8078         if (status < 0)
8079                 return E1000_ERR_I2C;
8080         else {
8081                 *data = status;
8082                 return 0;
8083         }
8084 }
8085
8086 /**
8087  *  igb_write_i2c_byte - Writes 8 bit word over I2C
8088  *  @hw: pointer to hardware structure
8089  *  @byte_offset: byte offset to write
8090  *  @dev_addr: device address
8091  *  @data: value to write
8092  *
8093  *  Performs byte write operation over I2C interface at
8094  *  a specified device address.
8095  **/
8096 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8097                        u8 dev_addr, u8 data)
8098 {
8099         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8100         struct i2c_client *this_client = adapter->i2c_client;
8101         s32 status;
8102         u16 swfw_mask = E1000_SWFW_PHY0_SM;
8103
8104         if (!this_client)
8105                 return E1000_ERR_I2C;
8106
8107         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8108                 return E1000_ERR_SWFW_SYNC;
8109         status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8110         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8111
8112         if (status)
8113                 return E1000_ERR_I2C;
8114         else
8115                 return 0;
8116
8117 }
8118
8119 int igb_reinit_queues(struct igb_adapter *adapter)
8120 {
8121         struct net_device *netdev = adapter->netdev;
8122         struct pci_dev *pdev = adapter->pdev;
8123         int err = 0;
8124
8125         if (netif_running(netdev))
8126                 igb_close(netdev);
8127
8128         igb_reset_interrupt_capability(adapter);
8129
8130         if (igb_init_interrupt_scheme(adapter, true)) {
8131                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8132                 return -ENOMEM;
8133         }
8134
8135         if (netif_running(netdev))
8136                 err = igb_open(netdev);
8137
8138         return err;
8139 }
8140 /* igb_main.c */