Kernel bump from 4.1.3-rt to 4.1.7-rt.
[kvmfornfv.git] / kernel / drivers / net / ethernet / intel / e1000e / netdev.c
1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/init.h>
27 #include <linux/pci.h>
28 #include <linux/vmalloc.h>
29 #include <linux/pagemap.h>
30 #include <linux/delay.h>
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/tcp.h>
34 #include <linux/ipv6.h>
35 #include <linux/slab.h>
36 #include <net/checksum.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/cpu.h>
41 #include <linux/smp.h>
42 #include <linux/pm_qos.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/aer.h>
45 #include <linux/prefetch.h>
46
47 #include "e1000.h"
48
49 #define DRV_EXTRAVERSION "-k"
50
51 #define DRV_VERSION "2.3.2" DRV_EXTRAVERSION
52 char e1000e_driver_name[] = "e1000e";
53 const char e1000e_driver_version[] = DRV_VERSION;
54
55 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
56 static int debug = -1;
57 module_param(debug, int, 0);
58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59
60 static const struct e1000_info *e1000_info_tbl[] = {
61         [board_82571]           = &e1000_82571_info,
62         [board_82572]           = &e1000_82572_info,
63         [board_82573]           = &e1000_82573_info,
64         [board_82574]           = &e1000_82574_info,
65         [board_82583]           = &e1000_82583_info,
66         [board_80003es2lan]     = &e1000_es2_info,
67         [board_ich8lan]         = &e1000_ich8_info,
68         [board_ich9lan]         = &e1000_ich9_info,
69         [board_ich10lan]        = &e1000_ich10_info,
70         [board_pchlan]          = &e1000_pch_info,
71         [board_pch2lan]         = &e1000_pch2_info,
72         [board_pch_lpt]         = &e1000_pch_lpt_info,
73         [board_pch_spt]         = &e1000_pch_spt_info,
74 };
75
76 struct e1000_reg_info {
77         u32 ofs;
78         char *name;
79 };
80
81 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
82         /* General Registers */
83         {E1000_CTRL, "CTRL"},
84         {E1000_STATUS, "STATUS"},
85         {E1000_CTRL_EXT, "CTRL_EXT"},
86
87         /* Interrupt Registers */
88         {E1000_ICR, "ICR"},
89
90         /* Rx Registers */
91         {E1000_RCTL, "RCTL"},
92         {E1000_RDLEN(0), "RDLEN"},
93         {E1000_RDH(0), "RDH"},
94         {E1000_RDT(0), "RDT"},
95         {E1000_RDTR, "RDTR"},
96         {E1000_RXDCTL(0), "RXDCTL"},
97         {E1000_ERT, "ERT"},
98         {E1000_RDBAL(0), "RDBAL"},
99         {E1000_RDBAH(0), "RDBAH"},
100         {E1000_RDFH, "RDFH"},
101         {E1000_RDFT, "RDFT"},
102         {E1000_RDFHS, "RDFHS"},
103         {E1000_RDFTS, "RDFTS"},
104         {E1000_RDFPC, "RDFPC"},
105
106         /* Tx Registers */
107         {E1000_TCTL, "TCTL"},
108         {E1000_TDBAL(0), "TDBAL"},
109         {E1000_TDBAH(0), "TDBAH"},
110         {E1000_TDLEN(0), "TDLEN"},
111         {E1000_TDH(0), "TDH"},
112         {E1000_TDT(0), "TDT"},
113         {E1000_TIDV, "TIDV"},
114         {E1000_TXDCTL(0), "TXDCTL"},
115         {E1000_TADV, "TADV"},
116         {E1000_TARC(0), "TARC"},
117         {E1000_TDFH, "TDFH"},
118         {E1000_TDFT, "TDFT"},
119         {E1000_TDFHS, "TDFHS"},
120         {E1000_TDFTS, "TDFTS"},
121         {E1000_TDFPC, "TDFPC"},
122
123         /* List Terminator */
124         {0, NULL}
125 };
126
127 /**
128  * __ew32_prepare - prepare to write to MAC CSR register on certain parts
129  * @hw: pointer to the HW structure
130  *
131  * When updating the MAC CSR registers, the Manageability Engine (ME) could
132  * be accessing the registers at the same time.  Normally, this is handled in
133  * h/w by an arbiter but on some parts there is a bug that acknowledges Host
134  * accesses later than it should which could result in the register to have
135  * an incorrect value.  Workaround this by checking the FWSM register which
136  * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
137  * and try again a number of times.
138  **/
139 s32 __ew32_prepare(struct e1000_hw *hw)
140 {
141         s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
142
143         while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
144                 udelay(50);
145
146         return i;
147 }
148
149 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
150 {
151         if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
152                 __ew32_prepare(hw);
153
154         writel(val, hw->hw_addr + reg);
155 }
156
157 /**
158  * e1000_regdump - register printout routine
159  * @hw: pointer to the HW structure
160  * @reginfo: pointer to the register info table
161  **/
162 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
163 {
164         int n = 0;
165         char rname[16];
166         u32 regs[8];
167
168         switch (reginfo->ofs) {
169         case E1000_RXDCTL(0):
170                 for (n = 0; n < 2; n++)
171                         regs[n] = __er32(hw, E1000_RXDCTL(n));
172                 break;
173         case E1000_TXDCTL(0):
174                 for (n = 0; n < 2; n++)
175                         regs[n] = __er32(hw, E1000_TXDCTL(n));
176                 break;
177         case E1000_TARC(0):
178                 for (n = 0; n < 2; n++)
179                         regs[n] = __er32(hw, E1000_TARC(n));
180                 break;
181         default:
182                 pr_info("%-15s %08x\n",
183                         reginfo->name, __er32(hw, reginfo->ofs));
184                 return;
185         }
186
187         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
188         pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
189 }
190
191 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
192                                  struct e1000_buffer *bi)
193 {
194         int i;
195         struct e1000_ps_page *ps_page;
196
197         for (i = 0; i < adapter->rx_ps_pages; i++) {
198                 ps_page = &bi->ps_pages[i];
199
200                 if (ps_page->page) {
201                         pr_info("packet dump for ps_page %d:\n", i);
202                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
203                                        16, 1, page_address(ps_page->page),
204                                        PAGE_SIZE, true);
205                 }
206         }
207 }
208
209 /**
210  * e1000e_dump - Print registers, Tx-ring and Rx-ring
211  * @adapter: board private structure
212  **/
213 static void e1000e_dump(struct e1000_adapter *adapter)
214 {
215         struct net_device *netdev = adapter->netdev;
216         struct e1000_hw *hw = &adapter->hw;
217         struct e1000_reg_info *reginfo;
218         struct e1000_ring *tx_ring = adapter->tx_ring;
219         struct e1000_tx_desc *tx_desc;
220         struct my_u0 {
221                 __le64 a;
222                 __le64 b;
223         } *u0;
224         struct e1000_buffer *buffer_info;
225         struct e1000_ring *rx_ring = adapter->rx_ring;
226         union e1000_rx_desc_packet_split *rx_desc_ps;
227         union e1000_rx_desc_extended *rx_desc;
228         struct my_u1 {
229                 __le64 a;
230                 __le64 b;
231                 __le64 c;
232                 __le64 d;
233         } *u1;
234         u32 staterr;
235         int i = 0;
236
237         if (!netif_msg_hw(adapter))
238                 return;
239
240         /* Print netdevice Info */
241         if (netdev) {
242                 dev_info(&adapter->pdev->dev, "Net device Info\n");
243                 pr_info("Device Name     state            trans_start      last_rx\n");
244                 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
245                         netdev->state, netdev->trans_start, netdev->last_rx);
246         }
247
248         /* Print Registers */
249         dev_info(&adapter->pdev->dev, "Register Dump\n");
250         pr_info(" Register Name   Value\n");
251         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
252              reginfo->name; reginfo++) {
253                 e1000_regdump(hw, reginfo);
254         }
255
256         /* Print Tx Ring Summary */
257         if (!netdev || !netif_running(netdev))
258                 return;
259
260         dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
261         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
262         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
263         pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
264                 0, tx_ring->next_to_use, tx_ring->next_to_clean,
265                 (unsigned long long)buffer_info->dma,
266                 buffer_info->length,
267                 buffer_info->next_to_watch,
268                 (unsigned long long)buffer_info->time_stamp);
269
270         /* Print Tx Ring */
271         if (!netif_msg_tx_done(adapter))
272                 goto rx_ring_summary;
273
274         dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
275
276         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
277          *
278          * Legacy Transmit Descriptor
279          *   +--------------------------------------------------------------+
280          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
281          *   +--------------------------------------------------------------+
282          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
283          *   +--------------------------------------------------------------+
284          *   63       48 47        36 35    32 31     24 23    16 15        0
285          *
286          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
287          *   63      48 47    40 39       32 31             16 15    8 7      0
288          *   +----------------------------------------------------------------+
289          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
290          *   +----------------------------------------------------------------+
291          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
292          *   +----------------------------------------------------------------+
293          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
294          *
295          * Extended Data Descriptor (DTYP=0x1)
296          *   +----------------------------------------------------------------+
297          * 0 |                     Buffer Address [63:0]                      |
298          *   +----------------------------------------------------------------+
299          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
300          *   +----------------------------------------------------------------+
301          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
302          */
303         pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
304         pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
305         pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
306         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
307                 const char *next_desc;
308                 tx_desc = E1000_TX_DESC(*tx_ring, i);
309                 buffer_info = &tx_ring->buffer_info[i];
310                 u0 = (struct my_u0 *)tx_desc;
311                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
312                         next_desc = " NTC/U";
313                 else if (i == tx_ring->next_to_use)
314                         next_desc = " NTU";
315                 else if (i == tx_ring->next_to_clean)
316                         next_desc = " NTC";
317                 else
318                         next_desc = "";
319                 pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
320                         (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
321                          ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
322                         i,
323                         (unsigned long long)le64_to_cpu(u0->a),
324                         (unsigned long long)le64_to_cpu(u0->b),
325                         (unsigned long long)buffer_info->dma,
326                         buffer_info->length, buffer_info->next_to_watch,
327                         (unsigned long long)buffer_info->time_stamp,
328                         buffer_info->skb, next_desc);
329
330                 if (netif_msg_pktdata(adapter) && buffer_info->skb)
331                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
332                                        16, 1, buffer_info->skb->data,
333                                        buffer_info->skb->len, true);
334         }
335
336         /* Print Rx Ring Summary */
337 rx_ring_summary:
338         dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
339         pr_info("Queue [NTU] [NTC]\n");
340         pr_info(" %5d %5X %5X\n",
341                 0, rx_ring->next_to_use, rx_ring->next_to_clean);
342
343         /* Print Rx Ring */
344         if (!netif_msg_rx_status(adapter))
345                 return;
346
347         dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
348         switch (adapter->rx_ps_pages) {
349         case 1:
350         case 2:
351         case 3:
352                 /* [Extended] Packet Split Receive Descriptor Format
353                  *
354                  *    +-----------------------------------------------------+
355                  *  0 |                Buffer Address 0 [63:0]              |
356                  *    +-----------------------------------------------------+
357                  *  8 |                Buffer Address 1 [63:0]              |
358                  *    +-----------------------------------------------------+
359                  * 16 |                Buffer Address 2 [63:0]              |
360                  *    +-----------------------------------------------------+
361                  * 24 |                Buffer Address 3 [63:0]              |
362                  *    +-----------------------------------------------------+
363                  */
364                 pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
365                 /* [Extended] Receive Descriptor (Write-Back) Format
366                  *
367                  *   63       48 47    32 31     13 12    8 7    4 3        0
368                  *   +------------------------------------------------------+
369                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
370                  *   | Checksum | Ident  |         | Queue |      |  Type   |
371                  *   +------------------------------------------------------+
372                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
373                  *   +------------------------------------------------------+
374                  *   63       48 47    32 31            20 19               0
375                  */
376                 pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
377                 for (i = 0; i < rx_ring->count; i++) {
378                         const char *next_desc;
379                         buffer_info = &rx_ring->buffer_info[i];
380                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
381                         u1 = (struct my_u1 *)rx_desc_ps;
382                         staterr =
383                             le32_to_cpu(rx_desc_ps->wb.middle.status_error);
384
385                         if (i == rx_ring->next_to_use)
386                                 next_desc = " NTU";
387                         else if (i == rx_ring->next_to_clean)
388                                 next_desc = " NTC";
389                         else
390                                 next_desc = "";
391
392                         if (staterr & E1000_RXD_STAT_DD) {
393                                 /* Descriptor Done */
394                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
395                                         "RWB", i,
396                                         (unsigned long long)le64_to_cpu(u1->a),
397                                         (unsigned long long)le64_to_cpu(u1->b),
398                                         (unsigned long long)le64_to_cpu(u1->c),
399                                         (unsigned long long)le64_to_cpu(u1->d),
400                                         buffer_info->skb, next_desc);
401                         } else {
402                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
403                                         "R  ", i,
404                                         (unsigned long long)le64_to_cpu(u1->a),
405                                         (unsigned long long)le64_to_cpu(u1->b),
406                                         (unsigned long long)le64_to_cpu(u1->c),
407                                         (unsigned long long)le64_to_cpu(u1->d),
408                                         (unsigned long long)buffer_info->dma,
409                                         buffer_info->skb, next_desc);
410
411                                 if (netif_msg_pktdata(adapter))
412                                         e1000e_dump_ps_pages(adapter,
413                                                              buffer_info);
414                         }
415                 }
416                 break;
417         default:
418         case 0:
419                 /* Extended Receive Descriptor (Read) Format
420                  *
421                  *   +-----------------------------------------------------+
422                  * 0 |                Buffer Address [63:0]                |
423                  *   +-----------------------------------------------------+
424                  * 8 |                      Reserved                       |
425                  *   +-----------------------------------------------------+
426                  */
427                 pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
428                 /* Extended Receive Descriptor (Write-Back) Format
429                  *
430                  *   63       48 47    32 31    24 23            4 3        0
431                  *   +------------------------------------------------------+
432                  *   |     RSS Hash      |        |               |         |
433                  * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
434                  *   | Packet   | IP     |        |               |  Type   |
435                  *   | Checksum | Ident  |        |               |         |
436                  *   +------------------------------------------------------+
437                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
438                  *   +------------------------------------------------------+
439                  *   63       48 47    32 31            20 19               0
440                  */
441                 pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
442
443                 for (i = 0; i < rx_ring->count; i++) {
444                         const char *next_desc;
445
446                         buffer_info = &rx_ring->buffer_info[i];
447                         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
448                         u1 = (struct my_u1 *)rx_desc;
449                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
450
451                         if (i == rx_ring->next_to_use)
452                                 next_desc = " NTU";
453                         else if (i == rx_ring->next_to_clean)
454                                 next_desc = " NTC";
455                         else
456                                 next_desc = "";
457
458                         if (staterr & E1000_RXD_STAT_DD) {
459                                 /* Descriptor Done */
460                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
461                                         "RWB", i,
462                                         (unsigned long long)le64_to_cpu(u1->a),
463                                         (unsigned long long)le64_to_cpu(u1->b),
464                                         buffer_info->skb, next_desc);
465                         } else {
466                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
467                                         "R  ", i,
468                                         (unsigned long long)le64_to_cpu(u1->a),
469                                         (unsigned long long)le64_to_cpu(u1->b),
470                                         (unsigned long long)buffer_info->dma,
471                                         buffer_info->skb, next_desc);
472
473                                 if (netif_msg_pktdata(adapter) &&
474                                     buffer_info->skb)
475                                         print_hex_dump(KERN_INFO, "",
476                                                        DUMP_PREFIX_ADDRESS, 16,
477                                                        1,
478                                                        buffer_info->skb->data,
479                                                        adapter->rx_buffer_len,
480                                                        true);
481                         }
482                 }
483         }
484 }
485
486 /**
487  * e1000_desc_unused - calculate if we have unused descriptors
488  **/
489 static int e1000_desc_unused(struct e1000_ring *ring)
490 {
491         if (ring->next_to_clean > ring->next_to_use)
492                 return ring->next_to_clean - ring->next_to_use - 1;
493
494         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
495 }
496
497 /**
498  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
499  * @adapter: board private structure
500  * @hwtstamps: time stamp structure to update
501  * @systim: unsigned 64bit system time value.
502  *
503  * Convert the system time value stored in the RX/TXSTMP registers into a
504  * hwtstamp which can be used by the upper level time stamping functions.
505  *
506  * The 'systim_lock' spinlock is used to protect the consistency of the
507  * system time value. This is needed because reading the 64 bit time
508  * value involves reading two 32 bit registers. The first read latches the
509  * value.
510  **/
511 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
512                                       struct skb_shared_hwtstamps *hwtstamps,
513                                       u64 systim)
514 {
515         u64 ns;
516         unsigned long flags;
517
518         spin_lock_irqsave(&adapter->systim_lock, flags);
519         ns = timecounter_cyc2time(&adapter->tc, systim);
520         spin_unlock_irqrestore(&adapter->systim_lock, flags);
521
522         memset(hwtstamps, 0, sizeof(*hwtstamps));
523         hwtstamps->hwtstamp = ns_to_ktime(ns);
524 }
525
526 /**
527  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
528  * @adapter: board private structure
529  * @status: descriptor extended error and status field
530  * @skb: particular skb to include time stamp
531  *
532  * If the time stamp is valid, convert it into the timecounter ns value
533  * and store that result into the shhwtstamps structure which is passed
534  * up the network stack.
535  **/
536 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
537                                struct sk_buff *skb)
538 {
539         struct e1000_hw *hw = &adapter->hw;
540         u64 rxstmp;
541
542         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
543             !(status & E1000_RXDEXT_STATERR_TST) ||
544             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
545                 return;
546
547         /* The Rx time stamp registers contain the time stamp.  No other
548          * received packet will be time stamped until the Rx time stamp
549          * registers are read.  Because only one packet can be time stamped
550          * at a time, the register values must belong to this packet and
551          * therefore none of the other additional attributes need to be
552          * compared.
553          */
554         rxstmp = (u64)er32(RXSTMPL);
555         rxstmp |= (u64)er32(RXSTMPH) << 32;
556         e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
557
558         adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
559 }
560
561 /**
562  * e1000_receive_skb - helper function to handle Rx indications
563  * @adapter: board private structure
564  * @staterr: descriptor extended error and status field as written by hardware
565  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
566  * @skb: pointer to sk_buff to be indicated to stack
567  **/
568 static void e1000_receive_skb(struct e1000_adapter *adapter,
569                               struct net_device *netdev, struct sk_buff *skb,
570                               u32 staterr, __le16 vlan)
571 {
572         u16 tag = le16_to_cpu(vlan);
573
574         e1000e_rx_hwtstamp(adapter, staterr, skb);
575
576         skb->protocol = eth_type_trans(skb, netdev);
577
578         if (staterr & E1000_RXD_STAT_VP)
579                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
580
581         napi_gro_receive(&adapter->napi, skb);
582 }
583
584 /**
585  * e1000_rx_checksum - Receive Checksum Offload
586  * @adapter: board private structure
587  * @status_err: receive descriptor status and error fields
588  * @csum: receive descriptor csum field
589  * @sk_buff: socket buffer with received data
590  **/
591 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
592                               struct sk_buff *skb)
593 {
594         u16 status = (u16)status_err;
595         u8 errors = (u8)(status_err >> 24);
596
597         skb_checksum_none_assert(skb);
598
599         /* Rx checksum disabled */
600         if (!(adapter->netdev->features & NETIF_F_RXCSUM))
601                 return;
602
603         /* Ignore Checksum bit is set */
604         if (status & E1000_RXD_STAT_IXSM)
605                 return;
606
607         /* TCP/UDP checksum error bit or IP checksum error bit is set */
608         if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
609                 /* let the stack verify checksum errors */
610                 adapter->hw_csum_err++;
611                 return;
612         }
613
614         /* TCP/UDP Checksum has not been calculated */
615         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
616                 return;
617
618         /* It must be a TCP or UDP packet with a valid checksum */
619         skb->ip_summed = CHECKSUM_UNNECESSARY;
620         adapter->hw_csum_good++;
621 }
622
623 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
624 {
625         struct e1000_adapter *adapter = rx_ring->adapter;
626         struct e1000_hw *hw = &adapter->hw;
627         s32 ret_val = __ew32_prepare(hw);
628
629         writel(i, rx_ring->tail);
630
631         if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
632                 u32 rctl = er32(RCTL);
633
634                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
635                 e_err("ME firmware caused invalid RDT - resetting\n");
636                 schedule_work(&adapter->reset_task);
637         }
638 }
639
640 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
641 {
642         struct e1000_adapter *adapter = tx_ring->adapter;
643         struct e1000_hw *hw = &adapter->hw;
644         s32 ret_val = __ew32_prepare(hw);
645
646         writel(i, tx_ring->tail);
647
648         if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
649                 u32 tctl = er32(TCTL);
650
651                 ew32(TCTL, tctl & ~E1000_TCTL_EN);
652                 e_err("ME firmware caused invalid TDT - resetting\n");
653                 schedule_work(&adapter->reset_task);
654         }
655 }
656
657 /**
658  * e1000_alloc_rx_buffers - Replace used receive buffers
659  * @rx_ring: Rx descriptor ring
660  **/
661 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
662                                    int cleaned_count, gfp_t gfp)
663 {
664         struct e1000_adapter *adapter = rx_ring->adapter;
665         struct net_device *netdev = adapter->netdev;
666         struct pci_dev *pdev = adapter->pdev;
667         union e1000_rx_desc_extended *rx_desc;
668         struct e1000_buffer *buffer_info;
669         struct sk_buff *skb;
670         unsigned int i;
671         unsigned int bufsz = adapter->rx_buffer_len;
672
673         i = rx_ring->next_to_use;
674         buffer_info = &rx_ring->buffer_info[i];
675
676         while (cleaned_count--) {
677                 skb = buffer_info->skb;
678                 if (skb) {
679                         skb_trim(skb, 0);
680                         goto map_skb;
681                 }
682
683                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
684                 if (!skb) {
685                         /* Better luck next round */
686                         adapter->alloc_rx_buff_failed++;
687                         break;
688                 }
689
690                 buffer_info->skb = skb;
691 map_skb:
692                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
693                                                   adapter->rx_buffer_len,
694                                                   DMA_FROM_DEVICE);
695                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
696                         dev_err(&pdev->dev, "Rx DMA map failed\n");
697                         adapter->rx_dma_failed++;
698                         break;
699                 }
700
701                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
702                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
703
704                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
705                         /* Force memory writes to complete before letting h/w
706                          * know there are new descriptors to fetch.  (Only
707                          * applicable for weak-ordered memory model archs,
708                          * such as IA-64).
709                          */
710                         wmb();
711                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
712                                 e1000e_update_rdt_wa(rx_ring, i);
713                         else
714                                 writel(i, rx_ring->tail);
715                 }
716                 i++;
717                 if (i == rx_ring->count)
718                         i = 0;
719                 buffer_info = &rx_ring->buffer_info[i];
720         }
721
722         rx_ring->next_to_use = i;
723 }
724
725 /**
726  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
727  * @rx_ring: Rx descriptor ring
728  **/
729 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
730                                       int cleaned_count, gfp_t gfp)
731 {
732         struct e1000_adapter *adapter = rx_ring->adapter;
733         struct net_device *netdev = adapter->netdev;
734         struct pci_dev *pdev = adapter->pdev;
735         union e1000_rx_desc_packet_split *rx_desc;
736         struct e1000_buffer *buffer_info;
737         struct e1000_ps_page *ps_page;
738         struct sk_buff *skb;
739         unsigned int i, j;
740
741         i = rx_ring->next_to_use;
742         buffer_info = &rx_ring->buffer_info[i];
743
744         while (cleaned_count--) {
745                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
746
747                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
748                         ps_page = &buffer_info->ps_pages[j];
749                         if (j >= adapter->rx_ps_pages) {
750                                 /* all unused desc entries get hw null ptr */
751                                 rx_desc->read.buffer_addr[j + 1] =
752                                     ~cpu_to_le64(0);
753                                 continue;
754                         }
755                         if (!ps_page->page) {
756                                 ps_page->page = alloc_page(gfp);
757                                 if (!ps_page->page) {
758                                         adapter->alloc_rx_buff_failed++;
759                                         goto no_buffers;
760                                 }
761                                 ps_page->dma = dma_map_page(&pdev->dev,
762                                                             ps_page->page,
763                                                             0, PAGE_SIZE,
764                                                             DMA_FROM_DEVICE);
765                                 if (dma_mapping_error(&pdev->dev,
766                                                       ps_page->dma)) {
767                                         dev_err(&adapter->pdev->dev,
768                                                 "Rx DMA page map failed\n");
769                                         adapter->rx_dma_failed++;
770                                         goto no_buffers;
771                                 }
772                         }
773                         /* Refresh the desc even if buffer_addrs
774                          * didn't change because each write-back
775                          * erases this info.
776                          */
777                         rx_desc->read.buffer_addr[j + 1] =
778                             cpu_to_le64(ps_page->dma);
779                 }
780
781                 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
782                                                   gfp);
783
784                 if (!skb) {
785                         adapter->alloc_rx_buff_failed++;
786                         break;
787                 }
788
789                 buffer_info->skb = skb;
790                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
791                                                   adapter->rx_ps_bsize0,
792                                                   DMA_FROM_DEVICE);
793                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
794                         dev_err(&pdev->dev, "Rx DMA map failed\n");
795                         adapter->rx_dma_failed++;
796                         /* cleanup skb */
797                         dev_kfree_skb_any(skb);
798                         buffer_info->skb = NULL;
799                         break;
800                 }
801
802                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
803
804                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
805                         /* Force memory writes to complete before letting h/w
806                          * know there are new descriptors to fetch.  (Only
807                          * applicable for weak-ordered memory model archs,
808                          * such as IA-64).
809                          */
810                         wmb();
811                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
812                                 e1000e_update_rdt_wa(rx_ring, i << 1);
813                         else
814                                 writel(i << 1, rx_ring->tail);
815                 }
816
817                 i++;
818                 if (i == rx_ring->count)
819                         i = 0;
820                 buffer_info = &rx_ring->buffer_info[i];
821         }
822
823 no_buffers:
824         rx_ring->next_to_use = i;
825 }
826
827 /**
828  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
829  * @rx_ring: Rx descriptor ring
830  * @cleaned_count: number of buffers to allocate this pass
831  **/
832
833 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
834                                          int cleaned_count, gfp_t gfp)
835 {
836         struct e1000_adapter *adapter = rx_ring->adapter;
837         struct net_device *netdev = adapter->netdev;
838         struct pci_dev *pdev = adapter->pdev;
839         union e1000_rx_desc_extended *rx_desc;
840         struct e1000_buffer *buffer_info;
841         struct sk_buff *skb;
842         unsigned int i;
843         unsigned int bufsz = 256 - 16;  /* for skb_reserve */
844
845         i = rx_ring->next_to_use;
846         buffer_info = &rx_ring->buffer_info[i];
847
848         while (cleaned_count--) {
849                 skb = buffer_info->skb;
850                 if (skb) {
851                         skb_trim(skb, 0);
852                         goto check_page;
853                 }
854
855                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
856                 if (unlikely(!skb)) {
857                         /* Better luck next round */
858                         adapter->alloc_rx_buff_failed++;
859                         break;
860                 }
861
862                 buffer_info->skb = skb;
863 check_page:
864                 /* allocate a new page if necessary */
865                 if (!buffer_info->page) {
866                         buffer_info->page = alloc_page(gfp);
867                         if (unlikely(!buffer_info->page)) {
868                                 adapter->alloc_rx_buff_failed++;
869                                 break;
870                         }
871                 }
872
873                 if (!buffer_info->dma) {
874                         buffer_info->dma = dma_map_page(&pdev->dev,
875                                                         buffer_info->page, 0,
876                                                         PAGE_SIZE,
877                                                         DMA_FROM_DEVICE);
878                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
879                                 adapter->alloc_rx_buff_failed++;
880                                 break;
881                         }
882                 }
883
884                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
885                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
886
887                 if (unlikely(++i == rx_ring->count))
888                         i = 0;
889                 buffer_info = &rx_ring->buffer_info[i];
890         }
891
892         if (likely(rx_ring->next_to_use != i)) {
893                 rx_ring->next_to_use = i;
894                 if (unlikely(i-- == 0))
895                         i = (rx_ring->count - 1);
896
897                 /* Force memory writes to complete before letting h/w
898                  * know there are new descriptors to fetch.  (Only
899                  * applicable for weak-ordered memory model archs,
900                  * such as IA-64).
901                  */
902                 wmb();
903                 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
904                         e1000e_update_rdt_wa(rx_ring, i);
905                 else
906                         writel(i, rx_ring->tail);
907         }
908 }
909
910 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
911                                  struct sk_buff *skb)
912 {
913         if (netdev->features & NETIF_F_RXHASH)
914                 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
915 }
916
917 /**
918  * e1000_clean_rx_irq - Send received data up the network stack
919  * @rx_ring: Rx descriptor ring
920  *
921  * the return value indicates whether actual cleaning was done, there
922  * is no guarantee that everything was cleaned
923  **/
924 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
925                                int work_to_do)
926 {
927         struct e1000_adapter *adapter = rx_ring->adapter;
928         struct net_device *netdev = adapter->netdev;
929         struct pci_dev *pdev = adapter->pdev;
930         struct e1000_hw *hw = &adapter->hw;
931         union e1000_rx_desc_extended *rx_desc, *next_rxd;
932         struct e1000_buffer *buffer_info, *next_buffer;
933         u32 length, staterr;
934         unsigned int i;
935         int cleaned_count = 0;
936         bool cleaned = false;
937         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
938
939         i = rx_ring->next_to_clean;
940         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
941         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
942         buffer_info = &rx_ring->buffer_info[i];
943
944         while (staterr & E1000_RXD_STAT_DD) {
945                 struct sk_buff *skb;
946
947                 if (*work_done >= work_to_do)
948                         break;
949                 (*work_done)++;
950                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
951
952                 skb = buffer_info->skb;
953                 buffer_info->skb = NULL;
954
955                 prefetch(skb->data - NET_IP_ALIGN);
956
957                 i++;
958                 if (i == rx_ring->count)
959                         i = 0;
960                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
961                 prefetch(next_rxd);
962
963                 next_buffer = &rx_ring->buffer_info[i];
964
965                 cleaned = true;
966                 cleaned_count++;
967                 dma_unmap_single(&pdev->dev, buffer_info->dma,
968                                  adapter->rx_buffer_len, DMA_FROM_DEVICE);
969                 buffer_info->dma = 0;
970
971                 length = le16_to_cpu(rx_desc->wb.upper.length);
972
973                 /* !EOP means multiple descriptors were used to store a single
974                  * packet, if that's the case we need to toss it.  In fact, we
975                  * need to toss every packet with the EOP bit clear and the
976                  * next frame that _does_ have the EOP bit set, as it is by
977                  * definition only a frame fragment
978                  */
979                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
980                         adapter->flags2 |= FLAG2_IS_DISCARDING;
981
982                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
983                         /* All receives must fit into a single buffer */
984                         e_dbg("Receive packet consumed multiple buffers\n");
985                         /* recycle */
986                         buffer_info->skb = skb;
987                         if (staterr & E1000_RXD_STAT_EOP)
988                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
989                         goto next_desc;
990                 }
991
992                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
993                              !(netdev->features & NETIF_F_RXALL))) {
994                         /* recycle */
995                         buffer_info->skb = skb;
996                         goto next_desc;
997                 }
998
999                 /* adjust length to remove Ethernet CRC */
1000                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1001                         /* If configured to store CRC, don't subtract FCS,
1002                          * but keep the FCS bytes out of the total_rx_bytes
1003                          * counter
1004                          */
1005                         if (netdev->features & NETIF_F_RXFCS)
1006                                 total_rx_bytes -= 4;
1007                         else
1008                                 length -= 4;
1009                 }
1010
1011                 total_rx_bytes += length;
1012                 total_rx_packets++;
1013
1014                 /* code added for copybreak, this should improve
1015                  * performance for small packets with large amounts
1016                  * of reassembly being done in the stack
1017                  */
1018                 if (length < copybreak) {
1019                         struct sk_buff *new_skb =
1020                                 napi_alloc_skb(&adapter->napi, length);
1021                         if (new_skb) {
1022                                 skb_copy_to_linear_data_offset(new_skb,
1023                                                                -NET_IP_ALIGN,
1024                                                                (skb->data -
1025                                                                 NET_IP_ALIGN),
1026                                                                (length +
1027                                                                 NET_IP_ALIGN));
1028                                 /* save the skb in buffer_info as good */
1029                                 buffer_info->skb = skb;
1030                                 skb = new_skb;
1031                         }
1032                         /* else just continue with the old one */
1033                 }
1034                 /* end copybreak code */
1035                 skb_put(skb, length);
1036
1037                 /* Receive Checksum Offload */
1038                 e1000_rx_checksum(adapter, staterr, skb);
1039
1040                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1041
1042                 e1000_receive_skb(adapter, netdev, skb, staterr,
1043                                   rx_desc->wb.upper.vlan);
1044
1045 next_desc:
1046                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1047
1048                 /* return some buffers to hardware, one at a time is too slow */
1049                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1050                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1051                                               GFP_ATOMIC);
1052                         cleaned_count = 0;
1053                 }
1054
1055                 /* use prefetched values */
1056                 rx_desc = next_rxd;
1057                 buffer_info = next_buffer;
1058
1059                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1060         }
1061         rx_ring->next_to_clean = i;
1062
1063         cleaned_count = e1000_desc_unused(rx_ring);
1064         if (cleaned_count)
1065                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1066
1067         adapter->total_rx_bytes += total_rx_bytes;
1068         adapter->total_rx_packets += total_rx_packets;
1069         return cleaned;
1070 }
1071
1072 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1073                             struct e1000_buffer *buffer_info)
1074 {
1075         struct e1000_adapter *adapter = tx_ring->adapter;
1076
1077         if (buffer_info->dma) {
1078                 if (buffer_info->mapped_as_page)
1079                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1080                                        buffer_info->length, DMA_TO_DEVICE);
1081                 else
1082                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1083                                          buffer_info->length, DMA_TO_DEVICE);
1084                 buffer_info->dma = 0;
1085         }
1086         if (buffer_info->skb) {
1087                 dev_kfree_skb_any(buffer_info->skb);
1088                 buffer_info->skb = NULL;
1089         }
1090         buffer_info->time_stamp = 0;
1091 }
1092
1093 static void e1000_print_hw_hang(struct work_struct *work)
1094 {
1095         struct e1000_adapter *adapter = container_of(work,
1096                                                      struct e1000_adapter,
1097                                                      print_hang_task);
1098         struct net_device *netdev = adapter->netdev;
1099         struct e1000_ring *tx_ring = adapter->tx_ring;
1100         unsigned int i = tx_ring->next_to_clean;
1101         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1102         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1103         struct e1000_hw *hw = &adapter->hw;
1104         u16 phy_status, phy_1000t_status, phy_ext_status;
1105         u16 pci_status;
1106
1107         if (test_bit(__E1000_DOWN, &adapter->state))
1108                 return;
1109
1110         if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1111                 /* May be block on write-back, flush and detect again
1112                  * flush pending descriptor writebacks to memory
1113                  */
1114                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1115                 /* execute the writes immediately */
1116                 e1e_flush();
1117                 /* Due to rare timing issues, write to TIDV again to ensure
1118                  * the write is successful
1119                  */
1120                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1121                 /* execute the writes immediately */
1122                 e1e_flush();
1123                 adapter->tx_hang_recheck = true;
1124                 return;
1125         }
1126         adapter->tx_hang_recheck = false;
1127
1128         if (er32(TDH(0)) == er32(TDT(0))) {
1129                 e_dbg("false hang detected, ignoring\n");
1130                 return;
1131         }
1132
1133         /* Real hang detected */
1134         netif_stop_queue(netdev);
1135
1136         e1e_rphy(hw, MII_BMSR, &phy_status);
1137         e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1138         e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1139
1140         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1141
1142         /* detected Hardware unit hang */
1143         e_err("Detected Hardware Unit Hang:\n"
1144               "  TDH                  <%x>\n"
1145               "  TDT                  <%x>\n"
1146               "  next_to_use          <%x>\n"
1147               "  next_to_clean        <%x>\n"
1148               "buffer_info[next_to_clean]:\n"
1149               "  time_stamp           <%lx>\n"
1150               "  next_to_watch        <%x>\n"
1151               "  jiffies              <%lx>\n"
1152               "  next_to_watch.status <%x>\n"
1153               "MAC Status             <%x>\n"
1154               "PHY Status             <%x>\n"
1155               "PHY 1000BASE-T Status  <%x>\n"
1156               "PHY Extended Status    <%x>\n"
1157               "PCI Status             <%x>\n",
1158               readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1159               tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1160               eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1161               phy_status, phy_1000t_status, phy_ext_status, pci_status);
1162
1163         e1000e_dump(adapter);
1164
1165         /* Suggest workaround for known h/w issue */
1166         if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1167                 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1168 }
1169
1170 /**
1171  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1172  * @work: pointer to work struct
1173  *
1174  * This work function polls the TSYNCTXCTL valid bit to determine when a
1175  * timestamp has been taken for the current stored skb.  The timestamp must
1176  * be for this skb because only one such packet is allowed in the queue.
1177  */
1178 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1179 {
1180         struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1181                                                      tx_hwtstamp_work);
1182         struct e1000_hw *hw = &adapter->hw;
1183
1184         if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1185                 struct skb_shared_hwtstamps shhwtstamps;
1186                 u64 txstmp;
1187
1188                 txstmp = er32(TXSTMPL);
1189                 txstmp |= (u64)er32(TXSTMPH) << 32;
1190
1191                 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1192
1193                 skb_tstamp_tx(adapter->tx_hwtstamp_skb, &shhwtstamps);
1194                 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1195                 adapter->tx_hwtstamp_skb = NULL;
1196         } else if (time_after(jiffies, adapter->tx_hwtstamp_start
1197                               + adapter->tx_timeout_factor * HZ)) {
1198                 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1199                 adapter->tx_hwtstamp_skb = NULL;
1200                 adapter->tx_hwtstamp_timeouts++;
1201                 e_warn("clearing Tx timestamp hang\n");
1202         } else {
1203                 /* reschedule to check later */
1204                 schedule_work(&adapter->tx_hwtstamp_work);
1205         }
1206 }
1207
1208 /**
1209  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1210  * @tx_ring: Tx descriptor ring
1211  *
1212  * the return value indicates whether actual cleaning was done, there
1213  * is no guarantee that everything was cleaned
1214  **/
1215 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1216 {
1217         struct e1000_adapter *adapter = tx_ring->adapter;
1218         struct net_device *netdev = adapter->netdev;
1219         struct e1000_hw *hw = &adapter->hw;
1220         struct e1000_tx_desc *tx_desc, *eop_desc;
1221         struct e1000_buffer *buffer_info;
1222         unsigned int i, eop;
1223         unsigned int count = 0;
1224         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1225         unsigned int bytes_compl = 0, pkts_compl = 0;
1226
1227         i = tx_ring->next_to_clean;
1228         eop = tx_ring->buffer_info[i].next_to_watch;
1229         eop_desc = E1000_TX_DESC(*tx_ring, eop);
1230
1231         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1232                (count < tx_ring->count)) {
1233                 bool cleaned = false;
1234
1235                 dma_rmb();              /* read buffer_info after eop_desc */
1236                 for (; !cleaned; count++) {
1237                         tx_desc = E1000_TX_DESC(*tx_ring, i);
1238                         buffer_info = &tx_ring->buffer_info[i];
1239                         cleaned = (i == eop);
1240
1241                         if (cleaned) {
1242                                 total_tx_packets += buffer_info->segs;
1243                                 total_tx_bytes += buffer_info->bytecount;
1244                                 if (buffer_info->skb) {
1245                                         bytes_compl += buffer_info->skb->len;
1246                                         pkts_compl++;
1247                                 }
1248                         }
1249
1250                         e1000_put_txbuf(tx_ring, buffer_info);
1251                         tx_desc->upper.data = 0;
1252
1253                         i++;
1254                         if (i == tx_ring->count)
1255                                 i = 0;
1256                 }
1257
1258                 if (i == tx_ring->next_to_use)
1259                         break;
1260                 eop = tx_ring->buffer_info[i].next_to_watch;
1261                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1262         }
1263
1264         tx_ring->next_to_clean = i;
1265
1266         netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1267
1268 #define TX_WAKE_THRESHOLD 32
1269         if (count && netif_carrier_ok(netdev) &&
1270             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1271                 /* Make sure that anybody stopping the queue after this
1272                  * sees the new next_to_clean.
1273                  */
1274                 smp_mb();
1275
1276                 if (netif_queue_stopped(netdev) &&
1277                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1278                         netif_wake_queue(netdev);
1279                         ++adapter->restart_queue;
1280                 }
1281         }
1282
1283         if (adapter->detect_tx_hung) {
1284                 /* Detect a transmit hang in hardware, this serializes the
1285                  * check with the clearing of time_stamp and movement of i
1286                  */
1287                 adapter->detect_tx_hung = false;
1288                 if (tx_ring->buffer_info[i].time_stamp &&
1289                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1290                                + (adapter->tx_timeout_factor * HZ)) &&
1291                     !(er32(STATUS) & E1000_STATUS_TXOFF))
1292                         schedule_work(&adapter->print_hang_task);
1293                 else
1294                         adapter->tx_hang_recheck = false;
1295         }
1296         adapter->total_tx_bytes += total_tx_bytes;
1297         adapter->total_tx_packets += total_tx_packets;
1298         return count < tx_ring->count;
1299 }
1300
1301 /**
1302  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1303  * @rx_ring: Rx descriptor ring
1304  *
1305  * the return value indicates whether actual cleaning was done, there
1306  * is no guarantee that everything was cleaned
1307  **/
1308 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1309                                   int work_to_do)
1310 {
1311         struct e1000_adapter *adapter = rx_ring->adapter;
1312         struct e1000_hw *hw = &adapter->hw;
1313         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1314         struct net_device *netdev = adapter->netdev;
1315         struct pci_dev *pdev = adapter->pdev;
1316         struct e1000_buffer *buffer_info, *next_buffer;
1317         struct e1000_ps_page *ps_page;
1318         struct sk_buff *skb;
1319         unsigned int i, j;
1320         u32 length, staterr;
1321         int cleaned_count = 0;
1322         bool cleaned = false;
1323         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1324
1325         i = rx_ring->next_to_clean;
1326         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1327         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1328         buffer_info = &rx_ring->buffer_info[i];
1329
1330         while (staterr & E1000_RXD_STAT_DD) {
1331                 if (*work_done >= work_to_do)
1332                         break;
1333                 (*work_done)++;
1334                 skb = buffer_info->skb;
1335                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
1336
1337                 /* in the packet split case this is header only */
1338                 prefetch(skb->data - NET_IP_ALIGN);
1339
1340                 i++;
1341                 if (i == rx_ring->count)
1342                         i = 0;
1343                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1344                 prefetch(next_rxd);
1345
1346                 next_buffer = &rx_ring->buffer_info[i];
1347
1348                 cleaned = true;
1349                 cleaned_count++;
1350                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1351                                  adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1352                 buffer_info->dma = 0;
1353
1354                 /* see !EOP comment in other Rx routine */
1355                 if (!(staterr & E1000_RXD_STAT_EOP))
1356                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1357
1358                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1359                         e_dbg("Packet Split buffers didn't pick up the full packet\n");
1360                         dev_kfree_skb_irq(skb);
1361                         if (staterr & E1000_RXD_STAT_EOP)
1362                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1363                         goto next_desc;
1364                 }
1365
1366                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1367                              !(netdev->features & NETIF_F_RXALL))) {
1368                         dev_kfree_skb_irq(skb);
1369                         goto next_desc;
1370                 }
1371
1372                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1373
1374                 if (!length) {
1375                         e_dbg("Last part of the packet spanning multiple descriptors\n");
1376                         dev_kfree_skb_irq(skb);
1377                         goto next_desc;
1378                 }
1379
1380                 /* Good Receive */
1381                 skb_put(skb, length);
1382
1383                 {
1384                         /* this looks ugly, but it seems compiler issues make
1385                          * it more efficient than reusing j
1386                          */
1387                         int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1388
1389                         /* page alloc/put takes too long and effects small
1390                          * packet throughput, so unsplit small packets and
1391                          * save the alloc/put only valid in softirq (napi)
1392                          * context to call kmap_*
1393                          */
1394                         if (l1 && (l1 <= copybreak) &&
1395                             ((length + l1) <= adapter->rx_ps_bsize0)) {
1396                                 u8 *vaddr;
1397
1398                                 ps_page = &buffer_info->ps_pages[0];
1399
1400                                 /* there is no documentation about how to call
1401                                  * kmap_atomic, so we can't hold the mapping
1402                                  * very long
1403                                  */
1404                                 dma_sync_single_for_cpu(&pdev->dev,
1405                                                         ps_page->dma,
1406                                                         PAGE_SIZE,
1407                                                         DMA_FROM_DEVICE);
1408                                 vaddr = kmap_atomic(ps_page->page);
1409                                 memcpy(skb_tail_pointer(skb), vaddr, l1);
1410                                 kunmap_atomic(vaddr);
1411                                 dma_sync_single_for_device(&pdev->dev,
1412                                                            ps_page->dma,
1413                                                            PAGE_SIZE,
1414                                                            DMA_FROM_DEVICE);
1415
1416                                 /* remove the CRC */
1417                                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1418                                         if (!(netdev->features & NETIF_F_RXFCS))
1419                                                 l1 -= 4;
1420                                 }
1421
1422                                 skb_put(skb, l1);
1423                                 goto copydone;
1424                         }       /* if */
1425                 }
1426
1427                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1428                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1429                         if (!length)
1430                                 break;
1431
1432                         ps_page = &buffer_info->ps_pages[j];
1433                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1434                                        DMA_FROM_DEVICE);
1435                         ps_page->dma = 0;
1436                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1437                         ps_page->page = NULL;
1438                         skb->len += length;
1439                         skb->data_len += length;
1440                         skb->truesize += PAGE_SIZE;
1441                 }
1442
1443                 /* strip the ethernet crc, problem is we're using pages now so
1444                  * this whole operation can get a little cpu intensive
1445                  */
1446                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1447                         if (!(netdev->features & NETIF_F_RXFCS))
1448                                 pskb_trim(skb, skb->len - 4);
1449                 }
1450
1451 copydone:
1452                 total_rx_bytes += skb->len;
1453                 total_rx_packets++;
1454
1455                 e1000_rx_checksum(adapter, staterr, skb);
1456
1457                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1458
1459                 if (rx_desc->wb.upper.header_status &
1460                     cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1461                         adapter->rx_hdr_split++;
1462
1463                 e1000_receive_skb(adapter, netdev, skb, staterr,
1464                                   rx_desc->wb.middle.vlan);
1465
1466 next_desc:
1467                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1468                 buffer_info->skb = NULL;
1469
1470                 /* return some buffers to hardware, one at a time is too slow */
1471                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1472                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1473                                               GFP_ATOMIC);
1474                         cleaned_count = 0;
1475                 }
1476
1477                 /* use prefetched values */
1478                 rx_desc = next_rxd;
1479                 buffer_info = next_buffer;
1480
1481                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1482         }
1483         rx_ring->next_to_clean = i;
1484
1485         cleaned_count = e1000_desc_unused(rx_ring);
1486         if (cleaned_count)
1487                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1488
1489         adapter->total_rx_bytes += total_rx_bytes;
1490         adapter->total_rx_packets += total_rx_packets;
1491         return cleaned;
1492 }
1493
1494 /**
1495  * e1000_consume_page - helper function
1496  **/
1497 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1498                                u16 length)
1499 {
1500         bi->page = NULL;
1501         skb->len += length;
1502         skb->data_len += length;
1503         skb->truesize += PAGE_SIZE;
1504 }
1505
1506 /**
1507  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1508  * @adapter: board private structure
1509  *
1510  * the return value indicates whether actual cleaning was done, there
1511  * is no guarantee that everything was cleaned
1512  **/
1513 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1514                                      int work_to_do)
1515 {
1516         struct e1000_adapter *adapter = rx_ring->adapter;
1517         struct net_device *netdev = adapter->netdev;
1518         struct pci_dev *pdev = adapter->pdev;
1519         union e1000_rx_desc_extended *rx_desc, *next_rxd;
1520         struct e1000_buffer *buffer_info, *next_buffer;
1521         u32 length, staterr;
1522         unsigned int i;
1523         int cleaned_count = 0;
1524         bool cleaned = false;
1525         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1526         struct skb_shared_info *shinfo;
1527
1528         i = rx_ring->next_to_clean;
1529         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1530         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1531         buffer_info = &rx_ring->buffer_info[i];
1532
1533         while (staterr & E1000_RXD_STAT_DD) {
1534                 struct sk_buff *skb;
1535
1536                 if (*work_done >= work_to_do)
1537                         break;
1538                 (*work_done)++;
1539                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
1540
1541                 skb = buffer_info->skb;
1542                 buffer_info->skb = NULL;
1543
1544                 ++i;
1545                 if (i == rx_ring->count)
1546                         i = 0;
1547                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1548                 prefetch(next_rxd);
1549
1550                 next_buffer = &rx_ring->buffer_info[i];
1551
1552                 cleaned = true;
1553                 cleaned_count++;
1554                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1555                                DMA_FROM_DEVICE);
1556                 buffer_info->dma = 0;
1557
1558                 length = le16_to_cpu(rx_desc->wb.upper.length);
1559
1560                 /* errors is only valid for DD + EOP descriptors */
1561                 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1562                              ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1563                               !(netdev->features & NETIF_F_RXALL)))) {
1564                         /* recycle both page and skb */
1565                         buffer_info->skb = skb;
1566                         /* an error means any chain goes out the window too */
1567                         if (rx_ring->rx_skb_top)
1568                                 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1569                         rx_ring->rx_skb_top = NULL;
1570                         goto next_desc;
1571                 }
1572 #define rxtop (rx_ring->rx_skb_top)
1573                 if (!(staterr & E1000_RXD_STAT_EOP)) {
1574                         /* this descriptor is only the beginning (or middle) */
1575                         if (!rxtop) {
1576                                 /* this is the beginning of a chain */
1577                                 rxtop = skb;
1578                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1579                                                    0, length);
1580                         } else {
1581                                 /* this is the middle of a chain */
1582                                 shinfo = skb_shinfo(rxtop);
1583                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1584                                                    buffer_info->page, 0,
1585                                                    length);
1586                                 /* re-use the skb, only consumed the page */
1587                                 buffer_info->skb = skb;
1588                         }
1589                         e1000_consume_page(buffer_info, rxtop, length);
1590                         goto next_desc;
1591                 } else {
1592                         if (rxtop) {
1593                                 /* end of the chain */
1594                                 shinfo = skb_shinfo(rxtop);
1595                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1596                                                    buffer_info->page, 0,
1597                                                    length);
1598                                 /* re-use the current skb, we only consumed the
1599                                  * page
1600                                  */
1601                                 buffer_info->skb = skb;
1602                                 skb = rxtop;
1603                                 rxtop = NULL;
1604                                 e1000_consume_page(buffer_info, skb, length);
1605                         } else {
1606                                 /* no chain, got EOP, this buf is the packet
1607                                  * copybreak to save the put_page/alloc_page
1608                                  */
1609                                 if (length <= copybreak &&
1610                                     skb_tailroom(skb) >= length) {
1611                                         u8 *vaddr;
1612                                         vaddr = kmap_atomic(buffer_info->page);
1613                                         memcpy(skb_tail_pointer(skb), vaddr,
1614                                                length);
1615                                         kunmap_atomic(vaddr);
1616                                         /* re-use the page, so don't erase
1617                                          * buffer_info->page
1618                                          */
1619                                         skb_put(skb, length);
1620                                 } else {
1621                                         skb_fill_page_desc(skb, 0,
1622                                                            buffer_info->page, 0,
1623                                                            length);
1624                                         e1000_consume_page(buffer_info, skb,
1625                                                            length);
1626                                 }
1627                         }
1628                 }
1629
1630                 /* Receive Checksum Offload */
1631                 e1000_rx_checksum(adapter, staterr, skb);
1632
1633                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1634
1635                 /* probably a little skewed due to removing CRC */
1636                 total_rx_bytes += skb->len;
1637                 total_rx_packets++;
1638
1639                 /* eth type trans needs skb->data to point to something */
1640                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1641                         e_err("pskb_may_pull failed.\n");
1642                         dev_kfree_skb_irq(skb);
1643                         goto next_desc;
1644                 }
1645
1646                 e1000_receive_skb(adapter, netdev, skb, staterr,
1647                                   rx_desc->wb.upper.vlan);
1648
1649 next_desc:
1650                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1651
1652                 /* return some buffers to hardware, one at a time is too slow */
1653                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1654                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1655                                               GFP_ATOMIC);
1656                         cleaned_count = 0;
1657                 }
1658
1659                 /* use prefetched values */
1660                 rx_desc = next_rxd;
1661                 buffer_info = next_buffer;
1662
1663                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1664         }
1665         rx_ring->next_to_clean = i;
1666
1667         cleaned_count = e1000_desc_unused(rx_ring);
1668         if (cleaned_count)
1669                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1670
1671         adapter->total_rx_bytes += total_rx_bytes;
1672         adapter->total_rx_packets += total_rx_packets;
1673         return cleaned;
1674 }
1675
1676 /**
1677  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1678  * @rx_ring: Rx descriptor ring
1679  **/
1680 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1681 {
1682         struct e1000_adapter *adapter = rx_ring->adapter;
1683         struct e1000_buffer *buffer_info;
1684         struct e1000_ps_page *ps_page;
1685         struct pci_dev *pdev = adapter->pdev;
1686         unsigned int i, j;
1687
1688         /* Free all the Rx ring sk_buffs */
1689         for (i = 0; i < rx_ring->count; i++) {
1690                 buffer_info = &rx_ring->buffer_info[i];
1691                 if (buffer_info->dma) {
1692                         if (adapter->clean_rx == e1000_clean_rx_irq)
1693                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1694                                                  adapter->rx_buffer_len,
1695                                                  DMA_FROM_DEVICE);
1696                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1697                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1698                                                PAGE_SIZE, DMA_FROM_DEVICE);
1699                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1700                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1701                                                  adapter->rx_ps_bsize0,
1702                                                  DMA_FROM_DEVICE);
1703                         buffer_info->dma = 0;
1704                 }
1705
1706                 if (buffer_info->page) {
1707                         put_page(buffer_info->page);
1708                         buffer_info->page = NULL;
1709                 }
1710
1711                 if (buffer_info->skb) {
1712                         dev_kfree_skb(buffer_info->skb);
1713                         buffer_info->skb = NULL;
1714                 }
1715
1716                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1717                         ps_page = &buffer_info->ps_pages[j];
1718                         if (!ps_page->page)
1719                                 break;
1720                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1721                                        DMA_FROM_DEVICE);
1722                         ps_page->dma = 0;
1723                         put_page(ps_page->page);
1724                         ps_page->page = NULL;
1725                 }
1726         }
1727
1728         /* there also may be some cached data from a chained receive */
1729         if (rx_ring->rx_skb_top) {
1730                 dev_kfree_skb(rx_ring->rx_skb_top);
1731                 rx_ring->rx_skb_top = NULL;
1732         }
1733
1734         /* Zero out the descriptor ring */
1735         memset(rx_ring->desc, 0, rx_ring->size);
1736
1737         rx_ring->next_to_clean = 0;
1738         rx_ring->next_to_use = 0;
1739         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1740
1741         writel(0, rx_ring->head);
1742         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
1743                 e1000e_update_rdt_wa(rx_ring, 0);
1744         else
1745                 writel(0, rx_ring->tail);
1746 }
1747
1748 static void e1000e_downshift_workaround(struct work_struct *work)
1749 {
1750         struct e1000_adapter *adapter = container_of(work,
1751                                                      struct e1000_adapter,
1752                                                      downshift_task);
1753
1754         if (test_bit(__E1000_DOWN, &adapter->state))
1755                 return;
1756
1757         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1758 }
1759
1760 /**
1761  * e1000_intr_msi - Interrupt Handler
1762  * @irq: interrupt number
1763  * @data: pointer to a network interface device structure
1764  **/
1765 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1766 {
1767         struct net_device *netdev = data;
1768         struct e1000_adapter *adapter = netdev_priv(netdev);
1769         struct e1000_hw *hw = &adapter->hw;
1770         u32 icr = er32(ICR);
1771
1772         /* read ICR disables interrupts using IAM */
1773         if (icr & E1000_ICR_LSC) {
1774                 hw->mac.get_link_status = true;
1775                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1776                  * disconnect (LSC) before accessing any PHY registers
1777                  */
1778                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1779                     (!(er32(STATUS) & E1000_STATUS_LU)))
1780                         schedule_work(&adapter->downshift_task);
1781
1782                 /* 80003ES2LAN workaround-- For packet buffer work-around on
1783                  * link down event; disable receives here in the ISR and reset
1784                  * adapter in watchdog
1785                  */
1786                 if (netif_carrier_ok(netdev) &&
1787                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1788                         /* disable receives */
1789                         u32 rctl = er32(RCTL);
1790
1791                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1792                         adapter->flags |= FLAG_RESTART_NOW;
1793                 }
1794                 /* guard against interrupt when we're going down */
1795                 if (!test_bit(__E1000_DOWN, &adapter->state))
1796                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1797         }
1798
1799         /* Reset on uncorrectable ECC error */
1800         if ((icr & E1000_ICR_ECCER) && ((hw->mac.type == e1000_pch_lpt) ||
1801                                         (hw->mac.type == e1000_pch_spt))) {
1802                 u32 pbeccsts = er32(PBECCSTS);
1803
1804                 adapter->corr_errors +=
1805                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1806                 adapter->uncorr_errors +=
1807                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1808                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1809
1810                 /* Do the reset outside of interrupt context */
1811                 schedule_work(&adapter->reset_task);
1812
1813                 /* return immediately since reset is imminent */
1814                 return IRQ_HANDLED;
1815         }
1816
1817         if (napi_schedule_prep(&adapter->napi)) {
1818                 adapter->total_tx_bytes = 0;
1819                 adapter->total_tx_packets = 0;
1820                 adapter->total_rx_bytes = 0;
1821                 adapter->total_rx_packets = 0;
1822                 __napi_schedule(&adapter->napi);
1823         }
1824
1825         return IRQ_HANDLED;
1826 }
1827
1828 /**
1829  * e1000_intr - Interrupt Handler
1830  * @irq: interrupt number
1831  * @data: pointer to a network interface device structure
1832  **/
1833 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1834 {
1835         struct net_device *netdev = data;
1836         struct e1000_adapter *adapter = netdev_priv(netdev);
1837         struct e1000_hw *hw = &adapter->hw;
1838         u32 rctl, icr = er32(ICR);
1839
1840         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1841                 return IRQ_NONE;        /* Not our interrupt */
1842
1843         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1844          * not set, then the adapter didn't send an interrupt
1845          */
1846         if (!(icr & E1000_ICR_INT_ASSERTED))
1847                 return IRQ_NONE;
1848
1849         /* Interrupt Auto-Mask...upon reading ICR,
1850          * interrupts are masked.  No need for the
1851          * IMC write
1852          */
1853
1854         if (icr & E1000_ICR_LSC) {
1855                 hw->mac.get_link_status = true;
1856                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1857                  * disconnect (LSC) before accessing any PHY registers
1858                  */
1859                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1860                     (!(er32(STATUS) & E1000_STATUS_LU)))
1861                         schedule_work(&adapter->downshift_task);
1862
1863                 /* 80003ES2LAN workaround--
1864                  * For packet buffer work-around on link down event;
1865                  * disable receives here in the ISR and
1866                  * reset adapter in watchdog
1867                  */
1868                 if (netif_carrier_ok(netdev) &&
1869                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1870                         /* disable receives */
1871                         rctl = er32(RCTL);
1872                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1873                         adapter->flags |= FLAG_RESTART_NOW;
1874                 }
1875                 /* guard against interrupt when we're going down */
1876                 if (!test_bit(__E1000_DOWN, &adapter->state))
1877                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1878         }
1879
1880         /* Reset on uncorrectable ECC error */
1881         if ((icr & E1000_ICR_ECCER) && ((hw->mac.type == e1000_pch_lpt) ||
1882                                         (hw->mac.type == e1000_pch_spt))) {
1883                 u32 pbeccsts = er32(PBECCSTS);
1884
1885                 adapter->corr_errors +=
1886                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1887                 adapter->uncorr_errors +=
1888                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1889                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1890
1891                 /* Do the reset outside of interrupt context */
1892                 schedule_work(&adapter->reset_task);
1893
1894                 /* return immediately since reset is imminent */
1895                 return IRQ_HANDLED;
1896         }
1897
1898         if (napi_schedule_prep(&adapter->napi)) {
1899                 adapter->total_tx_bytes = 0;
1900                 adapter->total_tx_packets = 0;
1901                 adapter->total_rx_bytes = 0;
1902                 adapter->total_rx_packets = 0;
1903                 __napi_schedule(&adapter->napi);
1904         }
1905
1906         return IRQ_HANDLED;
1907 }
1908
1909 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1910 {
1911         struct net_device *netdev = data;
1912         struct e1000_adapter *adapter = netdev_priv(netdev);
1913         struct e1000_hw *hw = &adapter->hw;
1914         u32 icr = er32(ICR);
1915
1916         if (!(icr & E1000_ICR_INT_ASSERTED)) {
1917                 if (!test_bit(__E1000_DOWN, &adapter->state))
1918                         ew32(IMS, E1000_IMS_OTHER);
1919                 return IRQ_NONE;
1920         }
1921
1922         if (icr & adapter->eiac_mask)
1923                 ew32(ICS, (icr & adapter->eiac_mask));
1924
1925         if (icr & E1000_ICR_OTHER) {
1926                 if (!(icr & E1000_ICR_LSC))
1927                         goto no_link_interrupt;
1928                 hw->mac.get_link_status = true;
1929                 /* guard against interrupt when we're going down */
1930                 if (!test_bit(__E1000_DOWN, &adapter->state))
1931                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1932         }
1933
1934 no_link_interrupt:
1935         if (!test_bit(__E1000_DOWN, &adapter->state))
1936                 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1937
1938         return IRQ_HANDLED;
1939 }
1940
1941 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1942 {
1943         struct net_device *netdev = data;
1944         struct e1000_adapter *adapter = netdev_priv(netdev);
1945         struct e1000_hw *hw = &adapter->hw;
1946         struct e1000_ring *tx_ring = adapter->tx_ring;
1947
1948         adapter->total_tx_bytes = 0;
1949         adapter->total_tx_packets = 0;
1950
1951         if (!e1000_clean_tx_irq(tx_ring))
1952                 /* Ring was not completely cleaned, so fire another interrupt */
1953                 ew32(ICS, tx_ring->ims_val);
1954
1955         return IRQ_HANDLED;
1956 }
1957
1958 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1959 {
1960         struct net_device *netdev = data;
1961         struct e1000_adapter *adapter = netdev_priv(netdev);
1962         struct e1000_ring *rx_ring = adapter->rx_ring;
1963
1964         /* Write the ITR value calculated at the end of the
1965          * previous interrupt.
1966          */
1967         if (rx_ring->set_itr) {
1968                 writel(1000000000 / (rx_ring->itr_val * 256),
1969                        rx_ring->itr_register);
1970                 rx_ring->set_itr = 0;
1971         }
1972
1973         if (napi_schedule_prep(&adapter->napi)) {
1974                 adapter->total_rx_bytes = 0;
1975                 adapter->total_rx_packets = 0;
1976                 __napi_schedule(&adapter->napi);
1977         }
1978         return IRQ_HANDLED;
1979 }
1980
1981 /**
1982  * e1000_configure_msix - Configure MSI-X hardware
1983  *
1984  * e1000_configure_msix sets up the hardware to properly
1985  * generate MSI-X interrupts.
1986  **/
1987 static void e1000_configure_msix(struct e1000_adapter *adapter)
1988 {
1989         struct e1000_hw *hw = &adapter->hw;
1990         struct e1000_ring *rx_ring = adapter->rx_ring;
1991         struct e1000_ring *tx_ring = adapter->tx_ring;
1992         int vector = 0;
1993         u32 ctrl_ext, ivar = 0;
1994
1995         adapter->eiac_mask = 0;
1996
1997         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1998         if (hw->mac.type == e1000_82574) {
1999                 u32 rfctl = er32(RFCTL);
2000
2001                 rfctl |= E1000_RFCTL_ACK_DIS;
2002                 ew32(RFCTL, rfctl);
2003         }
2004
2005         /* Configure Rx vector */
2006         rx_ring->ims_val = E1000_IMS_RXQ0;
2007         adapter->eiac_mask |= rx_ring->ims_val;
2008         if (rx_ring->itr_val)
2009                 writel(1000000000 / (rx_ring->itr_val * 256),
2010                        rx_ring->itr_register);
2011         else
2012                 writel(1, rx_ring->itr_register);
2013         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2014
2015         /* Configure Tx vector */
2016         tx_ring->ims_val = E1000_IMS_TXQ0;
2017         vector++;
2018         if (tx_ring->itr_val)
2019                 writel(1000000000 / (tx_ring->itr_val * 256),
2020                        tx_ring->itr_register);
2021         else
2022                 writel(1, tx_ring->itr_register);
2023         adapter->eiac_mask |= tx_ring->ims_val;
2024         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2025
2026         /* set vector for Other Causes, e.g. link changes */
2027         vector++;
2028         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2029         if (rx_ring->itr_val)
2030                 writel(1000000000 / (rx_ring->itr_val * 256),
2031                        hw->hw_addr + E1000_EITR_82574(vector));
2032         else
2033                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2034
2035         /* Cause Tx interrupts on every write back */
2036         ivar |= (1 << 31);
2037
2038         ew32(IVAR, ivar);
2039
2040         /* enable MSI-X PBA support */
2041         ctrl_ext = er32(CTRL_EXT);
2042         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
2043
2044         /* Auto-Mask Other interrupts upon ICR read */
2045         ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
2046         ctrl_ext |= E1000_CTRL_EXT_EIAME;
2047         ew32(CTRL_EXT, ctrl_ext);
2048         e1e_flush();
2049 }
2050
2051 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2052 {
2053         if (adapter->msix_entries) {
2054                 pci_disable_msix(adapter->pdev);
2055                 kfree(adapter->msix_entries);
2056                 adapter->msix_entries = NULL;
2057         } else if (adapter->flags & FLAG_MSI_ENABLED) {
2058                 pci_disable_msi(adapter->pdev);
2059                 adapter->flags &= ~FLAG_MSI_ENABLED;
2060         }
2061 }
2062
2063 /**
2064  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2065  *
2066  * Attempt to configure interrupts using the best available
2067  * capabilities of the hardware and kernel.
2068  **/
2069 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2070 {
2071         int err;
2072         int i;
2073
2074         switch (adapter->int_mode) {
2075         case E1000E_INT_MODE_MSIX:
2076                 if (adapter->flags & FLAG_HAS_MSIX) {
2077                         adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2078                         adapter->msix_entries = kcalloc(adapter->num_vectors,
2079                                                         sizeof(struct
2080                                                                msix_entry),
2081                                                         GFP_KERNEL);
2082                         if (adapter->msix_entries) {
2083                                 struct e1000_adapter *a = adapter;
2084
2085                                 for (i = 0; i < adapter->num_vectors; i++)
2086                                         adapter->msix_entries[i].entry = i;
2087
2088                                 err = pci_enable_msix_range(a->pdev,
2089                                                             a->msix_entries,
2090                                                             a->num_vectors,
2091                                                             a->num_vectors);
2092                                 if (err > 0)
2093                                         return;
2094                         }
2095                         /* MSI-X failed, so fall through and try MSI */
2096                         e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2097                         e1000e_reset_interrupt_capability(adapter);
2098                 }
2099                 adapter->int_mode = E1000E_INT_MODE_MSI;
2100                 /* Fall through */
2101         case E1000E_INT_MODE_MSI:
2102                 if (!pci_enable_msi(adapter->pdev)) {
2103                         adapter->flags |= FLAG_MSI_ENABLED;
2104                 } else {
2105                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
2106                         e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2107                 }
2108                 /* Fall through */
2109         case E1000E_INT_MODE_LEGACY:
2110                 /* Don't do anything; this is the system default */
2111                 break;
2112         }
2113
2114         /* store the number of vectors being used */
2115         adapter->num_vectors = 1;
2116 }
2117
2118 /**
2119  * e1000_request_msix - Initialize MSI-X interrupts
2120  *
2121  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2122  * kernel.
2123  **/
2124 static int e1000_request_msix(struct e1000_adapter *adapter)
2125 {
2126         struct net_device *netdev = adapter->netdev;
2127         int err = 0, vector = 0;
2128
2129         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2130                 snprintf(adapter->rx_ring->name,
2131                          sizeof(adapter->rx_ring->name) - 1,
2132                          "%s-rx-0", netdev->name);
2133         else
2134                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2135         err = request_irq(adapter->msix_entries[vector].vector,
2136                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2137                           netdev);
2138         if (err)
2139                 return err;
2140         adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2141             E1000_EITR_82574(vector);
2142         adapter->rx_ring->itr_val = adapter->itr;
2143         vector++;
2144
2145         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2146                 snprintf(adapter->tx_ring->name,
2147                          sizeof(adapter->tx_ring->name) - 1,
2148                          "%s-tx-0", netdev->name);
2149         else
2150                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2151         err = request_irq(adapter->msix_entries[vector].vector,
2152                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2153                           netdev);
2154         if (err)
2155                 return err;
2156         adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2157             E1000_EITR_82574(vector);
2158         adapter->tx_ring->itr_val = adapter->itr;
2159         vector++;
2160
2161         err = request_irq(adapter->msix_entries[vector].vector,
2162                           e1000_msix_other, 0, netdev->name, netdev);
2163         if (err)
2164                 return err;
2165
2166         e1000_configure_msix(adapter);
2167
2168         return 0;
2169 }
2170
2171 /**
2172  * e1000_request_irq - initialize interrupts
2173  *
2174  * Attempts to configure interrupts using the best available
2175  * capabilities of the hardware and kernel.
2176  **/
2177 static int e1000_request_irq(struct e1000_adapter *adapter)
2178 {
2179         struct net_device *netdev = adapter->netdev;
2180         int err;
2181
2182         if (adapter->msix_entries) {
2183                 err = e1000_request_msix(adapter);
2184                 if (!err)
2185                         return err;
2186                 /* fall back to MSI */
2187                 e1000e_reset_interrupt_capability(adapter);
2188                 adapter->int_mode = E1000E_INT_MODE_MSI;
2189                 e1000e_set_interrupt_capability(adapter);
2190         }
2191         if (adapter->flags & FLAG_MSI_ENABLED) {
2192                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2193                                   netdev->name, netdev);
2194                 if (!err)
2195                         return err;
2196
2197                 /* fall back to legacy interrupt */
2198                 e1000e_reset_interrupt_capability(adapter);
2199                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2200         }
2201
2202         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2203                           netdev->name, netdev);
2204         if (err)
2205                 e_err("Unable to allocate interrupt, Error: %d\n", err);
2206
2207         return err;
2208 }
2209
2210 static void e1000_free_irq(struct e1000_adapter *adapter)
2211 {
2212         struct net_device *netdev = adapter->netdev;
2213
2214         if (adapter->msix_entries) {
2215                 int vector = 0;
2216
2217                 free_irq(adapter->msix_entries[vector].vector, netdev);
2218                 vector++;
2219
2220                 free_irq(adapter->msix_entries[vector].vector, netdev);
2221                 vector++;
2222
2223                 /* Other Causes interrupt vector */
2224                 free_irq(adapter->msix_entries[vector].vector, netdev);
2225                 return;
2226         }
2227
2228         free_irq(adapter->pdev->irq, netdev);
2229 }
2230
2231 /**
2232  * e1000_irq_disable - Mask off interrupt generation on the NIC
2233  **/
2234 static void e1000_irq_disable(struct e1000_adapter *adapter)
2235 {
2236         struct e1000_hw *hw = &adapter->hw;
2237
2238         ew32(IMC, ~0);
2239         if (adapter->msix_entries)
2240                 ew32(EIAC_82574, 0);
2241         e1e_flush();
2242
2243         if (adapter->msix_entries) {
2244                 int i;
2245
2246                 for (i = 0; i < adapter->num_vectors; i++)
2247                         synchronize_irq(adapter->msix_entries[i].vector);
2248         } else {
2249                 synchronize_irq(adapter->pdev->irq);
2250         }
2251 }
2252
2253 /**
2254  * e1000_irq_enable - Enable default interrupt generation settings
2255  **/
2256 static void e1000_irq_enable(struct e1000_adapter *adapter)
2257 {
2258         struct e1000_hw *hw = &adapter->hw;
2259
2260         if (adapter->msix_entries) {
2261                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2262                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2263         } else if ((hw->mac.type == e1000_pch_lpt) ||
2264                    (hw->mac.type == e1000_pch_spt)) {
2265                 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2266         } else {
2267                 ew32(IMS, IMS_ENABLE_MASK);
2268         }
2269         e1e_flush();
2270 }
2271
2272 /**
2273  * e1000e_get_hw_control - get control of the h/w from f/w
2274  * @adapter: address of board private structure
2275  *
2276  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2277  * For ASF and Pass Through versions of f/w this means that
2278  * the driver is loaded. For AMT version (only with 82573)
2279  * of the f/w this means that the network i/f is open.
2280  **/
2281 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2282 {
2283         struct e1000_hw *hw = &adapter->hw;
2284         u32 ctrl_ext;
2285         u32 swsm;
2286
2287         /* Let firmware know the driver has taken over */
2288         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2289                 swsm = er32(SWSM);
2290                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2291         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2292                 ctrl_ext = er32(CTRL_EXT);
2293                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2294         }
2295 }
2296
2297 /**
2298  * e1000e_release_hw_control - release control of the h/w to f/w
2299  * @adapter: address of board private structure
2300  *
2301  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2302  * For ASF and Pass Through versions of f/w this means that the
2303  * driver is no longer loaded. For AMT version (only with 82573) i
2304  * of the f/w this means that the network i/f is closed.
2305  *
2306  **/
2307 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2308 {
2309         struct e1000_hw *hw = &adapter->hw;
2310         u32 ctrl_ext;
2311         u32 swsm;
2312
2313         /* Let firmware taken over control of h/w */
2314         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2315                 swsm = er32(SWSM);
2316                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2317         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2318                 ctrl_ext = er32(CTRL_EXT);
2319                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2320         }
2321 }
2322
2323 /**
2324  * e1000_alloc_ring_dma - allocate memory for a ring structure
2325  **/
2326 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2327                                 struct e1000_ring *ring)
2328 {
2329         struct pci_dev *pdev = adapter->pdev;
2330
2331         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2332                                         GFP_KERNEL);
2333         if (!ring->desc)
2334                 return -ENOMEM;
2335
2336         return 0;
2337 }
2338
2339 /**
2340  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2341  * @tx_ring: Tx descriptor ring
2342  *
2343  * Return 0 on success, negative on failure
2344  **/
2345 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2346 {
2347         struct e1000_adapter *adapter = tx_ring->adapter;
2348         int err = -ENOMEM, size;
2349
2350         size = sizeof(struct e1000_buffer) * tx_ring->count;
2351         tx_ring->buffer_info = vzalloc(size);
2352         if (!tx_ring->buffer_info)
2353                 goto err;
2354
2355         /* round up to nearest 4K */
2356         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2357         tx_ring->size = ALIGN(tx_ring->size, 4096);
2358
2359         err = e1000_alloc_ring_dma(adapter, tx_ring);
2360         if (err)
2361                 goto err;
2362
2363         tx_ring->next_to_use = 0;
2364         tx_ring->next_to_clean = 0;
2365
2366         return 0;
2367 err:
2368         vfree(tx_ring->buffer_info);
2369         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2370         return err;
2371 }
2372
2373 /**
2374  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2375  * @rx_ring: Rx descriptor ring
2376  *
2377  * Returns 0 on success, negative on failure
2378  **/
2379 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2380 {
2381         struct e1000_adapter *adapter = rx_ring->adapter;
2382         struct e1000_buffer *buffer_info;
2383         int i, size, desc_len, err = -ENOMEM;
2384
2385         size = sizeof(struct e1000_buffer) * rx_ring->count;
2386         rx_ring->buffer_info = vzalloc(size);
2387         if (!rx_ring->buffer_info)
2388                 goto err;
2389
2390         for (i = 0; i < rx_ring->count; i++) {
2391                 buffer_info = &rx_ring->buffer_info[i];
2392                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2393                                                 sizeof(struct e1000_ps_page),
2394                                                 GFP_KERNEL);
2395                 if (!buffer_info->ps_pages)
2396                         goto err_pages;
2397         }
2398
2399         desc_len = sizeof(union e1000_rx_desc_packet_split);
2400
2401         /* Round up to nearest 4K */
2402         rx_ring->size = rx_ring->count * desc_len;
2403         rx_ring->size = ALIGN(rx_ring->size, 4096);
2404
2405         err = e1000_alloc_ring_dma(adapter, rx_ring);
2406         if (err)
2407                 goto err_pages;
2408
2409         rx_ring->next_to_clean = 0;
2410         rx_ring->next_to_use = 0;
2411         rx_ring->rx_skb_top = NULL;
2412
2413         return 0;
2414
2415 err_pages:
2416         for (i = 0; i < rx_ring->count; i++) {
2417                 buffer_info = &rx_ring->buffer_info[i];
2418                 kfree(buffer_info->ps_pages);
2419         }
2420 err:
2421         vfree(rx_ring->buffer_info);
2422         e_err("Unable to allocate memory for the receive descriptor ring\n");
2423         return err;
2424 }
2425
2426 /**
2427  * e1000_clean_tx_ring - Free Tx Buffers
2428  * @tx_ring: Tx descriptor ring
2429  **/
2430 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2431 {
2432         struct e1000_adapter *adapter = tx_ring->adapter;
2433         struct e1000_buffer *buffer_info;
2434         unsigned long size;
2435         unsigned int i;
2436
2437         for (i = 0; i < tx_ring->count; i++) {
2438                 buffer_info = &tx_ring->buffer_info[i];
2439                 e1000_put_txbuf(tx_ring, buffer_info);
2440         }
2441
2442         netdev_reset_queue(adapter->netdev);
2443         size = sizeof(struct e1000_buffer) * tx_ring->count;
2444         memset(tx_ring->buffer_info, 0, size);
2445
2446         memset(tx_ring->desc, 0, tx_ring->size);
2447
2448         tx_ring->next_to_use = 0;
2449         tx_ring->next_to_clean = 0;
2450
2451         writel(0, tx_ring->head);
2452         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2453                 e1000e_update_tdt_wa(tx_ring, 0);
2454         else
2455                 writel(0, tx_ring->tail);
2456 }
2457
2458 /**
2459  * e1000e_free_tx_resources - Free Tx Resources per Queue
2460  * @tx_ring: Tx descriptor ring
2461  *
2462  * Free all transmit software resources
2463  **/
2464 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2465 {
2466         struct e1000_adapter *adapter = tx_ring->adapter;
2467         struct pci_dev *pdev = adapter->pdev;
2468
2469         e1000_clean_tx_ring(tx_ring);
2470
2471         vfree(tx_ring->buffer_info);
2472         tx_ring->buffer_info = NULL;
2473
2474         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2475                           tx_ring->dma);
2476         tx_ring->desc = NULL;
2477 }
2478
2479 /**
2480  * e1000e_free_rx_resources - Free Rx Resources
2481  * @rx_ring: Rx descriptor ring
2482  *
2483  * Free all receive software resources
2484  **/
2485 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2486 {
2487         struct e1000_adapter *adapter = rx_ring->adapter;
2488         struct pci_dev *pdev = adapter->pdev;
2489         int i;
2490
2491         e1000_clean_rx_ring(rx_ring);
2492
2493         for (i = 0; i < rx_ring->count; i++)
2494                 kfree(rx_ring->buffer_info[i].ps_pages);
2495
2496         vfree(rx_ring->buffer_info);
2497         rx_ring->buffer_info = NULL;
2498
2499         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2500                           rx_ring->dma);
2501         rx_ring->desc = NULL;
2502 }
2503
2504 /**
2505  * e1000_update_itr - update the dynamic ITR value based on statistics
2506  * @adapter: pointer to adapter
2507  * @itr_setting: current adapter->itr
2508  * @packets: the number of packets during this measurement interval
2509  * @bytes: the number of bytes during this measurement interval
2510  *
2511  *      Stores a new ITR value based on packets and byte
2512  *      counts during the last interrupt.  The advantage of per interrupt
2513  *      computation is faster updates and more accurate ITR for the current
2514  *      traffic pattern.  Constants in this function were computed
2515  *      based on theoretical maximum wire speed and thresholds were set based
2516  *      on testing data as well as attempting to minimize response time
2517  *      while increasing bulk throughput.  This functionality is controlled
2518  *      by the InterruptThrottleRate module parameter.
2519  **/
2520 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2521 {
2522         unsigned int retval = itr_setting;
2523
2524         if (packets == 0)
2525                 return itr_setting;
2526
2527         switch (itr_setting) {
2528         case lowest_latency:
2529                 /* handle TSO and jumbo frames */
2530                 if (bytes / packets > 8000)
2531                         retval = bulk_latency;
2532                 else if ((packets < 5) && (bytes > 512))
2533                         retval = low_latency;
2534                 break;
2535         case low_latency:       /* 50 usec aka 20000 ints/s */
2536                 if (bytes > 10000) {
2537                         /* this if handles the TSO accounting */
2538                         if (bytes / packets > 8000)
2539                                 retval = bulk_latency;
2540                         else if ((packets < 10) || ((bytes / packets) > 1200))
2541                                 retval = bulk_latency;
2542                         else if ((packets > 35))
2543                                 retval = lowest_latency;
2544                 } else if (bytes / packets > 2000) {
2545                         retval = bulk_latency;
2546                 } else if (packets <= 2 && bytes < 512) {
2547                         retval = lowest_latency;
2548                 }
2549                 break;
2550         case bulk_latency:      /* 250 usec aka 4000 ints/s */
2551                 if (bytes > 25000) {
2552                         if (packets > 35)
2553                                 retval = low_latency;
2554                 } else if (bytes < 6000) {
2555                         retval = low_latency;
2556                 }
2557                 break;
2558         }
2559
2560         return retval;
2561 }
2562
2563 static void e1000_set_itr(struct e1000_adapter *adapter)
2564 {
2565         u16 current_itr;
2566         u32 new_itr = adapter->itr;
2567
2568         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2569         if (adapter->link_speed != SPEED_1000) {
2570                 current_itr = 0;
2571                 new_itr = 4000;
2572                 goto set_itr_now;
2573         }
2574
2575         if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2576                 new_itr = 0;
2577                 goto set_itr_now;
2578         }
2579
2580         adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2581                                            adapter->total_tx_packets,
2582                                            adapter->total_tx_bytes);
2583         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2584         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2585                 adapter->tx_itr = low_latency;
2586
2587         adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2588                                            adapter->total_rx_packets,
2589                                            adapter->total_rx_bytes);
2590         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2591         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2592                 adapter->rx_itr = low_latency;
2593
2594         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2595
2596         /* counts and packets in update_itr are dependent on these numbers */
2597         switch (current_itr) {
2598         case lowest_latency:
2599                 new_itr = 70000;
2600                 break;
2601         case low_latency:
2602                 new_itr = 20000;        /* aka hwitr = ~200 */
2603                 break;
2604         case bulk_latency:
2605                 new_itr = 4000;
2606                 break;
2607         default:
2608                 break;
2609         }
2610
2611 set_itr_now:
2612         if (new_itr != adapter->itr) {
2613                 /* this attempts to bias the interrupt rate towards Bulk
2614                  * by adding intermediate steps when interrupt rate is
2615                  * increasing
2616                  */
2617                 new_itr = new_itr > adapter->itr ?
2618                     min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2619                 adapter->itr = new_itr;
2620                 adapter->rx_ring->itr_val = new_itr;
2621                 if (adapter->msix_entries)
2622                         adapter->rx_ring->set_itr = 1;
2623                 else
2624                         e1000e_write_itr(adapter, new_itr);
2625         }
2626 }
2627
2628 /**
2629  * e1000e_write_itr - write the ITR value to the appropriate registers
2630  * @adapter: address of board private structure
2631  * @itr: new ITR value to program
2632  *
2633  * e1000e_write_itr determines if the adapter is in MSI-X mode
2634  * and, if so, writes the EITR registers with the ITR value.
2635  * Otherwise, it writes the ITR value into the ITR register.
2636  **/
2637 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2638 {
2639         struct e1000_hw *hw = &adapter->hw;
2640         u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2641
2642         if (adapter->msix_entries) {
2643                 int vector;
2644
2645                 for (vector = 0; vector < adapter->num_vectors; vector++)
2646                         writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2647         } else {
2648                 ew32(ITR, new_itr);
2649         }
2650 }
2651
2652 /**
2653  * e1000_alloc_queues - Allocate memory for all rings
2654  * @adapter: board private structure to initialize
2655  **/
2656 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2657 {
2658         int size = sizeof(struct e1000_ring);
2659
2660         adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2661         if (!adapter->tx_ring)
2662                 goto err;
2663         adapter->tx_ring->count = adapter->tx_ring_count;
2664         adapter->tx_ring->adapter = adapter;
2665
2666         adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2667         if (!adapter->rx_ring)
2668                 goto err;
2669         adapter->rx_ring->count = adapter->rx_ring_count;
2670         adapter->rx_ring->adapter = adapter;
2671
2672         return 0;
2673 err:
2674         e_err("Unable to allocate memory for queues\n");
2675         kfree(adapter->rx_ring);
2676         kfree(adapter->tx_ring);
2677         return -ENOMEM;
2678 }
2679
2680 /**
2681  * e1000e_poll - NAPI Rx polling callback
2682  * @napi: struct associated with this polling callback
2683  * @weight: number of packets driver is allowed to process this poll
2684  **/
2685 static int e1000e_poll(struct napi_struct *napi, int weight)
2686 {
2687         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2688                                                      napi);
2689         struct e1000_hw *hw = &adapter->hw;
2690         struct net_device *poll_dev = adapter->netdev;
2691         int tx_cleaned = 1, work_done = 0;
2692
2693         adapter = netdev_priv(poll_dev);
2694
2695         if (!adapter->msix_entries ||
2696             (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2697                 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2698
2699         adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2700
2701         if (!tx_cleaned)
2702                 work_done = weight;
2703
2704         /* If weight not fully consumed, exit the polling mode */
2705         if (work_done < weight) {
2706                 if (adapter->itr_setting & 3)
2707                         e1000_set_itr(adapter);
2708                 napi_complete(napi);
2709                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2710                         if (adapter->msix_entries)
2711                                 ew32(IMS, adapter->rx_ring->ims_val);
2712                         else
2713                                 e1000_irq_enable(adapter);
2714                 }
2715         }
2716
2717         return work_done;
2718 }
2719
2720 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2721                                  __always_unused __be16 proto, u16 vid)
2722 {
2723         struct e1000_adapter *adapter = netdev_priv(netdev);
2724         struct e1000_hw *hw = &adapter->hw;
2725         u32 vfta, index;
2726
2727         /* don't update vlan cookie if already programmed */
2728         if ((adapter->hw.mng_cookie.status &
2729              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2730             (vid == adapter->mng_vlan_id))
2731                 return 0;
2732
2733         /* add VID to filter table */
2734         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2735                 index = (vid >> 5) & 0x7F;
2736                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2737                 vfta |= (1 << (vid & 0x1F));
2738                 hw->mac.ops.write_vfta(hw, index, vfta);
2739         }
2740
2741         set_bit(vid, adapter->active_vlans);
2742
2743         return 0;
2744 }
2745
2746 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2747                                   __always_unused __be16 proto, u16 vid)
2748 {
2749         struct e1000_adapter *adapter = netdev_priv(netdev);
2750         struct e1000_hw *hw = &adapter->hw;
2751         u32 vfta, index;
2752
2753         if ((adapter->hw.mng_cookie.status &
2754              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2755             (vid == adapter->mng_vlan_id)) {
2756                 /* release control to f/w */
2757                 e1000e_release_hw_control(adapter);
2758                 return 0;
2759         }
2760
2761         /* remove VID from filter table */
2762         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2763                 index = (vid >> 5) & 0x7F;
2764                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2765                 vfta &= ~(1 << (vid & 0x1F));
2766                 hw->mac.ops.write_vfta(hw, index, vfta);
2767         }
2768
2769         clear_bit(vid, adapter->active_vlans);
2770
2771         return 0;
2772 }
2773
2774 /**
2775  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2776  * @adapter: board private structure to initialize
2777  **/
2778 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2779 {
2780         struct net_device *netdev = adapter->netdev;
2781         struct e1000_hw *hw = &adapter->hw;
2782         u32 rctl;
2783
2784         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2785                 /* disable VLAN receive filtering */
2786                 rctl = er32(RCTL);
2787                 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2788                 ew32(RCTL, rctl);
2789
2790                 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2791                         e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2792                                                adapter->mng_vlan_id);
2793                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2794                 }
2795         }
2796 }
2797
2798 /**
2799  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2800  * @adapter: board private structure to initialize
2801  **/
2802 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2803 {
2804         struct e1000_hw *hw = &adapter->hw;
2805         u32 rctl;
2806
2807         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2808                 /* enable VLAN receive filtering */
2809                 rctl = er32(RCTL);
2810                 rctl |= E1000_RCTL_VFE;
2811                 rctl &= ~E1000_RCTL_CFIEN;
2812                 ew32(RCTL, rctl);
2813         }
2814 }
2815
2816 /**
2817  * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2818  * @adapter: board private structure to initialize
2819  **/
2820 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2821 {
2822         struct e1000_hw *hw = &adapter->hw;
2823         u32 ctrl;
2824
2825         /* disable VLAN tag insert/strip */
2826         ctrl = er32(CTRL);
2827         ctrl &= ~E1000_CTRL_VME;
2828         ew32(CTRL, ctrl);
2829 }
2830
2831 /**
2832  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2833  * @adapter: board private structure to initialize
2834  **/
2835 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2836 {
2837         struct e1000_hw *hw = &adapter->hw;
2838         u32 ctrl;
2839
2840         /* enable VLAN tag insert/strip */
2841         ctrl = er32(CTRL);
2842         ctrl |= E1000_CTRL_VME;
2843         ew32(CTRL, ctrl);
2844 }
2845
2846 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2847 {
2848         struct net_device *netdev = adapter->netdev;
2849         u16 vid = adapter->hw.mng_cookie.vlan_id;
2850         u16 old_vid = adapter->mng_vlan_id;
2851
2852         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2853                 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2854                 adapter->mng_vlan_id = vid;
2855         }
2856
2857         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2858                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2859 }
2860
2861 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2862 {
2863         u16 vid;
2864
2865         e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2866
2867         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2868             e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2869 }
2870
2871 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2872 {
2873         struct e1000_hw *hw = &adapter->hw;
2874         u32 manc, manc2h, mdef, i, j;
2875
2876         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2877                 return;
2878
2879         manc = er32(MANC);
2880
2881         /* enable receiving management packets to the host. this will probably
2882          * generate destination unreachable messages from the host OS, but
2883          * the packets will be handled on SMBUS
2884          */
2885         manc |= E1000_MANC_EN_MNG2HOST;
2886         manc2h = er32(MANC2H);
2887
2888         switch (hw->mac.type) {
2889         default:
2890                 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2891                 break;
2892         case e1000_82574:
2893         case e1000_82583:
2894                 /* Check if IPMI pass-through decision filter already exists;
2895                  * if so, enable it.
2896                  */
2897                 for (i = 0, j = 0; i < 8; i++) {
2898                         mdef = er32(MDEF(i));
2899
2900                         /* Ignore filters with anything other than IPMI ports */
2901                         if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2902                                 continue;
2903
2904                         /* Enable this decision filter in MANC2H */
2905                         if (mdef)
2906                                 manc2h |= (1 << i);
2907
2908                         j |= mdef;
2909                 }
2910
2911                 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2912                         break;
2913
2914                 /* Create new decision filter in an empty filter */
2915                 for (i = 0, j = 0; i < 8; i++)
2916                         if (er32(MDEF(i)) == 0) {
2917                                 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2918                                                E1000_MDEF_PORT_664));
2919                                 manc2h |= (1 << 1);
2920                                 j++;
2921                                 break;
2922                         }
2923
2924                 if (!j)
2925                         e_warn("Unable to create IPMI pass-through filter\n");
2926                 break;
2927         }
2928
2929         ew32(MANC2H, manc2h);
2930         ew32(MANC, manc);
2931 }
2932
2933 /**
2934  * e1000_configure_tx - Configure Transmit Unit after Reset
2935  * @adapter: board private structure
2936  *
2937  * Configure the Tx unit of the MAC after a reset.
2938  **/
2939 static void e1000_configure_tx(struct e1000_adapter *adapter)
2940 {
2941         struct e1000_hw *hw = &adapter->hw;
2942         struct e1000_ring *tx_ring = adapter->tx_ring;
2943         u64 tdba;
2944         u32 tdlen, tctl, tarc;
2945
2946         /* Setup the HW Tx Head and Tail descriptor pointers */
2947         tdba = tx_ring->dma;
2948         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2949         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2950         ew32(TDBAH(0), (tdba >> 32));
2951         ew32(TDLEN(0), tdlen);
2952         ew32(TDH(0), 0);
2953         ew32(TDT(0), 0);
2954         tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2955         tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2956
2957         /* Set the Tx Interrupt Delay register */
2958         ew32(TIDV, adapter->tx_int_delay);
2959         /* Tx irq moderation */
2960         ew32(TADV, adapter->tx_abs_int_delay);
2961
2962         if (adapter->flags2 & FLAG2_DMA_BURST) {
2963                 u32 txdctl = er32(TXDCTL(0));
2964
2965                 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2966                             E1000_TXDCTL_WTHRESH);
2967                 /* set up some performance related parameters to encourage the
2968                  * hardware to use the bus more efficiently in bursts, depends
2969                  * on the tx_int_delay to be enabled,
2970                  * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2971                  * hthresh = 1 ==> prefetch when one or more available
2972                  * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2973                  * BEWARE: this seems to work but should be considered first if
2974                  * there are Tx hangs or other Tx related bugs
2975                  */
2976                 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2977                 ew32(TXDCTL(0), txdctl);
2978         }
2979         /* erratum work around: set txdctl the same for both queues */
2980         ew32(TXDCTL(1), er32(TXDCTL(0)));
2981
2982         /* Program the Transmit Control Register */
2983         tctl = er32(TCTL);
2984         tctl &= ~E1000_TCTL_CT;
2985         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2986                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2987
2988         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2989                 tarc = er32(TARC(0));
2990                 /* set the speed mode bit, we'll clear it if we're not at
2991                  * gigabit link later
2992                  */
2993 #define SPEED_MODE_BIT (1 << 21)
2994                 tarc |= SPEED_MODE_BIT;
2995                 ew32(TARC(0), tarc);
2996         }
2997
2998         /* errata: program both queues to unweighted RR */
2999         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
3000                 tarc = er32(TARC(0));
3001                 tarc |= 1;
3002                 ew32(TARC(0), tarc);
3003                 tarc = er32(TARC(1));
3004                 tarc |= 1;
3005                 ew32(TARC(1), tarc);
3006         }
3007
3008         /* Setup Transmit Descriptor Settings for eop descriptor */
3009         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
3010
3011         /* only set IDE if we are delaying interrupts using the timers */
3012         if (adapter->tx_int_delay)
3013                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3014
3015         /* enable Report Status bit */
3016         adapter->txd_cmd |= E1000_TXD_CMD_RS;
3017
3018         ew32(TCTL, tctl);
3019
3020         hw->mac.ops.config_collision_dist(hw);
3021
3022         /* SPT Si errata workaround to avoid data corruption */
3023         if (hw->mac.type == e1000_pch_spt) {
3024                 u32 reg_val;
3025
3026                 reg_val = er32(IOSFPC);
3027                 reg_val |= E1000_RCTL_RDMTS_HEX;
3028                 ew32(IOSFPC, reg_val);
3029
3030                 reg_val = er32(TARC(0));
3031                 reg_val |= E1000_TARC0_CB_MULTIQ_3_REQ;
3032                 ew32(TARC(0), reg_val);
3033         }
3034 }
3035
3036 /**
3037  * e1000_setup_rctl - configure the receive control registers
3038  * @adapter: Board private structure
3039  **/
3040 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3041                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3042 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3043 {
3044         struct e1000_hw *hw = &adapter->hw;
3045         u32 rctl, rfctl;
3046         u32 pages = 0;
3047
3048         /* Workaround Si errata on PCHx - configure jumbo frame flow.
3049          * If jumbo frames not set, program related MAC/PHY registers
3050          * to h/w defaults
3051          */
3052         if (hw->mac.type >= e1000_pch2lan) {
3053                 s32 ret_val;
3054
3055                 if (adapter->netdev->mtu > ETH_DATA_LEN)
3056                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3057                 else
3058                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3059
3060                 if (ret_val)
3061                         e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3062         }
3063
3064         /* Program MC offset vector base */
3065         rctl = er32(RCTL);
3066         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3067         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3068             E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3069             (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3070
3071         /* Do not Store bad packets */
3072         rctl &= ~E1000_RCTL_SBP;
3073
3074         /* Enable Long Packet receive */
3075         if (adapter->netdev->mtu <= ETH_DATA_LEN)
3076                 rctl &= ~E1000_RCTL_LPE;
3077         else
3078                 rctl |= E1000_RCTL_LPE;
3079
3080         /* Some systems expect that the CRC is included in SMBUS traffic. The
3081          * hardware strips the CRC before sending to both SMBUS (BMC) and to
3082          * host memory when this is enabled
3083          */
3084         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3085                 rctl |= E1000_RCTL_SECRC;
3086
3087         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3088         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3089                 u16 phy_data;
3090
3091                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3092                 phy_data &= 0xfff8;
3093                 phy_data |= (1 << 2);
3094                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3095
3096                 e1e_rphy(hw, 22, &phy_data);
3097                 phy_data &= 0x0fff;
3098                 phy_data |= (1 << 14);
3099                 e1e_wphy(hw, 0x10, 0x2823);
3100                 e1e_wphy(hw, 0x11, 0x0003);
3101                 e1e_wphy(hw, 22, phy_data);
3102         }
3103
3104         /* Setup buffer sizes */
3105         rctl &= ~E1000_RCTL_SZ_4096;
3106         rctl |= E1000_RCTL_BSEX;
3107         switch (adapter->rx_buffer_len) {
3108         case 2048:
3109         default:
3110                 rctl |= E1000_RCTL_SZ_2048;
3111                 rctl &= ~E1000_RCTL_BSEX;
3112                 break;
3113         case 4096:
3114                 rctl |= E1000_RCTL_SZ_4096;
3115                 break;
3116         case 8192:
3117                 rctl |= E1000_RCTL_SZ_8192;
3118                 break;
3119         case 16384:
3120                 rctl |= E1000_RCTL_SZ_16384;
3121                 break;
3122         }
3123
3124         /* Enable Extended Status in all Receive Descriptors */
3125         rfctl = er32(RFCTL);
3126         rfctl |= E1000_RFCTL_EXTEN;
3127         ew32(RFCTL, rfctl);
3128
3129         /* 82571 and greater support packet-split where the protocol
3130          * header is placed in skb->data and the packet data is
3131          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3132          * In the case of a non-split, skb->data is linearly filled,
3133          * followed by the page buffers.  Therefore, skb->data is
3134          * sized to hold the largest protocol header.
3135          *
3136          * allocations using alloc_page take too long for regular MTU
3137          * so only enable packet split for jumbo frames
3138          *
3139          * Using pages when the page size is greater than 16k wastes
3140          * a lot of memory, since we allocate 3 pages at all times
3141          * per packet.
3142          */
3143         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3144         if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3145                 adapter->rx_ps_pages = pages;
3146         else
3147                 adapter->rx_ps_pages = 0;
3148
3149         if (adapter->rx_ps_pages) {
3150                 u32 psrctl = 0;
3151
3152                 /* Enable Packet split descriptors */
3153                 rctl |= E1000_RCTL_DTYP_PS;
3154
3155                 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3156
3157                 switch (adapter->rx_ps_pages) {
3158                 case 3:
3159                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3160                         /* fall-through */
3161                 case 2:
3162                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3163                         /* fall-through */
3164                 case 1:
3165                         psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3166                         break;
3167                 }
3168
3169                 ew32(PSRCTL, psrctl);
3170         }
3171
3172         /* This is useful for sniffing bad packets. */
3173         if (adapter->netdev->features & NETIF_F_RXALL) {
3174                 /* UPE and MPE will be handled by normal PROMISC logic
3175                  * in e1000e_set_rx_mode
3176                  */
3177                 rctl |= (E1000_RCTL_SBP |       /* Receive bad packets */
3178                          E1000_RCTL_BAM |       /* RX All Bcast Pkts */
3179                          E1000_RCTL_PMCF);      /* RX All MAC Ctrl Pkts */
3180
3181                 rctl &= ~(E1000_RCTL_VFE |      /* Disable VLAN filter */
3182                           E1000_RCTL_DPF |      /* Allow filtered pause */
3183                           E1000_RCTL_CFIEN);    /* Dis VLAN CFIEN Filter */
3184                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3185                  * and that breaks VLANs.
3186                  */
3187         }
3188
3189         ew32(RCTL, rctl);
3190         /* just started the receive unit, no need to restart */
3191         adapter->flags &= ~FLAG_RESTART_NOW;
3192 }
3193
3194 /**
3195  * e1000_configure_rx - Configure Receive Unit after Reset
3196  * @adapter: board private structure
3197  *
3198  * Configure the Rx unit of the MAC after a reset.
3199  **/
3200 static void e1000_configure_rx(struct e1000_adapter *adapter)
3201 {
3202         struct e1000_hw *hw = &adapter->hw;
3203         struct e1000_ring *rx_ring = adapter->rx_ring;
3204         u64 rdba;
3205         u32 rdlen, rctl, rxcsum, ctrl_ext;
3206
3207         if (adapter->rx_ps_pages) {
3208                 /* this is a 32 byte descriptor */
3209                 rdlen = rx_ring->count *
3210                     sizeof(union e1000_rx_desc_packet_split);
3211                 adapter->clean_rx = e1000_clean_rx_irq_ps;
3212                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3213         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3214                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3215                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3216                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3217         } else {
3218                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3219                 adapter->clean_rx = e1000_clean_rx_irq;
3220                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3221         }
3222
3223         /* disable receives while setting up the descriptors */
3224         rctl = er32(RCTL);
3225         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3226                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3227         e1e_flush();
3228         usleep_range(10000, 20000);
3229
3230         if (adapter->flags2 & FLAG2_DMA_BURST) {
3231                 /* set the writeback threshold (only takes effect if the RDTR
3232                  * is set). set GRAN=1 and write back up to 0x4 worth, and
3233                  * enable prefetching of 0x20 Rx descriptors
3234                  * granularity = 01
3235                  * wthresh = 04,
3236                  * hthresh = 04,
3237                  * pthresh = 0x20
3238                  */
3239                 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3240                 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3241
3242                 /* override the delay timers for enabling bursting, only if
3243                  * the value was not set by the user via module options
3244                  */
3245                 if (adapter->rx_int_delay == DEFAULT_RDTR)
3246                         adapter->rx_int_delay = BURST_RDTR;
3247                 if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3248                         adapter->rx_abs_int_delay = BURST_RADV;
3249         }
3250
3251         /* set the Receive Delay Timer Register */
3252         ew32(RDTR, adapter->rx_int_delay);
3253
3254         /* irq moderation */
3255         ew32(RADV, adapter->rx_abs_int_delay);
3256         if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3257                 e1000e_write_itr(adapter, adapter->itr);
3258
3259         ctrl_ext = er32(CTRL_EXT);
3260         /* Auto-Mask interrupts upon ICR access */
3261         ctrl_ext |= E1000_CTRL_EXT_IAME;
3262         ew32(IAM, 0xffffffff);
3263         ew32(CTRL_EXT, ctrl_ext);
3264         e1e_flush();
3265
3266         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3267          * the Base and Length of the Rx Descriptor Ring
3268          */
3269         rdba = rx_ring->dma;
3270         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3271         ew32(RDBAH(0), (rdba >> 32));
3272         ew32(RDLEN(0), rdlen);
3273         ew32(RDH(0), 0);
3274         ew32(RDT(0), 0);
3275         rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3276         rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3277
3278         /* Enable Receive Checksum Offload for TCP and UDP */
3279         rxcsum = er32(RXCSUM);
3280         if (adapter->netdev->features & NETIF_F_RXCSUM)
3281                 rxcsum |= E1000_RXCSUM_TUOFL;
3282         else
3283                 rxcsum &= ~E1000_RXCSUM_TUOFL;
3284         ew32(RXCSUM, rxcsum);
3285
3286         /* With jumbo frames, excessive C-state transition latencies result
3287          * in dropped transactions.
3288          */
3289         if (adapter->netdev->mtu > ETH_DATA_LEN) {
3290                 u32 lat =
3291                     ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3292                      adapter->max_frame_size) * 8 / 1000;
3293
3294                 if (adapter->flags & FLAG_IS_ICH) {
3295                         u32 rxdctl = er32(RXDCTL(0));
3296
3297                         ew32(RXDCTL(0), rxdctl | 0x3);
3298                 }
3299
3300                 pm_qos_update_request(&adapter->pm_qos_req, lat);
3301         } else {
3302                 pm_qos_update_request(&adapter->pm_qos_req,
3303                                       PM_QOS_DEFAULT_VALUE);
3304         }
3305
3306         /* Enable Receives */
3307         ew32(RCTL, rctl);
3308 }
3309
3310 /**
3311  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3312  * @netdev: network interface device structure
3313  *
3314  * Writes multicast address list to the MTA hash table.
3315  * Returns: -ENOMEM on failure
3316  *                0 on no addresses written
3317  *                X on writing X addresses to MTA
3318  */
3319 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3320 {
3321         struct e1000_adapter *adapter = netdev_priv(netdev);
3322         struct e1000_hw *hw = &adapter->hw;
3323         struct netdev_hw_addr *ha;
3324         u8 *mta_list;
3325         int i;
3326
3327         if (netdev_mc_empty(netdev)) {
3328                 /* nothing to program, so clear mc list */
3329                 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3330                 return 0;
3331         }
3332
3333         mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3334         if (!mta_list)
3335                 return -ENOMEM;
3336
3337         /* update_mc_addr_list expects a packed array of only addresses. */
3338         i = 0;
3339         netdev_for_each_mc_addr(ha, netdev)
3340             memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3341
3342         hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3343         kfree(mta_list);
3344
3345         return netdev_mc_count(netdev);
3346 }
3347
3348 /**
3349  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3350  * @netdev: network interface device structure
3351  *
3352  * Writes unicast address list to the RAR table.
3353  * Returns: -ENOMEM on failure/insufficient address space
3354  *                0 on no addresses written
3355  *                X on writing X addresses to the RAR table
3356  **/
3357 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3358 {
3359         struct e1000_adapter *adapter = netdev_priv(netdev);
3360         struct e1000_hw *hw = &adapter->hw;
3361         unsigned int rar_entries;
3362         int count = 0;
3363
3364         rar_entries = hw->mac.ops.rar_get_count(hw);
3365
3366         /* save a rar entry for our hardware address */
3367         rar_entries--;
3368
3369         /* save a rar entry for the LAA workaround */
3370         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3371                 rar_entries--;
3372
3373         /* return ENOMEM indicating insufficient memory for addresses */
3374         if (netdev_uc_count(netdev) > rar_entries)
3375                 return -ENOMEM;
3376
3377         if (!netdev_uc_empty(netdev) && rar_entries) {
3378                 struct netdev_hw_addr *ha;
3379
3380                 /* write the addresses in reverse order to avoid write
3381                  * combining
3382                  */
3383                 netdev_for_each_uc_addr(ha, netdev) {
3384                         int rval;
3385
3386                         if (!rar_entries)
3387                                 break;
3388                         rval = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3389                         if (rval < 0)
3390                                 return -ENOMEM;
3391                         count++;
3392                 }
3393         }
3394
3395         /* zero out the remaining RAR entries not used above */
3396         for (; rar_entries > 0; rar_entries--) {
3397                 ew32(RAH(rar_entries), 0);
3398                 ew32(RAL(rar_entries), 0);
3399         }
3400         e1e_flush();
3401
3402         return count;
3403 }
3404
3405 /**
3406  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3407  * @netdev: network interface device structure
3408  *
3409  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3410  * address list or the network interface flags are updated.  This routine is
3411  * responsible for configuring the hardware for proper unicast, multicast,
3412  * promiscuous mode, and all-multi behavior.
3413  **/
3414 static void e1000e_set_rx_mode(struct net_device *netdev)
3415 {
3416         struct e1000_adapter *adapter = netdev_priv(netdev);
3417         struct e1000_hw *hw = &adapter->hw;
3418         u32 rctl;
3419
3420         if (pm_runtime_suspended(netdev->dev.parent))
3421                 return;
3422
3423         /* Check for Promiscuous and All Multicast modes */
3424         rctl = er32(RCTL);
3425
3426         /* clear the affected bits */
3427         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3428
3429         if (netdev->flags & IFF_PROMISC) {
3430                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3431                 /* Do not hardware filter VLANs in promisc mode */
3432                 e1000e_vlan_filter_disable(adapter);
3433         } else {
3434                 int count;
3435
3436                 if (netdev->flags & IFF_ALLMULTI) {
3437                         rctl |= E1000_RCTL_MPE;
3438                 } else {
3439                         /* Write addresses to the MTA, if the attempt fails
3440                          * then we should just turn on promiscuous mode so
3441                          * that we can at least receive multicast traffic
3442                          */
3443                         count = e1000e_write_mc_addr_list(netdev);
3444                         if (count < 0)
3445                                 rctl |= E1000_RCTL_MPE;
3446                 }
3447                 e1000e_vlan_filter_enable(adapter);
3448                 /* Write addresses to available RAR registers, if there is not
3449                  * sufficient space to store all the addresses then enable
3450                  * unicast promiscuous mode
3451                  */
3452                 count = e1000e_write_uc_addr_list(netdev);
3453                 if (count < 0)
3454                         rctl |= E1000_RCTL_UPE;
3455         }
3456
3457         ew32(RCTL, rctl);
3458
3459         if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3460                 e1000e_vlan_strip_enable(adapter);
3461         else
3462                 e1000e_vlan_strip_disable(adapter);
3463 }
3464
3465 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3466 {
3467         struct e1000_hw *hw = &adapter->hw;
3468         u32 mrqc, rxcsum;
3469         u32 rss_key[10];
3470         int i;
3471
3472         netdev_rss_key_fill(rss_key, sizeof(rss_key));
3473         for (i = 0; i < 10; i++)
3474                 ew32(RSSRK(i), rss_key[i]);
3475
3476         /* Direct all traffic to queue 0 */
3477         for (i = 0; i < 32; i++)
3478                 ew32(RETA(i), 0);
3479
3480         /* Disable raw packet checksumming so that RSS hash is placed in
3481          * descriptor on writeback.
3482          */
3483         rxcsum = er32(RXCSUM);
3484         rxcsum |= E1000_RXCSUM_PCSD;
3485
3486         ew32(RXCSUM, rxcsum);
3487
3488         mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3489                 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3490                 E1000_MRQC_RSS_FIELD_IPV6 |
3491                 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3492                 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3493
3494         ew32(MRQC, mrqc);
3495 }
3496
3497 /**
3498  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3499  * @adapter: board private structure
3500  * @timinca: pointer to returned time increment attributes
3501  *
3502  * Get attributes for incrementing the System Time Register SYSTIML/H at
3503  * the default base frequency, and set the cyclecounter shift value.
3504  **/
3505 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3506 {
3507         struct e1000_hw *hw = &adapter->hw;
3508         u32 incvalue, incperiod, shift;
3509
3510         /* Make sure clock is enabled on I217/I218/I219  before checking
3511          * the frequency
3512          */
3513         if (((hw->mac.type == e1000_pch_lpt) ||
3514              (hw->mac.type == e1000_pch_spt)) &&
3515             !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3516             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3517                 u32 fextnvm7 = er32(FEXTNVM7);
3518
3519                 if (!(fextnvm7 & (1 << 0))) {
3520                         ew32(FEXTNVM7, fextnvm7 | (1 << 0));
3521                         e1e_flush();
3522                 }
3523         }
3524
3525         switch (hw->mac.type) {
3526         case e1000_pch2lan:
3527         case e1000_pch_lpt:
3528         case e1000_pch_spt:
3529                 /* On I217, I218 and I219, the clock frequency is 25MHz
3530                  * or 96MHz as indicated by the System Clock Frequency
3531                  * Indication
3532                  */
3533                 if (((hw->mac.type != e1000_pch_lpt) &&
3534                      (hw->mac.type != e1000_pch_spt)) ||
3535                     (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI)) {
3536                         /* Stable 96MHz frequency */
3537                         incperiod = INCPERIOD_96MHz;
3538                         incvalue = INCVALUE_96MHz;
3539                         shift = INCVALUE_SHIFT_96MHz;
3540                         adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHz;
3541                         break;
3542                 }
3543                 /* fall-through */
3544         case e1000_82574:
3545         case e1000_82583:
3546                 /* Stable 25MHz frequency */
3547                 incperiod = INCPERIOD_25MHz;
3548                 incvalue = INCVALUE_25MHz;
3549                 shift = INCVALUE_SHIFT_25MHz;
3550                 adapter->cc.shift = shift;
3551                 break;
3552         default:
3553                 return -EINVAL;
3554         }
3555
3556         *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3557                     ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3558
3559         return 0;
3560 }
3561
3562 /**
3563  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3564  * @adapter: board private structure
3565  *
3566  * Outgoing time stamping can be enabled and disabled. Play nice and
3567  * disable it when requested, although it shouldn't cause any overhead
3568  * when no packet needs it. At most one packet in the queue may be
3569  * marked for time stamping, otherwise it would be impossible to tell
3570  * for sure to which packet the hardware time stamp belongs.
3571  *
3572  * Incoming time stamping has to be configured via the hardware filters.
3573  * Not all combinations are supported, in particular event type has to be
3574  * specified. Matching the kind of event packet is not supported, with the
3575  * exception of "all V2 events regardless of level 2 or 4".
3576  **/
3577 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3578                                   struct hwtstamp_config *config)
3579 {
3580         struct e1000_hw *hw = &adapter->hw;
3581         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3582         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3583         u32 rxmtrl = 0;
3584         u16 rxudp = 0;
3585         bool is_l4 = false;
3586         bool is_l2 = false;
3587         u32 regval;
3588         s32 ret_val;
3589
3590         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3591                 return -EINVAL;
3592
3593         /* flags reserved for future extensions - must be zero */
3594         if (config->flags)
3595                 return -EINVAL;
3596
3597         switch (config->tx_type) {
3598         case HWTSTAMP_TX_OFF:
3599                 tsync_tx_ctl = 0;
3600                 break;
3601         case HWTSTAMP_TX_ON:
3602                 break;
3603         default:
3604                 return -ERANGE;
3605         }
3606
3607         switch (config->rx_filter) {
3608         case HWTSTAMP_FILTER_NONE:
3609                 tsync_rx_ctl = 0;
3610                 break;
3611         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3612                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3613                 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3614                 is_l4 = true;
3615                 break;
3616         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3617                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3618                 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3619                 is_l4 = true;
3620                 break;
3621         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3622                 /* Also time stamps V2 L2 Path Delay Request/Response */
3623                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3624                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3625                 is_l2 = true;
3626                 break;
3627         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3628                 /* Also time stamps V2 L2 Path Delay Request/Response. */
3629                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3630                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3631                 is_l2 = true;
3632                 break;
3633         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3634                 /* Hardware cannot filter just V2 L4 Sync messages;
3635                  * fall-through to V2 (both L2 and L4) Sync.
3636                  */
3637         case HWTSTAMP_FILTER_PTP_V2_SYNC:
3638                 /* Also time stamps V2 Path Delay Request/Response. */
3639                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3640                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3641                 is_l2 = true;
3642                 is_l4 = true;
3643                 break;
3644         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3645                 /* Hardware cannot filter just V2 L4 Delay Request messages;
3646                  * fall-through to V2 (both L2 and L4) Delay Request.
3647                  */
3648         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3649                 /* Also time stamps V2 Path Delay Request/Response. */
3650                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3651                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3652                 is_l2 = true;
3653                 is_l4 = true;
3654                 break;
3655         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3656         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3657                 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3658                  * fall-through to all V2 (both L2 and L4) Events.
3659                  */
3660         case HWTSTAMP_FILTER_PTP_V2_EVENT:
3661                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3662                 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3663                 is_l2 = true;
3664                 is_l4 = true;
3665                 break;
3666         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3667                 /* For V1, the hardware can only filter Sync messages or
3668                  * Delay Request messages but not both so fall-through to
3669                  * time stamp all packets.
3670                  */
3671         case HWTSTAMP_FILTER_ALL:
3672                 is_l2 = true;
3673                 is_l4 = true;
3674                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3675                 config->rx_filter = HWTSTAMP_FILTER_ALL;
3676                 break;
3677         default:
3678                 return -ERANGE;
3679         }
3680
3681         adapter->hwtstamp_config = *config;
3682
3683         /* enable/disable Tx h/w time stamping */
3684         regval = er32(TSYNCTXCTL);
3685         regval &= ~E1000_TSYNCTXCTL_ENABLED;
3686         regval |= tsync_tx_ctl;
3687         ew32(TSYNCTXCTL, regval);
3688         if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3689             (regval & E1000_TSYNCTXCTL_ENABLED)) {
3690                 e_err("Timesync Tx Control register not set as expected\n");
3691                 return -EAGAIN;
3692         }
3693
3694         /* enable/disable Rx h/w time stamping */
3695         regval = er32(TSYNCRXCTL);
3696         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3697         regval |= tsync_rx_ctl;
3698         ew32(TSYNCRXCTL, regval);
3699         if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3700                                  E1000_TSYNCRXCTL_TYPE_MASK)) !=
3701             (regval & (E1000_TSYNCRXCTL_ENABLED |
3702                        E1000_TSYNCRXCTL_TYPE_MASK))) {
3703                 e_err("Timesync Rx Control register not set as expected\n");
3704                 return -EAGAIN;
3705         }
3706
3707         /* L2: define ethertype filter for time stamped packets */
3708         if (is_l2)
3709                 rxmtrl |= ETH_P_1588;
3710
3711         /* define which PTP packets get time stamped */
3712         ew32(RXMTRL, rxmtrl);
3713
3714         /* Filter by destination port */
3715         if (is_l4) {
3716                 rxudp = PTP_EV_PORT;
3717                 cpu_to_be16s(&rxudp);
3718         }
3719         ew32(RXUDP, rxudp);
3720
3721         e1e_flush();
3722
3723         /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3724         er32(RXSTMPH);
3725         er32(TXSTMPH);
3726
3727         /* Get and set the System Time Register SYSTIM base frequency */
3728         ret_val = e1000e_get_base_timinca(adapter, &regval);
3729         if (ret_val)
3730                 return ret_val;
3731         ew32(TIMINCA, regval);
3732
3733         /* reset the ns time counter */
3734         timecounter_init(&adapter->tc, &adapter->cc,
3735                          ktime_to_ns(ktime_get_real()));
3736
3737         return 0;
3738 }
3739
3740 /**
3741  * e1000_configure - configure the hardware for Rx and Tx
3742  * @adapter: private board structure
3743  **/
3744 static void e1000_configure(struct e1000_adapter *adapter)
3745 {
3746         struct e1000_ring *rx_ring = adapter->rx_ring;
3747
3748         e1000e_set_rx_mode(adapter->netdev);
3749
3750         e1000_restore_vlan(adapter);
3751         e1000_init_manageability_pt(adapter);
3752
3753         e1000_configure_tx(adapter);
3754
3755         if (adapter->netdev->features & NETIF_F_RXHASH)
3756                 e1000e_setup_rss_hash(adapter);
3757         e1000_setup_rctl(adapter);
3758         e1000_configure_rx(adapter);
3759         adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3760 }
3761
3762 /**
3763  * e1000e_power_up_phy - restore link in case the phy was powered down
3764  * @adapter: address of board private structure
3765  *
3766  * The phy may be powered down to save power and turn off link when the
3767  * driver is unloaded and wake on lan is not enabled (among others)
3768  * *** this routine MUST be followed by a call to e1000e_reset ***
3769  **/
3770 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3771 {
3772         if (adapter->hw.phy.ops.power_up)
3773                 adapter->hw.phy.ops.power_up(&adapter->hw);
3774
3775         adapter->hw.mac.ops.setup_link(&adapter->hw);
3776 }
3777
3778 /**
3779  * e1000_power_down_phy - Power down the PHY
3780  *
3781  * Power down the PHY so no link is implied when interface is down.
3782  * The PHY cannot be powered down if management or WoL is active.
3783  */
3784 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3785 {
3786         if (adapter->hw.phy.ops.power_down)
3787                 adapter->hw.phy.ops.power_down(&adapter->hw);
3788 }
3789
3790 /**
3791  * e1000e_reset - bring the hardware into a known good state
3792  *
3793  * This function boots the hardware and enables some settings that
3794  * require a configuration cycle of the hardware - those cannot be
3795  * set/changed during runtime. After reset the device needs to be
3796  * properly configured for Rx, Tx etc.
3797  */
3798 void e1000e_reset(struct e1000_adapter *adapter)
3799 {
3800         struct e1000_mac_info *mac = &adapter->hw.mac;
3801         struct e1000_fc_info *fc = &adapter->hw.fc;
3802         struct e1000_hw *hw = &adapter->hw;
3803         u32 tx_space, min_tx_space, min_rx_space;
3804         u32 pba = adapter->pba;
3805         u16 hwm;
3806
3807         /* reset Packet Buffer Allocation to default */
3808         ew32(PBA, pba);
3809
3810         if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3811                 /* To maintain wire speed transmits, the Tx FIFO should be
3812                  * large enough to accommodate two full transmit packets,
3813                  * rounded up to the next 1KB and expressed in KB.  Likewise,
3814                  * the Rx FIFO should be large enough to accommodate at least
3815                  * one full receive packet and is similarly rounded up and
3816                  * expressed in KB.
3817                  */
3818                 pba = er32(PBA);
3819                 /* upper 16 bits has Tx packet buffer allocation size in KB */
3820                 tx_space = pba >> 16;
3821                 /* lower 16 bits has Rx packet buffer allocation size in KB */
3822                 pba &= 0xffff;
3823                 /* the Tx fifo also stores 16 bytes of information about the Tx
3824                  * but don't include ethernet FCS because hardware appends it
3825                  */
3826                 min_tx_space = (adapter->max_frame_size +
3827                                 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3828                 min_tx_space = ALIGN(min_tx_space, 1024);
3829                 min_tx_space >>= 10;
3830                 /* software strips receive CRC, so leave room for it */
3831                 min_rx_space = adapter->max_frame_size;
3832                 min_rx_space = ALIGN(min_rx_space, 1024);
3833                 min_rx_space >>= 10;
3834
3835                 /* If current Tx allocation is less than the min Tx FIFO size,
3836                  * and the min Tx FIFO size is less than the current Rx FIFO
3837                  * allocation, take space away from current Rx allocation
3838                  */
3839                 if ((tx_space < min_tx_space) &&
3840                     ((min_tx_space - tx_space) < pba)) {
3841                         pba -= min_tx_space - tx_space;
3842
3843                         /* if short on Rx space, Rx wins and must trump Tx
3844                          * adjustment
3845                          */
3846                         if (pba < min_rx_space)
3847                                 pba = min_rx_space;
3848                 }
3849
3850                 ew32(PBA, pba);
3851         }
3852
3853         /* flow control settings
3854          *
3855          * The high water mark must be low enough to fit one full frame
3856          * (or the size used for early receive) above it in the Rx FIFO.
3857          * Set it to the lower of:
3858          * - 90% of the Rx FIFO size, and
3859          * - the full Rx FIFO size minus one full frame
3860          */
3861         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3862                 fc->pause_time = 0xFFFF;
3863         else
3864                 fc->pause_time = E1000_FC_PAUSE_TIME;
3865         fc->send_xon = true;
3866         fc->current_mode = fc->requested_mode;
3867
3868         switch (hw->mac.type) {
3869         case e1000_ich9lan:
3870         case e1000_ich10lan:
3871                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3872                         pba = 14;
3873                         ew32(PBA, pba);
3874                         fc->high_water = 0x2800;
3875                         fc->low_water = fc->high_water - 8;
3876                         break;
3877                 }
3878                 /* fall-through */
3879         default:
3880                 hwm = min(((pba << 10) * 9 / 10),
3881                           ((pba << 10) - adapter->max_frame_size));
3882
3883                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3884                 fc->low_water = fc->high_water - 8;
3885                 break;
3886         case e1000_pchlan:
3887                 /* Workaround PCH LOM adapter hangs with certain network
3888                  * loads.  If hangs persist, try disabling Tx flow control.
3889                  */
3890                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3891                         fc->high_water = 0x3500;
3892                         fc->low_water = 0x1500;
3893                 } else {
3894                         fc->high_water = 0x5000;
3895                         fc->low_water = 0x3000;
3896                 }
3897                 fc->refresh_time = 0x1000;
3898                 break;
3899         case e1000_pch2lan:
3900         case e1000_pch_lpt:
3901         case e1000_pch_spt:
3902                 fc->refresh_time = 0x0400;
3903
3904                 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
3905                         fc->high_water = 0x05C20;
3906                         fc->low_water = 0x05048;
3907                         fc->pause_time = 0x0650;
3908                         break;
3909                 }
3910
3911                 pba = 14;
3912                 ew32(PBA, pba);
3913                 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
3914                 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
3915                 break;
3916         }
3917
3918         /* Alignment of Tx data is on an arbitrary byte boundary with the
3919          * maximum size per Tx descriptor limited only to the transmit
3920          * allocation of the packet buffer minus 96 bytes with an upper
3921          * limit of 24KB due to receive synchronization limitations.
3922          */
3923         adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
3924                                        24 << 10);
3925
3926         /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
3927          * fit in receive buffer.
3928          */
3929         if (adapter->itr_setting & 0x3) {
3930                 if ((adapter->max_frame_size * 2) > (pba << 10)) {
3931                         if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3932                                 dev_info(&adapter->pdev->dev,
3933                                          "Interrupt Throttle Rate off\n");
3934                                 adapter->flags2 |= FLAG2_DISABLE_AIM;
3935                                 e1000e_write_itr(adapter, 0);
3936                         }
3937                 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3938                         dev_info(&adapter->pdev->dev,
3939                                  "Interrupt Throttle Rate on\n");
3940                         adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3941                         adapter->itr = 20000;
3942                         e1000e_write_itr(adapter, adapter->itr);
3943                 }
3944         }
3945
3946         /* Allow time for pending master requests to run */
3947         mac->ops.reset_hw(hw);
3948
3949         /* For parts with AMT enabled, let the firmware know
3950          * that the network interface is in control
3951          */
3952         if (adapter->flags & FLAG_HAS_AMT)
3953                 e1000e_get_hw_control(adapter);
3954
3955         ew32(WUC, 0);
3956
3957         if (mac->ops.init_hw(hw))
3958                 e_err("Hardware Error\n");
3959
3960         e1000_update_mng_vlan(adapter);
3961
3962         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3963         ew32(VET, ETH_P_8021Q);
3964
3965         e1000e_reset_adaptive(hw);
3966
3967         /* initialize systim and reset the ns time counter */
3968         e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3969
3970         /* Set EEE advertisement as appropriate */
3971         if (adapter->flags2 & FLAG2_HAS_EEE) {
3972                 s32 ret_val;
3973                 u16 adv_addr;
3974
3975                 switch (hw->phy.type) {
3976                 case e1000_phy_82579:
3977                         adv_addr = I82579_EEE_ADVERTISEMENT;
3978                         break;
3979                 case e1000_phy_i217:
3980                         adv_addr = I217_EEE_ADVERTISEMENT;
3981                         break;
3982                 default:
3983                         dev_err(&adapter->pdev->dev,
3984                                 "Invalid PHY type setting EEE advertisement\n");
3985                         return;
3986                 }
3987
3988                 ret_val = hw->phy.ops.acquire(hw);
3989                 if (ret_val) {
3990                         dev_err(&adapter->pdev->dev,
3991                                 "EEE advertisement - unable to acquire PHY\n");
3992                         return;
3993                 }
3994
3995                 e1000_write_emi_reg_locked(hw, adv_addr,
3996                                            hw->dev_spec.ich8lan.eee_disable ?
3997                                            0 : adapter->eee_advert);
3998
3999                 hw->phy.ops.release(hw);
4000         }
4001
4002         if (!netif_running(adapter->netdev) &&
4003             !test_bit(__E1000_TESTING, &adapter->state))
4004                 e1000_power_down_phy(adapter);
4005
4006         e1000_get_phy_info(hw);
4007
4008         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4009             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4010                 u16 phy_data = 0;
4011                 /* speed up time to link by disabling smart power down, ignore
4012                  * the return value of this function because there is nothing
4013                  * different we would do if it failed
4014                  */
4015                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4016                 phy_data &= ~IGP02E1000_PM_SPD;
4017                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4018         }
4019 }
4020
4021 int e1000e_up(struct e1000_adapter *adapter)
4022 {
4023         struct e1000_hw *hw = &adapter->hw;
4024
4025         /* hardware has been reset, we need to reload some things */
4026         e1000_configure(adapter);
4027
4028         clear_bit(__E1000_DOWN, &adapter->state);
4029
4030         if (adapter->msix_entries)
4031                 e1000_configure_msix(adapter);
4032         e1000_irq_enable(adapter);
4033
4034         netif_start_queue(adapter->netdev);
4035
4036         /* fire a link change interrupt to start the watchdog */
4037         if (adapter->msix_entries)
4038                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
4039         else
4040                 ew32(ICS, E1000_ICS_LSC);
4041
4042         return 0;
4043 }
4044
4045 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4046 {
4047         struct e1000_hw *hw = &adapter->hw;
4048
4049         if (!(adapter->flags2 & FLAG2_DMA_BURST))
4050                 return;
4051
4052         /* flush pending descriptor writebacks to memory */
4053         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4054         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4055
4056         /* execute the writes immediately */
4057         e1e_flush();
4058
4059         /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4060          * write is successful
4061          */
4062         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4063         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4064
4065         /* execute the writes immediately */
4066         e1e_flush();
4067 }
4068
4069 static void e1000e_update_stats(struct e1000_adapter *adapter);
4070
4071 /**
4072  * e1000e_down - quiesce the device and optionally reset the hardware
4073  * @adapter: board private structure
4074  * @reset: boolean flag to reset the hardware or not
4075  */
4076 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4077 {
4078         struct net_device *netdev = adapter->netdev;
4079         struct e1000_hw *hw = &adapter->hw;
4080         u32 tctl, rctl;
4081
4082         /* signal that we're down so the interrupt handler does not
4083          * reschedule our watchdog timer
4084          */
4085         set_bit(__E1000_DOWN, &adapter->state);
4086
4087         netif_carrier_off(netdev);
4088
4089         /* disable receives in the hardware */
4090         rctl = er32(RCTL);
4091         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4092                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
4093         /* flush and sleep below */
4094
4095         netif_stop_queue(netdev);
4096
4097         /* disable transmits in the hardware */
4098         tctl = er32(TCTL);
4099         tctl &= ~E1000_TCTL_EN;
4100         ew32(TCTL, tctl);
4101
4102         /* flush both disables and wait for them to finish */
4103         e1e_flush();
4104         usleep_range(10000, 20000);
4105
4106         e1000_irq_disable(adapter);
4107
4108         napi_synchronize(&adapter->napi);
4109
4110         del_timer_sync(&adapter->watchdog_timer);
4111         del_timer_sync(&adapter->phy_info_timer);
4112
4113         spin_lock(&adapter->stats64_lock);
4114         e1000e_update_stats(adapter);
4115         spin_unlock(&adapter->stats64_lock);
4116
4117         e1000e_flush_descriptors(adapter);
4118         e1000_clean_tx_ring(adapter->tx_ring);
4119         e1000_clean_rx_ring(adapter->rx_ring);
4120
4121         adapter->link_speed = 0;
4122         adapter->link_duplex = 0;
4123
4124         /* Disable Si errata workaround on PCHx for jumbo frame flow */
4125         if ((hw->mac.type >= e1000_pch2lan) &&
4126             (adapter->netdev->mtu > ETH_DATA_LEN) &&
4127             e1000_lv_jumbo_workaround_ich8lan(hw, false))
4128                 e_dbg("failed to disable jumbo frame workaround mode\n");
4129
4130         if (reset && !pci_channel_offline(adapter->pdev))
4131                 e1000e_reset(adapter);
4132 }
4133
4134 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4135 {
4136         might_sleep();
4137         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4138                 usleep_range(1000, 2000);
4139         e1000e_down(adapter, true);
4140         e1000e_up(adapter);
4141         clear_bit(__E1000_RESETTING, &adapter->state);
4142 }
4143
4144 /**
4145  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4146  * @cc: cyclecounter structure
4147  **/
4148 static cycle_t e1000e_cyclecounter_read(const struct cyclecounter *cc)
4149 {
4150         struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4151                                                      cc);
4152         struct e1000_hw *hw = &adapter->hw;
4153         cycle_t systim, systim_next;
4154
4155         /* latch SYSTIMH on read of SYSTIML */
4156         systim = (cycle_t)er32(SYSTIML);
4157         systim |= (cycle_t)er32(SYSTIMH) << 32;
4158
4159         if ((hw->mac.type == e1000_82574) || (hw->mac.type == e1000_82583)) {
4160                 u64 incvalue, time_delta, rem, temp;
4161                 int i;
4162
4163                 /* errata for 82574/82583 possible bad bits read from SYSTIMH/L
4164                  * check to see that the time is incrementing at a reasonable
4165                  * rate and is a multiple of incvalue
4166                  */
4167                 incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4168                 for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4169                         /* latch SYSTIMH on read of SYSTIML */
4170                         systim_next = (cycle_t)er32(SYSTIML);
4171                         systim_next |= (cycle_t)er32(SYSTIMH) << 32;
4172
4173                         time_delta = systim_next - systim;
4174                         temp = time_delta;
4175                         rem = do_div(temp, incvalue);
4176
4177                         systim = systim_next;
4178
4179                         if ((time_delta < E1000_82574_SYSTIM_EPSILON) &&
4180                             (rem == 0))
4181                                 break;
4182                 }
4183         }
4184         return systim;
4185 }
4186
4187 /**
4188  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4189  * @adapter: board private structure to initialize
4190  *
4191  * e1000_sw_init initializes the Adapter private data structure.
4192  * Fields are initialized based on PCI device information and
4193  * OS network device settings (MTU size).
4194  **/
4195 static int e1000_sw_init(struct e1000_adapter *adapter)
4196 {
4197         struct net_device *netdev = adapter->netdev;
4198
4199         adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4200         adapter->rx_ps_bsize0 = 128;
4201         adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4202         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4203         adapter->tx_ring_count = E1000_DEFAULT_TXD;
4204         adapter->rx_ring_count = E1000_DEFAULT_RXD;
4205
4206         spin_lock_init(&adapter->stats64_lock);
4207
4208         e1000e_set_interrupt_capability(adapter);
4209
4210         if (e1000_alloc_queues(adapter))
4211                 return -ENOMEM;
4212
4213         /* Setup hardware time stamping cyclecounter */
4214         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4215                 adapter->cc.read = e1000e_cyclecounter_read;
4216                 adapter->cc.mask = CYCLECOUNTER_MASK(64);
4217                 adapter->cc.mult = 1;
4218                 /* cc.shift set in e1000e_get_base_tininca() */
4219
4220                 spin_lock_init(&adapter->systim_lock);
4221                 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4222         }
4223
4224         /* Explicitly disable IRQ since the NIC can be in any state. */
4225         e1000_irq_disable(adapter);
4226
4227         set_bit(__E1000_DOWN, &adapter->state);
4228         return 0;
4229 }
4230
4231 /**
4232  * e1000_intr_msi_test - Interrupt Handler
4233  * @irq: interrupt number
4234  * @data: pointer to a network interface device structure
4235  **/
4236 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4237 {
4238         struct net_device *netdev = data;
4239         struct e1000_adapter *adapter = netdev_priv(netdev);
4240         struct e1000_hw *hw = &adapter->hw;
4241         u32 icr = er32(ICR);
4242
4243         e_dbg("icr is %08X\n", icr);
4244         if (icr & E1000_ICR_RXSEQ) {
4245                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4246                 /* Force memory writes to complete before acknowledging the
4247                  * interrupt is handled.
4248                  */
4249                 wmb();
4250         }
4251
4252         return IRQ_HANDLED;
4253 }
4254
4255 /**
4256  * e1000_test_msi_interrupt - Returns 0 for successful test
4257  * @adapter: board private struct
4258  *
4259  * code flow taken from tg3.c
4260  **/
4261 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4262 {
4263         struct net_device *netdev = adapter->netdev;
4264         struct e1000_hw *hw = &adapter->hw;
4265         int err;
4266
4267         /* poll_enable hasn't been called yet, so don't need disable */
4268         /* clear any pending events */
4269         er32(ICR);
4270
4271         /* free the real vector and request a test handler */
4272         e1000_free_irq(adapter);
4273         e1000e_reset_interrupt_capability(adapter);
4274
4275         /* Assume that the test fails, if it succeeds then the test
4276          * MSI irq handler will unset this flag
4277          */
4278         adapter->flags |= FLAG_MSI_TEST_FAILED;
4279
4280         err = pci_enable_msi(adapter->pdev);
4281         if (err)
4282                 goto msi_test_failed;
4283
4284         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4285                           netdev->name, netdev);
4286         if (err) {
4287                 pci_disable_msi(adapter->pdev);
4288                 goto msi_test_failed;
4289         }
4290
4291         /* Force memory writes to complete before enabling and firing an
4292          * interrupt.
4293          */
4294         wmb();
4295
4296         e1000_irq_enable(adapter);
4297
4298         /* fire an unusual interrupt on the test handler */
4299         ew32(ICS, E1000_ICS_RXSEQ);
4300         e1e_flush();
4301         msleep(100);
4302
4303         e1000_irq_disable(adapter);
4304
4305         rmb();                  /* read flags after interrupt has been fired */
4306
4307         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4308                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4309                 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4310         } else {
4311                 e_dbg("MSI interrupt test succeeded!\n");
4312         }
4313
4314         free_irq(adapter->pdev->irq, netdev);
4315         pci_disable_msi(adapter->pdev);
4316
4317 msi_test_failed:
4318         e1000e_set_interrupt_capability(adapter);
4319         return e1000_request_irq(adapter);
4320 }
4321
4322 /**
4323  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4324  * @adapter: board private struct
4325  *
4326  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4327  **/
4328 static int e1000_test_msi(struct e1000_adapter *adapter)
4329 {
4330         int err;
4331         u16 pci_cmd;
4332
4333         if (!(adapter->flags & FLAG_MSI_ENABLED))
4334                 return 0;
4335
4336         /* disable SERR in case the MSI write causes a master abort */
4337         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4338         if (pci_cmd & PCI_COMMAND_SERR)
4339                 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4340                                       pci_cmd & ~PCI_COMMAND_SERR);
4341
4342         err = e1000_test_msi_interrupt(adapter);
4343
4344         /* re-enable SERR */
4345         if (pci_cmd & PCI_COMMAND_SERR) {
4346                 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4347                 pci_cmd |= PCI_COMMAND_SERR;
4348                 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4349         }
4350
4351         return err;
4352 }
4353
4354 /**
4355  * e1000_open - Called when a network interface is made active
4356  * @netdev: network interface device structure
4357  *
4358  * Returns 0 on success, negative value on failure
4359  *
4360  * The open entry point is called when a network interface is made
4361  * active by the system (IFF_UP).  At this point all resources needed
4362  * for transmit and receive operations are allocated, the interrupt
4363  * handler is registered with the OS, the watchdog timer is started,
4364  * and the stack is notified that the interface is ready.
4365  **/
4366 static int e1000_open(struct net_device *netdev)
4367 {
4368         struct e1000_adapter *adapter = netdev_priv(netdev);
4369         struct e1000_hw *hw = &adapter->hw;
4370         struct pci_dev *pdev = adapter->pdev;
4371         int err;
4372
4373         /* disallow open during test */
4374         if (test_bit(__E1000_TESTING, &adapter->state))
4375                 return -EBUSY;
4376
4377         pm_runtime_get_sync(&pdev->dev);
4378
4379         netif_carrier_off(netdev);
4380
4381         /* allocate transmit descriptors */
4382         err = e1000e_setup_tx_resources(adapter->tx_ring);
4383         if (err)
4384                 goto err_setup_tx;
4385
4386         /* allocate receive descriptors */
4387         err = e1000e_setup_rx_resources(adapter->rx_ring);
4388         if (err)
4389                 goto err_setup_rx;
4390
4391         /* If AMT is enabled, let the firmware know that the network
4392          * interface is now open and reset the part to a known state.
4393          */
4394         if (adapter->flags & FLAG_HAS_AMT) {
4395                 e1000e_get_hw_control(adapter);
4396                 e1000e_reset(adapter);
4397         }
4398
4399         e1000e_power_up_phy(adapter);
4400
4401         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4402         if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4403                 e1000_update_mng_vlan(adapter);
4404
4405         /* DMA latency requirement to workaround jumbo issue */
4406         pm_qos_add_request(&adapter->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4407                            PM_QOS_DEFAULT_VALUE);
4408
4409         /* before we allocate an interrupt, we must be ready to handle it.
4410          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4411          * as soon as we call pci_request_irq, so we have to setup our
4412          * clean_rx handler before we do so.
4413          */
4414         e1000_configure(adapter);
4415
4416         err = e1000_request_irq(adapter);
4417         if (err)
4418                 goto err_req_irq;
4419
4420         /* Work around PCIe errata with MSI interrupts causing some chipsets to
4421          * ignore e1000e MSI messages, which means we need to test our MSI
4422          * interrupt now
4423          */
4424         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4425                 err = e1000_test_msi(adapter);
4426                 if (err) {
4427                         e_err("Interrupt allocation failed\n");
4428                         goto err_req_irq;
4429                 }
4430         }
4431
4432         /* From here on the code is the same as e1000e_up() */
4433         clear_bit(__E1000_DOWN, &adapter->state);
4434
4435         napi_enable(&adapter->napi);
4436
4437         e1000_irq_enable(adapter);
4438
4439         adapter->tx_hang_recheck = false;
4440         netif_start_queue(netdev);
4441
4442         hw->mac.get_link_status = true;
4443         pm_runtime_put(&pdev->dev);
4444
4445         /* fire a link status change interrupt to start the watchdog */
4446         if (adapter->msix_entries)
4447                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
4448         else
4449                 ew32(ICS, E1000_ICS_LSC);
4450
4451         return 0;
4452
4453 err_req_irq:
4454         e1000e_release_hw_control(adapter);
4455         e1000_power_down_phy(adapter);
4456         e1000e_free_rx_resources(adapter->rx_ring);
4457 err_setup_rx:
4458         e1000e_free_tx_resources(adapter->tx_ring);
4459 err_setup_tx:
4460         e1000e_reset(adapter);
4461         pm_runtime_put_sync(&pdev->dev);
4462
4463         return err;
4464 }
4465
4466 /**
4467  * e1000_close - Disables a network interface
4468  * @netdev: network interface device structure
4469  *
4470  * Returns 0, this is not allowed to fail
4471  *
4472  * The close entry point is called when an interface is de-activated
4473  * by the OS.  The hardware is still under the drivers control, but
4474  * needs to be disabled.  A global MAC reset is issued to stop the
4475  * hardware, and all transmit and receive resources are freed.
4476  **/
4477 static int e1000_close(struct net_device *netdev)
4478 {
4479         struct e1000_adapter *adapter = netdev_priv(netdev);
4480         struct pci_dev *pdev = adapter->pdev;
4481         int count = E1000_CHECK_RESET_COUNT;
4482
4483         while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4484                 usleep_range(10000, 20000);
4485
4486         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4487
4488         pm_runtime_get_sync(&pdev->dev);
4489
4490         if (!test_bit(__E1000_DOWN, &adapter->state)) {
4491                 e1000e_down(adapter, true);
4492                 e1000_free_irq(adapter);
4493
4494                 /* Link status message must follow this format */
4495                 pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4496         }
4497
4498         napi_disable(&adapter->napi);
4499
4500         e1000e_free_tx_resources(adapter->tx_ring);
4501         e1000e_free_rx_resources(adapter->rx_ring);
4502
4503         /* kill manageability vlan ID if supported, but not if a vlan with
4504          * the same ID is registered on the host OS (let 8021q kill it)
4505          */
4506         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4507                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4508                                        adapter->mng_vlan_id);
4509
4510         /* If AMT is enabled, let the firmware know that the network
4511          * interface is now closed
4512          */
4513         if ((adapter->flags & FLAG_HAS_AMT) &&
4514             !test_bit(__E1000_TESTING, &adapter->state))
4515                 e1000e_release_hw_control(adapter);
4516
4517         pm_qos_remove_request(&adapter->pm_qos_req);
4518
4519         pm_runtime_put_sync(&pdev->dev);
4520
4521         return 0;
4522 }
4523
4524 /**
4525  * e1000_set_mac - Change the Ethernet Address of the NIC
4526  * @netdev: network interface device structure
4527  * @p: pointer to an address structure
4528  *
4529  * Returns 0 on success, negative on failure
4530  **/
4531 static int e1000_set_mac(struct net_device *netdev, void *p)
4532 {
4533         struct e1000_adapter *adapter = netdev_priv(netdev);
4534         struct e1000_hw *hw = &adapter->hw;
4535         struct sockaddr *addr = p;
4536
4537         if (!is_valid_ether_addr(addr->sa_data))
4538                 return -EADDRNOTAVAIL;
4539
4540         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4541         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4542
4543         hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4544
4545         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4546                 /* activate the work around */
4547                 e1000e_set_laa_state_82571(&adapter->hw, 1);
4548
4549                 /* Hold a copy of the LAA in RAR[14] This is done so that
4550                  * between the time RAR[0] gets clobbered  and the time it
4551                  * gets fixed (in e1000_watchdog), the actual LAA is in one
4552                  * of the RARs and no incoming packets directed to this port
4553                  * are dropped. Eventually the LAA will be in RAR[0] and
4554                  * RAR[14]
4555                  */
4556                 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4557                                     adapter->hw.mac.rar_entry_count - 1);
4558         }
4559
4560         return 0;
4561 }
4562
4563 /**
4564  * e1000e_update_phy_task - work thread to update phy
4565  * @work: pointer to our work struct
4566  *
4567  * this worker thread exists because we must acquire a
4568  * semaphore to read the phy, which we could msleep while
4569  * waiting for it, and we can't msleep in a timer.
4570  **/
4571 static void e1000e_update_phy_task(struct work_struct *work)
4572 {
4573         struct e1000_adapter *adapter = container_of(work,
4574                                                      struct e1000_adapter,
4575                                                      update_phy_task);
4576         struct e1000_hw *hw = &adapter->hw;
4577
4578         if (test_bit(__E1000_DOWN, &adapter->state))
4579                 return;
4580
4581         e1000_get_phy_info(hw);
4582
4583         /* Enable EEE on 82579 after link up */
4584         if (hw->phy.type >= e1000_phy_82579)
4585                 e1000_set_eee_pchlan(hw);
4586 }
4587
4588 /**
4589  * e1000_update_phy_info - timre call-back to update PHY info
4590  * @data: pointer to adapter cast into an unsigned long
4591  *
4592  * Need to wait a few seconds after link up to get diagnostic information from
4593  * the phy
4594  **/
4595 static void e1000_update_phy_info(unsigned long data)
4596 {
4597         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4598
4599         if (test_bit(__E1000_DOWN, &adapter->state))
4600                 return;
4601
4602         schedule_work(&adapter->update_phy_task);
4603 }
4604
4605 /**
4606  * e1000e_update_phy_stats - Update the PHY statistics counters
4607  * @adapter: board private structure
4608  *
4609  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4610  **/
4611 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4612 {
4613         struct e1000_hw *hw = &adapter->hw;
4614         s32 ret_val;
4615         u16 phy_data;
4616
4617         ret_val = hw->phy.ops.acquire(hw);
4618         if (ret_val)
4619                 return;
4620
4621         /* A page set is expensive so check if already on desired page.
4622          * If not, set to the page with the PHY status registers.
4623          */
4624         hw->phy.addr = 1;
4625         ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4626                                            &phy_data);
4627         if (ret_val)
4628                 goto release;
4629         if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4630                 ret_val = hw->phy.ops.set_page(hw,
4631                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
4632                 if (ret_val)
4633                         goto release;
4634         }
4635
4636         /* Single Collision Count */
4637         hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4638         ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4639         if (!ret_val)
4640                 adapter->stats.scc += phy_data;
4641
4642         /* Excessive Collision Count */
4643         hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4644         ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4645         if (!ret_val)
4646                 adapter->stats.ecol += phy_data;
4647
4648         /* Multiple Collision Count */
4649         hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4650         ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4651         if (!ret_val)
4652                 adapter->stats.mcc += phy_data;
4653
4654         /* Late Collision Count */
4655         hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4656         ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4657         if (!ret_val)
4658                 adapter->stats.latecol += phy_data;
4659
4660         /* Collision Count - also used for adaptive IFS */
4661         hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4662         ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4663         if (!ret_val)
4664                 hw->mac.collision_delta = phy_data;
4665
4666         /* Defer Count */
4667         hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4668         ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4669         if (!ret_val)
4670                 adapter->stats.dc += phy_data;
4671
4672         /* Transmit with no CRS */
4673         hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4674         ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4675         if (!ret_val)
4676                 adapter->stats.tncrs += phy_data;
4677
4678 release:
4679         hw->phy.ops.release(hw);
4680 }
4681
4682 /**
4683  * e1000e_update_stats - Update the board statistics counters
4684  * @adapter: board private structure
4685  **/
4686 static void e1000e_update_stats(struct e1000_adapter *adapter)
4687 {
4688         struct net_device *netdev = adapter->netdev;
4689         struct e1000_hw *hw = &adapter->hw;
4690         struct pci_dev *pdev = adapter->pdev;
4691
4692         /* Prevent stats update while adapter is being reset, or if the pci
4693          * connection is down.
4694          */
4695         if (adapter->link_speed == 0)
4696                 return;
4697         if (pci_channel_offline(pdev))
4698                 return;
4699
4700         adapter->stats.crcerrs += er32(CRCERRS);
4701         adapter->stats.gprc += er32(GPRC);
4702         adapter->stats.gorc += er32(GORCL);
4703         er32(GORCH);            /* Clear gorc */
4704         adapter->stats.bprc += er32(BPRC);
4705         adapter->stats.mprc += er32(MPRC);
4706         adapter->stats.roc += er32(ROC);
4707
4708         adapter->stats.mpc += er32(MPC);
4709
4710         /* Half-duplex statistics */
4711         if (adapter->link_duplex == HALF_DUPLEX) {
4712                 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4713                         e1000e_update_phy_stats(adapter);
4714                 } else {
4715                         adapter->stats.scc += er32(SCC);
4716                         adapter->stats.ecol += er32(ECOL);
4717                         adapter->stats.mcc += er32(MCC);
4718                         adapter->stats.latecol += er32(LATECOL);
4719                         adapter->stats.dc += er32(DC);
4720
4721                         hw->mac.collision_delta = er32(COLC);
4722
4723                         if ((hw->mac.type != e1000_82574) &&
4724                             (hw->mac.type != e1000_82583))
4725                                 adapter->stats.tncrs += er32(TNCRS);
4726                 }
4727                 adapter->stats.colc += hw->mac.collision_delta;
4728         }
4729
4730         adapter->stats.xonrxc += er32(XONRXC);
4731         adapter->stats.xontxc += er32(XONTXC);
4732         adapter->stats.xoffrxc += er32(XOFFRXC);
4733         adapter->stats.xofftxc += er32(XOFFTXC);
4734         adapter->stats.gptc += er32(GPTC);
4735         adapter->stats.gotc += er32(GOTCL);
4736         er32(GOTCH);            /* Clear gotc */
4737         adapter->stats.rnbc += er32(RNBC);
4738         adapter->stats.ruc += er32(RUC);
4739
4740         adapter->stats.mptc += er32(MPTC);
4741         adapter->stats.bptc += er32(BPTC);
4742
4743         /* used for adaptive IFS */
4744
4745         hw->mac.tx_packet_delta = er32(TPT);
4746         adapter->stats.tpt += hw->mac.tx_packet_delta;
4747
4748         adapter->stats.algnerrc += er32(ALGNERRC);
4749         adapter->stats.rxerrc += er32(RXERRC);
4750         adapter->stats.cexterr += er32(CEXTERR);
4751         adapter->stats.tsctc += er32(TSCTC);
4752         adapter->stats.tsctfc += er32(TSCTFC);
4753
4754         /* Fill out the OS statistics structure */
4755         netdev->stats.multicast = adapter->stats.mprc;
4756         netdev->stats.collisions = adapter->stats.colc;
4757
4758         /* Rx Errors */
4759
4760         /* RLEC on some newer hardware can be incorrect so build
4761          * our own version based on RUC and ROC
4762          */
4763         netdev->stats.rx_errors = adapter->stats.rxerrc +
4764             adapter->stats.crcerrs + adapter->stats.algnerrc +
4765             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
4766         netdev->stats.rx_length_errors = adapter->stats.ruc +
4767             adapter->stats.roc;
4768         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4769         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4770         netdev->stats.rx_missed_errors = adapter->stats.mpc;
4771
4772         /* Tx Errors */
4773         netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
4774         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4775         netdev->stats.tx_window_errors = adapter->stats.latecol;
4776         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4777
4778         /* Tx Dropped needs to be maintained elsewhere */
4779
4780         /* Management Stats */
4781         adapter->stats.mgptc += er32(MGTPTC);
4782         adapter->stats.mgprc += er32(MGTPRC);
4783         adapter->stats.mgpdc += er32(MGTPDC);
4784
4785         /* Correctable ECC Errors */
4786         if ((hw->mac.type == e1000_pch_lpt) ||
4787             (hw->mac.type == e1000_pch_spt)) {
4788                 u32 pbeccsts = er32(PBECCSTS);
4789
4790                 adapter->corr_errors +=
4791                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
4792                 adapter->uncorr_errors +=
4793                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
4794                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
4795         }
4796 }
4797
4798 /**
4799  * e1000_phy_read_status - Update the PHY register status snapshot
4800  * @adapter: board private structure
4801  **/
4802 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4803 {
4804         struct e1000_hw *hw = &adapter->hw;
4805         struct e1000_phy_regs *phy = &adapter->phy_regs;
4806
4807         if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
4808             (er32(STATUS) & E1000_STATUS_LU) &&
4809             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4810                 int ret_val;
4811
4812                 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
4813                 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
4814                 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
4815                 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
4816                 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
4817                 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
4818                 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
4819                 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
4820                 if (ret_val)
4821                         e_warn("Error reading PHY register\n");
4822         } else {
4823                 /* Do not read PHY registers if link is not up
4824                  * Set values to typical power-on defaults
4825                  */
4826                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4827                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4828                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4829                              BMSR_ERCAP);
4830                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4831                                   ADVERTISE_ALL | ADVERTISE_CSMA);
4832                 phy->lpa = 0;
4833                 phy->expansion = EXPANSION_ENABLENPAGE;
4834                 phy->ctrl1000 = ADVERTISE_1000FULL;
4835                 phy->stat1000 = 0;
4836                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4837         }
4838 }
4839
4840 static void e1000_print_link_info(struct e1000_adapter *adapter)
4841 {
4842         struct e1000_hw *hw = &adapter->hw;
4843         u32 ctrl = er32(CTRL);
4844
4845         /* Link status message must follow this format for user tools */
4846         pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4847                 adapter->netdev->name, adapter->link_speed,
4848                 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4849                 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4850                 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
4851                 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4852 }
4853
4854 static bool e1000e_has_link(struct e1000_adapter *adapter)
4855 {
4856         struct e1000_hw *hw = &adapter->hw;
4857         bool link_active = false;
4858         s32 ret_val = 0;
4859
4860         /* get_link_status is set on LSC (link status) interrupt or
4861          * Rx sequence error interrupt.  get_link_status will stay
4862          * false until the check_for_link establishes link
4863          * for copper adapters ONLY
4864          */
4865         switch (hw->phy.media_type) {
4866         case e1000_media_type_copper:
4867                 if (hw->mac.get_link_status) {
4868                         ret_val = hw->mac.ops.check_for_link(hw);
4869                         link_active = !hw->mac.get_link_status;
4870                 } else {
4871                         link_active = true;
4872                 }
4873                 break;
4874         case e1000_media_type_fiber:
4875                 ret_val = hw->mac.ops.check_for_link(hw);
4876                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4877                 break;
4878         case e1000_media_type_internal_serdes:
4879                 ret_val = hw->mac.ops.check_for_link(hw);
4880                 link_active = adapter->hw.mac.serdes_has_link;
4881                 break;
4882         default:
4883         case e1000_media_type_unknown:
4884                 break;
4885         }
4886
4887         if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4888             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4889                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4890                 e_info("Gigabit has been disabled, downgrading speed\n");
4891         }
4892
4893         return link_active;
4894 }
4895
4896 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4897 {
4898         /* make sure the receive unit is started */
4899         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4900             (adapter->flags & FLAG_RESTART_NOW)) {
4901                 struct e1000_hw *hw = &adapter->hw;
4902                 u32 rctl = er32(RCTL);
4903
4904                 ew32(RCTL, rctl | E1000_RCTL_EN);
4905                 adapter->flags &= ~FLAG_RESTART_NOW;
4906         }
4907 }
4908
4909 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4910 {
4911         struct e1000_hw *hw = &adapter->hw;
4912
4913         /* With 82574 controllers, PHY needs to be checked periodically
4914          * for hung state and reset, if two calls return true
4915          */
4916         if (e1000_check_phy_82574(hw))
4917                 adapter->phy_hang_count++;
4918         else
4919                 adapter->phy_hang_count = 0;
4920
4921         if (adapter->phy_hang_count > 1) {
4922                 adapter->phy_hang_count = 0;
4923                 e_dbg("PHY appears hung - resetting\n");
4924                 schedule_work(&adapter->reset_task);
4925         }
4926 }
4927
4928 /**
4929  * e1000_watchdog - Timer Call-back
4930  * @data: pointer to adapter cast into an unsigned long
4931  **/
4932 static void e1000_watchdog(unsigned long data)
4933 {
4934         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4935
4936         /* Do the rest outside of interrupt context */
4937         schedule_work(&adapter->watchdog_task);
4938
4939         /* TODO: make this use queue_delayed_work() */
4940 }
4941
4942 static void e1000_watchdog_task(struct work_struct *work)
4943 {
4944         struct e1000_adapter *adapter = container_of(work,
4945                                                      struct e1000_adapter,
4946                                                      watchdog_task);
4947         struct net_device *netdev = adapter->netdev;
4948         struct e1000_mac_info *mac = &adapter->hw.mac;
4949         struct e1000_phy_info *phy = &adapter->hw.phy;
4950         struct e1000_ring *tx_ring = adapter->tx_ring;
4951         struct e1000_hw *hw = &adapter->hw;
4952         u32 link, tctl;
4953
4954         if (test_bit(__E1000_DOWN, &adapter->state))
4955                 return;
4956
4957         link = e1000e_has_link(adapter);
4958         if ((netif_carrier_ok(netdev)) && link) {
4959                 /* Cancel scheduled suspend requests. */
4960                 pm_runtime_resume(netdev->dev.parent);
4961
4962                 e1000e_enable_receives(adapter);
4963                 goto link_up;
4964         }
4965
4966         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4967             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4968                 e1000_update_mng_vlan(adapter);
4969
4970         if (link) {
4971                 if (!netif_carrier_ok(netdev)) {
4972                         bool txb2b = true;
4973
4974                         /* Cancel scheduled suspend requests. */
4975                         pm_runtime_resume(netdev->dev.parent);
4976
4977                         /* update snapshot of PHY registers on LSC */
4978                         e1000_phy_read_status(adapter);
4979                         mac->ops.get_link_up_info(&adapter->hw,
4980                                                   &adapter->link_speed,
4981                                                   &adapter->link_duplex);
4982                         e1000_print_link_info(adapter);
4983
4984                         /* check if SmartSpeed worked */
4985                         e1000e_check_downshift(hw);
4986                         if (phy->speed_downgraded)
4987                                 netdev_warn(netdev,
4988                                             "Link Speed was downgraded by SmartSpeed\n");
4989
4990                         /* On supported PHYs, check for duplex mismatch only
4991                          * if link has autonegotiated at 10/100 half
4992                          */
4993                         if ((hw->phy.type == e1000_phy_igp_3 ||
4994                              hw->phy.type == e1000_phy_bm) &&
4995                             hw->mac.autoneg &&
4996                             (adapter->link_speed == SPEED_10 ||
4997                              adapter->link_speed == SPEED_100) &&
4998                             (adapter->link_duplex == HALF_DUPLEX)) {
4999                                 u16 autoneg_exp;
5000
5001                                 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5002
5003                                 if (!(autoneg_exp & EXPANSION_NWAY))
5004                                         e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5005                         }
5006
5007                         /* adjust timeout factor according to speed/duplex */
5008                         adapter->tx_timeout_factor = 1;
5009                         switch (adapter->link_speed) {
5010                         case SPEED_10:
5011                                 txb2b = false;
5012                                 adapter->tx_timeout_factor = 16;
5013                                 break;
5014                         case SPEED_100:
5015                                 txb2b = false;
5016                                 adapter->tx_timeout_factor = 10;
5017                                 break;
5018                         }
5019
5020                         /* workaround: re-program speed mode bit after
5021                          * link-up event
5022                          */
5023                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5024                             !txb2b) {
5025                                 u32 tarc0;
5026
5027                                 tarc0 = er32(TARC(0));
5028                                 tarc0 &= ~SPEED_MODE_BIT;
5029                                 ew32(TARC(0), tarc0);
5030                         }
5031
5032                         /* disable TSO for pcie and 10/100 speeds, to avoid
5033                          * some hardware issues
5034                          */
5035                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
5036                                 switch (adapter->link_speed) {
5037                                 case SPEED_10:
5038                                 case SPEED_100:
5039                                         e_info("10/100 speed: disabling TSO\n");
5040                                         netdev->features &= ~NETIF_F_TSO;
5041                                         netdev->features &= ~NETIF_F_TSO6;
5042                                         break;
5043                                 case SPEED_1000:
5044                                         netdev->features |= NETIF_F_TSO;
5045                                         netdev->features |= NETIF_F_TSO6;
5046                                         break;
5047                                 default:
5048                                         /* oops */
5049                                         break;
5050                                 }
5051                         }
5052
5053                         /* enable transmits in the hardware, need to do this
5054                          * after setting TARC(0)
5055                          */
5056                         tctl = er32(TCTL);
5057                         tctl |= E1000_TCTL_EN;
5058                         ew32(TCTL, tctl);
5059
5060                         /* Perform any post-link-up configuration before
5061                          * reporting link up.
5062                          */
5063                         if (phy->ops.cfg_on_link_up)
5064                                 phy->ops.cfg_on_link_up(hw);
5065
5066                         netif_carrier_on(netdev);
5067
5068                         if (!test_bit(__E1000_DOWN, &adapter->state))
5069                                 mod_timer(&adapter->phy_info_timer,
5070                                           round_jiffies(jiffies + 2 * HZ));
5071                 }
5072         } else {
5073                 if (netif_carrier_ok(netdev)) {
5074                         adapter->link_speed = 0;
5075                         adapter->link_duplex = 0;
5076                         /* Link status message must follow this format */
5077                         pr_info("%s NIC Link is Down\n", adapter->netdev->name);
5078                         netif_carrier_off(netdev);
5079                         if (!test_bit(__E1000_DOWN, &adapter->state))
5080                                 mod_timer(&adapter->phy_info_timer,
5081                                           round_jiffies(jiffies + 2 * HZ));
5082
5083                         /* 8000ES2LAN requires a Rx packet buffer work-around
5084                          * on link down event; reset the controller to flush
5085                          * the Rx packet buffer.
5086                          */
5087                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5088                                 adapter->flags |= FLAG_RESTART_NOW;
5089                         else
5090                                 pm_schedule_suspend(netdev->dev.parent,
5091                                                     LINK_TIMEOUT);
5092                 }
5093         }
5094
5095 link_up:
5096         spin_lock(&adapter->stats64_lock);
5097         e1000e_update_stats(adapter);
5098
5099         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5100         adapter->tpt_old = adapter->stats.tpt;
5101         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5102         adapter->colc_old = adapter->stats.colc;
5103
5104         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5105         adapter->gorc_old = adapter->stats.gorc;
5106         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5107         adapter->gotc_old = adapter->stats.gotc;
5108         spin_unlock(&adapter->stats64_lock);
5109
5110         /* If the link is lost the controller stops DMA, but
5111          * if there is queued Tx work it cannot be done.  So
5112          * reset the controller to flush the Tx packet buffers.
5113          */
5114         if (!netif_carrier_ok(netdev) &&
5115             (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5116                 adapter->flags |= FLAG_RESTART_NOW;
5117
5118         /* If reset is necessary, do it outside of interrupt context. */
5119         if (adapter->flags & FLAG_RESTART_NOW) {
5120                 schedule_work(&adapter->reset_task);
5121                 /* return immediately since reset is imminent */
5122                 return;
5123         }
5124
5125         e1000e_update_adaptive(&adapter->hw);
5126
5127         /* Simple mode for Interrupt Throttle Rate (ITR) */
5128         if (adapter->itr_setting == 4) {
5129                 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5130                  * Total asymmetrical Tx or Rx gets ITR=8000;
5131                  * everyone else is between 2000-8000.
5132                  */
5133                 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5134                 u32 dif = (adapter->gotc > adapter->gorc ?
5135                            adapter->gotc - adapter->gorc :
5136                            adapter->gorc - adapter->gotc) / 10000;
5137                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5138
5139                 e1000e_write_itr(adapter, itr);
5140         }
5141
5142         /* Cause software interrupt to ensure Rx ring is cleaned */
5143         if (adapter->msix_entries)
5144                 ew32(ICS, adapter->rx_ring->ims_val);
5145         else
5146                 ew32(ICS, E1000_ICS_RXDMT0);
5147
5148         /* flush pending descriptors to memory before detecting Tx hang */
5149         e1000e_flush_descriptors(adapter);
5150
5151         /* Force detection of hung controller every watchdog period */
5152         adapter->detect_tx_hung = true;
5153
5154         /* With 82571 controllers, LAA may be overwritten due to controller
5155          * reset from the other port. Set the appropriate LAA in RAR[0]
5156          */
5157         if (e1000e_get_laa_state_82571(hw))
5158                 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5159
5160         if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5161                 e1000e_check_82574_phy_workaround(adapter);
5162
5163         /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5164         if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5165                 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5166                     (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5167                         er32(RXSTMPH);
5168                         adapter->rx_hwtstamp_cleared++;
5169                 } else {
5170                         adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5171                 }
5172         }
5173
5174         /* Reset the timer */
5175         if (!test_bit(__E1000_DOWN, &adapter->state))
5176                 mod_timer(&adapter->watchdog_timer,
5177                           round_jiffies(jiffies + 2 * HZ));
5178 }
5179
5180 #define E1000_TX_FLAGS_CSUM             0x00000001
5181 #define E1000_TX_FLAGS_VLAN             0x00000002
5182 #define E1000_TX_FLAGS_TSO              0x00000004
5183 #define E1000_TX_FLAGS_IPV4             0x00000008
5184 #define E1000_TX_FLAGS_NO_FCS           0x00000010
5185 #define E1000_TX_FLAGS_HWTSTAMP         0x00000020
5186 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
5187 #define E1000_TX_FLAGS_VLAN_SHIFT       16
5188
5189 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5190                      __be16 protocol)
5191 {
5192         struct e1000_context_desc *context_desc;
5193         struct e1000_buffer *buffer_info;
5194         unsigned int i;
5195         u32 cmd_length = 0;
5196         u16 ipcse = 0, mss;
5197         u8 ipcss, ipcso, tucss, tucso, hdr_len;
5198         int err;
5199
5200         if (!skb_is_gso(skb))
5201                 return 0;
5202
5203         err = skb_cow_head(skb, 0);
5204         if (err < 0)
5205                 return err;
5206
5207         hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5208         mss = skb_shinfo(skb)->gso_size;
5209         if (protocol == htons(ETH_P_IP)) {
5210                 struct iphdr *iph = ip_hdr(skb);
5211                 iph->tot_len = 0;
5212                 iph->check = 0;
5213                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5214                                                          0, IPPROTO_TCP, 0);
5215                 cmd_length = E1000_TXD_CMD_IP;
5216                 ipcse = skb_transport_offset(skb) - 1;
5217         } else if (skb_is_gso_v6(skb)) {
5218                 ipv6_hdr(skb)->payload_len = 0;
5219                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5220                                                        &ipv6_hdr(skb)->daddr,
5221                                                        0, IPPROTO_TCP, 0);
5222                 ipcse = 0;
5223         }
5224         ipcss = skb_network_offset(skb);
5225         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5226         tucss = skb_transport_offset(skb);
5227         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5228
5229         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5230                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5231
5232         i = tx_ring->next_to_use;
5233         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5234         buffer_info = &tx_ring->buffer_info[i];
5235
5236         context_desc->lower_setup.ip_fields.ipcss = ipcss;
5237         context_desc->lower_setup.ip_fields.ipcso = ipcso;
5238         context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5239         context_desc->upper_setup.tcp_fields.tucss = tucss;
5240         context_desc->upper_setup.tcp_fields.tucso = tucso;
5241         context_desc->upper_setup.tcp_fields.tucse = 0;
5242         context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5243         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5244         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5245
5246         buffer_info->time_stamp = jiffies;
5247         buffer_info->next_to_watch = i;
5248
5249         i++;
5250         if (i == tx_ring->count)
5251                 i = 0;
5252         tx_ring->next_to_use = i;
5253
5254         return 1;
5255 }
5256
5257 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5258                           __be16 protocol)
5259 {
5260         struct e1000_adapter *adapter = tx_ring->adapter;
5261         struct e1000_context_desc *context_desc;
5262         struct e1000_buffer *buffer_info;
5263         unsigned int i;
5264         u8 css;
5265         u32 cmd_len = E1000_TXD_CMD_DEXT;
5266
5267         if (skb->ip_summed != CHECKSUM_PARTIAL)
5268                 return false;
5269
5270         switch (protocol) {
5271         case cpu_to_be16(ETH_P_IP):
5272                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5273                         cmd_len |= E1000_TXD_CMD_TCP;
5274                 break;
5275         case cpu_to_be16(ETH_P_IPV6):
5276                 /* XXX not handling all IPV6 headers */
5277                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5278                         cmd_len |= E1000_TXD_CMD_TCP;
5279                 break;
5280         default:
5281                 if (unlikely(net_ratelimit()))
5282                         e_warn("checksum_partial proto=%x!\n",
5283                                be16_to_cpu(protocol));
5284                 break;
5285         }
5286
5287         css = skb_checksum_start_offset(skb);
5288
5289         i = tx_ring->next_to_use;
5290         buffer_info = &tx_ring->buffer_info[i];
5291         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5292
5293         context_desc->lower_setup.ip_config = 0;
5294         context_desc->upper_setup.tcp_fields.tucss = css;
5295         context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5296         context_desc->upper_setup.tcp_fields.tucse = 0;
5297         context_desc->tcp_seg_setup.data = 0;
5298         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5299
5300         buffer_info->time_stamp = jiffies;
5301         buffer_info->next_to_watch = i;
5302
5303         i++;
5304         if (i == tx_ring->count)
5305                 i = 0;
5306         tx_ring->next_to_use = i;
5307
5308         return true;
5309 }
5310
5311 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5312                         unsigned int first, unsigned int max_per_txd,
5313                         unsigned int nr_frags)
5314 {
5315         struct e1000_adapter *adapter = tx_ring->adapter;
5316         struct pci_dev *pdev = adapter->pdev;
5317         struct e1000_buffer *buffer_info;
5318         unsigned int len = skb_headlen(skb);
5319         unsigned int offset = 0, size, count = 0, i;
5320         unsigned int f, bytecount, segs;
5321
5322         i = tx_ring->next_to_use;
5323
5324         while (len) {
5325                 buffer_info = &tx_ring->buffer_info[i];
5326                 size = min(len, max_per_txd);
5327
5328                 buffer_info->length = size;
5329                 buffer_info->time_stamp = jiffies;
5330                 buffer_info->next_to_watch = i;
5331                 buffer_info->dma = dma_map_single(&pdev->dev,
5332                                                   skb->data + offset,
5333                                                   size, DMA_TO_DEVICE);
5334                 buffer_info->mapped_as_page = false;
5335                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5336                         goto dma_error;
5337
5338                 len -= size;
5339                 offset += size;
5340                 count++;
5341
5342                 if (len) {
5343                         i++;
5344                         if (i == tx_ring->count)
5345                                 i = 0;
5346                 }
5347         }
5348
5349         for (f = 0; f < nr_frags; f++) {
5350                 const struct skb_frag_struct *frag;
5351
5352                 frag = &skb_shinfo(skb)->frags[f];
5353                 len = skb_frag_size(frag);
5354                 offset = 0;
5355
5356                 while (len) {
5357                         i++;
5358                         if (i == tx_ring->count)
5359                                 i = 0;
5360
5361                         buffer_info = &tx_ring->buffer_info[i];
5362                         size = min(len, max_per_txd);
5363
5364                         buffer_info->length = size;
5365                         buffer_info->time_stamp = jiffies;
5366                         buffer_info->next_to_watch = i;
5367                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5368                                                             offset, size,
5369                                                             DMA_TO_DEVICE);
5370                         buffer_info->mapped_as_page = true;
5371                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5372                                 goto dma_error;
5373
5374                         len -= size;
5375                         offset += size;
5376                         count++;
5377                 }
5378         }
5379
5380         segs = skb_shinfo(skb)->gso_segs ? : 1;
5381         /* multiply data chunks by size of headers */
5382         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5383
5384         tx_ring->buffer_info[i].skb = skb;
5385         tx_ring->buffer_info[i].segs = segs;
5386         tx_ring->buffer_info[i].bytecount = bytecount;
5387         tx_ring->buffer_info[first].next_to_watch = i;
5388
5389         return count;
5390
5391 dma_error:
5392         dev_err(&pdev->dev, "Tx DMA map failed\n");
5393         buffer_info->dma = 0;
5394         if (count)
5395                 count--;
5396
5397         while (count--) {
5398                 if (i == 0)
5399                         i += tx_ring->count;
5400                 i--;
5401                 buffer_info = &tx_ring->buffer_info[i];
5402                 e1000_put_txbuf(tx_ring, buffer_info);
5403         }
5404
5405         return 0;
5406 }
5407
5408 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5409 {
5410         struct e1000_adapter *adapter = tx_ring->adapter;
5411         struct e1000_tx_desc *tx_desc = NULL;
5412         struct e1000_buffer *buffer_info;
5413         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5414         unsigned int i;
5415
5416         if (tx_flags & E1000_TX_FLAGS_TSO) {
5417                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5418                     E1000_TXD_CMD_TSE;
5419                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5420
5421                 if (tx_flags & E1000_TX_FLAGS_IPV4)
5422                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5423         }
5424
5425         if (tx_flags & E1000_TX_FLAGS_CSUM) {
5426                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5427                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5428         }
5429
5430         if (tx_flags & E1000_TX_FLAGS_VLAN) {
5431                 txd_lower |= E1000_TXD_CMD_VLE;
5432                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5433         }
5434
5435         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5436                 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5437
5438         if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5439                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5440                 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5441         }
5442
5443         i = tx_ring->next_to_use;
5444
5445         do {
5446                 buffer_info = &tx_ring->buffer_info[i];
5447                 tx_desc = E1000_TX_DESC(*tx_ring, i);
5448                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5449                 tx_desc->lower.data = cpu_to_le32(txd_lower |
5450                                                   buffer_info->length);
5451                 tx_desc->upper.data = cpu_to_le32(txd_upper);
5452
5453                 i++;
5454                 if (i == tx_ring->count)
5455                         i = 0;
5456         } while (--count > 0);
5457
5458         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5459
5460         /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5461         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5462                 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5463
5464         /* Force memory writes to complete before letting h/w
5465          * know there are new descriptors to fetch.  (Only
5466          * applicable for weak-ordered memory model archs,
5467          * such as IA-64).
5468          */
5469         wmb();
5470
5471         tx_ring->next_to_use = i;
5472 }
5473
5474 #define MINIMUM_DHCP_PACKET_SIZE 282
5475 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5476                                     struct sk_buff *skb)
5477 {
5478         struct e1000_hw *hw = &adapter->hw;
5479         u16 length, offset;
5480
5481         if (skb_vlan_tag_present(skb) &&
5482             !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5483               (adapter->hw.mng_cookie.status &
5484                E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5485                 return 0;
5486
5487         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5488                 return 0;
5489
5490         if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5491                 return 0;
5492
5493         {
5494                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5495                 struct udphdr *udp;
5496
5497                 if (ip->protocol != IPPROTO_UDP)
5498                         return 0;
5499
5500                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5501                 if (ntohs(udp->dest) != 67)
5502                         return 0;
5503
5504                 offset = (u8 *)udp + 8 - skb->data;
5505                 length = skb->len - offset;
5506                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5507         }
5508
5509         return 0;
5510 }
5511
5512 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5513 {
5514         struct e1000_adapter *adapter = tx_ring->adapter;
5515
5516         netif_stop_queue(adapter->netdev);
5517         /* Herbert's original patch had:
5518          *  smp_mb__after_netif_stop_queue();
5519          * but since that doesn't exist yet, just open code it.
5520          */
5521         smp_mb();
5522
5523         /* We need to check again in a case another CPU has just
5524          * made room available.
5525          */
5526         if (e1000_desc_unused(tx_ring) < size)
5527                 return -EBUSY;
5528
5529         /* A reprieve! */
5530         netif_start_queue(adapter->netdev);
5531         ++adapter->restart_queue;
5532         return 0;
5533 }
5534
5535 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5536 {
5537         BUG_ON(size > tx_ring->count);
5538
5539         if (e1000_desc_unused(tx_ring) >= size)
5540                 return 0;
5541         return __e1000_maybe_stop_tx(tx_ring, size);
5542 }
5543
5544 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5545                                     struct net_device *netdev)
5546 {
5547         struct e1000_adapter *adapter = netdev_priv(netdev);
5548         struct e1000_ring *tx_ring = adapter->tx_ring;
5549         unsigned int first;
5550         unsigned int tx_flags = 0;
5551         unsigned int len = skb_headlen(skb);
5552         unsigned int nr_frags;
5553         unsigned int mss;
5554         int count = 0;
5555         int tso;
5556         unsigned int f;
5557         __be16 protocol = vlan_get_protocol(skb);
5558
5559         if (test_bit(__E1000_DOWN, &adapter->state)) {
5560                 dev_kfree_skb_any(skb);
5561                 return NETDEV_TX_OK;
5562         }
5563
5564         if (skb->len <= 0) {
5565                 dev_kfree_skb_any(skb);
5566                 return NETDEV_TX_OK;
5567         }
5568
5569         /* The minimum packet size with TCTL.PSP set is 17 bytes so
5570          * pad skb in order to meet this minimum size requirement
5571          */
5572         if (skb_put_padto(skb, 17))
5573                 return NETDEV_TX_OK;
5574
5575         mss = skb_shinfo(skb)->gso_size;
5576         if (mss) {
5577                 u8 hdr_len;
5578
5579                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5580                  * points to just header, pull a few bytes of payload from
5581                  * frags into skb->data
5582                  */
5583                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5584                 /* we do this workaround for ES2LAN, but it is un-necessary,
5585                  * avoiding it could save a lot of cycles
5586                  */
5587                 if (skb->data_len && (hdr_len == len)) {
5588                         unsigned int pull_size;
5589
5590                         pull_size = min_t(unsigned int, 4, skb->data_len);
5591                         if (!__pskb_pull_tail(skb, pull_size)) {
5592                                 e_err("__pskb_pull_tail failed.\n");
5593                                 dev_kfree_skb_any(skb);
5594                                 return NETDEV_TX_OK;
5595                         }
5596                         len = skb_headlen(skb);
5597                 }
5598         }
5599
5600         /* reserve a descriptor for the offload context */
5601         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5602                 count++;
5603         count++;
5604
5605         count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5606
5607         nr_frags = skb_shinfo(skb)->nr_frags;
5608         for (f = 0; f < nr_frags; f++)
5609                 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5610                                       adapter->tx_fifo_limit);
5611
5612         if (adapter->hw.mac.tx_pkt_filtering)
5613                 e1000_transfer_dhcp_info(adapter, skb);
5614
5615         /* need: count + 2 desc gap to keep tail from touching
5616          * head, otherwise try next time
5617          */
5618         if (e1000_maybe_stop_tx(tx_ring, count + 2))
5619                 return NETDEV_TX_BUSY;
5620
5621         if (skb_vlan_tag_present(skb)) {
5622                 tx_flags |= E1000_TX_FLAGS_VLAN;
5623                 tx_flags |= (skb_vlan_tag_get(skb) <<
5624                              E1000_TX_FLAGS_VLAN_SHIFT);
5625         }
5626
5627         first = tx_ring->next_to_use;
5628
5629         tso = e1000_tso(tx_ring, skb, protocol);
5630         if (tso < 0) {
5631                 dev_kfree_skb_any(skb);
5632                 return NETDEV_TX_OK;
5633         }
5634
5635         if (tso)
5636                 tx_flags |= E1000_TX_FLAGS_TSO;
5637         else if (e1000_tx_csum(tx_ring, skb, protocol))
5638                 tx_flags |= E1000_TX_FLAGS_CSUM;
5639
5640         /* Old method was to assume IPv4 packet by default if TSO was enabled.
5641          * 82571 hardware supports TSO capabilities for IPv6 as well...
5642          * no longer assume, we must.
5643          */
5644         if (protocol == htons(ETH_P_IP))
5645                 tx_flags |= E1000_TX_FLAGS_IPV4;
5646
5647         if (unlikely(skb->no_fcs))
5648                 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5649
5650         /* if count is 0 then mapping error has occurred */
5651         count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5652                              nr_frags);
5653         if (count) {
5654                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5655                     (adapter->flags & FLAG_HAS_HW_TIMESTAMP) &&
5656                     !adapter->tx_hwtstamp_skb) {
5657                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5658                         tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5659                         adapter->tx_hwtstamp_skb = skb_get(skb);
5660                         adapter->tx_hwtstamp_start = jiffies;
5661                         schedule_work(&adapter->tx_hwtstamp_work);
5662                 } else {
5663                         skb_tx_timestamp(skb);
5664                 }
5665
5666                 netdev_sent_queue(netdev, skb->len);
5667                 e1000_tx_queue(tx_ring, tx_flags, count);
5668                 /* Make sure there is space in the ring for the next send. */
5669                 e1000_maybe_stop_tx(tx_ring,
5670                                     (MAX_SKB_FRAGS *
5671                                      DIV_ROUND_UP(PAGE_SIZE,
5672                                                   adapter->tx_fifo_limit) + 2));
5673
5674                 if (!skb->xmit_more ||
5675                     netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5676                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5677                                 e1000e_update_tdt_wa(tx_ring,
5678                                                      tx_ring->next_to_use);
5679                         else
5680                                 writel(tx_ring->next_to_use, tx_ring->tail);
5681
5682                         /* we need this if more than one processor can write
5683                          * to our tail at a time, it synchronizes IO on
5684                          *IA64/Altix systems
5685                          */
5686                         mmiowb();
5687                 }
5688         } else {
5689                 dev_kfree_skb_any(skb);
5690                 tx_ring->buffer_info[first].time_stamp = 0;
5691                 tx_ring->next_to_use = first;
5692         }
5693
5694         return NETDEV_TX_OK;
5695 }
5696
5697 /**
5698  * e1000_tx_timeout - Respond to a Tx Hang
5699  * @netdev: network interface device structure
5700  **/
5701 static void e1000_tx_timeout(struct net_device *netdev)
5702 {
5703         struct e1000_adapter *adapter = netdev_priv(netdev);
5704
5705         /* Do the reset outside of interrupt context */
5706         adapter->tx_timeout_count++;
5707         schedule_work(&adapter->reset_task);
5708 }
5709
5710 static void e1000_reset_task(struct work_struct *work)
5711 {
5712         struct e1000_adapter *adapter;
5713         adapter = container_of(work, struct e1000_adapter, reset_task);
5714
5715         /* don't run the task if already down */
5716         if (test_bit(__E1000_DOWN, &adapter->state))
5717                 return;
5718
5719         if (!(adapter->flags & FLAG_RESTART_NOW)) {
5720                 e1000e_dump(adapter);
5721                 e_err("Reset adapter unexpectedly\n");
5722         }
5723         e1000e_reinit_locked(adapter);
5724 }
5725
5726 /**
5727  * e1000_get_stats64 - Get System Network Statistics
5728  * @netdev: network interface device structure
5729  * @stats: rtnl_link_stats64 pointer
5730  *
5731  * Returns the address of the device statistics structure.
5732  **/
5733 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5734                                              struct rtnl_link_stats64 *stats)
5735 {
5736         struct e1000_adapter *adapter = netdev_priv(netdev);
5737
5738         memset(stats, 0, sizeof(struct rtnl_link_stats64));
5739         spin_lock(&adapter->stats64_lock);
5740         e1000e_update_stats(adapter);
5741         /* Fill out the OS statistics structure */
5742         stats->rx_bytes = adapter->stats.gorc;
5743         stats->rx_packets = adapter->stats.gprc;
5744         stats->tx_bytes = adapter->stats.gotc;
5745         stats->tx_packets = adapter->stats.gptc;
5746         stats->multicast = adapter->stats.mprc;
5747         stats->collisions = adapter->stats.colc;
5748
5749         /* Rx Errors */
5750
5751         /* RLEC on some newer hardware can be incorrect so build
5752          * our own version based on RUC and ROC
5753          */
5754         stats->rx_errors = adapter->stats.rxerrc +
5755             adapter->stats.crcerrs + adapter->stats.algnerrc +
5756             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5757         stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5758         stats->rx_crc_errors = adapter->stats.crcerrs;
5759         stats->rx_frame_errors = adapter->stats.algnerrc;
5760         stats->rx_missed_errors = adapter->stats.mpc;
5761
5762         /* Tx Errors */
5763         stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5764         stats->tx_aborted_errors = adapter->stats.ecol;
5765         stats->tx_window_errors = adapter->stats.latecol;
5766         stats->tx_carrier_errors = adapter->stats.tncrs;
5767
5768         /* Tx Dropped needs to be maintained elsewhere */
5769
5770         spin_unlock(&adapter->stats64_lock);
5771         return stats;
5772 }
5773
5774 /**
5775  * e1000_change_mtu - Change the Maximum Transfer Unit
5776  * @netdev: network interface device structure
5777  * @new_mtu: new value for maximum frame size
5778  *
5779  * Returns 0 on success, negative on failure
5780  **/
5781 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5782 {
5783         struct e1000_adapter *adapter = netdev_priv(netdev);
5784         int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
5785
5786         /* Jumbo frame support */
5787         if ((max_frame > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) &&
5788             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5789                 e_err("Jumbo Frames not supported.\n");
5790                 return -EINVAL;
5791         }
5792
5793         /* Supported frame sizes */
5794         if ((new_mtu < (VLAN_ETH_ZLEN + ETH_FCS_LEN)) ||
5795             (max_frame > adapter->max_hw_frame_size)) {
5796                 e_err("Unsupported MTU setting\n");
5797                 return -EINVAL;
5798         }
5799
5800         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5801         if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5802             !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5803             (new_mtu > ETH_DATA_LEN)) {
5804                 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5805                 return -EINVAL;
5806         }
5807
5808         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5809                 usleep_range(1000, 2000);
5810         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5811         adapter->max_frame_size = max_frame;
5812         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5813         netdev->mtu = new_mtu;
5814
5815         pm_runtime_get_sync(netdev->dev.parent);
5816
5817         if (netif_running(netdev))
5818                 e1000e_down(adapter, true);
5819
5820         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5821          * means we reserve 2 more, this pushes us to allocate from the next
5822          * larger slab size.
5823          * i.e. RXBUFFER_2048 --> size-4096 slab
5824          * However with the new *_jumbo_rx* routines, jumbo receives will use
5825          * fragmented skbs
5826          */
5827
5828         if (max_frame <= 2048)
5829                 adapter->rx_buffer_len = 2048;
5830         else
5831                 adapter->rx_buffer_len = 4096;
5832
5833         /* adjust allocation if LPE protects us, and we aren't using SBP */
5834         if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
5835                 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
5836
5837         if (netif_running(netdev))
5838                 e1000e_up(adapter);
5839         else
5840                 e1000e_reset(adapter);
5841
5842         pm_runtime_put_sync(netdev->dev.parent);
5843
5844         clear_bit(__E1000_RESETTING, &adapter->state);
5845
5846         return 0;
5847 }
5848
5849 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5850                            int cmd)
5851 {
5852         struct e1000_adapter *adapter = netdev_priv(netdev);
5853         struct mii_ioctl_data *data = if_mii(ifr);
5854
5855         if (adapter->hw.phy.media_type != e1000_media_type_copper)
5856                 return -EOPNOTSUPP;
5857
5858         switch (cmd) {
5859         case SIOCGMIIPHY:
5860                 data->phy_id = adapter->hw.phy.addr;
5861                 break;
5862         case SIOCGMIIREG:
5863                 e1000_phy_read_status(adapter);
5864
5865                 switch (data->reg_num & 0x1F) {
5866                 case MII_BMCR:
5867                         data->val_out = adapter->phy_regs.bmcr;
5868                         break;
5869                 case MII_BMSR:
5870                         data->val_out = adapter->phy_regs.bmsr;
5871                         break;
5872                 case MII_PHYSID1:
5873                         data->val_out = (adapter->hw.phy.id >> 16);
5874                         break;
5875                 case MII_PHYSID2:
5876                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
5877                         break;
5878                 case MII_ADVERTISE:
5879                         data->val_out = adapter->phy_regs.advertise;
5880                         break;
5881                 case MII_LPA:
5882                         data->val_out = adapter->phy_regs.lpa;
5883                         break;
5884                 case MII_EXPANSION:
5885                         data->val_out = adapter->phy_regs.expansion;
5886                         break;
5887                 case MII_CTRL1000:
5888                         data->val_out = adapter->phy_regs.ctrl1000;
5889                         break;
5890                 case MII_STAT1000:
5891                         data->val_out = adapter->phy_regs.stat1000;
5892                         break;
5893                 case MII_ESTATUS:
5894                         data->val_out = adapter->phy_regs.estatus;
5895                         break;
5896                 default:
5897                         return -EIO;
5898                 }
5899                 break;
5900         case SIOCSMIIREG:
5901         default:
5902                 return -EOPNOTSUPP;
5903         }
5904         return 0;
5905 }
5906
5907 /**
5908  * e1000e_hwtstamp_ioctl - control hardware time stamping
5909  * @netdev: network interface device structure
5910  * @ifreq: interface request
5911  *
5912  * Outgoing time stamping can be enabled and disabled. Play nice and
5913  * disable it when requested, although it shouldn't cause any overhead
5914  * when no packet needs it. At most one packet in the queue may be
5915  * marked for time stamping, otherwise it would be impossible to tell
5916  * for sure to which packet the hardware time stamp belongs.
5917  *
5918  * Incoming time stamping has to be configured via the hardware filters.
5919  * Not all combinations are supported, in particular event type has to be
5920  * specified. Matching the kind of event packet is not supported, with the
5921  * exception of "all V2 events regardless of level 2 or 4".
5922  **/
5923 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
5924 {
5925         struct e1000_adapter *adapter = netdev_priv(netdev);
5926         struct hwtstamp_config config;
5927         int ret_val;
5928
5929         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5930                 return -EFAULT;
5931
5932         ret_val = e1000e_config_hwtstamp(adapter, &config);
5933         if (ret_val)
5934                 return ret_val;
5935
5936         switch (config.rx_filter) {
5937         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5938         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5939         case HWTSTAMP_FILTER_PTP_V2_SYNC:
5940         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5941         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5942         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5943                 /* With V2 type filters which specify a Sync or Delay Request,
5944                  * Path Delay Request/Response messages are also time stamped
5945                  * by hardware so notify the caller the requested packets plus
5946                  * some others are time stamped.
5947                  */
5948                 config.rx_filter = HWTSTAMP_FILTER_SOME;
5949                 break;
5950         default:
5951                 break;
5952         }
5953
5954         return copy_to_user(ifr->ifr_data, &config,
5955                             sizeof(config)) ? -EFAULT : 0;
5956 }
5957
5958 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
5959 {
5960         struct e1000_adapter *adapter = netdev_priv(netdev);
5961
5962         return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
5963                             sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
5964 }
5965
5966 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5967 {
5968         switch (cmd) {
5969         case SIOCGMIIPHY:
5970         case SIOCGMIIREG:
5971         case SIOCSMIIREG:
5972                 return e1000_mii_ioctl(netdev, ifr, cmd);
5973         case SIOCSHWTSTAMP:
5974                 return e1000e_hwtstamp_set(netdev, ifr);
5975         case SIOCGHWTSTAMP:
5976                 return e1000e_hwtstamp_get(netdev, ifr);
5977         default:
5978                 return -EOPNOTSUPP;
5979         }
5980 }
5981
5982 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5983 {
5984         struct e1000_hw *hw = &adapter->hw;
5985         u32 i, mac_reg, wuc;
5986         u16 phy_reg, wuc_enable;
5987         int retval;
5988
5989         /* copy MAC RARs to PHY RARs */
5990         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5991
5992         retval = hw->phy.ops.acquire(hw);
5993         if (retval) {
5994                 e_err("Could not acquire PHY\n");
5995                 return retval;
5996         }
5997
5998         /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5999         retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6000         if (retval)
6001                 goto release;
6002
6003         /* copy MAC MTA to PHY MTA - only needed for pchlan */
6004         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6005                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6006                 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6007                                            (u16)(mac_reg & 0xFFFF));
6008                 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6009                                            (u16)((mac_reg >> 16) & 0xFFFF));
6010         }
6011
6012         /* configure PHY Rx Control register */
6013         hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6014         mac_reg = er32(RCTL);
6015         if (mac_reg & E1000_RCTL_UPE)
6016                 phy_reg |= BM_RCTL_UPE;
6017         if (mac_reg & E1000_RCTL_MPE)
6018                 phy_reg |= BM_RCTL_MPE;
6019         phy_reg &= ~(BM_RCTL_MO_MASK);
6020         if (mac_reg & E1000_RCTL_MO_3)
6021                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6022                             << BM_RCTL_MO_SHIFT);
6023         if (mac_reg & E1000_RCTL_BAM)
6024                 phy_reg |= BM_RCTL_BAM;
6025         if (mac_reg & E1000_RCTL_PMCF)
6026                 phy_reg |= BM_RCTL_PMCF;
6027         mac_reg = er32(CTRL);
6028         if (mac_reg & E1000_CTRL_RFCE)
6029                 phy_reg |= BM_RCTL_RFCE;
6030         hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6031
6032         wuc = E1000_WUC_PME_EN;
6033         if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6034                 wuc |= E1000_WUC_APME;
6035
6036         /* enable PHY wakeup in MAC register */
6037         ew32(WUFC, wufc);
6038         ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6039                    E1000_WUC_PME_STATUS | wuc));
6040
6041         /* configure and enable PHY wakeup in PHY registers */
6042         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6043         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6044
6045         /* activate PHY wakeup */
6046         wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6047         retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6048         if (retval)
6049                 e_err("Could not set PHY Host Wakeup bit\n");
6050 release:
6051         hw->phy.ops.release(hw);
6052
6053         return retval;
6054 }
6055
6056 static void e1000e_flush_lpic(struct pci_dev *pdev)
6057 {
6058         struct net_device *netdev = pci_get_drvdata(pdev);
6059         struct e1000_adapter *adapter = netdev_priv(netdev);
6060         struct e1000_hw *hw = &adapter->hw;
6061         u32 ret_val;
6062
6063         pm_runtime_get_sync(netdev->dev.parent);
6064
6065         ret_val = hw->phy.ops.acquire(hw);
6066         if (ret_val)
6067                 goto fl_out;
6068
6069         pr_info("EEE TX LPI TIMER: %08X\n",
6070                 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6071
6072         hw->phy.ops.release(hw);
6073
6074 fl_out:
6075         pm_runtime_put_sync(netdev->dev.parent);
6076 }
6077
6078 static int e1000e_pm_freeze(struct device *dev)
6079 {
6080         struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6081         struct e1000_adapter *adapter = netdev_priv(netdev);
6082
6083         netif_device_detach(netdev);
6084
6085         if (netif_running(netdev)) {
6086                 int count = E1000_CHECK_RESET_COUNT;
6087
6088                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6089                         usleep_range(10000, 20000);
6090
6091                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6092
6093                 /* Quiesce the device without resetting the hardware */
6094                 e1000e_down(adapter, false);
6095                 e1000_free_irq(adapter);
6096         }
6097         e1000e_reset_interrupt_capability(adapter);
6098
6099         /* Allow time for pending master requests to run */
6100         e1000e_disable_pcie_master(&adapter->hw);
6101
6102         return 0;
6103 }
6104
6105 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6106 {
6107         struct net_device *netdev = pci_get_drvdata(pdev);
6108         struct e1000_adapter *adapter = netdev_priv(netdev);
6109         struct e1000_hw *hw = &adapter->hw;
6110         u32 ctrl, ctrl_ext, rctl, status;
6111         /* Runtime suspend should only enable wakeup for link changes */
6112         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6113         int retval = 0;
6114
6115         status = er32(STATUS);
6116         if (status & E1000_STATUS_LU)
6117                 wufc &= ~E1000_WUFC_LNKC;
6118
6119         if (wufc) {
6120                 e1000_setup_rctl(adapter);
6121                 e1000e_set_rx_mode(netdev);
6122
6123                 /* turn on all-multi mode if wake on multicast is enabled */
6124                 if (wufc & E1000_WUFC_MC) {
6125                         rctl = er32(RCTL);
6126                         rctl |= E1000_RCTL_MPE;
6127                         ew32(RCTL, rctl);
6128                 }
6129
6130                 ctrl = er32(CTRL);
6131                 ctrl |= E1000_CTRL_ADVD3WUC;
6132                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6133                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6134                 ew32(CTRL, ctrl);
6135
6136                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6137                     adapter->hw.phy.media_type ==
6138                     e1000_media_type_internal_serdes) {
6139                         /* keep the laser running in D3 */
6140                         ctrl_ext = er32(CTRL_EXT);
6141                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6142                         ew32(CTRL_EXT, ctrl_ext);
6143                 }
6144
6145                 if (!runtime)
6146                         e1000e_power_up_phy(adapter);
6147
6148                 if (adapter->flags & FLAG_IS_ICH)
6149                         e1000_suspend_workarounds_ich8lan(&adapter->hw);
6150
6151                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6152                         /* enable wakeup by the PHY */
6153                         retval = e1000_init_phy_wakeup(adapter, wufc);
6154                         if (retval)
6155                                 return retval;
6156                 } else {
6157                         /* enable wakeup by the MAC */
6158                         ew32(WUFC, wufc);
6159                         ew32(WUC, E1000_WUC_PME_EN);
6160                 }
6161         } else {
6162                 ew32(WUC, 0);
6163                 ew32(WUFC, 0);
6164
6165                 e1000_power_down_phy(adapter);
6166         }
6167
6168         if (adapter->hw.phy.type == e1000_phy_igp_3) {
6169                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6170         } else if ((hw->mac.type == e1000_pch_lpt) ||
6171                    (hw->mac.type == e1000_pch_spt)) {
6172                 if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6173                         /* ULP does not support wake from unicast, multicast
6174                          * or broadcast.
6175                          */
6176                         retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6177
6178                 if (retval)
6179                         return retval;
6180         }
6181
6182
6183         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
6184          * would have already happened in close and is redundant.
6185          */
6186         e1000e_release_hw_control(adapter);
6187
6188         pci_clear_master(pdev);
6189
6190         /* The pci-e switch on some quad port adapters will report a
6191          * correctable error when the MAC transitions from D0 to D3.  To
6192          * prevent this we need to mask off the correctable errors on the
6193          * downstream port of the pci-e switch.
6194          *
6195          * We don't have the associated upstream bridge while assigning
6196          * the PCI device into guest. For example, the KVM on power is
6197          * one of the cases.
6198          */
6199         if (adapter->flags & FLAG_IS_QUAD_PORT) {
6200                 struct pci_dev *us_dev = pdev->bus->self;
6201                 u16 devctl;
6202
6203                 if (!us_dev)
6204                         return 0;
6205
6206                 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6207                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6208                                            (devctl & ~PCI_EXP_DEVCTL_CERE));
6209
6210                 pci_save_state(pdev);
6211                 pci_prepare_to_sleep(pdev);
6212
6213                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6214         }
6215
6216         return 0;
6217 }
6218
6219 /**
6220  * e1000e_disable_aspm - Disable ASPM states
6221  * @pdev: pointer to PCI device struct
6222  * @state: bit-mask of ASPM states to disable
6223  *
6224  * Some devices *must* have certain ASPM states disabled per hardware errata.
6225  **/
6226 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6227 {
6228         struct pci_dev *parent = pdev->bus->self;
6229         u16 aspm_dis_mask = 0;
6230         u16 pdev_aspmc, parent_aspmc;
6231
6232         switch (state) {
6233         case PCIE_LINK_STATE_L0S:
6234         case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6235                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6236                 /* fall-through - can't have L1 without L0s */
6237         case PCIE_LINK_STATE_L1:
6238                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6239                 break;
6240         default:
6241                 return;
6242         }
6243
6244         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6245         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6246
6247         if (parent) {
6248                 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6249                                           &parent_aspmc);
6250                 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6251         }
6252
6253         /* Nothing to do if the ASPM states to be disabled already are */
6254         if (!(pdev_aspmc & aspm_dis_mask) &&
6255             (!parent || !(parent_aspmc & aspm_dis_mask)))
6256                 return;
6257
6258         dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6259                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6260                  "L0s" : "",
6261                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6262                  "L1" : "");
6263
6264 #ifdef CONFIG_PCIEASPM
6265         pci_disable_link_state_locked(pdev, state);
6266
6267         /* Double-check ASPM control.  If not disabled by the above, the
6268          * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6269          * not enabled); override by writing PCI config space directly.
6270          */
6271         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6272         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6273
6274         if (!(aspm_dis_mask & pdev_aspmc))
6275                 return;
6276 #endif
6277
6278         /* Both device and parent should have the same ASPM setting.
6279          * Disable ASPM in downstream component first and then upstream.
6280          */
6281         pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6282
6283         if (parent)
6284                 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6285                                            aspm_dis_mask);
6286 }
6287
6288 #ifdef CONFIG_PM
6289 static int __e1000_resume(struct pci_dev *pdev)
6290 {
6291         struct net_device *netdev = pci_get_drvdata(pdev);
6292         struct e1000_adapter *adapter = netdev_priv(netdev);
6293         struct e1000_hw *hw = &adapter->hw;
6294         u16 aspm_disable_flag = 0;
6295
6296         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6297                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6298         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6299                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6300         if (aspm_disable_flag)
6301                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6302
6303         pci_set_master(pdev);
6304
6305         if (hw->mac.type >= e1000_pch2lan)
6306                 e1000_resume_workarounds_pchlan(&adapter->hw);
6307
6308         e1000e_power_up_phy(adapter);
6309
6310         /* report the system wakeup cause from S3/S4 */
6311         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6312                 u16 phy_data;
6313
6314                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6315                 if (phy_data) {
6316                         e_info("PHY Wakeup cause - %s\n",
6317                                phy_data & E1000_WUS_EX ? "Unicast Packet" :
6318                                phy_data & E1000_WUS_MC ? "Multicast Packet" :
6319                                phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6320                                phy_data & E1000_WUS_MAG ? "Magic Packet" :
6321                                phy_data & E1000_WUS_LNKC ?
6322                                "Link Status Change" : "other");
6323                 }
6324                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6325         } else {
6326                 u32 wus = er32(WUS);
6327
6328                 if (wus) {
6329                         e_info("MAC Wakeup cause - %s\n",
6330                                wus & E1000_WUS_EX ? "Unicast Packet" :
6331                                wus & E1000_WUS_MC ? "Multicast Packet" :
6332                                wus & E1000_WUS_BC ? "Broadcast Packet" :
6333                                wus & E1000_WUS_MAG ? "Magic Packet" :
6334                                wus & E1000_WUS_LNKC ? "Link Status Change" :
6335                                "other");
6336                 }
6337                 ew32(WUS, ~0);
6338         }
6339
6340         e1000e_reset(adapter);
6341
6342         e1000_init_manageability_pt(adapter);
6343
6344         /* If the controller has AMT, do not set DRV_LOAD until the interface
6345          * is up.  For all other cases, let the f/w know that the h/w is now
6346          * under the control of the driver.
6347          */
6348         if (!(adapter->flags & FLAG_HAS_AMT))
6349                 e1000e_get_hw_control(adapter);
6350
6351         return 0;
6352 }
6353
6354 #ifdef CONFIG_PM_SLEEP
6355 static int e1000e_pm_thaw(struct device *dev)
6356 {
6357         struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6358         struct e1000_adapter *adapter = netdev_priv(netdev);
6359
6360         e1000e_set_interrupt_capability(adapter);
6361         if (netif_running(netdev)) {
6362                 u32 err = e1000_request_irq(adapter);
6363
6364                 if (err)
6365                         return err;
6366
6367                 e1000e_up(adapter);
6368         }
6369
6370         netif_device_attach(netdev);
6371
6372         return 0;
6373 }
6374
6375 static int e1000e_pm_suspend(struct device *dev)
6376 {
6377         struct pci_dev *pdev = to_pci_dev(dev);
6378
6379         e1000e_flush_lpic(pdev);
6380
6381         e1000e_pm_freeze(dev);
6382
6383         return __e1000_shutdown(pdev, false);
6384 }
6385
6386 static int e1000e_pm_resume(struct device *dev)
6387 {
6388         struct pci_dev *pdev = to_pci_dev(dev);
6389         int rc;
6390
6391         rc = __e1000_resume(pdev);
6392         if (rc)
6393                 return rc;
6394
6395         return e1000e_pm_thaw(dev);
6396 }
6397 #endif /* CONFIG_PM_SLEEP */
6398
6399 static int e1000e_pm_runtime_idle(struct device *dev)
6400 {
6401         struct pci_dev *pdev = to_pci_dev(dev);
6402         struct net_device *netdev = pci_get_drvdata(pdev);
6403         struct e1000_adapter *adapter = netdev_priv(netdev);
6404         u16 eee_lp;
6405
6406         eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6407
6408         if (!e1000e_has_link(adapter)) {
6409                 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6410                 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6411         }
6412
6413         return -EBUSY;
6414 }
6415
6416 static int e1000e_pm_runtime_resume(struct device *dev)
6417 {
6418         struct pci_dev *pdev = to_pci_dev(dev);
6419         struct net_device *netdev = pci_get_drvdata(pdev);
6420         struct e1000_adapter *adapter = netdev_priv(netdev);
6421         int rc;
6422
6423         rc = __e1000_resume(pdev);
6424         if (rc)
6425                 return rc;
6426
6427         if (netdev->flags & IFF_UP)
6428                 rc = e1000e_up(adapter);
6429
6430         return rc;
6431 }
6432
6433 static int e1000e_pm_runtime_suspend(struct device *dev)
6434 {
6435         struct pci_dev *pdev = to_pci_dev(dev);
6436         struct net_device *netdev = pci_get_drvdata(pdev);
6437         struct e1000_adapter *adapter = netdev_priv(netdev);
6438
6439         if (netdev->flags & IFF_UP) {
6440                 int count = E1000_CHECK_RESET_COUNT;
6441
6442                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6443                         usleep_range(10000, 20000);
6444
6445                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6446
6447                 /* Down the device without resetting the hardware */
6448                 e1000e_down(adapter, false);
6449         }
6450
6451         if (__e1000_shutdown(pdev, true)) {
6452                 e1000e_pm_runtime_resume(dev);
6453                 return -EBUSY;
6454         }
6455
6456         return 0;
6457 }
6458 #endif /* CONFIG_PM */
6459
6460 static void e1000_shutdown(struct pci_dev *pdev)
6461 {
6462         e1000e_flush_lpic(pdev);
6463
6464         e1000e_pm_freeze(&pdev->dev);
6465
6466         __e1000_shutdown(pdev, false);
6467 }
6468
6469 #ifdef CONFIG_NET_POLL_CONTROLLER
6470
6471 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6472 {
6473         struct net_device *netdev = data;
6474         struct e1000_adapter *adapter = netdev_priv(netdev);
6475
6476         if (adapter->msix_entries) {
6477                 int vector, msix_irq;
6478
6479                 vector = 0;
6480                 msix_irq = adapter->msix_entries[vector].vector;
6481                 disable_irq(msix_irq);
6482                 e1000_intr_msix_rx(msix_irq, netdev);
6483                 enable_irq(msix_irq);
6484
6485                 vector++;
6486                 msix_irq = adapter->msix_entries[vector].vector;
6487                 disable_irq(msix_irq);
6488                 e1000_intr_msix_tx(msix_irq, netdev);
6489                 enable_irq(msix_irq);
6490
6491                 vector++;
6492                 msix_irq = adapter->msix_entries[vector].vector;
6493                 disable_irq(msix_irq);
6494                 e1000_msix_other(msix_irq, netdev);
6495                 enable_irq(msix_irq);
6496         }
6497
6498         return IRQ_HANDLED;
6499 }
6500
6501 /**
6502  * e1000_netpoll
6503  * @netdev: network interface device structure
6504  *
6505  * Polling 'interrupt' - used by things like netconsole to send skbs
6506  * without having to re-enable interrupts. It's not called while
6507  * the interrupt routine is executing.
6508  */
6509 static void e1000_netpoll(struct net_device *netdev)
6510 {
6511         struct e1000_adapter *adapter = netdev_priv(netdev);
6512
6513         switch (adapter->int_mode) {
6514         case E1000E_INT_MODE_MSIX:
6515                 e1000_intr_msix(adapter->pdev->irq, netdev);
6516                 break;
6517         case E1000E_INT_MODE_MSI:
6518                 disable_irq(adapter->pdev->irq);
6519                 e1000_intr_msi(adapter->pdev->irq, netdev);
6520                 enable_irq(adapter->pdev->irq);
6521                 break;
6522         default:                /* E1000E_INT_MODE_LEGACY */
6523                 disable_irq(adapter->pdev->irq);
6524                 e1000_intr(adapter->pdev->irq, netdev);
6525                 enable_irq(adapter->pdev->irq);
6526                 break;
6527         }
6528 }
6529 #endif
6530
6531 /**
6532  * e1000_io_error_detected - called when PCI error is detected
6533  * @pdev: Pointer to PCI device
6534  * @state: The current pci connection state
6535  *
6536  * This function is called after a PCI bus error affecting
6537  * this device has been detected.
6538  */
6539 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6540                                                 pci_channel_state_t state)
6541 {
6542         struct net_device *netdev = pci_get_drvdata(pdev);
6543         struct e1000_adapter *adapter = netdev_priv(netdev);
6544
6545         netif_device_detach(netdev);
6546
6547         if (state == pci_channel_io_perm_failure)
6548                 return PCI_ERS_RESULT_DISCONNECT;
6549
6550         if (netif_running(netdev))
6551                 e1000e_down(adapter, true);
6552         pci_disable_device(pdev);
6553
6554         /* Request a slot slot reset. */
6555         return PCI_ERS_RESULT_NEED_RESET;
6556 }
6557
6558 /**
6559  * e1000_io_slot_reset - called after the pci bus has been reset.
6560  * @pdev: Pointer to PCI device
6561  *
6562  * Restart the card from scratch, as if from a cold-boot. Implementation
6563  * resembles the first-half of the e1000e_pm_resume routine.
6564  */
6565 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6566 {
6567         struct net_device *netdev = pci_get_drvdata(pdev);
6568         struct e1000_adapter *adapter = netdev_priv(netdev);
6569         struct e1000_hw *hw = &adapter->hw;
6570         u16 aspm_disable_flag = 0;
6571         int err;
6572         pci_ers_result_t result;
6573
6574         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6575                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6576         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6577                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6578         if (aspm_disable_flag)
6579                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6580
6581         err = pci_enable_device_mem(pdev);
6582         if (err) {
6583                 dev_err(&pdev->dev,
6584                         "Cannot re-enable PCI device after reset.\n");
6585                 result = PCI_ERS_RESULT_DISCONNECT;
6586         } else {
6587                 pdev->state_saved = true;
6588                 pci_restore_state(pdev);
6589                 pci_set_master(pdev);
6590
6591                 pci_enable_wake(pdev, PCI_D3hot, 0);
6592                 pci_enable_wake(pdev, PCI_D3cold, 0);
6593
6594                 e1000e_reset(adapter);
6595                 ew32(WUS, ~0);
6596                 result = PCI_ERS_RESULT_RECOVERED;
6597         }
6598
6599         pci_cleanup_aer_uncorrect_error_status(pdev);
6600
6601         return result;
6602 }
6603
6604 /**
6605  * e1000_io_resume - called when traffic can start flowing again.
6606  * @pdev: Pointer to PCI device
6607  *
6608  * This callback is called when the error recovery driver tells us that
6609  * its OK to resume normal operation. Implementation resembles the
6610  * second-half of the e1000e_pm_resume routine.
6611  */
6612 static void e1000_io_resume(struct pci_dev *pdev)
6613 {
6614         struct net_device *netdev = pci_get_drvdata(pdev);
6615         struct e1000_adapter *adapter = netdev_priv(netdev);
6616
6617         e1000_init_manageability_pt(adapter);
6618
6619         if (netif_running(netdev)) {
6620                 if (e1000e_up(adapter)) {
6621                         dev_err(&pdev->dev,
6622                                 "can't bring device back up after reset\n");
6623                         return;
6624                 }
6625         }
6626
6627         netif_device_attach(netdev);
6628
6629         /* If the controller has AMT, do not set DRV_LOAD until the interface
6630          * is up.  For all other cases, let the f/w know that the h/w is now
6631          * under the control of the driver.
6632          */
6633         if (!(adapter->flags & FLAG_HAS_AMT))
6634                 e1000e_get_hw_control(adapter);
6635 }
6636
6637 static void e1000_print_device_info(struct e1000_adapter *adapter)
6638 {
6639         struct e1000_hw *hw = &adapter->hw;
6640         struct net_device *netdev = adapter->netdev;
6641         u32 ret_val;
6642         u8 pba_str[E1000_PBANUM_LENGTH];
6643
6644         /* print bus type/speed/width info */
6645         e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6646                /* bus width */
6647                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6648                 "Width x1"),
6649                /* MAC address */
6650                netdev->dev_addr);
6651         e_info("Intel(R) PRO/%s Network Connection\n",
6652                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6653         ret_val = e1000_read_pba_string_generic(hw, pba_str,
6654                                                 E1000_PBANUM_LENGTH);
6655         if (ret_val)
6656                 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6657         e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6658                hw->mac.type, hw->phy.type, pba_str);
6659 }
6660
6661 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6662 {
6663         struct e1000_hw *hw = &adapter->hw;
6664         int ret_val;
6665         u16 buf = 0;
6666
6667         if (hw->mac.type != e1000_82573)
6668                 return;
6669
6670         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6671         le16_to_cpus(&buf);
6672         if (!ret_val && (!(buf & (1 << 0)))) {
6673                 /* Deep Smart Power Down (DSPD) */
6674                 dev_warn(&adapter->pdev->dev,
6675                          "Warning: detected DSPD enabled in EEPROM\n");
6676         }
6677 }
6678
6679 static int e1000_set_features(struct net_device *netdev,
6680                               netdev_features_t features)
6681 {
6682         struct e1000_adapter *adapter = netdev_priv(netdev);
6683         netdev_features_t changed = features ^ netdev->features;
6684
6685         if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6686                 adapter->flags |= FLAG_TSO_FORCE;
6687
6688         if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6689                          NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6690                          NETIF_F_RXALL)))
6691                 return 0;
6692
6693         if (changed & NETIF_F_RXFCS) {
6694                 if (features & NETIF_F_RXFCS) {
6695                         adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6696                 } else {
6697                         /* We need to take it back to defaults, which might mean
6698                          * stripping is still disabled at the adapter level.
6699                          */
6700                         if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6701                                 adapter->flags2 |= FLAG2_CRC_STRIPPING;
6702                         else
6703                                 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6704                 }
6705         }
6706
6707         netdev->features = features;
6708
6709         if (netif_running(netdev))
6710                 e1000e_reinit_locked(adapter);
6711         else
6712                 e1000e_reset(adapter);
6713
6714         return 0;
6715 }
6716
6717 static const struct net_device_ops e1000e_netdev_ops = {
6718         .ndo_open               = e1000_open,
6719         .ndo_stop               = e1000_close,
6720         .ndo_start_xmit         = e1000_xmit_frame,
6721         .ndo_get_stats64        = e1000e_get_stats64,
6722         .ndo_set_rx_mode        = e1000e_set_rx_mode,
6723         .ndo_set_mac_address    = e1000_set_mac,
6724         .ndo_change_mtu         = e1000_change_mtu,
6725         .ndo_do_ioctl           = e1000_ioctl,
6726         .ndo_tx_timeout         = e1000_tx_timeout,
6727         .ndo_validate_addr      = eth_validate_addr,
6728
6729         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
6730         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
6731 #ifdef CONFIG_NET_POLL_CONTROLLER
6732         .ndo_poll_controller    = e1000_netpoll,
6733 #endif
6734         .ndo_set_features = e1000_set_features,
6735 };
6736
6737 /**
6738  * e1000_probe - Device Initialization Routine
6739  * @pdev: PCI device information struct
6740  * @ent: entry in e1000_pci_tbl
6741  *
6742  * Returns 0 on success, negative on failure
6743  *
6744  * e1000_probe initializes an adapter identified by a pci_dev structure.
6745  * The OS initialization, configuring of the adapter private structure,
6746  * and a hardware reset occur.
6747  **/
6748 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
6749 {
6750         struct net_device *netdev;
6751         struct e1000_adapter *adapter;
6752         struct e1000_hw *hw;
6753         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6754         resource_size_t mmio_start, mmio_len;
6755         resource_size_t flash_start, flash_len;
6756         static int cards_found;
6757         u16 aspm_disable_flag = 0;
6758         int bars, i, err, pci_using_dac;
6759         u16 eeprom_data = 0;
6760         u16 eeprom_apme_mask = E1000_EEPROM_APME;
6761         s32 rval = 0;
6762
6763         if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6764                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6765         if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6766                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6767         if (aspm_disable_flag)
6768                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6769
6770         err = pci_enable_device_mem(pdev);
6771         if (err)
6772                 return err;
6773
6774         pci_using_dac = 0;
6775         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6776         if (!err) {
6777                 pci_using_dac = 1;
6778         } else {
6779                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
6780                 if (err) {
6781                         dev_err(&pdev->dev,
6782                                 "No usable DMA configuration, aborting\n");
6783                         goto err_dma;
6784                 }
6785         }
6786
6787         bars = pci_select_bars(pdev, IORESOURCE_MEM);
6788         err = pci_request_selected_regions_exclusive(pdev, bars,
6789                                                      e1000e_driver_name);
6790         if (err)
6791                 goto err_pci_reg;
6792
6793         /* AER (Advanced Error Reporting) hooks */
6794         pci_enable_pcie_error_reporting(pdev);
6795
6796         pci_set_master(pdev);
6797         /* PCI config space info */
6798         err = pci_save_state(pdev);
6799         if (err)
6800                 goto err_alloc_etherdev;
6801
6802         err = -ENOMEM;
6803         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6804         if (!netdev)
6805                 goto err_alloc_etherdev;
6806
6807         SET_NETDEV_DEV(netdev, &pdev->dev);
6808
6809         netdev->irq = pdev->irq;
6810
6811         pci_set_drvdata(pdev, netdev);
6812         adapter = netdev_priv(netdev);
6813         hw = &adapter->hw;
6814         adapter->netdev = netdev;
6815         adapter->pdev = pdev;
6816         adapter->ei = ei;
6817         adapter->pba = ei->pba;
6818         adapter->flags = ei->flags;
6819         adapter->flags2 = ei->flags2;
6820         adapter->hw.adapter = adapter;
6821         adapter->hw.mac.type = ei->mac;
6822         adapter->max_hw_frame_size = ei->max_hw_frame_size;
6823         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6824
6825         mmio_start = pci_resource_start(pdev, 0);
6826         mmio_len = pci_resource_len(pdev, 0);
6827
6828         err = -EIO;
6829         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
6830         if (!adapter->hw.hw_addr)
6831                 goto err_ioremap;
6832
6833         if ((adapter->flags & FLAG_HAS_FLASH) &&
6834             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
6835             (hw->mac.type < e1000_pch_spt)) {
6836                 flash_start = pci_resource_start(pdev, 1);
6837                 flash_len = pci_resource_len(pdev, 1);
6838                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
6839                 if (!adapter->hw.flash_address)
6840                         goto err_flashmap;
6841         }
6842
6843         /* Set default EEE advertisement */
6844         if (adapter->flags2 & FLAG2_HAS_EEE)
6845                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
6846
6847         /* construct the net_device struct */
6848         netdev->netdev_ops = &e1000e_netdev_ops;
6849         e1000e_set_ethtool_ops(netdev);
6850         netdev->watchdog_timeo = 5 * HZ;
6851         netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
6852         strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6853
6854         netdev->mem_start = mmio_start;
6855         netdev->mem_end = mmio_start + mmio_len;
6856
6857         adapter->bd_number = cards_found++;
6858
6859         e1000e_check_options(adapter);
6860
6861         /* setup adapter struct */
6862         err = e1000_sw_init(adapter);
6863         if (err)
6864                 goto err_sw_init;
6865
6866         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6867         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
6868         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6869
6870         err = ei->get_variants(adapter);
6871         if (err)
6872                 goto err_hw_init;
6873
6874         if ((adapter->flags & FLAG_IS_ICH) &&
6875             (adapter->flags & FLAG_READ_ONLY_NVM) &&
6876             (hw->mac.type < e1000_pch_spt))
6877                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
6878
6879         hw->mac.ops.get_bus_info(&adapter->hw);
6880
6881         adapter->hw.phy.autoneg_wait_to_complete = 0;
6882
6883         /* Copper options */
6884         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6885                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
6886                 adapter->hw.phy.disable_polarity_correction = 0;
6887                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
6888         }
6889
6890         if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
6891                 dev_info(&pdev->dev,
6892                          "PHY reset is blocked due to SOL/IDER session.\n");
6893
6894         /* Set initial default active device features */
6895         netdev->features = (NETIF_F_SG |
6896                             NETIF_F_HW_VLAN_CTAG_RX |
6897                             NETIF_F_HW_VLAN_CTAG_TX |
6898                             NETIF_F_TSO |
6899                             NETIF_F_TSO6 |
6900                             NETIF_F_RXHASH |
6901                             NETIF_F_RXCSUM |
6902                             NETIF_F_HW_CSUM);
6903
6904         /* Set user-changeable features (subset of all device features) */
6905         netdev->hw_features = netdev->features;
6906         netdev->hw_features |= NETIF_F_RXFCS;
6907         netdev->priv_flags |= IFF_SUPP_NOFCS;
6908         netdev->hw_features |= NETIF_F_RXALL;
6909
6910         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
6911                 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6912
6913         netdev->vlan_features |= (NETIF_F_SG |
6914                                   NETIF_F_TSO |
6915                                   NETIF_F_TSO6 |
6916                                   NETIF_F_HW_CSUM);
6917
6918         netdev->priv_flags |= IFF_UNICAST_FLT;
6919
6920         if (pci_using_dac) {
6921                 netdev->features |= NETIF_F_HIGHDMA;
6922                 netdev->vlan_features |= NETIF_F_HIGHDMA;
6923         }
6924
6925         if (e1000e_enable_mng_pass_thru(&adapter->hw))
6926                 adapter->flags |= FLAG_MNG_PT_ENABLED;
6927
6928         /* before reading the NVM, reset the controller to
6929          * put the device in a known good starting state
6930          */
6931         adapter->hw.mac.ops.reset_hw(&adapter->hw);
6932
6933         /* systems with ASPM and others may see the checksum fail on the first
6934          * attempt. Let's give it a few tries
6935          */
6936         for (i = 0;; i++) {
6937                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
6938                         break;
6939                 if (i == 2) {
6940                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6941                         err = -EIO;
6942                         goto err_eeprom;
6943                 }
6944         }
6945
6946         e1000_eeprom_checks(adapter);
6947
6948         /* copy the MAC address */
6949         if (e1000e_read_mac_addr(&adapter->hw))
6950                 dev_err(&pdev->dev,
6951                         "NVM Read Error while reading MAC address\n");
6952
6953         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
6954
6955         if (!is_valid_ether_addr(netdev->dev_addr)) {
6956                 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
6957                         netdev->dev_addr);
6958                 err = -EIO;
6959                 goto err_eeprom;
6960         }
6961
6962         init_timer(&adapter->watchdog_timer);
6963         adapter->watchdog_timer.function = e1000_watchdog;
6964         adapter->watchdog_timer.data = (unsigned long)adapter;
6965
6966         init_timer(&adapter->phy_info_timer);
6967         adapter->phy_info_timer.function = e1000_update_phy_info;
6968         adapter->phy_info_timer.data = (unsigned long)adapter;
6969
6970         INIT_WORK(&adapter->reset_task, e1000_reset_task);
6971         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6972         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6973         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6974         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6975
6976         /* Initialize link parameters. User can change them with ethtool */
6977         adapter->hw.mac.autoneg = 1;
6978         adapter->fc_autoneg = true;
6979         adapter->hw.fc.requested_mode = e1000_fc_default;
6980         adapter->hw.fc.current_mode = e1000_fc_default;
6981         adapter->hw.phy.autoneg_advertised = 0x2f;
6982
6983         /* Initial Wake on LAN setting - If APM wake is enabled in
6984          * the EEPROM, enable the ACPI Magic Packet filter
6985          */
6986         if (adapter->flags & FLAG_APME_IN_WUC) {
6987                 /* APME bit in EEPROM is mapped to WUC.APME */
6988                 eeprom_data = er32(WUC);
6989                 eeprom_apme_mask = E1000_WUC_APME;
6990                 if ((hw->mac.type > e1000_ich10lan) &&
6991                     (eeprom_data & E1000_WUC_PHY_WAKE))
6992                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6993         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6994                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6995                     (adapter->hw.bus.func == 1))
6996                         rval = e1000_read_nvm(&adapter->hw,
6997                                               NVM_INIT_CONTROL3_PORT_B,
6998                                               1, &eeprom_data);
6999                 else
7000                         rval = e1000_read_nvm(&adapter->hw,
7001                                               NVM_INIT_CONTROL3_PORT_A,
7002                                               1, &eeprom_data);
7003         }
7004
7005         /* fetch WoL from EEPROM */
7006         if (rval)
7007                 e_dbg("NVM read error getting WoL initial values: %d\n", rval);
7008         else if (eeprom_data & eeprom_apme_mask)
7009                 adapter->eeprom_wol |= E1000_WUFC_MAG;
7010
7011         /* now that we have the eeprom settings, apply the special cases
7012          * where the eeprom may be wrong or the board simply won't support
7013          * wake on lan on a particular port
7014          */
7015         if (!(adapter->flags & FLAG_HAS_WOL))
7016                 adapter->eeprom_wol = 0;
7017
7018         /* initialize the wol settings based on the eeprom settings */
7019         adapter->wol = adapter->eeprom_wol;
7020
7021         /* make sure adapter isn't asleep if manageability is enabled */
7022         if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7023             (hw->mac.ops.check_mng_mode(hw)))
7024                 device_wakeup_enable(&pdev->dev);
7025
7026         /* save off EEPROM version number */
7027         rval = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7028
7029         if (rval) {
7030                 e_dbg("NVM read error getting EEPROM version: %d\n", rval);
7031                 adapter->eeprom_vers = 0;
7032         }
7033
7034         /* reset the hardware with the new settings */
7035         e1000e_reset(adapter);
7036
7037         /* If the controller has AMT, do not set DRV_LOAD until the interface
7038          * is up.  For all other cases, let the f/w know that the h/w is now
7039          * under the control of the driver.
7040          */
7041         if (!(adapter->flags & FLAG_HAS_AMT))
7042                 e1000e_get_hw_control(adapter);
7043
7044         strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7045         err = register_netdev(netdev);
7046         if (err)
7047                 goto err_register;
7048
7049         /* carrier off reporting is important to ethtool even BEFORE open */
7050         netif_carrier_off(netdev);
7051
7052         /* init PTP hardware clock */
7053         e1000e_ptp_init(adapter);
7054
7055         e1000_print_device_info(adapter);
7056
7057         if (pci_dev_run_wake(pdev))
7058                 pm_runtime_put_noidle(&pdev->dev);
7059
7060         return 0;
7061
7062 err_register:
7063         if (!(adapter->flags & FLAG_HAS_AMT))
7064                 e1000e_release_hw_control(adapter);
7065 err_eeprom:
7066         if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7067                 e1000_phy_hw_reset(&adapter->hw);
7068 err_hw_init:
7069         kfree(adapter->tx_ring);
7070         kfree(adapter->rx_ring);
7071 err_sw_init:
7072         if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7073                 iounmap(adapter->hw.flash_address);
7074         e1000e_reset_interrupt_capability(adapter);
7075 err_flashmap:
7076         iounmap(adapter->hw.hw_addr);
7077 err_ioremap:
7078         free_netdev(netdev);
7079 err_alloc_etherdev:
7080         pci_release_selected_regions(pdev,
7081                                      pci_select_bars(pdev, IORESOURCE_MEM));
7082 err_pci_reg:
7083 err_dma:
7084         pci_disable_device(pdev);
7085         return err;
7086 }
7087
7088 /**
7089  * e1000_remove - Device Removal Routine
7090  * @pdev: PCI device information struct
7091  *
7092  * e1000_remove is called by the PCI subsystem to alert the driver
7093  * that it should release a PCI device.  The could be caused by a
7094  * Hot-Plug event, or because the driver is going to be removed from
7095  * memory.
7096  **/
7097 static void e1000_remove(struct pci_dev *pdev)
7098 {
7099         struct net_device *netdev = pci_get_drvdata(pdev);
7100         struct e1000_adapter *adapter = netdev_priv(netdev);
7101         bool down = test_bit(__E1000_DOWN, &adapter->state);
7102
7103         e1000e_ptp_remove(adapter);
7104
7105         /* The timers may be rescheduled, so explicitly disable them
7106          * from being rescheduled.
7107          */
7108         if (!down)
7109                 set_bit(__E1000_DOWN, &adapter->state);
7110         del_timer_sync(&adapter->watchdog_timer);
7111         del_timer_sync(&adapter->phy_info_timer);
7112
7113         cancel_work_sync(&adapter->reset_task);
7114         cancel_work_sync(&adapter->watchdog_task);
7115         cancel_work_sync(&adapter->downshift_task);
7116         cancel_work_sync(&adapter->update_phy_task);
7117         cancel_work_sync(&adapter->print_hang_task);
7118
7119         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7120                 cancel_work_sync(&adapter->tx_hwtstamp_work);
7121                 if (adapter->tx_hwtstamp_skb) {
7122                         dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
7123                         adapter->tx_hwtstamp_skb = NULL;
7124                 }
7125         }
7126
7127         /* Don't lie to e1000_close() down the road. */
7128         if (!down)
7129                 clear_bit(__E1000_DOWN, &adapter->state);
7130         unregister_netdev(netdev);
7131
7132         if (pci_dev_run_wake(pdev))
7133                 pm_runtime_get_noresume(&pdev->dev);
7134
7135         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7136          * would have already happened in close and is redundant.
7137          */
7138         e1000e_release_hw_control(adapter);
7139
7140         e1000e_reset_interrupt_capability(adapter);
7141         kfree(adapter->tx_ring);
7142         kfree(adapter->rx_ring);
7143
7144         iounmap(adapter->hw.hw_addr);
7145         if ((adapter->hw.flash_address) &&
7146             (adapter->hw.mac.type < e1000_pch_spt))
7147                 iounmap(adapter->hw.flash_address);
7148         pci_release_selected_regions(pdev,
7149                                      pci_select_bars(pdev, IORESOURCE_MEM));
7150
7151         free_netdev(netdev);
7152
7153         /* AER disable */
7154         pci_disable_pcie_error_reporting(pdev);
7155
7156         pci_disable_device(pdev);
7157 }
7158
7159 /* PCI Error Recovery (ERS) */
7160 static const struct pci_error_handlers e1000_err_handler = {
7161         .error_detected = e1000_io_error_detected,
7162         .slot_reset = e1000_io_slot_reset,
7163         .resume = e1000_io_resume,
7164 };
7165
7166 static const struct pci_device_id e1000_pci_tbl[] = {
7167         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7168         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7169         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7170         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7171           board_82571 },
7172         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7173         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7174         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7175         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7176         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7177
7178         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7179         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7180         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7181         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7182
7183         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7184         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7185         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7186
7187         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7188         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7189         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7190
7191         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7192           board_80003es2lan },
7193         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7194           board_80003es2lan },
7195         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7196           board_80003es2lan },
7197         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7198           board_80003es2lan },
7199
7200         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7201         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7202         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7203         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7204         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7205         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7206         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7207         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7208
7209         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7210         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7211         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7212         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7213         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7214         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7215         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7216         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7217         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7218
7219         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7220         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7221         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7222
7223         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7224         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7225         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7226
7227         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7228         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7229         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7230         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7231
7232         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7233         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7234
7235         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7236         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7237         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7238         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7239         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7240         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7241         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7242         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7243         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7244         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7245         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7246         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7247
7248         { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7249 };
7250 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7251
7252 static const struct dev_pm_ops e1000_pm_ops = {
7253 #ifdef CONFIG_PM_SLEEP
7254         .suspend        = e1000e_pm_suspend,
7255         .resume         = e1000e_pm_resume,
7256         .freeze         = e1000e_pm_freeze,
7257         .thaw           = e1000e_pm_thaw,
7258         .poweroff       = e1000e_pm_suspend,
7259         .restore        = e1000e_pm_resume,
7260 #endif
7261         SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7262                            e1000e_pm_runtime_idle)
7263 };
7264
7265 /* PCI Device API Driver */
7266 static struct pci_driver e1000_driver = {
7267         .name     = e1000e_driver_name,
7268         .id_table = e1000_pci_tbl,
7269         .probe    = e1000_probe,
7270         .remove   = e1000_remove,
7271         .driver   = {
7272                 .pm = &e1000_pm_ops,
7273         },
7274         .shutdown = e1000_shutdown,
7275         .err_handler = &e1000_err_handler
7276 };
7277
7278 /**
7279  * e1000_init_module - Driver Registration Routine
7280  *
7281  * e1000_init_module is the first routine called when the driver is
7282  * loaded. All it does is register with the PCI subsystem.
7283  **/
7284 static int __init e1000_init_module(void)
7285 {
7286         int ret;
7287
7288         pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7289                 e1000e_driver_version);
7290         pr_info("Copyright(c) 1999 - 2014 Intel Corporation.\n");
7291         ret = pci_register_driver(&e1000_driver);
7292
7293         return ret;
7294 }
7295 module_init(e1000_init_module);
7296
7297 /**
7298  * e1000_exit_module - Driver Exit Cleanup Routine
7299  *
7300  * e1000_exit_module is called just before the driver is removed
7301  * from memory.
7302  **/
7303 static void __exit e1000_exit_module(void)
7304 {
7305         pci_unregister_driver(&e1000_driver);
7306 }
7307 module_exit(e1000_exit_module);
7308
7309 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7310 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7311 MODULE_LICENSE("GPL");
7312 MODULE_VERSION(DRV_VERSION);
7313
7314 /* netdev.c */