These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / drivers / net / ethernet / intel / igb / e1000_82575.c
1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23
24 /* e1000_82575
25  * e1000_82576
26  */
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/types.h>
31 #include <linux/if_ether.h>
32 #include <linux/i2c.h>
33
34 #include "e1000_mac.h"
35 #include "e1000_82575.h"
36 #include "e1000_i210.h"
37
38 static s32  igb_get_invariants_82575(struct e1000_hw *);
39 static s32  igb_acquire_phy_82575(struct e1000_hw *);
40 static void igb_release_phy_82575(struct e1000_hw *);
41 static s32  igb_acquire_nvm_82575(struct e1000_hw *);
42 static void igb_release_nvm_82575(struct e1000_hw *);
43 static s32  igb_check_for_link_82575(struct e1000_hw *);
44 static s32  igb_get_cfg_done_82575(struct e1000_hw *);
45 static s32  igb_init_hw_82575(struct e1000_hw *);
46 static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
47 static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
48 static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
49 static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
50 static s32  igb_reset_hw_82575(struct e1000_hw *);
51 static s32  igb_reset_hw_82580(struct e1000_hw *);
52 static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
53 static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
54 static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
55 static s32  igb_setup_copper_link_82575(struct e1000_hw *);
56 static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
57 static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
58 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
59 static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
60 static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
61                                                  u16 *);
62 static s32  igb_get_phy_id_82575(struct e1000_hw *);
63 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
64 static bool igb_sgmii_active_82575(struct e1000_hw *);
65 static s32  igb_reset_init_script_82575(struct e1000_hw *);
66 static s32  igb_read_mac_addr_82575(struct e1000_hw *);
67 static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
68 static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
69 static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
70 static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
71 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
72 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
73 static const u16 e1000_82580_rxpbs_table[] = {
74         36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
75
76 /**
77  *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
78  *  @hw: pointer to the HW structure
79  *
80  *  Called to determine if the I2C pins are being used for I2C or as an
81  *  external MDIO interface since the two options are mutually exclusive.
82  **/
83 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
84 {
85         u32 reg = 0;
86         bool ext_mdio = false;
87
88         switch (hw->mac.type) {
89         case e1000_82575:
90         case e1000_82576:
91                 reg = rd32(E1000_MDIC);
92                 ext_mdio = !!(reg & E1000_MDIC_DEST);
93                 break;
94         case e1000_82580:
95         case e1000_i350:
96         case e1000_i354:
97         case e1000_i210:
98         case e1000_i211:
99                 reg = rd32(E1000_MDICNFG);
100                 ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
101                 break;
102         default:
103                 break;
104         }
105         return ext_mdio;
106 }
107
108 /**
109  *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
110  *  @hw: pointer to the HW structure
111  *
112  *  Poll the M88E1112 interfaces to see which interface achieved link.
113  */
114 static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
115 {
116         struct e1000_phy_info *phy = &hw->phy;
117         s32 ret_val;
118         u16 data;
119         u8 port = 0;
120
121         /* Check the copper medium. */
122         ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
123         if (ret_val)
124                 return ret_val;
125
126         ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
127         if (ret_val)
128                 return ret_val;
129
130         if (data & E1000_M88E1112_STATUS_LINK)
131                 port = E1000_MEDIA_PORT_COPPER;
132
133         /* Check the other medium. */
134         ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
135         if (ret_val)
136                 return ret_val;
137
138         ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
139         if (ret_val)
140                 return ret_val;
141
142
143         if (data & E1000_M88E1112_STATUS_LINK)
144                 port = E1000_MEDIA_PORT_OTHER;
145
146         /* Determine if a swap needs to happen. */
147         if (port && (hw->dev_spec._82575.media_port != port)) {
148                 hw->dev_spec._82575.media_port = port;
149                 hw->dev_spec._82575.media_changed = true;
150         }
151
152         if (port == E1000_MEDIA_PORT_COPPER) {
153                 /* reset page to 0 */
154                 ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
155                 if (ret_val)
156                         return ret_val;
157                 igb_check_for_link_82575(hw);
158         } else {
159                 igb_check_for_link_82575(hw);
160                 /* reset page to 0 */
161                 ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
162                 if (ret_val)
163                         return ret_val;
164         }
165
166         return 0;
167 }
168
169 /**
170  *  igb_init_phy_params_82575 - Init PHY func ptrs.
171  *  @hw: pointer to the HW structure
172  **/
173 static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
174 {
175         struct e1000_phy_info *phy = &hw->phy;
176         s32 ret_val = 0;
177         u32 ctrl_ext;
178
179         if (hw->phy.media_type != e1000_media_type_copper) {
180                 phy->type = e1000_phy_none;
181                 goto out;
182         }
183
184         phy->autoneg_mask       = AUTONEG_ADVERTISE_SPEED_DEFAULT;
185         phy->reset_delay_us     = 100;
186
187         ctrl_ext = rd32(E1000_CTRL_EXT);
188
189         if (igb_sgmii_active_82575(hw)) {
190                 phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
191                 ctrl_ext |= E1000_CTRL_I2C_ENA;
192         } else {
193                 phy->ops.reset = igb_phy_hw_reset;
194                 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
195         }
196
197         wr32(E1000_CTRL_EXT, ctrl_ext);
198         igb_reset_mdicnfg_82580(hw);
199
200         if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
201                 phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
202                 phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
203         } else {
204                 switch (hw->mac.type) {
205                 case e1000_82580:
206                 case e1000_i350:
207                 case e1000_i354:
208                         phy->ops.read_reg = igb_read_phy_reg_82580;
209                         phy->ops.write_reg = igb_write_phy_reg_82580;
210                         break;
211                 case e1000_i210:
212                 case e1000_i211:
213                         phy->ops.read_reg = igb_read_phy_reg_gs40g;
214                         phy->ops.write_reg = igb_write_phy_reg_gs40g;
215                         break;
216                 default:
217                         phy->ops.read_reg = igb_read_phy_reg_igp;
218                         phy->ops.write_reg = igb_write_phy_reg_igp;
219                 }
220         }
221
222         /* set lan id */
223         hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
224                         E1000_STATUS_FUNC_SHIFT;
225
226         /* Set phy->phy_addr and phy->id. */
227         ret_val = igb_get_phy_id_82575(hw);
228         if (ret_val)
229                 return ret_val;
230
231         /* Verify phy id and set remaining function pointers */
232         switch (phy->id) {
233         case M88E1543_E_PHY_ID:
234         case M88E1512_E_PHY_ID:
235         case I347AT4_E_PHY_ID:
236         case M88E1112_E_PHY_ID:
237         case M88E1111_I_PHY_ID:
238                 phy->type               = e1000_phy_m88;
239                 phy->ops.check_polarity = igb_check_polarity_m88;
240                 phy->ops.get_phy_info   = igb_get_phy_info_m88;
241                 if (phy->id != M88E1111_I_PHY_ID)
242                         phy->ops.get_cable_length =
243                                          igb_get_cable_length_m88_gen2;
244                 else
245                         phy->ops.get_cable_length = igb_get_cable_length_m88;
246                 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
247                 /* Check if this PHY is configured for media swap. */
248                 if (phy->id == M88E1112_E_PHY_ID) {
249                         u16 data;
250
251                         ret_val = phy->ops.write_reg(hw,
252                                                      E1000_M88E1112_PAGE_ADDR,
253                                                      2);
254                         if (ret_val)
255                                 goto out;
256
257                         ret_val = phy->ops.read_reg(hw,
258                                                     E1000_M88E1112_MAC_CTRL_1,
259                                                     &data);
260                         if (ret_val)
261                                 goto out;
262
263                         data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
264                                E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
265                         if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
266                             data == E1000_M88E1112_AUTO_COPPER_BASEX)
267                                 hw->mac.ops.check_for_link =
268                                                 igb_check_for_link_media_swap;
269                 }
270                 if (phy->id == M88E1512_E_PHY_ID) {
271                         ret_val = igb_initialize_M88E1512_phy(hw);
272                         if (ret_val)
273                                 goto out;
274                 }
275                 break;
276         case IGP03E1000_E_PHY_ID:
277                 phy->type = e1000_phy_igp_3;
278                 phy->ops.get_phy_info = igb_get_phy_info_igp;
279                 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
280                 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
281                 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
282                 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
283                 break;
284         case I82580_I_PHY_ID:
285         case I350_I_PHY_ID:
286                 phy->type = e1000_phy_82580;
287                 phy->ops.force_speed_duplex =
288                                          igb_phy_force_speed_duplex_82580;
289                 phy->ops.get_cable_length = igb_get_cable_length_82580;
290                 phy->ops.get_phy_info = igb_get_phy_info_82580;
291                 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
292                 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
293                 break;
294         case I210_I_PHY_ID:
295                 phy->type               = e1000_phy_i210;
296                 phy->ops.check_polarity = igb_check_polarity_m88;
297                 phy->ops.get_phy_info   = igb_get_phy_info_m88;
298                 phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
299                 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
300                 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
301                 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
302                 break;
303         default:
304                 ret_val = -E1000_ERR_PHY;
305                 goto out;
306         }
307
308 out:
309         return ret_val;
310 }
311
312 /**
313  *  igb_init_nvm_params_82575 - Init NVM func ptrs.
314  *  @hw: pointer to the HW structure
315  **/
316 static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
317 {
318         struct e1000_nvm_info *nvm = &hw->nvm;
319         u32 eecd = rd32(E1000_EECD);
320         u16 size;
321
322         size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
323                      E1000_EECD_SIZE_EX_SHIFT);
324
325         /* Added to a constant, "size" becomes the left-shift value
326          * for setting word_size.
327          */
328         size += NVM_WORD_SIZE_BASE_SHIFT;
329
330         /* Just in case size is out of range, cap it to the largest
331          * EEPROM size supported
332          */
333         if (size > 15)
334                 size = 15;
335
336         nvm->word_size = 1 << size;
337         nvm->opcode_bits = 8;
338         nvm->delay_usec = 1;
339
340         switch (nvm->override) {
341         case e1000_nvm_override_spi_large:
342                 nvm->page_size = 32;
343                 nvm->address_bits = 16;
344                 break;
345         case e1000_nvm_override_spi_small:
346                 nvm->page_size = 8;
347                 nvm->address_bits = 8;
348                 break;
349         default:
350                 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
351                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
352                                     16 : 8;
353                 break;
354         }
355         if (nvm->word_size == (1 << 15))
356                 nvm->page_size = 128;
357
358         nvm->type = e1000_nvm_eeprom_spi;
359
360         /* NVM Function Pointers */
361         nvm->ops.acquire = igb_acquire_nvm_82575;
362         nvm->ops.release = igb_release_nvm_82575;
363         nvm->ops.write = igb_write_nvm_spi;
364         nvm->ops.validate = igb_validate_nvm_checksum;
365         nvm->ops.update = igb_update_nvm_checksum;
366         if (nvm->word_size < (1 << 15))
367                 nvm->ops.read = igb_read_nvm_eerd;
368         else
369                 nvm->ops.read = igb_read_nvm_spi;
370
371         /* override generic family function pointers for specific descendants */
372         switch (hw->mac.type) {
373         case e1000_82580:
374                 nvm->ops.validate = igb_validate_nvm_checksum_82580;
375                 nvm->ops.update = igb_update_nvm_checksum_82580;
376                 break;
377         case e1000_i354:
378         case e1000_i350:
379                 nvm->ops.validate = igb_validate_nvm_checksum_i350;
380                 nvm->ops.update = igb_update_nvm_checksum_i350;
381                 break;
382         default:
383                 break;
384         }
385
386         return 0;
387 }
388
389 /**
390  *  igb_init_mac_params_82575 - Init MAC func ptrs.
391  *  @hw: pointer to the HW structure
392  **/
393 static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
394 {
395         struct e1000_mac_info *mac = &hw->mac;
396         struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
397
398         /* Set mta register count */
399         mac->mta_reg_count = 128;
400         /* Set rar entry count */
401         switch (mac->type) {
402         case e1000_82576:
403                 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
404                 break;
405         case e1000_82580:
406                 mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
407                 break;
408         case e1000_i350:
409         case e1000_i354:
410                 mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
411                 break;
412         default:
413                 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
414                 break;
415         }
416         /* reset */
417         if (mac->type >= e1000_82580)
418                 mac->ops.reset_hw = igb_reset_hw_82580;
419         else
420                 mac->ops.reset_hw = igb_reset_hw_82575;
421
422         if (mac->type >= e1000_i210) {
423                 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
424                 mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
425
426         } else {
427                 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
428                 mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
429         }
430
431         /* Set if part includes ASF firmware */
432         mac->asf_firmware_present = true;
433         /* Set if manageability features are enabled. */
434         mac->arc_subsystem_valid =
435                 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
436                         ? true : false;
437         /* enable EEE on i350 parts and later parts */
438         if (mac->type >= e1000_i350)
439                 dev_spec->eee_disable = false;
440         else
441                 dev_spec->eee_disable = true;
442         /* Allow a single clear of the SW semaphore on I210 and newer */
443         if (mac->type >= e1000_i210)
444                 dev_spec->clear_semaphore_once = true;
445         /* physical interface link setup */
446         mac->ops.setup_physical_interface =
447                 (hw->phy.media_type == e1000_media_type_copper)
448                         ? igb_setup_copper_link_82575
449                         : igb_setup_serdes_link_82575;
450
451         if (mac->type == e1000_82580) {
452                 switch (hw->device_id) {
453                 /* feature not supported on these id's */
454                 case E1000_DEV_ID_DH89XXCC_SGMII:
455                 case E1000_DEV_ID_DH89XXCC_SERDES:
456                 case E1000_DEV_ID_DH89XXCC_BACKPLANE:
457                 case E1000_DEV_ID_DH89XXCC_SFP:
458                         break;
459                 default:
460                         hw->dev_spec._82575.mas_capable = true;
461                         break;
462                 }
463         }
464         return 0;
465 }
466
467 /**
468  *  igb_set_sfp_media_type_82575 - derives SFP module media type.
469  *  @hw: pointer to the HW structure
470  *
471  *  The media type is chosen based on SFP module.
472  *  compatibility flags retrieved from SFP ID EEPROM.
473  **/
474 static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
475 {
476         s32 ret_val = E1000_ERR_CONFIG;
477         u32 ctrl_ext = 0;
478         struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
479         struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
480         u8 tranceiver_type = 0;
481         s32 timeout = 3;
482
483         /* Turn I2C interface ON and power on sfp cage */
484         ctrl_ext = rd32(E1000_CTRL_EXT);
485         ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
486         wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
487
488         wrfl();
489
490         /* Read SFP module data */
491         while (timeout) {
492                 ret_val = igb_read_sfp_data_byte(hw,
493                         E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
494                         &tranceiver_type);
495                 if (ret_val == 0)
496                         break;
497                 msleep(100);
498                 timeout--;
499         }
500         if (ret_val != 0)
501                 goto out;
502
503         ret_val = igb_read_sfp_data_byte(hw,
504                         E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
505                         (u8 *)eth_flags);
506         if (ret_val != 0)
507                 goto out;
508
509         /* Check if there is some SFP module plugged and powered */
510         if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
511             (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
512                 dev_spec->module_plugged = true;
513                 if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
514                         hw->phy.media_type = e1000_media_type_internal_serdes;
515                 } else if (eth_flags->e100_base_fx) {
516                         dev_spec->sgmii_active = true;
517                         hw->phy.media_type = e1000_media_type_internal_serdes;
518                 } else if (eth_flags->e1000_base_t) {
519                         dev_spec->sgmii_active = true;
520                         hw->phy.media_type = e1000_media_type_copper;
521                 } else {
522                         hw->phy.media_type = e1000_media_type_unknown;
523                         hw_dbg("PHY module has not been recognized\n");
524                         goto out;
525                 }
526         } else {
527                 hw->phy.media_type = e1000_media_type_unknown;
528         }
529         ret_val = 0;
530 out:
531         /* Restore I2C interface setting */
532         wr32(E1000_CTRL_EXT, ctrl_ext);
533         return ret_val;
534 }
535
536 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
537 {
538         struct e1000_mac_info *mac = &hw->mac;
539         struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
540         s32 ret_val;
541         u32 ctrl_ext = 0;
542         u32 link_mode = 0;
543
544         switch (hw->device_id) {
545         case E1000_DEV_ID_82575EB_COPPER:
546         case E1000_DEV_ID_82575EB_FIBER_SERDES:
547         case E1000_DEV_ID_82575GB_QUAD_COPPER:
548                 mac->type = e1000_82575;
549                 break;
550         case E1000_DEV_ID_82576:
551         case E1000_DEV_ID_82576_NS:
552         case E1000_DEV_ID_82576_NS_SERDES:
553         case E1000_DEV_ID_82576_FIBER:
554         case E1000_DEV_ID_82576_SERDES:
555         case E1000_DEV_ID_82576_QUAD_COPPER:
556         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
557         case E1000_DEV_ID_82576_SERDES_QUAD:
558                 mac->type = e1000_82576;
559                 break;
560         case E1000_DEV_ID_82580_COPPER:
561         case E1000_DEV_ID_82580_FIBER:
562         case E1000_DEV_ID_82580_QUAD_FIBER:
563         case E1000_DEV_ID_82580_SERDES:
564         case E1000_DEV_ID_82580_SGMII:
565         case E1000_DEV_ID_82580_COPPER_DUAL:
566         case E1000_DEV_ID_DH89XXCC_SGMII:
567         case E1000_DEV_ID_DH89XXCC_SERDES:
568         case E1000_DEV_ID_DH89XXCC_BACKPLANE:
569         case E1000_DEV_ID_DH89XXCC_SFP:
570                 mac->type = e1000_82580;
571                 break;
572         case E1000_DEV_ID_I350_COPPER:
573         case E1000_DEV_ID_I350_FIBER:
574         case E1000_DEV_ID_I350_SERDES:
575         case E1000_DEV_ID_I350_SGMII:
576                 mac->type = e1000_i350;
577                 break;
578         case E1000_DEV_ID_I210_COPPER:
579         case E1000_DEV_ID_I210_FIBER:
580         case E1000_DEV_ID_I210_SERDES:
581         case E1000_DEV_ID_I210_SGMII:
582         case E1000_DEV_ID_I210_COPPER_FLASHLESS:
583         case E1000_DEV_ID_I210_SERDES_FLASHLESS:
584                 mac->type = e1000_i210;
585                 break;
586         case E1000_DEV_ID_I211_COPPER:
587                 mac->type = e1000_i211;
588                 break;
589         case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
590         case E1000_DEV_ID_I354_SGMII:
591         case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
592                 mac->type = e1000_i354;
593                 break;
594         default:
595                 return -E1000_ERR_MAC_INIT;
596         }
597
598         /* Set media type */
599         /* The 82575 uses bits 22:23 for link mode. The mode can be changed
600          * based on the EEPROM. We cannot rely upon device ID. There
601          * is no distinguishable difference between fiber and internal
602          * SerDes mode on the 82575. There can be an external PHY attached
603          * on the SGMII interface. For this, we'll set sgmii_active to true.
604          */
605         hw->phy.media_type = e1000_media_type_copper;
606         dev_spec->sgmii_active = false;
607         dev_spec->module_plugged = false;
608
609         ctrl_ext = rd32(E1000_CTRL_EXT);
610
611         link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
612         switch (link_mode) {
613         case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
614                 hw->phy.media_type = e1000_media_type_internal_serdes;
615                 break;
616         case E1000_CTRL_EXT_LINK_MODE_SGMII:
617                 /* Get phy control interface type set (MDIO vs. I2C)*/
618                 if (igb_sgmii_uses_mdio_82575(hw)) {
619                         hw->phy.media_type = e1000_media_type_copper;
620                         dev_spec->sgmii_active = true;
621                         break;
622                 }
623                 /* fall through for I2C based SGMII */
624         case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
625                 /* read media type from SFP EEPROM */
626                 ret_val = igb_set_sfp_media_type_82575(hw);
627                 if ((ret_val != 0) ||
628                     (hw->phy.media_type == e1000_media_type_unknown)) {
629                         /* If media type was not identified then return media
630                          * type defined by the CTRL_EXT settings.
631                          */
632                         hw->phy.media_type = e1000_media_type_internal_serdes;
633
634                         if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
635                                 hw->phy.media_type = e1000_media_type_copper;
636                                 dev_spec->sgmii_active = true;
637                         }
638
639                         break;
640                 }
641
642                 /* do not change link mode for 100BaseFX */
643                 if (dev_spec->eth_flags.e100_base_fx)
644                         break;
645
646                 /* change current link mode setting */
647                 ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
648
649                 if (hw->phy.media_type == e1000_media_type_copper)
650                         ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
651                 else
652                         ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
653
654                 wr32(E1000_CTRL_EXT, ctrl_ext);
655
656                 break;
657         default:
658                 break;
659         }
660
661         /* mac initialization and operations */
662         ret_val = igb_init_mac_params_82575(hw);
663         if (ret_val)
664                 goto out;
665
666         /* NVM initialization */
667         ret_val = igb_init_nvm_params_82575(hw);
668         switch (hw->mac.type) {
669         case e1000_i210:
670         case e1000_i211:
671                 ret_val = igb_init_nvm_params_i210(hw);
672                 break;
673         default:
674                 break;
675         }
676
677         if (ret_val)
678                 goto out;
679
680         /* if part supports SR-IOV then initialize mailbox parameters */
681         switch (mac->type) {
682         case e1000_82576:
683         case e1000_i350:
684                 igb_init_mbx_params_pf(hw);
685                 break;
686         default:
687                 break;
688         }
689
690         /* setup PHY parameters */
691         ret_val = igb_init_phy_params_82575(hw);
692
693 out:
694         return ret_val;
695 }
696
697 /**
698  *  igb_acquire_phy_82575 - Acquire rights to access PHY
699  *  @hw: pointer to the HW structure
700  *
701  *  Acquire access rights to the correct PHY.  This is a
702  *  function pointer entry point called by the api module.
703  **/
704 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
705 {
706         u16 mask = E1000_SWFW_PHY0_SM;
707
708         if (hw->bus.func == E1000_FUNC_1)
709                 mask = E1000_SWFW_PHY1_SM;
710         else if (hw->bus.func == E1000_FUNC_2)
711                 mask = E1000_SWFW_PHY2_SM;
712         else if (hw->bus.func == E1000_FUNC_3)
713                 mask = E1000_SWFW_PHY3_SM;
714
715         return hw->mac.ops.acquire_swfw_sync(hw, mask);
716 }
717
718 /**
719  *  igb_release_phy_82575 - Release rights to access PHY
720  *  @hw: pointer to the HW structure
721  *
722  *  A wrapper to release access rights to the correct PHY.  This is a
723  *  function pointer entry point called by the api module.
724  **/
725 static void igb_release_phy_82575(struct e1000_hw *hw)
726 {
727         u16 mask = E1000_SWFW_PHY0_SM;
728
729         if (hw->bus.func == E1000_FUNC_1)
730                 mask = E1000_SWFW_PHY1_SM;
731         else if (hw->bus.func == E1000_FUNC_2)
732                 mask = E1000_SWFW_PHY2_SM;
733         else if (hw->bus.func == E1000_FUNC_3)
734                 mask = E1000_SWFW_PHY3_SM;
735
736         hw->mac.ops.release_swfw_sync(hw, mask);
737 }
738
739 /**
740  *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
741  *  @hw: pointer to the HW structure
742  *  @offset: register offset to be read
743  *  @data: pointer to the read data
744  *
745  *  Reads the PHY register at offset using the serial gigabit media independent
746  *  interface and stores the retrieved information in data.
747  **/
748 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
749                                           u16 *data)
750 {
751         s32 ret_val = -E1000_ERR_PARAM;
752
753         if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
754                 hw_dbg("PHY Address %u is out of range\n", offset);
755                 goto out;
756         }
757
758         ret_val = hw->phy.ops.acquire(hw);
759         if (ret_val)
760                 goto out;
761
762         ret_val = igb_read_phy_reg_i2c(hw, offset, data);
763
764         hw->phy.ops.release(hw);
765
766 out:
767         return ret_val;
768 }
769
770 /**
771  *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
772  *  @hw: pointer to the HW structure
773  *  @offset: register offset to write to
774  *  @data: data to write at register offset
775  *
776  *  Writes the data to PHY register at the offset using the serial gigabit
777  *  media independent interface.
778  **/
779 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
780                                            u16 data)
781 {
782         s32 ret_val = -E1000_ERR_PARAM;
783
784
785         if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
786                 hw_dbg("PHY Address %d is out of range\n", offset);
787                 goto out;
788         }
789
790         ret_val = hw->phy.ops.acquire(hw);
791         if (ret_val)
792                 goto out;
793
794         ret_val = igb_write_phy_reg_i2c(hw, offset, data);
795
796         hw->phy.ops.release(hw);
797
798 out:
799         return ret_val;
800 }
801
802 /**
803  *  igb_get_phy_id_82575 - Retrieve PHY addr and id
804  *  @hw: pointer to the HW structure
805  *
806  *  Retrieves the PHY address and ID for both PHY's which do and do not use
807  *  sgmi interface.
808  **/
809 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
810 {
811         struct e1000_phy_info *phy = &hw->phy;
812         s32  ret_val = 0;
813         u16 phy_id;
814         u32 ctrl_ext;
815         u32 mdic;
816
817         /* Extra read required for some PHY's on i354 */
818         if (hw->mac.type == e1000_i354)
819                 igb_get_phy_id(hw);
820
821         /* For SGMII PHYs, we try the list of possible addresses until
822          * we find one that works.  For non-SGMII PHYs
823          * (e.g. integrated copper PHYs), an address of 1 should
824          * work.  The result of this function should mean phy->phy_addr
825          * and phy->id are set correctly.
826          */
827         if (!(igb_sgmii_active_82575(hw))) {
828                 phy->addr = 1;
829                 ret_val = igb_get_phy_id(hw);
830                 goto out;
831         }
832
833         if (igb_sgmii_uses_mdio_82575(hw)) {
834                 switch (hw->mac.type) {
835                 case e1000_82575:
836                 case e1000_82576:
837                         mdic = rd32(E1000_MDIC);
838                         mdic &= E1000_MDIC_PHY_MASK;
839                         phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
840                         break;
841                 case e1000_82580:
842                 case e1000_i350:
843                 case e1000_i354:
844                 case e1000_i210:
845                 case e1000_i211:
846                         mdic = rd32(E1000_MDICNFG);
847                         mdic &= E1000_MDICNFG_PHY_MASK;
848                         phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
849                         break;
850                 default:
851                         ret_val = -E1000_ERR_PHY;
852                         goto out;
853                 }
854                 ret_val = igb_get_phy_id(hw);
855                 goto out;
856         }
857
858         /* Power on sgmii phy if it is disabled */
859         ctrl_ext = rd32(E1000_CTRL_EXT);
860         wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
861         wrfl();
862         msleep(300);
863
864         /* The address field in the I2CCMD register is 3 bits and 0 is invalid.
865          * Therefore, we need to test 1-7
866          */
867         for (phy->addr = 1; phy->addr < 8; phy->addr++) {
868                 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
869                 if (ret_val == 0) {
870                         hw_dbg("Vendor ID 0x%08X read at address %u\n",
871                                phy_id, phy->addr);
872                         /* At the time of this writing, The M88 part is
873                          * the only supported SGMII PHY product.
874                          */
875                         if (phy_id == M88_VENDOR)
876                                 break;
877                 } else {
878                         hw_dbg("PHY address %u was unreadable\n", phy->addr);
879                 }
880         }
881
882         /* A valid PHY type couldn't be found. */
883         if (phy->addr == 8) {
884                 phy->addr = 0;
885                 ret_val = -E1000_ERR_PHY;
886                 goto out;
887         } else {
888                 ret_val = igb_get_phy_id(hw);
889         }
890
891         /* restore previous sfp cage power state */
892         wr32(E1000_CTRL_EXT, ctrl_ext);
893
894 out:
895         return ret_val;
896 }
897
898 /**
899  *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
900  *  @hw: pointer to the HW structure
901  *
902  *  Resets the PHY using the serial gigabit media independent interface.
903  **/
904 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
905 {
906         struct e1000_phy_info *phy = &hw->phy;
907         s32 ret_val;
908
909         /* This isn't a true "hard" reset, but is the only reset
910          * available to us at this time.
911          */
912
913         hw_dbg("Soft resetting SGMII attached PHY...\n");
914
915         /* SFP documentation requires the following to configure the SPF module
916          * to work on SGMII.  No further documentation is given.
917          */
918         ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
919         if (ret_val)
920                 goto out;
921
922         ret_val = igb_phy_sw_reset(hw);
923         if (ret_val)
924                 goto out;
925
926         if (phy->id == M88E1512_E_PHY_ID)
927                 ret_val = igb_initialize_M88E1512_phy(hw);
928 out:
929         return ret_val;
930 }
931
932 /**
933  *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
934  *  @hw: pointer to the HW structure
935  *  @active: true to enable LPLU, false to disable
936  *
937  *  Sets the LPLU D0 state according to the active flag.  When
938  *  activating LPLU this function also disables smart speed
939  *  and vice versa.  LPLU will not be activated unless the
940  *  device autonegotiation advertisement meets standards of
941  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
942  *  This is a function pointer entry point only called by
943  *  PHY setup routines.
944  **/
945 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
946 {
947         struct e1000_phy_info *phy = &hw->phy;
948         s32 ret_val;
949         u16 data;
950
951         ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
952         if (ret_val)
953                 goto out;
954
955         if (active) {
956                 data |= IGP02E1000_PM_D0_LPLU;
957                 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
958                                                  data);
959                 if (ret_val)
960                         goto out;
961
962                 /* When LPLU is enabled, we should disable SmartSpeed */
963                 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
964                                                 &data);
965                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
966                 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
967                                                  data);
968                 if (ret_val)
969                         goto out;
970         } else {
971                 data &= ~IGP02E1000_PM_D0_LPLU;
972                 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
973                                                  data);
974                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
975                  * during Dx states where the power conservation is most
976                  * important.  During driver activity we should enable
977                  * SmartSpeed, so performance is maintained.
978                  */
979                 if (phy->smart_speed == e1000_smart_speed_on) {
980                         ret_val = phy->ops.read_reg(hw,
981                                         IGP01E1000_PHY_PORT_CONFIG, &data);
982                         if (ret_val)
983                                 goto out;
984
985                         data |= IGP01E1000_PSCFR_SMART_SPEED;
986                         ret_val = phy->ops.write_reg(hw,
987                                         IGP01E1000_PHY_PORT_CONFIG, data);
988                         if (ret_val)
989                                 goto out;
990                 } else if (phy->smart_speed == e1000_smart_speed_off) {
991                         ret_val = phy->ops.read_reg(hw,
992                                         IGP01E1000_PHY_PORT_CONFIG, &data);
993                         if (ret_val)
994                                 goto out;
995
996                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
997                         ret_val = phy->ops.write_reg(hw,
998                                         IGP01E1000_PHY_PORT_CONFIG, data);
999                         if (ret_val)
1000                                 goto out;
1001                 }
1002         }
1003
1004 out:
1005         return ret_val;
1006 }
1007
1008 /**
1009  *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
1010  *  @hw: pointer to the HW structure
1011  *  @active: true to enable LPLU, false to disable
1012  *
1013  *  Sets the LPLU D0 state according to the active flag.  When
1014  *  activating LPLU this function also disables smart speed
1015  *  and vice versa.  LPLU will not be activated unless the
1016  *  device autonegotiation advertisement meets standards of
1017  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1018  *  This is a function pointer entry point only called by
1019  *  PHY setup routines.
1020  **/
1021 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1022 {
1023         struct e1000_phy_info *phy = &hw->phy;
1024         u16 data;
1025
1026         data = rd32(E1000_82580_PHY_POWER_MGMT);
1027
1028         if (active) {
1029                 data |= E1000_82580_PM_D0_LPLU;
1030
1031                 /* When LPLU is enabled, we should disable SmartSpeed */
1032                 data &= ~E1000_82580_PM_SPD;
1033         } else {
1034                 data &= ~E1000_82580_PM_D0_LPLU;
1035
1036                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1037                  * during Dx states where the power conservation is most
1038                  * important.  During driver activity we should enable
1039                  * SmartSpeed, so performance is maintained.
1040                  */
1041                 if (phy->smart_speed == e1000_smart_speed_on)
1042                         data |= E1000_82580_PM_SPD;
1043                 else if (phy->smart_speed == e1000_smart_speed_off)
1044                         data &= ~E1000_82580_PM_SPD; }
1045
1046         wr32(E1000_82580_PHY_POWER_MGMT, data);
1047         return 0;
1048 }
1049
1050 /**
1051  *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1052  *  @hw: pointer to the HW structure
1053  *  @active: boolean used to enable/disable lplu
1054  *
1055  *  Success returns 0, Failure returns 1
1056  *
1057  *  The low power link up (lplu) state is set to the power management level D3
1058  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1059  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1060  *  is used during Dx states where the power conservation is most important.
1061  *  During driver activity, SmartSpeed should be enabled so performance is
1062  *  maintained.
1063  **/
1064 static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1065 {
1066         struct e1000_phy_info *phy = &hw->phy;
1067         u16 data;
1068
1069         data = rd32(E1000_82580_PHY_POWER_MGMT);
1070
1071         if (!active) {
1072                 data &= ~E1000_82580_PM_D3_LPLU;
1073                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1074                  * during Dx states where the power conservation is most
1075                  * important.  During driver activity we should enable
1076                  * SmartSpeed, so performance is maintained.
1077                  */
1078                 if (phy->smart_speed == e1000_smart_speed_on)
1079                         data |= E1000_82580_PM_SPD;
1080                 else if (phy->smart_speed == e1000_smart_speed_off)
1081                         data &= ~E1000_82580_PM_SPD;
1082         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1083                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1084                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1085                 data |= E1000_82580_PM_D3_LPLU;
1086                 /* When LPLU is enabled, we should disable SmartSpeed */
1087                 data &= ~E1000_82580_PM_SPD;
1088         }
1089
1090         wr32(E1000_82580_PHY_POWER_MGMT, data);
1091         return 0;
1092 }
1093
1094 /**
1095  *  igb_acquire_nvm_82575 - Request for access to EEPROM
1096  *  @hw: pointer to the HW structure
1097  *
1098  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1099  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1100  *  Return successful if access grant bit set, else clear the request for
1101  *  EEPROM access and return -E1000_ERR_NVM (-1).
1102  **/
1103 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1104 {
1105         s32 ret_val;
1106
1107         ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1108         if (ret_val)
1109                 goto out;
1110
1111         ret_val = igb_acquire_nvm(hw);
1112
1113         if (ret_val)
1114                 hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1115
1116 out:
1117         return ret_val;
1118 }
1119
1120 /**
1121  *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1122  *  @hw: pointer to the HW structure
1123  *
1124  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1125  *  then release the semaphores acquired.
1126  **/
1127 static void igb_release_nvm_82575(struct e1000_hw *hw)
1128 {
1129         igb_release_nvm(hw);
1130         hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1131 }
1132
1133 /**
1134  *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1135  *  @hw: pointer to the HW structure
1136  *  @mask: specifies which semaphore to acquire
1137  *
1138  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1139  *  will also specify which port we're acquiring the lock for.
1140  **/
1141 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1142 {
1143         u32 swfw_sync;
1144         u32 swmask = mask;
1145         u32 fwmask = mask << 16;
1146         s32 ret_val = 0;
1147         s32 i = 0, timeout = 200;
1148
1149         while (i < timeout) {
1150                 if (igb_get_hw_semaphore(hw)) {
1151                         ret_val = -E1000_ERR_SWFW_SYNC;
1152                         goto out;
1153                 }
1154
1155                 swfw_sync = rd32(E1000_SW_FW_SYNC);
1156                 if (!(swfw_sync & (fwmask | swmask)))
1157                         break;
1158
1159                 /* Firmware currently using resource (fwmask)
1160                  * or other software thread using resource (swmask)
1161                  */
1162                 igb_put_hw_semaphore(hw);
1163                 mdelay(5);
1164                 i++;
1165         }
1166
1167         if (i == timeout) {
1168                 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1169                 ret_val = -E1000_ERR_SWFW_SYNC;
1170                 goto out;
1171         }
1172
1173         swfw_sync |= swmask;
1174         wr32(E1000_SW_FW_SYNC, swfw_sync);
1175
1176         igb_put_hw_semaphore(hw);
1177
1178 out:
1179         return ret_val;
1180 }
1181
1182 /**
1183  *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1184  *  @hw: pointer to the HW structure
1185  *  @mask: specifies which semaphore to acquire
1186  *
1187  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1188  *  will also specify which port we're releasing the lock for.
1189  **/
1190 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1191 {
1192         u32 swfw_sync;
1193
1194         while (igb_get_hw_semaphore(hw) != 0)
1195                 ; /* Empty */
1196
1197         swfw_sync = rd32(E1000_SW_FW_SYNC);
1198         swfw_sync &= ~mask;
1199         wr32(E1000_SW_FW_SYNC, swfw_sync);
1200
1201         igb_put_hw_semaphore(hw);
1202 }
1203
1204 /**
1205  *  igb_get_cfg_done_82575 - Read config done bit
1206  *  @hw: pointer to the HW structure
1207  *
1208  *  Read the management control register for the config done bit for
1209  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1210  *  to read the config done bit, so an error is *ONLY* logged and returns
1211  *  0.  If we were to return with error, EEPROM-less silicon
1212  *  would not be able to be reset or change link.
1213  **/
1214 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1215 {
1216         s32 timeout = PHY_CFG_TIMEOUT;
1217         u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1218
1219         if (hw->bus.func == 1)
1220                 mask = E1000_NVM_CFG_DONE_PORT_1;
1221         else if (hw->bus.func == E1000_FUNC_2)
1222                 mask = E1000_NVM_CFG_DONE_PORT_2;
1223         else if (hw->bus.func == E1000_FUNC_3)
1224                 mask = E1000_NVM_CFG_DONE_PORT_3;
1225
1226         while (timeout) {
1227                 if (rd32(E1000_EEMNGCTL) & mask)
1228                         break;
1229                 usleep_range(1000, 2000);
1230                 timeout--;
1231         }
1232         if (!timeout)
1233                 hw_dbg("MNG configuration cycle has not completed.\n");
1234
1235         /* If EEPROM is not marked present, init the PHY manually */
1236         if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1237             (hw->phy.type == e1000_phy_igp_3))
1238                 igb_phy_init_script_igp3(hw);
1239
1240         return 0;
1241 }
1242
1243 /**
1244  *  igb_get_link_up_info_82575 - Get link speed/duplex info
1245  *  @hw: pointer to the HW structure
1246  *  @speed: stores the current speed
1247  *  @duplex: stores the current duplex
1248  *
1249  *  This is a wrapper function, if using the serial gigabit media independent
1250  *  interface, use PCS to retrieve the link speed and duplex information.
1251  *  Otherwise, use the generic function to get the link speed and duplex info.
1252  **/
1253 static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1254                                         u16 *duplex)
1255 {
1256         s32 ret_val;
1257
1258         if (hw->phy.media_type != e1000_media_type_copper)
1259                 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1260                                                                duplex);
1261         else
1262                 ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1263                                                                     duplex);
1264
1265         return ret_val;
1266 }
1267
1268 /**
1269  *  igb_check_for_link_82575 - Check for link
1270  *  @hw: pointer to the HW structure
1271  *
1272  *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1273  *  use the generic interface for determining link.
1274  **/
1275 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1276 {
1277         s32 ret_val;
1278         u16 speed, duplex;
1279
1280         if (hw->phy.media_type != e1000_media_type_copper) {
1281                 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1282                                                              &duplex);
1283                 /* Use this flag to determine if link needs to be checked or
1284                  * not.  If  we have link clear the flag so that we do not
1285                  * continue to check for link.
1286                  */
1287                 hw->mac.get_link_status = !hw->mac.serdes_has_link;
1288
1289                 /* Configure Flow Control now that Auto-Neg has completed.
1290                  * First, we need to restore the desired flow control
1291                  * settings because we may have had to re-autoneg with a
1292                  * different link partner.
1293                  */
1294                 ret_val = igb_config_fc_after_link_up(hw);
1295                 if (ret_val)
1296                         hw_dbg("Error configuring flow control\n");
1297         } else {
1298                 ret_val = igb_check_for_copper_link(hw);
1299         }
1300
1301         return ret_val;
1302 }
1303
1304 /**
1305  *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1306  *  @hw: pointer to the HW structure
1307  **/
1308 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1309 {
1310         u32 reg;
1311
1312
1313         if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1314             !igb_sgmii_active_82575(hw))
1315                 return;
1316
1317         /* Enable PCS to turn on link */
1318         reg = rd32(E1000_PCS_CFG0);
1319         reg |= E1000_PCS_CFG_PCS_EN;
1320         wr32(E1000_PCS_CFG0, reg);
1321
1322         /* Power up the laser */
1323         reg = rd32(E1000_CTRL_EXT);
1324         reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1325         wr32(E1000_CTRL_EXT, reg);
1326
1327         /* flush the write to verify completion */
1328         wrfl();
1329         usleep_range(1000, 2000);
1330 }
1331
1332 /**
1333  *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1334  *  @hw: pointer to the HW structure
1335  *  @speed: stores the current speed
1336  *  @duplex: stores the current duplex
1337  *
1338  *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1339  *  duplex, then store the values in the pointers provided.
1340  **/
1341 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1342                                                 u16 *duplex)
1343 {
1344         struct e1000_mac_info *mac = &hw->mac;
1345         u32 pcs, status;
1346
1347         /* Set up defaults for the return values of this function */
1348         mac->serdes_has_link = false;
1349         *speed = 0;
1350         *duplex = 0;
1351
1352         /* Read the PCS Status register for link state. For non-copper mode,
1353          * the status register is not accurate. The PCS status register is
1354          * used instead.
1355          */
1356         pcs = rd32(E1000_PCS_LSTAT);
1357
1358         /* The link up bit determines when link is up on autoneg. The sync ok
1359          * gets set once both sides sync up and agree upon link. Stable link
1360          * can be determined by checking for both link up and link sync ok
1361          */
1362         if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1363                 mac->serdes_has_link = true;
1364
1365                 /* Detect and store PCS speed */
1366                 if (pcs & E1000_PCS_LSTS_SPEED_1000)
1367                         *speed = SPEED_1000;
1368                 else if (pcs & E1000_PCS_LSTS_SPEED_100)
1369                         *speed = SPEED_100;
1370                 else
1371                         *speed = SPEED_10;
1372
1373                 /* Detect and store PCS duplex */
1374                 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1375                         *duplex = FULL_DUPLEX;
1376                 else
1377                         *duplex = HALF_DUPLEX;
1378
1379         /* Check if it is an I354 2.5Gb backplane connection. */
1380                 if (mac->type == e1000_i354) {
1381                         status = rd32(E1000_STATUS);
1382                         if ((status & E1000_STATUS_2P5_SKU) &&
1383                             !(status & E1000_STATUS_2P5_SKU_OVER)) {
1384                                 *speed = SPEED_2500;
1385                                 *duplex = FULL_DUPLEX;
1386                                 hw_dbg("2500 Mbs, ");
1387                                 hw_dbg("Full Duplex\n");
1388                         }
1389                 }
1390
1391         }
1392
1393         return 0;
1394 }
1395
1396 /**
1397  *  igb_shutdown_serdes_link_82575 - Remove link during power down
1398  *  @hw: pointer to the HW structure
1399  *
1400  *  In the case of fiber serdes, shut down optics and PCS on driver unload
1401  *  when management pass thru is not enabled.
1402  **/
1403 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1404 {
1405         u32 reg;
1406
1407         if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1408             igb_sgmii_active_82575(hw))
1409                 return;
1410
1411         if (!igb_enable_mng_pass_thru(hw)) {
1412                 /* Disable PCS to turn off link */
1413                 reg = rd32(E1000_PCS_CFG0);
1414                 reg &= ~E1000_PCS_CFG_PCS_EN;
1415                 wr32(E1000_PCS_CFG0, reg);
1416
1417                 /* shutdown the laser */
1418                 reg = rd32(E1000_CTRL_EXT);
1419                 reg |= E1000_CTRL_EXT_SDP3_DATA;
1420                 wr32(E1000_CTRL_EXT, reg);
1421
1422                 /* flush the write to verify completion */
1423                 wrfl();
1424                 usleep_range(1000, 2000);
1425         }
1426 }
1427
1428 /**
1429  *  igb_reset_hw_82575 - Reset hardware
1430  *  @hw: pointer to the HW structure
1431  *
1432  *  This resets the hardware into a known state.  This is a
1433  *  function pointer entry point called by the api module.
1434  **/
1435 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1436 {
1437         u32 ctrl;
1438         s32 ret_val;
1439
1440         /* Prevent the PCI-E bus from sticking if there is no TLP connection
1441          * on the last TLP read/write transaction when MAC is reset.
1442          */
1443         ret_val = igb_disable_pcie_master(hw);
1444         if (ret_val)
1445                 hw_dbg("PCI-E Master disable polling has failed.\n");
1446
1447         /* set the completion timeout for interface */
1448         ret_val = igb_set_pcie_completion_timeout(hw);
1449         if (ret_val)
1450                 hw_dbg("PCI-E Set completion timeout has failed.\n");
1451
1452         hw_dbg("Masking off all interrupts\n");
1453         wr32(E1000_IMC, 0xffffffff);
1454
1455         wr32(E1000_RCTL, 0);
1456         wr32(E1000_TCTL, E1000_TCTL_PSP);
1457         wrfl();
1458
1459         usleep_range(10000, 20000);
1460
1461         ctrl = rd32(E1000_CTRL);
1462
1463         hw_dbg("Issuing a global reset to MAC\n");
1464         wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1465
1466         ret_val = igb_get_auto_rd_done(hw);
1467         if (ret_val) {
1468                 /* When auto config read does not complete, do not
1469                  * return with an error. This can happen in situations
1470                  * where there is no eeprom and prevents getting link.
1471                  */
1472                 hw_dbg("Auto Read Done did not complete\n");
1473         }
1474
1475         /* If EEPROM is not present, run manual init scripts */
1476         if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1477                 igb_reset_init_script_82575(hw);
1478
1479         /* Clear any pending interrupt events. */
1480         wr32(E1000_IMC, 0xffffffff);
1481         rd32(E1000_ICR);
1482
1483         /* Install any alternate MAC address into RAR0 */
1484         ret_val = igb_check_alt_mac_addr(hw);
1485
1486         return ret_val;
1487 }
1488
1489 /**
1490  *  igb_init_hw_82575 - Initialize hardware
1491  *  @hw: pointer to the HW structure
1492  *
1493  *  This inits the hardware readying it for operation.
1494  **/
1495 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1496 {
1497         struct e1000_mac_info *mac = &hw->mac;
1498         s32 ret_val;
1499         u16 i, rar_count = mac->rar_entry_count;
1500
1501         if ((hw->mac.type >= e1000_i210) &&
1502             !(igb_get_flash_presence_i210(hw))) {
1503                 ret_val = igb_pll_workaround_i210(hw);
1504                 if (ret_val)
1505                         return ret_val;
1506         }
1507
1508         /* Initialize identification LED */
1509         ret_val = igb_id_led_init(hw);
1510         if (ret_val) {
1511                 hw_dbg("Error initializing identification LED\n");
1512                 /* This is not fatal and we should not stop init due to this */
1513         }
1514
1515         /* Disabling VLAN filtering */
1516         hw_dbg("Initializing the IEEE VLAN\n");
1517         if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
1518                 igb_clear_vfta_i350(hw);
1519         else
1520                 igb_clear_vfta(hw);
1521
1522         /* Setup the receive address */
1523         igb_init_rx_addrs(hw, rar_count);
1524
1525         /* Zero out the Multicast HASH table */
1526         hw_dbg("Zeroing the MTA\n");
1527         for (i = 0; i < mac->mta_reg_count; i++)
1528                 array_wr32(E1000_MTA, i, 0);
1529
1530         /* Zero out the Unicast HASH table */
1531         hw_dbg("Zeroing the UTA\n");
1532         for (i = 0; i < mac->uta_reg_count; i++)
1533                 array_wr32(E1000_UTA, i, 0);
1534
1535         /* Setup link and flow control */
1536         ret_val = igb_setup_link(hw);
1537
1538         /* Clear all of the statistics registers (clear on read).  It is
1539          * important that we do this after we have tried to establish link
1540          * because the symbol error count will increment wildly if there
1541          * is no link.
1542          */
1543         igb_clear_hw_cntrs_82575(hw);
1544         return ret_val;
1545 }
1546
1547 /**
1548  *  igb_setup_copper_link_82575 - Configure copper link settings
1549  *  @hw: pointer to the HW structure
1550  *
1551  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1552  *  for link, once link is established calls to configure collision distance
1553  *  and flow control are called.
1554  **/
1555 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1556 {
1557         u32 ctrl;
1558         s32  ret_val;
1559         u32 phpm_reg;
1560
1561         ctrl = rd32(E1000_CTRL);
1562         ctrl |= E1000_CTRL_SLU;
1563         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1564         wr32(E1000_CTRL, ctrl);
1565
1566         /* Clear Go Link Disconnect bit on supported devices */
1567         switch (hw->mac.type) {
1568         case e1000_82580:
1569         case e1000_i350:
1570         case e1000_i210:
1571         case e1000_i211:
1572                 phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1573                 phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1574                 wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1575                 break;
1576         default:
1577                 break;
1578         }
1579
1580         ret_val = igb_setup_serdes_link_82575(hw);
1581         if (ret_val)
1582                 goto out;
1583
1584         if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1585                 /* allow time for SFP cage time to power up phy */
1586                 msleep(300);
1587
1588                 ret_val = hw->phy.ops.reset(hw);
1589                 if (ret_val) {
1590                         hw_dbg("Error resetting the PHY.\n");
1591                         goto out;
1592                 }
1593         }
1594         switch (hw->phy.type) {
1595         case e1000_phy_i210:
1596         case e1000_phy_m88:
1597                 switch (hw->phy.id) {
1598                 case I347AT4_E_PHY_ID:
1599                 case M88E1112_E_PHY_ID:
1600                 case M88E1543_E_PHY_ID:
1601                 case M88E1512_E_PHY_ID:
1602                 case I210_I_PHY_ID:
1603                         ret_val = igb_copper_link_setup_m88_gen2(hw);
1604                         break;
1605                 default:
1606                         ret_val = igb_copper_link_setup_m88(hw);
1607                         break;
1608                 }
1609                 break;
1610         case e1000_phy_igp_3:
1611                 ret_val = igb_copper_link_setup_igp(hw);
1612                 break;
1613         case e1000_phy_82580:
1614                 ret_val = igb_copper_link_setup_82580(hw);
1615                 break;
1616         default:
1617                 ret_val = -E1000_ERR_PHY;
1618                 break;
1619         }
1620
1621         if (ret_val)
1622                 goto out;
1623
1624         ret_val = igb_setup_copper_link(hw);
1625 out:
1626         return ret_val;
1627 }
1628
1629 /**
1630  *  igb_setup_serdes_link_82575 - Setup link for serdes
1631  *  @hw: pointer to the HW structure
1632  *
1633  *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1634  *  used on copper connections where the serialized gigabit media independent
1635  *  interface (sgmii), or serdes fiber is being used.  Configures the link
1636  *  for auto-negotiation or forces speed/duplex.
1637  **/
1638 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1639 {
1640         u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1641         bool pcs_autoneg;
1642         s32 ret_val = 0;
1643         u16 data;
1644
1645         if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1646             !igb_sgmii_active_82575(hw))
1647                 return ret_val;
1648
1649
1650         /* On the 82575, SerDes loopback mode persists until it is
1651          * explicitly turned off or a power cycle is performed.  A read to
1652          * the register does not indicate its status.  Therefore, we ensure
1653          * loopback mode is disabled during initialization.
1654          */
1655         wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1656
1657         /* power on the sfp cage if present and turn on I2C */
1658         ctrl_ext = rd32(E1000_CTRL_EXT);
1659         ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1660         ctrl_ext |= E1000_CTRL_I2C_ENA;
1661         wr32(E1000_CTRL_EXT, ctrl_ext);
1662
1663         ctrl_reg = rd32(E1000_CTRL);
1664         ctrl_reg |= E1000_CTRL_SLU;
1665
1666         if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1667                 /* set both sw defined pins */
1668                 ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1669
1670                 /* Set switch control to serdes energy detect */
1671                 reg = rd32(E1000_CONNSW);
1672                 reg |= E1000_CONNSW_ENRGSRC;
1673                 wr32(E1000_CONNSW, reg);
1674         }
1675
1676         reg = rd32(E1000_PCS_LCTL);
1677
1678         /* default pcs_autoneg to the same setting as mac autoneg */
1679         pcs_autoneg = hw->mac.autoneg;
1680
1681         switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1682         case E1000_CTRL_EXT_LINK_MODE_SGMII:
1683                 /* sgmii mode lets the phy handle forcing speed/duplex */
1684                 pcs_autoneg = true;
1685                 /* autoneg time out should be disabled for SGMII mode */
1686                 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1687                 break;
1688         case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1689                 /* disable PCS autoneg and support parallel detect only */
1690                 pcs_autoneg = false;
1691         default:
1692                 if (hw->mac.type == e1000_82575 ||
1693                     hw->mac.type == e1000_82576) {
1694                         ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1695                         if (ret_val) {
1696                                 hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
1697                                 return ret_val;
1698                         }
1699
1700                         if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1701                                 pcs_autoneg = false;
1702                 }
1703
1704                 /* non-SGMII modes only supports a speed of 1000/Full for the
1705                  * link so it is best to just force the MAC and let the pcs
1706                  * link either autoneg or be forced to 1000/Full
1707                  */
1708                 ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1709                                 E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1710
1711                 /* set speed of 1000/Full if speed/duplex is forced */
1712                 reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1713                 break;
1714         }
1715
1716         wr32(E1000_CTRL, ctrl_reg);
1717
1718         /* New SerDes mode allows for forcing speed or autonegotiating speed
1719          * at 1gb. Autoneg should be default set by most drivers. This is the
1720          * mode that will be compatible with older link partners and switches.
1721          * However, both are supported by the hardware and some drivers/tools.
1722          */
1723         reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1724                 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1725
1726         if (pcs_autoneg) {
1727                 /* Set PCS register for autoneg */
1728                 reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1729                        E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1730
1731                 /* Disable force flow control for autoneg */
1732                 reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1733
1734                 /* Configure flow control advertisement for autoneg */
1735                 anadv_reg = rd32(E1000_PCS_ANADV);
1736                 anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1737                 switch (hw->fc.requested_mode) {
1738                 case e1000_fc_full:
1739                 case e1000_fc_rx_pause:
1740                         anadv_reg |= E1000_TXCW_ASM_DIR;
1741                         anadv_reg |= E1000_TXCW_PAUSE;
1742                         break;
1743                 case e1000_fc_tx_pause:
1744                         anadv_reg |= E1000_TXCW_ASM_DIR;
1745                         break;
1746                 default:
1747                         break;
1748                 }
1749                 wr32(E1000_PCS_ANADV, anadv_reg);
1750
1751                 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1752         } else {
1753                 /* Set PCS register for forced link */
1754                 reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1755
1756                 /* Force flow control for forced link */
1757                 reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1758
1759                 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1760         }
1761
1762         wr32(E1000_PCS_LCTL, reg);
1763
1764         if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1765                 igb_force_mac_fc(hw);
1766
1767         return ret_val;
1768 }
1769
1770 /**
1771  *  igb_sgmii_active_82575 - Return sgmii state
1772  *  @hw: pointer to the HW structure
1773  *
1774  *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1775  *  which can be enabled for use in the embedded applications.  Simply
1776  *  return the current state of the sgmii interface.
1777  **/
1778 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1779 {
1780         struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1781         return dev_spec->sgmii_active;
1782 }
1783
1784 /**
1785  *  igb_reset_init_script_82575 - Inits HW defaults after reset
1786  *  @hw: pointer to the HW structure
1787  *
1788  *  Inits recommended HW defaults after a reset when there is no EEPROM
1789  *  detected. This is only for the 82575.
1790  **/
1791 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1792 {
1793         if (hw->mac.type == e1000_82575) {
1794                 hw_dbg("Running reset init script for 82575\n");
1795                 /* SerDes configuration via SERDESCTRL */
1796                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1797                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1798                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1799                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1800
1801                 /* CCM configuration via CCMCTL register */
1802                 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1803                 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1804
1805                 /* PCIe lanes configuration */
1806                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1807                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1808                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1809                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1810
1811                 /* PCIe PLL Configuration */
1812                 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1813                 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1814                 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1815         }
1816
1817         return 0;
1818 }
1819
1820 /**
1821  *  igb_read_mac_addr_82575 - Read device MAC address
1822  *  @hw: pointer to the HW structure
1823  **/
1824 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1825 {
1826         s32 ret_val = 0;
1827
1828         /* If there's an alternate MAC address place it in RAR0
1829          * so that it will override the Si installed default perm
1830          * address.
1831          */
1832         ret_val = igb_check_alt_mac_addr(hw);
1833         if (ret_val)
1834                 goto out;
1835
1836         ret_val = igb_read_mac_addr(hw);
1837
1838 out:
1839         return ret_val;
1840 }
1841
1842 /**
1843  * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1844  * @hw: pointer to the HW structure
1845  *
1846  * In the case of a PHY power down to save power, or to turn off link during a
1847  * driver unload, or wake on lan is not enabled, remove the link.
1848  **/
1849 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1850 {
1851         /* If the management interface is not enabled, then power down */
1852         if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1853                 igb_power_down_phy_copper(hw);
1854 }
1855
1856 /**
1857  *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1858  *  @hw: pointer to the HW structure
1859  *
1860  *  Clears the hardware counters by reading the counter registers.
1861  **/
1862 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1863 {
1864         igb_clear_hw_cntrs_base(hw);
1865
1866         rd32(E1000_PRC64);
1867         rd32(E1000_PRC127);
1868         rd32(E1000_PRC255);
1869         rd32(E1000_PRC511);
1870         rd32(E1000_PRC1023);
1871         rd32(E1000_PRC1522);
1872         rd32(E1000_PTC64);
1873         rd32(E1000_PTC127);
1874         rd32(E1000_PTC255);
1875         rd32(E1000_PTC511);
1876         rd32(E1000_PTC1023);
1877         rd32(E1000_PTC1522);
1878
1879         rd32(E1000_ALGNERRC);
1880         rd32(E1000_RXERRC);
1881         rd32(E1000_TNCRS);
1882         rd32(E1000_CEXTERR);
1883         rd32(E1000_TSCTC);
1884         rd32(E1000_TSCTFC);
1885
1886         rd32(E1000_MGTPRC);
1887         rd32(E1000_MGTPDC);
1888         rd32(E1000_MGTPTC);
1889
1890         rd32(E1000_IAC);
1891         rd32(E1000_ICRXOC);
1892
1893         rd32(E1000_ICRXPTC);
1894         rd32(E1000_ICRXATC);
1895         rd32(E1000_ICTXPTC);
1896         rd32(E1000_ICTXATC);
1897         rd32(E1000_ICTXQEC);
1898         rd32(E1000_ICTXQMTC);
1899         rd32(E1000_ICRXDMTC);
1900
1901         rd32(E1000_CBTMPC);
1902         rd32(E1000_HTDPMC);
1903         rd32(E1000_CBRMPC);
1904         rd32(E1000_RPTHC);
1905         rd32(E1000_HGPTC);
1906         rd32(E1000_HTCBDPC);
1907         rd32(E1000_HGORCL);
1908         rd32(E1000_HGORCH);
1909         rd32(E1000_HGOTCL);
1910         rd32(E1000_HGOTCH);
1911         rd32(E1000_LENERRS);
1912
1913         /* This register should not be read in copper configurations */
1914         if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1915             igb_sgmii_active_82575(hw))
1916                 rd32(E1000_SCVPC);
1917 }
1918
1919 /**
1920  *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1921  *  @hw: pointer to the HW structure
1922  *
1923  *  After rx enable if manageability is enabled then there is likely some
1924  *  bad data at the start of the fifo and possibly in the DMA fifo. This
1925  *  function clears the fifos and flushes any packets that came in as rx was
1926  *  being enabled.
1927  **/
1928 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1929 {
1930         u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1931         int i, ms_wait;
1932
1933         /* disable IPv6 options as per hardware errata */
1934         rfctl = rd32(E1000_RFCTL);
1935         rfctl |= E1000_RFCTL_IPV6_EX_DIS;
1936         wr32(E1000_RFCTL, rfctl);
1937
1938         if (hw->mac.type != e1000_82575 ||
1939             !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1940                 return;
1941
1942         /* Disable all RX queues */
1943         for (i = 0; i < 4; i++) {
1944                 rxdctl[i] = rd32(E1000_RXDCTL(i));
1945                 wr32(E1000_RXDCTL(i),
1946                      rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1947         }
1948         /* Poll all queues to verify they have shut down */
1949         for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1950                 usleep_range(1000, 2000);
1951                 rx_enabled = 0;
1952                 for (i = 0; i < 4; i++)
1953                         rx_enabled |= rd32(E1000_RXDCTL(i));
1954                 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1955                         break;
1956         }
1957
1958         if (ms_wait == 10)
1959                 hw_dbg("Queue disable timed out after 10ms\n");
1960
1961         /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1962          * incoming packets are rejected.  Set enable and wait 2ms so that
1963          * any packet that was coming in as RCTL.EN was set is flushed
1964          */
1965         wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1966
1967         rlpml = rd32(E1000_RLPML);
1968         wr32(E1000_RLPML, 0);
1969
1970         rctl = rd32(E1000_RCTL);
1971         temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1972         temp_rctl |= E1000_RCTL_LPE;
1973
1974         wr32(E1000_RCTL, temp_rctl);
1975         wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1976         wrfl();
1977         usleep_range(2000, 3000);
1978
1979         /* Enable RX queues that were previously enabled and restore our
1980          * previous state
1981          */
1982         for (i = 0; i < 4; i++)
1983                 wr32(E1000_RXDCTL(i), rxdctl[i]);
1984         wr32(E1000_RCTL, rctl);
1985         wrfl();
1986
1987         wr32(E1000_RLPML, rlpml);
1988         wr32(E1000_RFCTL, rfctl);
1989
1990         /* Flush receive errors generated by workaround */
1991         rd32(E1000_ROC);
1992         rd32(E1000_RNBC);
1993         rd32(E1000_MPC);
1994 }
1995
1996 /**
1997  *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1998  *  @hw: pointer to the HW structure
1999  *
2000  *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
2001  *  however the hardware default for these parts is 500us to 1ms which is less
2002  *  than the 10ms recommended by the pci-e spec.  To address this we need to
2003  *  increase the value to either 10ms to 200ms for capability version 1 config,
2004  *  or 16ms to 55ms for version 2.
2005  **/
2006 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
2007 {
2008         u32 gcr = rd32(E1000_GCR);
2009         s32 ret_val = 0;
2010         u16 pcie_devctl2;
2011
2012         /* only take action if timeout value is defaulted to 0 */
2013         if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
2014                 goto out;
2015
2016         /* if capabilities version is type 1 we can write the
2017          * timeout of 10ms to 200ms through the GCR register
2018          */
2019         if (!(gcr & E1000_GCR_CAP_VER2)) {
2020                 gcr |= E1000_GCR_CMPL_TMOUT_10ms;
2021                 goto out;
2022         }
2023
2024         /* for version 2 capabilities we need to write the config space
2025          * directly in order to set the completion timeout value for
2026          * 16ms to 55ms
2027          */
2028         ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2029                                         &pcie_devctl2);
2030         if (ret_val)
2031                 goto out;
2032
2033         pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2034
2035         ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2036                                          &pcie_devctl2);
2037 out:
2038         /* disable completion timeout resend */
2039         gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2040
2041         wr32(E1000_GCR, gcr);
2042         return ret_val;
2043 }
2044
2045 /**
2046  *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2047  *  @hw: pointer to the hardware struct
2048  *  @enable: state to enter, either enabled or disabled
2049  *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2050  *
2051  *  enables/disables L2 switch anti-spoofing functionality.
2052  **/
2053 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2054 {
2055         u32 reg_val, reg_offset;
2056
2057         switch (hw->mac.type) {
2058         case e1000_82576:
2059                 reg_offset = E1000_DTXSWC;
2060                 break;
2061         case e1000_i350:
2062         case e1000_i354:
2063                 reg_offset = E1000_TXSWC;
2064                 break;
2065         default:
2066                 return;
2067         }
2068
2069         reg_val = rd32(reg_offset);
2070         if (enable) {
2071                 reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2072                              E1000_DTXSWC_VLAN_SPOOF_MASK);
2073                 /* The PF can spoof - it has to in order to
2074                  * support emulation mode NICs
2075                  */
2076                 reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
2077         } else {
2078                 reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2079                              E1000_DTXSWC_VLAN_SPOOF_MASK);
2080         }
2081         wr32(reg_offset, reg_val);
2082 }
2083
2084 /**
2085  *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2086  *  @hw: pointer to the hardware struct
2087  *  @enable: state to enter, either enabled or disabled
2088  *
2089  *  enables/disables L2 switch loopback functionality.
2090  **/
2091 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2092 {
2093         u32 dtxswc;
2094
2095         switch (hw->mac.type) {
2096         case e1000_82576:
2097                 dtxswc = rd32(E1000_DTXSWC);
2098                 if (enable)
2099                         dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2100                 else
2101                         dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2102                 wr32(E1000_DTXSWC, dtxswc);
2103                 break;
2104         case e1000_i354:
2105         case e1000_i350:
2106                 dtxswc = rd32(E1000_TXSWC);
2107                 if (enable)
2108                         dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2109                 else
2110                         dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2111                 wr32(E1000_TXSWC, dtxswc);
2112                 break;
2113         default:
2114                 /* Currently no other hardware supports loopback */
2115                 break;
2116         }
2117
2118 }
2119
2120 /**
2121  *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
2122  *  @hw: pointer to the hardware struct
2123  *  @enable: state to enter, either enabled or disabled
2124  *
2125  *  enables/disables replication of packets across multiple pools.
2126  **/
2127 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2128 {
2129         u32 vt_ctl = rd32(E1000_VT_CTL);
2130
2131         if (enable)
2132                 vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2133         else
2134                 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2135
2136         wr32(E1000_VT_CTL, vt_ctl);
2137 }
2138
2139 /**
2140  *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2141  *  @hw: pointer to the HW structure
2142  *  @offset: register offset to be read
2143  *  @data: pointer to the read data
2144  *
2145  *  Reads the MDI control register in the PHY at offset and stores the
2146  *  information read to data.
2147  **/
2148 static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2149 {
2150         s32 ret_val;
2151
2152         ret_val = hw->phy.ops.acquire(hw);
2153         if (ret_val)
2154                 goto out;
2155
2156         ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2157
2158         hw->phy.ops.release(hw);
2159
2160 out:
2161         return ret_val;
2162 }
2163
2164 /**
2165  *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2166  *  @hw: pointer to the HW structure
2167  *  @offset: register offset to write to
2168  *  @data: data to write to register at offset
2169  *
2170  *  Writes data to MDI control register in the PHY at offset.
2171  **/
2172 static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2173 {
2174         s32 ret_val;
2175
2176
2177         ret_val = hw->phy.ops.acquire(hw);
2178         if (ret_val)
2179                 goto out;
2180
2181         ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2182
2183         hw->phy.ops.release(hw);
2184
2185 out:
2186         return ret_val;
2187 }
2188
2189 /**
2190  *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2191  *  @hw: pointer to the HW structure
2192  *
2193  *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2194  *  the values found in the EEPROM.  This addresses an issue in which these
2195  *  bits are not restored from EEPROM after reset.
2196  **/
2197 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2198 {
2199         s32 ret_val = 0;
2200         u32 mdicnfg;
2201         u16 nvm_data = 0;
2202
2203         if (hw->mac.type != e1000_82580)
2204                 goto out;
2205         if (!igb_sgmii_active_82575(hw))
2206                 goto out;
2207
2208         ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2209                                    NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2210                                    &nvm_data);
2211         if (ret_val) {
2212                 hw_dbg("NVM Read Error\n");
2213                 goto out;
2214         }
2215
2216         mdicnfg = rd32(E1000_MDICNFG);
2217         if (nvm_data & NVM_WORD24_EXT_MDIO)
2218                 mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2219         if (nvm_data & NVM_WORD24_COM_MDIO)
2220                 mdicnfg |= E1000_MDICNFG_COM_MDIO;
2221         wr32(E1000_MDICNFG, mdicnfg);
2222 out:
2223         return ret_val;
2224 }
2225
2226 /**
2227  *  igb_reset_hw_82580 - Reset hardware
2228  *  @hw: pointer to the HW structure
2229  *
2230  *  This resets function or entire device (all ports, etc.)
2231  *  to a known state.
2232  **/
2233 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2234 {
2235         s32 ret_val = 0;
2236         /* BH SW mailbox bit in SW_FW_SYNC */
2237         u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2238         u32 ctrl;
2239         bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2240
2241         hw->dev_spec._82575.global_device_reset = false;
2242
2243         /* due to hw errata, global device reset doesn't always
2244          * work on 82580
2245          */
2246         if (hw->mac.type == e1000_82580)
2247                 global_device_reset = false;
2248
2249         /* Get current control state. */
2250         ctrl = rd32(E1000_CTRL);
2251
2252         /* Prevent the PCI-E bus from sticking if there is no TLP connection
2253          * on the last TLP read/write transaction when MAC is reset.
2254          */
2255         ret_val = igb_disable_pcie_master(hw);
2256         if (ret_val)
2257                 hw_dbg("PCI-E Master disable polling has failed.\n");
2258
2259         hw_dbg("Masking off all interrupts\n");
2260         wr32(E1000_IMC, 0xffffffff);
2261         wr32(E1000_RCTL, 0);
2262         wr32(E1000_TCTL, E1000_TCTL_PSP);
2263         wrfl();
2264
2265         usleep_range(10000, 11000);
2266
2267         /* Determine whether or not a global dev reset is requested */
2268         if (global_device_reset &&
2269                 hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2270                         global_device_reset = false;
2271
2272         if (global_device_reset &&
2273                 !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2274                 ctrl |= E1000_CTRL_DEV_RST;
2275         else
2276                 ctrl |= E1000_CTRL_RST;
2277
2278         wr32(E1000_CTRL, ctrl);
2279         wrfl();
2280
2281         /* Add delay to insure DEV_RST has time to complete */
2282         if (global_device_reset)
2283                 usleep_range(5000, 6000);
2284
2285         ret_val = igb_get_auto_rd_done(hw);
2286         if (ret_val) {
2287                 /* When auto config read does not complete, do not
2288                  * return with an error. This can happen in situations
2289                  * where there is no eeprom and prevents getting link.
2290                  */
2291                 hw_dbg("Auto Read Done did not complete\n");
2292         }
2293
2294         /* clear global device reset status bit */
2295         wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2296
2297         /* Clear any pending interrupt events. */
2298         wr32(E1000_IMC, 0xffffffff);
2299         rd32(E1000_ICR);
2300
2301         ret_val = igb_reset_mdicnfg_82580(hw);
2302         if (ret_val)
2303                 hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2304
2305         /* Install any alternate MAC address into RAR0 */
2306         ret_val = igb_check_alt_mac_addr(hw);
2307
2308         /* Release semaphore */
2309         if (global_device_reset)
2310                 hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2311
2312         return ret_val;
2313 }
2314
2315 /**
2316  *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2317  *  @data: data received by reading RXPBS register
2318  *
2319  *  The 82580 uses a table based approach for packet buffer allocation sizes.
2320  *  This function converts the retrieved value into the correct table value
2321  *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2322  *  0x0 36  72 144   1   2   4   8  16
2323  *  0x8 35  70 140 rsv rsv rsv rsv rsv
2324  */
2325 u16 igb_rxpbs_adjust_82580(u32 data)
2326 {
2327         u16 ret_val = 0;
2328
2329         if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2330                 ret_val = e1000_82580_rxpbs_table[data];
2331
2332         return ret_val;
2333 }
2334
2335 /**
2336  *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2337  *  checksum
2338  *  @hw: pointer to the HW structure
2339  *  @offset: offset in words of the checksum protected region
2340  *
2341  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2342  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2343  **/
2344 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2345                                                  u16 offset)
2346 {
2347         s32 ret_val = 0;
2348         u16 checksum = 0;
2349         u16 i, nvm_data;
2350
2351         for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2352                 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2353                 if (ret_val) {
2354                         hw_dbg("NVM Read Error\n");
2355                         goto out;
2356                 }
2357                 checksum += nvm_data;
2358         }
2359
2360         if (checksum != (u16) NVM_SUM) {
2361                 hw_dbg("NVM Checksum Invalid\n");
2362                 ret_val = -E1000_ERR_NVM;
2363                 goto out;
2364         }
2365
2366 out:
2367         return ret_val;
2368 }
2369
2370 /**
2371  *  igb_update_nvm_checksum_with_offset - Update EEPROM
2372  *  checksum
2373  *  @hw: pointer to the HW structure
2374  *  @offset: offset in words of the checksum protected region
2375  *
2376  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2377  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2378  *  value to the EEPROM.
2379  **/
2380 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2381 {
2382         s32 ret_val;
2383         u16 checksum = 0;
2384         u16 i, nvm_data;
2385
2386         for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2387                 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2388                 if (ret_val) {
2389                         hw_dbg("NVM Read Error while updating checksum.\n");
2390                         goto out;
2391                 }
2392                 checksum += nvm_data;
2393         }
2394         checksum = (u16) NVM_SUM - checksum;
2395         ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2396                                 &checksum);
2397         if (ret_val)
2398                 hw_dbg("NVM Write Error while updating checksum.\n");
2399
2400 out:
2401         return ret_val;
2402 }
2403
2404 /**
2405  *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2406  *  @hw: pointer to the HW structure
2407  *
2408  *  Calculates the EEPROM section checksum by reading/adding each word of
2409  *  the EEPROM and then verifies that the sum of the EEPROM is
2410  *  equal to 0xBABA.
2411  **/
2412 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2413 {
2414         s32 ret_val = 0;
2415         u16 eeprom_regions_count = 1;
2416         u16 j, nvm_data;
2417         u16 nvm_offset;
2418
2419         ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2420         if (ret_val) {
2421                 hw_dbg("NVM Read Error\n");
2422                 goto out;
2423         }
2424
2425         if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2426                 /* if checksums compatibility bit is set validate checksums
2427                  * for all 4 ports.
2428                  */
2429                 eeprom_regions_count = 4;
2430         }
2431
2432         for (j = 0; j < eeprom_regions_count; j++) {
2433                 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2434                 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2435                                                                 nvm_offset);
2436                 if (ret_val != 0)
2437                         goto out;
2438         }
2439
2440 out:
2441         return ret_val;
2442 }
2443
2444 /**
2445  *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2446  *  @hw: pointer to the HW structure
2447  *
2448  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2449  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2450  *  checksum and writes the value to the EEPROM.
2451  **/
2452 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2453 {
2454         s32 ret_val;
2455         u16 j, nvm_data;
2456         u16 nvm_offset;
2457
2458         ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2459         if (ret_val) {
2460                 hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
2461                 goto out;
2462         }
2463
2464         if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2465                 /* set compatibility bit to validate checksums appropriately */
2466                 nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2467                 ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2468                                         &nvm_data);
2469                 if (ret_val) {
2470                         hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
2471                         goto out;
2472                 }
2473         }
2474
2475         for (j = 0; j < 4; j++) {
2476                 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2477                 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2478                 if (ret_val)
2479                         goto out;
2480         }
2481
2482 out:
2483         return ret_val;
2484 }
2485
2486 /**
2487  *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2488  *  @hw: pointer to the HW structure
2489  *
2490  *  Calculates the EEPROM section checksum by reading/adding each word of
2491  *  the EEPROM and then verifies that the sum of the EEPROM is
2492  *  equal to 0xBABA.
2493  **/
2494 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2495 {
2496         s32 ret_val = 0;
2497         u16 j;
2498         u16 nvm_offset;
2499
2500         for (j = 0; j < 4; j++) {
2501                 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2502                 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2503                                                                 nvm_offset);
2504                 if (ret_val != 0)
2505                         goto out;
2506         }
2507
2508 out:
2509         return ret_val;
2510 }
2511
2512 /**
2513  *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2514  *  @hw: pointer to the HW structure
2515  *
2516  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2517  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2518  *  checksum and writes the value to the EEPROM.
2519  **/
2520 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2521 {
2522         s32 ret_val = 0;
2523         u16 j;
2524         u16 nvm_offset;
2525
2526         for (j = 0; j < 4; j++) {
2527                 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2528                 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2529                 if (ret_val != 0)
2530                         goto out;
2531         }
2532
2533 out:
2534         return ret_val;
2535 }
2536
2537 /**
2538  *  __igb_access_emi_reg - Read/write EMI register
2539  *  @hw: pointer to the HW structure
2540  *  @addr: EMI address to program
2541  *  @data: pointer to value to read/write from/to the EMI address
2542  *  @read: boolean flag to indicate read or write
2543  **/
2544 static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2545                                   u16 *data, bool read)
2546 {
2547         s32 ret_val = 0;
2548
2549         ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2550         if (ret_val)
2551                 return ret_val;
2552
2553         if (read)
2554                 ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2555         else
2556                 ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2557
2558         return ret_val;
2559 }
2560
2561 /**
2562  *  igb_read_emi_reg - Read Extended Management Interface register
2563  *  @hw: pointer to the HW structure
2564  *  @addr: EMI address to program
2565  *  @data: value to be read from the EMI address
2566  **/
2567 s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2568 {
2569         return __igb_access_emi_reg(hw, addr, data, true);
2570 }
2571
2572 /**
2573  *  igb_set_eee_i350 - Enable/disable EEE support
2574  *  @hw: pointer to the HW structure
2575  *  @adv1G: boolean flag enabling 1G EEE advertisement
2576  *  @adv100m: boolean flag enabling 100M EEE advertisement
2577  *
2578  *  Enable/disable EEE based on setting in dev_spec structure.
2579  *
2580  **/
2581 s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
2582 {
2583         u32 ipcnfg, eeer;
2584
2585         if ((hw->mac.type < e1000_i350) ||
2586             (hw->phy.media_type != e1000_media_type_copper))
2587                 goto out;
2588         ipcnfg = rd32(E1000_IPCNFG);
2589         eeer = rd32(E1000_EEER);
2590
2591         /* enable or disable per user setting */
2592         if (!(hw->dev_spec._82575.eee_disable)) {
2593                 u32 eee_su = rd32(E1000_EEE_SU);
2594
2595                 if (adv100M)
2596                         ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
2597                 else
2598                         ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
2599
2600                 if (adv1G)
2601                         ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
2602                 else
2603                         ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
2604
2605                 eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2606                         E1000_EEER_LPI_FC);
2607
2608                 /* This bit should not be set in normal operation. */
2609                 if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2610                         hw_dbg("LPI Clock Stop Bit should not be set!\n");
2611
2612         } else {
2613                 ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2614                         E1000_IPCNFG_EEE_100M_AN);
2615                 eeer &= ~(E1000_EEER_TX_LPI_EN |
2616                         E1000_EEER_RX_LPI_EN |
2617                         E1000_EEER_LPI_FC);
2618         }
2619         wr32(E1000_IPCNFG, ipcnfg);
2620         wr32(E1000_EEER, eeer);
2621         rd32(E1000_IPCNFG);
2622         rd32(E1000_EEER);
2623 out:
2624
2625         return 0;
2626 }
2627
2628 /**
2629  *  igb_set_eee_i354 - Enable/disable EEE support
2630  *  @hw: pointer to the HW structure
2631  *  @adv1G: boolean flag enabling 1G EEE advertisement
2632  *  @adv100m: boolean flag enabling 100M EEE advertisement
2633  *
2634  *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2635  *
2636  **/
2637 s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
2638 {
2639         struct e1000_phy_info *phy = &hw->phy;
2640         s32 ret_val = 0;
2641         u16 phy_data;
2642
2643         if ((hw->phy.media_type != e1000_media_type_copper) ||
2644             ((phy->id != M88E1543_E_PHY_ID) &&
2645              (phy->id != M88E1512_E_PHY_ID)))
2646                 goto out;
2647
2648         if (!hw->dev_spec._82575.eee_disable) {
2649                 /* Switch to PHY page 18. */
2650                 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2651                 if (ret_val)
2652                         goto out;
2653
2654                 ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2655                                             &phy_data);
2656                 if (ret_val)
2657                         goto out;
2658
2659                 phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2660                 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2661                                              phy_data);
2662                 if (ret_val)
2663                         goto out;
2664
2665                 /* Return the PHY to page 0. */
2666                 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2667                 if (ret_val)
2668                         goto out;
2669
2670                 /* Turn on EEE advertisement. */
2671                 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2672                                              E1000_EEE_ADV_DEV_I354,
2673                                              &phy_data);
2674                 if (ret_val)
2675                         goto out;
2676
2677                 if (adv100M)
2678                         phy_data |= E1000_EEE_ADV_100_SUPPORTED;
2679                 else
2680                         phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
2681
2682                 if (adv1G)
2683                         phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
2684                 else
2685                         phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
2686
2687                 ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2688                                                 E1000_EEE_ADV_DEV_I354,
2689                                                 phy_data);
2690         } else {
2691                 /* Turn off EEE advertisement. */
2692                 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2693                                              E1000_EEE_ADV_DEV_I354,
2694                                              &phy_data);
2695                 if (ret_val)
2696                         goto out;
2697
2698                 phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2699                               E1000_EEE_ADV_1000_SUPPORTED);
2700                 ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2701                                               E1000_EEE_ADV_DEV_I354,
2702                                               phy_data);
2703         }
2704
2705 out:
2706         return ret_val;
2707 }
2708
2709 /**
2710  *  igb_get_eee_status_i354 - Get EEE status
2711  *  @hw: pointer to the HW structure
2712  *  @status: EEE status
2713  *
2714  *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2715  *  been received.
2716  **/
2717 s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2718 {
2719         struct e1000_phy_info *phy = &hw->phy;
2720         s32 ret_val = 0;
2721         u16 phy_data;
2722
2723         /* Check if EEE is supported on this device. */
2724         if ((hw->phy.media_type != e1000_media_type_copper) ||
2725             ((phy->id != M88E1543_E_PHY_ID) &&
2726              (phy->id != M88E1512_E_PHY_ID)))
2727                 goto out;
2728
2729         ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2730                                      E1000_PCS_STATUS_DEV_I354,
2731                                      &phy_data);
2732         if (ret_val)
2733                 goto out;
2734
2735         *status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2736                               E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2737
2738 out:
2739         return ret_val;
2740 }
2741
2742 static const u8 e1000_emc_temp_data[4] = {
2743         E1000_EMC_INTERNAL_DATA,
2744         E1000_EMC_DIODE1_DATA,
2745         E1000_EMC_DIODE2_DATA,
2746         E1000_EMC_DIODE3_DATA
2747 };
2748 static const u8 e1000_emc_therm_limit[4] = {
2749         E1000_EMC_INTERNAL_THERM_LIMIT,
2750         E1000_EMC_DIODE1_THERM_LIMIT,
2751         E1000_EMC_DIODE2_THERM_LIMIT,
2752         E1000_EMC_DIODE3_THERM_LIMIT
2753 };
2754
2755 #ifdef CONFIG_IGB_HWMON
2756 /**
2757  *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2758  *  @hw: pointer to hardware structure
2759  *
2760  *  Updates the temperatures in mac.thermal_sensor_data
2761  **/
2762 static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2763 {
2764         u16 ets_offset;
2765         u16 ets_cfg;
2766         u16 ets_sensor;
2767         u8  num_sensors;
2768         u8  sensor_index;
2769         u8  sensor_location;
2770         u8  i;
2771         struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2772
2773         if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2774                 return E1000_NOT_IMPLEMENTED;
2775
2776         data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2777
2778         /* Return the internal sensor only if ETS is unsupported */
2779         hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2780         if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2781                 return 0;
2782
2783         hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2784         if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2785             != NVM_ETS_TYPE_EMC)
2786                 return E1000_NOT_IMPLEMENTED;
2787
2788         num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2789         if (num_sensors > E1000_MAX_SENSORS)
2790                 num_sensors = E1000_MAX_SENSORS;
2791
2792         for (i = 1; i < num_sensors; i++) {
2793                 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2794                 sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2795                                 NVM_ETS_DATA_INDEX_SHIFT);
2796                 sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2797                                    NVM_ETS_DATA_LOC_SHIFT);
2798
2799                 if (sensor_location != 0)
2800                         hw->phy.ops.read_i2c_byte(hw,
2801                                         e1000_emc_temp_data[sensor_index],
2802                                         E1000_I2C_THERMAL_SENSOR_ADDR,
2803                                         &data->sensor[i].temp);
2804         }
2805         return 0;
2806 }
2807
2808 /**
2809  *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2810  *  @hw: pointer to hardware structure
2811  *
2812  *  Sets the thermal sensor thresholds according to the NVM map
2813  *  and save off the threshold and location values into mac.thermal_sensor_data
2814  **/
2815 static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2816 {
2817         u16 ets_offset;
2818         u16 ets_cfg;
2819         u16 ets_sensor;
2820         u8  low_thresh_delta;
2821         u8  num_sensors;
2822         u8  sensor_index;
2823         u8  sensor_location;
2824         u8  therm_limit;
2825         u8  i;
2826         struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2827
2828         if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2829                 return E1000_NOT_IMPLEMENTED;
2830
2831         memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2832
2833         data->sensor[0].location = 0x1;
2834         data->sensor[0].caution_thresh =
2835                 (rd32(E1000_THHIGHTC) & 0xFF);
2836         data->sensor[0].max_op_thresh =
2837                 (rd32(E1000_THLOWTC) & 0xFF);
2838
2839         /* Return the internal sensor only if ETS is unsupported */
2840         hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2841         if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2842                 return 0;
2843
2844         hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2845         if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2846             != NVM_ETS_TYPE_EMC)
2847                 return E1000_NOT_IMPLEMENTED;
2848
2849         low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2850                             NVM_ETS_LTHRES_DELTA_SHIFT);
2851         num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2852
2853         for (i = 1; i <= num_sensors; i++) {
2854                 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2855                 sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2856                                 NVM_ETS_DATA_INDEX_SHIFT);
2857                 sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2858                                    NVM_ETS_DATA_LOC_SHIFT);
2859                 therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2860
2861                 hw->phy.ops.write_i2c_byte(hw,
2862                         e1000_emc_therm_limit[sensor_index],
2863                         E1000_I2C_THERMAL_SENSOR_ADDR,
2864                         therm_limit);
2865
2866                 if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2867                         data->sensor[i].location = sensor_location;
2868                         data->sensor[i].caution_thresh = therm_limit;
2869                         data->sensor[i].max_op_thresh = therm_limit -
2870                                                         low_thresh_delta;
2871                 }
2872         }
2873         return 0;
2874 }
2875
2876 #endif
2877 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2878         .init_hw              = igb_init_hw_82575,
2879         .check_for_link       = igb_check_for_link_82575,
2880         .rar_set              = igb_rar_set,
2881         .read_mac_addr        = igb_read_mac_addr_82575,
2882         .get_speed_and_duplex = igb_get_link_up_info_82575,
2883 #ifdef CONFIG_IGB_HWMON
2884         .get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2885         .init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2886 #endif
2887 };
2888
2889 static struct e1000_phy_operations e1000_phy_ops_82575 = {
2890         .acquire              = igb_acquire_phy_82575,
2891         .get_cfg_done         = igb_get_cfg_done_82575,
2892         .release              = igb_release_phy_82575,
2893         .write_i2c_byte       = igb_write_i2c_byte,
2894         .read_i2c_byte        = igb_read_i2c_byte,
2895 };
2896
2897 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2898         .acquire              = igb_acquire_nvm_82575,
2899         .read                 = igb_read_nvm_eerd,
2900         .release              = igb_release_nvm_82575,
2901         .write                = igb_write_nvm_spi,
2902 };
2903
2904 const struct e1000_info e1000_82575_info = {
2905         .get_invariants = igb_get_invariants_82575,
2906         .mac_ops = &e1000_mac_ops_82575,
2907         .phy_ops = &e1000_phy_ops_82575,
2908         .nvm_ops = &e1000_nvm_ops_82575,
2909 };
2910