Upgrade to 4.4.50-rt62
[kvmfornfv.git] / kernel / drivers / net / ethernet / intel / i40e / i40e_txrx.c
1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Driver
4  * Copyright(c) 2013 - 2014 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26
27 #include <linux/prefetch.h>
28 #include <net/busy_poll.h>
29 #include "i40e.h"
30 #include "i40e_prototype.h"
31
32 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
33                                 u32 td_tag)
34 {
35         return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
36                            ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
37                            ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
38                            ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
39                            ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
40 }
41
42 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
43 #define I40E_FD_CLEAN_DELAY 10
44 /**
45  * i40e_program_fdir_filter - Program a Flow Director filter
46  * @fdir_data: Packet data that will be filter parameters
47  * @raw_packet: the pre-allocated packet buffer for FDir
48  * @pf: The PF pointer
49  * @add: True for add/update, False for remove
50  **/
51 int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, u8 *raw_packet,
52                              struct i40e_pf *pf, bool add)
53 {
54         struct i40e_filter_program_desc *fdir_desc;
55         struct i40e_tx_buffer *tx_buf, *first;
56         struct i40e_tx_desc *tx_desc;
57         struct i40e_ring *tx_ring;
58         unsigned int fpt, dcc;
59         struct i40e_vsi *vsi;
60         struct device *dev;
61         dma_addr_t dma;
62         u32 td_cmd = 0;
63         u16 delay = 0;
64         u16 i;
65
66         /* find existing FDIR VSI */
67         vsi = NULL;
68         for (i = 0; i < pf->num_alloc_vsi; i++)
69                 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR)
70                         vsi = pf->vsi[i];
71         if (!vsi)
72                 return -ENOENT;
73
74         tx_ring = vsi->tx_rings[0];
75         dev = tx_ring->dev;
76
77         /* we need two descriptors to add/del a filter and we can wait */
78         do {
79                 if (I40E_DESC_UNUSED(tx_ring) > 1)
80                         break;
81                 msleep_interruptible(1);
82                 delay++;
83         } while (delay < I40E_FD_CLEAN_DELAY);
84
85         if (!(I40E_DESC_UNUSED(tx_ring) > 1))
86                 return -EAGAIN;
87
88         dma = dma_map_single(dev, raw_packet,
89                              I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
90         if (dma_mapping_error(dev, dma))
91                 goto dma_fail;
92
93         /* grab the next descriptor */
94         i = tx_ring->next_to_use;
95         fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
96         first = &tx_ring->tx_bi[i];
97         memset(first, 0, sizeof(struct i40e_tx_buffer));
98
99         tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
100
101         fpt = (fdir_data->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
102               I40E_TXD_FLTR_QW0_QINDEX_MASK;
103
104         fpt |= (fdir_data->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT) &
105                I40E_TXD_FLTR_QW0_FLEXOFF_MASK;
106
107         fpt |= (fdir_data->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) &
108                I40E_TXD_FLTR_QW0_PCTYPE_MASK;
109
110         /* Use LAN VSI Id if not programmed by user */
111         if (fdir_data->dest_vsi == 0)
112                 fpt |= (pf->vsi[pf->lan_vsi]->id) <<
113                        I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
114         else
115                 fpt |= ((u32)fdir_data->dest_vsi <<
116                         I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT) &
117                        I40E_TXD_FLTR_QW0_DEST_VSI_MASK;
118
119         dcc = I40E_TX_DESC_DTYPE_FILTER_PROG;
120
121         if (add)
122                 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
123                        I40E_TXD_FLTR_QW1_PCMD_SHIFT;
124         else
125                 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
126                        I40E_TXD_FLTR_QW1_PCMD_SHIFT;
127
128         dcc |= (fdir_data->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT) &
129                I40E_TXD_FLTR_QW1_DEST_MASK;
130
131         dcc |= (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT) &
132                I40E_TXD_FLTR_QW1_FD_STATUS_MASK;
133
134         if (fdir_data->cnt_index != 0) {
135                 dcc |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
136                 dcc |= ((u32)fdir_data->cnt_index <<
137                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
138                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
139         }
140
141         fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(fpt);
142         fdir_desc->rsvd = cpu_to_le32(0);
143         fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dcc);
144         fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id);
145
146         /* Now program a dummy descriptor */
147         i = tx_ring->next_to_use;
148         tx_desc = I40E_TX_DESC(tx_ring, i);
149         tx_buf = &tx_ring->tx_bi[i];
150
151         tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
152
153         memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
154
155         /* record length, and DMA address */
156         dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
157         dma_unmap_addr_set(tx_buf, dma, dma);
158
159         tx_desc->buffer_addr = cpu_to_le64(dma);
160         td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
161
162         tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
163         tx_buf->raw_buf = (void *)raw_packet;
164
165         tx_desc->cmd_type_offset_bsz =
166                 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
167
168         /* Force memory writes to complete before letting h/w
169          * know there are new descriptors to fetch.
170          */
171         wmb();
172
173         /* Mark the data descriptor to be watched */
174         first->next_to_watch = tx_desc;
175
176         writel(tx_ring->next_to_use, tx_ring->tail);
177         return 0;
178
179 dma_fail:
180         return -1;
181 }
182
183 #define IP_HEADER_OFFSET 14
184 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
185 /**
186  * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
187  * @vsi: pointer to the targeted VSI
188  * @fd_data: the flow director data required for the FDir descriptor
189  * @add: true adds a filter, false removes it
190  *
191  * Returns 0 if the filters were successfully added or removed
192  **/
193 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
194                                    struct i40e_fdir_filter *fd_data,
195                                    bool add)
196 {
197         struct i40e_pf *pf = vsi->back;
198         struct udphdr *udp;
199         struct iphdr *ip;
200         bool err = false;
201         u8 *raw_packet;
202         int ret;
203         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
204                 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
205                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
206
207         raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
208         if (!raw_packet)
209                 return -ENOMEM;
210         memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
211
212         ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
213         udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
214               + sizeof(struct iphdr));
215
216         ip->daddr = fd_data->dst_ip[0];
217         udp->dest = fd_data->dst_port;
218         ip->saddr = fd_data->src_ip[0];
219         udp->source = fd_data->src_port;
220
221         fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
222         ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
223         if (ret) {
224                 dev_info(&pf->pdev->dev,
225                          "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
226                          fd_data->pctype, fd_data->fd_id, ret);
227                 err = true;
228         } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
229                 if (add)
230                         dev_info(&pf->pdev->dev,
231                                  "Filter OK for PCTYPE %d loc = %d\n",
232                                  fd_data->pctype, fd_data->fd_id);
233                 else
234                         dev_info(&pf->pdev->dev,
235                                  "Filter deleted for PCTYPE %d loc = %d\n",
236                                  fd_data->pctype, fd_data->fd_id);
237         }
238         if (err)
239                 kfree(raw_packet);
240
241         return err ? -EOPNOTSUPP : 0;
242 }
243
244 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
245 /**
246  * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
247  * @vsi: pointer to the targeted VSI
248  * @fd_data: the flow director data required for the FDir descriptor
249  * @add: true adds a filter, false removes it
250  *
251  * Returns 0 if the filters were successfully added or removed
252  **/
253 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
254                                    struct i40e_fdir_filter *fd_data,
255                                    bool add)
256 {
257         struct i40e_pf *pf = vsi->back;
258         struct tcphdr *tcp;
259         struct iphdr *ip;
260         bool err = false;
261         u8 *raw_packet;
262         int ret;
263         /* Dummy packet */
264         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
265                 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
266                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
267                 0x0, 0x72, 0, 0, 0, 0};
268
269         raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
270         if (!raw_packet)
271                 return -ENOMEM;
272         memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
273
274         ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
275         tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
276               + sizeof(struct iphdr));
277
278         ip->daddr = fd_data->dst_ip[0];
279         tcp->dest = fd_data->dst_port;
280         ip->saddr = fd_data->src_ip[0];
281         tcp->source = fd_data->src_port;
282
283         if (add) {
284                 pf->fd_tcp_rule++;
285                 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) {
286                         if (I40E_DEBUG_FD & pf->hw.debug_mask)
287                                 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
288                         pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED;
289                 }
290         } else {
291                 pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
292                                   (pf->fd_tcp_rule - 1) : 0;
293                 if (pf->fd_tcp_rule == 0) {
294                         pf->flags |= I40E_FLAG_FD_ATR_ENABLED;
295                         if (I40E_DEBUG_FD & pf->hw.debug_mask)
296                                 dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
297                 }
298         }
299
300         fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
301         ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
302
303         if (ret) {
304                 dev_info(&pf->pdev->dev,
305                          "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
306                          fd_data->pctype, fd_data->fd_id, ret);
307                 err = true;
308         } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
309                 if (add)
310                         dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
311                                  fd_data->pctype, fd_data->fd_id);
312                 else
313                         dev_info(&pf->pdev->dev,
314                                  "Filter deleted for PCTYPE %d loc = %d\n",
315                                  fd_data->pctype, fd_data->fd_id);
316         }
317
318         if (err)
319                 kfree(raw_packet);
320
321         return err ? -EOPNOTSUPP : 0;
322 }
323
324 /**
325  * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
326  * a specific flow spec
327  * @vsi: pointer to the targeted VSI
328  * @fd_data: the flow director data required for the FDir descriptor
329  * @add: true adds a filter, false removes it
330  *
331  * Always returns -EOPNOTSUPP
332  **/
333 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
334                                     struct i40e_fdir_filter *fd_data,
335                                     bool add)
336 {
337         return -EOPNOTSUPP;
338 }
339
340 #define I40E_IP_DUMMY_PACKET_LEN 34
341 /**
342  * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
343  * a specific flow spec
344  * @vsi: pointer to the targeted VSI
345  * @fd_data: the flow director data required for the FDir descriptor
346  * @add: true adds a filter, false removes it
347  *
348  * Returns 0 if the filters were successfully added or removed
349  **/
350 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
351                                   struct i40e_fdir_filter *fd_data,
352                                   bool add)
353 {
354         struct i40e_pf *pf = vsi->back;
355         struct iphdr *ip;
356         bool err = false;
357         u8 *raw_packet;
358         int ret;
359         int i;
360         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
361                 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
362                 0, 0, 0, 0};
363
364         for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
365              i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
366                 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
367                 if (!raw_packet)
368                         return -ENOMEM;
369                 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
370                 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
371
372                 ip->saddr = fd_data->src_ip[0];
373                 ip->daddr = fd_data->dst_ip[0];
374                 ip->protocol = 0;
375
376                 fd_data->pctype = i;
377                 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
378
379                 if (ret) {
380                         dev_info(&pf->pdev->dev,
381                                  "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
382                                  fd_data->pctype, fd_data->fd_id, ret);
383                         err = true;
384                 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
385                         if (add)
386                                 dev_info(&pf->pdev->dev,
387                                          "Filter OK for PCTYPE %d loc = %d\n",
388                                          fd_data->pctype, fd_data->fd_id);
389                         else
390                                 dev_info(&pf->pdev->dev,
391                                          "Filter deleted for PCTYPE %d loc = %d\n",
392                                          fd_data->pctype, fd_data->fd_id);
393                 }
394         }
395
396         if (err)
397                 kfree(raw_packet);
398
399         return err ? -EOPNOTSUPP : 0;
400 }
401
402 /**
403  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
404  * @vsi: pointer to the targeted VSI
405  * @cmd: command to get or set RX flow classification rules
406  * @add: true adds a filter, false removes it
407  *
408  **/
409 int i40e_add_del_fdir(struct i40e_vsi *vsi,
410                       struct i40e_fdir_filter *input, bool add)
411 {
412         struct i40e_pf *pf = vsi->back;
413         int ret;
414
415         switch (input->flow_type & ~FLOW_EXT) {
416         case TCP_V4_FLOW:
417                 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
418                 break;
419         case UDP_V4_FLOW:
420                 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
421                 break;
422         case SCTP_V4_FLOW:
423                 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
424                 break;
425         case IPV4_FLOW:
426                 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
427                 break;
428         case IP_USER_FLOW:
429                 switch (input->ip4_proto) {
430                 case IPPROTO_TCP:
431                         ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
432                         break;
433                 case IPPROTO_UDP:
434                         ret = i40e_add_del_fdir_udpv4(vsi, input, add);
435                         break;
436                 case IPPROTO_SCTP:
437                         ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
438                         break;
439                 default:
440                         ret = i40e_add_del_fdir_ipv4(vsi, input, add);
441                         break;
442                 }
443                 break;
444         default:
445                 dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
446                          input->flow_type);
447                 ret = -EINVAL;
448         }
449
450         /* The buffer allocated here is freed by the i40e_clean_tx_ring() */
451         return ret;
452 }
453
454 /**
455  * i40e_fd_handle_status - check the Programming Status for FD
456  * @rx_ring: the Rx ring for this descriptor
457  * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
458  * @prog_id: the id originally used for programming
459  *
460  * This is used to verify if the FD programming or invalidation
461  * requested by SW to the HW is successful or not and take actions accordingly.
462  **/
463 static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
464                                   union i40e_rx_desc *rx_desc, u8 prog_id)
465 {
466         struct i40e_pf *pf = rx_ring->vsi->back;
467         struct pci_dev *pdev = pf->pdev;
468         u32 fcnt_prog, fcnt_avail;
469         u32 error;
470         u64 qw;
471
472         qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
473         error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
474                 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
475
476         if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
477                 pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
478                 if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
479                     (I40E_DEBUG_FD & pf->hw.debug_mask))
480                         dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
481                                  pf->fd_inv);
482
483                 /* Check if the programming error is for ATR.
484                  * If so, auto disable ATR and set a state for
485                  * flush in progress. Next time we come here if flush is in
486                  * progress do nothing, once flush is complete the state will
487                  * be cleared.
488                  */
489                 if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state))
490                         return;
491
492                 pf->fd_add_err++;
493                 /* store the current atr filter count */
494                 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
495
496                 if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
497                     (pf->auto_disable_flags & I40E_FLAG_FD_SB_ENABLED)) {
498                         pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
499                         set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state);
500                 }
501
502                 /* filter programming failed most likely due to table full */
503                 fcnt_prog = i40e_get_global_fd_count(pf);
504                 fcnt_avail = pf->fdir_pf_filter_count;
505                 /* If ATR is running fcnt_prog can quickly change,
506                  * if we are very close to full, it makes sense to disable
507                  * FD ATR/SB and then re-enable it when there is room.
508                  */
509                 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
510                         if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
511                             !(pf->auto_disable_flags &
512                                      I40E_FLAG_FD_SB_ENABLED)) {
513                                 if (I40E_DEBUG_FD & pf->hw.debug_mask)
514                                         dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
515                                 pf->auto_disable_flags |=
516                                                         I40E_FLAG_FD_SB_ENABLED;
517                         }
518                 } else {
519                         dev_info(&pdev->dev,
520                                 "FD filter programming failed due to incorrect filter parameters\n");
521                 }
522         } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
523                 if (I40E_DEBUG_FD & pf->hw.debug_mask)
524                         dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
525                                  rx_desc->wb.qword0.hi_dword.fd_id);
526         }
527 }
528
529 /**
530  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
531  * @ring:      the ring that owns the buffer
532  * @tx_buffer: the buffer to free
533  **/
534 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
535                                             struct i40e_tx_buffer *tx_buffer)
536 {
537         if (tx_buffer->skb) {
538                 dev_kfree_skb_any(tx_buffer->skb);
539                 if (dma_unmap_len(tx_buffer, len))
540                         dma_unmap_single(ring->dev,
541                                          dma_unmap_addr(tx_buffer, dma),
542                                          dma_unmap_len(tx_buffer, len),
543                                          DMA_TO_DEVICE);
544         } else if (dma_unmap_len(tx_buffer, len)) {
545                 dma_unmap_page(ring->dev,
546                                dma_unmap_addr(tx_buffer, dma),
547                                dma_unmap_len(tx_buffer, len),
548                                DMA_TO_DEVICE);
549         }
550
551         if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
552                 kfree(tx_buffer->raw_buf);
553
554         tx_buffer->next_to_watch = NULL;
555         tx_buffer->skb = NULL;
556         dma_unmap_len_set(tx_buffer, len, 0);
557         /* tx_buffer must be completely set up in the transmit path */
558 }
559
560 /**
561  * i40e_clean_tx_ring - Free any empty Tx buffers
562  * @tx_ring: ring to be cleaned
563  **/
564 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
565 {
566         unsigned long bi_size;
567         u16 i;
568
569         /* ring already cleared, nothing to do */
570         if (!tx_ring->tx_bi)
571                 return;
572
573         /* Free all the Tx ring sk_buffs */
574         for (i = 0; i < tx_ring->count; i++)
575                 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
576
577         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
578         memset(tx_ring->tx_bi, 0, bi_size);
579
580         /* Zero out the descriptor ring */
581         memset(tx_ring->desc, 0, tx_ring->size);
582
583         tx_ring->next_to_use = 0;
584         tx_ring->next_to_clean = 0;
585
586         if (!tx_ring->netdev)
587                 return;
588
589         /* cleanup Tx queue statistics */
590         netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
591                                                   tx_ring->queue_index));
592 }
593
594 /**
595  * i40e_free_tx_resources - Free Tx resources per queue
596  * @tx_ring: Tx descriptor ring for a specific queue
597  *
598  * Free all transmit software resources
599  **/
600 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
601 {
602         i40e_clean_tx_ring(tx_ring);
603         kfree(tx_ring->tx_bi);
604         tx_ring->tx_bi = NULL;
605
606         if (tx_ring->desc) {
607                 dma_free_coherent(tx_ring->dev, tx_ring->size,
608                                   tx_ring->desc, tx_ring->dma);
609                 tx_ring->desc = NULL;
610         }
611 }
612
613 /**
614  * i40e_get_tx_pending - how many tx descriptors not processed
615  * @tx_ring: the ring of descriptors
616  *
617  * Since there is no access to the ring head register
618  * in XL710, we need to use our local copies
619  **/
620 u32 i40e_get_tx_pending(struct i40e_ring *ring)
621 {
622         u32 head, tail;
623
624         head = i40e_get_head(ring);
625         tail = readl(ring->tail);
626
627         if (head != tail)
628                 return (head < tail) ?
629                         tail - head : (tail + ring->count - head);
630
631         return 0;
632 }
633
634 #define WB_STRIDE 0x3
635
636 /**
637  * i40e_clean_tx_irq - Reclaim resources after transmit completes
638  * @tx_ring:  tx ring to clean
639  * @budget:   how many cleans we're allowed
640  *
641  * Returns true if there's any budget left (e.g. the clean is finished)
642  **/
643 static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
644 {
645         u16 i = tx_ring->next_to_clean;
646         struct i40e_tx_buffer *tx_buf;
647         struct i40e_tx_desc *tx_head;
648         struct i40e_tx_desc *tx_desc;
649         unsigned int total_packets = 0;
650         unsigned int total_bytes = 0;
651
652         tx_buf = &tx_ring->tx_bi[i];
653         tx_desc = I40E_TX_DESC(tx_ring, i);
654         i -= tx_ring->count;
655
656         tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
657
658         do {
659                 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
660
661                 /* if next_to_watch is not set then there is no work pending */
662                 if (!eop_desc)
663                         break;
664
665                 /* prevent any other reads prior to eop_desc */
666                 read_barrier_depends();
667
668                 /* we have caught up to head, no work left to do */
669                 if (tx_head == tx_desc)
670                         break;
671
672                 /* clear next_to_watch to prevent false hangs */
673                 tx_buf->next_to_watch = NULL;
674
675                 /* update the statistics for this packet */
676                 total_bytes += tx_buf->bytecount;
677                 total_packets += tx_buf->gso_segs;
678
679                 /* free the skb */
680                 dev_consume_skb_any(tx_buf->skb);
681
682                 /* unmap skb header data */
683                 dma_unmap_single(tx_ring->dev,
684                                  dma_unmap_addr(tx_buf, dma),
685                                  dma_unmap_len(tx_buf, len),
686                                  DMA_TO_DEVICE);
687
688                 /* clear tx_buffer data */
689                 tx_buf->skb = NULL;
690                 dma_unmap_len_set(tx_buf, len, 0);
691
692                 /* unmap remaining buffers */
693                 while (tx_desc != eop_desc) {
694
695                         tx_buf++;
696                         tx_desc++;
697                         i++;
698                         if (unlikely(!i)) {
699                                 i -= tx_ring->count;
700                                 tx_buf = tx_ring->tx_bi;
701                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
702                         }
703
704                         /* unmap any remaining paged data */
705                         if (dma_unmap_len(tx_buf, len)) {
706                                 dma_unmap_page(tx_ring->dev,
707                                                dma_unmap_addr(tx_buf, dma),
708                                                dma_unmap_len(tx_buf, len),
709                                                DMA_TO_DEVICE);
710                                 dma_unmap_len_set(tx_buf, len, 0);
711                         }
712                 }
713
714                 /* move us one more past the eop_desc for start of next pkt */
715                 tx_buf++;
716                 tx_desc++;
717                 i++;
718                 if (unlikely(!i)) {
719                         i -= tx_ring->count;
720                         tx_buf = tx_ring->tx_bi;
721                         tx_desc = I40E_TX_DESC(tx_ring, 0);
722                 }
723
724                 prefetch(tx_desc);
725
726                 /* update budget accounting */
727                 budget--;
728         } while (likely(budget));
729
730         i += tx_ring->count;
731         tx_ring->next_to_clean = i;
732         u64_stats_update_begin(&tx_ring->syncp);
733         tx_ring->stats.bytes += total_bytes;
734         tx_ring->stats.packets += total_packets;
735         u64_stats_update_end(&tx_ring->syncp);
736         tx_ring->q_vector->tx.total_bytes += total_bytes;
737         tx_ring->q_vector->tx.total_packets += total_packets;
738
739         if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
740                 unsigned int j = 0;
741
742                 /* check to see if there are < 4 descriptors
743                  * waiting to be written back, then kick the hardware to force
744                  * them to be written back in case we stay in NAPI.
745                  * In this mode on X722 we do not enable Interrupt.
746                  */
747                 j = i40e_get_tx_pending(tx_ring);
748
749                 if (budget &&
750                     ((j / (WB_STRIDE + 1)) == 0) && (j != 0) &&
751                     !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
752                     (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
753                         tx_ring->arm_wb = true;
754         }
755
756         netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
757                                                       tx_ring->queue_index),
758                                   total_packets, total_bytes);
759
760 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
761         if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
762                      (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
763                 /* Make sure that anybody stopping the queue after this
764                  * sees the new next_to_clean.
765                  */
766                 smp_mb();
767                 if (__netif_subqueue_stopped(tx_ring->netdev,
768                                              tx_ring->queue_index) &&
769                    !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
770                         netif_wake_subqueue(tx_ring->netdev,
771                                             tx_ring->queue_index);
772                         ++tx_ring->tx_stats.restart_queue;
773                 }
774         }
775
776         return !!budget;
777 }
778
779 /**
780  * i40e_force_wb - Arm hardware to do a wb on noncache aligned descriptors
781  * @vsi: the VSI we care about
782  * @q_vector: the vector  on which to force writeback
783  *
784  **/
785 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
786 {
787         u16 flags = q_vector->tx.ring[0].flags;
788
789         if (flags & I40E_TXR_FLAGS_WB_ON_ITR) {
790                 u32 val;
791
792                 if (q_vector->arm_wb_state)
793                         return;
794
795                 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK;
796
797                 wr32(&vsi->back->hw,
798                      I40E_PFINT_DYN_CTLN(q_vector->v_idx +
799                                          vsi->base_vector - 1),
800                      val);
801                 q_vector->arm_wb_state = true;
802         } else if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
803                 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
804                           I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
805                           I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
806                           I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
807                           /* allow 00 to be written to the index */
808
809                 wr32(&vsi->back->hw,
810                      I40E_PFINT_DYN_CTLN(q_vector->v_idx +
811                                          vsi->base_vector - 1), val);
812         } else {
813                 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
814                           I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
815                           I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
816                           I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
817                         /* allow 00 to be written to the index */
818
819                 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
820         }
821 }
822
823 /**
824  * i40e_set_new_dynamic_itr - Find new ITR level
825  * @rc: structure containing ring performance data
826  *
827  * Returns true if ITR changed, false if not
828  *
829  * Stores a new ITR value based on packets and byte counts during
830  * the last interrupt.  The advantage of per interrupt computation
831  * is faster updates and more accurate ITR for the current traffic
832  * pattern.  Constants in this function were computed based on
833  * theoretical maximum wire speed and thresholds were set based on
834  * testing data as well as attempting to minimize response time
835  * while increasing bulk throughput.
836  **/
837 static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
838 {
839         enum i40e_latency_range new_latency_range = rc->latency_range;
840         struct i40e_q_vector *qv = rc->ring->q_vector;
841         u32 new_itr = rc->itr;
842         int bytes_per_int;
843         int usecs;
844
845         if (rc->total_packets == 0 || !rc->itr)
846                 return false;
847
848         /* simple throttlerate management
849          *   0-10MB/s   lowest (50000 ints/s)
850          *  10-20MB/s   low    (20000 ints/s)
851          *  20-1249MB/s bulk   (18000 ints/s)
852          *  > 40000 Rx packets per second (8000 ints/s)
853          *
854          * The math works out because the divisor is in 10^(-6) which
855          * turns the bytes/us input value into MB/s values, but
856          * make sure to use usecs, as the register values written
857          * are in 2 usec increments in the ITR registers, and make sure
858          * to use the smoothed values that the countdown timer gives us.
859          */
860         usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
861         bytes_per_int = rc->total_bytes / usecs;
862
863         switch (new_latency_range) {
864         case I40E_LOWEST_LATENCY:
865                 if (bytes_per_int > 10)
866                         new_latency_range = I40E_LOW_LATENCY;
867                 break;
868         case I40E_LOW_LATENCY:
869                 if (bytes_per_int > 20)
870                         new_latency_range = I40E_BULK_LATENCY;
871                 else if (bytes_per_int <= 10)
872                         new_latency_range = I40E_LOWEST_LATENCY;
873                 break;
874         case I40E_BULK_LATENCY:
875         case I40E_ULTRA_LATENCY:
876         default:
877                 if (bytes_per_int <= 20)
878                         new_latency_range = I40E_LOW_LATENCY;
879                 break;
880         }
881
882         /* this is to adjust RX more aggressively when streaming small
883          * packets.  The value of 40000 was picked as it is just beyond
884          * what the hardware can receive per second if in low latency
885          * mode.
886          */
887 #define RX_ULTRA_PACKET_RATE 40000
888
889         if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
890             (&qv->rx == rc))
891                 new_latency_range = I40E_ULTRA_LATENCY;
892
893         rc->latency_range = new_latency_range;
894
895         switch (new_latency_range) {
896         case I40E_LOWEST_LATENCY:
897                 new_itr = I40E_ITR_50K;
898                 break;
899         case I40E_LOW_LATENCY:
900                 new_itr = I40E_ITR_20K;
901                 break;
902         case I40E_BULK_LATENCY:
903                 new_itr = I40E_ITR_18K;
904                 break;
905         case I40E_ULTRA_LATENCY:
906                 new_itr = I40E_ITR_8K;
907                 break;
908         default:
909                 break;
910         }
911
912         rc->total_bytes = 0;
913         rc->total_packets = 0;
914
915         if (new_itr != rc->itr) {
916                 rc->itr = new_itr;
917                 return true;
918         }
919
920         return false;
921 }
922
923 /**
924  * i40e_clean_programming_status - clean the programming status descriptor
925  * @rx_ring: the rx ring that has this descriptor
926  * @rx_desc: the rx descriptor written back by HW
927  *
928  * Flow director should handle FD_FILTER_STATUS to check its filter programming
929  * status being successful or not and take actions accordingly. FCoE should
930  * handle its context/filter programming/invalidation status and take actions.
931  *
932  **/
933 static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
934                                           union i40e_rx_desc *rx_desc)
935 {
936         u64 qw;
937         u8 id;
938
939         qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
940         id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
941                   I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
942
943         if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
944                 i40e_fd_handle_status(rx_ring, rx_desc, id);
945 #ifdef I40E_FCOE
946         else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
947                  (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
948                 i40e_fcoe_handle_status(rx_ring, rx_desc, id);
949 #endif
950 }
951
952 /**
953  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
954  * @tx_ring: the tx ring to set up
955  *
956  * Return 0 on success, negative on error
957  **/
958 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
959 {
960         struct device *dev = tx_ring->dev;
961         int bi_size;
962
963         if (!dev)
964                 return -ENOMEM;
965
966         /* warn if we are about to overwrite the pointer */
967         WARN_ON(tx_ring->tx_bi);
968         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
969         tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
970         if (!tx_ring->tx_bi)
971                 goto err;
972
973         /* round up to nearest 4K */
974         tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
975         /* add u32 for head writeback, align after this takes care of
976          * guaranteeing this is at least one cache line in size
977          */
978         tx_ring->size += sizeof(u32);
979         tx_ring->size = ALIGN(tx_ring->size, 4096);
980         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
981                                            &tx_ring->dma, GFP_KERNEL);
982         if (!tx_ring->desc) {
983                 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
984                          tx_ring->size);
985                 goto err;
986         }
987
988         tx_ring->next_to_use = 0;
989         tx_ring->next_to_clean = 0;
990         return 0;
991
992 err:
993         kfree(tx_ring->tx_bi);
994         tx_ring->tx_bi = NULL;
995         return -ENOMEM;
996 }
997
998 /**
999  * i40e_clean_rx_ring - Free Rx buffers
1000  * @rx_ring: ring to be cleaned
1001  **/
1002 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1003 {
1004         struct device *dev = rx_ring->dev;
1005         struct i40e_rx_buffer *rx_bi;
1006         unsigned long bi_size;
1007         u16 i;
1008
1009         /* ring already cleared, nothing to do */
1010         if (!rx_ring->rx_bi)
1011                 return;
1012
1013         if (ring_is_ps_enabled(rx_ring)) {
1014                 int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
1015
1016                 rx_bi = &rx_ring->rx_bi[0];
1017                 if (rx_bi->hdr_buf) {
1018                         dma_free_coherent(dev,
1019                                           bufsz,
1020                                           rx_bi->hdr_buf,
1021                                           rx_bi->dma);
1022                         for (i = 0; i < rx_ring->count; i++) {
1023                                 rx_bi = &rx_ring->rx_bi[i];
1024                                 rx_bi->dma = 0;
1025                                 rx_bi->hdr_buf = NULL;
1026                         }
1027                 }
1028         }
1029         /* Free all the Rx ring sk_buffs */
1030         for (i = 0; i < rx_ring->count; i++) {
1031                 rx_bi = &rx_ring->rx_bi[i];
1032                 if (rx_bi->dma) {
1033                         dma_unmap_single(dev,
1034                                          rx_bi->dma,
1035                                          rx_ring->rx_buf_len,
1036                                          DMA_FROM_DEVICE);
1037                         rx_bi->dma = 0;
1038                 }
1039                 if (rx_bi->skb) {
1040                         dev_kfree_skb(rx_bi->skb);
1041                         rx_bi->skb = NULL;
1042                 }
1043                 if (rx_bi->page) {
1044                         if (rx_bi->page_dma) {
1045                                 dma_unmap_page(dev,
1046                                                rx_bi->page_dma,
1047                                                PAGE_SIZE / 2,
1048                                                DMA_FROM_DEVICE);
1049                                 rx_bi->page_dma = 0;
1050                         }
1051                         __free_page(rx_bi->page);
1052                         rx_bi->page = NULL;
1053                         rx_bi->page_offset = 0;
1054                 }
1055         }
1056
1057         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1058         memset(rx_ring->rx_bi, 0, bi_size);
1059
1060         /* Zero out the descriptor ring */
1061         memset(rx_ring->desc, 0, rx_ring->size);
1062
1063         rx_ring->next_to_clean = 0;
1064         rx_ring->next_to_use = 0;
1065 }
1066
1067 /**
1068  * i40e_free_rx_resources - Free Rx resources
1069  * @rx_ring: ring to clean the resources from
1070  *
1071  * Free all receive software resources
1072  **/
1073 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1074 {
1075         i40e_clean_rx_ring(rx_ring);
1076         kfree(rx_ring->rx_bi);
1077         rx_ring->rx_bi = NULL;
1078
1079         if (rx_ring->desc) {
1080                 dma_free_coherent(rx_ring->dev, rx_ring->size,
1081                                   rx_ring->desc, rx_ring->dma);
1082                 rx_ring->desc = NULL;
1083         }
1084 }
1085
1086 /**
1087  * i40e_alloc_rx_headers - allocate rx header buffers
1088  * @rx_ring: ring to alloc buffers
1089  *
1090  * Allocate rx header buffers for the entire ring. As these are static,
1091  * this is only called when setting up a new ring.
1092  **/
1093 void i40e_alloc_rx_headers(struct i40e_ring *rx_ring)
1094 {
1095         struct device *dev = rx_ring->dev;
1096         struct i40e_rx_buffer *rx_bi;
1097         dma_addr_t dma;
1098         void *buffer;
1099         int buf_size;
1100         int i;
1101
1102         if (rx_ring->rx_bi[0].hdr_buf)
1103                 return;
1104         /* Make sure the buffers don't cross cache line boundaries. */
1105         buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
1106         buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
1107                                     &dma, GFP_KERNEL);
1108         if (!buffer)
1109                 return;
1110         for (i = 0; i < rx_ring->count; i++) {
1111                 rx_bi = &rx_ring->rx_bi[i];
1112                 rx_bi->dma = dma + (i * buf_size);
1113                 rx_bi->hdr_buf = buffer + (i * buf_size);
1114         }
1115 }
1116
1117 /**
1118  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1119  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1120  *
1121  * Returns 0 on success, negative on failure
1122  **/
1123 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1124 {
1125         struct device *dev = rx_ring->dev;
1126         int bi_size;
1127
1128         /* warn if we are about to overwrite the pointer */
1129         WARN_ON(rx_ring->rx_bi);
1130         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1131         rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1132         if (!rx_ring->rx_bi)
1133                 goto err;
1134
1135         u64_stats_init(&rx_ring->syncp);
1136
1137         /* Round up to nearest 4K */
1138         rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
1139                 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
1140                 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1141         rx_ring->size = ALIGN(rx_ring->size, 4096);
1142         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1143                                            &rx_ring->dma, GFP_KERNEL);
1144
1145         if (!rx_ring->desc) {
1146                 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1147                          rx_ring->size);
1148                 goto err;
1149         }
1150
1151         rx_ring->next_to_clean = 0;
1152         rx_ring->next_to_use = 0;
1153
1154         return 0;
1155 err:
1156         kfree(rx_ring->rx_bi);
1157         rx_ring->rx_bi = NULL;
1158         return -ENOMEM;
1159 }
1160
1161 /**
1162  * i40e_release_rx_desc - Store the new tail and head values
1163  * @rx_ring: ring to bump
1164  * @val: new head index
1165  **/
1166 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1167 {
1168         rx_ring->next_to_use = val;
1169         /* Force memory writes to complete before letting h/w
1170          * know there are new descriptors to fetch.  (Only
1171          * applicable for weak-ordered memory model archs,
1172          * such as IA-64).
1173          */
1174         wmb();
1175         writel(val, rx_ring->tail);
1176 }
1177
1178 /**
1179  * i40e_alloc_rx_buffers_ps - Replace used receive buffers; packet split
1180  * @rx_ring: ring to place buffers on
1181  * @cleaned_count: number of buffers to replace
1182  **/
1183 void i40e_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
1184 {
1185         u16 i = rx_ring->next_to_use;
1186         union i40e_rx_desc *rx_desc;
1187         struct i40e_rx_buffer *bi;
1188
1189         /* do nothing if no valid netdev defined */
1190         if (!rx_ring->netdev || !cleaned_count)
1191                 return;
1192
1193         while (cleaned_count--) {
1194                 rx_desc = I40E_RX_DESC(rx_ring, i);
1195                 bi = &rx_ring->rx_bi[i];
1196
1197                 if (bi->skb) /* desc is in use */
1198                         goto no_buffers;
1199                 if (!bi->page) {
1200                         bi->page = alloc_page(GFP_ATOMIC);
1201                         if (!bi->page) {
1202                                 rx_ring->rx_stats.alloc_page_failed++;
1203                                 goto no_buffers;
1204                         }
1205                 }
1206
1207                 if (!bi->page_dma) {
1208                         /* use a half page if we're re-using */
1209                         bi->page_offset ^= PAGE_SIZE / 2;
1210                         bi->page_dma = dma_map_page(rx_ring->dev,
1211                                                     bi->page,
1212                                                     bi->page_offset,
1213                                                     PAGE_SIZE / 2,
1214                                                     DMA_FROM_DEVICE);
1215                         if (dma_mapping_error(rx_ring->dev,
1216                                               bi->page_dma)) {
1217                                 rx_ring->rx_stats.alloc_page_failed++;
1218                                 bi->page_dma = 0;
1219                                 goto no_buffers;
1220                         }
1221                 }
1222
1223                 dma_sync_single_range_for_device(rx_ring->dev,
1224                                                  bi->dma,
1225                                                  0,
1226                                                  rx_ring->rx_hdr_len,
1227                                                  DMA_FROM_DEVICE);
1228                 /* Refresh the desc even if buffer_addrs didn't change
1229                  * because each write-back erases this info.
1230                  */
1231                 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
1232                 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
1233                 i++;
1234                 if (i == rx_ring->count)
1235                         i = 0;
1236         }
1237
1238 no_buffers:
1239         if (rx_ring->next_to_use != i)
1240                 i40e_release_rx_desc(rx_ring, i);
1241 }
1242
1243 /**
1244  * i40e_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
1245  * @rx_ring: ring to place buffers on
1246  * @cleaned_count: number of buffers to replace
1247  **/
1248 void i40e_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
1249 {
1250         u16 i = rx_ring->next_to_use;
1251         union i40e_rx_desc *rx_desc;
1252         struct i40e_rx_buffer *bi;
1253         struct sk_buff *skb;
1254
1255         /* do nothing if no valid netdev defined */
1256         if (!rx_ring->netdev || !cleaned_count)
1257                 return;
1258
1259         while (cleaned_count--) {
1260                 rx_desc = I40E_RX_DESC(rx_ring, i);
1261                 bi = &rx_ring->rx_bi[i];
1262                 skb = bi->skb;
1263
1264                 if (!skb) {
1265                         skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1266                                                         rx_ring->rx_buf_len);
1267                         if (!skb) {
1268                                 rx_ring->rx_stats.alloc_buff_failed++;
1269                                 goto no_buffers;
1270                         }
1271                         /* initialize queue mapping */
1272                         skb_record_rx_queue(skb, rx_ring->queue_index);
1273                         bi->skb = skb;
1274                 }
1275
1276                 if (!bi->dma) {
1277                         bi->dma = dma_map_single(rx_ring->dev,
1278                                                  skb->data,
1279                                                  rx_ring->rx_buf_len,
1280                                                  DMA_FROM_DEVICE);
1281                         if (dma_mapping_error(rx_ring->dev, bi->dma)) {
1282                                 rx_ring->rx_stats.alloc_buff_failed++;
1283                                 bi->dma = 0;
1284                                 goto no_buffers;
1285                         }
1286                 }
1287
1288                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
1289                 rx_desc->read.hdr_addr = 0;
1290                 i++;
1291                 if (i == rx_ring->count)
1292                         i = 0;
1293         }
1294
1295 no_buffers:
1296         if (rx_ring->next_to_use != i)
1297                 i40e_release_rx_desc(rx_ring, i);
1298 }
1299
1300 /**
1301  * i40e_receive_skb - Send a completed packet up the stack
1302  * @rx_ring:  rx ring in play
1303  * @skb: packet to send up
1304  * @vlan_tag: vlan tag for packet
1305  **/
1306 static void i40e_receive_skb(struct i40e_ring *rx_ring,
1307                              struct sk_buff *skb, u16 vlan_tag)
1308 {
1309         struct i40e_q_vector *q_vector = rx_ring->q_vector;
1310
1311         if (vlan_tag & VLAN_VID_MASK)
1312                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1313
1314         napi_gro_receive(&q_vector->napi, skb);
1315 }
1316
1317 /**
1318  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1319  * @vsi: the VSI we care about
1320  * @skb: skb currently being received and modified
1321  * @rx_status: status value of last descriptor in packet
1322  * @rx_error: error value of last descriptor in packet
1323  * @rx_ptype: ptype value of last descriptor in packet
1324  **/
1325 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1326                                     struct sk_buff *skb,
1327                                     u32 rx_status,
1328                                     u32 rx_error,
1329                                     u16 rx_ptype)
1330 {
1331         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
1332         bool ipv4 = false, ipv6 = false;
1333         bool ipv4_tunnel, ipv6_tunnel;
1334         __wsum rx_udp_csum;
1335         struct iphdr *iph;
1336         __sum16 csum;
1337
1338         ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
1339                      (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
1340         ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
1341                      (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
1342
1343         skb->ip_summed = CHECKSUM_NONE;
1344
1345         /* Rx csum enabled and ip headers found? */
1346         if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1347                 return;
1348
1349         /* did the hardware decode the packet and checksum? */
1350         if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1351                 return;
1352
1353         /* both known and outer_ip must be set for the below code to work */
1354         if (!(decoded.known && decoded.outer_ip))
1355                 return;
1356
1357         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1358             decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
1359                 ipv4 = true;
1360         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1361                  decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
1362                 ipv6 = true;
1363
1364         if (ipv4 &&
1365             (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1366                          BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1367                 goto checksum_fail;
1368
1369         /* likely incorrect csum if alternate IP extension headers found */
1370         if (ipv6 &&
1371             rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1372                 /* don't increment checksum err here, non-fatal err */
1373                 return;
1374
1375         /* there was some L4 error, count error and punt packet to the stack */
1376         if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1377                 goto checksum_fail;
1378
1379         /* handle packets that were not able to be checksummed due
1380          * to arrival speed, in this case the stack can compute
1381          * the csum.
1382          */
1383         if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1384                 return;
1385
1386         /* If VXLAN traffic has an outer UDPv4 checksum we need to check
1387          * it in the driver, hardware does not do it for us.
1388          * Since L3L4P bit was set we assume a valid IHL value (>=5)
1389          * so the total length of IPv4 header is IHL*4 bytes
1390          * The UDP_0 bit *may* bet set if the *inner* header is UDP
1391          */
1392         if (!(vsi->back->flags & I40E_FLAG_OUTER_UDP_CSUM_CAPABLE) &&
1393             (ipv4_tunnel)) {
1394                 skb->transport_header = skb->mac_header +
1395                                         sizeof(struct ethhdr) +
1396                                         (ip_hdr(skb)->ihl * 4);
1397
1398                 /* Add 4 bytes for VLAN tagged packets */
1399                 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
1400                                           skb->protocol == htons(ETH_P_8021AD))
1401                                           ? VLAN_HLEN : 0;
1402
1403                 if ((ip_hdr(skb)->protocol == IPPROTO_UDP) &&
1404                     (udp_hdr(skb)->check != 0)) {
1405                         rx_udp_csum = udp_csum(skb);
1406                         iph = ip_hdr(skb);
1407                         csum = csum_tcpudp_magic(
1408                                         iph->saddr, iph->daddr,
1409                                         (skb->len - skb_transport_offset(skb)),
1410                                         IPPROTO_UDP, rx_udp_csum);
1411
1412                         if (udp_hdr(skb)->check != csum)
1413                                 goto checksum_fail;
1414
1415                 } /* else its GRE and so no outer UDP header */
1416         }
1417
1418         skb->ip_summed = CHECKSUM_UNNECESSARY;
1419         skb->csum_level = ipv4_tunnel || ipv6_tunnel;
1420
1421         return;
1422
1423 checksum_fail:
1424         vsi->back->hw_csum_rx_error++;
1425 }
1426
1427 /**
1428  * i40e_ptype_to_htype - get a hash type
1429  * @ptype: the ptype value from the descriptor
1430  *
1431  * Returns a hash type to be used by skb_set_hash
1432  **/
1433 static inline enum pkt_hash_types i40e_ptype_to_htype(u8 ptype)
1434 {
1435         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1436
1437         if (!decoded.known)
1438                 return PKT_HASH_TYPE_NONE;
1439
1440         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1441             decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1442                 return PKT_HASH_TYPE_L4;
1443         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1444                  decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1445                 return PKT_HASH_TYPE_L3;
1446         else
1447                 return PKT_HASH_TYPE_L2;
1448 }
1449
1450 /**
1451  * i40e_rx_hash - set the hash value in the skb
1452  * @ring: descriptor ring
1453  * @rx_desc: specific descriptor
1454  **/
1455 static inline void i40e_rx_hash(struct i40e_ring *ring,
1456                                 union i40e_rx_desc *rx_desc,
1457                                 struct sk_buff *skb,
1458                                 u8 rx_ptype)
1459 {
1460         u32 hash;
1461         const __le64 rss_mask  =
1462                 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1463                             I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1464
1465         if (ring->netdev->features & NETIF_F_RXHASH)
1466                 return;
1467
1468         if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1469                 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1470                 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1471         }
1472 }
1473
1474 /**
1475  * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
1476  * @rx_ring:  rx ring to clean
1477  * @budget:   how many cleans we're allowed
1478  *
1479  * Returns true if there's any budget left (e.g. the clean is finished)
1480  **/
1481 static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, int budget)
1482 {
1483         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1484         u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
1485         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1486         const int current_node = numa_mem_id();
1487         struct i40e_vsi *vsi = rx_ring->vsi;
1488         u16 i = rx_ring->next_to_clean;
1489         union i40e_rx_desc *rx_desc;
1490         u32 rx_error, rx_status;
1491         u8 rx_ptype;
1492         u64 qword;
1493
1494         if (budget <= 0)
1495                 return 0;
1496
1497         do {
1498                 struct i40e_rx_buffer *rx_bi;
1499                 struct sk_buff *skb;
1500                 u16 vlan_tag;
1501                 /* return some buffers to hardware, one at a time is too slow */
1502                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1503                         i40e_alloc_rx_buffers_ps(rx_ring, cleaned_count);
1504                         cleaned_count = 0;
1505                 }
1506
1507                 i = rx_ring->next_to_clean;
1508                 rx_desc = I40E_RX_DESC(rx_ring, i);
1509                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1510                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1511                         I40E_RXD_QW1_STATUS_SHIFT;
1512
1513                 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1514                         break;
1515
1516                 /* This memory barrier is needed to keep us from reading
1517                  * any other fields out of the rx_desc until we know the
1518                  * DD bit is set.
1519                  */
1520                 dma_rmb();
1521                 if (i40e_rx_is_programming_status(qword)) {
1522                         i40e_clean_programming_status(rx_ring, rx_desc);
1523                         I40E_RX_INCREMENT(rx_ring, i);
1524                         continue;
1525                 }
1526                 rx_bi = &rx_ring->rx_bi[i];
1527                 skb = rx_bi->skb;
1528                 if (likely(!skb)) {
1529                         skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1530                                                         rx_ring->rx_hdr_len);
1531                         if (!skb) {
1532                                 rx_ring->rx_stats.alloc_buff_failed++;
1533                                 break;
1534                         }
1535
1536                         /* initialize queue mapping */
1537                         skb_record_rx_queue(skb, rx_ring->queue_index);
1538                         /* we are reusing so sync this buffer for CPU use */
1539                         dma_sync_single_range_for_cpu(rx_ring->dev,
1540                                                       rx_bi->dma,
1541                                                       0,
1542                                                       rx_ring->rx_hdr_len,
1543                                                       DMA_FROM_DEVICE);
1544                 }
1545                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1546                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1547                 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1548                                 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1549                 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1550                          I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1551
1552                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1553                            I40E_RXD_QW1_ERROR_SHIFT;
1554                 rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1555                 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1556
1557                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1558                            I40E_RXD_QW1_PTYPE_SHIFT;
1559                 prefetch(rx_bi->page);
1560                 rx_bi->skb = NULL;
1561                 cleaned_count++;
1562                 if (rx_hbo || rx_sph) {
1563                         int len;
1564
1565                         if (rx_hbo)
1566                                 len = I40E_RX_HDR_SIZE;
1567                         else
1568                                 len = rx_header_len;
1569                         memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
1570                 } else if (skb->len == 0) {
1571                         int len;
1572
1573                         len = (rx_packet_len > skb_headlen(skb) ?
1574                                 skb_headlen(skb) : rx_packet_len);
1575                         memcpy(__skb_put(skb, len),
1576                                rx_bi->page + rx_bi->page_offset,
1577                                len);
1578                         rx_bi->page_offset += len;
1579                         rx_packet_len -= len;
1580                 }
1581
1582                 /* Get the rest of the data if this was a header split */
1583                 if (rx_packet_len) {
1584                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1585                                            rx_bi->page,
1586                                            rx_bi->page_offset,
1587                                            rx_packet_len);
1588
1589                         skb->len += rx_packet_len;
1590                         skb->data_len += rx_packet_len;
1591                         skb->truesize += rx_packet_len;
1592
1593                         if ((page_count(rx_bi->page) == 1) &&
1594                             (page_to_nid(rx_bi->page) == current_node))
1595                                 get_page(rx_bi->page);
1596                         else
1597                                 rx_bi->page = NULL;
1598
1599                         dma_unmap_page(rx_ring->dev,
1600                                        rx_bi->page_dma,
1601                                        PAGE_SIZE / 2,
1602                                        DMA_FROM_DEVICE);
1603                         rx_bi->page_dma = 0;
1604                 }
1605                 I40E_RX_INCREMENT(rx_ring, i);
1606
1607                 if (unlikely(
1608                     !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1609                         struct i40e_rx_buffer *next_buffer;
1610
1611                         next_buffer = &rx_ring->rx_bi[i];
1612                         next_buffer->skb = skb;
1613                         rx_ring->rx_stats.non_eop_descs++;
1614                         continue;
1615                 }
1616
1617                 /* ERR_MASK will only have valid bits if EOP set */
1618                 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1619                         dev_kfree_skb_any(skb);
1620                         continue;
1621                 }
1622
1623                 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1624
1625                 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1626                         i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1627                                            I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1628                                            I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1629                         rx_ring->last_rx_timestamp = jiffies;
1630                 }
1631
1632                 /* probably a little skewed due to removing CRC */
1633                 total_rx_bytes += skb->len;
1634                 total_rx_packets++;
1635
1636                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1637
1638                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1639
1640                 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1641                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1642                          : 0;
1643 #ifdef I40E_FCOE
1644                 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1645                         dev_kfree_skb_any(skb);
1646                         continue;
1647                 }
1648 #endif
1649                 skb_mark_napi_id(skb, &rx_ring->q_vector->napi);
1650                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1651
1652                 rx_desc->wb.qword1.status_error_len = 0;
1653
1654         } while (likely(total_rx_packets < budget));
1655
1656         u64_stats_update_begin(&rx_ring->syncp);
1657         rx_ring->stats.packets += total_rx_packets;
1658         rx_ring->stats.bytes += total_rx_bytes;
1659         u64_stats_update_end(&rx_ring->syncp);
1660         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1661         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1662
1663         return total_rx_packets;
1664 }
1665
1666 /**
1667  * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
1668  * @rx_ring:  rx ring to clean
1669  * @budget:   how many cleans we're allowed
1670  *
1671  * Returns number of packets cleaned
1672  **/
1673 static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
1674 {
1675         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1676         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1677         struct i40e_vsi *vsi = rx_ring->vsi;
1678         union i40e_rx_desc *rx_desc;
1679         u32 rx_error, rx_status;
1680         u16 rx_packet_len;
1681         u8 rx_ptype;
1682         u64 qword;
1683         u16 i;
1684
1685         do {
1686                 struct i40e_rx_buffer *rx_bi;
1687                 struct sk_buff *skb;
1688                 u16 vlan_tag;
1689                 /* return some buffers to hardware, one at a time is too slow */
1690                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1691                         i40e_alloc_rx_buffers_1buf(rx_ring, cleaned_count);
1692                         cleaned_count = 0;
1693                 }
1694
1695                 i = rx_ring->next_to_clean;
1696                 rx_desc = I40E_RX_DESC(rx_ring, i);
1697                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1698                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1699                         I40E_RXD_QW1_STATUS_SHIFT;
1700
1701                 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1702                         break;
1703
1704                 /* This memory barrier is needed to keep us from reading
1705                  * any other fields out of the rx_desc until we know the
1706                  * DD bit is set.
1707                  */
1708                 dma_rmb();
1709
1710                 if (i40e_rx_is_programming_status(qword)) {
1711                         i40e_clean_programming_status(rx_ring, rx_desc);
1712                         I40E_RX_INCREMENT(rx_ring, i);
1713                         continue;
1714                 }
1715                 rx_bi = &rx_ring->rx_bi[i];
1716                 skb = rx_bi->skb;
1717                 prefetch(skb->data);
1718
1719                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1720                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1721
1722                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1723                            I40E_RXD_QW1_ERROR_SHIFT;
1724                 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1725
1726                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1727                            I40E_RXD_QW1_PTYPE_SHIFT;
1728                 rx_bi->skb = NULL;
1729                 cleaned_count++;
1730
1731                 /* Get the header and possibly the whole packet
1732                  * If this is an skb from previous receive dma will be 0
1733                  */
1734                 skb_put(skb, rx_packet_len);
1735                 dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
1736                                  DMA_FROM_DEVICE);
1737                 rx_bi->dma = 0;
1738
1739                 I40E_RX_INCREMENT(rx_ring, i);
1740
1741                 if (unlikely(
1742                     !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1743                         rx_ring->rx_stats.non_eop_descs++;
1744                         continue;
1745                 }
1746
1747                 /* ERR_MASK will only have valid bits if EOP set */
1748                 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1749                         dev_kfree_skb_any(skb);
1750                         continue;
1751                 }
1752
1753                 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1754                 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1755                         i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1756                                            I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1757                                            I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1758                         rx_ring->last_rx_timestamp = jiffies;
1759                 }
1760
1761                 /* probably a little skewed due to removing CRC */
1762                 total_rx_bytes += skb->len;
1763                 total_rx_packets++;
1764
1765                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1766
1767                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1768
1769                 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1770                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1771                          : 0;
1772 #ifdef I40E_FCOE
1773                 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1774                         dev_kfree_skb_any(skb);
1775                         continue;
1776                 }
1777 #endif
1778                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1779
1780                 rx_desc->wb.qword1.status_error_len = 0;
1781         } while (likely(total_rx_packets < budget));
1782
1783         u64_stats_update_begin(&rx_ring->syncp);
1784         rx_ring->stats.packets += total_rx_packets;
1785         rx_ring->stats.bytes += total_rx_bytes;
1786         u64_stats_update_end(&rx_ring->syncp);
1787         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1788         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1789
1790         return total_rx_packets;
1791 }
1792
1793 static u32 i40e_buildreg_itr(const int type, const u16 itr)
1794 {
1795         u32 val;
1796
1797         val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1798               I40E_PFINT_DYN_CTLN_CLEARPBA_MASK |
1799               (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
1800               (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);
1801
1802         return val;
1803 }
1804
1805 /* a small macro to shorten up some long lines */
1806 #define INTREG I40E_PFINT_DYN_CTLN
1807
1808 /**
1809  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1810  * @vsi: the VSI we care about
1811  * @q_vector: q_vector for which itr is being updated and interrupt enabled
1812  *
1813  **/
1814 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1815                                           struct i40e_q_vector *q_vector)
1816 {
1817         struct i40e_hw *hw = &vsi->back->hw;
1818         bool rx = false, tx = false;
1819         u32 rxval, txval;
1820         int vector;
1821
1822         vector = (q_vector->v_idx + vsi->base_vector);
1823
1824         /* avoid dynamic calculation if in countdown mode OR if
1825          * all dynamic is disabled
1826          */
1827         rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1828
1829         if (q_vector->itr_countdown > 0 ||
1830             (!ITR_IS_DYNAMIC(vsi->rx_itr_setting) &&
1831              !ITR_IS_DYNAMIC(vsi->tx_itr_setting))) {
1832                 goto enable_int;
1833         }
1834
1835         if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) {
1836                 rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1837                 rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1838         }
1839
1840         if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) {
1841                 tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1842                 txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1843         }
1844
1845         if (rx || tx) {
1846                 /* get the higher of the two ITR adjustments and
1847                  * use the same value for both ITR registers
1848                  * when in adaptive mode (Rx and/or Tx)
1849                  */
1850                 u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1851
1852                 q_vector->tx.itr = q_vector->rx.itr = itr;
1853                 txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1854                 tx = true;
1855                 rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1856                 rx = true;
1857         }
1858
1859         /* only need to enable the interrupt once, but need
1860          * to possibly update both ITR values
1861          */
1862         if (rx) {
1863                 /* set the INTENA_MSK_MASK so that this first write
1864                  * won't actually enable the interrupt, instead just
1865                  * updating the ITR (it's bit 31 PF and VF)
1866                  */
1867                 rxval |= BIT(31);
1868                 /* don't check _DOWN because interrupt isn't being enabled */
1869                 wr32(hw, INTREG(vector - 1), rxval);
1870         }
1871
1872 enable_int:
1873         if (!test_bit(__I40E_DOWN, &vsi->state))
1874                 wr32(hw, INTREG(vector - 1), txval);
1875
1876         if (q_vector->itr_countdown)
1877                 q_vector->itr_countdown--;
1878         else
1879                 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1880
1881 }
1882
1883 /**
1884  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
1885  * @napi: napi struct with our devices info in it
1886  * @budget: amount of work driver is allowed to do this pass, in packets
1887  *
1888  * This function will clean all queues associated with a q_vector.
1889  *
1890  * Returns the amount of work done
1891  **/
1892 int i40e_napi_poll(struct napi_struct *napi, int budget)
1893 {
1894         struct i40e_q_vector *q_vector =
1895                                container_of(napi, struct i40e_q_vector, napi);
1896         struct i40e_vsi *vsi = q_vector->vsi;
1897         struct i40e_ring *ring;
1898         bool clean_complete = true;
1899         bool arm_wb = false;
1900         int budget_per_ring;
1901         int work_done = 0;
1902
1903         if (test_bit(__I40E_DOWN, &vsi->state)) {
1904                 napi_complete(napi);
1905                 return 0;
1906         }
1907
1908         /* Since the actual Tx work is minimal, we can give the Tx a larger
1909          * budget and be more aggressive about cleaning up the Tx descriptors.
1910          */
1911         i40e_for_each_ring(ring, q_vector->tx) {
1912                 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
1913                 arm_wb |= ring->arm_wb;
1914                 ring->arm_wb = false;
1915         }
1916
1917         /* Handle case where we are called by netpoll with a budget of 0 */
1918         if (budget <= 0)
1919                 goto tx_only;
1920
1921         /* We attempt to distribute budget to each Rx queue fairly, but don't
1922          * allow the budget to go below 1 because that would exit polling early.
1923          */
1924         budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1925
1926         i40e_for_each_ring(ring, q_vector->rx) {
1927                 int cleaned;
1928
1929                 if (ring_is_ps_enabled(ring))
1930                         cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
1931                 else
1932                         cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
1933
1934                 work_done += cleaned;
1935                 /* if we didn't clean as many as budgeted, we must be done */
1936                 clean_complete &= (budget_per_ring != cleaned);
1937         }
1938
1939         /* If work not completed, return budget and polling will return */
1940         if (!clean_complete) {
1941 tx_only:
1942                 if (arm_wb)
1943                         i40e_force_wb(vsi, q_vector);
1944                 return budget;
1945         }
1946
1947         if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
1948                 q_vector->arm_wb_state = false;
1949
1950         /* Work is done so exit the polling mode and re-enable the interrupt */
1951         napi_complete_done(napi, work_done);
1952         if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1953                 i40e_update_enable_itr(vsi, q_vector);
1954         } else { /* Legacy mode */
1955                 struct i40e_hw *hw = &vsi->back->hw;
1956                 /* We re-enable the queue 0 cause, but
1957                  * don't worry about dynamic_enable
1958                  * because we left it on for the other
1959                  * possible interrupts during napi
1960                  */
1961                 u32 qval = rd32(hw, I40E_QINT_RQCTL(0)) |
1962                            I40E_QINT_RQCTL_CAUSE_ENA_MASK;
1963
1964                 wr32(hw, I40E_QINT_RQCTL(0), qval);
1965                 qval = rd32(hw, I40E_QINT_TQCTL(0)) |
1966                        I40E_QINT_TQCTL_CAUSE_ENA_MASK;
1967                 wr32(hw, I40E_QINT_TQCTL(0), qval);
1968                 i40e_irq_dynamic_enable_icr0(vsi->back);
1969         }
1970         return 0;
1971 }
1972
1973 /**
1974  * i40e_atr - Add a Flow Director ATR filter
1975  * @tx_ring:  ring to add programming descriptor to
1976  * @skb:      send buffer
1977  * @tx_flags: send tx flags
1978  * @protocol: wire protocol
1979  **/
1980 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
1981                      u32 tx_flags, __be16 protocol)
1982 {
1983         struct i40e_filter_program_desc *fdir_desc;
1984         struct i40e_pf *pf = tx_ring->vsi->back;
1985         union {
1986                 unsigned char *network;
1987                 struct iphdr *ipv4;
1988                 struct ipv6hdr *ipv6;
1989         } hdr;
1990         struct tcphdr *th;
1991         unsigned int hlen;
1992         u32 flex_ptype, dtype_cmd;
1993         u16 i;
1994
1995         /* make sure ATR is enabled */
1996         if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
1997                 return;
1998
1999         if ((pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
2000                 return;
2001
2002         /* if sampling is disabled do nothing */
2003         if (!tx_ring->atr_sample_rate)
2004                 return;
2005
2006         if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2007                 return;
2008
2009         if (!(tx_flags & I40E_TX_FLAGS_VXLAN_TUNNEL)) {
2010                 /* snag network header to get L4 type and address */
2011                 hdr.network = skb_network_header(skb);
2012
2013                 /* Currently only IPv4/IPv6 with TCP is supported
2014                  * access ihl as u8 to avoid unaligned access on ia64
2015                  */
2016                 if (tx_flags & I40E_TX_FLAGS_IPV4)
2017                         hlen = (hdr.network[0] & 0x0F) << 2;
2018                 else if (protocol == htons(ETH_P_IPV6))
2019                         hlen = sizeof(struct ipv6hdr);
2020                 else
2021                         return;
2022         } else {
2023                 hdr.network = skb_inner_network_header(skb);
2024                 hlen = skb_inner_network_header_len(skb);
2025         }
2026
2027         /* Currently only IPv4/IPv6 with TCP is supported
2028          * Note: tx_flags gets modified to reflect inner protocols in
2029          * tx_enable_csum function if encap is enabled.
2030          */
2031         if ((tx_flags & I40E_TX_FLAGS_IPV4) &&
2032             (hdr.ipv4->protocol != IPPROTO_TCP))
2033                 return;
2034         else if ((tx_flags & I40E_TX_FLAGS_IPV6) &&
2035                  (hdr.ipv6->nexthdr != IPPROTO_TCP))
2036                 return;
2037
2038         th = (struct tcphdr *)(hdr.network + hlen);
2039
2040         /* Due to lack of space, no more new filters can be programmed */
2041         if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
2042                 return;
2043         if (pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) {
2044                 /* HW ATR eviction will take care of removing filters on FIN
2045                  * and RST packets.
2046                  */
2047                 if (th->fin || th->rst)
2048                         return;
2049         }
2050
2051         tx_ring->atr_count++;
2052
2053         /* sample on all syn/fin/rst packets or once every atr sample rate */
2054         if (!th->fin &&
2055             !th->syn &&
2056             !th->rst &&
2057             (tx_ring->atr_count < tx_ring->atr_sample_rate))
2058                 return;
2059
2060         tx_ring->atr_count = 0;
2061
2062         /* grab the next descriptor */
2063         i = tx_ring->next_to_use;
2064         fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2065
2066         i++;
2067         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2068
2069         flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2070                       I40E_TXD_FLTR_QW0_QINDEX_MASK;
2071         flex_ptype |= (protocol == htons(ETH_P_IP)) ?
2072                       (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2073                        I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2074                       (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2075                        I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2076
2077         flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2078
2079         dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2080
2081         dtype_cmd |= (th->fin || th->rst) ?
2082                      (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2083                       I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2084                      (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2085                       I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2086
2087         dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2088                      I40E_TXD_FLTR_QW1_DEST_SHIFT;
2089
2090         dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2091                      I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2092
2093         dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2094         if (!(tx_flags & I40E_TX_FLAGS_VXLAN_TUNNEL))
2095                 dtype_cmd |=
2096                         ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2097                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2098                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2099         else
2100                 dtype_cmd |=
2101                         ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2102                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2103                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2104
2105         if (pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE)
2106                 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2107
2108         fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2109         fdir_desc->rsvd = cpu_to_le32(0);
2110         fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2111         fdir_desc->fd_id = cpu_to_le32(0);
2112 }
2113
2114 /**
2115  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2116  * @skb:     send buffer
2117  * @tx_ring: ring to send buffer on
2118  * @flags:   the tx flags to be set
2119  *
2120  * Checks the skb and set up correspondingly several generic transmit flags
2121  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2122  *
2123  * Returns error code indicate the frame should be dropped upon error and the
2124  * otherwise  returns 0 to indicate the flags has been set properly.
2125  **/
2126 #ifdef I40E_FCOE
2127 inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2128                                       struct i40e_ring *tx_ring,
2129                                       u32 *flags)
2130 #else
2131 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2132                                              struct i40e_ring *tx_ring,
2133                                              u32 *flags)
2134 #endif
2135 {
2136         __be16 protocol = skb->protocol;
2137         u32  tx_flags = 0;
2138
2139         if (protocol == htons(ETH_P_8021Q) &&
2140             !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2141                 /* When HW VLAN acceleration is turned off by the user the
2142                  * stack sets the protocol to 8021q so that the driver
2143                  * can take any steps required to support the SW only
2144                  * VLAN handling.  In our case the driver doesn't need
2145                  * to take any further steps so just set the protocol
2146                  * to the encapsulated ethertype.
2147                  */
2148                 skb->protocol = vlan_get_protocol(skb);
2149                 goto out;
2150         }
2151
2152         /* if we have a HW VLAN tag being added, default to the HW one */
2153         if (skb_vlan_tag_present(skb)) {
2154                 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2155                 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2156         /* else if it is a SW VLAN, check the next protocol and store the tag */
2157         } else if (protocol == htons(ETH_P_8021Q)) {
2158                 struct vlan_hdr *vhdr, _vhdr;
2159
2160                 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2161                 if (!vhdr)
2162                         return -EINVAL;
2163
2164                 protocol = vhdr->h_vlan_encapsulated_proto;
2165                 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2166                 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2167         }
2168
2169         if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2170                 goto out;
2171
2172         /* Insert 802.1p priority into VLAN header */
2173         if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2174             (skb->priority != TC_PRIO_CONTROL)) {
2175                 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2176                 tx_flags |= (skb->priority & 0x7) <<
2177                                 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2178                 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2179                         struct vlan_ethhdr *vhdr;
2180                         int rc;
2181
2182                         rc = skb_cow_head(skb, 0);
2183                         if (rc < 0)
2184                                 return rc;
2185                         vhdr = (struct vlan_ethhdr *)skb->data;
2186                         vhdr->h_vlan_TCI = htons(tx_flags >>
2187                                                  I40E_TX_FLAGS_VLAN_SHIFT);
2188                 } else {
2189                         tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2190                 }
2191         }
2192
2193 out:
2194         *flags = tx_flags;
2195         return 0;
2196 }
2197
2198 /**
2199  * i40e_tso - set up the tso context descriptor
2200  * @tx_ring:  ptr to the ring to send
2201  * @skb:      ptr to the skb we're sending
2202  * @hdr_len:  ptr to the size of the packet header
2203  * @cd_type_cmd_tso_mss: ptr to u64 object
2204  * @cd_tunneling: ptr to context descriptor bits
2205  *
2206  * Returns 0 if no TSO can happen, 1 if tso is going, or error
2207  **/
2208 static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
2209                     u8 *hdr_len, u64 *cd_type_cmd_tso_mss,
2210                     u32 *cd_tunneling)
2211 {
2212         u32 cd_cmd, cd_tso_len, cd_mss;
2213         struct ipv6hdr *ipv6h;
2214         struct tcphdr *tcph;
2215         struct iphdr *iph;
2216         u32 l4len;
2217         int err;
2218
2219         if (!skb_is_gso(skb))
2220                 return 0;
2221
2222         err = skb_cow_head(skb, 0);
2223         if (err < 0)
2224                 return err;
2225
2226         iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
2227         ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
2228
2229         if (iph->version == 4) {
2230                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
2231                 iph->tot_len = 0;
2232                 iph->check = 0;
2233                 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
2234                                                  0, IPPROTO_TCP, 0);
2235         } else if (ipv6h->version == 6) {
2236                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
2237                 ipv6h->payload_len = 0;
2238                 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
2239                                                0, IPPROTO_TCP, 0);
2240         }
2241
2242         l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
2243         *hdr_len = (skb->encapsulation
2244                     ? (skb_inner_transport_header(skb) - skb->data)
2245                     : skb_transport_offset(skb)) + l4len;
2246
2247         /* find the field values */
2248         cd_cmd = I40E_TX_CTX_DESC_TSO;
2249         cd_tso_len = skb->len - *hdr_len;
2250         cd_mss = skb_shinfo(skb)->gso_size;
2251         *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2252                                 ((u64)cd_tso_len <<
2253                                  I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2254                                 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2255         return 1;
2256 }
2257
2258 /**
2259  * i40e_tsyn - set up the tsyn context descriptor
2260  * @tx_ring:  ptr to the ring to send
2261  * @skb:      ptr to the skb we're sending
2262  * @tx_flags: the collected send information
2263  * @cd_type_cmd_tso_mss: ptr to u64 object
2264  *
2265  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2266  **/
2267 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2268                      u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2269 {
2270         struct i40e_pf *pf;
2271
2272         if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2273                 return 0;
2274
2275         /* Tx timestamps cannot be sampled when doing TSO */
2276         if (tx_flags & I40E_TX_FLAGS_TSO)
2277                 return 0;
2278
2279         /* only timestamp the outbound packet if the user has requested it and
2280          * we are not already transmitting a packet to be timestamped
2281          */
2282         pf = i40e_netdev_to_pf(tx_ring->netdev);
2283         if (!(pf->flags & I40E_FLAG_PTP))
2284                 return 0;
2285
2286         if (pf->ptp_tx &&
2287             !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
2288                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2289                 pf->ptp_tx_skb = skb_get(skb);
2290         } else {
2291                 return 0;
2292         }
2293
2294         *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
2295                                 I40E_TXD_CTX_QW1_CMD_SHIFT;
2296
2297         return 1;
2298 }
2299
2300 /**
2301  * i40e_tx_enable_csum - Enable Tx checksum offloads
2302  * @skb: send buffer
2303  * @tx_flags: pointer to Tx flags currently set
2304  * @td_cmd: Tx descriptor command bits to set
2305  * @td_offset: Tx descriptor header offsets to set
2306  * @tx_ring: Tx descriptor ring
2307  * @cd_tunneling: ptr to context desc bits
2308  **/
2309 static void i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
2310                                 u32 *td_cmd, u32 *td_offset,
2311                                 struct i40e_ring *tx_ring,
2312                                 u32 *cd_tunneling)
2313 {
2314         struct ipv6hdr *this_ipv6_hdr;
2315         unsigned int this_tcp_hdrlen;
2316         struct iphdr *this_ip_hdr;
2317         u32 network_hdr_len;
2318         u8 l4_hdr = 0;
2319         struct udphdr *oudph;
2320         struct iphdr *oiph;
2321         u32 l4_tunnel = 0;
2322
2323         if (skb->encapsulation) {
2324                 switch (ip_hdr(skb)->protocol) {
2325                 case IPPROTO_UDP:
2326                         oudph = udp_hdr(skb);
2327                         oiph = ip_hdr(skb);
2328                         l4_tunnel = I40E_TXD_CTX_UDP_TUNNELING;
2329                         *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
2330                         break;
2331                 case IPPROTO_GRE:
2332                         l4_tunnel = I40E_TXD_CTX_GRE_TUNNELING;
2333                         break;
2334                 default:
2335                         return;
2336                 }
2337                 network_hdr_len = skb_inner_network_header_len(skb);
2338                 this_ip_hdr = inner_ip_hdr(skb);
2339                 this_ipv6_hdr = inner_ipv6_hdr(skb);
2340                 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
2341
2342                 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2343                         if (*tx_flags & I40E_TX_FLAGS_TSO) {
2344                                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
2345                                 ip_hdr(skb)->check = 0;
2346                         } else {
2347                                 *cd_tunneling |=
2348                                          I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2349                         }
2350                 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2351                         *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
2352                         if (*tx_flags & I40E_TX_FLAGS_TSO)
2353                                 ip_hdr(skb)->check = 0;
2354                 }
2355
2356                 /* Now set the ctx descriptor fields */
2357                 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
2358                                    I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT      |
2359                                    l4_tunnel                             |
2360                                    ((skb_inner_network_offset(skb) -
2361                                         skb_transport_offset(skb)) >> 1) <<
2362                                    I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2363                 if (this_ip_hdr->version == 6) {
2364                         *tx_flags &= ~I40E_TX_FLAGS_IPV4;
2365                         *tx_flags |= I40E_TX_FLAGS_IPV6;
2366                 }
2367                 if ((tx_ring->flags & I40E_TXR_FLAGS_OUTER_UDP_CSUM) &&
2368                     (l4_tunnel == I40E_TXD_CTX_UDP_TUNNELING)        &&
2369                     (*cd_tunneling & I40E_TXD_CTX_QW0_EXT_IP_MASK)) {
2370                         oudph->check = ~csum_tcpudp_magic(oiph->saddr,
2371                                         oiph->daddr,
2372                                         (skb->len - skb_transport_offset(skb)),
2373                                         IPPROTO_UDP, 0);
2374                         *cd_tunneling |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
2375                 }
2376         } else {
2377                 network_hdr_len = skb_network_header_len(skb);
2378                 this_ip_hdr = ip_hdr(skb);
2379                 this_ipv6_hdr = ipv6_hdr(skb);
2380                 this_tcp_hdrlen = tcp_hdrlen(skb);
2381         }
2382
2383         /* Enable IP checksum offloads */
2384         if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2385                 l4_hdr = this_ip_hdr->protocol;
2386                 /* the stack computes the IP header already, the only time we
2387                  * need the hardware to recompute it is in the case of TSO.
2388                  */
2389                 if (*tx_flags & I40E_TX_FLAGS_TSO) {
2390                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
2391                         this_ip_hdr->check = 0;
2392                 } else {
2393                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
2394                 }
2395                 /* Now set the td_offset for IP header length */
2396                 *td_offset = (network_hdr_len >> 2) <<
2397                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2398         } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2399                 l4_hdr = this_ipv6_hdr->nexthdr;
2400                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2401                 /* Now set the td_offset for IP header length */
2402                 *td_offset = (network_hdr_len >> 2) <<
2403                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2404         }
2405         /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
2406         *td_offset |= (skb_network_offset(skb) >> 1) <<
2407                        I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2408
2409         /* Enable L4 checksum offloads */
2410         switch (l4_hdr) {
2411         case IPPROTO_TCP:
2412                 /* enable checksum offloads */
2413                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2414                 *td_offset |= (this_tcp_hdrlen >> 2) <<
2415                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2416                 break;
2417         case IPPROTO_SCTP:
2418                 /* enable SCTP checksum offload */
2419                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2420                 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
2421                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2422                 break;
2423         case IPPROTO_UDP:
2424                 /* enable UDP checksum offload */
2425                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2426                 *td_offset |= (sizeof(struct udphdr) >> 2) <<
2427                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2428                 break;
2429         default:
2430                 break;
2431         }
2432 }
2433
2434 /**
2435  * i40e_create_tx_ctx Build the Tx context descriptor
2436  * @tx_ring:  ring to create the descriptor on
2437  * @cd_type_cmd_tso_mss: Quad Word 1
2438  * @cd_tunneling: Quad Word 0 - bits 0-31
2439  * @cd_l2tag2: Quad Word 0 - bits 32-63
2440  **/
2441 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2442                                const u64 cd_type_cmd_tso_mss,
2443                                const u32 cd_tunneling, const u32 cd_l2tag2)
2444 {
2445         struct i40e_tx_context_desc *context_desc;
2446         int i = tx_ring->next_to_use;
2447
2448         if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2449             !cd_tunneling && !cd_l2tag2)
2450                 return;
2451
2452         /* grab the next descriptor */
2453         context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2454
2455         i++;
2456         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2457
2458         /* cpu_to_le32 and assign to struct fields */
2459         context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2460         context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2461         context_desc->rsvd = cpu_to_le16(0);
2462         context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2463 }
2464
2465 /**
2466  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2467  * @tx_ring: the ring to be checked
2468  * @size:    the size buffer we want to assure is available
2469  *
2470  * Returns -EBUSY if a stop is needed, else 0
2471  **/
2472 static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2473 {
2474         netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2475         /* Memory barrier before checking head and tail */
2476         smp_mb();
2477
2478         /* Check again in a case another CPU has just made room available. */
2479         if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2480                 return -EBUSY;
2481
2482         /* A reprieve! - use start_queue because it doesn't call schedule */
2483         netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2484         ++tx_ring->tx_stats.restart_queue;
2485         return 0;
2486 }
2487
2488 /**
2489  * i40e_maybe_stop_tx - 1st level check for tx stop conditions
2490  * @tx_ring: the ring to be checked
2491  * @size:    the size buffer we want to assure is available
2492  *
2493  * Returns 0 if stop is not needed
2494  **/
2495 #ifdef I40E_FCOE
2496 inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2497 #else
2498 static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2499 #endif
2500 {
2501         if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
2502                 return 0;
2503         return __i40e_maybe_stop_tx(tx_ring, size);
2504 }
2505
2506 /**
2507  * i40e_chk_linearize - Check if there are more than 8 fragments per packet
2508  * @skb:      send buffer
2509  * @tx_flags: collected send information
2510  *
2511  * Note: Our HW can't scatter-gather more than 8 fragments to build
2512  * a packet on the wire and so we need to figure out the cases where we
2513  * need to linearize the skb.
2514  **/
2515 static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags)
2516 {
2517         struct skb_frag_struct *frag;
2518         bool linearize = false;
2519         unsigned int size = 0;
2520         u16 num_frags;
2521         u16 gso_segs;
2522
2523         num_frags = skb_shinfo(skb)->nr_frags;
2524         gso_segs = skb_shinfo(skb)->gso_segs;
2525
2526         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) {
2527                 u16 j = 0;
2528
2529                 if (num_frags < (I40E_MAX_BUFFER_TXD))
2530                         goto linearize_chk_done;
2531                 /* try the simple math, if we have too many frags per segment */
2532                 if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) >
2533                     I40E_MAX_BUFFER_TXD) {
2534                         linearize = true;
2535                         goto linearize_chk_done;
2536                 }
2537                 frag = &skb_shinfo(skb)->frags[0];
2538                 /* we might still have more fragments per segment */
2539                 do {
2540                         size += skb_frag_size(frag);
2541                         frag++; j++;
2542                         if ((size >= skb_shinfo(skb)->gso_size) &&
2543                             (j < I40E_MAX_BUFFER_TXD)) {
2544                                 size = (size % skb_shinfo(skb)->gso_size);
2545                                 j = (size) ? 1 : 0;
2546                         }
2547                         if (j == I40E_MAX_BUFFER_TXD) {
2548                                 linearize = true;
2549                                 break;
2550                         }
2551                         num_frags--;
2552                 } while (num_frags);
2553         } else {
2554                 if (num_frags >= I40E_MAX_BUFFER_TXD)
2555                         linearize = true;
2556         }
2557
2558 linearize_chk_done:
2559         return linearize;
2560 }
2561
2562 /**
2563  * i40e_tx_map - Build the Tx descriptor
2564  * @tx_ring:  ring to send buffer on
2565  * @skb:      send buffer
2566  * @first:    first buffer info buffer to use
2567  * @tx_flags: collected send information
2568  * @hdr_len:  size of the packet header
2569  * @td_cmd:   the command field in the descriptor
2570  * @td_offset: offset for checksum or crc
2571  **/
2572 #ifdef I40E_FCOE
2573 inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2574                         struct i40e_tx_buffer *first, u32 tx_flags,
2575                         const u8 hdr_len, u32 td_cmd, u32 td_offset)
2576 #else
2577 static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2578                                struct i40e_tx_buffer *first, u32 tx_flags,
2579                                const u8 hdr_len, u32 td_cmd, u32 td_offset)
2580 #endif
2581 {
2582         unsigned int data_len = skb->data_len;
2583         unsigned int size = skb_headlen(skb);
2584         struct skb_frag_struct *frag;
2585         struct i40e_tx_buffer *tx_bi;
2586         struct i40e_tx_desc *tx_desc;
2587         u16 i = tx_ring->next_to_use;
2588         u32 td_tag = 0;
2589         dma_addr_t dma;
2590         u16 gso_segs;
2591         u16 desc_count = 0;
2592         bool tail_bump = true;
2593         bool do_rs = false;
2594
2595         if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2596                 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2597                 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2598                          I40E_TX_FLAGS_VLAN_SHIFT;
2599         }
2600
2601         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
2602                 gso_segs = skb_shinfo(skb)->gso_segs;
2603         else
2604                 gso_segs = 1;
2605
2606         /* multiply data chunks by size of headers */
2607         first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
2608         first->gso_segs = gso_segs;
2609         first->skb = skb;
2610         first->tx_flags = tx_flags;
2611
2612         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2613
2614         tx_desc = I40E_TX_DESC(tx_ring, i);
2615         tx_bi = first;
2616
2617         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2618                 if (dma_mapping_error(tx_ring->dev, dma))
2619                         goto dma_error;
2620
2621                 /* record length, and DMA address */
2622                 dma_unmap_len_set(tx_bi, len, size);
2623                 dma_unmap_addr_set(tx_bi, dma, dma);
2624
2625                 tx_desc->buffer_addr = cpu_to_le64(dma);
2626
2627                 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2628                         tx_desc->cmd_type_offset_bsz =
2629                                 build_ctob(td_cmd, td_offset,
2630                                            I40E_MAX_DATA_PER_TXD, td_tag);
2631
2632                         tx_desc++;
2633                         i++;
2634                         desc_count++;
2635
2636                         if (i == tx_ring->count) {
2637                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
2638                                 i = 0;
2639                         }
2640
2641                         dma += I40E_MAX_DATA_PER_TXD;
2642                         size -= I40E_MAX_DATA_PER_TXD;
2643
2644                         tx_desc->buffer_addr = cpu_to_le64(dma);
2645                 }
2646
2647                 if (likely(!data_len))
2648                         break;
2649
2650                 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2651                                                           size, td_tag);
2652
2653                 tx_desc++;
2654                 i++;
2655                 desc_count++;
2656
2657                 if (i == tx_ring->count) {
2658                         tx_desc = I40E_TX_DESC(tx_ring, 0);
2659                         i = 0;
2660                 }
2661
2662                 size = skb_frag_size(frag);
2663                 data_len -= size;
2664
2665                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2666                                        DMA_TO_DEVICE);
2667
2668                 tx_bi = &tx_ring->tx_bi[i];
2669         }
2670
2671         /* set next_to_watch value indicating a packet is present */
2672         first->next_to_watch = tx_desc;
2673
2674         i++;
2675         if (i == tx_ring->count)
2676                 i = 0;
2677
2678         tx_ring->next_to_use = i;
2679
2680         netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
2681                                                  tx_ring->queue_index),
2682                                                  first->bytecount);
2683         i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2684
2685         /* Algorithm to optimize tail and RS bit setting:
2686          * if xmit_more is supported
2687          *      if xmit_more is true
2688          *              do not update tail and do not mark RS bit.
2689          *      if xmit_more is false and last xmit_more was false
2690          *              if every packet spanned less than 4 desc
2691          *                      then set RS bit on 4th packet and update tail
2692          *                      on every packet
2693          *              else
2694          *                      update tail and set RS bit on every packet.
2695          *      if xmit_more is false and last_xmit_more was true
2696          *              update tail and set RS bit.
2697          *
2698          * Optimization: wmb to be issued only in case of tail update.
2699          * Also optimize the Descriptor WB path for RS bit with the same
2700          * algorithm.
2701          *
2702          * Note: If there are less than 4 packets
2703          * pending and interrupts were disabled the service task will
2704          * trigger a force WB.
2705          */
2706         if (skb->xmit_more  &&
2707             !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2708                                                     tx_ring->queue_index))) {
2709                 tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2710                 tail_bump = false;
2711         } else if (!skb->xmit_more &&
2712                    !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2713                                                        tx_ring->queue_index)) &&
2714                    (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
2715                    (tx_ring->packet_stride < WB_STRIDE) &&
2716                    (desc_count < WB_STRIDE)) {
2717                 tx_ring->packet_stride++;
2718         } else {
2719                 tx_ring->packet_stride = 0;
2720                 tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2721                 do_rs = true;
2722         }
2723         if (do_rs)
2724                 tx_ring->packet_stride = 0;
2725
2726         tx_desc->cmd_type_offset_bsz =
2727                         build_ctob(td_cmd, td_offset, size, td_tag) |
2728                         cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
2729                                                   I40E_TX_DESC_CMD_EOP) <<
2730                                                   I40E_TXD_QW1_CMD_SHIFT);
2731
2732         /* notify HW of packet */
2733         if (!tail_bump)
2734                 prefetchw(tx_desc + 1);
2735
2736         if (tail_bump) {
2737                 /* Force memory writes to complete before letting h/w
2738                  * know there are new descriptors to fetch.  (Only
2739                  * applicable for weak-ordered memory model archs,
2740                  * such as IA-64).
2741                  */
2742                 wmb();
2743                 writel(i, tx_ring->tail);
2744         }
2745
2746         return;
2747
2748 dma_error:
2749         dev_info(tx_ring->dev, "TX DMA map failed\n");
2750
2751         /* clear dma mappings for failed tx_bi map */
2752         for (;;) {
2753                 tx_bi = &tx_ring->tx_bi[i];
2754                 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2755                 if (tx_bi == first)
2756                         break;
2757                 if (i == 0)
2758                         i = tx_ring->count;
2759                 i--;
2760         }
2761
2762         tx_ring->next_to_use = i;
2763 }
2764
2765 /**
2766  * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
2767  * @skb:     send buffer
2768  * @tx_ring: ring to send buffer on
2769  *
2770  * Returns number of data descriptors needed for this skb. Returns 0 to indicate
2771  * there is not enough descriptors available in this ring since we need at least
2772  * one descriptor.
2773  **/
2774 #ifdef I40E_FCOE
2775 inline int i40e_xmit_descriptor_count(struct sk_buff *skb,
2776                                       struct i40e_ring *tx_ring)
2777 #else
2778 static inline int i40e_xmit_descriptor_count(struct sk_buff *skb,
2779                                              struct i40e_ring *tx_ring)
2780 #endif
2781 {
2782         unsigned int f;
2783         int count = 0;
2784
2785         /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2786          *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2787          *       + 4 desc gap to avoid the cache line where head is,
2788          *       + 1 desc for context descriptor,
2789          * otherwise try next time
2790          */
2791         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
2792                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
2793
2794         count += TXD_USE_COUNT(skb_headlen(skb));
2795         if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2796                 tx_ring->tx_stats.tx_busy++;
2797                 return 0;
2798         }
2799         return count;
2800 }
2801
2802 /**
2803  * i40e_xmit_frame_ring - Sends buffer on Tx ring
2804  * @skb:     send buffer
2805  * @tx_ring: ring to send buffer on
2806  *
2807  * Returns NETDEV_TX_OK if sent, else an error code
2808  **/
2809 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2810                                         struct i40e_ring *tx_ring)
2811 {
2812         u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2813         u32 cd_tunneling = 0, cd_l2tag2 = 0;
2814         struct i40e_tx_buffer *first;
2815         u32 td_offset = 0;
2816         u32 tx_flags = 0;
2817         __be16 protocol;
2818         u32 td_cmd = 0;
2819         u8 hdr_len = 0;
2820         int tsyn;
2821         int tso;
2822
2823         if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
2824                 return NETDEV_TX_BUSY;
2825
2826         /* prepare the xmit flags */
2827         if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2828                 goto out_drop;
2829
2830         /* obtain protocol of skb */
2831         protocol = vlan_get_protocol(skb);
2832
2833         /* record the location of the first descriptor for this packet */
2834         first = &tx_ring->tx_bi[tx_ring->next_to_use];
2835
2836         /* setup IPv4/IPv6 offloads */
2837         if (protocol == htons(ETH_P_IP))
2838                 tx_flags |= I40E_TX_FLAGS_IPV4;
2839         else if (protocol == htons(ETH_P_IPV6))
2840                 tx_flags |= I40E_TX_FLAGS_IPV6;
2841
2842         tso = i40e_tso(tx_ring, skb, &hdr_len,
2843                        &cd_type_cmd_tso_mss, &cd_tunneling);
2844
2845         if (tso < 0)
2846                 goto out_drop;
2847         else if (tso)
2848                 tx_flags |= I40E_TX_FLAGS_TSO;
2849
2850         tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
2851
2852         if (tsyn)
2853                 tx_flags |= I40E_TX_FLAGS_TSYN;
2854
2855         if (i40e_chk_linearize(skb, tx_flags)) {
2856                 if (skb_linearize(skb))
2857                         goto out_drop;
2858                 tx_ring->tx_stats.tx_linearize++;
2859         }
2860         skb_tx_timestamp(skb);
2861
2862         /* always enable CRC insertion offload */
2863         td_cmd |= I40E_TX_DESC_CMD_ICRC;
2864
2865         /* Always offload the checksum, since it's in the data descriptor */
2866         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2867                 tx_flags |= I40E_TX_FLAGS_CSUM;
2868
2869                 i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2870                                     tx_ring, &cd_tunneling);
2871         }
2872
2873         i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2874                            cd_tunneling, cd_l2tag2);
2875
2876         /* Add Flow Director ATR if it's enabled.
2877          *
2878          * NOTE: this must always be directly before the data descriptor.
2879          */
2880         i40e_atr(tx_ring, skb, tx_flags, protocol);
2881
2882         i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2883                     td_cmd, td_offset);
2884
2885         return NETDEV_TX_OK;
2886
2887 out_drop:
2888         dev_kfree_skb_any(skb);
2889         return NETDEV_TX_OK;
2890 }
2891
2892 /**
2893  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2894  * @skb:    send buffer
2895  * @netdev: network interface device structure
2896  *
2897  * Returns NETDEV_TX_OK if sent, else an error code
2898  **/
2899 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2900 {
2901         struct i40e_netdev_priv *np = netdev_priv(netdev);
2902         struct i40e_vsi *vsi = np->vsi;
2903         struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
2904
2905         /* hardware can't handle really short frames, hardware padding works
2906          * beyond this point
2907          */
2908         if (skb_put_padto(skb, I40E_MIN_TX_LEN))
2909                 return NETDEV_TX_OK;
2910
2911         return i40e_xmit_frame_ring(skb, tx_ring);
2912 }