Upgrade to 4.4.50-rt62
[kvmfornfv.git] / kernel / drivers / net / ethernet / intel / igb / e1000_82575.c
1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23
24 /* e1000_82575
25  * e1000_82576
26  */
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/types.h>
31 #include <linux/if_ether.h>
32 #include <linux/i2c.h>
33
34 #include "e1000_mac.h"
35 #include "e1000_82575.h"
36 #include "e1000_i210.h"
37
38 static s32  igb_get_invariants_82575(struct e1000_hw *);
39 static s32  igb_acquire_phy_82575(struct e1000_hw *);
40 static void igb_release_phy_82575(struct e1000_hw *);
41 static s32  igb_acquire_nvm_82575(struct e1000_hw *);
42 static void igb_release_nvm_82575(struct e1000_hw *);
43 static s32  igb_check_for_link_82575(struct e1000_hw *);
44 static s32  igb_get_cfg_done_82575(struct e1000_hw *);
45 static s32  igb_init_hw_82575(struct e1000_hw *);
46 static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
47 static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
48 static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
49 static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
50 static s32  igb_reset_hw_82575(struct e1000_hw *);
51 static s32  igb_reset_hw_82580(struct e1000_hw *);
52 static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
53 static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
54 static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
55 static s32  igb_setup_copper_link_82575(struct e1000_hw *);
56 static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
57 static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
58 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
59 static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
60 static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
61                                                  u16 *);
62 static s32  igb_get_phy_id_82575(struct e1000_hw *);
63 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
64 static bool igb_sgmii_active_82575(struct e1000_hw *);
65 static s32  igb_reset_init_script_82575(struct e1000_hw *);
66 static s32  igb_read_mac_addr_82575(struct e1000_hw *);
67 static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
68 static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
69 static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
70 static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
71 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
72 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
73 static const u16 e1000_82580_rxpbs_table[] = {
74         36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
75
76 /**
77  *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
78  *  @hw: pointer to the HW structure
79  *
80  *  Called to determine if the I2C pins are being used for I2C or as an
81  *  external MDIO interface since the two options are mutually exclusive.
82  **/
83 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
84 {
85         u32 reg = 0;
86         bool ext_mdio = false;
87
88         switch (hw->mac.type) {
89         case e1000_82575:
90         case e1000_82576:
91                 reg = rd32(E1000_MDIC);
92                 ext_mdio = !!(reg & E1000_MDIC_DEST);
93                 break;
94         case e1000_82580:
95         case e1000_i350:
96         case e1000_i354:
97         case e1000_i210:
98         case e1000_i211:
99                 reg = rd32(E1000_MDICNFG);
100                 ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
101                 break;
102         default:
103                 break;
104         }
105         return ext_mdio;
106 }
107
108 /**
109  *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
110  *  @hw: pointer to the HW structure
111  *
112  *  Poll the M88E1112 interfaces to see which interface achieved link.
113  */
114 static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
115 {
116         struct e1000_phy_info *phy = &hw->phy;
117         s32 ret_val;
118         u16 data;
119         u8 port = 0;
120
121         /* Check the copper medium. */
122         ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
123         if (ret_val)
124                 return ret_val;
125
126         ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
127         if (ret_val)
128                 return ret_val;
129
130         if (data & E1000_M88E1112_STATUS_LINK)
131                 port = E1000_MEDIA_PORT_COPPER;
132
133         /* Check the other medium. */
134         ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
135         if (ret_val)
136                 return ret_val;
137
138         ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
139         if (ret_val)
140                 return ret_val;
141
142
143         if (data & E1000_M88E1112_STATUS_LINK)
144                 port = E1000_MEDIA_PORT_OTHER;
145
146         /* Determine if a swap needs to happen. */
147         if (port && (hw->dev_spec._82575.media_port != port)) {
148                 hw->dev_spec._82575.media_port = port;
149                 hw->dev_spec._82575.media_changed = true;
150         }
151
152         if (port == E1000_MEDIA_PORT_COPPER) {
153                 /* reset page to 0 */
154                 ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
155                 if (ret_val)
156                         return ret_val;
157                 igb_check_for_link_82575(hw);
158         } else {
159                 igb_check_for_link_82575(hw);
160                 /* reset page to 0 */
161                 ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
162                 if (ret_val)
163                         return ret_val;
164         }
165
166         return 0;
167 }
168
169 /**
170  *  igb_init_phy_params_82575 - Init PHY func ptrs.
171  *  @hw: pointer to the HW structure
172  **/
173 static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
174 {
175         struct e1000_phy_info *phy = &hw->phy;
176         s32 ret_val = 0;
177         u32 ctrl_ext;
178
179         if (hw->phy.media_type != e1000_media_type_copper) {
180                 phy->type = e1000_phy_none;
181                 goto out;
182         }
183
184         phy->autoneg_mask       = AUTONEG_ADVERTISE_SPEED_DEFAULT;
185         phy->reset_delay_us     = 100;
186
187         ctrl_ext = rd32(E1000_CTRL_EXT);
188
189         if (igb_sgmii_active_82575(hw)) {
190                 phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
191                 ctrl_ext |= E1000_CTRL_I2C_ENA;
192         } else {
193                 phy->ops.reset = igb_phy_hw_reset;
194                 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
195         }
196
197         wr32(E1000_CTRL_EXT, ctrl_ext);
198         igb_reset_mdicnfg_82580(hw);
199
200         if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
201                 phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
202                 phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
203         } else {
204                 switch (hw->mac.type) {
205                 case e1000_82580:
206                 case e1000_i350:
207                 case e1000_i354:
208                         phy->ops.read_reg = igb_read_phy_reg_82580;
209                         phy->ops.write_reg = igb_write_phy_reg_82580;
210                         break;
211                 case e1000_i210:
212                 case e1000_i211:
213                         phy->ops.read_reg = igb_read_phy_reg_gs40g;
214                         phy->ops.write_reg = igb_write_phy_reg_gs40g;
215                         break;
216                 default:
217                         phy->ops.read_reg = igb_read_phy_reg_igp;
218                         phy->ops.write_reg = igb_write_phy_reg_igp;
219                 }
220         }
221
222         /* set lan id */
223         hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
224                         E1000_STATUS_FUNC_SHIFT;
225
226         /* Set phy->phy_addr and phy->id. */
227         ret_val = igb_get_phy_id_82575(hw);
228         if (ret_val)
229                 return ret_val;
230
231         /* Verify phy id and set remaining function pointers */
232         switch (phy->id) {
233         case M88E1543_E_PHY_ID:
234         case M88E1512_E_PHY_ID:
235         case I347AT4_E_PHY_ID:
236         case M88E1112_E_PHY_ID:
237         case M88E1111_I_PHY_ID:
238                 phy->type               = e1000_phy_m88;
239                 phy->ops.check_polarity = igb_check_polarity_m88;
240                 phy->ops.get_phy_info   = igb_get_phy_info_m88;
241                 if (phy->id != M88E1111_I_PHY_ID)
242                         phy->ops.get_cable_length =
243                                          igb_get_cable_length_m88_gen2;
244                 else
245                         phy->ops.get_cable_length = igb_get_cable_length_m88;
246                 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
247                 /* Check if this PHY is configured for media swap. */
248                 if (phy->id == M88E1112_E_PHY_ID) {
249                         u16 data;
250
251                         ret_val = phy->ops.write_reg(hw,
252                                                      E1000_M88E1112_PAGE_ADDR,
253                                                      2);
254                         if (ret_val)
255                                 goto out;
256
257                         ret_val = phy->ops.read_reg(hw,
258                                                     E1000_M88E1112_MAC_CTRL_1,
259                                                     &data);
260                         if (ret_val)
261                                 goto out;
262
263                         data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
264                                E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
265                         if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
266                             data == E1000_M88E1112_AUTO_COPPER_BASEX)
267                                 hw->mac.ops.check_for_link =
268                                                 igb_check_for_link_media_swap;
269                 }
270                 if (phy->id == M88E1512_E_PHY_ID) {
271                         ret_val = igb_initialize_M88E1512_phy(hw);
272                         if (ret_val)
273                                 goto out;
274                 }
275                 break;
276         case IGP03E1000_E_PHY_ID:
277                 phy->type = e1000_phy_igp_3;
278                 phy->ops.get_phy_info = igb_get_phy_info_igp;
279                 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
280                 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
281                 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
282                 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
283                 break;
284         case I82580_I_PHY_ID:
285         case I350_I_PHY_ID:
286                 phy->type = e1000_phy_82580;
287                 phy->ops.force_speed_duplex =
288                                          igb_phy_force_speed_duplex_82580;
289                 phy->ops.get_cable_length = igb_get_cable_length_82580;
290                 phy->ops.get_phy_info = igb_get_phy_info_82580;
291                 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
292                 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
293                 break;
294         case I210_I_PHY_ID:
295                 phy->type               = e1000_phy_i210;
296                 phy->ops.check_polarity = igb_check_polarity_m88;
297                 phy->ops.get_cfg_done   = igb_get_cfg_done_i210;
298                 phy->ops.get_phy_info   = igb_get_phy_info_m88;
299                 phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
300                 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
301                 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
302                 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
303                 break;
304         default:
305                 ret_val = -E1000_ERR_PHY;
306                 goto out;
307         }
308
309 out:
310         return ret_val;
311 }
312
313 /**
314  *  igb_init_nvm_params_82575 - Init NVM func ptrs.
315  *  @hw: pointer to the HW structure
316  **/
317 static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
318 {
319         struct e1000_nvm_info *nvm = &hw->nvm;
320         u32 eecd = rd32(E1000_EECD);
321         u16 size;
322
323         size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
324                      E1000_EECD_SIZE_EX_SHIFT);
325
326         /* Added to a constant, "size" becomes the left-shift value
327          * for setting word_size.
328          */
329         size += NVM_WORD_SIZE_BASE_SHIFT;
330
331         /* Just in case size is out of range, cap it to the largest
332          * EEPROM size supported
333          */
334         if (size > 15)
335                 size = 15;
336
337         nvm->word_size = 1 << size;
338         nvm->opcode_bits = 8;
339         nvm->delay_usec = 1;
340
341         switch (nvm->override) {
342         case e1000_nvm_override_spi_large:
343                 nvm->page_size = 32;
344                 nvm->address_bits = 16;
345                 break;
346         case e1000_nvm_override_spi_small:
347                 nvm->page_size = 8;
348                 nvm->address_bits = 8;
349                 break;
350         default:
351                 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
352                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
353                                     16 : 8;
354                 break;
355         }
356         if (nvm->word_size == (1 << 15))
357                 nvm->page_size = 128;
358
359         nvm->type = e1000_nvm_eeprom_spi;
360
361         /* NVM Function Pointers */
362         nvm->ops.acquire = igb_acquire_nvm_82575;
363         nvm->ops.release = igb_release_nvm_82575;
364         nvm->ops.write = igb_write_nvm_spi;
365         nvm->ops.validate = igb_validate_nvm_checksum;
366         nvm->ops.update = igb_update_nvm_checksum;
367         if (nvm->word_size < (1 << 15))
368                 nvm->ops.read = igb_read_nvm_eerd;
369         else
370                 nvm->ops.read = igb_read_nvm_spi;
371
372         /* override generic family function pointers for specific descendants */
373         switch (hw->mac.type) {
374         case e1000_82580:
375                 nvm->ops.validate = igb_validate_nvm_checksum_82580;
376                 nvm->ops.update = igb_update_nvm_checksum_82580;
377                 break;
378         case e1000_i354:
379         case e1000_i350:
380                 nvm->ops.validate = igb_validate_nvm_checksum_i350;
381                 nvm->ops.update = igb_update_nvm_checksum_i350;
382                 break;
383         default:
384                 break;
385         }
386
387         return 0;
388 }
389
390 /**
391  *  igb_init_mac_params_82575 - Init MAC func ptrs.
392  *  @hw: pointer to the HW structure
393  **/
394 static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
395 {
396         struct e1000_mac_info *mac = &hw->mac;
397         struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
398
399         /* Set mta register count */
400         mac->mta_reg_count = 128;
401         /* Set rar entry count */
402         switch (mac->type) {
403         case e1000_82576:
404                 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
405                 break;
406         case e1000_82580:
407                 mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
408                 break;
409         case e1000_i350:
410         case e1000_i354:
411                 mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
412                 break;
413         default:
414                 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
415                 break;
416         }
417         /* reset */
418         if (mac->type >= e1000_82580)
419                 mac->ops.reset_hw = igb_reset_hw_82580;
420         else
421                 mac->ops.reset_hw = igb_reset_hw_82575;
422
423         if (mac->type >= e1000_i210) {
424                 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
425                 mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
426
427         } else {
428                 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
429                 mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
430         }
431
432         /* Set if part includes ASF firmware */
433         mac->asf_firmware_present = true;
434         /* Set if manageability features are enabled. */
435         mac->arc_subsystem_valid =
436                 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
437                         ? true : false;
438         /* enable EEE on i350 parts and later parts */
439         if (mac->type >= e1000_i350)
440                 dev_spec->eee_disable = false;
441         else
442                 dev_spec->eee_disable = true;
443         /* Allow a single clear of the SW semaphore on I210 and newer */
444         if (mac->type >= e1000_i210)
445                 dev_spec->clear_semaphore_once = true;
446         /* physical interface link setup */
447         mac->ops.setup_physical_interface =
448                 (hw->phy.media_type == e1000_media_type_copper)
449                         ? igb_setup_copper_link_82575
450                         : igb_setup_serdes_link_82575;
451
452         if (mac->type == e1000_82580) {
453                 switch (hw->device_id) {
454                 /* feature not supported on these id's */
455                 case E1000_DEV_ID_DH89XXCC_SGMII:
456                 case E1000_DEV_ID_DH89XXCC_SERDES:
457                 case E1000_DEV_ID_DH89XXCC_BACKPLANE:
458                 case E1000_DEV_ID_DH89XXCC_SFP:
459                         break;
460                 default:
461                         hw->dev_spec._82575.mas_capable = true;
462                         break;
463                 }
464         }
465         return 0;
466 }
467
468 /**
469  *  igb_set_sfp_media_type_82575 - derives SFP module media type.
470  *  @hw: pointer to the HW structure
471  *
472  *  The media type is chosen based on SFP module.
473  *  compatibility flags retrieved from SFP ID EEPROM.
474  **/
475 static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
476 {
477         s32 ret_val = E1000_ERR_CONFIG;
478         u32 ctrl_ext = 0;
479         struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
480         struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
481         u8 tranceiver_type = 0;
482         s32 timeout = 3;
483
484         /* Turn I2C interface ON and power on sfp cage */
485         ctrl_ext = rd32(E1000_CTRL_EXT);
486         ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
487         wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
488
489         wrfl();
490
491         /* Read SFP module data */
492         while (timeout) {
493                 ret_val = igb_read_sfp_data_byte(hw,
494                         E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
495                         &tranceiver_type);
496                 if (ret_val == 0)
497                         break;
498                 msleep(100);
499                 timeout--;
500         }
501         if (ret_val != 0)
502                 goto out;
503
504         ret_val = igb_read_sfp_data_byte(hw,
505                         E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
506                         (u8 *)eth_flags);
507         if (ret_val != 0)
508                 goto out;
509
510         /* Check if there is some SFP module plugged and powered */
511         if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
512             (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
513                 dev_spec->module_plugged = true;
514                 if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
515                         hw->phy.media_type = e1000_media_type_internal_serdes;
516                 } else if (eth_flags->e100_base_fx) {
517                         dev_spec->sgmii_active = true;
518                         hw->phy.media_type = e1000_media_type_internal_serdes;
519                 } else if (eth_flags->e1000_base_t) {
520                         dev_spec->sgmii_active = true;
521                         hw->phy.media_type = e1000_media_type_copper;
522                 } else {
523                         hw->phy.media_type = e1000_media_type_unknown;
524                         hw_dbg("PHY module has not been recognized\n");
525                         goto out;
526                 }
527         } else {
528                 hw->phy.media_type = e1000_media_type_unknown;
529         }
530         ret_val = 0;
531 out:
532         /* Restore I2C interface setting */
533         wr32(E1000_CTRL_EXT, ctrl_ext);
534         return ret_val;
535 }
536
537 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
538 {
539         struct e1000_mac_info *mac = &hw->mac;
540         struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
541         s32 ret_val;
542         u32 ctrl_ext = 0;
543         u32 link_mode = 0;
544
545         switch (hw->device_id) {
546         case E1000_DEV_ID_82575EB_COPPER:
547         case E1000_DEV_ID_82575EB_FIBER_SERDES:
548         case E1000_DEV_ID_82575GB_QUAD_COPPER:
549                 mac->type = e1000_82575;
550                 break;
551         case E1000_DEV_ID_82576:
552         case E1000_DEV_ID_82576_NS:
553         case E1000_DEV_ID_82576_NS_SERDES:
554         case E1000_DEV_ID_82576_FIBER:
555         case E1000_DEV_ID_82576_SERDES:
556         case E1000_DEV_ID_82576_QUAD_COPPER:
557         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
558         case E1000_DEV_ID_82576_SERDES_QUAD:
559                 mac->type = e1000_82576;
560                 break;
561         case E1000_DEV_ID_82580_COPPER:
562         case E1000_DEV_ID_82580_FIBER:
563         case E1000_DEV_ID_82580_QUAD_FIBER:
564         case E1000_DEV_ID_82580_SERDES:
565         case E1000_DEV_ID_82580_SGMII:
566         case E1000_DEV_ID_82580_COPPER_DUAL:
567         case E1000_DEV_ID_DH89XXCC_SGMII:
568         case E1000_DEV_ID_DH89XXCC_SERDES:
569         case E1000_DEV_ID_DH89XXCC_BACKPLANE:
570         case E1000_DEV_ID_DH89XXCC_SFP:
571                 mac->type = e1000_82580;
572                 break;
573         case E1000_DEV_ID_I350_COPPER:
574         case E1000_DEV_ID_I350_FIBER:
575         case E1000_DEV_ID_I350_SERDES:
576         case E1000_DEV_ID_I350_SGMII:
577                 mac->type = e1000_i350;
578                 break;
579         case E1000_DEV_ID_I210_COPPER:
580         case E1000_DEV_ID_I210_FIBER:
581         case E1000_DEV_ID_I210_SERDES:
582         case E1000_DEV_ID_I210_SGMII:
583         case E1000_DEV_ID_I210_COPPER_FLASHLESS:
584         case E1000_DEV_ID_I210_SERDES_FLASHLESS:
585                 mac->type = e1000_i210;
586                 break;
587         case E1000_DEV_ID_I211_COPPER:
588                 mac->type = e1000_i211;
589                 break;
590         case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
591         case E1000_DEV_ID_I354_SGMII:
592         case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
593                 mac->type = e1000_i354;
594                 break;
595         default:
596                 return -E1000_ERR_MAC_INIT;
597         }
598
599         /* Set media type */
600         /* The 82575 uses bits 22:23 for link mode. The mode can be changed
601          * based on the EEPROM. We cannot rely upon device ID. There
602          * is no distinguishable difference between fiber and internal
603          * SerDes mode on the 82575. There can be an external PHY attached
604          * on the SGMII interface. For this, we'll set sgmii_active to true.
605          */
606         hw->phy.media_type = e1000_media_type_copper;
607         dev_spec->sgmii_active = false;
608         dev_spec->module_plugged = false;
609
610         ctrl_ext = rd32(E1000_CTRL_EXT);
611
612         link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
613         switch (link_mode) {
614         case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
615                 hw->phy.media_type = e1000_media_type_internal_serdes;
616                 break;
617         case E1000_CTRL_EXT_LINK_MODE_SGMII:
618                 /* Get phy control interface type set (MDIO vs. I2C)*/
619                 if (igb_sgmii_uses_mdio_82575(hw)) {
620                         hw->phy.media_type = e1000_media_type_copper;
621                         dev_spec->sgmii_active = true;
622                         break;
623                 }
624                 /* fall through for I2C based SGMII */
625         case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
626                 /* read media type from SFP EEPROM */
627                 ret_val = igb_set_sfp_media_type_82575(hw);
628                 if ((ret_val != 0) ||
629                     (hw->phy.media_type == e1000_media_type_unknown)) {
630                         /* If media type was not identified then return media
631                          * type defined by the CTRL_EXT settings.
632                          */
633                         hw->phy.media_type = e1000_media_type_internal_serdes;
634
635                         if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
636                                 hw->phy.media_type = e1000_media_type_copper;
637                                 dev_spec->sgmii_active = true;
638                         }
639
640                         break;
641                 }
642
643                 /* do not change link mode for 100BaseFX */
644                 if (dev_spec->eth_flags.e100_base_fx)
645                         break;
646
647                 /* change current link mode setting */
648                 ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
649
650                 if (hw->phy.media_type == e1000_media_type_copper)
651                         ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
652                 else
653                         ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
654
655                 wr32(E1000_CTRL_EXT, ctrl_ext);
656
657                 break;
658         default:
659                 break;
660         }
661
662         /* mac initialization and operations */
663         ret_val = igb_init_mac_params_82575(hw);
664         if (ret_val)
665                 goto out;
666
667         /* NVM initialization */
668         ret_val = igb_init_nvm_params_82575(hw);
669         switch (hw->mac.type) {
670         case e1000_i210:
671         case e1000_i211:
672                 ret_val = igb_init_nvm_params_i210(hw);
673                 break;
674         default:
675                 break;
676         }
677
678         if (ret_val)
679                 goto out;
680
681         /* if part supports SR-IOV then initialize mailbox parameters */
682         switch (mac->type) {
683         case e1000_82576:
684         case e1000_i350:
685                 igb_init_mbx_params_pf(hw);
686                 break;
687         default:
688                 break;
689         }
690
691         /* setup PHY parameters */
692         ret_val = igb_init_phy_params_82575(hw);
693
694 out:
695         return ret_val;
696 }
697
698 /**
699  *  igb_acquire_phy_82575 - Acquire rights to access PHY
700  *  @hw: pointer to the HW structure
701  *
702  *  Acquire access rights to the correct PHY.  This is a
703  *  function pointer entry point called by the api module.
704  **/
705 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
706 {
707         u16 mask = E1000_SWFW_PHY0_SM;
708
709         if (hw->bus.func == E1000_FUNC_1)
710                 mask = E1000_SWFW_PHY1_SM;
711         else if (hw->bus.func == E1000_FUNC_2)
712                 mask = E1000_SWFW_PHY2_SM;
713         else if (hw->bus.func == E1000_FUNC_3)
714                 mask = E1000_SWFW_PHY3_SM;
715
716         return hw->mac.ops.acquire_swfw_sync(hw, mask);
717 }
718
719 /**
720  *  igb_release_phy_82575 - Release rights to access PHY
721  *  @hw: pointer to the HW structure
722  *
723  *  A wrapper to release access rights to the correct PHY.  This is a
724  *  function pointer entry point called by the api module.
725  **/
726 static void igb_release_phy_82575(struct e1000_hw *hw)
727 {
728         u16 mask = E1000_SWFW_PHY0_SM;
729
730         if (hw->bus.func == E1000_FUNC_1)
731                 mask = E1000_SWFW_PHY1_SM;
732         else if (hw->bus.func == E1000_FUNC_2)
733                 mask = E1000_SWFW_PHY2_SM;
734         else if (hw->bus.func == E1000_FUNC_3)
735                 mask = E1000_SWFW_PHY3_SM;
736
737         hw->mac.ops.release_swfw_sync(hw, mask);
738 }
739
740 /**
741  *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
742  *  @hw: pointer to the HW structure
743  *  @offset: register offset to be read
744  *  @data: pointer to the read data
745  *
746  *  Reads the PHY register at offset using the serial gigabit media independent
747  *  interface and stores the retrieved information in data.
748  **/
749 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
750                                           u16 *data)
751 {
752         s32 ret_val = -E1000_ERR_PARAM;
753
754         if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
755                 hw_dbg("PHY Address %u is out of range\n", offset);
756                 goto out;
757         }
758
759         ret_val = hw->phy.ops.acquire(hw);
760         if (ret_val)
761                 goto out;
762
763         ret_val = igb_read_phy_reg_i2c(hw, offset, data);
764
765         hw->phy.ops.release(hw);
766
767 out:
768         return ret_val;
769 }
770
771 /**
772  *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
773  *  @hw: pointer to the HW structure
774  *  @offset: register offset to write to
775  *  @data: data to write at register offset
776  *
777  *  Writes the data to PHY register at the offset using the serial gigabit
778  *  media independent interface.
779  **/
780 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
781                                            u16 data)
782 {
783         s32 ret_val = -E1000_ERR_PARAM;
784
785
786         if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
787                 hw_dbg("PHY Address %d is out of range\n", offset);
788                 goto out;
789         }
790
791         ret_val = hw->phy.ops.acquire(hw);
792         if (ret_val)
793                 goto out;
794
795         ret_val = igb_write_phy_reg_i2c(hw, offset, data);
796
797         hw->phy.ops.release(hw);
798
799 out:
800         return ret_val;
801 }
802
803 /**
804  *  igb_get_phy_id_82575 - Retrieve PHY addr and id
805  *  @hw: pointer to the HW structure
806  *
807  *  Retrieves the PHY address and ID for both PHY's which do and do not use
808  *  sgmi interface.
809  **/
810 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
811 {
812         struct e1000_phy_info *phy = &hw->phy;
813         s32  ret_val = 0;
814         u16 phy_id;
815         u32 ctrl_ext;
816         u32 mdic;
817
818         /* Extra read required for some PHY's on i354 */
819         if (hw->mac.type == e1000_i354)
820                 igb_get_phy_id(hw);
821
822         /* For SGMII PHYs, we try the list of possible addresses until
823          * we find one that works.  For non-SGMII PHYs
824          * (e.g. integrated copper PHYs), an address of 1 should
825          * work.  The result of this function should mean phy->phy_addr
826          * and phy->id are set correctly.
827          */
828         if (!(igb_sgmii_active_82575(hw))) {
829                 phy->addr = 1;
830                 ret_val = igb_get_phy_id(hw);
831                 goto out;
832         }
833
834         if (igb_sgmii_uses_mdio_82575(hw)) {
835                 switch (hw->mac.type) {
836                 case e1000_82575:
837                 case e1000_82576:
838                         mdic = rd32(E1000_MDIC);
839                         mdic &= E1000_MDIC_PHY_MASK;
840                         phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
841                         break;
842                 case e1000_82580:
843                 case e1000_i350:
844                 case e1000_i354:
845                 case e1000_i210:
846                 case e1000_i211:
847                         mdic = rd32(E1000_MDICNFG);
848                         mdic &= E1000_MDICNFG_PHY_MASK;
849                         phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
850                         break;
851                 default:
852                         ret_val = -E1000_ERR_PHY;
853                         goto out;
854                 }
855                 ret_val = igb_get_phy_id(hw);
856                 goto out;
857         }
858
859         /* Power on sgmii phy if it is disabled */
860         ctrl_ext = rd32(E1000_CTRL_EXT);
861         wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
862         wrfl();
863         msleep(300);
864
865         /* The address field in the I2CCMD register is 3 bits and 0 is invalid.
866          * Therefore, we need to test 1-7
867          */
868         for (phy->addr = 1; phy->addr < 8; phy->addr++) {
869                 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
870                 if (ret_val == 0) {
871                         hw_dbg("Vendor ID 0x%08X read at address %u\n",
872                                phy_id, phy->addr);
873                         /* At the time of this writing, The M88 part is
874                          * the only supported SGMII PHY product.
875                          */
876                         if (phy_id == M88_VENDOR)
877                                 break;
878                 } else {
879                         hw_dbg("PHY address %u was unreadable\n", phy->addr);
880                 }
881         }
882
883         /* A valid PHY type couldn't be found. */
884         if (phy->addr == 8) {
885                 phy->addr = 0;
886                 ret_val = -E1000_ERR_PHY;
887                 goto out;
888         } else {
889                 ret_val = igb_get_phy_id(hw);
890         }
891
892         /* restore previous sfp cage power state */
893         wr32(E1000_CTRL_EXT, ctrl_ext);
894
895 out:
896         return ret_val;
897 }
898
899 /**
900  *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
901  *  @hw: pointer to the HW structure
902  *
903  *  Resets the PHY using the serial gigabit media independent interface.
904  **/
905 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
906 {
907         struct e1000_phy_info *phy = &hw->phy;
908         s32 ret_val;
909
910         /* This isn't a true "hard" reset, but is the only reset
911          * available to us at this time.
912          */
913
914         hw_dbg("Soft resetting SGMII attached PHY...\n");
915
916         /* SFP documentation requires the following to configure the SPF module
917          * to work on SGMII.  No further documentation is given.
918          */
919         ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
920         if (ret_val)
921                 goto out;
922
923         ret_val = igb_phy_sw_reset(hw);
924         if (ret_val)
925                 goto out;
926
927         if (phy->id == M88E1512_E_PHY_ID)
928                 ret_val = igb_initialize_M88E1512_phy(hw);
929 out:
930         return ret_val;
931 }
932
933 /**
934  *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
935  *  @hw: pointer to the HW structure
936  *  @active: true to enable LPLU, false to disable
937  *
938  *  Sets the LPLU D0 state according to the active flag.  When
939  *  activating LPLU this function also disables smart speed
940  *  and vice versa.  LPLU will not be activated unless the
941  *  device autonegotiation advertisement meets standards of
942  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
943  *  This is a function pointer entry point only called by
944  *  PHY setup routines.
945  **/
946 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
947 {
948         struct e1000_phy_info *phy = &hw->phy;
949         s32 ret_val;
950         u16 data;
951
952         ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
953         if (ret_val)
954                 goto out;
955
956         if (active) {
957                 data |= IGP02E1000_PM_D0_LPLU;
958                 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
959                                                  data);
960                 if (ret_val)
961                         goto out;
962
963                 /* When LPLU is enabled, we should disable SmartSpeed */
964                 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
965                                                 &data);
966                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
967                 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
968                                                  data);
969                 if (ret_val)
970                         goto out;
971         } else {
972                 data &= ~IGP02E1000_PM_D0_LPLU;
973                 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
974                                                  data);
975                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
976                  * during Dx states where the power conservation is most
977                  * important.  During driver activity we should enable
978                  * SmartSpeed, so performance is maintained.
979                  */
980                 if (phy->smart_speed == e1000_smart_speed_on) {
981                         ret_val = phy->ops.read_reg(hw,
982                                         IGP01E1000_PHY_PORT_CONFIG, &data);
983                         if (ret_val)
984                                 goto out;
985
986                         data |= IGP01E1000_PSCFR_SMART_SPEED;
987                         ret_val = phy->ops.write_reg(hw,
988                                         IGP01E1000_PHY_PORT_CONFIG, data);
989                         if (ret_val)
990                                 goto out;
991                 } else if (phy->smart_speed == e1000_smart_speed_off) {
992                         ret_val = phy->ops.read_reg(hw,
993                                         IGP01E1000_PHY_PORT_CONFIG, &data);
994                         if (ret_val)
995                                 goto out;
996
997                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
998                         ret_val = phy->ops.write_reg(hw,
999                                         IGP01E1000_PHY_PORT_CONFIG, data);
1000                         if (ret_val)
1001                                 goto out;
1002                 }
1003         }
1004
1005 out:
1006         return ret_val;
1007 }
1008
1009 /**
1010  *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
1011  *  @hw: pointer to the HW structure
1012  *  @active: true to enable LPLU, false to disable
1013  *
1014  *  Sets the LPLU D0 state according to the active flag.  When
1015  *  activating LPLU this function also disables smart speed
1016  *  and vice versa.  LPLU will not be activated unless the
1017  *  device autonegotiation advertisement meets standards of
1018  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1019  *  This is a function pointer entry point only called by
1020  *  PHY setup routines.
1021  **/
1022 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1023 {
1024         struct e1000_phy_info *phy = &hw->phy;
1025         u16 data;
1026
1027         data = rd32(E1000_82580_PHY_POWER_MGMT);
1028
1029         if (active) {
1030                 data |= E1000_82580_PM_D0_LPLU;
1031
1032                 /* When LPLU is enabled, we should disable SmartSpeed */
1033                 data &= ~E1000_82580_PM_SPD;
1034         } else {
1035                 data &= ~E1000_82580_PM_D0_LPLU;
1036
1037                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1038                  * during Dx states where the power conservation is most
1039                  * important.  During driver activity we should enable
1040                  * SmartSpeed, so performance is maintained.
1041                  */
1042                 if (phy->smart_speed == e1000_smart_speed_on)
1043                         data |= E1000_82580_PM_SPD;
1044                 else if (phy->smart_speed == e1000_smart_speed_off)
1045                         data &= ~E1000_82580_PM_SPD; }
1046
1047         wr32(E1000_82580_PHY_POWER_MGMT, data);
1048         return 0;
1049 }
1050
1051 /**
1052  *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1053  *  @hw: pointer to the HW structure
1054  *  @active: boolean used to enable/disable lplu
1055  *
1056  *  Success returns 0, Failure returns 1
1057  *
1058  *  The low power link up (lplu) state is set to the power management level D3
1059  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1060  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1061  *  is used during Dx states where the power conservation is most important.
1062  *  During driver activity, SmartSpeed should be enabled so performance is
1063  *  maintained.
1064  **/
1065 static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1066 {
1067         struct e1000_phy_info *phy = &hw->phy;
1068         u16 data;
1069
1070         data = rd32(E1000_82580_PHY_POWER_MGMT);
1071
1072         if (!active) {
1073                 data &= ~E1000_82580_PM_D3_LPLU;
1074                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1075                  * during Dx states where the power conservation is most
1076                  * important.  During driver activity we should enable
1077                  * SmartSpeed, so performance is maintained.
1078                  */
1079                 if (phy->smart_speed == e1000_smart_speed_on)
1080                         data |= E1000_82580_PM_SPD;
1081                 else if (phy->smart_speed == e1000_smart_speed_off)
1082                         data &= ~E1000_82580_PM_SPD;
1083         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1084                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1085                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1086                 data |= E1000_82580_PM_D3_LPLU;
1087                 /* When LPLU is enabled, we should disable SmartSpeed */
1088                 data &= ~E1000_82580_PM_SPD;
1089         }
1090
1091         wr32(E1000_82580_PHY_POWER_MGMT, data);
1092         return 0;
1093 }
1094
1095 /**
1096  *  igb_acquire_nvm_82575 - Request for access to EEPROM
1097  *  @hw: pointer to the HW structure
1098  *
1099  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1100  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1101  *  Return successful if access grant bit set, else clear the request for
1102  *  EEPROM access and return -E1000_ERR_NVM (-1).
1103  **/
1104 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1105 {
1106         s32 ret_val;
1107
1108         ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1109         if (ret_val)
1110                 goto out;
1111
1112         ret_val = igb_acquire_nvm(hw);
1113
1114         if (ret_val)
1115                 hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1116
1117 out:
1118         return ret_val;
1119 }
1120
1121 /**
1122  *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1123  *  @hw: pointer to the HW structure
1124  *
1125  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1126  *  then release the semaphores acquired.
1127  **/
1128 static void igb_release_nvm_82575(struct e1000_hw *hw)
1129 {
1130         igb_release_nvm(hw);
1131         hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1132 }
1133
1134 /**
1135  *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1136  *  @hw: pointer to the HW structure
1137  *  @mask: specifies which semaphore to acquire
1138  *
1139  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1140  *  will also specify which port we're acquiring the lock for.
1141  **/
1142 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1143 {
1144         u32 swfw_sync;
1145         u32 swmask = mask;
1146         u32 fwmask = mask << 16;
1147         s32 ret_val = 0;
1148         s32 i = 0, timeout = 200;
1149
1150         while (i < timeout) {
1151                 if (igb_get_hw_semaphore(hw)) {
1152                         ret_val = -E1000_ERR_SWFW_SYNC;
1153                         goto out;
1154                 }
1155
1156                 swfw_sync = rd32(E1000_SW_FW_SYNC);
1157                 if (!(swfw_sync & (fwmask | swmask)))
1158                         break;
1159
1160                 /* Firmware currently using resource (fwmask)
1161                  * or other software thread using resource (swmask)
1162                  */
1163                 igb_put_hw_semaphore(hw);
1164                 mdelay(5);
1165                 i++;
1166         }
1167
1168         if (i == timeout) {
1169                 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1170                 ret_val = -E1000_ERR_SWFW_SYNC;
1171                 goto out;
1172         }
1173
1174         swfw_sync |= swmask;
1175         wr32(E1000_SW_FW_SYNC, swfw_sync);
1176
1177         igb_put_hw_semaphore(hw);
1178
1179 out:
1180         return ret_val;
1181 }
1182
1183 /**
1184  *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1185  *  @hw: pointer to the HW structure
1186  *  @mask: specifies which semaphore to acquire
1187  *
1188  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1189  *  will also specify which port we're releasing the lock for.
1190  **/
1191 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1192 {
1193         u32 swfw_sync;
1194
1195         while (igb_get_hw_semaphore(hw) != 0)
1196                 ; /* Empty */
1197
1198         swfw_sync = rd32(E1000_SW_FW_SYNC);
1199         swfw_sync &= ~mask;
1200         wr32(E1000_SW_FW_SYNC, swfw_sync);
1201
1202         igb_put_hw_semaphore(hw);
1203 }
1204
1205 /**
1206  *  igb_get_cfg_done_82575 - Read config done bit
1207  *  @hw: pointer to the HW structure
1208  *
1209  *  Read the management control register for the config done bit for
1210  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1211  *  to read the config done bit, so an error is *ONLY* logged and returns
1212  *  0.  If we were to return with error, EEPROM-less silicon
1213  *  would not be able to be reset or change link.
1214  **/
1215 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1216 {
1217         s32 timeout = PHY_CFG_TIMEOUT;
1218         u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1219
1220         if (hw->bus.func == 1)
1221                 mask = E1000_NVM_CFG_DONE_PORT_1;
1222         else if (hw->bus.func == E1000_FUNC_2)
1223                 mask = E1000_NVM_CFG_DONE_PORT_2;
1224         else if (hw->bus.func == E1000_FUNC_3)
1225                 mask = E1000_NVM_CFG_DONE_PORT_3;
1226
1227         while (timeout) {
1228                 if (rd32(E1000_EEMNGCTL) & mask)
1229                         break;
1230                 usleep_range(1000, 2000);
1231                 timeout--;
1232         }
1233         if (!timeout)
1234                 hw_dbg("MNG configuration cycle has not completed.\n");
1235
1236         /* If EEPROM is not marked present, init the PHY manually */
1237         if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1238             (hw->phy.type == e1000_phy_igp_3))
1239                 igb_phy_init_script_igp3(hw);
1240
1241         return 0;
1242 }
1243
1244 /**
1245  *  igb_get_link_up_info_82575 - Get link speed/duplex info
1246  *  @hw: pointer to the HW structure
1247  *  @speed: stores the current speed
1248  *  @duplex: stores the current duplex
1249  *
1250  *  This is a wrapper function, if using the serial gigabit media independent
1251  *  interface, use PCS to retrieve the link speed and duplex information.
1252  *  Otherwise, use the generic function to get the link speed and duplex info.
1253  **/
1254 static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1255                                         u16 *duplex)
1256 {
1257         s32 ret_val;
1258
1259         if (hw->phy.media_type != e1000_media_type_copper)
1260                 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1261                                                                duplex);
1262         else
1263                 ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1264                                                                     duplex);
1265
1266         return ret_val;
1267 }
1268
1269 /**
1270  *  igb_check_for_link_82575 - Check for link
1271  *  @hw: pointer to the HW structure
1272  *
1273  *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1274  *  use the generic interface for determining link.
1275  **/
1276 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1277 {
1278         s32 ret_val;
1279         u16 speed, duplex;
1280
1281         if (hw->phy.media_type != e1000_media_type_copper) {
1282                 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1283                                                              &duplex);
1284                 /* Use this flag to determine if link needs to be checked or
1285                  * not.  If  we have link clear the flag so that we do not
1286                  * continue to check for link.
1287                  */
1288                 hw->mac.get_link_status = !hw->mac.serdes_has_link;
1289
1290                 /* Configure Flow Control now that Auto-Neg has completed.
1291                  * First, we need to restore the desired flow control
1292                  * settings because we may have had to re-autoneg with a
1293                  * different link partner.
1294                  */
1295                 ret_val = igb_config_fc_after_link_up(hw);
1296                 if (ret_val)
1297                         hw_dbg("Error configuring flow control\n");
1298         } else {
1299                 ret_val = igb_check_for_copper_link(hw);
1300         }
1301
1302         return ret_val;
1303 }
1304
1305 /**
1306  *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1307  *  @hw: pointer to the HW structure
1308  **/
1309 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1310 {
1311         u32 reg;
1312
1313
1314         if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1315             !igb_sgmii_active_82575(hw))
1316                 return;
1317
1318         /* Enable PCS to turn on link */
1319         reg = rd32(E1000_PCS_CFG0);
1320         reg |= E1000_PCS_CFG_PCS_EN;
1321         wr32(E1000_PCS_CFG0, reg);
1322
1323         /* Power up the laser */
1324         reg = rd32(E1000_CTRL_EXT);
1325         reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1326         wr32(E1000_CTRL_EXT, reg);
1327
1328         /* flush the write to verify completion */
1329         wrfl();
1330         usleep_range(1000, 2000);
1331 }
1332
1333 /**
1334  *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1335  *  @hw: pointer to the HW structure
1336  *  @speed: stores the current speed
1337  *  @duplex: stores the current duplex
1338  *
1339  *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1340  *  duplex, then store the values in the pointers provided.
1341  **/
1342 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1343                                                 u16 *duplex)
1344 {
1345         struct e1000_mac_info *mac = &hw->mac;
1346         u32 pcs, status;
1347
1348         /* Set up defaults for the return values of this function */
1349         mac->serdes_has_link = false;
1350         *speed = 0;
1351         *duplex = 0;
1352
1353         /* Read the PCS Status register for link state. For non-copper mode,
1354          * the status register is not accurate. The PCS status register is
1355          * used instead.
1356          */
1357         pcs = rd32(E1000_PCS_LSTAT);
1358
1359         /* The link up bit determines when link is up on autoneg. The sync ok
1360          * gets set once both sides sync up and agree upon link. Stable link
1361          * can be determined by checking for both link up and link sync ok
1362          */
1363         if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1364                 mac->serdes_has_link = true;
1365
1366                 /* Detect and store PCS speed */
1367                 if (pcs & E1000_PCS_LSTS_SPEED_1000)
1368                         *speed = SPEED_1000;
1369                 else if (pcs & E1000_PCS_LSTS_SPEED_100)
1370                         *speed = SPEED_100;
1371                 else
1372                         *speed = SPEED_10;
1373
1374                 /* Detect and store PCS duplex */
1375                 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1376                         *duplex = FULL_DUPLEX;
1377                 else
1378                         *duplex = HALF_DUPLEX;
1379
1380         /* Check if it is an I354 2.5Gb backplane connection. */
1381                 if (mac->type == e1000_i354) {
1382                         status = rd32(E1000_STATUS);
1383                         if ((status & E1000_STATUS_2P5_SKU) &&
1384                             !(status & E1000_STATUS_2P5_SKU_OVER)) {
1385                                 *speed = SPEED_2500;
1386                                 *duplex = FULL_DUPLEX;
1387                                 hw_dbg("2500 Mbs, ");
1388                                 hw_dbg("Full Duplex\n");
1389                         }
1390                 }
1391
1392         }
1393
1394         return 0;
1395 }
1396
1397 /**
1398  *  igb_shutdown_serdes_link_82575 - Remove link during power down
1399  *  @hw: pointer to the HW structure
1400  *
1401  *  In the case of fiber serdes, shut down optics and PCS on driver unload
1402  *  when management pass thru is not enabled.
1403  **/
1404 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1405 {
1406         u32 reg;
1407
1408         if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1409             igb_sgmii_active_82575(hw))
1410                 return;
1411
1412         if (!igb_enable_mng_pass_thru(hw)) {
1413                 /* Disable PCS to turn off link */
1414                 reg = rd32(E1000_PCS_CFG0);
1415                 reg &= ~E1000_PCS_CFG_PCS_EN;
1416                 wr32(E1000_PCS_CFG0, reg);
1417
1418                 /* shutdown the laser */
1419                 reg = rd32(E1000_CTRL_EXT);
1420                 reg |= E1000_CTRL_EXT_SDP3_DATA;
1421                 wr32(E1000_CTRL_EXT, reg);
1422
1423                 /* flush the write to verify completion */
1424                 wrfl();
1425                 usleep_range(1000, 2000);
1426         }
1427 }
1428
1429 /**
1430  *  igb_reset_hw_82575 - Reset hardware
1431  *  @hw: pointer to the HW structure
1432  *
1433  *  This resets the hardware into a known state.  This is a
1434  *  function pointer entry point called by the api module.
1435  **/
1436 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1437 {
1438         u32 ctrl;
1439         s32 ret_val;
1440
1441         /* Prevent the PCI-E bus from sticking if there is no TLP connection
1442          * on the last TLP read/write transaction when MAC is reset.
1443          */
1444         ret_val = igb_disable_pcie_master(hw);
1445         if (ret_val)
1446                 hw_dbg("PCI-E Master disable polling has failed.\n");
1447
1448         /* set the completion timeout for interface */
1449         ret_val = igb_set_pcie_completion_timeout(hw);
1450         if (ret_val)
1451                 hw_dbg("PCI-E Set completion timeout has failed.\n");
1452
1453         hw_dbg("Masking off all interrupts\n");
1454         wr32(E1000_IMC, 0xffffffff);
1455
1456         wr32(E1000_RCTL, 0);
1457         wr32(E1000_TCTL, E1000_TCTL_PSP);
1458         wrfl();
1459
1460         usleep_range(10000, 20000);
1461
1462         ctrl = rd32(E1000_CTRL);
1463
1464         hw_dbg("Issuing a global reset to MAC\n");
1465         wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1466
1467         ret_val = igb_get_auto_rd_done(hw);
1468         if (ret_val) {
1469                 /* When auto config read does not complete, do not
1470                  * return with an error. This can happen in situations
1471                  * where there is no eeprom and prevents getting link.
1472                  */
1473                 hw_dbg("Auto Read Done did not complete\n");
1474         }
1475
1476         /* If EEPROM is not present, run manual init scripts */
1477         if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1478                 igb_reset_init_script_82575(hw);
1479
1480         /* Clear any pending interrupt events. */
1481         wr32(E1000_IMC, 0xffffffff);
1482         rd32(E1000_ICR);
1483
1484         /* Install any alternate MAC address into RAR0 */
1485         ret_val = igb_check_alt_mac_addr(hw);
1486
1487         return ret_val;
1488 }
1489
1490 /**
1491  *  igb_init_hw_82575 - Initialize hardware
1492  *  @hw: pointer to the HW structure
1493  *
1494  *  This inits the hardware readying it for operation.
1495  **/
1496 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1497 {
1498         struct e1000_mac_info *mac = &hw->mac;
1499         s32 ret_val;
1500         u16 i, rar_count = mac->rar_entry_count;
1501
1502         if ((hw->mac.type >= e1000_i210) &&
1503             !(igb_get_flash_presence_i210(hw))) {
1504                 ret_val = igb_pll_workaround_i210(hw);
1505                 if (ret_val)
1506                         return ret_val;
1507         }
1508
1509         /* Initialize identification LED */
1510         ret_val = igb_id_led_init(hw);
1511         if (ret_val) {
1512                 hw_dbg("Error initializing identification LED\n");
1513                 /* This is not fatal and we should not stop init due to this */
1514         }
1515
1516         /* Disabling VLAN filtering */
1517         hw_dbg("Initializing the IEEE VLAN\n");
1518         if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
1519                 igb_clear_vfta_i350(hw);
1520         else
1521                 igb_clear_vfta(hw);
1522
1523         /* Setup the receive address */
1524         igb_init_rx_addrs(hw, rar_count);
1525
1526         /* Zero out the Multicast HASH table */
1527         hw_dbg("Zeroing the MTA\n");
1528         for (i = 0; i < mac->mta_reg_count; i++)
1529                 array_wr32(E1000_MTA, i, 0);
1530
1531         /* Zero out the Unicast HASH table */
1532         hw_dbg("Zeroing the UTA\n");
1533         for (i = 0; i < mac->uta_reg_count; i++)
1534                 array_wr32(E1000_UTA, i, 0);
1535
1536         /* Setup link and flow control */
1537         ret_val = igb_setup_link(hw);
1538
1539         /* Clear all of the statistics registers (clear on read).  It is
1540          * important that we do this after we have tried to establish link
1541          * because the symbol error count will increment wildly if there
1542          * is no link.
1543          */
1544         igb_clear_hw_cntrs_82575(hw);
1545         return ret_val;
1546 }
1547
1548 /**
1549  *  igb_setup_copper_link_82575 - Configure copper link settings
1550  *  @hw: pointer to the HW structure
1551  *
1552  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1553  *  for link, once link is established calls to configure collision distance
1554  *  and flow control are called.
1555  **/
1556 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1557 {
1558         u32 ctrl;
1559         s32  ret_val;
1560         u32 phpm_reg;
1561
1562         ctrl = rd32(E1000_CTRL);
1563         ctrl |= E1000_CTRL_SLU;
1564         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1565         wr32(E1000_CTRL, ctrl);
1566
1567         /* Clear Go Link Disconnect bit on supported devices */
1568         switch (hw->mac.type) {
1569         case e1000_82580:
1570         case e1000_i350:
1571         case e1000_i210:
1572         case e1000_i211:
1573                 phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1574                 phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1575                 wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1576                 break;
1577         default:
1578                 break;
1579         }
1580
1581         ret_val = igb_setup_serdes_link_82575(hw);
1582         if (ret_val)
1583                 goto out;
1584
1585         if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1586                 /* allow time for SFP cage time to power up phy */
1587                 msleep(300);
1588
1589                 ret_val = hw->phy.ops.reset(hw);
1590                 if (ret_val) {
1591                         hw_dbg("Error resetting the PHY.\n");
1592                         goto out;
1593                 }
1594         }
1595         switch (hw->phy.type) {
1596         case e1000_phy_i210:
1597         case e1000_phy_m88:
1598                 switch (hw->phy.id) {
1599                 case I347AT4_E_PHY_ID:
1600                 case M88E1112_E_PHY_ID:
1601                 case M88E1543_E_PHY_ID:
1602                 case M88E1512_E_PHY_ID:
1603                 case I210_I_PHY_ID:
1604                         ret_val = igb_copper_link_setup_m88_gen2(hw);
1605                         break;
1606                 default:
1607                         ret_val = igb_copper_link_setup_m88(hw);
1608                         break;
1609                 }
1610                 break;
1611         case e1000_phy_igp_3:
1612                 ret_val = igb_copper_link_setup_igp(hw);
1613                 break;
1614         case e1000_phy_82580:
1615                 ret_val = igb_copper_link_setup_82580(hw);
1616                 break;
1617         default:
1618                 ret_val = -E1000_ERR_PHY;
1619                 break;
1620         }
1621
1622         if (ret_val)
1623                 goto out;
1624
1625         ret_val = igb_setup_copper_link(hw);
1626 out:
1627         return ret_val;
1628 }
1629
1630 /**
1631  *  igb_setup_serdes_link_82575 - Setup link for serdes
1632  *  @hw: pointer to the HW structure
1633  *
1634  *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1635  *  used on copper connections where the serialized gigabit media independent
1636  *  interface (sgmii), or serdes fiber is being used.  Configures the link
1637  *  for auto-negotiation or forces speed/duplex.
1638  **/
1639 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1640 {
1641         u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1642         bool pcs_autoneg;
1643         s32 ret_val = 0;
1644         u16 data;
1645
1646         if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1647             !igb_sgmii_active_82575(hw))
1648                 return ret_val;
1649
1650
1651         /* On the 82575, SerDes loopback mode persists until it is
1652          * explicitly turned off or a power cycle is performed.  A read to
1653          * the register does not indicate its status.  Therefore, we ensure
1654          * loopback mode is disabled during initialization.
1655          */
1656         wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1657
1658         /* power on the sfp cage if present and turn on I2C */
1659         ctrl_ext = rd32(E1000_CTRL_EXT);
1660         ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1661         ctrl_ext |= E1000_CTRL_I2C_ENA;
1662         wr32(E1000_CTRL_EXT, ctrl_ext);
1663
1664         ctrl_reg = rd32(E1000_CTRL);
1665         ctrl_reg |= E1000_CTRL_SLU;
1666
1667         if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1668                 /* set both sw defined pins */
1669                 ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1670
1671                 /* Set switch control to serdes energy detect */
1672                 reg = rd32(E1000_CONNSW);
1673                 reg |= E1000_CONNSW_ENRGSRC;
1674                 wr32(E1000_CONNSW, reg);
1675         }
1676
1677         reg = rd32(E1000_PCS_LCTL);
1678
1679         /* default pcs_autoneg to the same setting as mac autoneg */
1680         pcs_autoneg = hw->mac.autoneg;
1681
1682         switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1683         case E1000_CTRL_EXT_LINK_MODE_SGMII:
1684                 /* sgmii mode lets the phy handle forcing speed/duplex */
1685                 pcs_autoneg = true;
1686                 /* autoneg time out should be disabled for SGMII mode */
1687                 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1688                 break;
1689         case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1690                 /* disable PCS autoneg and support parallel detect only */
1691                 pcs_autoneg = false;
1692         default:
1693                 if (hw->mac.type == e1000_82575 ||
1694                     hw->mac.type == e1000_82576) {
1695                         ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1696                         if (ret_val) {
1697                                 hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
1698                                 return ret_val;
1699                         }
1700
1701                         if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1702                                 pcs_autoneg = false;
1703                 }
1704
1705                 /* non-SGMII modes only supports a speed of 1000/Full for the
1706                  * link so it is best to just force the MAC and let the pcs
1707                  * link either autoneg or be forced to 1000/Full
1708                  */
1709                 ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1710                                 E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1711
1712                 /* set speed of 1000/Full if speed/duplex is forced */
1713                 reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1714                 break;
1715         }
1716
1717         wr32(E1000_CTRL, ctrl_reg);
1718
1719         /* New SerDes mode allows for forcing speed or autonegotiating speed
1720          * at 1gb. Autoneg should be default set by most drivers. This is the
1721          * mode that will be compatible with older link partners and switches.
1722          * However, both are supported by the hardware and some drivers/tools.
1723          */
1724         reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1725                 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1726
1727         if (pcs_autoneg) {
1728                 /* Set PCS register for autoneg */
1729                 reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1730                        E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1731
1732                 /* Disable force flow control for autoneg */
1733                 reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1734
1735                 /* Configure flow control advertisement for autoneg */
1736                 anadv_reg = rd32(E1000_PCS_ANADV);
1737                 anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1738                 switch (hw->fc.requested_mode) {
1739                 case e1000_fc_full:
1740                 case e1000_fc_rx_pause:
1741                         anadv_reg |= E1000_TXCW_ASM_DIR;
1742                         anadv_reg |= E1000_TXCW_PAUSE;
1743                         break;
1744                 case e1000_fc_tx_pause:
1745                         anadv_reg |= E1000_TXCW_ASM_DIR;
1746                         break;
1747                 default:
1748                         break;
1749                 }
1750                 wr32(E1000_PCS_ANADV, anadv_reg);
1751
1752                 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1753         } else {
1754                 /* Set PCS register for forced link */
1755                 reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1756
1757                 /* Force flow control for forced link */
1758                 reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1759
1760                 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1761         }
1762
1763         wr32(E1000_PCS_LCTL, reg);
1764
1765         if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1766                 igb_force_mac_fc(hw);
1767
1768         return ret_val;
1769 }
1770
1771 /**
1772  *  igb_sgmii_active_82575 - Return sgmii state
1773  *  @hw: pointer to the HW structure
1774  *
1775  *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1776  *  which can be enabled for use in the embedded applications.  Simply
1777  *  return the current state of the sgmii interface.
1778  **/
1779 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1780 {
1781         struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1782         return dev_spec->sgmii_active;
1783 }
1784
1785 /**
1786  *  igb_reset_init_script_82575 - Inits HW defaults after reset
1787  *  @hw: pointer to the HW structure
1788  *
1789  *  Inits recommended HW defaults after a reset when there is no EEPROM
1790  *  detected. This is only for the 82575.
1791  **/
1792 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1793 {
1794         if (hw->mac.type == e1000_82575) {
1795                 hw_dbg("Running reset init script for 82575\n");
1796                 /* SerDes configuration via SERDESCTRL */
1797                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1798                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1799                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1800                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1801
1802                 /* CCM configuration via CCMCTL register */
1803                 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1804                 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1805
1806                 /* PCIe lanes configuration */
1807                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1808                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1809                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1810                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1811
1812                 /* PCIe PLL Configuration */
1813                 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1814                 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1815                 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1816         }
1817
1818         return 0;
1819 }
1820
1821 /**
1822  *  igb_read_mac_addr_82575 - Read device MAC address
1823  *  @hw: pointer to the HW structure
1824  **/
1825 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1826 {
1827         s32 ret_val = 0;
1828
1829         /* If there's an alternate MAC address place it in RAR0
1830          * so that it will override the Si installed default perm
1831          * address.
1832          */
1833         ret_val = igb_check_alt_mac_addr(hw);
1834         if (ret_val)
1835                 goto out;
1836
1837         ret_val = igb_read_mac_addr(hw);
1838
1839 out:
1840         return ret_val;
1841 }
1842
1843 /**
1844  * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1845  * @hw: pointer to the HW structure
1846  *
1847  * In the case of a PHY power down to save power, or to turn off link during a
1848  * driver unload, or wake on lan is not enabled, remove the link.
1849  **/
1850 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1851 {
1852         /* If the management interface is not enabled, then power down */
1853         if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1854                 igb_power_down_phy_copper(hw);
1855 }
1856
1857 /**
1858  *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1859  *  @hw: pointer to the HW structure
1860  *
1861  *  Clears the hardware counters by reading the counter registers.
1862  **/
1863 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1864 {
1865         igb_clear_hw_cntrs_base(hw);
1866
1867         rd32(E1000_PRC64);
1868         rd32(E1000_PRC127);
1869         rd32(E1000_PRC255);
1870         rd32(E1000_PRC511);
1871         rd32(E1000_PRC1023);
1872         rd32(E1000_PRC1522);
1873         rd32(E1000_PTC64);
1874         rd32(E1000_PTC127);
1875         rd32(E1000_PTC255);
1876         rd32(E1000_PTC511);
1877         rd32(E1000_PTC1023);
1878         rd32(E1000_PTC1522);
1879
1880         rd32(E1000_ALGNERRC);
1881         rd32(E1000_RXERRC);
1882         rd32(E1000_TNCRS);
1883         rd32(E1000_CEXTERR);
1884         rd32(E1000_TSCTC);
1885         rd32(E1000_TSCTFC);
1886
1887         rd32(E1000_MGTPRC);
1888         rd32(E1000_MGTPDC);
1889         rd32(E1000_MGTPTC);
1890
1891         rd32(E1000_IAC);
1892         rd32(E1000_ICRXOC);
1893
1894         rd32(E1000_ICRXPTC);
1895         rd32(E1000_ICRXATC);
1896         rd32(E1000_ICTXPTC);
1897         rd32(E1000_ICTXATC);
1898         rd32(E1000_ICTXQEC);
1899         rd32(E1000_ICTXQMTC);
1900         rd32(E1000_ICRXDMTC);
1901
1902         rd32(E1000_CBTMPC);
1903         rd32(E1000_HTDPMC);
1904         rd32(E1000_CBRMPC);
1905         rd32(E1000_RPTHC);
1906         rd32(E1000_HGPTC);
1907         rd32(E1000_HTCBDPC);
1908         rd32(E1000_HGORCL);
1909         rd32(E1000_HGORCH);
1910         rd32(E1000_HGOTCL);
1911         rd32(E1000_HGOTCH);
1912         rd32(E1000_LENERRS);
1913
1914         /* This register should not be read in copper configurations */
1915         if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1916             igb_sgmii_active_82575(hw))
1917                 rd32(E1000_SCVPC);
1918 }
1919
1920 /**
1921  *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1922  *  @hw: pointer to the HW structure
1923  *
1924  *  After rx enable if manageability is enabled then there is likely some
1925  *  bad data at the start of the fifo and possibly in the DMA fifo. This
1926  *  function clears the fifos and flushes any packets that came in as rx was
1927  *  being enabled.
1928  **/
1929 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1930 {
1931         u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1932         int i, ms_wait;
1933
1934         /* disable IPv6 options as per hardware errata */
1935         rfctl = rd32(E1000_RFCTL);
1936         rfctl |= E1000_RFCTL_IPV6_EX_DIS;
1937         wr32(E1000_RFCTL, rfctl);
1938
1939         if (hw->mac.type != e1000_82575 ||
1940             !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1941                 return;
1942
1943         /* Disable all RX queues */
1944         for (i = 0; i < 4; i++) {
1945                 rxdctl[i] = rd32(E1000_RXDCTL(i));
1946                 wr32(E1000_RXDCTL(i),
1947                      rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1948         }
1949         /* Poll all queues to verify they have shut down */
1950         for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1951                 usleep_range(1000, 2000);
1952                 rx_enabled = 0;
1953                 for (i = 0; i < 4; i++)
1954                         rx_enabled |= rd32(E1000_RXDCTL(i));
1955                 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1956                         break;
1957         }
1958
1959         if (ms_wait == 10)
1960                 hw_dbg("Queue disable timed out after 10ms\n");
1961
1962         /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1963          * incoming packets are rejected.  Set enable and wait 2ms so that
1964          * any packet that was coming in as RCTL.EN was set is flushed
1965          */
1966         wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1967
1968         rlpml = rd32(E1000_RLPML);
1969         wr32(E1000_RLPML, 0);
1970
1971         rctl = rd32(E1000_RCTL);
1972         temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1973         temp_rctl |= E1000_RCTL_LPE;
1974
1975         wr32(E1000_RCTL, temp_rctl);
1976         wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1977         wrfl();
1978         usleep_range(2000, 3000);
1979
1980         /* Enable RX queues that were previously enabled and restore our
1981          * previous state
1982          */
1983         for (i = 0; i < 4; i++)
1984                 wr32(E1000_RXDCTL(i), rxdctl[i]);
1985         wr32(E1000_RCTL, rctl);
1986         wrfl();
1987
1988         wr32(E1000_RLPML, rlpml);
1989         wr32(E1000_RFCTL, rfctl);
1990
1991         /* Flush receive errors generated by workaround */
1992         rd32(E1000_ROC);
1993         rd32(E1000_RNBC);
1994         rd32(E1000_MPC);
1995 }
1996
1997 /**
1998  *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1999  *  @hw: pointer to the HW structure
2000  *
2001  *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
2002  *  however the hardware default for these parts is 500us to 1ms which is less
2003  *  than the 10ms recommended by the pci-e spec.  To address this we need to
2004  *  increase the value to either 10ms to 200ms for capability version 1 config,
2005  *  or 16ms to 55ms for version 2.
2006  **/
2007 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
2008 {
2009         u32 gcr = rd32(E1000_GCR);
2010         s32 ret_val = 0;
2011         u16 pcie_devctl2;
2012
2013         /* only take action if timeout value is defaulted to 0 */
2014         if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
2015                 goto out;
2016
2017         /* if capabilities version is type 1 we can write the
2018          * timeout of 10ms to 200ms through the GCR register
2019          */
2020         if (!(gcr & E1000_GCR_CAP_VER2)) {
2021                 gcr |= E1000_GCR_CMPL_TMOUT_10ms;
2022                 goto out;
2023         }
2024
2025         /* for version 2 capabilities we need to write the config space
2026          * directly in order to set the completion timeout value for
2027          * 16ms to 55ms
2028          */
2029         ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2030                                         &pcie_devctl2);
2031         if (ret_val)
2032                 goto out;
2033
2034         pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2035
2036         ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2037                                          &pcie_devctl2);
2038 out:
2039         /* disable completion timeout resend */
2040         gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2041
2042         wr32(E1000_GCR, gcr);
2043         return ret_val;
2044 }
2045
2046 /**
2047  *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2048  *  @hw: pointer to the hardware struct
2049  *  @enable: state to enter, either enabled or disabled
2050  *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2051  *
2052  *  enables/disables L2 switch anti-spoofing functionality.
2053  **/
2054 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2055 {
2056         u32 reg_val, reg_offset;
2057
2058         switch (hw->mac.type) {
2059         case e1000_82576:
2060                 reg_offset = E1000_DTXSWC;
2061                 break;
2062         case e1000_i350:
2063         case e1000_i354:
2064                 reg_offset = E1000_TXSWC;
2065                 break;
2066         default:
2067                 return;
2068         }
2069
2070         reg_val = rd32(reg_offset);
2071         if (enable) {
2072                 reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2073                              E1000_DTXSWC_VLAN_SPOOF_MASK);
2074                 /* The PF can spoof - it has to in order to
2075                  * support emulation mode NICs
2076                  */
2077                 reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
2078         } else {
2079                 reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2080                              E1000_DTXSWC_VLAN_SPOOF_MASK);
2081         }
2082         wr32(reg_offset, reg_val);
2083 }
2084
2085 /**
2086  *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2087  *  @hw: pointer to the hardware struct
2088  *  @enable: state to enter, either enabled or disabled
2089  *
2090  *  enables/disables L2 switch loopback functionality.
2091  **/
2092 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2093 {
2094         u32 dtxswc;
2095
2096         switch (hw->mac.type) {
2097         case e1000_82576:
2098                 dtxswc = rd32(E1000_DTXSWC);
2099                 if (enable)
2100                         dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2101                 else
2102                         dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2103                 wr32(E1000_DTXSWC, dtxswc);
2104                 break;
2105         case e1000_i354:
2106         case e1000_i350:
2107                 dtxswc = rd32(E1000_TXSWC);
2108                 if (enable)
2109                         dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2110                 else
2111                         dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2112                 wr32(E1000_TXSWC, dtxswc);
2113                 break;
2114         default:
2115                 /* Currently no other hardware supports loopback */
2116                 break;
2117         }
2118
2119 }
2120
2121 /**
2122  *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
2123  *  @hw: pointer to the hardware struct
2124  *  @enable: state to enter, either enabled or disabled
2125  *
2126  *  enables/disables replication of packets across multiple pools.
2127  **/
2128 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2129 {
2130         u32 vt_ctl = rd32(E1000_VT_CTL);
2131
2132         if (enable)
2133                 vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2134         else
2135                 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2136
2137         wr32(E1000_VT_CTL, vt_ctl);
2138 }
2139
2140 /**
2141  *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2142  *  @hw: pointer to the HW structure
2143  *  @offset: register offset to be read
2144  *  @data: pointer to the read data
2145  *
2146  *  Reads the MDI control register in the PHY at offset and stores the
2147  *  information read to data.
2148  **/
2149 static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2150 {
2151         s32 ret_val;
2152
2153         ret_val = hw->phy.ops.acquire(hw);
2154         if (ret_val)
2155                 goto out;
2156
2157         ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2158
2159         hw->phy.ops.release(hw);
2160
2161 out:
2162         return ret_val;
2163 }
2164
2165 /**
2166  *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2167  *  @hw: pointer to the HW structure
2168  *  @offset: register offset to write to
2169  *  @data: data to write to register at offset
2170  *
2171  *  Writes data to MDI control register in the PHY at offset.
2172  **/
2173 static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2174 {
2175         s32 ret_val;
2176
2177
2178         ret_val = hw->phy.ops.acquire(hw);
2179         if (ret_val)
2180                 goto out;
2181
2182         ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2183
2184         hw->phy.ops.release(hw);
2185
2186 out:
2187         return ret_val;
2188 }
2189
2190 /**
2191  *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2192  *  @hw: pointer to the HW structure
2193  *
2194  *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2195  *  the values found in the EEPROM.  This addresses an issue in which these
2196  *  bits are not restored from EEPROM after reset.
2197  **/
2198 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2199 {
2200         s32 ret_val = 0;
2201         u32 mdicnfg;
2202         u16 nvm_data = 0;
2203
2204         if (hw->mac.type != e1000_82580)
2205                 goto out;
2206         if (!igb_sgmii_active_82575(hw))
2207                 goto out;
2208
2209         ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2210                                    NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2211                                    &nvm_data);
2212         if (ret_val) {
2213                 hw_dbg("NVM Read Error\n");
2214                 goto out;
2215         }
2216
2217         mdicnfg = rd32(E1000_MDICNFG);
2218         if (nvm_data & NVM_WORD24_EXT_MDIO)
2219                 mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2220         if (nvm_data & NVM_WORD24_COM_MDIO)
2221                 mdicnfg |= E1000_MDICNFG_COM_MDIO;
2222         wr32(E1000_MDICNFG, mdicnfg);
2223 out:
2224         return ret_val;
2225 }
2226
2227 /**
2228  *  igb_reset_hw_82580 - Reset hardware
2229  *  @hw: pointer to the HW structure
2230  *
2231  *  This resets function or entire device (all ports, etc.)
2232  *  to a known state.
2233  **/
2234 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2235 {
2236         s32 ret_val = 0;
2237         /* BH SW mailbox bit in SW_FW_SYNC */
2238         u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2239         u32 ctrl;
2240         bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2241
2242         hw->dev_spec._82575.global_device_reset = false;
2243
2244         /* due to hw errata, global device reset doesn't always
2245          * work on 82580
2246          */
2247         if (hw->mac.type == e1000_82580)
2248                 global_device_reset = false;
2249
2250         /* Get current control state. */
2251         ctrl = rd32(E1000_CTRL);
2252
2253         /* Prevent the PCI-E bus from sticking if there is no TLP connection
2254          * on the last TLP read/write transaction when MAC is reset.
2255          */
2256         ret_val = igb_disable_pcie_master(hw);
2257         if (ret_val)
2258                 hw_dbg("PCI-E Master disable polling has failed.\n");
2259
2260         hw_dbg("Masking off all interrupts\n");
2261         wr32(E1000_IMC, 0xffffffff);
2262         wr32(E1000_RCTL, 0);
2263         wr32(E1000_TCTL, E1000_TCTL_PSP);
2264         wrfl();
2265
2266         usleep_range(10000, 11000);
2267
2268         /* Determine whether or not a global dev reset is requested */
2269         if (global_device_reset &&
2270                 hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2271                         global_device_reset = false;
2272
2273         if (global_device_reset &&
2274                 !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2275                 ctrl |= E1000_CTRL_DEV_RST;
2276         else
2277                 ctrl |= E1000_CTRL_RST;
2278
2279         wr32(E1000_CTRL, ctrl);
2280         wrfl();
2281
2282         /* Add delay to insure DEV_RST has time to complete */
2283         if (global_device_reset)
2284                 usleep_range(5000, 6000);
2285
2286         ret_val = igb_get_auto_rd_done(hw);
2287         if (ret_val) {
2288                 /* When auto config read does not complete, do not
2289                  * return with an error. This can happen in situations
2290                  * where there is no eeprom and prevents getting link.
2291                  */
2292                 hw_dbg("Auto Read Done did not complete\n");
2293         }
2294
2295         /* clear global device reset status bit */
2296         wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2297
2298         /* Clear any pending interrupt events. */
2299         wr32(E1000_IMC, 0xffffffff);
2300         rd32(E1000_ICR);
2301
2302         ret_val = igb_reset_mdicnfg_82580(hw);
2303         if (ret_val)
2304                 hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2305
2306         /* Install any alternate MAC address into RAR0 */
2307         ret_val = igb_check_alt_mac_addr(hw);
2308
2309         /* Release semaphore */
2310         if (global_device_reset)
2311                 hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2312
2313         return ret_val;
2314 }
2315
2316 /**
2317  *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2318  *  @data: data received by reading RXPBS register
2319  *
2320  *  The 82580 uses a table based approach for packet buffer allocation sizes.
2321  *  This function converts the retrieved value into the correct table value
2322  *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2323  *  0x0 36  72 144   1   2   4   8  16
2324  *  0x8 35  70 140 rsv rsv rsv rsv rsv
2325  */
2326 u16 igb_rxpbs_adjust_82580(u32 data)
2327 {
2328         u16 ret_val = 0;
2329
2330         if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2331                 ret_val = e1000_82580_rxpbs_table[data];
2332
2333         return ret_val;
2334 }
2335
2336 /**
2337  *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2338  *  checksum
2339  *  @hw: pointer to the HW structure
2340  *  @offset: offset in words of the checksum protected region
2341  *
2342  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2343  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2344  **/
2345 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2346                                                  u16 offset)
2347 {
2348         s32 ret_val = 0;
2349         u16 checksum = 0;
2350         u16 i, nvm_data;
2351
2352         for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2353                 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2354                 if (ret_val) {
2355                         hw_dbg("NVM Read Error\n");
2356                         goto out;
2357                 }
2358                 checksum += nvm_data;
2359         }
2360
2361         if (checksum != (u16) NVM_SUM) {
2362                 hw_dbg("NVM Checksum Invalid\n");
2363                 ret_val = -E1000_ERR_NVM;
2364                 goto out;
2365         }
2366
2367 out:
2368         return ret_val;
2369 }
2370
2371 /**
2372  *  igb_update_nvm_checksum_with_offset - Update EEPROM
2373  *  checksum
2374  *  @hw: pointer to the HW structure
2375  *  @offset: offset in words of the checksum protected region
2376  *
2377  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2378  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2379  *  value to the EEPROM.
2380  **/
2381 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2382 {
2383         s32 ret_val;
2384         u16 checksum = 0;
2385         u16 i, nvm_data;
2386
2387         for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2388                 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2389                 if (ret_val) {
2390                         hw_dbg("NVM Read Error while updating checksum.\n");
2391                         goto out;
2392                 }
2393                 checksum += nvm_data;
2394         }
2395         checksum = (u16) NVM_SUM - checksum;
2396         ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2397                                 &checksum);
2398         if (ret_val)
2399                 hw_dbg("NVM Write Error while updating checksum.\n");
2400
2401 out:
2402         return ret_val;
2403 }
2404
2405 /**
2406  *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2407  *  @hw: pointer to the HW structure
2408  *
2409  *  Calculates the EEPROM section checksum by reading/adding each word of
2410  *  the EEPROM and then verifies that the sum of the EEPROM is
2411  *  equal to 0xBABA.
2412  **/
2413 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2414 {
2415         s32 ret_val = 0;
2416         u16 eeprom_regions_count = 1;
2417         u16 j, nvm_data;
2418         u16 nvm_offset;
2419
2420         ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2421         if (ret_val) {
2422                 hw_dbg("NVM Read Error\n");
2423                 goto out;
2424         }
2425
2426         if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2427                 /* if checksums compatibility bit is set validate checksums
2428                  * for all 4 ports.
2429                  */
2430                 eeprom_regions_count = 4;
2431         }
2432
2433         for (j = 0; j < eeprom_regions_count; j++) {
2434                 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2435                 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2436                                                                 nvm_offset);
2437                 if (ret_val != 0)
2438                         goto out;
2439         }
2440
2441 out:
2442         return ret_val;
2443 }
2444
2445 /**
2446  *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2447  *  @hw: pointer to the HW structure
2448  *
2449  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2450  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2451  *  checksum and writes the value to the EEPROM.
2452  **/
2453 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2454 {
2455         s32 ret_val;
2456         u16 j, nvm_data;
2457         u16 nvm_offset;
2458
2459         ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2460         if (ret_val) {
2461                 hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
2462                 goto out;
2463         }
2464
2465         if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2466                 /* set compatibility bit to validate checksums appropriately */
2467                 nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2468                 ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2469                                         &nvm_data);
2470                 if (ret_val) {
2471                         hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
2472                         goto out;
2473                 }
2474         }
2475
2476         for (j = 0; j < 4; j++) {
2477                 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2478                 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2479                 if (ret_val)
2480                         goto out;
2481         }
2482
2483 out:
2484         return ret_val;
2485 }
2486
2487 /**
2488  *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2489  *  @hw: pointer to the HW structure
2490  *
2491  *  Calculates the EEPROM section checksum by reading/adding each word of
2492  *  the EEPROM and then verifies that the sum of the EEPROM is
2493  *  equal to 0xBABA.
2494  **/
2495 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2496 {
2497         s32 ret_val = 0;
2498         u16 j;
2499         u16 nvm_offset;
2500
2501         for (j = 0; j < 4; j++) {
2502                 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2503                 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2504                                                                 nvm_offset);
2505                 if (ret_val != 0)
2506                         goto out;
2507         }
2508
2509 out:
2510         return ret_val;
2511 }
2512
2513 /**
2514  *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2515  *  @hw: pointer to the HW structure
2516  *
2517  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2518  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2519  *  checksum and writes the value to the EEPROM.
2520  **/
2521 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2522 {
2523         s32 ret_val = 0;
2524         u16 j;
2525         u16 nvm_offset;
2526
2527         for (j = 0; j < 4; j++) {
2528                 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2529                 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2530                 if (ret_val != 0)
2531                         goto out;
2532         }
2533
2534 out:
2535         return ret_val;
2536 }
2537
2538 /**
2539  *  __igb_access_emi_reg - Read/write EMI register
2540  *  @hw: pointer to the HW structure
2541  *  @addr: EMI address to program
2542  *  @data: pointer to value to read/write from/to the EMI address
2543  *  @read: boolean flag to indicate read or write
2544  **/
2545 static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2546                                   u16 *data, bool read)
2547 {
2548         s32 ret_val = 0;
2549
2550         ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2551         if (ret_val)
2552                 return ret_val;
2553
2554         if (read)
2555                 ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2556         else
2557                 ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2558
2559         return ret_val;
2560 }
2561
2562 /**
2563  *  igb_read_emi_reg - Read Extended Management Interface register
2564  *  @hw: pointer to the HW structure
2565  *  @addr: EMI address to program
2566  *  @data: value to be read from the EMI address
2567  **/
2568 s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2569 {
2570         return __igb_access_emi_reg(hw, addr, data, true);
2571 }
2572
2573 /**
2574  *  igb_set_eee_i350 - Enable/disable EEE support
2575  *  @hw: pointer to the HW structure
2576  *  @adv1G: boolean flag enabling 1G EEE advertisement
2577  *  @adv100m: boolean flag enabling 100M EEE advertisement
2578  *
2579  *  Enable/disable EEE based on setting in dev_spec structure.
2580  *
2581  **/
2582 s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
2583 {
2584         u32 ipcnfg, eeer;
2585
2586         if ((hw->mac.type < e1000_i350) ||
2587             (hw->phy.media_type != e1000_media_type_copper))
2588                 goto out;
2589         ipcnfg = rd32(E1000_IPCNFG);
2590         eeer = rd32(E1000_EEER);
2591
2592         /* enable or disable per user setting */
2593         if (!(hw->dev_spec._82575.eee_disable)) {
2594                 u32 eee_su = rd32(E1000_EEE_SU);
2595
2596                 if (adv100M)
2597                         ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
2598                 else
2599                         ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
2600
2601                 if (adv1G)
2602                         ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
2603                 else
2604                         ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
2605
2606                 eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2607                         E1000_EEER_LPI_FC);
2608
2609                 /* This bit should not be set in normal operation. */
2610                 if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2611                         hw_dbg("LPI Clock Stop Bit should not be set!\n");
2612
2613         } else {
2614                 ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2615                         E1000_IPCNFG_EEE_100M_AN);
2616                 eeer &= ~(E1000_EEER_TX_LPI_EN |
2617                         E1000_EEER_RX_LPI_EN |
2618                         E1000_EEER_LPI_FC);
2619         }
2620         wr32(E1000_IPCNFG, ipcnfg);
2621         wr32(E1000_EEER, eeer);
2622         rd32(E1000_IPCNFG);
2623         rd32(E1000_EEER);
2624 out:
2625
2626         return 0;
2627 }
2628
2629 /**
2630  *  igb_set_eee_i354 - Enable/disable EEE support
2631  *  @hw: pointer to the HW structure
2632  *  @adv1G: boolean flag enabling 1G EEE advertisement
2633  *  @adv100m: boolean flag enabling 100M EEE advertisement
2634  *
2635  *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2636  *
2637  **/
2638 s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
2639 {
2640         struct e1000_phy_info *phy = &hw->phy;
2641         s32 ret_val = 0;
2642         u16 phy_data;
2643
2644         if ((hw->phy.media_type != e1000_media_type_copper) ||
2645             ((phy->id != M88E1543_E_PHY_ID) &&
2646              (phy->id != M88E1512_E_PHY_ID)))
2647                 goto out;
2648
2649         if (!hw->dev_spec._82575.eee_disable) {
2650                 /* Switch to PHY page 18. */
2651                 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2652                 if (ret_val)
2653                         goto out;
2654
2655                 ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2656                                             &phy_data);
2657                 if (ret_val)
2658                         goto out;
2659
2660                 phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2661                 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2662                                              phy_data);
2663                 if (ret_val)
2664                         goto out;
2665
2666                 /* Return the PHY to page 0. */
2667                 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2668                 if (ret_val)
2669                         goto out;
2670
2671                 /* Turn on EEE advertisement. */
2672                 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2673                                              E1000_EEE_ADV_DEV_I354,
2674                                              &phy_data);
2675                 if (ret_val)
2676                         goto out;
2677
2678                 if (adv100M)
2679                         phy_data |= E1000_EEE_ADV_100_SUPPORTED;
2680                 else
2681                         phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
2682
2683                 if (adv1G)
2684                         phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
2685                 else
2686                         phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
2687
2688                 ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2689                                                 E1000_EEE_ADV_DEV_I354,
2690                                                 phy_data);
2691         } else {
2692                 /* Turn off EEE advertisement. */
2693                 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2694                                              E1000_EEE_ADV_DEV_I354,
2695                                              &phy_data);
2696                 if (ret_val)
2697                         goto out;
2698
2699                 phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2700                               E1000_EEE_ADV_1000_SUPPORTED);
2701                 ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2702                                               E1000_EEE_ADV_DEV_I354,
2703                                               phy_data);
2704         }
2705
2706 out:
2707         return ret_val;
2708 }
2709
2710 /**
2711  *  igb_get_eee_status_i354 - Get EEE status
2712  *  @hw: pointer to the HW structure
2713  *  @status: EEE status
2714  *
2715  *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2716  *  been received.
2717  **/
2718 s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2719 {
2720         struct e1000_phy_info *phy = &hw->phy;
2721         s32 ret_val = 0;
2722         u16 phy_data;
2723
2724         /* Check if EEE is supported on this device. */
2725         if ((hw->phy.media_type != e1000_media_type_copper) ||
2726             ((phy->id != M88E1543_E_PHY_ID) &&
2727              (phy->id != M88E1512_E_PHY_ID)))
2728                 goto out;
2729
2730         ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2731                                      E1000_PCS_STATUS_DEV_I354,
2732                                      &phy_data);
2733         if (ret_val)
2734                 goto out;
2735
2736         *status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2737                               E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2738
2739 out:
2740         return ret_val;
2741 }
2742
2743 static const u8 e1000_emc_temp_data[4] = {
2744         E1000_EMC_INTERNAL_DATA,
2745         E1000_EMC_DIODE1_DATA,
2746         E1000_EMC_DIODE2_DATA,
2747         E1000_EMC_DIODE3_DATA
2748 };
2749 static const u8 e1000_emc_therm_limit[4] = {
2750         E1000_EMC_INTERNAL_THERM_LIMIT,
2751         E1000_EMC_DIODE1_THERM_LIMIT,
2752         E1000_EMC_DIODE2_THERM_LIMIT,
2753         E1000_EMC_DIODE3_THERM_LIMIT
2754 };
2755
2756 #ifdef CONFIG_IGB_HWMON
2757 /**
2758  *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2759  *  @hw: pointer to hardware structure
2760  *
2761  *  Updates the temperatures in mac.thermal_sensor_data
2762  **/
2763 static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2764 {
2765         u16 ets_offset;
2766         u16 ets_cfg;
2767         u16 ets_sensor;
2768         u8  num_sensors;
2769         u8  sensor_index;
2770         u8  sensor_location;
2771         u8  i;
2772         struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2773
2774         if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2775                 return E1000_NOT_IMPLEMENTED;
2776
2777         data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2778
2779         /* Return the internal sensor only if ETS is unsupported */
2780         hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2781         if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2782                 return 0;
2783
2784         hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2785         if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2786             != NVM_ETS_TYPE_EMC)
2787                 return E1000_NOT_IMPLEMENTED;
2788
2789         num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2790         if (num_sensors > E1000_MAX_SENSORS)
2791                 num_sensors = E1000_MAX_SENSORS;
2792
2793         for (i = 1; i < num_sensors; i++) {
2794                 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2795                 sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2796                                 NVM_ETS_DATA_INDEX_SHIFT);
2797                 sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2798                                    NVM_ETS_DATA_LOC_SHIFT);
2799
2800                 if (sensor_location != 0)
2801                         hw->phy.ops.read_i2c_byte(hw,
2802                                         e1000_emc_temp_data[sensor_index],
2803                                         E1000_I2C_THERMAL_SENSOR_ADDR,
2804                                         &data->sensor[i].temp);
2805         }
2806         return 0;
2807 }
2808
2809 /**
2810  *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2811  *  @hw: pointer to hardware structure
2812  *
2813  *  Sets the thermal sensor thresholds according to the NVM map
2814  *  and save off the threshold and location values into mac.thermal_sensor_data
2815  **/
2816 static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2817 {
2818         u16 ets_offset;
2819         u16 ets_cfg;
2820         u16 ets_sensor;
2821         u8  low_thresh_delta;
2822         u8  num_sensors;
2823         u8  sensor_index;
2824         u8  sensor_location;
2825         u8  therm_limit;
2826         u8  i;
2827         struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2828
2829         if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2830                 return E1000_NOT_IMPLEMENTED;
2831
2832         memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2833
2834         data->sensor[0].location = 0x1;
2835         data->sensor[0].caution_thresh =
2836                 (rd32(E1000_THHIGHTC) & 0xFF);
2837         data->sensor[0].max_op_thresh =
2838                 (rd32(E1000_THLOWTC) & 0xFF);
2839
2840         /* Return the internal sensor only if ETS is unsupported */
2841         hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2842         if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2843                 return 0;
2844
2845         hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2846         if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2847             != NVM_ETS_TYPE_EMC)
2848                 return E1000_NOT_IMPLEMENTED;
2849
2850         low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2851                             NVM_ETS_LTHRES_DELTA_SHIFT);
2852         num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2853
2854         for (i = 1; i <= num_sensors; i++) {
2855                 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2856                 sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2857                                 NVM_ETS_DATA_INDEX_SHIFT);
2858                 sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2859                                    NVM_ETS_DATA_LOC_SHIFT);
2860                 therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2861
2862                 hw->phy.ops.write_i2c_byte(hw,
2863                         e1000_emc_therm_limit[sensor_index],
2864                         E1000_I2C_THERMAL_SENSOR_ADDR,
2865                         therm_limit);
2866
2867                 if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2868                         data->sensor[i].location = sensor_location;
2869                         data->sensor[i].caution_thresh = therm_limit;
2870                         data->sensor[i].max_op_thresh = therm_limit -
2871                                                         low_thresh_delta;
2872                 }
2873         }
2874         return 0;
2875 }
2876
2877 #endif
2878 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2879         .init_hw              = igb_init_hw_82575,
2880         .check_for_link       = igb_check_for_link_82575,
2881         .rar_set              = igb_rar_set,
2882         .read_mac_addr        = igb_read_mac_addr_82575,
2883         .get_speed_and_duplex = igb_get_link_up_info_82575,
2884 #ifdef CONFIG_IGB_HWMON
2885         .get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2886         .init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2887 #endif
2888 };
2889
2890 static struct e1000_phy_operations e1000_phy_ops_82575 = {
2891         .acquire              = igb_acquire_phy_82575,
2892         .get_cfg_done         = igb_get_cfg_done_82575,
2893         .release              = igb_release_phy_82575,
2894         .write_i2c_byte       = igb_write_i2c_byte,
2895         .read_i2c_byte        = igb_read_i2c_byte,
2896 };
2897
2898 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2899         .acquire              = igb_acquire_nvm_82575,
2900         .read                 = igb_read_nvm_eerd,
2901         .release              = igb_release_nvm_82575,
2902         .write                = igb_write_nvm_spi,
2903 };
2904
2905 const struct e1000_info e1000_82575_info = {
2906         .get_invariants = igb_get_invariants_82575,
2907         .mac_ops = &e1000_mac_ops_82575,
2908         .phy_ops = &e1000_phy_ops_82575,
2909         .nvm_ops = &e1000_nvm_ops_82575,
2910 };
2911