Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / net / ethernet / intel / i40evf / i40e_txrx.c
1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
4  * Copyright(c) 2013 - 2014 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26
27 #include <linux/prefetch.h>
28 #include <net/busy_poll.h>
29
30 #include "i40evf.h"
31 #include "i40e_prototype.h"
32
33 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
34                                 u32 td_tag)
35 {
36         return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
37                            ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
38                            ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
39                            ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
40                            ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
41 }
42
43 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
44
45 /**
46  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
47  * @ring:      the ring that owns the buffer
48  * @tx_buffer: the buffer to free
49  **/
50 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
51                                             struct i40e_tx_buffer *tx_buffer)
52 {
53         if (tx_buffer->skb) {
54                 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
55                         kfree(tx_buffer->raw_buf);
56                 else
57                         dev_kfree_skb_any(tx_buffer->skb);
58
59                 if (dma_unmap_len(tx_buffer, len))
60                         dma_unmap_single(ring->dev,
61                                          dma_unmap_addr(tx_buffer, dma),
62                                          dma_unmap_len(tx_buffer, len),
63                                          DMA_TO_DEVICE);
64         } else if (dma_unmap_len(tx_buffer, len)) {
65                 dma_unmap_page(ring->dev,
66                                dma_unmap_addr(tx_buffer, dma),
67                                dma_unmap_len(tx_buffer, len),
68                                DMA_TO_DEVICE);
69         }
70         tx_buffer->next_to_watch = NULL;
71         tx_buffer->skb = NULL;
72         dma_unmap_len_set(tx_buffer, len, 0);
73         /* tx_buffer must be completely set up in the transmit path */
74 }
75
76 /**
77  * i40evf_clean_tx_ring - Free any empty Tx buffers
78  * @tx_ring: ring to be cleaned
79  **/
80 void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
81 {
82         unsigned long bi_size;
83         u16 i;
84
85         /* ring already cleared, nothing to do */
86         if (!tx_ring->tx_bi)
87                 return;
88
89         /* Free all the Tx ring sk_buffs */
90         for (i = 0; i < tx_ring->count; i++)
91                 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
92
93         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
94         memset(tx_ring->tx_bi, 0, bi_size);
95
96         /* Zero out the descriptor ring */
97         memset(tx_ring->desc, 0, tx_ring->size);
98
99         tx_ring->next_to_use = 0;
100         tx_ring->next_to_clean = 0;
101
102         if (!tx_ring->netdev)
103                 return;
104
105         /* cleanup Tx queue statistics */
106         netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
107                                                   tx_ring->queue_index));
108 }
109
110 /**
111  * i40evf_free_tx_resources - Free Tx resources per queue
112  * @tx_ring: Tx descriptor ring for a specific queue
113  *
114  * Free all transmit software resources
115  **/
116 void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
117 {
118         i40evf_clean_tx_ring(tx_ring);
119         kfree(tx_ring->tx_bi);
120         tx_ring->tx_bi = NULL;
121
122         if (tx_ring->desc) {
123                 dma_free_coherent(tx_ring->dev, tx_ring->size,
124                                   tx_ring->desc, tx_ring->dma);
125                 tx_ring->desc = NULL;
126         }
127 }
128
129 /**
130  * i40e_get_head - Retrieve head from head writeback
131  * @tx_ring:  tx ring to fetch head of
132  *
133  * Returns value of Tx ring head based on value stored
134  * in head write-back location
135  **/
136 static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
137 {
138         void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
139
140         return le32_to_cpu(*(volatile __le32 *)head);
141 }
142
143 /**
144  * i40e_get_tx_pending - how many tx descriptors not processed
145  * @tx_ring: the ring of descriptors
146  *
147  * Since there is no access to the ring head register
148  * in XL710, we need to use our local copies
149  **/
150 static u32 i40e_get_tx_pending(struct i40e_ring *ring)
151 {
152         u32 head, tail;
153
154         head = i40e_get_head(ring);
155         tail = readl(ring->tail);
156
157         if (head != tail)
158                 return (head < tail) ?
159                         tail - head : (tail + ring->count - head);
160
161         return 0;
162 }
163
164 /**
165  * i40e_check_tx_hang - Is there a hang in the Tx queue
166  * @tx_ring: the ring of descriptors
167  **/
168 static bool i40e_check_tx_hang(struct i40e_ring *tx_ring)
169 {
170         u32 tx_done = tx_ring->stats.packets;
171         u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
172         u32 tx_pending = i40e_get_tx_pending(tx_ring);
173         bool ret = false;
174
175         clear_check_for_tx_hang(tx_ring);
176
177         /* Check for a hung queue, but be thorough. This verifies
178          * that a transmit has been completed since the previous
179          * check AND there is at least one packet pending. The
180          * ARMED bit is set to indicate a potential hang. The
181          * bit is cleared if a pause frame is received to remove
182          * false hang detection due to PFC or 802.3x frames. By
183          * requiring this to fail twice we avoid races with
184          * PFC clearing the ARMED bit and conditions where we
185          * run the check_tx_hang logic with a transmit completion
186          * pending but without time to complete it yet.
187          */
188         if ((tx_done_old == tx_done) && tx_pending) {
189                 /* make sure it is true for two checks in a row */
190                 ret = test_and_set_bit(__I40E_HANG_CHECK_ARMED,
191                                        &tx_ring->state);
192         } else if (tx_done_old == tx_done &&
193                    (tx_pending < I40E_MIN_DESC_PENDING) && (tx_pending > 0)) {
194                 /* update completed stats and disarm the hang check */
195                 tx_ring->tx_stats.tx_done_old = tx_done;
196                 clear_bit(__I40E_HANG_CHECK_ARMED, &tx_ring->state);
197         }
198
199         return ret;
200 }
201
202 #define WB_STRIDE 0x3
203
204 /**
205  * i40e_clean_tx_irq - Reclaim resources after transmit completes
206  * @tx_ring:  tx ring to clean
207  * @budget:   how many cleans we're allowed
208  *
209  * Returns true if there's any budget left (e.g. the clean is finished)
210  **/
211 static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
212 {
213         u16 i = tx_ring->next_to_clean;
214         struct i40e_tx_buffer *tx_buf;
215         struct i40e_tx_desc *tx_head;
216         struct i40e_tx_desc *tx_desc;
217         unsigned int total_packets = 0;
218         unsigned int total_bytes = 0;
219
220         tx_buf = &tx_ring->tx_bi[i];
221         tx_desc = I40E_TX_DESC(tx_ring, i);
222         i -= tx_ring->count;
223
224         tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
225
226         do {
227                 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
228
229                 /* if next_to_watch is not set then there is no work pending */
230                 if (!eop_desc)
231                         break;
232
233                 /* prevent any other reads prior to eop_desc */
234                 read_barrier_depends();
235
236                 /* we have caught up to head, no work left to do */
237                 if (tx_head == tx_desc)
238                         break;
239
240                 /* clear next_to_watch to prevent false hangs */
241                 tx_buf->next_to_watch = NULL;
242
243                 /* update the statistics for this packet */
244                 total_bytes += tx_buf->bytecount;
245                 total_packets += tx_buf->gso_segs;
246
247                 /* free the skb */
248                 dev_kfree_skb_any(tx_buf->skb);
249
250                 /* unmap skb header data */
251                 dma_unmap_single(tx_ring->dev,
252                                  dma_unmap_addr(tx_buf, dma),
253                                  dma_unmap_len(tx_buf, len),
254                                  DMA_TO_DEVICE);
255
256                 /* clear tx_buffer data */
257                 tx_buf->skb = NULL;
258                 dma_unmap_len_set(tx_buf, len, 0);
259
260                 /* unmap remaining buffers */
261                 while (tx_desc != eop_desc) {
262
263                         tx_buf++;
264                         tx_desc++;
265                         i++;
266                         if (unlikely(!i)) {
267                                 i -= tx_ring->count;
268                                 tx_buf = tx_ring->tx_bi;
269                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
270                         }
271
272                         /* unmap any remaining paged data */
273                         if (dma_unmap_len(tx_buf, len)) {
274                                 dma_unmap_page(tx_ring->dev,
275                                                dma_unmap_addr(tx_buf, dma),
276                                                dma_unmap_len(tx_buf, len),
277                                                DMA_TO_DEVICE);
278                                 dma_unmap_len_set(tx_buf, len, 0);
279                         }
280                 }
281
282                 /* move us one more past the eop_desc for start of next pkt */
283                 tx_buf++;
284                 tx_desc++;
285                 i++;
286                 if (unlikely(!i)) {
287                         i -= tx_ring->count;
288                         tx_buf = tx_ring->tx_bi;
289                         tx_desc = I40E_TX_DESC(tx_ring, 0);
290                 }
291
292                 prefetch(tx_desc);
293
294                 /* update budget accounting */
295                 budget--;
296         } while (likely(budget));
297
298         i += tx_ring->count;
299         tx_ring->next_to_clean = i;
300         u64_stats_update_begin(&tx_ring->syncp);
301         tx_ring->stats.bytes += total_bytes;
302         tx_ring->stats.packets += total_packets;
303         u64_stats_update_end(&tx_ring->syncp);
304         tx_ring->q_vector->tx.total_bytes += total_bytes;
305         tx_ring->q_vector->tx.total_packets += total_packets;
306
307         if (budget &&
308             !((i & WB_STRIDE) == WB_STRIDE) &&
309             !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
310             (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
311                 tx_ring->arm_wb = true;
312         else
313                 tx_ring->arm_wb = false;
314
315         if (check_for_tx_hang(tx_ring) && i40e_check_tx_hang(tx_ring)) {
316                 /* schedule immediate reset if we believe we hung */
317                 dev_info(tx_ring->dev, "Detected Tx Unit Hang\n"
318                          "  VSI                  <%d>\n"
319                          "  Tx Queue             <%d>\n"
320                          "  next_to_use          <%x>\n"
321                          "  next_to_clean        <%x>\n",
322                          tx_ring->vsi->seid,
323                          tx_ring->queue_index,
324                          tx_ring->next_to_use, i);
325                 dev_info(tx_ring->dev, "tx_bi[next_to_clean]\n"
326                          "  time_stamp           <%lx>\n"
327                          "  jiffies              <%lx>\n",
328                          tx_ring->tx_bi[i].time_stamp, jiffies);
329
330                 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
331
332                 dev_info(tx_ring->dev,
333                          "tx hang detected on queue %d, resetting adapter\n",
334                          tx_ring->queue_index);
335
336                 tx_ring->netdev->netdev_ops->ndo_tx_timeout(tx_ring->netdev);
337
338                 /* the adapter is about to reset, no point in enabling stuff */
339                 return true;
340         }
341
342         netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
343                                                       tx_ring->queue_index),
344                                   total_packets, total_bytes);
345
346 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
347         if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
348                      (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
349                 /* Make sure that anybody stopping the queue after this
350                  * sees the new next_to_clean.
351                  */
352                 smp_mb();
353                 if (__netif_subqueue_stopped(tx_ring->netdev,
354                                              tx_ring->queue_index) &&
355                    !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
356                         netif_wake_subqueue(tx_ring->netdev,
357                                             tx_ring->queue_index);
358                         ++tx_ring->tx_stats.restart_queue;
359                 }
360         }
361
362         return budget > 0;
363 }
364
365 /**
366  * i40e_force_wb -Arm hardware to do a wb on noncache aligned descriptors
367  * @vsi: the VSI we care about
368  * @q_vector: the vector  on which to force writeback
369  *
370  **/
371 static void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
372 {
373         u32 val = I40E_VFINT_DYN_CTLN_INTENA_MASK |
374                   I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
375                   I40E_VFINT_DYN_CTLN_SWINT_TRIG_MASK |
376                   I40E_VFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
377                   /* allow 00 to be written to the index */
378
379         wr32(&vsi->back->hw,
380              I40E_VFINT_DYN_CTLN1(q_vector->v_idx + vsi->base_vector - 1),
381              val);
382 }
383
384 /**
385  * i40e_set_new_dynamic_itr - Find new ITR level
386  * @rc: structure containing ring performance data
387  *
388  * Stores a new ITR value based on packets and byte counts during
389  * the last interrupt.  The advantage of per interrupt computation
390  * is faster updates and more accurate ITR for the current traffic
391  * pattern.  Constants in this function were computed based on
392  * theoretical maximum wire speed and thresholds were set based on
393  * testing data as well as attempting to minimize response time
394  * while increasing bulk throughput.
395  **/
396 static void i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
397 {
398         enum i40e_latency_range new_latency_range = rc->latency_range;
399         u32 new_itr = rc->itr;
400         int bytes_per_int;
401
402         if (rc->total_packets == 0 || !rc->itr)
403                 return;
404
405         /* simple throttlerate management
406          *   0-10MB/s   lowest (100000 ints/s)
407          *  10-20MB/s   low    (20000 ints/s)
408          *  20-1249MB/s bulk   (8000 ints/s)
409          */
410         bytes_per_int = rc->total_bytes / rc->itr;
411         switch (rc->itr) {
412         case I40E_LOWEST_LATENCY:
413                 if (bytes_per_int > 10)
414                         new_latency_range = I40E_LOW_LATENCY;
415                 break;
416         case I40E_LOW_LATENCY:
417                 if (bytes_per_int > 20)
418                         new_latency_range = I40E_BULK_LATENCY;
419                 else if (bytes_per_int <= 10)
420                         new_latency_range = I40E_LOWEST_LATENCY;
421                 break;
422         case I40E_BULK_LATENCY:
423                 if (bytes_per_int <= 20)
424                         rc->latency_range = I40E_LOW_LATENCY;
425                 break;
426         }
427
428         switch (new_latency_range) {
429         case I40E_LOWEST_LATENCY:
430                 new_itr = I40E_ITR_100K;
431                 break;
432         case I40E_LOW_LATENCY:
433                 new_itr = I40E_ITR_20K;
434                 break;
435         case I40E_BULK_LATENCY:
436                 new_itr = I40E_ITR_8K;
437                 break;
438         default:
439                 break;
440         }
441
442         if (new_itr != rc->itr) {
443                 /* do an exponential smoothing */
444                 new_itr = (10 * new_itr * rc->itr) /
445                           ((9 * new_itr) + rc->itr);
446                 rc->itr = new_itr & I40E_MAX_ITR;
447         }
448
449         rc->total_bytes = 0;
450         rc->total_packets = 0;
451 }
452
453 /**
454  * i40e_update_dynamic_itr - Adjust ITR based on bytes per int
455  * @q_vector: the vector to adjust
456  **/
457 static void i40e_update_dynamic_itr(struct i40e_q_vector *q_vector)
458 {
459         u16 vector = q_vector->vsi->base_vector + q_vector->v_idx;
460         struct i40e_hw *hw = &q_vector->vsi->back->hw;
461         u32 reg_addr;
462         u16 old_itr;
463
464         reg_addr = I40E_VFINT_ITRN1(I40E_RX_ITR, vector - 1);
465         old_itr = q_vector->rx.itr;
466         i40e_set_new_dynamic_itr(&q_vector->rx);
467         if (old_itr != q_vector->rx.itr)
468                 wr32(hw, reg_addr, q_vector->rx.itr);
469
470         reg_addr = I40E_VFINT_ITRN1(I40E_TX_ITR, vector - 1);
471         old_itr = q_vector->tx.itr;
472         i40e_set_new_dynamic_itr(&q_vector->tx);
473         if (old_itr != q_vector->tx.itr)
474                 wr32(hw, reg_addr, q_vector->tx.itr);
475 }
476
477 /**
478  * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
479  * @tx_ring: the tx ring to set up
480  *
481  * Return 0 on success, negative on error
482  **/
483 int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
484 {
485         struct device *dev = tx_ring->dev;
486         int bi_size;
487
488         if (!dev)
489                 return -ENOMEM;
490
491         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
492         tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
493         if (!tx_ring->tx_bi)
494                 goto err;
495
496         /* round up to nearest 4K */
497         tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
498         /* add u32 for head writeback, align after this takes care of
499          * guaranteeing this is at least one cache line in size
500          */
501         tx_ring->size += sizeof(u32);
502         tx_ring->size = ALIGN(tx_ring->size, 4096);
503         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
504                                            &tx_ring->dma, GFP_KERNEL);
505         if (!tx_ring->desc) {
506                 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
507                          tx_ring->size);
508                 goto err;
509         }
510
511         tx_ring->next_to_use = 0;
512         tx_ring->next_to_clean = 0;
513         return 0;
514
515 err:
516         kfree(tx_ring->tx_bi);
517         tx_ring->tx_bi = NULL;
518         return -ENOMEM;
519 }
520
521 /**
522  * i40evf_clean_rx_ring - Free Rx buffers
523  * @rx_ring: ring to be cleaned
524  **/
525 void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
526 {
527         struct device *dev = rx_ring->dev;
528         struct i40e_rx_buffer *rx_bi;
529         unsigned long bi_size;
530         u16 i;
531
532         /* ring already cleared, nothing to do */
533         if (!rx_ring->rx_bi)
534                 return;
535
536         if (ring_is_ps_enabled(rx_ring)) {
537                 int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
538
539                 rx_bi = &rx_ring->rx_bi[0];
540                 if (rx_bi->hdr_buf) {
541                         dma_free_coherent(dev,
542                                           bufsz,
543                                           rx_bi->hdr_buf,
544                                           rx_bi->dma);
545                         for (i = 0; i < rx_ring->count; i++) {
546                                 rx_bi = &rx_ring->rx_bi[i];
547                                 rx_bi->dma = 0;
548                                 rx_bi->hdr_buf = NULL;
549                         }
550                 }
551         }
552         /* Free all the Rx ring sk_buffs */
553         for (i = 0; i < rx_ring->count; i++) {
554                 rx_bi = &rx_ring->rx_bi[i];
555                 if (rx_bi->dma) {
556                         dma_unmap_single(dev,
557                                          rx_bi->dma,
558                                          rx_ring->rx_buf_len,
559                                          DMA_FROM_DEVICE);
560                         rx_bi->dma = 0;
561                 }
562                 if (rx_bi->skb) {
563                         dev_kfree_skb(rx_bi->skb);
564                         rx_bi->skb = NULL;
565                 }
566                 if (rx_bi->page) {
567                         if (rx_bi->page_dma) {
568                                 dma_unmap_page(dev,
569                                                rx_bi->page_dma,
570                                                PAGE_SIZE / 2,
571                                                DMA_FROM_DEVICE);
572                                 rx_bi->page_dma = 0;
573                         }
574                         __free_page(rx_bi->page);
575                         rx_bi->page = NULL;
576                         rx_bi->page_offset = 0;
577                 }
578         }
579
580         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
581         memset(rx_ring->rx_bi, 0, bi_size);
582
583         /* Zero out the descriptor ring */
584         memset(rx_ring->desc, 0, rx_ring->size);
585
586         rx_ring->next_to_clean = 0;
587         rx_ring->next_to_use = 0;
588 }
589
590 /**
591  * i40evf_free_rx_resources - Free Rx resources
592  * @rx_ring: ring to clean the resources from
593  *
594  * Free all receive software resources
595  **/
596 void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
597 {
598         i40evf_clean_rx_ring(rx_ring);
599         kfree(rx_ring->rx_bi);
600         rx_ring->rx_bi = NULL;
601
602         if (rx_ring->desc) {
603                 dma_free_coherent(rx_ring->dev, rx_ring->size,
604                                   rx_ring->desc, rx_ring->dma);
605                 rx_ring->desc = NULL;
606         }
607 }
608
609 /**
610  * i40evf_alloc_rx_headers - allocate rx header buffers
611  * @rx_ring: ring to alloc buffers
612  *
613  * Allocate rx header buffers for the entire ring. As these are static,
614  * this is only called when setting up a new ring.
615  **/
616 void i40evf_alloc_rx_headers(struct i40e_ring *rx_ring)
617 {
618         struct device *dev = rx_ring->dev;
619         struct i40e_rx_buffer *rx_bi;
620         dma_addr_t dma;
621         void *buffer;
622         int buf_size;
623         int i;
624
625         if (rx_ring->rx_bi[0].hdr_buf)
626                 return;
627         /* Make sure the buffers don't cross cache line boundaries. */
628         buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
629         buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
630                                     &dma, GFP_KERNEL);
631         if (!buffer)
632                 return;
633         for (i = 0; i < rx_ring->count; i++) {
634                 rx_bi = &rx_ring->rx_bi[i];
635                 rx_bi->dma = dma + (i * buf_size);
636                 rx_bi->hdr_buf = buffer + (i * buf_size);
637         }
638 }
639
640 /**
641  * i40evf_setup_rx_descriptors - Allocate Rx descriptors
642  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
643  *
644  * Returns 0 on success, negative on failure
645  **/
646 int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
647 {
648         struct device *dev = rx_ring->dev;
649         int bi_size;
650
651         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
652         rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
653         if (!rx_ring->rx_bi)
654                 goto err;
655
656         u64_stats_init(&rx_ring->syncp);
657
658         /* Round up to nearest 4K */
659         rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
660                 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
661                 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
662         rx_ring->size = ALIGN(rx_ring->size, 4096);
663         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
664                                            &rx_ring->dma, GFP_KERNEL);
665
666         if (!rx_ring->desc) {
667                 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
668                          rx_ring->size);
669                 goto err;
670         }
671
672         rx_ring->next_to_clean = 0;
673         rx_ring->next_to_use = 0;
674
675         return 0;
676 err:
677         kfree(rx_ring->rx_bi);
678         rx_ring->rx_bi = NULL;
679         return -ENOMEM;
680 }
681
682 /**
683  * i40e_release_rx_desc - Store the new tail and head values
684  * @rx_ring: ring to bump
685  * @val: new head index
686  **/
687 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
688 {
689         rx_ring->next_to_use = val;
690         /* Force memory writes to complete before letting h/w
691          * know there are new descriptors to fetch.  (Only
692          * applicable for weak-ordered memory model archs,
693          * such as IA-64).
694          */
695         wmb();
696         writel(val, rx_ring->tail);
697 }
698
699 /**
700  * i40evf_alloc_rx_buffers_ps - Replace used receive buffers; packet split
701  * @rx_ring: ring to place buffers on
702  * @cleaned_count: number of buffers to replace
703  **/
704 void i40evf_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
705 {
706         u16 i = rx_ring->next_to_use;
707         union i40e_rx_desc *rx_desc;
708         struct i40e_rx_buffer *bi;
709
710         /* do nothing if no valid netdev defined */
711         if (!rx_ring->netdev || !cleaned_count)
712                 return;
713
714         while (cleaned_count--) {
715                 rx_desc = I40E_RX_DESC(rx_ring, i);
716                 bi = &rx_ring->rx_bi[i];
717
718                 if (bi->skb) /* desc is in use */
719                         goto no_buffers;
720                 if (!bi->page) {
721                         bi->page = alloc_page(GFP_ATOMIC);
722                         if (!bi->page) {
723                                 rx_ring->rx_stats.alloc_page_failed++;
724                                 goto no_buffers;
725                         }
726                 }
727
728                 if (!bi->page_dma) {
729                         /* use a half page if we're re-using */
730                         bi->page_offset ^= PAGE_SIZE / 2;
731                         bi->page_dma = dma_map_page(rx_ring->dev,
732                                                     bi->page,
733                                                     bi->page_offset,
734                                                     PAGE_SIZE / 2,
735                                                     DMA_FROM_DEVICE);
736                         if (dma_mapping_error(rx_ring->dev,
737                                               bi->page_dma)) {
738                                 rx_ring->rx_stats.alloc_page_failed++;
739                                 bi->page_dma = 0;
740                                 goto no_buffers;
741                         }
742                 }
743
744                 dma_sync_single_range_for_device(rx_ring->dev,
745                                                  bi->dma,
746                                                  0,
747                                                  rx_ring->rx_hdr_len,
748                                                  DMA_FROM_DEVICE);
749                 /* Refresh the desc even if buffer_addrs didn't change
750                  * because each write-back erases this info.
751                  */
752                 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
753                 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
754                 i++;
755                 if (i == rx_ring->count)
756                         i = 0;
757         }
758
759 no_buffers:
760         if (rx_ring->next_to_use != i)
761                 i40e_release_rx_desc(rx_ring, i);
762 }
763
764 /**
765  * i40evf_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
766  * @rx_ring: ring to place buffers on
767  * @cleaned_count: number of buffers to replace
768  **/
769 void i40evf_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
770 {
771         u16 i = rx_ring->next_to_use;
772         union i40e_rx_desc *rx_desc;
773         struct i40e_rx_buffer *bi;
774         struct sk_buff *skb;
775
776         /* do nothing if no valid netdev defined */
777         if (!rx_ring->netdev || !cleaned_count)
778                 return;
779
780         while (cleaned_count--) {
781                 rx_desc = I40E_RX_DESC(rx_ring, i);
782                 bi = &rx_ring->rx_bi[i];
783                 skb = bi->skb;
784
785                 if (!skb) {
786                         skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
787                                                         rx_ring->rx_buf_len);
788                         if (!skb) {
789                                 rx_ring->rx_stats.alloc_buff_failed++;
790                                 goto no_buffers;
791                         }
792                         /* initialize queue mapping */
793                         skb_record_rx_queue(skb, rx_ring->queue_index);
794                         bi->skb = skb;
795                 }
796
797                 if (!bi->dma) {
798                         bi->dma = dma_map_single(rx_ring->dev,
799                                                  skb->data,
800                                                  rx_ring->rx_buf_len,
801                                                  DMA_FROM_DEVICE);
802                         if (dma_mapping_error(rx_ring->dev, bi->dma)) {
803                                 rx_ring->rx_stats.alloc_buff_failed++;
804                                 bi->dma = 0;
805                                 goto no_buffers;
806                         }
807                 }
808
809                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
810                 rx_desc->read.hdr_addr = 0;
811                 i++;
812                 if (i == rx_ring->count)
813                         i = 0;
814         }
815
816 no_buffers:
817         if (rx_ring->next_to_use != i)
818                 i40e_release_rx_desc(rx_ring, i);
819 }
820
821 /**
822  * i40e_receive_skb - Send a completed packet up the stack
823  * @rx_ring:  rx ring in play
824  * @skb: packet to send up
825  * @vlan_tag: vlan tag for packet
826  **/
827 static void i40e_receive_skb(struct i40e_ring *rx_ring,
828                              struct sk_buff *skb, u16 vlan_tag)
829 {
830         struct i40e_q_vector *q_vector = rx_ring->q_vector;
831         struct i40e_vsi *vsi = rx_ring->vsi;
832         u64 flags = vsi->back->flags;
833
834         if (vlan_tag & VLAN_VID_MASK)
835                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
836
837         if (flags & I40E_FLAG_IN_NETPOLL)
838                 netif_rx(skb);
839         else
840                 napi_gro_receive(&q_vector->napi, skb);
841 }
842
843 /**
844  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
845  * @vsi: the VSI we care about
846  * @skb: skb currently being received and modified
847  * @rx_status: status value of last descriptor in packet
848  * @rx_error: error value of last descriptor in packet
849  * @rx_ptype: ptype value of last descriptor in packet
850  **/
851 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
852                                     struct sk_buff *skb,
853                                     u32 rx_status,
854                                     u32 rx_error,
855                                     u16 rx_ptype)
856 {
857         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
858         bool ipv4 = false, ipv6 = false;
859         bool ipv4_tunnel, ipv6_tunnel;
860         __wsum rx_udp_csum;
861         struct iphdr *iph;
862         __sum16 csum;
863
864         ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
865                      (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
866         ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
867                      (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
868
869         skb->ip_summed = CHECKSUM_NONE;
870
871         /* Rx csum enabled and ip headers found? */
872         if (!(vsi->netdev->features & NETIF_F_RXCSUM))
873                 return;
874
875         /* did the hardware decode the packet and checksum? */
876         if (!(rx_status & (1 << I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
877                 return;
878
879         /* both known and outer_ip must be set for the below code to work */
880         if (!(decoded.known && decoded.outer_ip))
881                 return;
882
883         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
884             decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
885                 ipv4 = true;
886         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
887                  decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
888                 ipv6 = true;
889
890         if (ipv4 &&
891             (rx_error & ((1 << I40E_RX_DESC_ERROR_IPE_SHIFT) |
892                          (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT))))
893                 goto checksum_fail;
894
895         /* likely incorrect csum if alternate IP extension headers found */
896         if (ipv6 &&
897             rx_status & (1 << I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
898                 /* don't increment checksum err here, non-fatal err */
899                 return;
900
901         /* there was some L4 error, count error and punt packet to the stack */
902         if (rx_error & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT))
903                 goto checksum_fail;
904
905         /* handle packets that were not able to be checksummed due
906          * to arrival speed, in this case the stack can compute
907          * the csum.
908          */
909         if (rx_error & (1 << I40E_RX_DESC_ERROR_PPRS_SHIFT))
910                 return;
911
912         /* If VXLAN traffic has an outer UDPv4 checksum we need to check
913          * it in the driver, hardware does not do it for us.
914          * Since L3L4P bit was set we assume a valid IHL value (>=5)
915          * so the total length of IPv4 header is IHL*4 bytes
916          * The UDP_0 bit *may* bet set if the *inner* header is UDP
917          */
918         if (ipv4_tunnel) {
919                 skb->transport_header = skb->mac_header +
920                                         sizeof(struct ethhdr) +
921                                         (ip_hdr(skb)->ihl * 4);
922
923                 /* Add 4 bytes for VLAN tagged packets */
924                 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
925                                           skb->protocol == htons(ETH_P_8021AD))
926                                           ? VLAN_HLEN : 0;
927
928                 if ((ip_hdr(skb)->protocol == IPPROTO_UDP) &&
929                     (udp_hdr(skb)->check != 0)) {
930                         rx_udp_csum = udp_csum(skb);
931                         iph = ip_hdr(skb);
932                         csum = csum_tcpudp_magic(iph->saddr, iph->daddr,
933                                                  (skb->len -
934                                                   skb_transport_offset(skb)),
935                                                  IPPROTO_UDP, rx_udp_csum);
936
937                         if (udp_hdr(skb)->check != csum)
938                                 goto checksum_fail;
939
940                 } /* else its GRE and so no outer UDP header */
941         }
942
943         skb->ip_summed = CHECKSUM_UNNECESSARY;
944         skb->csum_level = ipv4_tunnel || ipv6_tunnel;
945
946         return;
947
948 checksum_fail:
949         vsi->back->hw_csum_rx_error++;
950 }
951
952 /**
953  * i40e_rx_hash - returns the hash value from the Rx descriptor
954  * @ring: descriptor ring
955  * @rx_desc: specific descriptor
956  **/
957 static inline u32 i40e_rx_hash(struct i40e_ring *ring,
958                                union i40e_rx_desc *rx_desc)
959 {
960         const __le64 rss_mask =
961                 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
962                             I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
963
964         if ((ring->netdev->features & NETIF_F_RXHASH) &&
965             (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
966                 return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
967         else
968                 return 0;
969 }
970
971 /**
972  * i40e_ptype_to_hash - get a hash type
973  * @ptype: the ptype value from the descriptor
974  *
975  * Returns a hash type to be used by skb_set_hash
976  **/
977 static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
978 {
979         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
980
981         if (!decoded.known)
982                 return PKT_HASH_TYPE_NONE;
983
984         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
985             decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
986                 return PKT_HASH_TYPE_L4;
987         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
988                  decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
989                 return PKT_HASH_TYPE_L3;
990         else
991                 return PKT_HASH_TYPE_L2;
992 }
993
994 /**
995  * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
996  * @rx_ring:  rx ring to clean
997  * @budget:   how many cleans we're allowed
998  *
999  * Returns true if there's any budget left (e.g. the clean is finished)
1000  **/
1001 static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, int budget)
1002 {
1003         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1004         u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
1005         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1006         const int current_node = numa_node_id();
1007         struct i40e_vsi *vsi = rx_ring->vsi;
1008         u16 i = rx_ring->next_to_clean;
1009         union i40e_rx_desc *rx_desc;
1010         u32 rx_error, rx_status;
1011         u8 rx_ptype;
1012         u64 qword;
1013
1014         do {
1015                 struct i40e_rx_buffer *rx_bi;
1016                 struct sk_buff *skb;
1017                 u16 vlan_tag;
1018                 /* return some buffers to hardware, one at a time is too slow */
1019                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1020                         i40evf_alloc_rx_buffers_ps(rx_ring, cleaned_count);
1021                         cleaned_count = 0;
1022                 }
1023
1024                 i = rx_ring->next_to_clean;
1025                 rx_desc = I40E_RX_DESC(rx_ring, i);
1026                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1027                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1028                         I40E_RXD_QW1_STATUS_SHIFT;
1029
1030                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
1031                         break;
1032
1033                 /* This memory barrier is needed to keep us from reading
1034                  * any other fields out of the rx_desc until we know the
1035                  * DD bit is set.
1036                  */
1037                 dma_rmb();
1038                 rx_bi = &rx_ring->rx_bi[i];
1039                 skb = rx_bi->skb;
1040                 if (likely(!skb)) {
1041                         skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1042                                                         rx_ring->rx_hdr_len);
1043                         if (!skb) {
1044                                 rx_ring->rx_stats.alloc_buff_failed++;
1045                                 break;
1046                         }
1047
1048                         /* initialize queue mapping */
1049                         skb_record_rx_queue(skb, rx_ring->queue_index);
1050                         /* we are reusing so sync this buffer for CPU use */
1051                         dma_sync_single_range_for_cpu(rx_ring->dev,
1052                                                       rx_bi->dma,
1053                                                       0,
1054                                                       rx_ring->rx_hdr_len,
1055                                                       DMA_FROM_DEVICE);
1056                 }
1057                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1058                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1059                 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1060                                 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1061                 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1062                          I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1063
1064                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1065                            I40E_RXD_QW1_ERROR_SHIFT;
1066                 rx_hbo = rx_error & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1067                 rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1068
1069                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1070                            I40E_RXD_QW1_PTYPE_SHIFT;
1071                 prefetch(rx_bi->page);
1072                 rx_bi->skb = NULL;
1073                 cleaned_count++;
1074                 if (rx_hbo || rx_sph) {
1075                         int len;
1076                         if (rx_hbo)
1077                                 len = I40E_RX_HDR_SIZE;
1078                         else
1079                                 len = rx_header_len;
1080                         memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
1081                 } else if (skb->len == 0) {
1082                         int len;
1083
1084                         len = (rx_packet_len > skb_headlen(skb) ?
1085                                 skb_headlen(skb) : rx_packet_len);
1086                         memcpy(__skb_put(skb, len),
1087                                rx_bi->page + rx_bi->page_offset,
1088                                len);
1089                         rx_bi->page_offset += len;
1090                         rx_packet_len -= len;
1091                 }
1092
1093                 /* Get the rest of the data if this was a header split */
1094                 if (rx_packet_len) {
1095                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1096                                            rx_bi->page,
1097                                            rx_bi->page_offset,
1098                                            rx_packet_len);
1099
1100                         skb->len += rx_packet_len;
1101                         skb->data_len += rx_packet_len;
1102                         skb->truesize += rx_packet_len;
1103
1104                         if ((page_count(rx_bi->page) == 1) &&
1105                             (page_to_nid(rx_bi->page) == current_node))
1106                                 get_page(rx_bi->page);
1107                         else
1108                                 rx_bi->page = NULL;
1109
1110                         dma_unmap_page(rx_ring->dev,
1111                                        rx_bi->page_dma,
1112                                        PAGE_SIZE / 2,
1113                                        DMA_FROM_DEVICE);
1114                         rx_bi->page_dma = 0;
1115                 }
1116                 I40E_RX_INCREMENT(rx_ring, i);
1117
1118                 if (unlikely(
1119                     !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1120                         struct i40e_rx_buffer *next_buffer;
1121
1122                         next_buffer = &rx_ring->rx_bi[i];
1123                         next_buffer->skb = skb;
1124                         rx_ring->rx_stats.non_eop_descs++;
1125                         continue;
1126                 }
1127
1128                 /* ERR_MASK will only have valid bits if EOP set */
1129                 if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1130                         dev_kfree_skb_any(skb);
1131                         /* TODO: shouldn't we increment a counter indicating the
1132                          * drop?
1133                          */
1134                         continue;
1135                 }
1136
1137                 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1138                              i40e_ptype_to_hash(rx_ptype));
1139                 /* probably a little skewed due to removing CRC */
1140                 total_rx_bytes += skb->len;
1141                 total_rx_packets++;
1142
1143                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1144
1145                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1146
1147                 vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1148                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1149                          : 0;
1150 #ifdef I40E_FCOE
1151                 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1152                         dev_kfree_skb_any(skb);
1153                         continue;
1154                 }
1155 #endif
1156                 skb_mark_napi_id(skb, &rx_ring->q_vector->napi);
1157                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1158
1159                 rx_ring->netdev->last_rx = jiffies;
1160                 rx_desc->wb.qword1.status_error_len = 0;
1161
1162         } while (likely(total_rx_packets < budget));
1163
1164         u64_stats_update_begin(&rx_ring->syncp);
1165         rx_ring->stats.packets += total_rx_packets;
1166         rx_ring->stats.bytes += total_rx_bytes;
1167         u64_stats_update_end(&rx_ring->syncp);
1168         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1169         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1170
1171         return total_rx_packets;
1172 }
1173
1174 /**
1175  * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
1176  * @rx_ring:  rx ring to clean
1177  * @budget:   how many cleans we're allowed
1178  *
1179  * Returns number of packets cleaned
1180  **/
1181 static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
1182 {
1183         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1184         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1185         struct i40e_vsi *vsi = rx_ring->vsi;
1186         union i40e_rx_desc *rx_desc;
1187         u32 rx_error, rx_status;
1188         u16 rx_packet_len;
1189         u8 rx_ptype;
1190         u64 qword;
1191         u16 i;
1192
1193         do {
1194                 struct i40e_rx_buffer *rx_bi;
1195                 struct sk_buff *skb;
1196                 u16 vlan_tag;
1197                 /* return some buffers to hardware, one at a time is too slow */
1198                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1199                         i40evf_alloc_rx_buffers_1buf(rx_ring, cleaned_count);
1200                         cleaned_count = 0;
1201                 }
1202
1203                 i = rx_ring->next_to_clean;
1204                 rx_desc = I40E_RX_DESC(rx_ring, i);
1205                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1206                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1207                         I40E_RXD_QW1_STATUS_SHIFT;
1208
1209                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
1210                         break;
1211
1212                 /* This memory barrier is needed to keep us from reading
1213                  * any other fields out of the rx_desc until we know the
1214                  * DD bit is set.
1215                  */
1216                 dma_rmb();
1217
1218                 rx_bi = &rx_ring->rx_bi[i];
1219                 skb = rx_bi->skb;
1220                 prefetch(skb->data);
1221
1222                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1223                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1224
1225                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1226                            I40E_RXD_QW1_ERROR_SHIFT;
1227                 rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1228
1229                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1230                            I40E_RXD_QW1_PTYPE_SHIFT;
1231                 rx_bi->skb = NULL;
1232                 cleaned_count++;
1233
1234                 /* Get the header and possibly the whole packet
1235                  * If this is an skb from previous receive dma will be 0
1236                  */
1237                 skb_put(skb, rx_packet_len);
1238                 dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
1239                                  DMA_FROM_DEVICE);
1240                 rx_bi->dma = 0;
1241
1242                 I40E_RX_INCREMENT(rx_ring, i);
1243
1244                 if (unlikely(
1245                     !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1246                         rx_ring->rx_stats.non_eop_descs++;
1247                         continue;
1248                 }
1249
1250                 /* ERR_MASK will only have valid bits if EOP set */
1251                 if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1252                         dev_kfree_skb_any(skb);
1253                         /* TODO: shouldn't we increment a counter indicating the
1254                          * drop?
1255                          */
1256                         continue;
1257                 }
1258
1259                 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1260                              i40e_ptype_to_hash(rx_ptype));
1261                 /* probably a little skewed due to removing CRC */
1262                 total_rx_bytes += skb->len;
1263                 total_rx_packets++;
1264
1265                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1266
1267                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1268
1269                 vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1270                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1271                          : 0;
1272                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1273
1274                 rx_ring->netdev->last_rx = jiffies;
1275                 rx_desc->wb.qword1.status_error_len = 0;
1276         } while (likely(total_rx_packets < budget));
1277
1278         u64_stats_update_begin(&rx_ring->syncp);
1279         rx_ring->stats.packets += total_rx_packets;
1280         rx_ring->stats.bytes += total_rx_bytes;
1281         u64_stats_update_end(&rx_ring->syncp);
1282         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1283         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1284
1285         return total_rx_packets;
1286 }
1287
1288 /**
1289  * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
1290  * @napi: napi struct with our devices info in it
1291  * @budget: amount of work driver is allowed to do this pass, in packets
1292  *
1293  * This function will clean all queues associated with a q_vector.
1294  *
1295  * Returns the amount of work done
1296  **/
1297 int i40evf_napi_poll(struct napi_struct *napi, int budget)
1298 {
1299         struct i40e_q_vector *q_vector =
1300                                container_of(napi, struct i40e_q_vector, napi);
1301         struct i40e_vsi *vsi = q_vector->vsi;
1302         struct i40e_ring *ring;
1303         bool clean_complete = true;
1304         bool arm_wb = false;
1305         int budget_per_ring;
1306         int cleaned;
1307
1308         if (test_bit(__I40E_DOWN, &vsi->state)) {
1309                 napi_complete(napi);
1310                 return 0;
1311         }
1312
1313         /* Since the actual Tx work is minimal, we can give the Tx a larger
1314          * budget and be more aggressive about cleaning up the Tx descriptors.
1315          */
1316         i40e_for_each_ring(ring, q_vector->tx) {
1317                 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
1318                 arm_wb |= ring->arm_wb;
1319         }
1320
1321         /* We attempt to distribute budget to each Rx queue fairly, but don't
1322          * allow the budget to go below 1 because that would exit polling early.
1323          */
1324         budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1325
1326         i40e_for_each_ring(ring, q_vector->rx) {
1327                 if (ring_is_ps_enabled(ring))
1328                         cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
1329                 else
1330                         cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
1331                 /* if we didn't clean as many as budgeted, we must be done */
1332                 clean_complete &= (budget_per_ring != cleaned);
1333         }
1334
1335         /* If work not completed, return budget and polling will return */
1336         if (!clean_complete) {
1337                 if (arm_wb)
1338                         i40e_force_wb(vsi, q_vector);
1339                 return budget;
1340         }
1341
1342         /* Work is done so exit the polling mode and re-enable the interrupt */
1343         napi_complete(napi);
1344         if (ITR_IS_DYNAMIC(vsi->rx_itr_setting) ||
1345             ITR_IS_DYNAMIC(vsi->tx_itr_setting))
1346                 i40e_update_dynamic_itr(q_vector);
1347
1348         if (!test_bit(__I40E_DOWN, &vsi->state))
1349                 i40evf_irq_enable_queues(vsi->back, 1 << q_vector->v_idx);
1350
1351         return 0;
1352 }
1353
1354 /**
1355  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1356  * @skb:     send buffer
1357  * @tx_ring: ring to send buffer on
1358  * @flags:   the tx flags to be set
1359  *
1360  * Checks the skb and set up correspondingly several generic transmit flags
1361  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1362  *
1363  * Returns error code indicate the frame should be dropped upon error and the
1364  * otherwise  returns 0 to indicate the flags has been set properly.
1365  **/
1366 static int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
1367                                       struct i40e_ring *tx_ring,
1368                                       u32 *flags)
1369 {
1370         __be16 protocol = skb->protocol;
1371         u32  tx_flags = 0;
1372
1373         if (protocol == htons(ETH_P_8021Q) &&
1374             !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1375                 /* When HW VLAN acceleration is turned off by the user the
1376                  * stack sets the protocol to 8021q so that the driver
1377                  * can take any steps required to support the SW only
1378                  * VLAN handling.  In our case the driver doesn't need
1379                  * to take any further steps so just set the protocol
1380                  * to the encapsulated ethertype.
1381                  */
1382                 skb->protocol = vlan_get_protocol(skb);
1383                 goto out;
1384         }
1385
1386         /* if we have a HW VLAN tag being added, default to the HW one */
1387         if (skb_vlan_tag_present(skb)) {
1388                 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1389                 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1390         /* else if it is a SW VLAN, check the next protocol and store the tag */
1391         } else if (protocol == htons(ETH_P_8021Q)) {
1392                 struct vlan_hdr *vhdr, _vhdr;
1393                 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1394                 if (!vhdr)
1395                         return -EINVAL;
1396
1397                 protocol = vhdr->h_vlan_encapsulated_proto;
1398                 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1399                 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1400         }
1401
1402 out:
1403         *flags = tx_flags;
1404         return 0;
1405 }
1406
1407 /**
1408  * i40e_tso - set up the tso context descriptor
1409  * @tx_ring:  ptr to the ring to send
1410  * @skb:      ptr to the skb we're sending
1411  * @tx_flags: the collected send information
1412  * @protocol: the send protocol
1413  * @hdr_len:  ptr to the size of the packet header
1414  * @cd_tunneling: ptr to context descriptor bits
1415  *
1416  * Returns 0 if no TSO can happen, 1 if tso is going, or error
1417  **/
1418 static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
1419                     u32 tx_flags, __be16 protocol, u8 *hdr_len,
1420                     u64 *cd_type_cmd_tso_mss, u32 *cd_tunneling)
1421 {
1422         u32 cd_cmd, cd_tso_len, cd_mss;
1423         struct ipv6hdr *ipv6h;
1424         struct tcphdr *tcph;
1425         struct iphdr *iph;
1426         u32 l4len;
1427         int err;
1428
1429         if (!skb_is_gso(skb))
1430                 return 0;
1431
1432         err = skb_cow_head(skb, 0);
1433         if (err < 0)
1434                 return err;
1435
1436         iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
1437         ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
1438
1439         if (iph->version == 4) {
1440                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1441                 iph->tot_len = 0;
1442                 iph->check = 0;
1443                 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1444                                                  0, IPPROTO_TCP, 0);
1445         } else if (ipv6h->version == 6) {
1446                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1447                 ipv6h->payload_len = 0;
1448                 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
1449                                                0, IPPROTO_TCP, 0);
1450         }
1451
1452         l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1453         *hdr_len = (skb->encapsulation
1454                     ? (skb_inner_transport_header(skb) - skb->data)
1455                     : skb_transport_offset(skb)) + l4len;
1456
1457         /* find the field values */
1458         cd_cmd = I40E_TX_CTX_DESC_TSO;
1459         cd_tso_len = skb->len - *hdr_len;
1460         cd_mss = skb_shinfo(skb)->gso_size;
1461         *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1462                                 ((u64)cd_tso_len <<
1463                                  I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1464                                 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1465         return 1;
1466 }
1467
1468 /**
1469  * i40e_tx_enable_csum - Enable Tx checksum offloads
1470  * @skb: send buffer
1471  * @tx_flags: Tx flags currently set
1472  * @td_cmd: Tx descriptor command bits to set
1473  * @td_offset: Tx descriptor header offsets to set
1474  * @cd_tunneling: ptr to context desc bits
1475  **/
1476 static void i40e_tx_enable_csum(struct sk_buff *skb, u32 tx_flags,
1477                                 u32 *td_cmd, u32 *td_offset,
1478                                 struct i40e_ring *tx_ring,
1479                                 u32 *cd_tunneling)
1480 {
1481         struct ipv6hdr *this_ipv6_hdr;
1482         unsigned int this_tcp_hdrlen;
1483         struct iphdr *this_ip_hdr;
1484         u32 network_hdr_len;
1485         u8 l4_hdr = 0;
1486         u32 l4_tunnel = 0;
1487
1488         if (skb->encapsulation) {
1489                 switch (ip_hdr(skb)->protocol) {
1490                 case IPPROTO_UDP:
1491                         l4_tunnel = I40E_TXD_CTX_UDP_TUNNELING;
1492                         break;
1493                 default:
1494                         return;
1495                 }
1496                 network_hdr_len = skb_inner_network_header_len(skb);
1497                 this_ip_hdr = inner_ip_hdr(skb);
1498                 this_ipv6_hdr = inner_ipv6_hdr(skb);
1499                 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
1500
1501                 if (tx_flags & I40E_TX_FLAGS_IPV4) {
1502
1503                         if (tx_flags & I40E_TX_FLAGS_TSO) {
1504                                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
1505                                 ip_hdr(skb)->check = 0;
1506                         } else {
1507                                 *cd_tunneling |=
1508                                          I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1509                         }
1510                 } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
1511                         *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
1512                         if (tx_flags & I40E_TX_FLAGS_TSO)
1513                                 ip_hdr(skb)->check = 0;
1514                 }
1515
1516                 /* Now set the ctx descriptor fields */
1517                 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
1518                                    I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT      |
1519                                    l4_tunnel                             |
1520                                    ((skb_inner_network_offset(skb) -
1521                                         skb_transport_offset(skb)) >> 1) <<
1522                                    I40E_TXD_CTX_QW0_NATLEN_SHIFT;
1523                 if (this_ip_hdr->version == 6) {
1524                         tx_flags &= ~I40E_TX_FLAGS_IPV4;
1525                         tx_flags |= I40E_TX_FLAGS_IPV6;
1526                 }
1527
1528
1529         } else {
1530                 network_hdr_len = skb_network_header_len(skb);
1531                 this_ip_hdr = ip_hdr(skb);
1532                 this_ipv6_hdr = ipv6_hdr(skb);
1533                 this_tcp_hdrlen = tcp_hdrlen(skb);
1534         }
1535
1536         /* Enable IP checksum offloads */
1537         if (tx_flags & I40E_TX_FLAGS_IPV4) {
1538                 l4_hdr = this_ip_hdr->protocol;
1539                 /* the stack computes the IP header already, the only time we
1540                  * need the hardware to recompute it is in the case of TSO.
1541                  */
1542                 if (tx_flags & I40E_TX_FLAGS_TSO) {
1543                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
1544                         this_ip_hdr->check = 0;
1545                 } else {
1546                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
1547                 }
1548                 /* Now set the td_offset for IP header length */
1549                 *td_offset = (network_hdr_len >> 2) <<
1550                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1551         } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
1552                 l4_hdr = this_ipv6_hdr->nexthdr;
1553                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1554                 /* Now set the td_offset for IP header length */
1555                 *td_offset = (network_hdr_len >> 2) <<
1556                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1557         }
1558         /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
1559         *td_offset |= (skb_network_offset(skb) >> 1) <<
1560                        I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1561
1562         /* Enable L4 checksum offloads */
1563         switch (l4_hdr) {
1564         case IPPROTO_TCP:
1565                 /* enable checksum offloads */
1566                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1567                 *td_offset |= (this_tcp_hdrlen >> 2) <<
1568                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1569                 break;
1570         case IPPROTO_SCTP:
1571                 /* enable SCTP checksum offload */
1572                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1573                 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
1574                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1575                 break;
1576         case IPPROTO_UDP:
1577                 /* enable UDP checksum offload */
1578                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1579                 *td_offset |= (sizeof(struct udphdr) >> 2) <<
1580                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1581                 break;
1582         default:
1583                 break;
1584         }
1585 }
1586
1587 /**
1588  * i40e_create_tx_ctx Build the Tx context descriptor
1589  * @tx_ring:  ring to create the descriptor on
1590  * @cd_type_cmd_tso_mss: Quad Word 1
1591  * @cd_tunneling: Quad Word 0 - bits 0-31
1592  * @cd_l2tag2: Quad Word 0 - bits 32-63
1593  **/
1594 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1595                                const u64 cd_type_cmd_tso_mss,
1596                                const u32 cd_tunneling, const u32 cd_l2tag2)
1597 {
1598         struct i40e_tx_context_desc *context_desc;
1599         int i = tx_ring->next_to_use;
1600
1601         if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
1602             !cd_tunneling && !cd_l2tag2)
1603                 return;
1604
1605         /* grab the next descriptor */
1606         context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1607
1608         i++;
1609         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1610
1611         /* cpu_to_le32 and assign to struct fields */
1612         context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1613         context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
1614         context_desc->rsvd = cpu_to_le16(0);
1615         context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1616 }
1617
1618  /**
1619  * i40e_chk_linearize - Check if there are more than 8 fragments per packet
1620  * @skb:      send buffer
1621  * @tx_flags: collected send information
1622  *
1623  * Note: Our HW can't scatter-gather more than 8 fragments to build
1624  * a packet on the wire and so we need to figure out the cases where we
1625  * need to linearize the skb.
1626  **/
1627 static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags)
1628 {
1629         struct skb_frag_struct *frag;
1630         bool linearize = false;
1631         unsigned int size = 0;
1632         u16 num_frags;
1633         u16 gso_segs;
1634
1635         num_frags = skb_shinfo(skb)->nr_frags;
1636         gso_segs = skb_shinfo(skb)->gso_segs;
1637
1638         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) {
1639                 u16 j = 0;
1640
1641                 if (num_frags < (I40E_MAX_BUFFER_TXD))
1642                         goto linearize_chk_done;
1643                 /* try the simple math, if we have too many frags per segment */
1644                 if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) >
1645                     I40E_MAX_BUFFER_TXD) {
1646                         linearize = true;
1647                         goto linearize_chk_done;
1648                 }
1649                 frag = &skb_shinfo(skb)->frags[0];
1650                 /* we might still have more fragments per segment */
1651                 do {
1652                         size += skb_frag_size(frag);
1653                         frag++; j++;
1654                         if ((size >= skb_shinfo(skb)->gso_size) &&
1655                             (j < I40E_MAX_BUFFER_TXD)) {
1656                                 size = (size % skb_shinfo(skb)->gso_size);
1657                                 j = (size) ? 1 : 0;
1658                         }
1659                         if (j == I40E_MAX_BUFFER_TXD) {
1660                                 linearize = true;
1661                                 break;
1662                         }
1663                         num_frags--;
1664                 } while (num_frags);
1665         } else {
1666                 if (num_frags >= I40E_MAX_BUFFER_TXD)
1667                         linearize = true;
1668         }
1669
1670 linearize_chk_done:
1671         return linearize;
1672 }
1673
1674 /**
1675  * i40e_tx_map - Build the Tx descriptor
1676  * @tx_ring:  ring to send buffer on
1677  * @skb:      send buffer
1678  * @first:    first buffer info buffer to use
1679  * @tx_flags: collected send information
1680  * @hdr_len:  size of the packet header
1681  * @td_cmd:   the command field in the descriptor
1682  * @td_offset: offset for checksum or crc
1683  **/
1684 static void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
1685                         struct i40e_tx_buffer *first, u32 tx_flags,
1686                         const u8 hdr_len, u32 td_cmd, u32 td_offset)
1687 {
1688         unsigned int data_len = skb->data_len;
1689         unsigned int size = skb_headlen(skb);
1690         struct skb_frag_struct *frag;
1691         struct i40e_tx_buffer *tx_bi;
1692         struct i40e_tx_desc *tx_desc;
1693         u16 i = tx_ring->next_to_use;
1694         u32 td_tag = 0;
1695         dma_addr_t dma;
1696         u16 gso_segs;
1697
1698         if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
1699                 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1700                 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
1701                          I40E_TX_FLAGS_VLAN_SHIFT;
1702         }
1703
1704         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
1705                 gso_segs = skb_shinfo(skb)->gso_segs;
1706         else
1707                 gso_segs = 1;
1708
1709         /* multiply data chunks by size of headers */
1710         first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
1711         first->gso_segs = gso_segs;
1712         first->skb = skb;
1713         first->tx_flags = tx_flags;
1714
1715         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1716
1717         tx_desc = I40E_TX_DESC(tx_ring, i);
1718         tx_bi = first;
1719
1720         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1721                 if (dma_mapping_error(tx_ring->dev, dma))
1722                         goto dma_error;
1723
1724                 /* record length, and DMA address */
1725                 dma_unmap_len_set(tx_bi, len, size);
1726                 dma_unmap_addr_set(tx_bi, dma, dma);
1727
1728                 tx_desc->buffer_addr = cpu_to_le64(dma);
1729
1730                 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
1731                         tx_desc->cmd_type_offset_bsz =
1732                                 build_ctob(td_cmd, td_offset,
1733                                            I40E_MAX_DATA_PER_TXD, td_tag);
1734
1735                         tx_desc++;
1736                         i++;
1737                         if (i == tx_ring->count) {
1738                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
1739                                 i = 0;
1740                         }
1741
1742                         dma += I40E_MAX_DATA_PER_TXD;
1743                         size -= I40E_MAX_DATA_PER_TXD;
1744
1745                         tx_desc->buffer_addr = cpu_to_le64(dma);
1746                 }
1747
1748                 if (likely(!data_len))
1749                         break;
1750
1751                 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1752                                                           size, td_tag);
1753
1754                 tx_desc++;
1755                 i++;
1756                 if (i == tx_ring->count) {
1757                         tx_desc = I40E_TX_DESC(tx_ring, 0);
1758                         i = 0;
1759                 }
1760
1761                 size = skb_frag_size(frag);
1762                 data_len -= size;
1763
1764                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1765                                        DMA_TO_DEVICE);
1766
1767                 tx_bi = &tx_ring->tx_bi[i];
1768         }
1769
1770         /* Place RS bit on last descriptor of any packet that spans across the
1771          * 4th descriptor (WB_STRIDE aka 0x3) in a 64B cacheline.
1772          */
1773 #define WB_STRIDE 0x3
1774         if (((i & WB_STRIDE) != WB_STRIDE) &&
1775             (first <= &tx_ring->tx_bi[i]) &&
1776             (first >= &tx_ring->tx_bi[i & ~WB_STRIDE])) {
1777                 tx_desc->cmd_type_offset_bsz =
1778                         build_ctob(td_cmd, td_offset, size, td_tag) |
1779                         cpu_to_le64((u64)I40E_TX_DESC_CMD_EOP <<
1780                                          I40E_TXD_QW1_CMD_SHIFT);
1781         } else {
1782                 tx_desc->cmd_type_offset_bsz =
1783                         build_ctob(td_cmd, td_offset, size, td_tag) |
1784                         cpu_to_le64((u64)I40E_TXD_CMD <<
1785                                          I40E_TXD_QW1_CMD_SHIFT);
1786         }
1787
1788         netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
1789                                                  tx_ring->queue_index),
1790                              first->bytecount);
1791
1792         /* set the timestamp */
1793         first->time_stamp = jiffies;
1794
1795         /* Force memory writes to complete before letting h/w
1796          * know there are new descriptors to fetch.  (Only
1797          * applicable for weak-ordered memory model archs,
1798          * such as IA-64).
1799          */
1800         wmb();
1801
1802         /* set next_to_watch value indicating a packet is present */
1803         first->next_to_watch = tx_desc;
1804
1805         i++;
1806         if (i == tx_ring->count)
1807                 i = 0;
1808
1809         tx_ring->next_to_use = i;
1810
1811         /* notify HW of packet */
1812         writel(i, tx_ring->tail);
1813
1814         return;
1815
1816 dma_error:
1817         dev_info(tx_ring->dev, "TX DMA map failed\n");
1818
1819         /* clear dma mappings for failed tx_bi map */
1820         for (;;) {
1821                 tx_bi = &tx_ring->tx_bi[i];
1822                 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
1823                 if (tx_bi == first)
1824                         break;
1825                 if (i == 0)
1826                         i = tx_ring->count;
1827                 i--;
1828         }
1829
1830         tx_ring->next_to_use = i;
1831 }
1832
1833 /**
1834  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
1835  * @tx_ring: the ring to be checked
1836  * @size:    the size buffer we want to assure is available
1837  *
1838  * Returns -EBUSY if a stop is needed, else 0
1839  **/
1840 static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1841 {
1842         netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
1843         /* Memory barrier before checking head and tail */
1844         smp_mb();
1845
1846         /* Check again in a case another CPU has just made room available. */
1847         if (likely(I40E_DESC_UNUSED(tx_ring) < size))
1848                 return -EBUSY;
1849
1850         /* A reprieve! - use start_queue because it doesn't call schedule */
1851         netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
1852         ++tx_ring->tx_stats.restart_queue;
1853         return 0;
1854 }
1855
1856 /**
1857  * i40e_maybe_stop_tx - 1st level check for tx stop conditions
1858  * @tx_ring: the ring to be checked
1859  * @size:    the size buffer we want to assure is available
1860  *
1861  * Returns 0 if stop is not needed
1862  **/
1863 static int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1864 {
1865         if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
1866                 return 0;
1867         return __i40e_maybe_stop_tx(tx_ring, size);
1868 }
1869
1870 /**
1871  * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
1872  * @skb:     send buffer
1873  * @tx_ring: ring to send buffer on
1874  *
1875  * Returns number of data descriptors needed for this skb. Returns 0 to indicate
1876  * there is not enough descriptors available in this ring since we need at least
1877  * one descriptor.
1878  **/
1879 static int i40e_xmit_descriptor_count(struct sk_buff *skb,
1880                                       struct i40e_ring *tx_ring)
1881 {
1882         unsigned int f;
1883         int count = 0;
1884
1885         /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
1886          *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
1887          *       + 4 desc gap to avoid the cache line where head is,
1888          *       + 1 desc for context descriptor,
1889          * otherwise try next time
1890          */
1891         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1892                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1893
1894         count += TXD_USE_COUNT(skb_headlen(skb));
1895         if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
1896                 tx_ring->tx_stats.tx_busy++;
1897                 return 0;
1898         }
1899         return count;
1900 }
1901
1902 /**
1903  * i40e_xmit_frame_ring - Sends buffer on Tx ring
1904  * @skb:     send buffer
1905  * @tx_ring: ring to send buffer on
1906  *
1907  * Returns NETDEV_TX_OK if sent, else an error code
1908  **/
1909 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
1910                                         struct i40e_ring *tx_ring)
1911 {
1912         u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
1913         u32 cd_tunneling = 0, cd_l2tag2 = 0;
1914         struct i40e_tx_buffer *first;
1915         u32 td_offset = 0;
1916         u32 tx_flags = 0;
1917         __be16 protocol;
1918         u32 td_cmd = 0;
1919         u8 hdr_len = 0;
1920         int tso;
1921         if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
1922                 return NETDEV_TX_BUSY;
1923
1924         /* prepare the xmit flags */
1925         if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
1926                 goto out_drop;
1927
1928         /* obtain protocol of skb */
1929         protocol = vlan_get_protocol(skb);
1930
1931         /* record the location of the first descriptor for this packet */
1932         first = &tx_ring->tx_bi[tx_ring->next_to_use];
1933
1934         /* setup IPv4/IPv6 offloads */
1935         if (protocol == htons(ETH_P_IP))
1936                 tx_flags |= I40E_TX_FLAGS_IPV4;
1937         else if (protocol == htons(ETH_P_IPV6))
1938                 tx_flags |= I40E_TX_FLAGS_IPV6;
1939
1940         tso = i40e_tso(tx_ring, skb, tx_flags, protocol, &hdr_len,
1941                        &cd_type_cmd_tso_mss, &cd_tunneling);
1942
1943         if (tso < 0)
1944                 goto out_drop;
1945         else if (tso)
1946                 tx_flags |= I40E_TX_FLAGS_TSO;
1947
1948         if (i40e_chk_linearize(skb, tx_flags))
1949                 if (skb_linearize(skb))
1950                         goto out_drop;
1951
1952         skb_tx_timestamp(skb);
1953
1954         /* always enable CRC insertion offload */
1955         td_cmd |= I40E_TX_DESC_CMD_ICRC;
1956
1957         /* Always offload the checksum, since it's in the data descriptor */
1958         if (skb->ip_summed == CHECKSUM_PARTIAL) {
1959                 tx_flags |= I40E_TX_FLAGS_CSUM;
1960
1961                 i40e_tx_enable_csum(skb, tx_flags, &td_cmd, &td_offset,
1962                                     tx_ring, &cd_tunneling);
1963         }
1964
1965         i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
1966                            cd_tunneling, cd_l2tag2);
1967
1968         i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
1969                     td_cmd, td_offset);
1970
1971         i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
1972
1973         return NETDEV_TX_OK;
1974
1975 out_drop:
1976         dev_kfree_skb_any(skb);
1977         return NETDEV_TX_OK;
1978 }
1979
1980 /**
1981  * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
1982  * @skb:    send buffer
1983  * @netdev: network interface device structure
1984  *
1985  * Returns NETDEV_TX_OK if sent, else an error code
1986  **/
1987 netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1988 {
1989         struct i40evf_adapter *adapter = netdev_priv(netdev);
1990         struct i40e_ring *tx_ring = adapter->tx_rings[skb->queue_mapping];
1991
1992         /* hardware can't handle really short frames, hardware padding works
1993          * beyond this point
1994          */
1995         if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
1996                 if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
1997                         return NETDEV_TX_OK;
1998                 skb->len = I40E_MIN_TX_LEN;
1999                 skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
2000         }
2001
2002         return i40e_xmit_frame_ring(skb, tx_ring);
2003 }