Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / net / ethernet / intel / i40e / i40e_txrx.c
1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Driver
4  * Copyright(c) 2013 - 2014 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26
27 #include <linux/prefetch.h>
28 #include <net/busy_poll.h>
29 #include "i40e.h"
30 #include "i40e_prototype.h"
31
32 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
33                                 u32 td_tag)
34 {
35         return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
36                            ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
37                            ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
38                            ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
39                            ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
40 }
41
42 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
43 #define I40E_FD_CLEAN_DELAY 10
44 /**
45  * i40e_program_fdir_filter - Program a Flow Director filter
46  * @fdir_data: Packet data that will be filter parameters
47  * @raw_packet: the pre-allocated packet buffer for FDir
48  * @pf: The PF pointer
49  * @add: True for add/update, False for remove
50  **/
51 int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, u8 *raw_packet,
52                              struct i40e_pf *pf, bool add)
53 {
54         struct i40e_filter_program_desc *fdir_desc;
55         struct i40e_tx_buffer *tx_buf, *first;
56         struct i40e_tx_desc *tx_desc;
57         struct i40e_ring *tx_ring;
58         unsigned int fpt, dcc;
59         struct i40e_vsi *vsi;
60         struct device *dev;
61         dma_addr_t dma;
62         u32 td_cmd = 0;
63         u16 delay = 0;
64         u16 i;
65
66         /* find existing FDIR VSI */
67         vsi = NULL;
68         for (i = 0; i < pf->num_alloc_vsi; i++)
69                 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR)
70                         vsi = pf->vsi[i];
71         if (!vsi)
72                 return -ENOENT;
73
74         tx_ring = vsi->tx_rings[0];
75         dev = tx_ring->dev;
76
77         /* we need two descriptors to add/del a filter and we can wait */
78         do {
79                 if (I40E_DESC_UNUSED(tx_ring) > 1)
80                         break;
81                 msleep_interruptible(1);
82                 delay++;
83         } while (delay < I40E_FD_CLEAN_DELAY);
84
85         if (!(I40E_DESC_UNUSED(tx_ring) > 1))
86                 return -EAGAIN;
87
88         dma = dma_map_single(dev, raw_packet,
89                              I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
90         if (dma_mapping_error(dev, dma))
91                 goto dma_fail;
92
93         /* grab the next descriptor */
94         i = tx_ring->next_to_use;
95         fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
96         first = &tx_ring->tx_bi[i];
97         memset(first, 0, sizeof(struct i40e_tx_buffer));
98
99         tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
100
101         fpt = (fdir_data->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
102               I40E_TXD_FLTR_QW0_QINDEX_MASK;
103
104         fpt |= (fdir_data->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT) &
105                I40E_TXD_FLTR_QW0_FLEXOFF_MASK;
106
107         fpt |= (fdir_data->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) &
108                I40E_TXD_FLTR_QW0_PCTYPE_MASK;
109
110         /* Use LAN VSI Id if not programmed by user */
111         if (fdir_data->dest_vsi == 0)
112                 fpt |= (pf->vsi[pf->lan_vsi]->id) <<
113                        I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
114         else
115                 fpt |= ((u32)fdir_data->dest_vsi <<
116                         I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT) &
117                        I40E_TXD_FLTR_QW0_DEST_VSI_MASK;
118
119         dcc = I40E_TX_DESC_DTYPE_FILTER_PROG;
120
121         if (add)
122                 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
123                        I40E_TXD_FLTR_QW1_PCMD_SHIFT;
124         else
125                 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
126                        I40E_TXD_FLTR_QW1_PCMD_SHIFT;
127
128         dcc |= (fdir_data->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT) &
129                I40E_TXD_FLTR_QW1_DEST_MASK;
130
131         dcc |= (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT) &
132                I40E_TXD_FLTR_QW1_FD_STATUS_MASK;
133
134         if (fdir_data->cnt_index != 0) {
135                 dcc |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
136                 dcc |= ((u32)fdir_data->cnt_index <<
137                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
138                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
139         }
140
141         fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(fpt);
142         fdir_desc->rsvd = cpu_to_le32(0);
143         fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dcc);
144         fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id);
145
146         /* Now program a dummy descriptor */
147         i = tx_ring->next_to_use;
148         tx_desc = I40E_TX_DESC(tx_ring, i);
149         tx_buf = &tx_ring->tx_bi[i];
150
151         tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
152
153         memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
154
155         /* record length, and DMA address */
156         dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
157         dma_unmap_addr_set(tx_buf, dma, dma);
158
159         tx_desc->buffer_addr = cpu_to_le64(dma);
160         td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
161
162         tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
163         tx_buf->raw_buf = (void *)raw_packet;
164
165         tx_desc->cmd_type_offset_bsz =
166                 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
167
168         /* set the timestamp */
169         tx_buf->time_stamp = jiffies;
170
171         /* Force memory writes to complete before letting h/w
172          * know there are new descriptors to fetch.
173          */
174         wmb();
175
176         /* Mark the data descriptor to be watched */
177         first->next_to_watch = tx_desc;
178
179         writel(tx_ring->next_to_use, tx_ring->tail);
180         return 0;
181
182 dma_fail:
183         return -1;
184 }
185
186 #define IP_HEADER_OFFSET 14
187 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
188 /**
189  * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
190  * @vsi: pointer to the targeted VSI
191  * @fd_data: the flow director data required for the FDir descriptor
192  * @add: true adds a filter, false removes it
193  *
194  * Returns 0 if the filters were successfully added or removed
195  **/
196 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
197                                    struct i40e_fdir_filter *fd_data,
198                                    bool add)
199 {
200         struct i40e_pf *pf = vsi->back;
201         struct udphdr *udp;
202         struct iphdr *ip;
203         bool err = false;
204         u8 *raw_packet;
205         int ret;
206         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
207                 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
208                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
209
210         raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
211         if (!raw_packet)
212                 return -ENOMEM;
213         memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
214
215         ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
216         udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
217               + sizeof(struct iphdr));
218
219         ip->daddr = fd_data->dst_ip[0];
220         udp->dest = fd_data->dst_port;
221         ip->saddr = fd_data->src_ip[0];
222         udp->source = fd_data->src_port;
223
224         fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
225         ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
226         if (ret) {
227                 dev_info(&pf->pdev->dev,
228                          "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
229                          fd_data->pctype, fd_data->fd_id, ret);
230                 err = true;
231         } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
232                 if (add)
233                         dev_info(&pf->pdev->dev,
234                                  "Filter OK for PCTYPE %d loc = %d\n",
235                                  fd_data->pctype, fd_data->fd_id);
236                 else
237                         dev_info(&pf->pdev->dev,
238                                  "Filter deleted for PCTYPE %d loc = %d\n",
239                                  fd_data->pctype, fd_data->fd_id);
240         }
241         return err ? -EOPNOTSUPP : 0;
242 }
243
244 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
245 /**
246  * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
247  * @vsi: pointer to the targeted VSI
248  * @fd_data: the flow director data required for the FDir descriptor
249  * @add: true adds a filter, false removes it
250  *
251  * Returns 0 if the filters were successfully added or removed
252  **/
253 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
254                                    struct i40e_fdir_filter *fd_data,
255                                    bool add)
256 {
257         struct i40e_pf *pf = vsi->back;
258         struct tcphdr *tcp;
259         struct iphdr *ip;
260         bool err = false;
261         u8 *raw_packet;
262         int ret;
263         /* Dummy packet */
264         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
265                 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
266                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
267                 0x0, 0x72, 0, 0, 0, 0};
268
269         raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
270         if (!raw_packet)
271                 return -ENOMEM;
272         memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
273
274         ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
275         tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
276               + sizeof(struct iphdr));
277
278         ip->daddr = fd_data->dst_ip[0];
279         tcp->dest = fd_data->dst_port;
280         ip->saddr = fd_data->src_ip[0];
281         tcp->source = fd_data->src_port;
282
283         if (add) {
284                 pf->fd_tcp_rule++;
285                 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) {
286                         dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
287                         pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED;
288                 }
289         } else {
290                 pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
291                                   (pf->fd_tcp_rule - 1) : 0;
292                 if (pf->fd_tcp_rule == 0) {
293                         pf->flags |= I40E_FLAG_FD_ATR_ENABLED;
294                         dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
295                 }
296         }
297
298         fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
299         ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
300
301         if (ret) {
302                 dev_info(&pf->pdev->dev,
303                          "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
304                          fd_data->pctype, fd_data->fd_id, ret);
305                 err = true;
306         } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
307                 if (add)
308                         dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
309                                  fd_data->pctype, fd_data->fd_id);
310                 else
311                         dev_info(&pf->pdev->dev,
312                                  "Filter deleted for PCTYPE %d loc = %d\n",
313                                  fd_data->pctype, fd_data->fd_id);
314         }
315
316         return err ? -EOPNOTSUPP : 0;
317 }
318
319 /**
320  * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
321  * a specific flow spec
322  * @vsi: pointer to the targeted VSI
323  * @fd_data: the flow director data required for the FDir descriptor
324  * @add: true adds a filter, false removes it
325  *
326  * Always returns -EOPNOTSUPP
327  **/
328 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
329                                     struct i40e_fdir_filter *fd_data,
330                                     bool add)
331 {
332         return -EOPNOTSUPP;
333 }
334
335 #define I40E_IP_DUMMY_PACKET_LEN 34
336 /**
337  * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
338  * a specific flow spec
339  * @vsi: pointer to the targeted VSI
340  * @fd_data: the flow director data required for the FDir descriptor
341  * @add: true adds a filter, false removes it
342  *
343  * Returns 0 if the filters were successfully added or removed
344  **/
345 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
346                                   struct i40e_fdir_filter *fd_data,
347                                   bool add)
348 {
349         struct i40e_pf *pf = vsi->back;
350         struct iphdr *ip;
351         bool err = false;
352         u8 *raw_packet;
353         int ret;
354         int i;
355         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
356                 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
357                 0, 0, 0, 0};
358
359         for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
360              i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
361                 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
362                 if (!raw_packet)
363                         return -ENOMEM;
364                 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
365                 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
366
367                 ip->saddr = fd_data->src_ip[0];
368                 ip->daddr = fd_data->dst_ip[0];
369                 ip->protocol = 0;
370
371                 fd_data->pctype = i;
372                 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
373
374                 if (ret) {
375                         dev_info(&pf->pdev->dev,
376                                  "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
377                                  fd_data->pctype, fd_data->fd_id, ret);
378                         err = true;
379                 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
380                         if (add)
381                                 dev_info(&pf->pdev->dev,
382                                          "Filter OK for PCTYPE %d loc = %d\n",
383                                          fd_data->pctype, fd_data->fd_id);
384                         else
385                                 dev_info(&pf->pdev->dev,
386                                          "Filter deleted for PCTYPE %d loc = %d\n",
387                                          fd_data->pctype, fd_data->fd_id);
388                 }
389         }
390
391         return err ? -EOPNOTSUPP : 0;
392 }
393
394 /**
395  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
396  * @vsi: pointer to the targeted VSI
397  * @cmd: command to get or set RX flow classification rules
398  * @add: true adds a filter, false removes it
399  *
400  **/
401 int i40e_add_del_fdir(struct i40e_vsi *vsi,
402                       struct i40e_fdir_filter *input, bool add)
403 {
404         struct i40e_pf *pf = vsi->back;
405         int ret;
406
407         switch (input->flow_type & ~FLOW_EXT) {
408         case TCP_V4_FLOW:
409                 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
410                 break;
411         case UDP_V4_FLOW:
412                 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
413                 break;
414         case SCTP_V4_FLOW:
415                 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
416                 break;
417         case IPV4_FLOW:
418                 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
419                 break;
420         case IP_USER_FLOW:
421                 switch (input->ip4_proto) {
422                 case IPPROTO_TCP:
423                         ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
424                         break;
425                 case IPPROTO_UDP:
426                         ret = i40e_add_del_fdir_udpv4(vsi, input, add);
427                         break;
428                 case IPPROTO_SCTP:
429                         ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
430                         break;
431                 default:
432                         ret = i40e_add_del_fdir_ipv4(vsi, input, add);
433                         break;
434                 }
435                 break;
436         default:
437                 dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
438                          input->flow_type);
439                 ret = -EINVAL;
440         }
441
442         /* The buffer allocated here is freed by the i40e_clean_tx_ring() */
443         return ret;
444 }
445
446 /**
447  * i40e_fd_handle_status - check the Programming Status for FD
448  * @rx_ring: the Rx ring for this descriptor
449  * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
450  * @prog_id: the id originally used for programming
451  *
452  * This is used to verify if the FD programming or invalidation
453  * requested by SW to the HW is successful or not and take actions accordingly.
454  **/
455 static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
456                                   union i40e_rx_desc *rx_desc, u8 prog_id)
457 {
458         struct i40e_pf *pf = rx_ring->vsi->back;
459         struct pci_dev *pdev = pf->pdev;
460         u32 fcnt_prog, fcnt_avail;
461         u32 error;
462         u64 qw;
463
464         qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
465         error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
466                 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
467
468         if (error == (0x1 << I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
469                 if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
470                     (I40E_DEBUG_FD & pf->hw.debug_mask))
471                         dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
472                                  rx_desc->wb.qword0.hi_dword.fd_id);
473
474                 /* Check if the programming error is for ATR.
475                  * If so, auto disable ATR and set a state for
476                  * flush in progress. Next time we come here if flush is in
477                  * progress do nothing, once flush is complete the state will
478                  * be cleared.
479                  */
480                 if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state))
481                         return;
482
483                 pf->fd_add_err++;
484                 /* store the current atr filter count */
485                 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
486
487                 if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
488                     (pf->auto_disable_flags & I40E_FLAG_FD_SB_ENABLED)) {
489                         pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
490                         set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state);
491                 }
492
493                 /* filter programming failed most likely due to table full */
494                 fcnt_prog = i40e_get_global_fd_count(pf);
495                 fcnt_avail = pf->fdir_pf_filter_count;
496                 /* If ATR is running fcnt_prog can quickly change,
497                  * if we are very close to full, it makes sense to disable
498                  * FD ATR/SB and then re-enable it when there is room.
499                  */
500                 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
501                         if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
502                             !(pf->auto_disable_flags &
503                                      I40E_FLAG_FD_SB_ENABLED)) {
504                                 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
505                                 pf->auto_disable_flags |=
506                                                         I40E_FLAG_FD_SB_ENABLED;
507                         }
508                 } else {
509                         dev_info(&pdev->dev,
510                                 "FD filter programming failed due to incorrect filter parameters\n");
511                 }
512         } else if (error ==
513                           (0x1 << I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
514                 if (I40E_DEBUG_FD & pf->hw.debug_mask)
515                         dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
516                                  rx_desc->wb.qword0.hi_dword.fd_id);
517         }
518 }
519
520 /**
521  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
522  * @ring:      the ring that owns the buffer
523  * @tx_buffer: the buffer to free
524  **/
525 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
526                                             struct i40e_tx_buffer *tx_buffer)
527 {
528         if (tx_buffer->skb) {
529                 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
530                         kfree(tx_buffer->raw_buf);
531                 else
532                         dev_kfree_skb_any(tx_buffer->skb);
533
534                 if (dma_unmap_len(tx_buffer, len))
535                         dma_unmap_single(ring->dev,
536                                          dma_unmap_addr(tx_buffer, dma),
537                                          dma_unmap_len(tx_buffer, len),
538                                          DMA_TO_DEVICE);
539         } else if (dma_unmap_len(tx_buffer, len)) {
540                 dma_unmap_page(ring->dev,
541                                dma_unmap_addr(tx_buffer, dma),
542                                dma_unmap_len(tx_buffer, len),
543                                DMA_TO_DEVICE);
544         }
545         tx_buffer->next_to_watch = NULL;
546         tx_buffer->skb = NULL;
547         dma_unmap_len_set(tx_buffer, len, 0);
548         /* tx_buffer must be completely set up in the transmit path */
549 }
550
551 /**
552  * i40e_clean_tx_ring - Free any empty Tx buffers
553  * @tx_ring: ring to be cleaned
554  **/
555 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
556 {
557         unsigned long bi_size;
558         u16 i;
559
560         /* ring already cleared, nothing to do */
561         if (!tx_ring->tx_bi)
562                 return;
563
564         /* Free all the Tx ring sk_buffs */
565         for (i = 0; i < tx_ring->count; i++)
566                 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
567
568         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
569         memset(tx_ring->tx_bi, 0, bi_size);
570
571         /* Zero out the descriptor ring */
572         memset(tx_ring->desc, 0, tx_ring->size);
573
574         tx_ring->next_to_use = 0;
575         tx_ring->next_to_clean = 0;
576
577         if (!tx_ring->netdev)
578                 return;
579
580         /* cleanup Tx queue statistics */
581         netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
582                                                   tx_ring->queue_index));
583 }
584
585 /**
586  * i40e_free_tx_resources - Free Tx resources per queue
587  * @tx_ring: Tx descriptor ring for a specific queue
588  *
589  * Free all transmit software resources
590  **/
591 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
592 {
593         i40e_clean_tx_ring(tx_ring);
594         kfree(tx_ring->tx_bi);
595         tx_ring->tx_bi = NULL;
596
597         if (tx_ring->desc) {
598                 dma_free_coherent(tx_ring->dev, tx_ring->size,
599                                   tx_ring->desc, tx_ring->dma);
600                 tx_ring->desc = NULL;
601         }
602 }
603
604 /**
605  * i40e_get_head - Retrieve head from head writeback
606  * @tx_ring:  tx ring to fetch head of
607  *
608  * Returns value of Tx ring head based on value stored
609  * in head write-back location
610  **/
611 static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
612 {
613         void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
614
615         return le32_to_cpu(*(volatile __le32 *)head);
616 }
617
618 /**
619  * i40e_get_tx_pending - how many tx descriptors not processed
620  * @tx_ring: the ring of descriptors
621  *
622  * Since there is no access to the ring head register
623  * in XL710, we need to use our local copies
624  **/
625 static u32 i40e_get_tx_pending(struct i40e_ring *ring)
626 {
627         u32 head, tail;
628
629         head = i40e_get_head(ring);
630         tail = readl(ring->tail);
631
632         if (head != tail)
633                 return (head < tail) ?
634                         tail - head : (tail + ring->count - head);
635
636         return 0;
637 }
638
639 /**
640  * i40e_check_tx_hang - Is there a hang in the Tx queue
641  * @tx_ring: the ring of descriptors
642  **/
643 static bool i40e_check_tx_hang(struct i40e_ring *tx_ring)
644 {
645         u32 tx_done = tx_ring->stats.packets;
646         u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
647         u32 tx_pending = i40e_get_tx_pending(tx_ring);
648         struct i40e_pf *pf = tx_ring->vsi->back;
649         bool ret = false;
650
651         clear_check_for_tx_hang(tx_ring);
652
653         /* Check for a hung queue, but be thorough. This verifies
654          * that a transmit has been completed since the previous
655          * check AND there is at least one packet pending. The
656          * ARMED bit is set to indicate a potential hang. The
657          * bit is cleared if a pause frame is received to remove
658          * false hang detection due to PFC or 802.3x frames. By
659          * requiring this to fail twice we avoid races with
660          * PFC clearing the ARMED bit and conditions where we
661          * run the check_tx_hang logic with a transmit completion
662          * pending but without time to complete it yet.
663          */
664         if ((tx_done_old == tx_done) && tx_pending) {
665                 /* make sure it is true for two checks in a row */
666                 ret = test_and_set_bit(__I40E_HANG_CHECK_ARMED,
667                                        &tx_ring->state);
668         } else if (tx_done_old == tx_done &&
669                    (tx_pending < I40E_MIN_DESC_PENDING) && (tx_pending > 0)) {
670                 if (I40E_DEBUG_FLOW & pf->hw.debug_mask)
671                         dev_info(tx_ring->dev, "HW needs some more descs to do a cacheline flush. tx_pending %d, queue %d",
672                                  tx_pending, tx_ring->queue_index);
673                 pf->tx_sluggish_count++;
674         } else {
675                 /* update completed stats and disarm the hang check */
676                 tx_ring->tx_stats.tx_done_old = tx_done;
677                 clear_bit(__I40E_HANG_CHECK_ARMED, &tx_ring->state);
678         }
679
680         return ret;
681 }
682
683 #define WB_STRIDE 0x3
684
685 /**
686  * i40e_clean_tx_irq - Reclaim resources after transmit completes
687  * @tx_ring:  tx ring to clean
688  * @budget:   how many cleans we're allowed
689  *
690  * Returns true if there's any budget left (e.g. the clean is finished)
691  **/
692 static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
693 {
694         u16 i = tx_ring->next_to_clean;
695         struct i40e_tx_buffer *tx_buf;
696         struct i40e_tx_desc *tx_head;
697         struct i40e_tx_desc *tx_desc;
698         unsigned int total_packets = 0;
699         unsigned int total_bytes = 0;
700
701         tx_buf = &tx_ring->tx_bi[i];
702         tx_desc = I40E_TX_DESC(tx_ring, i);
703         i -= tx_ring->count;
704
705         tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
706
707         do {
708                 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
709
710                 /* if next_to_watch is not set then there is no work pending */
711                 if (!eop_desc)
712                         break;
713
714                 /* prevent any other reads prior to eop_desc */
715                 read_barrier_depends();
716
717                 /* we have caught up to head, no work left to do */
718                 if (tx_head == tx_desc)
719                         break;
720
721                 /* clear next_to_watch to prevent false hangs */
722                 tx_buf->next_to_watch = NULL;
723
724                 /* update the statistics for this packet */
725                 total_bytes += tx_buf->bytecount;
726                 total_packets += tx_buf->gso_segs;
727
728                 /* free the skb */
729                 dev_consume_skb_any(tx_buf->skb);
730
731                 /* unmap skb header data */
732                 dma_unmap_single(tx_ring->dev,
733                                  dma_unmap_addr(tx_buf, dma),
734                                  dma_unmap_len(tx_buf, len),
735                                  DMA_TO_DEVICE);
736
737                 /* clear tx_buffer data */
738                 tx_buf->skb = NULL;
739                 dma_unmap_len_set(tx_buf, len, 0);
740
741                 /* unmap remaining buffers */
742                 while (tx_desc != eop_desc) {
743
744                         tx_buf++;
745                         tx_desc++;
746                         i++;
747                         if (unlikely(!i)) {
748                                 i -= tx_ring->count;
749                                 tx_buf = tx_ring->tx_bi;
750                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
751                         }
752
753                         /* unmap any remaining paged data */
754                         if (dma_unmap_len(tx_buf, len)) {
755                                 dma_unmap_page(tx_ring->dev,
756                                                dma_unmap_addr(tx_buf, dma),
757                                                dma_unmap_len(tx_buf, len),
758                                                DMA_TO_DEVICE);
759                                 dma_unmap_len_set(tx_buf, len, 0);
760                         }
761                 }
762
763                 /* move us one more past the eop_desc for start of next pkt */
764                 tx_buf++;
765                 tx_desc++;
766                 i++;
767                 if (unlikely(!i)) {
768                         i -= tx_ring->count;
769                         tx_buf = tx_ring->tx_bi;
770                         tx_desc = I40E_TX_DESC(tx_ring, 0);
771                 }
772
773                 prefetch(tx_desc);
774
775                 /* update budget accounting */
776                 budget--;
777         } while (likely(budget));
778
779         i += tx_ring->count;
780         tx_ring->next_to_clean = i;
781         u64_stats_update_begin(&tx_ring->syncp);
782         tx_ring->stats.bytes += total_bytes;
783         tx_ring->stats.packets += total_packets;
784         u64_stats_update_end(&tx_ring->syncp);
785         tx_ring->q_vector->tx.total_bytes += total_bytes;
786         tx_ring->q_vector->tx.total_packets += total_packets;
787
788         /* check to see if there are any non-cache aligned descriptors
789          * waiting to be written back, and kick the hardware to force
790          * them to be written back in case of napi polling
791          */
792         if (budget &&
793             !((i & WB_STRIDE) == WB_STRIDE) &&
794             !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
795             (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
796                 tx_ring->arm_wb = true;
797         else
798                 tx_ring->arm_wb = false;
799
800         if (check_for_tx_hang(tx_ring) && i40e_check_tx_hang(tx_ring)) {
801                 /* schedule immediate reset if we believe we hung */
802                 dev_info(tx_ring->dev, "Detected Tx Unit Hang\n"
803                          "  VSI                  <%d>\n"
804                          "  Tx Queue             <%d>\n"
805                          "  next_to_use          <%x>\n"
806                          "  next_to_clean        <%x>\n",
807                          tx_ring->vsi->seid,
808                          tx_ring->queue_index,
809                          tx_ring->next_to_use, i);
810                 dev_info(tx_ring->dev, "tx_bi[next_to_clean]\n"
811                          "  time_stamp           <%lx>\n"
812                          "  jiffies              <%lx>\n",
813                          tx_ring->tx_bi[i].time_stamp, jiffies);
814
815                 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
816
817                 dev_info(tx_ring->dev,
818                          "tx hang detected on queue %d, reset requested\n",
819                          tx_ring->queue_index);
820
821                 /* do not fire the reset immediately, wait for the stack to
822                  * decide we are truly stuck, also prevents every queue from
823                  * simultaneously requesting a reset
824                  */
825
826                 /* the adapter is about to reset, no point in enabling polling */
827                 budget = 1;
828         }
829
830         netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
831                                                       tx_ring->queue_index),
832                                   total_packets, total_bytes);
833
834 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
835         if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
836                      (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
837                 /* Make sure that anybody stopping the queue after this
838                  * sees the new next_to_clean.
839                  */
840                 smp_mb();
841                 if (__netif_subqueue_stopped(tx_ring->netdev,
842                                              tx_ring->queue_index) &&
843                    !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
844                         netif_wake_subqueue(tx_ring->netdev,
845                                             tx_ring->queue_index);
846                         ++tx_ring->tx_stats.restart_queue;
847                 }
848         }
849
850         return !!budget;
851 }
852
853 /**
854  * i40e_force_wb - Arm hardware to do a wb on noncache aligned descriptors
855  * @vsi: the VSI we care about
856  * @q_vector: the vector  on which to force writeback
857  *
858  **/
859 static void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
860 {
861         u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
862                   I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
863                   I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
864                   I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
865                   /* allow 00 to be written to the index */
866
867         wr32(&vsi->back->hw,
868              I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
869              val);
870 }
871
872 /**
873  * i40e_set_new_dynamic_itr - Find new ITR level
874  * @rc: structure containing ring performance data
875  *
876  * Stores a new ITR value based on packets and byte counts during
877  * the last interrupt.  The advantage of per interrupt computation
878  * is faster updates and more accurate ITR for the current traffic
879  * pattern.  Constants in this function were computed based on
880  * theoretical maximum wire speed and thresholds were set based on
881  * testing data as well as attempting to minimize response time
882  * while increasing bulk throughput.
883  **/
884 static void i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
885 {
886         enum i40e_latency_range new_latency_range = rc->latency_range;
887         u32 new_itr = rc->itr;
888         int bytes_per_int;
889
890         if (rc->total_packets == 0 || !rc->itr)
891                 return;
892
893         /* simple throttlerate management
894          *   0-10MB/s   lowest (100000 ints/s)
895          *  10-20MB/s   low    (20000 ints/s)
896          *  20-1249MB/s bulk   (8000 ints/s)
897          */
898         bytes_per_int = rc->total_bytes / rc->itr;
899         switch (rc->itr) {
900         case I40E_LOWEST_LATENCY:
901                 if (bytes_per_int > 10)
902                         new_latency_range = I40E_LOW_LATENCY;
903                 break;
904         case I40E_LOW_LATENCY:
905                 if (bytes_per_int > 20)
906                         new_latency_range = I40E_BULK_LATENCY;
907                 else if (bytes_per_int <= 10)
908                         new_latency_range = I40E_LOWEST_LATENCY;
909                 break;
910         case I40E_BULK_LATENCY:
911                 if (bytes_per_int <= 20)
912                         rc->latency_range = I40E_LOW_LATENCY;
913                 break;
914         }
915
916         switch (new_latency_range) {
917         case I40E_LOWEST_LATENCY:
918                 new_itr = I40E_ITR_100K;
919                 break;
920         case I40E_LOW_LATENCY:
921                 new_itr = I40E_ITR_20K;
922                 break;
923         case I40E_BULK_LATENCY:
924                 new_itr = I40E_ITR_8K;
925                 break;
926         default:
927                 break;
928         }
929
930         if (new_itr != rc->itr) {
931                 /* do an exponential smoothing */
932                 new_itr = (10 * new_itr * rc->itr) /
933                           ((9 * new_itr) + rc->itr);
934                 rc->itr = new_itr & I40E_MAX_ITR;
935         }
936
937         rc->total_bytes = 0;
938         rc->total_packets = 0;
939 }
940
941 /**
942  * i40e_update_dynamic_itr - Adjust ITR based on bytes per int
943  * @q_vector: the vector to adjust
944  **/
945 static void i40e_update_dynamic_itr(struct i40e_q_vector *q_vector)
946 {
947         u16 vector = q_vector->vsi->base_vector + q_vector->v_idx;
948         struct i40e_hw *hw = &q_vector->vsi->back->hw;
949         u32 reg_addr;
950         u16 old_itr;
951
952         reg_addr = I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1);
953         old_itr = q_vector->rx.itr;
954         i40e_set_new_dynamic_itr(&q_vector->rx);
955         if (old_itr != q_vector->rx.itr)
956                 wr32(hw, reg_addr, q_vector->rx.itr);
957
958         reg_addr = I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1);
959         old_itr = q_vector->tx.itr;
960         i40e_set_new_dynamic_itr(&q_vector->tx);
961         if (old_itr != q_vector->tx.itr)
962                 wr32(hw, reg_addr, q_vector->tx.itr);
963 }
964
965 /**
966  * i40e_clean_programming_status - clean the programming status descriptor
967  * @rx_ring: the rx ring that has this descriptor
968  * @rx_desc: the rx descriptor written back by HW
969  *
970  * Flow director should handle FD_FILTER_STATUS to check its filter programming
971  * status being successful or not and take actions accordingly. FCoE should
972  * handle its context/filter programming/invalidation status and take actions.
973  *
974  **/
975 static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
976                                           union i40e_rx_desc *rx_desc)
977 {
978         u64 qw;
979         u8 id;
980
981         qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
982         id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
983                   I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
984
985         if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
986                 i40e_fd_handle_status(rx_ring, rx_desc, id);
987 #ifdef I40E_FCOE
988         else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
989                  (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
990                 i40e_fcoe_handle_status(rx_ring, rx_desc, id);
991 #endif
992 }
993
994 /**
995  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
996  * @tx_ring: the tx ring to set up
997  *
998  * Return 0 on success, negative on error
999  **/
1000 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1001 {
1002         struct device *dev = tx_ring->dev;
1003         int bi_size;
1004
1005         if (!dev)
1006                 return -ENOMEM;
1007
1008         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1009         tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1010         if (!tx_ring->tx_bi)
1011                 goto err;
1012
1013         /* round up to nearest 4K */
1014         tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1015         /* add u32 for head writeback, align after this takes care of
1016          * guaranteeing this is at least one cache line in size
1017          */
1018         tx_ring->size += sizeof(u32);
1019         tx_ring->size = ALIGN(tx_ring->size, 4096);
1020         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1021                                            &tx_ring->dma, GFP_KERNEL);
1022         if (!tx_ring->desc) {
1023                 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1024                          tx_ring->size);
1025                 goto err;
1026         }
1027
1028         tx_ring->next_to_use = 0;
1029         tx_ring->next_to_clean = 0;
1030         return 0;
1031
1032 err:
1033         kfree(tx_ring->tx_bi);
1034         tx_ring->tx_bi = NULL;
1035         return -ENOMEM;
1036 }
1037
1038 /**
1039  * i40e_clean_rx_ring - Free Rx buffers
1040  * @rx_ring: ring to be cleaned
1041  **/
1042 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1043 {
1044         struct device *dev = rx_ring->dev;
1045         struct i40e_rx_buffer *rx_bi;
1046         unsigned long bi_size;
1047         u16 i;
1048
1049         /* ring already cleared, nothing to do */
1050         if (!rx_ring->rx_bi)
1051                 return;
1052
1053         if (ring_is_ps_enabled(rx_ring)) {
1054                 int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
1055
1056                 rx_bi = &rx_ring->rx_bi[0];
1057                 if (rx_bi->hdr_buf) {
1058                         dma_free_coherent(dev,
1059                                           bufsz,
1060                                           rx_bi->hdr_buf,
1061                                           rx_bi->dma);
1062                         for (i = 0; i < rx_ring->count; i++) {
1063                                 rx_bi = &rx_ring->rx_bi[i];
1064                                 rx_bi->dma = 0;
1065                                 rx_bi->hdr_buf = NULL;
1066                         }
1067                 }
1068         }
1069         /* Free all the Rx ring sk_buffs */
1070         for (i = 0; i < rx_ring->count; i++) {
1071                 rx_bi = &rx_ring->rx_bi[i];
1072                 if (rx_bi->dma) {
1073                         dma_unmap_single(dev,
1074                                          rx_bi->dma,
1075                                          rx_ring->rx_buf_len,
1076                                          DMA_FROM_DEVICE);
1077                         rx_bi->dma = 0;
1078                 }
1079                 if (rx_bi->skb) {
1080                         dev_kfree_skb(rx_bi->skb);
1081                         rx_bi->skb = NULL;
1082                 }
1083                 if (rx_bi->page) {
1084                         if (rx_bi->page_dma) {
1085                                 dma_unmap_page(dev,
1086                                                rx_bi->page_dma,
1087                                                PAGE_SIZE / 2,
1088                                                DMA_FROM_DEVICE);
1089                                 rx_bi->page_dma = 0;
1090                         }
1091                         __free_page(rx_bi->page);
1092                         rx_bi->page = NULL;
1093                         rx_bi->page_offset = 0;
1094                 }
1095         }
1096
1097         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1098         memset(rx_ring->rx_bi, 0, bi_size);
1099
1100         /* Zero out the descriptor ring */
1101         memset(rx_ring->desc, 0, rx_ring->size);
1102
1103         rx_ring->next_to_clean = 0;
1104         rx_ring->next_to_use = 0;
1105 }
1106
1107 /**
1108  * i40e_free_rx_resources - Free Rx resources
1109  * @rx_ring: ring to clean the resources from
1110  *
1111  * Free all receive software resources
1112  **/
1113 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1114 {
1115         i40e_clean_rx_ring(rx_ring);
1116         kfree(rx_ring->rx_bi);
1117         rx_ring->rx_bi = NULL;
1118
1119         if (rx_ring->desc) {
1120                 dma_free_coherent(rx_ring->dev, rx_ring->size,
1121                                   rx_ring->desc, rx_ring->dma);
1122                 rx_ring->desc = NULL;
1123         }
1124 }
1125
1126 /**
1127  * i40e_alloc_rx_headers - allocate rx header buffers
1128  * @rx_ring: ring to alloc buffers
1129  *
1130  * Allocate rx header buffers for the entire ring. As these are static,
1131  * this is only called when setting up a new ring.
1132  **/
1133 void i40e_alloc_rx_headers(struct i40e_ring *rx_ring)
1134 {
1135         struct device *dev = rx_ring->dev;
1136         struct i40e_rx_buffer *rx_bi;
1137         dma_addr_t dma;
1138         void *buffer;
1139         int buf_size;
1140         int i;
1141
1142         if (rx_ring->rx_bi[0].hdr_buf)
1143                 return;
1144         /* Make sure the buffers don't cross cache line boundaries. */
1145         buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
1146         buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
1147                                     &dma, GFP_KERNEL);
1148         if (!buffer)
1149                 return;
1150         for (i = 0; i < rx_ring->count; i++) {
1151                 rx_bi = &rx_ring->rx_bi[i];
1152                 rx_bi->dma = dma + (i * buf_size);
1153                 rx_bi->hdr_buf = buffer + (i * buf_size);
1154         }
1155 }
1156
1157 /**
1158  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1159  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1160  *
1161  * Returns 0 on success, negative on failure
1162  **/
1163 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1164 {
1165         struct device *dev = rx_ring->dev;
1166         int bi_size;
1167
1168         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1169         rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1170         if (!rx_ring->rx_bi)
1171                 goto err;
1172
1173         u64_stats_init(&rx_ring->syncp);
1174
1175         /* Round up to nearest 4K */
1176         rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
1177                 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
1178                 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1179         rx_ring->size = ALIGN(rx_ring->size, 4096);
1180         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1181                                            &rx_ring->dma, GFP_KERNEL);
1182
1183         if (!rx_ring->desc) {
1184                 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1185                          rx_ring->size);
1186                 goto err;
1187         }
1188
1189         rx_ring->next_to_clean = 0;
1190         rx_ring->next_to_use = 0;
1191
1192         return 0;
1193 err:
1194         kfree(rx_ring->rx_bi);
1195         rx_ring->rx_bi = NULL;
1196         return -ENOMEM;
1197 }
1198
1199 /**
1200  * i40e_release_rx_desc - Store the new tail and head values
1201  * @rx_ring: ring to bump
1202  * @val: new head index
1203  **/
1204 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1205 {
1206         rx_ring->next_to_use = val;
1207         /* Force memory writes to complete before letting h/w
1208          * know there are new descriptors to fetch.  (Only
1209          * applicable for weak-ordered memory model archs,
1210          * such as IA-64).
1211          */
1212         wmb();
1213         writel(val, rx_ring->tail);
1214 }
1215
1216 /**
1217  * i40e_alloc_rx_buffers_ps - Replace used receive buffers; packet split
1218  * @rx_ring: ring to place buffers on
1219  * @cleaned_count: number of buffers to replace
1220  **/
1221 void i40e_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
1222 {
1223         u16 i = rx_ring->next_to_use;
1224         union i40e_rx_desc *rx_desc;
1225         struct i40e_rx_buffer *bi;
1226
1227         /* do nothing if no valid netdev defined */
1228         if (!rx_ring->netdev || !cleaned_count)
1229                 return;
1230
1231         while (cleaned_count--) {
1232                 rx_desc = I40E_RX_DESC(rx_ring, i);
1233                 bi = &rx_ring->rx_bi[i];
1234
1235                 if (bi->skb) /* desc is in use */
1236                         goto no_buffers;
1237                 if (!bi->page) {
1238                         bi->page = alloc_page(GFP_ATOMIC);
1239                         if (!bi->page) {
1240                                 rx_ring->rx_stats.alloc_page_failed++;
1241                                 goto no_buffers;
1242                         }
1243                 }
1244
1245                 if (!bi->page_dma) {
1246                         /* use a half page if we're re-using */
1247                         bi->page_offset ^= PAGE_SIZE / 2;
1248                         bi->page_dma = dma_map_page(rx_ring->dev,
1249                                                     bi->page,
1250                                                     bi->page_offset,
1251                                                     PAGE_SIZE / 2,
1252                                                     DMA_FROM_DEVICE);
1253                         if (dma_mapping_error(rx_ring->dev,
1254                                               bi->page_dma)) {
1255                                 rx_ring->rx_stats.alloc_page_failed++;
1256                                 bi->page_dma = 0;
1257                                 goto no_buffers;
1258                         }
1259                 }
1260
1261                 dma_sync_single_range_for_device(rx_ring->dev,
1262                                                  bi->dma,
1263                                                  0,
1264                                                  rx_ring->rx_hdr_len,
1265                                                  DMA_FROM_DEVICE);
1266                 /* Refresh the desc even if buffer_addrs didn't change
1267                  * because each write-back erases this info.
1268                  */
1269                 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
1270                 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
1271                 i++;
1272                 if (i == rx_ring->count)
1273                         i = 0;
1274         }
1275
1276 no_buffers:
1277         if (rx_ring->next_to_use != i)
1278                 i40e_release_rx_desc(rx_ring, i);
1279 }
1280
1281 /**
1282  * i40e_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
1283  * @rx_ring: ring to place buffers on
1284  * @cleaned_count: number of buffers to replace
1285  **/
1286 void i40e_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
1287 {
1288         u16 i = rx_ring->next_to_use;
1289         union i40e_rx_desc *rx_desc;
1290         struct i40e_rx_buffer *bi;
1291         struct sk_buff *skb;
1292
1293         /* do nothing if no valid netdev defined */
1294         if (!rx_ring->netdev || !cleaned_count)
1295                 return;
1296
1297         while (cleaned_count--) {
1298                 rx_desc = I40E_RX_DESC(rx_ring, i);
1299                 bi = &rx_ring->rx_bi[i];
1300                 skb = bi->skb;
1301
1302                 if (!skb) {
1303                         skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1304                                                         rx_ring->rx_buf_len);
1305                         if (!skb) {
1306                                 rx_ring->rx_stats.alloc_buff_failed++;
1307                                 goto no_buffers;
1308                         }
1309                         /* initialize queue mapping */
1310                         skb_record_rx_queue(skb, rx_ring->queue_index);
1311                         bi->skb = skb;
1312                 }
1313
1314                 if (!bi->dma) {
1315                         bi->dma = dma_map_single(rx_ring->dev,
1316                                                  skb->data,
1317                                                  rx_ring->rx_buf_len,
1318                                                  DMA_FROM_DEVICE);
1319                         if (dma_mapping_error(rx_ring->dev, bi->dma)) {
1320                                 rx_ring->rx_stats.alloc_buff_failed++;
1321                                 bi->dma = 0;
1322                                 goto no_buffers;
1323                         }
1324                 }
1325
1326                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
1327                 rx_desc->read.hdr_addr = 0;
1328                 i++;
1329                 if (i == rx_ring->count)
1330                         i = 0;
1331         }
1332
1333 no_buffers:
1334         if (rx_ring->next_to_use != i)
1335                 i40e_release_rx_desc(rx_ring, i);
1336 }
1337
1338 /**
1339  * i40e_receive_skb - Send a completed packet up the stack
1340  * @rx_ring:  rx ring in play
1341  * @skb: packet to send up
1342  * @vlan_tag: vlan tag for packet
1343  **/
1344 static void i40e_receive_skb(struct i40e_ring *rx_ring,
1345                              struct sk_buff *skb, u16 vlan_tag)
1346 {
1347         struct i40e_q_vector *q_vector = rx_ring->q_vector;
1348         struct i40e_vsi *vsi = rx_ring->vsi;
1349         u64 flags = vsi->back->flags;
1350
1351         if (vlan_tag & VLAN_VID_MASK)
1352                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1353
1354         if (flags & I40E_FLAG_IN_NETPOLL)
1355                 netif_rx(skb);
1356         else
1357                 napi_gro_receive(&q_vector->napi, skb);
1358 }
1359
1360 /**
1361  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1362  * @vsi: the VSI we care about
1363  * @skb: skb currently being received and modified
1364  * @rx_status: status value of last descriptor in packet
1365  * @rx_error: error value of last descriptor in packet
1366  * @rx_ptype: ptype value of last descriptor in packet
1367  **/
1368 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1369                                     struct sk_buff *skb,
1370                                     u32 rx_status,
1371                                     u32 rx_error,
1372                                     u16 rx_ptype)
1373 {
1374         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
1375         bool ipv4 = false, ipv6 = false;
1376         bool ipv4_tunnel, ipv6_tunnel;
1377         __wsum rx_udp_csum;
1378         struct iphdr *iph;
1379         __sum16 csum;
1380
1381         ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
1382                      (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
1383         ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
1384                      (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
1385
1386         skb->ip_summed = CHECKSUM_NONE;
1387
1388         /* Rx csum enabled and ip headers found? */
1389         if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1390                 return;
1391
1392         /* did the hardware decode the packet and checksum? */
1393         if (!(rx_status & (1 << I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1394                 return;
1395
1396         /* both known and outer_ip must be set for the below code to work */
1397         if (!(decoded.known && decoded.outer_ip))
1398                 return;
1399
1400         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1401             decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
1402                 ipv4 = true;
1403         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1404                  decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
1405                 ipv6 = true;
1406
1407         if (ipv4 &&
1408             (rx_error & ((1 << I40E_RX_DESC_ERROR_IPE_SHIFT) |
1409                          (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1410                 goto checksum_fail;
1411
1412         /* likely incorrect csum if alternate IP extension headers found */
1413         if (ipv6 &&
1414             rx_status & (1 << I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1415                 /* don't increment checksum err here, non-fatal err */
1416                 return;
1417
1418         /* there was some L4 error, count error and punt packet to the stack */
1419         if (rx_error & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT))
1420                 goto checksum_fail;
1421
1422         /* handle packets that were not able to be checksummed due
1423          * to arrival speed, in this case the stack can compute
1424          * the csum.
1425          */
1426         if (rx_error & (1 << I40E_RX_DESC_ERROR_PPRS_SHIFT))
1427                 return;
1428
1429         /* If VXLAN traffic has an outer UDPv4 checksum we need to check
1430          * it in the driver, hardware does not do it for us.
1431          * Since L3L4P bit was set we assume a valid IHL value (>=5)
1432          * so the total length of IPv4 header is IHL*4 bytes
1433          * The UDP_0 bit *may* bet set if the *inner* header is UDP
1434          */
1435         if (ipv4_tunnel) {
1436                 skb->transport_header = skb->mac_header +
1437                                         sizeof(struct ethhdr) +
1438                                         (ip_hdr(skb)->ihl * 4);
1439
1440                 /* Add 4 bytes for VLAN tagged packets */
1441                 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
1442                                           skb->protocol == htons(ETH_P_8021AD))
1443                                           ? VLAN_HLEN : 0;
1444
1445                 if ((ip_hdr(skb)->protocol == IPPROTO_UDP) &&
1446                     (udp_hdr(skb)->check != 0)) {
1447                         rx_udp_csum = udp_csum(skb);
1448                         iph = ip_hdr(skb);
1449                         csum = csum_tcpudp_magic(
1450                                         iph->saddr, iph->daddr,
1451                                         (skb->len - skb_transport_offset(skb)),
1452                                         IPPROTO_UDP, rx_udp_csum);
1453
1454                         if (udp_hdr(skb)->check != csum)
1455                                 goto checksum_fail;
1456
1457                 } /* else its GRE and so no outer UDP header */
1458         }
1459
1460         skb->ip_summed = CHECKSUM_UNNECESSARY;
1461         skb->csum_level = ipv4_tunnel || ipv6_tunnel;
1462
1463         return;
1464
1465 checksum_fail:
1466         vsi->back->hw_csum_rx_error++;
1467 }
1468
1469 /**
1470  * i40e_rx_hash - returns the hash value from the Rx descriptor
1471  * @ring: descriptor ring
1472  * @rx_desc: specific descriptor
1473  **/
1474 static inline u32 i40e_rx_hash(struct i40e_ring *ring,
1475                                union i40e_rx_desc *rx_desc)
1476 {
1477         const __le64 rss_mask =
1478                 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1479                             I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1480
1481         if ((ring->netdev->features & NETIF_F_RXHASH) &&
1482             (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
1483                 return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1484         else
1485                 return 0;
1486 }
1487
1488 /**
1489  * i40e_ptype_to_hash - get a hash type
1490  * @ptype: the ptype value from the descriptor
1491  *
1492  * Returns a hash type to be used by skb_set_hash
1493  **/
1494 static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
1495 {
1496         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1497
1498         if (!decoded.known)
1499                 return PKT_HASH_TYPE_NONE;
1500
1501         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1502             decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1503                 return PKT_HASH_TYPE_L4;
1504         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1505                  decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1506                 return PKT_HASH_TYPE_L3;
1507         else
1508                 return PKT_HASH_TYPE_L2;
1509 }
1510
1511 /**
1512  * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
1513  * @rx_ring:  rx ring to clean
1514  * @budget:   how many cleans we're allowed
1515  *
1516  * Returns true if there's any budget left (e.g. the clean is finished)
1517  **/
1518 static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, int budget)
1519 {
1520         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1521         u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
1522         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1523         const int current_node = numa_node_id();
1524         struct i40e_vsi *vsi = rx_ring->vsi;
1525         u16 i = rx_ring->next_to_clean;
1526         union i40e_rx_desc *rx_desc;
1527         u32 rx_error, rx_status;
1528         u8 rx_ptype;
1529         u64 qword;
1530
1531         if (budget <= 0)
1532                 return 0;
1533
1534         do {
1535                 struct i40e_rx_buffer *rx_bi;
1536                 struct sk_buff *skb;
1537                 u16 vlan_tag;
1538                 /* return some buffers to hardware, one at a time is too slow */
1539                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1540                         i40e_alloc_rx_buffers_ps(rx_ring, cleaned_count);
1541                         cleaned_count = 0;
1542                 }
1543
1544                 i = rx_ring->next_to_clean;
1545                 rx_desc = I40E_RX_DESC(rx_ring, i);
1546                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1547                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1548                         I40E_RXD_QW1_STATUS_SHIFT;
1549
1550                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
1551                         break;
1552
1553                 /* This memory barrier is needed to keep us from reading
1554                  * any other fields out of the rx_desc until we know the
1555                  * DD bit is set.
1556                  */
1557                 dma_rmb();
1558                 if (i40e_rx_is_programming_status(qword)) {
1559                         i40e_clean_programming_status(rx_ring, rx_desc);
1560                         I40E_RX_INCREMENT(rx_ring, i);
1561                         continue;
1562                 }
1563                 rx_bi = &rx_ring->rx_bi[i];
1564                 skb = rx_bi->skb;
1565                 if (likely(!skb)) {
1566                         skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1567                                                         rx_ring->rx_hdr_len);
1568                         if (!skb) {
1569                                 rx_ring->rx_stats.alloc_buff_failed++;
1570                                 break;
1571                         }
1572
1573                         /* initialize queue mapping */
1574                         skb_record_rx_queue(skb, rx_ring->queue_index);
1575                         /* we are reusing so sync this buffer for CPU use */
1576                         dma_sync_single_range_for_cpu(rx_ring->dev,
1577                                                       rx_bi->dma,
1578                                                       0,
1579                                                       rx_ring->rx_hdr_len,
1580                                                       DMA_FROM_DEVICE);
1581                 }
1582                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1583                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1584                 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1585                                 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1586                 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1587                          I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1588
1589                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1590                            I40E_RXD_QW1_ERROR_SHIFT;
1591                 rx_hbo = rx_error & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1592                 rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1593
1594                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1595                            I40E_RXD_QW1_PTYPE_SHIFT;
1596                 prefetch(rx_bi->page);
1597                 rx_bi->skb = NULL;
1598                 cleaned_count++;
1599                 if (rx_hbo || rx_sph) {
1600                         int len;
1601                         if (rx_hbo)
1602                                 len = I40E_RX_HDR_SIZE;
1603                         else
1604                                 len = rx_header_len;
1605                         memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
1606                 } else if (skb->len == 0) {
1607                         int len;
1608
1609                         len = (rx_packet_len > skb_headlen(skb) ?
1610                                 skb_headlen(skb) : rx_packet_len);
1611                         memcpy(__skb_put(skb, len),
1612                                rx_bi->page + rx_bi->page_offset,
1613                                len);
1614                         rx_bi->page_offset += len;
1615                         rx_packet_len -= len;
1616                 }
1617
1618                 /* Get the rest of the data if this was a header split */
1619                 if (rx_packet_len) {
1620                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1621                                            rx_bi->page,
1622                                            rx_bi->page_offset,
1623                                            rx_packet_len);
1624
1625                         skb->len += rx_packet_len;
1626                         skb->data_len += rx_packet_len;
1627                         skb->truesize += rx_packet_len;
1628
1629                         if ((page_count(rx_bi->page) == 1) &&
1630                             (page_to_nid(rx_bi->page) == current_node))
1631                                 get_page(rx_bi->page);
1632                         else
1633                                 rx_bi->page = NULL;
1634
1635                         dma_unmap_page(rx_ring->dev,
1636                                        rx_bi->page_dma,
1637                                        PAGE_SIZE / 2,
1638                                        DMA_FROM_DEVICE);
1639                         rx_bi->page_dma = 0;
1640                 }
1641                 I40E_RX_INCREMENT(rx_ring, i);
1642
1643                 if (unlikely(
1644                     !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1645                         struct i40e_rx_buffer *next_buffer;
1646
1647                         next_buffer = &rx_ring->rx_bi[i];
1648                         next_buffer->skb = skb;
1649                         rx_ring->rx_stats.non_eop_descs++;
1650                         continue;
1651                 }
1652
1653                 /* ERR_MASK will only have valid bits if EOP set */
1654                 if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1655                         dev_kfree_skb_any(skb);
1656                         /* TODO: shouldn't we increment a counter indicating the
1657                          * drop?
1658                          */
1659                         continue;
1660                 }
1661
1662                 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1663                              i40e_ptype_to_hash(rx_ptype));
1664                 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1665                         i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1666                                            I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1667                                            I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1668                         rx_ring->last_rx_timestamp = jiffies;
1669                 }
1670
1671                 /* probably a little skewed due to removing CRC */
1672                 total_rx_bytes += skb->len;
1673                 total_rx_packets++;
1674
1675                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1676
1677                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1678
1679                 vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1680                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1681                          : 0;
1682 #ifdef I40E_FCOE
1683                 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1684                         dev_kfree_skb_any(skb);
1685                         continue;
1686                 }
1687 #endif
1688                 skb_mark_napi_id(skb, &rx_ring->q_vector->napi);
1689                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1690
1691                 rx_ring->netdev->last_rx = jiffies;
1692                 rx_desc->wb.qword1.status_error_len = 0;
1693
1694         } while (likely(total_rx_packets < budget));
1695
1696         u64_stats_update_begin(&rx_ring->syncp);
1697         rx_ring->stats.packets += total_rx_packets;
1698         rx_ring->stats.bytes += total_rx_bytes;
1699         u64_stats_update_end(&rx_ring->syncp);
1700         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1701         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1702
1703         return total_rx_packets;
1704 }
1705
1706 /**
1707  * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
1708  * @rx_ring:  rx ring to clean
1709  * @budget:   how many cleans we're allowed
1710  *
1711  * Returns number of packets cleaned
1712  **/
1713 static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
1714 {
1715         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1716         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1717         struct i40e_vsi *vsi = rx_ring->vsi;
1718         union i40e_rx_desc *rx_desc;
1719         u32 rx_error, rx_status;
1720         u16 rx_packet_len;
1721         u8 rx_ptype;
1722         u64 qword;
1723         u16 i;
1724
1725         do {
1726                 struct i40e_rx_buffer *rx_bi;
1727                 struct sk_buff *skb;
1728                 u16 vlan_tag;
1729                 /* return some buffers to hardware, one at a time is too slow */
1730                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1731                         i40e_alloc_rx_buffers_1buf(rx_ring, cleaned_count);
1732                         cleaned_count = 0;
1733                 }
1734
1735                 i = rx_ring->next_to_clean;
1736                 rx_desc = I40E_RX_DESC(rx_ring, i);
1737                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1738                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1739                         I40E_RXD_QW1_STATUS_SHIFT;
1740
1741                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
1742                         break;
1743
1744                 /* This memory barrier is needed to keep us from reading
1745                  * any other fields out of the rx_desc until we know the
1746                  * DD bit is set.
1747                  */
1748                 dma_rmb();
1749
1750                 if (i40e_rx_is_programming_status(qword)) {
1751                         i40e_clean_programming_status(rx_ring, rx_desc);
1752                         I40E_RX_INCREMENT(rx_ring, i);
1753                         continue;
1754                 }
1755                 rx_bi = &rx_ring->rx_bi[i];
1756                 skb = rx_bi->skb;
1757                 prefetch(skb->data);
1758
1759                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1760                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1761
1762                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1763                            I40E_RXD_QW1_ERROR_SHIFT;
1764                 rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1765
1766                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1767                            I40E_RXD_QW1_PTYPE_SHIFT;
1768                 rx_bi->skb = NULL;
1769                 cleaned_count++;
1770
1771                 /* Get the header and possibly the whole packet
1772                  * If this is an skb from previous receive dma will be 0
1773                  */
1774                 skb_put(skb, rx_packet_len);
1775                 dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
1776                                  DMA_FROM_DEVICE);
1777                 rx_bi->dma = 0;
1778
1779                 I40E_RX_INCREMENT(rx_ring, i);
1780
1781                 if (unlikely(
1782                     !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1783                         rx_ring->rx_stats.non_eop_descs++;
1784                         continue;
1785                 }
1786
1787                 /* ERR_MASK will only have valid bits if EOP set */
1788                 if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1789                         dev_kfree_skb_any(skb);
1790                         /* TODO: shouldn't we increment a counter indicating the
1791                          * drop?
1792                          */
1793                         continue;
1794                 }
1795
1796                 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1797                              i40e_ptype_to_hash(rx_ptype));
1798                 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1799                         i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1800                                            I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1801                                            I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1802                         rx_ring->last_rx_timestamp = jiffies;
1803                 }
1804
1805                 /* probably a little skewed due to removing CRC */
1806                 total_rx_bytes += skb->len;
1807                 total_rx_packets++;
1808
1809                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1810
1811                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1812
1813                 vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1814                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1815                          : 0;
1816 #ifdef I40E_FCOE
1817                 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1818                         dev_kfree_skb_any(skb);
1819                         continue;
1820                 }
1821 #endif
1822                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1823
1824                 rx_ring->netdev->last_rx = jiffies;
1825                 rx_desc->wb.qword1.status_error_len = 0;
1826         } while (likely(total_rx_packets < budget));
1827
1828         u64_stats_update_begin(&rx_ring->syncp);
1829         rx_ring->stats.packets += total_rx_packets;
1830         rx_ring->stats.bytes += total_rx_bytes;
1831         u64_stats_update_end(&rx_ring->syncp);
1832         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1833         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1834
1835         return total_rx_packets;
1836 }
1837
1838 /**
1839  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
1840  * @napi: napi struct with our devices info in it
1841  * @budget: amount of work driver is allowed to do this pass, in packets
1842  *
1843  * This function will clean all queues associated with a q_vector.
1844  *
1845  * Returns the amount of work done
1846  **/
1847 int i40e_napi_poll(struct napi_struct *napi, int budget)
1848 {
1849         struct i40e_q_vector *q_vector =
1850                                container_of(napi, struct i40e_q_vector, napi);
1851         struct i40e_vsi *vsi = q_vector->vsi;
1852         struct i40e_ring *ring;
1853         bool clean_complete = true;
1854         bool arm_wb = false;
1855         int budget_per_ring;
1856         int cleaned;
1857
1858         if (test_bit(__I40E_DOWN, &vsi->state)) {
1859                 napi_complete(napi);
1860                 return 0;
1861         }
1862
1863         /* Since the actual Tx work is minimal, we can give the Tx a larger
1864          * budget and be more aggressive about cleaning up the Tx descriptors.
1865          */
1866         i40e_for_each_ring(ring, q_vector->tx) {
1867                 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
1868                 arm_wb |= ring->arm_wb;
1869         }
1870
1871         /* We attempt to distribute budget to each Rx queue fairly, but don't
1872          * allow the budget to go below 1 because that would exit polling early.
1873          */
1874         budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1875
1876         i40e_for_each_ring(ring, q_vector->rx) {
1877                 if (ring_is_ps_enabled(ring))
1878                         cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
1879                 else
1880                         cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
1881                 /* if we didn't clean as many as budgeted, we must be done */
1882                 clean_complete &= (budget_per_ring != cleaned);
1883         }
1884
1885         /* If work not completed, return budget and polling will return */
1886         if (!clean_complete) {
1887                 if (arm_wb)
1888                         i40e_force_wb(vsi, q_vector);
1889                 return budget;
1890         }
1891
1892         /* Work is done so exit the polling mode and re-enable the interrupt */
1893         napi_complete(napi);
1894         if (ITR_IS_DYNAMIC(vsi->rx_itr_setting) ||
1895             ITR_IS_DYNAMIC(vsi->tx_itr_setting))
1896                 i40e_update_dynamic_itr(q_vector);
1897
1898         if (!test_bit(__I40E_DOWN, &vsi->state)) {
1899                 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1900                         i40e_irq_dynamic_enable(vsi,
1901                                         q_vector->v_idx + vsi->base_vector);
1902                 } else {
1903                         struct i40e_hw *hw = &vsi->back->hw;
1904                         /* We re-enable the queue 0 cause, but
1905                          * don't worry about dynamic_enable
1906                          * because we left it on for the other
1907                          * possible interrupts during napi
1908                          */
1909                         u32 qval = rd32(hw, I40E_QINT_RQCTL(0));
1910                         qval |= I40E_QINT_RQCTL_CAUSE_ENA_MASK;
1911                         wr32(hw, I40E_QINT_RQCTL(0), qval);
1912
1913                         qval = rd32(hw, I40E_QINT_TQCTL(0));
1914                         qval |= I40E_QINT_TQCTL_CAUSE_ENA_MASK;
1915                         wr32(hw, I40E_QINT_TQCTL(0), qval);
1916
1917                         i40e_irq_dynamic_enable_icr0(vsi->back);
1918                 }
1919         }
1920
1921         return 0;
1922 }
1923
1924 /**
1925  * i40e_atr - Add a Flow Director ATR filter
1926  * @tx_ring:  ring to add programming descriptor to
1927  * @skb:      send buffer
1928  * @flags:    send flags
1929  * @protocol: wire protocol
1930  **/
1931 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
1932                      u32 flags, __be16 protocol)
1933 {
1934         struct i40e_filter_program_desc *fdir_desc;
1935         struct i40e_pf *pf = tx_ring->vsi->back;
1936         union {
1937                 unsigned char *network;
1938                 struct iphdr *ipv4;
1939                 struct ipv6hdr *ipv6;
1940         } hdr;
1941         struct tcphdr *th;
1942         unsigned int hlen;
1943         u32 flex_ptype, dtype_cmd;
1944         u16 i;
1945
1946         /* make sure ATR is enabled */
1947         if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
1948                 return;
1949
1950         if ((pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
1951                 return;
1952
1953         /* if sampling is disabled do nothing */
1954         if (!tx_ring->atr_sample_rate)
1955                 return;
1956
1957         /* snag network header to get L4 type and address */
1958         hdr.network = skb_network_header(skb);
1959
1960         /* Currently only IPv4/IPv6 with TCP is supported */
1961         if (protocol == htons(ETH_P_IP)) {
1962                 if (hdr.ipv4->protocol != IPPROTO_TCP)
1963                         return;
1964
1965                 /* access ihl as a u8 to avoid unaligned access on ia64 */
1966                 hlen = (hdr.network[0] & 0x0F) << 2;
1967         } else if (protocol == htons(ETH_P_IPV6)) {
1968                 if (hdr.ipv6->nexthdr != IPPROTO_TCP)
1969                         return;
1970
1971                 hlen = sizeof(struct ipv6hdr);
1972         } else {
1973                 return;
1974         }
1975
1976         th = (struct tcphdr *)(hdr.network + hlen);
1977
1978         /* Due to lack of space, no more new filters can be programmed */
1979         if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
1980                 return;
1981
1982         tx_ring->atr_count++;
1983
1984         /* sample on all syn/fin/rst packets or once every atr sample rate */
1985         if (!th->fin &&
1986             !th->syn &&
1987             !th->rst &&
1988             (tx_ring->atr_count < tx_ring->atr_sample_rate))
1989                 return;
1990
1991         tx_ring->atr_count = 0;
1992
1993         /* grab the next descriptor */
1994         i = tx_ring->next_to_use;
1995         fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
1996
1997         i++;
1998         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1999
2000         flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2001                       I40E_TXD_FLTR_QW0_QINDEX_MASK;
2002         flex_ptype |= (protocol == htons(ETH_P_IP)) ?
2003                       (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2004                        I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2005                       (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2006                        I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2007
2008         flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2009
2010         dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2011
2012         dtype_cmd |= (th->fin || th->rst) ?
2013                      (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2014                       I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2015                      (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2016                       I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2017
2018         dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2019                      I40E_TXD_FLTR_QW1_DEST_SHIFT;
2020
2021         dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2022                      I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2023
2024         dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2025         dtype_cmd |=
2026                 ((u32)pf->fd_atr_cnt_idx << I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2027                 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2028
2029         fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2030         fdir_desc->rsvd = cpu_to_le32(0);
2031         fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2032         fdir_desc->fd_id = cpu_to_le32(0);
2033 }
2034
2035 /**
2036  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2037  * @skb:     send buffer
2038  * @tx_ring: ring to send buffer on
2039  * @flags:   the tx flags to be set
2040  *
2041  * Checks the skb and set up correspondingly several generic transmit flags
2042  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2043  *
2044  * Returns error code indicate the frame should be dropped upon error and the
2045  * otherwise  returns 0 to indicate the flags has been set properly.
2046  **/
2047 #ifdef I40E_FCOE
2048 int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2049                                struct i40e_ring *tx_ring,
2050                                u32 *flags)
2051 #else
2052 static int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2053                                       struct i40e_ring *tx_ring,
2054                                       u32 *flags)
2055 #endif
2056 {
2057         __be16 protocol = skb->protocol;
2058         u32  tx_flags = 0;
2059
2060         if (protocol == htons(ETH_P_8021Q) &&
2061             !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2062                 /* When HW VLAN acceleration is turned off by the user the
2063                  * stack sets the protocol to 8021q so that the driver
2064                  * can take any steps required to support the SW only
2065                  * VLAN handling.  In our case the driver doesn't need
2066                  * to take any further steps so just set the protocol
2067                  * to the encapsulated ethertype.
2068                  */
2069                 skb->protocol = vlan_get_protocol(skb);
2070                 goto out;
2071         }
2072
2073         /* if we have a HW VLAN tag being added, default to the HW one */
2074         if (skb_vlan_tag_present(skb)) {
2075                 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2076                 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2077         /* else if it is a SW VLAN, check the next protocol and store the tag */
2078         } else if (protocol == htons(ETH_P_8021Q)) {
2079                 struct vlan_hdr *vhdr, _vhdr;
2080                 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2081                 if (!vhdr)
2082                         return -EINVAL;
2083
2084                 protocol = vhdr->h_vlan_encapsulated_proto;
2085                 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2086                 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2087         }
2088
2089         if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2090                 goto out;
2091
2092         /* Insert 802.1p priority into VLAN header */
2093         if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2094             (skb->priority != TC_PRIO_CONTROL)) {
2095                 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2096                 tx_flags |= (skb->priority & 0x7) <<
2097                                 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2098                 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2099                         struct vlan_ethhdr *vhdr;
2100                         int rc;
2101
2102                         rc = skb_cow_head(skb, 0);
2103                         if (rc < 0)
2104                                 return rc;
2105                         vhdr = (struct vlan_ethhdr *)skb->data;
2106                         vhdr->h_vlan_TCI = htons(tx_flags >>
2107                                                  I40E_TX_FLAGS_VLAN_SHIFT);
2108                 } else {
2109                         tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2110                 }
2111         }
2112
2113 out:
2114         *flags = tx_flags;
2115         return 0;
2116 }
2117
2118 /**
2119  * i40e_tso - set up the tso context descriptor
2120  * @tx_ring:  ptr to the ring to send
2121  * @skb:      ptr to the skb we're sending
2122  * @tx_flags: the collected send information
2123  * @protocol: the send protocol
2124  * @hdr_len:  ptr to the size of the packet header
2125  * @cd_tunneling: ptr to context descriptor bits
2126  *
2127  * Returns 0 if no TSO can happen, 1 if tso is going, or error
2128  **/
2129 static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
2130                     u32 tx_flags, __be16 protocol, u8 *hdr_len,
2131                     u64 *cd_type_cmd_tso_mss, u32 *cd_tunneling)
2132 {
2133         u32 cd_cmd, cd_tso_len, cd_mss;
2134         struct ipv6hdr *ipv6h;
2135         struct tcphdr *tcph;
2136         struct iphdr *iph;
2137         u32 l4len;
2138         int err;
2139
2140         if (!skb_is_gso(skb))
2141                 return 0;
2142
2143         err = skb_cow_head(skb, 0);
2144         if (err < 0)
2145                 return err;
2146
2147         iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
2148         ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
2149
2150         if (iph->version == 4) {
2151                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
2152                 iph->tot_len = 0;
2153                 iph->check = 0;
2154                 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
2155                                                  0, IPPROTO_TCP, 0);
2156         } else if (ipv6h->version == 6) {
2157                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
2158                 ipv6h->payload_len = 0;
2159                 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
2160                                                0, IPPROTO_TCP, 0);
2161         }
2162
2163         l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
2164         *hdr_len = (skb->encapsulation
2165                     ? (skb_inner_transport_header(skb) - skb->data)
2166                     : skb_transport_offset(skb)) + l4len;
2167
2168         /* find the field values */
2169         cd_cmd = I40E_TX_CTX_DESC_TSO;
2170         cd_tso_len = skb->len - *hdr_len;
2171         cd_mss = skb_shinfo(skb)->gso_size;
2172         *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2173                                 ((u64)cd_tso_len <<
2174                                  I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2175                                 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2176         return 1;
2177 }
2178
2179 /**
2180  * i40e_tsyn - set up the tsyn context descriptor
2181  * @tx_ring:  ptr to the ring to send
2182  * @skb:      ptr to the skb we're sending
2183  * @tx_flags: the collected send information
2184  *
2185  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2186  **/
2187 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2188                      u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2189 {
2190         struct i40e_pf *pf;
2191
2192         if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2193                 return 0;
2194
2195         /* Tx timestamps cannot be sampled when doing TSO */
2196         if (tx_flags & I40E_TX_FLAGS_TSO)
2197                 return 0;
2198
2199         /* only timestamp the outbound packet if the user has requested it and
2200          * we are not already transmitting a packet to be timestamped
2201          */
2202         pf = i40e_netdev_to_pf(tx_ring->netdev);
2203         if (!(pf->flags & I40E_FLAG_PTP))
2204                 return 0;
2205
2206         if (pf->ptp_tx &&
2207             !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
2208                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2209                 pf->ptp_tx_skb = skb_get(skb);
2210         } else {
2211                 return 0;
2212         }
2213
2214         *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
2215                                 I40E_TXD_CTX_QW1_CMD_SHIFT;
2216
2217         return 1;
2218 }
2219
2220 /**
2221  * i40e_tx_enable_csum - Enable Tx checksum offloads
2222  * @skb: send buffer
2223  * @tx_flags: Tx flags currently set
2224  * @td_cmd: Tx descriptor command bits to set
2225  * @td_offset: Tx descriptor header offsets to set
2226  * @cd_tunneling: ptr to context desc bits
2227  **/
2228 static void i40e_tx_enable_csum(struct sk_buff *skb, u32 tx_flags,
2229                                 u32 *td_cmd, u32 *td_offset,
2230                                 struct i40e_ring *tx_ring,
2231                                 u32 *cd_tunneling)
2232 {
2233         struct ipv6hdr *this_ipv6_hdr;
2234         unsigned int this_tcp_hdrlen;
2235         struct iphdr *this_ip_hdr;
2236         u32 network_hdr_len;
2237         u8 l4_hdr = 0;
2238         u32 l4_tunnel = 0;
2239
2240         if (skb->encapsulation) {
2241                 switch (ip_hdr(skb)->protocol) {
2242                 case IPPROTO_UDP:
2243                         l4_tunnel = I40E_TXD_CTX_UDP_TUNNELING;
2244                         break;
2245                 default:
2246                         return;
2247                 }
2248                 network_hdr_len = skb_inner_network_header_len(skb);
2249                 this_ip_hdr = inner_ip_hdr(skb);
2250                 this_ipv6_hdr = inner_ipv6_hdr(skb);
2251                 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
2252
2253                 if (tx_flags & I40E_TX_FLAGS_IPV4) {
2254
2255                         if (tx_flags & I40E_TX_FLAGS_TSO) {
2256                                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
2257                                 ip_hdr(skb)->check = 0;
2258                         } else {
2259                                 *cd_tunneling |=
2260                                          I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2261                         }
2262                 } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
2263                         *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
2264                         if (tx_flags & I40E_TX_FLAGS_TSO)
2265                                 ip_hdr(skb)->check = 0;
2266                 }
2267
2268                 /* Now set the ctx descriptor fields */
2269                 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
2270                                    I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT      |
2271                                    l4_tunnel                             |
2272                                    ((skb_inner_network_offset(skb) -
2273                                         skb_transport_offset(skb)) >> 1) <<
2274                                    I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2275                 if (this_ip_hdr->version == 6) {
2276                         tx_flags &= ~I40E_TX_FLAGS_IPV4;
2277                         tx_flags |= I40E_TX_FLAGS_IPV6;
2278                 }
2279         } else {
2280                 network_hdr_len = skb_network_header_len(skb);
2281                 this_ip_hdr = ip_hdr(skb);
2282                 this_ipv6_hdr = ipv6_hdr(skb);
2283                 this_tcp_hdrlen = tcp_hdrlen(skb);
2284         }
2285
2286         /* Enable IP checksum offloads */
2287         if (tx_flags & I40E_TX_FLAGS_IPV4) {
2288                 l4_hdr = this_ip_hdr->protocol;
2289                 /* the stack computes the IP header already, the only time we
2290                  * need the hardware to recompute it is in the case of TSO.
2291                  */
2292                 if (tx_flags & I40E_TX_FLAGS_TSO) {
2293                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
2294                         this_ip_hdr->check = 0;
2295                 } else {
2296                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
2297                 }
2298                 /* Now set the td_offset for IP header length */
2299                 *td_offset = (network_hdr_len >> 2) <<
2300                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2301         } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
2302                 l4_hdr = this_ipv6_hdr->nexthdr;
2303                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2304                 /* Now set the td_offset for IP header length */
2305                 *td_offset = (network_hdr_len >> 2) <<
2306                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2307         }
2308         /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
2309         *td_offset |= (skb_network_offset(skb) >> 1) <<
2310                        I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2311
2312         /* Enable L4 checksum offloads */
2313         switch (l4_hdr) {
2314         case IPPROTO_TCP:
2315                 /* enable checksum offloads */
2316                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2317                 *td_offset |= (this_tcp_hdrlen >> 2) <<
2318                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2319                 break;
2320         case IPPROTO_SCTP:
2321                 /* enable SCTP checksum offload */
2322                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2323                 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
2324                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2325                 break;
2326         case IPPROTO_UDP:
2327                 /* enable UDP checksum offload */
2328                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2329                 *td_offset |= (sizeof(struct udphdr) >> 2) <<
2330                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2331                 break;
2332         default:
2333                 break;
2334         }
2335 }
2336
2337 /**
2338  * i40e_create_tx_ctx Build the Tx context descriptor
2339  * @tx_ring:  ring to create the descriptor on
2340  * @cd_type_cmd_tso_mss: Quad Word 1
2341  * @cd_tunneling: Quad Word 0 - bits 0-31
2342  * @cd_l2tag2: Quad Word 0 - bits 32-63
2343  **/
2344 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2345                                const u64 cd_type_cmd_tso_mss,
2346                                const u32 cd_tunneling, const u32 cd_l2tag2)
2347 {
2348         struct i40e_tx_context_desc *context_desc;
2349         int i = tx_ring->next_to_use;
2350
2351         if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2352             !cd_tunneling && !cd_l2tag2)
2353                 return;
2354
2355         /* grab the next descriptor */
2356         context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2357
2358         i++;
2359         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2360
2361         /* cpu_to_le32 and assign to struct fields */
2362         context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2363         context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2364         context_desc->rsvd = cpu_to_le16(0);
2365         context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2366 }
2367
2368 /**
2369  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2370  * @tx_ring: the ring to be checked
2371  * @size:    the size buffer we want to assure is available
2372  *
2373  * Returns -EBUSY if a stop is needed, else 0
2374  **/
2375 static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2376 {
2377         netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2378         /* Memory barrier before checking head and tail */
2379         smp_mb();
2380
2381         /* Check again in a case another CPU has just made room available. */
2382         if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2383                 return -EBUSY;
2384
2385         /* A reprieve! - use start_queue because it doesn't call schedule */
2386         netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2387         ++tx_ring->tx_stats.restart_queue;
2388         return 0;
2389 }
2390
2391 /**
2392  * i40e_maybe_stop_tx - 1st level check for tx stop conditions
2393  * @tx_ring: the ring to be checked
2394  * @size:    the size buffer we want to assure is available
2395  *
2396  * Returns 0 if stop is not needed
2397  **/
2398 #ifdef I40E_FCOE
2399 int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2400 #else
2401 static int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2402 #endif
2403 {
2404         if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
2405                 return 0;
2406         return __i40e_maybe_stop_tx(tx_ring, size);
2407 }
2408
2409 /**
2410  * i40e_chk_linearize - Check if there are more than 8 fragments per packet
2411  * @skb:      send buffer
2412  * @tx_flags: collected send information
2413  *
2414  * Note: Our HW can't scatter-gather more than 8 fragments to build
2415  * a packet on the wire and so we need to figure out the cases where we
2416  * need to linearize the skb.
2417  **/
2418 static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags)
2419 {
2420         struct skb_frag_struct *frag;
2421         bool linearize = false;
2422         unsigned int size = 0;
2423         u16 num_frags;
2424         u16 gso_segs;
2425
2426         num_frags = skb_shinfo(skb)->nr_frags;
2427         gso_segs = skb_shinfo(skb)->gso_segs;
2428
2429         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) {
2430                 u16 j = 0;
2431
2432                 if (num_frags < (I40E_MAX_BUFFER_TXD))
2433                         goto linearize_chk_done;
2434                 /* try the simple math, if we have too many frags per segment */
2435                 if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) >
2436                     I40E_MAX_BUFFER_TXD) {
2437                         linearize = true;
2438                         goto linearize_chk_done;
2439                 }
2440                 frag = &skb_shinfo(skb)->frags[0];
2441                 /* we might still have more fragments per segment */
2442                 do {
2443                         size += skb_frag_size(frag);
2444                         frag++; j++;
2445                         if ((size >= skb_shinfo(skb)->gso_size) &&
2446                             (j < I40E_MAX_BUFFER_TXD)) {
2447                                 size = (size % skb_shinfo(skb)->gso_size);
2448                                 j = (size) ? 1 : 0;
2449                         }
2450                         if (j == I40E_MAX_BUFFER_TXD) {
2451                                 linearize = true;
2452                                 break;
2453                         }
2454                         num_frags--;
2455                 } while (num_frags);
2456         } else {
2457                 if (num_frags >= I40E_MAX_BUFFER_TXD)
2458                         linearize = true;
2459         }
2460
2461 linearize_chk_done:
2462         return linearize;
2463 }
2464
2465 /**
2466  * i40e_tx_map - Build the Tx descriptor
2467  * @tx_ring:  ring to send buffer on
2468  * @skb:      send buffer
2469  * @first:    first buffer info buffer to use
2470  * @tx_flags: collected send information
2471  * @hdr_len:  size of the packet header
2472  * @td_cmd:   the command field in the descriptor
2473  * @td_offset: offset for checksum or crc
2474  **/
2475 #ifdef I40E_FCOE
2476 void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2477                  struct i40e_tx_buffer *first, u32 tx_flags,
2478                  const u8 hdr_len, u32 td_cmd, u32 td_offset)
2479 #else
2480 static void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2481                         struct i40e_tx_buffer *first, u32 tx_flags,
2482                         const u8 hdr_len, u32 td_cmd, u32 td_offset)
2483 #endif
2484 {
2485         unsigned int data_len = skb->data_len;
2486         unsigned int size = skb_headlen(skb);
2487         struct skb_frag_struct *frag;
2488         struct i40e_tx_buffer *tx_bi;
2489         struct i40e_tx_desc *tx_desc;
2490         u16 i = tx_ring->next_to_use;
2491         u32 td_tag = 0;
2492         dma_addr_t dma;
2493         u16 gso_segs;
2494
2495         if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2496                 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2497                 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2498                          I40E_TX_FLAGS_VLAN_SHIFT;
2499         }
2500
2501         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
2502                 gso_segs = skb_shinfo(skb)->gso_segs;
2503         else
2504                 gso_segs = 1;
2505
2506         /* multiply data chunks by size of headers */
2507         first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
2508         first->gso_segs = gso_segs;
2509         first->skb = skb;
2510         first->tx_flags = tx_flags;
2511
2512         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2513
2514         tx_desc = I40E_TX_DESC(tx_ring, i);
2515         tx_bi = first;
2516
2517         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2518                 if (dma_mapping_error(tx_ring->dev, dma))
2519                         goto dma_error;
2520
2521                 /* record length, and DMA address */
2522                 dma_unmap_len_set(tx_bi, len, size);
2523                 dma_unmap_addr_set(tx_bi, dma, dma);
2524
2525                 tx_desc->buffer_addr = cpu_to_le64(dma);
2526
2527                 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2528                         tx_desc->cmd_type_offset_bsz =
2529                                 build_ctob(td_cmd, td_offset,
2530                                            I40E_MAX_DATA_PER_TXD, td_tag);
2531
2532                         tx_desc++;
2533                         i++;
2534                         if (i == tx_ring->count) {
2535                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
2536                                 i = 0;
2537                         }
2538
2539                         dma += I40E_MAX_DATA_PER_TXD;
2540                         size -= I40E_MAX_DATA_PER_TXD;
2541
2542                         tx_desc->buffer_addr = cpu_to_le64(dma);
2543                 }
2544
2545                 if (likely(!data_len))
2546                         break;
2547
2548                 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2549                                                           size, td_tag);
2550
2551                 tx_desc++;
2552                 i++;
2553                 if (i == tx_ring->count) {
2554                         tx_desc = I40E_TX_DESC(tx_ring, 0);
2555                         i = 0;
2556                 }
2557
2558                 size = skb_frag_size(frag);
2559                 data_len -= size;
2560
2561                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2562                                        DMA_TO_DEVICE);
2563
2564                 tx_bi = &tx_ring->tx_bi[i];
2565         }
2566
2567         /* Place RS bit on last descriptor of any packet that spans across the
2568          * 4th descriptor (WB_STRIDE aka 0x3) in a 64B cacheline.
2569          */
2570         if (((i & WB_STRIDE) != WB_STRIDE) &&
2571             (first <= &tx_ring->tx_bi[i]) &&
2572             (first >= &tx_ring->tx_bi[i & ~WB_STRIDE])) {
2573                 tx_desc->cmd_type_offset_bsz =
2574                         build_ctob(td_cmd, td_offset, size, td_tag) |
2575                         cpu_to_le64((u64)I40E_TX_DESC_CMD_EOP <<
2576                                          I40E_TXD_QW1_CMD_SHIFT);
2577         } else {
2578                 tx_desc->cmd_type_offset_bsz =
2579                         build_ctob(td_cmd, td_offset, size, td_tag) |
2580                         cpu_to_le64((u64)I40E_TXD_CMD <<
2581                                          I40E_TXD_QW1_CMD_SHIFT);
2582         }
2583
2584         netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
2585                                                  tx_ring->queue_index),
2586                              first->bytecount);
2587
2588         /* set the timestamp */
2589         first->time_stamp = jiffies;
2590
2591         /* Force memory writes to complete before letting h/w
2592          * know there are new descriptors to fetch.  (Only
2593          * applicable for weak-ordered memory model archs,
2594          * such as IA-64).
2595          */
2596         wmb();
2597
2598         /* set next_to_watch value indicating a packet is present */
2599         first->next_to_watch = tx_desc;
2600
2601         i++;
2602         if (i == tx_ring->count)
2603                 i = 0;
2604
2605         tx_ring->next_to_use = i;
2606
2607         i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2608         /* notify HW of packet */
2609         if (!skb->xmit_more ||
2610             netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2611                                                    tx_ring->queue_index)))
2612                 writel(i, tx_ring->tail);
2613
2614         return;
2615
2616 dma_error:
2617         dev_info(tx_ring->dev, "TX DMA map failed\n");
2618
2619         /* clear dma mappings for failed tx_bi map */
2620         for (;;) {
2621                 tx_bi = &tx_ring->tx_bi[i];
2622                 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2623                 if (tx_bi == first)
2624                         break;
2625                 if (i == 0)
2626                         i = tx_ring->count;
2627                 i--;
2628         }
2629
2630         tx_ring->next_to_use = i;
2631 }
2632
2633 /**
2634  * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
2635  * @skb:     send buffer
2636  * @tx_ring: ring to send buffer on
2637  *
2638  * Returns number of data descriptors needed for this skb. Returns 0 to indicate
2639  * there is not enough descriptors available in this ring since we need at least
2640  * one descriptor.
2641  **/
2642 #ifdef I40E_FCOE
2643 int i40e_xmit_descriptor_count(struct sk_buff *skb,
2644                                struct i40e_ring *tx_ring)
2645 #else
2646 static int i40e_xmit_descriptor_count(struct sk_buff *skb,
2647                                       struct i40e_ring *tx_ring)
2648 #endif
2649 {
2650         unsigned int f;
2651         int count = 0;
2652
2653         /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2654          *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2655          *       + 4 desc gap to avoid the cache line where head is,
2656          *       + 1 desc for context descriptor,
2657          * otherwise try next time
2658          */
2659         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
2660                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
2661
2662         count += TXD_USE_COUNT(skb_headlen(skb));
2663         if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2664                 tx_ring->tx_stats.tx_busy++;
2665                 return 0;
2666         }
2667         return count;
2668 }
2669
2670 /**
2671  * i40e_xmit_frame_ring - Sends buffer on Tx ring
2672  * @skb:     send buffer
2673  * @tx_ring: ring to send buffer on
2674  *
2675  * Returns NETDEV_TX_OK if sent, else an error code
2676  **/
2677 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2678                                         struct i40e_ring *tx_ring)
2679 {
2680         u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2681         u32 cd_tunneling = 0, cd_l2tag2 = 0;
2682         struct i40e_tx_buffer *first;
2683         u32 td_offset = 0;
2684         u32 tx_flags = 0;
2685         __be16 protocol;
2686         u32 td_cmd = 0;
2687         u8 hdr_len = 0;
2688         int tsyn;
2689         int tso;
2690         if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
2691                 return NETDEV_TX_BUSY;
2692
2693         /* prepare the xmit flags */
2694         if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2695                 goto out_drop;
2696
2697         /* obtain protocol of skb */
2698         protocol = vlan_get_protocol(skb);
2699
2700         /* record the location of the first descriptor for this packet */
2701         first = &tx_ring->tx_bi[tx_ring->next_to_use];
2702
2703         /* setup IPv4/IPv6 offloads */
2704         if (protocol == htons(ETH_P_IP))
2705                 tx_flags |= I40E_TX_FLAGS_IPV4;
2706         else if (protocol == htons(ETH_P_IPV6))
2707                 tx_flags |= I40E_TX_FLAGS_IPV6;
2708
2709         tso = i40e_tso(tx_ring, skb, tx_flags, protocol, &hdr_len,
2710                        &cd_type_cmd_tso_mss, &cd_tunneling);
2711
2712         if (tso < 0)
2713                 goto out_drop;
2714         else if (tso)
2715                 tx_flags |= I40E_TX_FLAGS_TSO;
2716
2717         tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
2718
2719         if (tsyn)
2720                 tx_flags |= I40E_TX_FLAGS_TSYN;
2721
2722         if (i40e_chk_linearize(skb, tx_flags))
2723                 if (skb_linearize(skb))
2724                         goto out_drop;
2725
2726         skb_tx_timestamp(skb);
2727
2728         /* always enable CRC insertion offload */
2729         td_cmd |= I40E_TX_DESC_CMD_ICRC;
2730
2731         /* Always offload the checksum, since it's in the data descriptor */
2732         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2733                 tx_flags |= I40E_TX_FLAGS_CSUM;
2734
2735                 i40e_tx_enable_csum(skb, tx_flags, &td_cmd, &td_offset,
2736                                     tx_ring, &cd_tunneling);
2737         }
2738
2739         i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2740                            cd_tunneling, cd_l2tag2);
2741
2742         /* Add Flow Director ATR if it's enabled.
2743          *
2744          * NOTE: this must always be directly before the data descriptor.
2745          */
2746         i40e_atr(tx_ring, skb, tx_flags, protocol);
2747
2748         i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2749                     td_cmd, td_offset);
2750
2751         return NETDEV_TX_OK;
2752
2753 out_drop:
2754         dev_kfree_skb_any(skb);
2755         return NETDEV_TX_OK;
2756 }
2757
2758 /**
2759  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2760  * @skb:    send buffer
2761  * @netdev: network interface device structure
2762  *
2763  * Returns NETDEV_TX_OK if sent, else an error code
2764  **/
2765 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2766 {
2767         struct i40e_netdev_priv *np = netdev_priv(netdev);
2768         struct i40e_vsi *vsi = np->vsi;
2769         struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
2770
2771         /* hardware can't handle really short frames, hardware padding works
2772          * beyond this point
2773          */
2774         if (skb_put_padto(skb, I40E_MIN_TX_LEN))
2775                 return NETDEV_TX_OK;
2776
2777         return i40e_xmit_frame_ring(skb, tx_ring);
2778 }