9d81c03174334be84a3d605ff03417effc4c7ccd
[kvmfornfv.git] / kernel / drivers / net / ethernet / intel / e1000e / ich8lan.c
1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21
22 /* 82562G 10/100 Network Connection
23  * 82562G-2 10/100 Network Connection
24  * 82562GT 10/100 Network Connection
25  * 82562GT-2 10/100 Network Connection
26  * 82562V 10/100 Network Connection
27  * 82562V-2 10/100 Network Connection
28  * 82566DC-2 Gigabit Network Connection
29  * 82566DC Gigabit Network Connection
30  * 82566DM-2 Gigabit Network Connection
31  * 82566DM Gigabit Network Connection
32  * 82566MC Gigabit Network Connection
33  * 82566MM Gigabit Network Connection
34  * 82567LM Gigabit Network Connection
35  * 82567LF Gigabit Network Connection
36  * 82567V Gigabit Network Connection
37  * 82567LM-2 Gigabit Network Connection
38  * 82567LF-2 Gigabit Network Connection
39  * 82567V-2 Gigabit Network Connection
40  * 82567LF-3 Gigabit Network Connection
41  * 82567LM-3 Gigabit Network Connection
42  * 82567LM-4 Gigabit Network Connection
43  * 82577LM Gigabit Network Connection
44  * 82577LC Gigabit Network Connection
45  * 82578DM Gigabit Network Connection
46  * 82578DC Gigabit Network Connection
47  * 82579LM Gigabit Network Connection
48  * 82579V Gigabit Network Connection
49  * Ethernet Connection I217-LM
50  * Ethernet Connection I217-V
51  * Ethernet Connection I218-V
52  * Ethernet Connection I218-LM
53  * Ethernet Connection (2) I218-LM
54  * Ethernet Connection (2) I218-V
55  * Ethernet Connection (3) I218-LM
56  * Ethernet Connection (3) I218-V
57  */
58
59 #include "e1000.h"
60
61 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
62 /* Offset 04h HSFSTS */
63 union ich8_hws_flash_status {
64         struct ich8_hsfsts {
65                 u16 flcdone:1;  /* bit 0 Flash Cycle Done */
66                 u16 flcerr:1;   /* bit 1 Flash Cycle Error */
67                 u16 dael:1;     /* bit 2 Direct Access error Log */
68                 u16 berasesz:2; /* bit 4:3 Sector Erase Size */
69                 u16 flcinprog:1;        /* bit 5 flash cycle in Progress */
70                 u16 reserved1:2;        /* bit 13:6 Reserved */
71                 u16 reserved2:6;        /* bit 13:6 Reserved */
72                 u16 fldesvalid:1;       /* bit 14 Flash Descriptor Valid */
73                 u16 flockdn:1;  /* bit 15 Flash Config Lock-Down */
74         } hsf_status;
75         u16 regval;
76 };
77
78 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
79 /* Offset 06h FLCTL */
80 union ich8_hws_flash_ctrl {
81         struct ich8_hsflctl {
82                 u16 flcgo:1;    /* 0 Flash Cycle Go */
83                 u16 flcycle:2;  /* 2:1 Flash Cycle */
84                 u16 reserved:5; /* 7:3 Reserved  */
85                 u16 fldbcount:2;        /* 9:8 Flash Data Byte Count */
86                 u16 flockdn:6;  /* 15:10 Reserved */
87         } hsf_ctrl;
88         u16 regval;
89 };
90
91 /* ICH Flash Region Access Permissions */
92 union ich8_hws_flash_regacc {
93         struct ich8_flracc {
94                 u32 grra:8;     /* 0:7 GbE region Read Access */
95                 u32 grwa:8;     /* 8:15 GbE region Write Access */
96                 u32 gmrag:8;    /* 23:16 GbE Master Read Access Grant */
97                 u32 gmwag:8;    /* 31:24 GbE Master Write Access Grant */
98         } hsf_flregacc;
99         u16 regval;
100 };
101
102 /* ICH Flash Protected Region */
103 union ich8_flash_protected_range {
104         struct ich8_pr {
105                 u32 base:13;    /* 0:12 Protected Range Base */
106                 u32 reserved1:2;        /* 13:14 Reserved */
107                 u32 rpe:1;      /* 15 Read Protection Enable */
108                 u32 limit:13;   /* 16:28 Protected Range Limit */
109                 u32 reserved2:2;        /* 29:30 Reserved */
110                 u32 wpe:1;      /* 31 Write Protection Enable */
111         } range;
112         u32 regval;
113 };
114
115 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
116 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
118 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
119                                                 u32 offset, u8 byte);
120 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
121                                          u8 *data);
122 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
123                                          u16 *data);
124 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
125                                          u8 size, u16 *data);
126 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
127                                            u32 *data);
128 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
129                                           u32 offset, u32 *data);
130 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
131                                             u32 offset, u32 data);
132 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
133                                                  u32 offset, u32 dword);
134 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
135 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
136 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
137 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
138 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
139 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
140 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
141 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
142 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
143 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
144 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
145 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
146 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
147 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
148 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
149 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
150 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
151 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
152 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
153 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
154 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
155 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
156 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
157 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
158
159 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
160 {
161         return readw(hw->flash_address + reg);
162 }
163
164 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
165 {
166         return readl(hw->flash_address + reg);
167 }
168
169 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
170 {
171         writew(val, hw->flash_address + reg);
172 }
173
174 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
175 {
176         writel(val, hw->flash_address + reg);
177 }
178
179 #define er16flash(reg)          __er16flash(hw, (reg))
180 #define er32flash(reg)          __er32flash(hw, (reg))
181 #define ew16flash(reg, val)     __ew16flash(hw, (reg), (val))
182 #define ew32flash(reg, val)     __ew32flash(hw, (reg), (val))
183
184 /**
185  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
186  *  @hw: pointer to the HW structure
187  *
188  *  Test access to the PHY registers by reading the PHY ID registers.  If
189  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
190  *  otherwise assume the read PHY ID is correct if it is valid.
191  *
192  *  Assumes the sw/fw/hw semaphore is already acquired.
193  **/
194 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
195 {
196         u16 phy_reg = 0;
197         u32 phy_id = 0;
198         s32 ret_val = 0;
199         u16 retry_count;
200         u32 mac_reg = 0;
201
202         for (retry_count = 0; retry_count < 2; retry_count++) {
203                 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
204                 if (ret_val || (phy_reg == 0xFFFF))
205                         continue;
206                 phy_id = (u32)(phy_reg << 16);
207
208                 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
209                 if (ret_val || (phy_reg == 0xFFFF)) {
210                         phy_id = 0;
211                         continue;
212                 }
213                 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
214                 break;
215         }
216
217         if (hw->phy.id) {
218                 if (hw->phy.id == phy_id)
219                         goto out;
220         } else if (phy_id) {
221                 hw->phy.id = phy_id;
222                 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
223                 goto out;
224         }
225
226         /* In case the PHY needs to be in mdio slow mode,
227          * set slow mode and try to get the PHY id again.
228          */
229         if (hw->mac.type < e1000_pch_lpt) {
230                 hw->phy.ops.release(hw);
231                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
232                 if (!ret_val)
233                         ret_val = e1000e_get_phy_id(hw);
234                 hw->phy.ops.acquire(hw);
235         }
236
237         if (ret_val)
238                 return false;
239 out:
240         if ((hw->mac.type == e1000_pch_lpt) ||
241             (hw->mac.type == e1000_pch_spt)) {
242                 /* Unforce SMBus mode in PHY */
243                 e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
244                 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
245                 e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
246
247                 /* Unforce SMBus mode in MAC */
248                 mac_reg = er32(CTRL_EXT);
249                 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
250                 ew32(CTRL_EXT, mac_reg);
251         }
252
253         return true;
254 }
255
256 /**
257  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
258  *  @hw: pointer to the HW structure
259  *
260  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
261  *  used to reset the PHY to a quiescent state when necessary.
262  **/
263 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
264 {
265         u32 mac_reg;
266
267         /* Set Phy Config Counter to 50msec */
268         mac_reg = er32(FEXTNVM3);
269         mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
270         mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
271         ew32(FEXTNVM3, mac_reg);
272
273         /* Toggle LANPHYPC Value bit */
274         mac_reg = er32(CTRL);
275         mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
276         mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
277         ew32(CTRL, mac_reg);
278         e1e_flush();
279         usleep_range(10, 20);
280         mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
281         ew32(CTRL, mac_reg);
282         e1e_flush();
283
284         if (hw->mac.type < e1000_pch_lpt) {
285                 msleep(50);
286         } else {
287                 u16 count = 20;
288
289                 do {
290                         usleep_range(5000, 10000);
291                 } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
292
293                 msleep(30);
294         }
295 }
296
297 /**
298  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
299  *  @hw: pointer to the HW structure
300  *
301  *  Workarounds/flow necessary for PHY initialization during driver load
302  *  and resume paths.
303  **/
304 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
305 {
306         struct e1000_adapter *adapter = hw->adapter;
307         u32 mac_reg, fwsm = er32(FWSM);
308         s32 ret_val;
309
310         /* Gate automatic PHY configuration by hardware on managed and
311          * non-managed 82579 and newer adapters.
312          */
313         e1000_gate_hw_phy_config_ich8lan(hw, true);
314
315         /* It is not possible to be certain of the current state of ULP
316          * so forcibly disable it.
317          */
318         hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
319         e1000_disable_ulp_lpt_lp(hw, true);
320
321         ret_val = hw->phy.ops.acquire(hw);
322         if (ret_val) {
323                 e_dbg("Failed to initialize PHY flow\n");
324                 goto out;
325         }
326
327         /* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
328          * inaccessible and resetting the PHY is not blocked, toggle the
329          * LANPHYPC Value bit to force the interconnect to PCIe mode.
330          */
331         switch (hw->mac.type) {
332         case e1000_pch_lpt:
333         case e1000_pch_spt:
334                 if (e1000_phy_is_accessible_pchlan(hw))
335                         break;
336
337                 /* Before toggling LANPHYPC, see if PHY is accessible by
338                  * forcing MAC to SMBus mode first.
339                  */
340                 mac_reg = er32(CTRL_EXT);
341                 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
342                 ew32(CTRL_EXT, mac_reg);
343
344                 /* Wait 50 milliseconds for MAC to finish any retries
345                  * that it might be trying to perform from previous
346                  * attempts to acknowledge any phy read requests.
347                  */
348                 msleep(50);
349
350                 /* fall-through */
351         case e1000_pch2lan:
352                 if (e1000_phy_is_accessible_pchlan(hw))
353                         break;
354
355                 /* fall-through */
356         case e1000_pchlan:
357                 if ((hw->mac.type == e1000_pchlan) &&
358                     (fwsm & E1000_ICH_FWSM_FW_VALID))
359                         break;
360
361                 if (hw->phy.ops.check_reset_block(hw)) {
362                         e_dbg("Required LANPHYPC toggle blocked by ME\n");
363                         ret_val = -E1000_ERR_PHY;
364                         break;
365                 }
366
367                 /* Toggle LANPHYPC Value bit */
368                 e1000_toggle_lanphypc_pch_lpt(hw);
369                 if (hw->mac.type >= e1000_pch_lpt) {
370                         if (e1000_phy_is_accessible_pchlan(hw))
371                                 break;
372
373                         /* Toggling LANPHYPC brings the PHY out of SMBus mode
374                          * so ensure that the MAC is also out of SMBus mode
375                          */
376                         mac_reg = er32(CTRL_EXT);
377                         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
378                         ew32(CTRL_EXT, mac_reg);
379
380                         if (e1000_phy_is_accessible_pchlan(hw))
381                                 break;
382
383                         ret_val = -E1000_ERR_PHY;
384                 }
385                 break;
386         default:
387                 break;
388         }
389
390         hw->phy.ops.release(hw);
391         if (!ret_val) {
392
393                 /* Check to see if able to reset PHY.  Print error if not */
394                 if (hw->phy.ops.check_reset_block(hw)) {
395                         e_err("Reset blocked by ME\n");
396                         goto out;
397                 }
398
399                 /* Reset the PHY before any access to it.  Doing so, ensures
400                  * that the PHY is in a known good state before we read/write
401                  * PHY registers.  The generic reset is sufficient here,
402                  * because we haven't determined the PHY type yet.
403                  */
404                 ret_val = e1000e_phy_hw_reset_generic(hw);
405                 if (ret_val)
406                         goto out;
407
408                 /* On a successful reset, possibly need to wait for the PHY
409                  * to quiesce to an accessible state before returning control
410                  * to the calling function.  If the PHY does not quiesce, then
411                  * return E1000E_BLK_PHY_RESET, as this is the condition that
412                  *  the PHY is in.
413                  */
414                 ret_val = hw->phy.ops.check_reset_block(hw);
415                 if (ret_val)
416                         e_err("ME blocked access to PHY after reset\n");
417         }
418
419 out:
420         /* Ungate automatic PHY configuration on non-managed 82579 */
421         if ((hw->mac.type == e1000_pch2lan) &&
422             !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
423                 usleep_range(10000, 20000);
424                 e1000_gate_hw_phy_config_ich8lan(hw, false);
425         }
426
427         return ret_val;
428 }
429
430 /**
431  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
432  *  @hw: pointer to the HW structure
433  *
434  *  Initialize family-specific PHY parameters and function pointers.
435  **/
436 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
437 {
438         struct e1000_phy_info *phy = &hw->phy;
439         s32 ret_val;
440
441         phy->addr = 1;
442         phy->reset_delay_us = 100;
443
444         phy->ops.set_page = e1000_set_page_igp;
445         phy->ops.read_reg = e1000_read_phy_reg_hv;
446         phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
447         phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
448         phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
449         phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
450         phy->ops.write_reg = e1000_write_phy_reg_hv;
451         phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
452         phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
453         phy->ops.power_up = e1000_power_up_phy_copper;
454         phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
455         phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
456
457         phy->id = e1000_phy_unknown;
458
459         ret_val = e1000_init_phy_workarounds_pchlan(hw);
460         if (ret_val)
461                 return ret_val;
462
463         if (phy->id == e1000_phy_unknown)
464                 switch (hw->mac.type) {
465                 default:
466                         ret_val = e1000e_get_phy_id(hw);
467                         if (ret_val)
468                                 return ret_val;
469                         if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
470                                 break;
471                         /* fall-through */
472                 case e1000_pch2lan:
473                 case e1000_pch_lpt:
474                 case e1000_pch_spt:
475                         /* In case the PHY needs to be in mdio slow mode,
476                          * set slow mode and try to get the PHY id again.
477                          */
478                         ret_val = e1000_set_mdio_slow_mode_hv(hw);
479                         if (ret_val)
480                                 return ret_val;
481                         ret_val = e1000e_get_phy_id(hw);
482                         if (ret_val)
483                                 return ret_val;
484                         break;
485                 }
486         phy->type = e1000e_get_phy_type_from_id(phy->id);
487
488         switch (phy->type) {
489         case e1000_phy_82577:
490         case e1000_phy_82579:
491         case e1000_phy_i217:
492                 phy->ops.check_polarity = e1000_check_polarity_82577;
493                 phy->ops.force_speed_duplex =
494                     e1000_phy_force_speed_duplex_82577;
495                 phy->ops.get_cable_length = e1000_get_cable_length_82577;
496                 phy->ops.get_info = e1000_get_phy_info_82577;
497                 phy->ops.commit = e1000e_phy_sw_reset;
498                 break;
499         case e1000_phy_82578:
500                 phy->ops.check_polarity = e1000_check_polarity_m88;
501                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
502                 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
503                 phy->ops.get_info = e1000e_get_phy_info_m88;
504                 break;
505         default:
506                 ret_val = -E1000_ERR_PHY;
507                 break;
508         }
509
510         return ret_val;
511 }
512
513 /**
514  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
515  *  @hw: pointer to the HW structure
516  *
517  *  Initialize family-specific PHY parameters and function pointers.
518  **/
519 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
520 {
521         struct e1000_phy_info *phy = &hw->phy;
522         s32 ret_val;
523         u16 i = 0;
524
525         phy->addr = 1;
526         phy->reset_delay_us = 100;
527
528         phy->ops.power_up = e1000_power_up_phy_copper;
529         phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
530
531         /* We may need to do this twice - once for IGP and if that fails,
532          * we'll set BM func pointers and try again
533          */
534         ret_val = e1000e_determine_phy_address(hw);
535         if (ret_val) {
536                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
537                 phy->ops.read_reg = e1000e_read_phy_reg_bm;
538                 ret_val = e1000e_determine_phy_address(hw);
539                 if (ret_val) {
540                         e_dbg("Cannot determine PHY addr. Erroring out\n");
541                         return ret_val;
542                 }
543         }
544
545         phy->id = 0;
546         while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
547                (i++ < 100)) {
548                 usleep_range(1000, 2000);
549                 ret_val = e1000e_get_phy_id(hw);
550                 if (ret_val)
551                         return ret_val;
552         }
553
554         /* Verify phy id */
555         switch (phy->id) {
556         case IGP03E1000_E_PHY_ID:
557                 phy->type = e1000_phy_igp_3;
558                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
559                 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
560                 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
561                 phy->ops.get_info = e1000e_get_phy_info_igp;
562                 phy->ops.check_polarity = e1000_check_polarity_igp;
563                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
564                 break;
565         case IFE_E_PHY_ID:
566         case IFE_PLUS_E_PHY_ID:
567         case IFE_C_E_PHY_ID:
568                 phy->type = e1000_phy_ife;
569                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
570                 phy->ops.get_info = e1000_get_phy_info_ife;
571                 phy->ops.check_polarity = e1000_check_polarity_ife;
572                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
573                 break;
574         case BME1000_E_PHY_ID:
575                 phy->type = e1000_phy_bm;
576                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
577                 phy->ops.read_reg = e1000e_read_phy_reg_bm;
578                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
579                 phy->ops.commit = e1000e_phy_sw_reset;
580                 phy->ops.get_info = e1000e_get_phy_info_m88;
581                 phy->ops.check_polarity = e1000_check_polarity_m88;
582                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
583                 break;
584         default:
585                 return -E1000_ERR_PHY;
586         }
587
588         return 0;
589 }
590
591 /**
592  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
593  *  @hw: pointer to the HW structure
594  *
595  *  Initialize family-specific NVM parameters and function
596  *  pointers.
597  **/
598 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
599 {
600         struct e1000_nvm_info *nvm = &hw->nvm;
601         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
602         u32 gfpreg, sector_base_addr, sector_end_addr;
603         u16 i;
604         u32 nvm_size;
605
606         nvm->type = e1000_nvm_flash_sw;
607
608         if (hw->mac.type == e1000_pch_spt) {
609                 /* in SPT, gfpreg doesn't exist. NVM size is taken from the
610                  * STRAP register. This is because in SPT the GbE Flash region
611                  * is no longer accessed through the flash registers. Instead,
612                  * the mechanism has changed, and the Flash region access
613                  * registers are now implemented in GbE memory space.
614                  */
615                 nvm->flash_base_addr = 0;
616                 nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
617                     * NVM_SIZE_MULTIPLIER;
618                 nvm->flash_bank_size = nvm_size / 2;
619                 /* Adjust to word count */
620                 nvm->flash_bank_size /= sizeof(u16);
621                 /* Set the base address for flash register access */
622                 hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
623         } else {
624                 /* Can't read flash registers if register set isn't mapped. */
625                 if (!hw->flash_address) {
626                         e_dbg("ERROR: Flash registers not mapped\n");
627                         return -E1000_ERR_CONFIG;
628                 }
629
630                 gfpreg = er32flash(ICH_FLASH_GFPREG);
631
632                 /* sector_X_addr is a "sector"-aligned address (4096 bytes)
633                  * Add 1 to sector_end_addr since this sector is included in
634                  * the overall size.
635                  */
636                 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
637                 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
638
639                 /* flash_base_addr is byte-aligned */
640                 nvm->flash_base_addr = sector_base_addr
641                     << FLASH_SECTOR_ADDR_SHIFT;
642
643                 /* find total size of the NVM, then cut in half since the total
644                  * size represents two separate NVM banks.
645                  */
646                 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
647                                         << FLASH_SECTOR_ADDR_SHIFT);
648                 nvm->flash_bank_size /= 2;
649                 /* Adjust to word count */
650                 nvm->flash_bank_size /= sizeof(u16);
651         }
652
653         nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
654
655         /* Clear shadow ram */
656         for (i = 0; i < nvm->word_size; i++) {
657                 dev_spec->shadow_ram[i].modified = false;
658                 dev_spec->shadow_ram[i].value = 0xFFFF;
659         }
660
661         return 0;
662 }
663
664 /**
665  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
666  *  @hw: pointer to the HW structure
667  *
668  *  Initialize family-specific MAC parameters and function
669  *  pointers.
670  **/
671 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
672 {
673         struct e1000_mac_info *mac = &hw->mac;
674
675         /* Set media type function pointer */
676         hw->phy.media_type = e1000_media_type_copper;
677
678         /* Set mta register count */
679         mac->mta_reg_count = 32;
680         /* Set rar entry count */
681         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
682         if (mac->type == e1000_ich8lan)
683                 mac->rar_entry_count--;
684         /* FWSM register */
685         mac->has_fwsm = true;
686         /* ARC subsystem not supported */
687         mac->arc_subsystem_valid = false;
688         /* Adaptive IFS supported */
689         mac->adaptive_ifs = true;
690
691         /* LED and other operations */
692         switch (mac->type) {
693         case e1000_ich8lan:
694         case e1000_ich9lan:
695         case e1000_ich10lan:
696                 /* check management mode */
697                 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
698                 /* ID LED init */
699                 mac->ops.id_led_init = e1000e_id_led_init_generic;
700                 /* blink LED */
701                 mac->ops.blink_led = e1000e_blink_led_generic;
702                 /* setup LED */
703                 mac->ops.setup_led = e1000e_setup_led_generic;
704                 /* cleanup LED */
705                 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
706                 /* turn on/off LED */
707                 mac->ops.led_on = e1000_led_on_ich8lan;
708                 mac->ops.led_off = e1000_led_off_ich8lan;
709                 break;
710         case e1000_pch2lan:
711                 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
712                 mac->ops.rar_set = e1000_rar_set_pch2lan;
713                 /* fall-through */
714         case e1000_pch_lpt:
715         case e1000_pch_spt:
716         case e1000_pchlan:
717                 /* check management mode */
718                 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
719                 /* ID LED init */
720                 mac->ops.id_led_init = e1000_id_led_init_pchlan;
721                 /* setup LED */
722                 mac->ops.setup_led = e1000_setup_led_pchlan;
723                 /* cleanup LED */
724                 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
725                 /* turn on/off LED */
726                 mac->ops.led_on = e1000_led_on_pchlan;
727                 mac->ops.led_off = e1000_led_off_pchlan;
728                 break;
729         default:
730                 break;
731         }
732
733         if ((mac->type == e1000_pch_lpt) || (mac->type == e1000_pch_spt)) {
734                 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
735                 mac->ops.rar_set = e1000_rar_set_pch_lpt;
736                 mac->ops.setup_physical_interface =
737                     e1000_setup_copper_link_pch_lpt;
738                 mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
739         }
740
741         /* Enable PCS Lock-loss workaround for ICH8 */
742         if (mac->type == e1000_ich8lan)
743                 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
744
745         return 0;
746 }
747
748 /**
749  *  __e1000_access_emi_reg_locked - Read/write EMI register
750  *  @hw: pointer to the HW structure
751  *  @addr: EMI address to program
752  *  @data: pointer to value to read/write from/to the EMI address
753  *  @read: boolean flag to indicate read or write
754  *
755  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
756  **/
757 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
758                                          u16 *data, bool read)
759 {
760         s32 ret_val;
761
762         ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
763         if (ret_val)
764                 return ret_val;
765
766         if (read)
767                 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
768         else
769                 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
770
771         return ret_val;
772 }
773
774 /**
775  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
776  *  @hw: pointer to the HW structure
777  *  @addr: EMI address to program
778  *  @data: value to be read from the EMI address
779  *
780  *  Assumes the SW/FW/HW Semaphore is already acquired.
781  **/
782 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
783 {
784         return __e1000_access_emi_reg_locked(hw, addr, data, true);
785 }
786
787 /**
788  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
789  *  @hw: pointer to the HW structure
790  *  @addr: EMI address to program
791  *  @data: value to be written to the EMI address
792  *
793  *  Assumes the SW/FW/HW Semaphore is already acquired.
794  **/
795 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
796 {
797         return __e1000_access_emi_reg_locked(hw, addr, &data, false);
798 }
799
800 /**
801  *  e1000_set_eee_pchlan - Enable/disable EEE support
802  *  @hw: pointer to the HW structure
803  *
804  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
805  *  the link and the EEE capabilities of the link partner.  The LPI Control
806  *  register bits will remain set only if/when link is up.
807  *
808  *  EEE LPI must not be asserted earlier than one second after link is up.
809  *  On 82579, EEE LPI should not be enabled until such time otherwise there
810  *  can be link issues with some switches.  Other devices can have EEE LPI
811  *  enabled immediately upon link up since they have a timer in hardware which
812  *  prevents LPI from being asserted too early.
813  **/
814 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
815 {
816         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
817         s32 ret_val;
818         u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
819
820         switch (hw->phy.type) {
821         case e1000_phy_82579:
822                 lpa = I82579_EEE_LP_ABILITY;
823                 pcs_status = I82579_EEE_PCS_STATUS;
824                 adv_addr = I82579_EEE_ADVERTISEMENT;
825                 break;
826         case e1000_phy_i217:
827                 lpa = I217_EEE_LP_ABILITY;
828                 pcs_status = I217_EEE_PCS_STATUS;
829                 adv_addr = I217_EEE_ADVERTISEMENT;
830                 break;
831         default:
832                 return 0;
833         }
834
835         ret_val = hw->phy.ops.acquire(hw);
836         if (ret_val)
837                 return ret_val;
838
839         ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
840         if (ret_val)
841                 goto release;
842
843         /* Clear bits that enable EEE in various speeds */
844         lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
845
846         /* Enable EEE if not disabled by user */
847         if (!dev_spec->eee_disable) {
848                 /* Save off link partner's EEE ability */
849                 ret_val = e1000_read_emi_reg_locked(hw, lpa,
850                                                     &dev_spec->eee_lp_ability);
851                 if (ret_val)
852                         goto release;
853
854                 /* Read EEE advertisement */
855                 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
856                 if (ret_val)
857                         goto release;
858
859                 /* Enable EEE only for speeds in which the link partner is
860                  * EEE capable and for which we advertise EEE.
861                  */
862                 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
863                         lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
864
865                 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
866                         e1e_rphy_locked(hw, MII_LPA, &data);
867                         if (data & LPA_100FULL)
868                                 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
869                         else
870                                 /* EEE is not supported in 100Half, so ignore
871                                  * partner's EEE in 100 ability if full-duplex
872                                  * is not advertised.
873                                  */
874                                 dev_spec->eee_lp_ability &=
875                                     ~I82579_EEE_100_SUPPORTED;
876                 }
877         }
878
879         if (hw->phy.type == e1000_phy_82579) {
880                 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
881                                                     &data);
882                 if (ret_val)
883                         goto release;
884
885                 data &= ~I82579_LPI_100_PLL_SHUT;
886                 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
887                                                      data);
888         }
889
890         /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
891         ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
892         if (ret_val)
893                 goto release;
894
895         ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
896 release:
897         hw->phy.ops.release(hw);
898
899         return ret_val;
900 }
901
902 /**
903  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
904  *  @hw:   pointer to the HW structure
905  *  @link: link up bool flag
906  *
907  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
908  *  preventing further DMA write requests.  Workaround the issue by disabling
909  *  the de-assertion of the clock request when in 1Gpbs mode.
910  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
911  *  speeds in order to avoid Tx hangs.
912  **/
913 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
914 {
915         u32 fextnvm6 = er32(FEXTNVM6);
916         u32 status = er32(STATUS);
917         s32 ret_val = 0;
918         u16 reg;
919
920         if (link && (status & E1000_STATUS_SPEED_1000)) {
921                 ret_val = hw->phy.ops.acquire(hw);
922                 if (ret_val)
923                         return ret_val;
924
925                 ret_val =
926                     e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
927                                                 &reg);
928                 if (ret_val)
929                         goto release;
930
931                 ret_val =
932                     e1000e_write_kmrn_reg_locked(hw,
933                                                  E1000_KMRNCTRLSTA_K1_CONFIG,
934                                                  reg &
935                                                  ~E1000_KMRNCTRLSTA_K1_ENABLE);
936                 if (ret_val)
937                         goto release;
938
939                 usleep_range(10, 20);
940
941                 ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
942
943                 ret_val =
944                     e1000e_write_kmrn_reg_locked(hw,
945                                                  E1000_KMRNCTRLSTA_K1_CONFIG,
946                                                  reg);
947 release:
948                 hw->phy.ops.release(hw);
949         } else {
950                 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
951                 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
952
953                 if ((hw->phy.revision > 5) || !link ||
954                     ((status & E1000_STATUS_SPEED_100) &&
955                      (status & E1000_STATUS_FD)))
956                         goto update_fextnvm6;
957
958                 ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
959                 if (ret_val)
960                         return ret_val;
961
962                 /* Clear link status transmit timeout */
963                 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
964
965                 if (status & E1000_STATUS_SPEED_100) {
966                         /* Set inband Tx timeout to 5x10us for 100Half */
967                         reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
968
969                         /* Do not extend the K1 entry latency for 100Half */
970                         fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
971                 } else {
972                         /* Set inband Tx timeout to 50x10us for 10Full/Half */
973                         reg |= 50 <<
974                             I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
975
976                         /* Extend the K1 entry latency for 10 Mbps */
977                         fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
978                 }
979
980                 ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
981                 if (ret_val)
982                         return ret_val;
983
984 update_fextnvm6:
985                 ew32(FEXTNVM6, fextnvm6);
986         }
987
988         return ret_val;
989 }
990
991 /**
992  *  e1000_platform_pm_pch_lpt - Set platform power management values
993  *  @hw: pointer to the HW structure
994  *  @link: bool indicating link status
995  *
996  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
997  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
998  *  when link is up (which must not exceed the maximum latency supported
999  *  by the platform), otherwise specify there is no LTR requirement.
1000  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1001  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1002  *  Capability register set, on this device LTR is set by writing the
1003  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1004  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1005  *  message to the PMC.
1006  **/
1007 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1008 {
1009         u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1010             link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1011         u16 lat_enc = 0;        /* latency encoded */
1012
1013         if (link) {
1014                 u16 speed, duplex, scale = 0;
1015                 u16 max_snoop, max_nosnoop;
1016                 u16 max_ltr_enc;        /* max LTR latency encoded */
1017                 s64 lat_ns;     /* latency (ns) */
1018                 s64 value;
1019                 u32 rxa;
1020
1021                 if (!hw->adapter->max_frame_size) {
1022                         e_dbg("max_frame_size not set.\n");
1023                         return -E1000_ERR_CONFIG;
1024                 }
1025
1026                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1027                 if (!speed) {
1028                         e_dbg("Speed not set.\n");
1029                         return -E1000_ERR_CONFIG;
1030                 }
1031
1032                 /* Rx Packet Buffer Allocation size (KB) */
1033                 rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1034
1035                 /* Determine the maximum latency tolerated by the device.
1036                  *
1037                  * Per the PCIe spec, the tolerated latencies are encoded as
1038                  * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1039                  * a 10-bit value (0-1023) to provide a range from 1 ns to
1040                  * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1041                  * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1042                  */
1043                 lat_ns = ((s64)rxa * 1024 -
1044                           (2 * (s64)hw->adapter->max_frame_size)) * 8 * 1000;
1045                 if (lat_ns < 0)
1046                         lat_ns = 0;
1047                 else
1048                         do_div(lat_ns, speed);
1049
1050                 value = lat_ns;
1051                 while (value > PCI_LTR_VALUE_MASK) {
1052                         scale++;
1053                         value = DIV_ROUND_UP(value, (1 << 5));
1054                 }
1055                 if (scale > E1000_LTRV_SCALE_MAX) {
1056                         e_dbg("Invalid LTR latency scale %d\n", scale);
1057                         return -E1000_ERR_CONFIG;
1058                 }
1059                 lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1060
1061                 /* Determine the maximum latency tolerated by the platform */
1062                 pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1063                                      &max_snoop);
1064                 pci_read_config_word(hw->adapter->pdev,
1065                                      E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1066                 max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1067
1068                 if (lat_enc > max_ltr_enc)
1069                         lat_enc = max_ltr_enc;
1070         }
1071
1072         /* Set Snoop and No-Snoop latencies the same */
1073         reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1074         ew32(LTRV, reg);
1075
1076         return 0;
1077 }
1078
1079 /**
1080  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1081  *  @hw: pointer to the HW structure
1082  *  @to_sx: boolean indicating a system power state transition to Sx
1083  *
1084  *  When link is down, configure ULP mode to significantly reduce the power
1085  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1086  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1087  *  system, configure the ULP mode by software.
1088  */
1089 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1090 {
1091         u32 mac_reg;
1092         s32 ret_val = 0;
1093         u16 phy_reg;
1094
1095         if ((hw->mac.type < e1000_pch_lpt) ||
1096             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1097             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1098             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1099             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1100             (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1101                 return 0;
1102
1103         if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1104                 /* Request ME configure ULP mode in the PHY */
1105                 mac_reg = er32(H2ME);
1106                 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1107                 ew32(H2ME, mac_reg);
1108
1109                 goto out;
1110         }
1111
1112         if (!to_sx) {
1113                 int i = 0;
1114
1115                 /* Poll up to 5 seconds for Cable Disconnected indication */
1116                 while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1117                         /* Bail if link is re-acquired */
1118                         if (er32(STATUS) & E1000_STATUS_LU)
1119                                 return -E1000_ERR_PHY;
1120
1121                         if (i++ == 100)
1122                                 break;
1123
1124                         msleep(50);
1125                 }
1126                 e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1127                       (er32(FEXT) &
1128                        E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1129         }
1130
1131         ret_val = hw->phy.ops.acquire(hw);
1132         if (ret_val)
1133                 goto out;
1134
1135         /* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1136          * LPLU and disable Gig speed when entering ULP
1137          */
1138         if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1139                 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1140                                                        &phy_reg);
1141                 if (ret_val)
1142                         goto release;
1143                 phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1144                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1145                                                         phy_reg);
1146                 if (ret_val)
1147                         goto release;
1148         }
1149
1150         /* Force SMBus mode in PHY */
1151         ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1152         if (ret_val)
1153                 goto release;
1154         phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1155         e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1156
1157         /* Force SMBus mode in MAC */
1158         mac_reg = er32(CTRL_EXT);
1159         mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1160         ew32(CTRL_EXT, mac_reg);
1161
1162         /* Set Inband ULP Exit, Reset to SMBus mode and
1163          * Disable SMBus Release on PERST# in PHY
1164          */
1165         ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1166         if (ret_val)
1167                 goto release;
1168         phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1169                     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1170         if (to_sx) {
1171                 if (er32(WUFC) & E1000_WUFC_LNKC)
1172                         phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1173
1174                 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1175         } else {
1176                 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1177         }
1178         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1179
1180         /* Set Disable SMBus Release on PERST# in MAC */
1181         mac_reg = er32(FEXTNVM7);
1182         mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1183         ew32(FEXTNVM7, mac_reg);
1184
1185         /* Commit ULP changes in PHY by starting auto ULP configuration */
1186         phy_reg |= I218_ULP_CONFIG1_START;
1187         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1188 release:
1189         hw->phy.ops.release(hw);
1190 out:
1191         if (ret_val)
1192                 e_dbg("Error in ULP enable flow: %d\n", ret_val);
1193         else
1194                 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1195
1196         return ret_val;
1197 }
1198
1199 /**
1200  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1201  *  @hw: pointer to the HW structure
1202  *  @force: boolean indicating whether or not to force disabling ULP
1203  *
1204  *  Un-configure ULP mode when link is up, the system is transitioned from
1205  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1206  *  system, poll for an indication from ME that ULP has been un-configured.
1207  *  If not on an ME enabled system, un-configure the ULP mode by software.
1208  *
1209  *  During nominal operation, this function is called when link is acquired
1210  *  to disable ULP mode (force=false); otherwise, for example when unloading
1211  *  the driver or during Sx->S0 transitions, this is called with force=true
1212  *  to forcibly disable ULP.
1213  */
1214 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1215 {
1216         s32 ret_val = 0;
1217         u32 mac_reg;
1218         u16 phy_reg;
1219         int i = 0;
1220
1221         if ((hw->mac.type < e1000_pch_lpt) ||
1222             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1223             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1224             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1225             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1226             (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1227                 return 0;
1228
1229         if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1230                 if (force) {
1231                         /* Request ME un-configure ULP mode in the PHY */
1232                         mac_reg = er32(H2ME);
1233                         mac_reg &= ~E1000_H2ME_ULP;
1234                         mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1235                         ew32(H2ME, mac_reg);
1236                 }
1237
1238                 /* Poll up to 100msec for ME to clear ULP_CFG_DONE */
1239                 while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1240                         if (i++ == 10) {
1241                                 ret_val = -E1000_ERR_PHY;
1242                                 goto out;
1243                         }
1244
1245                         usleep_range(10000, 20000);
1246                 }
1247                 e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1248
1249                 if (force) {
1250                         mac_reg = er32(H2ME);
1251                         mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1252                         ew32(H2ME, mac_reg);
1253                 } else {
1254                         /* Clear H2ME.ULP after ME ULP configuration */
1255                         mac_reg = er32(H2ME);
1256                         mac_reg &= ~E1000_H2ME_ULP;
1257                         ew32(H2ME, mac_reg);
1258                 }
1259
1260                 goto out;
1261         }
1262
1263         ret_val = hw->phy.ops.acquire(hw);
1264         if (ret_val)
1265                 goto out;
1266
1267         if (force)
1268                 /* Toggle LANPHYPC Value bit */
1269                 e1000_toggle_lanphypc_pch_lpt(hw);
1270
1271         /* Unforce SMBus mode in PHY */
1272         ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1273         if (ret_val) {
1274                 /* The MAC might be in PCIe mode, so temporarily force to
1275                  * SMBus mode in order to access the PHY.
1276                  */
1277                 mac_reg = er32(CTRL_EXT);
1278                 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1279                 ew32(CTRL_EXT, mac_reg);
1280
1281                 msleep(50);
1282
1283                 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1284                                                        &phy_reg);
1285                 if (ret_val)
1286                         goto release;
1287         }
1288         phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1289         e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1290
1291         /* Unforce SMBus mode in MAC */
1292         mac_reg = er32(CTRL_EXT);
1293         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1294         ew32(CTRL_EXT, mac_reg);
1295
1296         /* When ULP mode was previously entered, K1 was disabled by the
1297          * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1298          */
1299         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1300         if (ret_val)
1301                 goto release;
1302         phy_reg |= HV_PM_CTRL_K1_ENABLE;
1303         e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1304
1305         /* Clear ULP enabled configuration */
1306         ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1307         if (ret_val)
1308                 goto release;
1309         phy_reg &= ~(I218_ULP_CONFIG1_IND |
1310                      I218_ULP_CONFIG1_STICKY_ULP |
1311                      I218_ULP_CONFIG1_RESET_TO_SMBUS |
1312                      I218_ULP_CONFIG1_WOL_HOST |
1313                      I218_ULP_CONFIG1_INBAND_EXIT |
1314                      I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1315         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1316
1317         /* Commit ULP changes by starting auto ULP configuration */
1318         phy_reg |= I218_ULP_CONFIG1_START;
1319         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1320
1321         /* Clear Disable SMBus Release on PERST# in MAC */
1322         mac_reg = er32(FEXTNVM7);
1323         mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1324         ew32(FEXTNVM7, mac_reg);
1325
1326 release:
1327         hw->phy.ops.release(hw);
1328         if (force) {
1329                 e1000_phy_hw_reset(hw);
1330                 msleep(50);
1331         }
1332 out:
1333         if (ret_val)
1334                 e_dbg("Error in ULP disable flow: %d\n", ret_val);
1335         else
1336                 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1337
1338         return ret_val;
1339 }
1340
1341 /**
1342  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1343  *  @hw: pointer to the HW structure
1344  *
1345  *  Checks to see of the link status of the hardware has changed.  If a
1346  *  change in link status has been detected, then we read the PHY registers
1347  *  to get the current speed/duplex if link exists.
1348  **/
1349 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1350 {
1351         struct e1000_mac_info *mac = &hw->mac;
1352         s32 ret_val, tipg_reg = 0;
1353         u16 emi_addr, emi_val = 0;
1354         bool link;
1355         u16 phy_reg;
1356
1357         /* We only want to go out to the PHY registers to see if Auto-Neg
1358          * has completed and/or if our link status has changed.  The
1359          * get_link_status flag is set upon receiving a Link Status
1360          * Change or Rx Sequence Error interrupt.
1361          */
1362         if (!mac->get_link_status)
1363                 return 0;
1364
1365         /* First we want to see if the MII Status Register reports
1366          * link.  If so, then we want to get the current speed/duplex
1367          * of the PHY.
1368          */
1369         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1370         if (ret_val)
1371                 return ret_val;
1372
1373         if (hw->mac.type == e1000_pchlan) {
1374                 ret_val = e1000_k1_gig_workaround_hv(hw, link);
1375                 if (ret_val)
1376                         return ret_val;
1377         }
1378
1379         /* When connected at 10Mbps half-duplex, some parts are excessively
1380          * aggressive resulting in many collisions. To avoid this, increase
1381          * the IPG and reduce Rx latency in the PHY.
1382          */
1383         if (((hw->mac.type == e1000_pch2lan) ||
1384              (hw->mac.type == e1000_pch_lpt) ||
1385              (hw->mac.type == e1000_pch_spt)) && link) {
1386                 u32 reg;
1387
1388                 reg = er32(STATUS);
1389                 tipg_reg = er32(TIPG);
1390                 tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1391
1392                 if (!(reg & (E1000_STATUS_FD | E1000_STATUS_SPEED_MASK))) {
1393                         tipg_reg |= 0xFF;
1394                         /* Reduce Rx latency in analog PHY */
1395                         emi_val = 0;
1396                 } else {
1397
1398                         /* Roll back the default values */
1399                         tipg_reg |= 0x08;
1400                         emi_val = 1;
1401                 }
1402
1403                 ew32(TIPG, tipg_reg);
1404
1405                 ret_val = hw->phy.ops.acquire(hw);
1406                 if (ret_val)
1407                         return ret_val;
1408
1409                 if (hw->mac.type == e1000_pch2lan)
1410                         emi_addr = I82579_RX_CONFIG;
1411                 else
1412                         emi_addr = I217_RX_CONFIG;
1413                 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1414
1415                 hw->phy.ops.release(hw);
1416
1417                 if (ret_val)
1418                         return ret_val;
1419         }
1420
1421         /* Work-around I218 hang issue */
1422         if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1423             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1424             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1425             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3) ||
1426             (hw->mac.type == e1000_pch_spt)) {
1427                 ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1428                 if (ret_val)
1429                         return ret_val;
1430         }
1431         if ((hw->mac.type == e1000_pch_lpt) ||
1432             (hw->mac.type == e1000_pch_spt)) {
1433                 /* Set platform power management values for
1434                  * Latency Tolerance Reporting (LTR)
1435                  */
1436                 ret_val = e1000_platform_pm_pch_lpt(hw, link);
1437                 if (ret_val)
1438                         return ret_val;
1439         }
1440
1441         /* Clear link partner's EEE ability */
1442         hw->dev_spec.ich8lan.eee_lp_ability = 0;
1443
1444         /* FEXTNVM6 K1-off workaround */
1445         if (hw->mac.type == e1000_pch_spt) {
1446                 u32 pcieanacfg = er32(PCIEANACFG);
1447                 u32 fextnvm6 = er32(FEXTNVM6);
1448
1449                 if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1450                         fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1451                 else
1452                         fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1453
1454                 ew32(FEXTNVM6, fextnvm6);
1455         }
1456
1457         if (!link)
1458                 return 0;       /* No link detected */
1459
1460         mac->get_link_status = false;
1461
1462         switch (hw->mac.type) {
1463         case e1000_pch2lan:
1464                 ret_val = e1000_k1_workaround_lv(hw);
1465                 if (ret_val)
1466                         return ret_val;
1467                 /* fall-thru */
1468         case e1000_pchlan:
1469                 if (hw->phy.type == e1000_phy_82578) {
1470                         ret_val = e1000_link_stall_workaround_hv(hw);
1471                         if (ret_val)
1472                                 return ret_val;
1473                 }
1474
1475                 /* Workaround for PCHx parts in half-duplex:
1476                  * Set the number of preambles removed from the packet
1477                  * when it is passed from the PHY to the MAC to prevent
1478                  * the MAC from misinterpreting the packet type.
1479                  */
1480                 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1481                 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1482
1483                 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1484                         phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1485
1486                 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1487                 break;
1488         default:
1489                 break;
1490         }
1491
1492         /* Check if there was DownShift, must be checked
1493          * immediately after link-up
1494          */
1495         e1000e_check_downshift(hw);
1496
1497         /* Enable/Disable EEE after link up */
1498         if (hw->phy.type > e1000_phy_82579) {
1499                 ret_val = e1000_set_eee_pchlan(hw);
1500                 if (ret_val)
1501                         return ret_val;
1502         }
1503
1504         /* If we are forcing speed/duplex, then we simply return since
1505          * we have already determined whether we have link or not.
1506          */
1507         if (!mac->autoneg)
1508                 return -E1000_ERR_CONFIG;
1509
1510         /* Auto-Neg is enabled.  Auto Speed Detection takes care
1511          * of MAC speed/duplex configuration.  So we only need to
1512          * configure Collision Distance in the MAC.
1513          */
1514         mac->ops.config_collision_dist(hw);
1515
1516         /* Configure Flow Control now that Auto-Neg has completed.
1517          * First, we need to restore the desired flow control
1518          * settings because we may have had to re-autoneg with a
1519          * different link partner.
1520          */
1521         ret_val = e1000e_config_fc_after_link_up(hw);
1522         if (ret_val)
1523                 e_dbg("Error configuring flow control\n");
1524
1525         return ret_val;
1526 }
1527
1528 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1529 {
1530         struct e1000_hw *hw = &adapter->hw;
1531         s32 rc;
1532
1533         rc = e1000_init_mac_params_ich8lan(hw);
1534         if (rc)
1535                 return rc;
1536
1537         rc = e1000_init_nvm_params_ich8lan(hw);
1538         if (rc)
1539                 return rc;
1540
1541         switch (hw->mac.type) {
1542         case e1000_ich8lan:
1543         case e1000_ich9lan:
1544         case e1000_ich10lan:
1545                 rc = e1000_init_phy_params_ich8lan(hw);
1546                 break;
1547         case e1000_pchlan:
1548         case e1000_pch2lan:
1549         case e1000_pch_lpt:
1550         case e1000_pch_spt:
1551                 rc = e1000_init_phy_params_pchlan(hw);
1552                 break;
1553         default:
1554                 break;
1555         }
1556         if (rc)
1557                 return rc;
1558
1559         /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1560          * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1561          */
1562         if ((adapter->hw.phy.type == e1000_phy_ife) ||
1563             ((adapter->hw.mac.type >= e1000_pch2lan) &&
1564              (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1565                 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1566                 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
1567
1568                 hw->mac.ops.blink_led = NULL;
1569         }
1570
1571         if ((adapter->hw.mac.type == e1000_ich8lan) &&
1572             (adapter->hw.phy.type != e1000_phy_ife))
1573                 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1574
1575         /* Enable workaround for 82579 w/ ME enabled */
1576         if ((adapter->hw.mac.type == e1000_pch2lan) &&
1577             (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1578                 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1579
1580         return 0;
1581 }
1582
1583 static DEFINE_MUTEX(nvm_mutex);
1584
1585 /**
1586  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1587  *  @hw: pointer to the HW structure
1588  *
1589  *  Acquires the mutex for performing NVM operations.
1590  **/
1591 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1592 {
1593         mutex_lock(&nvm_mutex);
1594
1595         return 0;
1596 }
1597
1598 /**
1599  *  e1000_release_nvm_ich8lan - Release NVM mutex
1600  *  @hw: pointer to the HW structure
1601  *
1602  *  Releases the mutex used while performing NVM operations.
1603  **/
1604 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1605 {
1606         mutex_unlock(&nvm_mutex);
1607 }
1608
1609 /**
1610  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1611  *  @hw: pointer to the HW structure
1612  *
1613  *  Acquires the software control flag for performing PHY and select
1614  *  MAC CSR accesses.
1615  **/
1616 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1617 {
1618         u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1619         s32 ret_val = 0;
1620
1621         if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1622                              &hw->adapter->state)) {
1623                 e_dbg("contention for Phy access\n");
1624                 return -E1000_ERR_PHY;
1625         }
1626
1627         while (timeout) {
1628                 extcnf_ctrl = er32(EXTCNF_CTRL);
1629                 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1630                         break;
1631
1632                 mdelay(1);
1633                 timeout--;
1634         }
1635
1636         if (!timeout) {
1637                 e_dbg("SW has already locked the resource.\n");
1638                 ret_val = -E1000_ERR_CONFIG;
1639                 goto out;
1640         }
1641
1642         timeout = SW_FLAG_TIMEOUT;
1643
1644         extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1645         ew32(EXTCNF_CTRL, extcnf_ctrl);
1646
1647         while (timeout) {
1648                 extcnf_ctrl = er32(EXTCNF_CTRL);
1649                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1650                         break;
1651
1652                 mdelay(1);
1653                 timeout--;
1654         }
1655
1656         if (!timeout) {
1657                 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1658                       er32(FWSM), extcnf_ctrl);
1659                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1660                 ew32(EXTCNF_CTRL, extcnf_ctrl);
1661                 ret_val = -E1000_ERR_CONFIG;
1662                 goto out;
1663         }
1664
1665 out:
1666         if (ret_val)
1667                 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1668
1669         return ret_val;
1670 }
1671
1672 /**
1673  *  e1000_release_swflag_ich8lan - Release software control flag
1674  *  @hw: pointer to the HW structure
1675  *
1676  *  Releases the software control flag for performing PHY and select
1677  *  MAC CSR accesses.
1678  **/
1679 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1680 {
1681         u32 extcnf_ctrl;
1682
1683         extcnf_ctrl = er32(EXTCNF_CTRL);
1684
1685         if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1686                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1687                 ew32(EXTCNF_CTRL, extcnf_ctrl);
1688         } else {
1689                 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1690         }
1691
1692         clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1693 }
1694
1695 /**
1696  *  e1000_check_mng_mode_ich8lan - Checks management mode
1697  *  @hw: pointer to the HW structure
1698  *
1699  *  This checks if the adapter has any manageability enabled.
1700  *  This is a function pointer entry point only called by read/write
1701  *  routines for the PHY and NVM parts.
1702  **/
1703 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1704 {
1705         u32 fwsm;
1706
1707         fwsm = er32(FWSM);
1708         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1709                 ((fwsm & E1000_FWSM_MODE_MASK) ==
1710                  (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1711 }
1712
1713 /**
1714  *  e1000_check_mng_mode_pchlan - Checks management mode
1715  *  @hw: pointer to the HW structure
1716  *
1717  *  This checks if the adapter has iAMT enabled.
1718  *  This is a function pointer entry point only called by read/write
1719  *  routines for the PHY and NVM parts.
1720  **/
1721 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1722 {
1723         u32 fwsm;
1724
1725         fwsm = er32(FWSM);
1726         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1727             (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1728 }
1729
1730 /**
1731  *  e1000_rar_set_pch2lan - Set receive address register
1732  *  @hw: pointer to the HW structure
1733  *  @addr: pointer to the receive address
1734  *  @index: receive address array register
1735  *
1736  *  Sets the receive address array register at index to the address passed
1737  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1738  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1739  *  Use SHRA[0-3] in place of those reserved for ME.
1740  **/
1741 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1742 {
1743         u32 rar_low, rar_high;
1744
1745         /* HW expects these in little endian so we reverse the byte order
1746          * from network order (big endian) to little endian
1747          */
1748         rar_low = ((u32)addr[0] |
1749                    ((u32)addr[1] << 8) |
1750                    ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1751
1752         rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1753
1754         /* If MAC address zero, no need to set the AV bit */
1755         if (rar_low || rar_high)
1756                 rar_high |= E1000_RAH_AV;
1757
1758         if (index == 0) {
1759                 ew32(RAL(index), rar_low);
1760                 e1e_flush();
1761                 ew32(RAH(index), rar_high);
1762                 e1e_flush();
1763                 return 0;
1764         }
1765
1766         /* RAR[1-6] are owned by manageability.  Skip those and program the
1767          * next address into the SHRA register array.
1768          */
1769         if (index < (u32)(hw->mac.rar_entry_count)) {
1770                 s32 ret_val;
1771
1772                 ret_val = e1000_acquire_swflag_ich8lan(hw);
1773                 if (ret_val)
1774                         goto out;
1775
1776                 ew32(SHRAL(index - 1), rar_low);
1777                 e1e_flush();
1778                 ew32(SHRAH(index - 1), rar_high);
1779                 e1e_flush();
1780
1781                 e1000_release_swflag_ich8lan(hw);
1782
1783                 /* verify the register updates */
1784                 if ((er32(SHRAL(index - 1)) == rar_low) &&
1785                     (er32(SHRAH(index - 1)) == rar_high))
1786                         return 0;
1787
1788                 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1789                       (index - 1), er32(FWSM));
1790         }
1791
1792 out:
1793         e_dbg("Failed to write receive address at index %d\n", index);
1794         return -E1000_ERR_CONFIG;
1795 }
1796
1797 /**
1798  *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1799  *  @hw: pointer to the HW structure
1800  *
1801  *  Get the number of available receive registers that the Host can
1802  *  program. SHRA[0-10] are the shared receive address registers
1803  *  that are shared between the Host and manageability engine (ME).
1804  *  ME can reserve any number of addresses and the host needs to be
1805  *  able to tell how many available registers it has access to.
1806  **/
1807 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1808 {
1809         u32 wlock_mac;
1810         u32 num_entries;
1811
1812         wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1813         wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1814
1815         switch (wlock_mac) {
1816         case 0:
1817                 /* All SHRA[0..10] and RAR[0] available */
1818                 num_entries = hw->mac.rar_entry_count;
1819                 break;
1820         case 1:
1821                 /* Only RAR[0] available */
1822                 num_entries = 1;
1823                 break;
1824         default:
1825                 /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1826                 num_entries = wlock_mac + 1;
1827                 break;
1828         }
1829
1830         return num_entries;
1831 }
1832
1833 /**
1834  *  e1000_rar_set_pch_lpt - Set receive address registers
1835  *  @hw: pointer to the HW structure
1836  *  @addr: pointer to the receive address
1837  *  @index: receive address array register
1838  *
1839  *  Sets the receive address register array at index to the address passed
1840  *  in by addr. For LPT, RAR[0] is the base address register that is to
1841  *  contain the MAC address. SHRA[0-10] are the shared receive address
1842  *  registers that are shared between the Host and manageability engine (ME).
1843  **/
1844 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1845 {
1846         u32 rar_low, rar_high;
1847         u32 wlock_mac;
1848
1849         /* HW expects these in little endian so we reverse the byte order
1850          * from network order (big endian) to little endian
1851          */
1852         rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1853                    ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1854
1855         rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1856
1857         /* If MAC address zero, no need to set the AV bit */
1858         if (rar_low || rar_high)
1859                 rar_high |= E1000_RAH_AV;
1860
1861         if (index == 0) {
1862                 ew32(RAL(index), rar_low);
1863                 e1e_flush();
1864                 ew32(RAH(index), rar_high);
1865                 e1e_flush();
1866                 return 0;
1867         }
1868
1869         /* The manageability engine (ME) can lock certain SHRAR registers that
1870          * it is using - those registers are unavailable for use.
1871          */
1872         if (index < hw->mac.rar_entry_count) {
1873                 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1874                 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1875
1876                 /* Check if all SHRAR registers are locked */
1877                 if (wlock_mac == 1)
1878                         goto out;
1879
1880                 if ((wlock_mac == 0) || (index <= wlock_mac)) {
1881                         s32 ret_val;
1882
1883                         ret_val = e1000_acquire_swflag_ich8lan(hw);
1884
1885                         if (ret_val)
1886                                 goto out;
1887
1888                         ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1889                         e1e_flush();
1890                         ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1891                         e1e_flush();
1892
1893                         e1000_release_swflag_ich8lan(hw);
1894
1895                         /* verify the register updates */
1896                         if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1897                             (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1898                                 return 0;
1899                 }
1900         }
1901
1902 out:
1903         e_dbg("Failed to write receive address at index %d\n", index);
1904         return -E1000_ERR_CONFIG;
1905 }
1906
1907 /**
1908  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1909  *  @hw: pointer to the HW structure
1910  *
1911  *  Checks if firmware is blocking the reset of the PHY.
1912  *  This is a function pointer entry point only called by
1913  *  reset routines.
1914  **/
1915 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1916 {
1917         bool blocked = false;
1918         int i = 0;
1919
1920         while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
1921                (i++ < 10))
1922                 usleep_range(10000, 20000);
1923         return blocked ? E1000_BLK_PHY_RESET : 0;
1924 }
1925
1926 /**
1927  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
1928  *  @hw: pointer to the HW structure
1929  *
1930  *  Assumes semaphore already acquired.
1931  *
1932  **/
1933 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
1934 {
1935         u16 phy_data;
1936         u32 strap = er32(STRAP);
1937         u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
1938             E1000_STRAP_SMT_FREQ_SHIFT;
1939         s32 ret_val;
1940
1941         strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1942
1943         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1944         if (ret_val)
1945                 return ret_val;
1946
1947         phy_data &= ~HV_SMB_ADDR_MASK;
1948         phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1949         phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1950
1951         if (hw->phy.type == e1000_phy_i217) {
1952                 /* Restore SMBus frequency */
1953                 if (freq--) {
1954                         phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
1955                         phy_data |= (freq & (1 << 0)) <<
1956                             HV_SMB_ADDR_FREQ_LOW_SHIFT;
1957                         phy_data |= (freq & (1 << 1)) <<
1958                             (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
1959                 } else {
1960                         e_dbg("Unsupported SMB frequency in PHY\n");
1961                 }
1962         }
1963
1964         return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1965 }
1966
1967 /**
1968  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1969  *  @hw:   pointer to the HW structure
1970  *
1971  *  SW should configure the LCD from the NVM extended configuration region
1972  *  as a workaround for certain parts.
1973  **/
1974 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1975 {
1976         struct e1000_phy_info *phy = &hw->phy;
1977         u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1978         s32 ret_val = 0;
1979         u16 word_addr, reg_data, reg_addr, phy_page = 0;
1980
1981         /* Initialize the PHY from the NVM on ICH platforms.  This
1982          * is needed due to an issue where the NVM configuration is
1983          * not properly autoloaded after power transitions.
1984          * Therefore, after each PHY reset, we will load the
1985          * configuration data out of the NVM manually.
1986          */
1987         switch (hw->mac.type) {
1988         case e1000_ich8lan:
1989                 if (phy->type != e1000_phy_igp_3)
1990                         return ret_val;
1991
1992                 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1993                     (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1994                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1995                         break;
1996                 }
1997                 /* Fall-thru */
1998         case e1000_pchlan:
1999         case e1000_pch2lan:
2000         case e1000_pch_lpt:
2001         case e1000_pch_spt:
2002                 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2003                 break;
2004         default:
2005                 return ret_val;
2006         }
2007
2008         ret_val = hw->phy.ops.acquire(hw);
2009         if (ret_val)
2010                 return ret_val;
2011
2012         data = er32(FEXTNVM);
2013         if (!(data & sw_cfg_mask))
2014                 goto release;
2015
2016         /* Make sure HW does not configure LCD from PHY
2017          * extended configuration before SW configuration
2018          */
2019         data = er32(EXTCNF_CTRL);
2020         if ((hw->mac.type < e1000_pch2lan) &&
2021             (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2022                 goto release;
2023
2024         cnf_size = er32(EXTCNF_SIZE);
2025         cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2026         cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2027         if (!cnf_size)
2028                 goto release;
2029
2030         cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2031         cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2032
2033         if (((hw->mac.type == e1000_pchlan) &&
2034              !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2035             (hw->mac.type > e1000_pchlan)) {
2036                 /* HW configures the SMBus address and LEDs when the
2037                  * OEM and LCD Write Enable bits are set in the NVM.
2038                  * When both NVM bits are cleared, SW will configure
2039                  * them instead.
2040                  */
2041                 ret_val = e1000_write_smbus_addr(hw);
2042                 if (ret_val)
2043                         goto release;
2044
2045                 data = er32(LEDCTL);
2046                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2047                                                         (u16)data);
2048                 if (ret_val)
2049                         goto release;
2050         }
2051
2052         /* Configure LCD from extended configuration region. */
2053
2054         /* cnf_base_addr is in DWORD */
2055         word_addr = (u16)(cnf_base_addr << 1);
2056
2057         for (i = 0; i < cnf_size; i++) {
2058                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2059                 if (ret_val)
2060                         goto release;
2061
2062                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2063                                          1, &reg_addr);
2064                 if (ret_val)
2065                         goto release;
2066
2067                 /* Save off the PHY page for future writes. */
2068                 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2069                         phy_page = reg_data;
2070                         continue;
2071                 }
2072
2073                 reg_addr &= PHY_REG_MASK;
2074                 reg_addr |= phy_page;
2075
2076                 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2077                 if (ret_val)
2078                         goto release;
2079         }
2080
2081 release:
2082         hw->phy.ops.release(hw);
2083         return ret_val;
2084 }
2085
2086 /**
2087  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2088  *  @hw:   pointer to the HW structure
2089  *  @link: link up bool flag
2090  *
2091  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2092  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2093  *  If link is down, the function will restore the default K1 setting located
2094  *  in the NVM.
2095  **/
2096 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2097 {
2098         s32 ret_val = 0;
2099         u16 status_reg = 0;
2100         bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2101
2102         if (hw->mac.type != e1000_pchlan)
2103                 return 0;
2104
2105         /* Wrap the whole flow with the sw flag */
2106         ret_val = hw->phy.ops.acquire(hw);
2107         if (ret_val)
2108                 return ret_val;
2109
2110         /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2111         if (link) {
2112                 if (hw->phy.type == e1000_phy_82578) {
2113                         ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2114                                                   &status_reg);
2115                         if (ret_val)
2116                                 goto release;
2117
2118                         status_reg &= (BM_CS_STATUS_LINK_UP |
2119                                        BM_CS_STATUS_RESOLVED |
2120                                        BM_CS_STATUS_SPEED_MASK);
2121
2122                         if (status_reg == (BM_CS_STATUS_LINK_UP |
2123                                            BM_CS_STATUS_RESOLVED |
2124                                            BM_CS_STATUS_SPEED_1000))
2125                                 k1_enable = false;
2126                 }
2127
2128                 if (hw->phy.type == e1000_phy_82577) {
2129                         ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2130                         if (ret_val)
2131                                 goto release;
2132
2133                         status_reg &= (HV_M_STATUS_LINK_UP |
2134                                        HV_M_STATUS_AUTONEG_COMPLETE |
2135                                        HV_M_STATUS_SPEED_MASK);
2136
2137                         if (status_reg == (HV_M_STATUS_LINK_UP |
2138                                            HV_M_STATUS_AUTONEG_COMPLETE |
2139                                            HV_M_STATUS_SPEED_1000))
2140                                 k1_enable = false;
2141                 }
2142
2143                 /* Link stall fix for link up */
2144                 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2145                 if (ret_val)
2146                         goto release;
2147
2148         } else {
2149                 /* Link stall fix for link down */
2150                 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2151                 if (ret_val)
2152                         goto release;
2153         }
2154
2155         ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2156
2157 release:
2158         hw->phy.ops.release(hw);
2159
2160         return ret_val;
2161 }
2162
2163 /**
2164  *  e1000_configure_k1_ich8lan - Configure K1 power state
2165  *  @hw: pointer to the HW structure
2166  *  @enable: K1 state to configure
2167  *
2168  *  Configure the K1 power state based on the provided parameter.
2169  *  Assumes semaphore already acquired.
2170  *
2171  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2172  **/
2173 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2174 {
2175         s32 ret_val;
2176         u32 ctrl_reg = 0;
2177         u32 ctrl_ext = 0;
2178         u32 reg = 0;
2179         u16 kmrn_reg = 0;
2180
2181         ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2182                                               &kmrn_reg);
2183         if (ret_val)
2184                 return ret_val;
2185
2186         if (k1_enable)
2187                 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2188         else
2189                 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2190
2191         ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2192                                                kmrn_reg);
2193         if (ret_val)
2194                 return ret_val;
2195
2196         usleep_range(20, 40);
2197         ctrl_ext = er32(CTRL_EXT);
2198         ctrl_reg = er32(CTRL);
2199
2200         reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2201         reg |= E1000_CTRL_FRCSPD;
2202         ew32(CTRL, reg);
2203
2204         ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2205         e1e_flush();
2206         usleep_range(20, 40);
2207         ew32(CTRL, ctrl_reg);
2208         ew32(CTRL_EXT, ctrl_ext);
2209         e1e_flush();
2210         usleep_range(20, 40);
2211
2212         return 0;
2213 }
2214
2215 /**
2216  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2217  *  @hw:       pointer to the HW structure
2218  *  @d0_state: boolean if entering d0 or d3 device state
2219  *
2220  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2221  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2222  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2223  **/
2224 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2225 {
2226         s32 ret_val = 0;
2227         u32 mac_reg;
2228         u16 oem_reg;
2229
2230         if (hw->mac.type < e1000_pchlan)
2231                 return ret_val;
2232
2233         ret_val = hw->phy.ops.acquire(hw);
2234         if (ret_val)
2235                 return ret_val;
2236
2237         if (hw->mac.type == e1000_pchlan) {
2238                 mac_reg = er32(EXTCNF_CTRL);
2239                 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2240                         goto release;
2241         }
2242
2243         mac_reg = er32(FEXTNVM);
2244         if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2245                 goto release;
2246
2247         mac_reg = er32(PHY_CTRL);
2248
2249         ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2250         if (ret_val)
2251                 goto release;
2252
2253         oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2254
2255         if (d0_state) {
2256                 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2257                         oem_reg |= HV_OEM_BITS_GBE_DIS;
2258
2259                 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2260                         oem_reg |= HV_OEM_BITS_LPLU;
2261         } else {
2262                 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2263                                E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2264                         oem_reg |= HV_OEM_BITS_GBE_DIS;
2265
2266                 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2267                                E1000_PHY_CTRL_NOND0A_LPLU))
2268                         oem_reg |= HV_OEM_BITS_LPLU;
2269         }
2270
2271         /* Set Restart auto-neg to activate the bits */
2272         if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2273             !hw->phy.ops.check_reset_block(hw))
2274                 oem_reg |= HV_OEM_BITS_RESTART_AN;
2275
2276         ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2277
2278 release:
2279         hw->phy.ops.release(hw);
2280
2281         return ret_val;
2282 }
2283
2284 /**
2285  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2286  *  @hw:   pointer to the HW structure
2287  **/
2288 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2289 {
2290         s32 ret_val;
2291         u16 data;
2292
2293         ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2294         if (ret_val)
2295                 return ret_val;
2296
2297         data |= HV_KMRN_MDIO_SLOW;
2298
2299         ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2300
2301         return ret_val;
2302 }
2303
2304 /**
2305  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2306  *  done after every PHY reset.
2307  **/
2308 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2309 {
2310         s32 ret_val = 0;
2311         u16 phy_data;
2312
2313         if (hw->mac.type != e1000_pchlan)
2314                 return 0;
2315
2316         /* Set MDIO slow mode before any other MDIO access */
2317         if (hw->phy.type == e1000_phy_82577) {
2318                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2319                 if (ret_val)
2320                         return ret_val;
2321         }
2322
2323         if (((hw->phy.type == e1000_phy_82577) &&
2324              ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2325             ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2326                 /* Disable generation of early preamble */
2327                 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2328                 if (ret_val)
2329                         return ret_val;
2330
2331                 /* Preamble tuning for SSC */
2332                 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2333                 if (ret_val)
2334                         return ret_val;
2335         }
2336
2337         if (hw->phy.type == e1000_phy_82578) {
2338                 /* Return registers to default by doing a soft reset then
2339                  * writing 0x3140 to the control register.
2340                  */
2341                 if (hw->phy.revision < 2) {
2342                         e1000e_phy_sw_reset(hw);
2343                         ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2344                 }
2345         }
2346
2347         /* Select page 0 */
2348         ret_val = hw->phy.ops.acquire(hw);
2349         if (ret_val)
2350                 return ret_val;
2351
2352         hw->phy.addr = 1;
2353         ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2354         hw->phy.ops.release(hw);
2355         if (ret_val)
2356                 return ret_val;
2357
2358         /* Configure the K1 Si workaround during phy reset assuming there is
2359          * link so that it disables K1 if link is in 1Gbps.
2360          */
2361         ret_val = e1000_k1_gig_workaround_hv(hw, true);
2362         if (ret_val)
2363                 return ret_val;
2364
2365         /* Workaround for link disconnects on a busy hub in half duplex */
2366         ret_val = hw->phy.ops.acquire(hw);
2367         if (ret_val)
2368                 return ret_val;
2369         ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2370         if (ret_val)
2371                 goto release;
2372         ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2373         if (ret_val)
2374                 goto release;
2375
2376         /* set MSE higher to enable link to stay up when noise is high */
2377         ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2378 release:
2379         hw->phy.ops.release(hw);
2380
2381         return ret_val;
2382 }
2383
2384 /**
2385  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2386  *  @hw:   pointer to the HW structure
2387  **/
2388 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2389 {
2390         u32 mac_reg;
2391         u16 i, phy_reg = 0;
2392         s32 ret_val;
2393
2394         ret_val = hw->phy.ops.acquire(hw);
2395         if (ret_val)
2396                 return;
2397         ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2398         if (ret_val)
2399                 goto release;
2400
2401         /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2402         for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2403                 mac_reg = er32(RAL(i));
2404                 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2405                                            (u16)(mac_reg & 0xFFFF));
2406                 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2407                                            (u16)((mac_reg >> 16) & 0xFFFF));
2408
2409                 mac_reg = er32(RAH(i));
2410                 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2411                                            (u16)(mac_reg & 0xFFFF));
2412                 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2413                                            (u16)((mac_reg & E1000_RAH_AV)
2414                                                  >> 16));
2415         }
2416
2417         e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2418
2419 release:
2420         hw->phy.ops.release(hw);
2421 }
2422
2423 /**
2424  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2425  *  with 82579 PHY
2426  *  @hw: pointer to the HW structure
2427  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2428  **/
2429 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2430 {
2431         s32 ret_val = 0;
2432         u16 phy_reg, data;
2433         u32 mac_reg;
2434         u16 i;
2435
2436         if (hw->mac.type < e1000_pch2lan)
2437                 return 0;
2438
2439         /* disable Rx path while enabling/disabling workaround */
2440         e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2441         ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
2442         if (ret_val)
2443                 return ret_val;
2444
2445         if (enable) {
2446                 /* Write Rx addresses (rar_entry_count for RAL/H, and
2447                  * SHRAL/H) and initial CRC values to the MAC
2448                  */
2449                 for (i = 0; i < hw->mac.rar_entry_count; i++) {
2450                         u8 mac_addr[ETH_ALEN] = { 0 };
2451                         u32 addr_high, addr_low;
2452
2453                         addr_high = er32(RAH(i));
2454                         if (!(addr_high & E1000_RAH_AV))
2455                                 continue;
2456                         addr_low = er32(RAL(i));
2457                         mac_addr[0] = (addr_low & 0xFF);
2458                         mac_addr[1] = ((addr_low >> 8) & 0xFF);
2459                         mac_addr[2] = ((addr_low >> 16) & 0xFF);
2460                         mac_addr[3] = ((addr_low >> 24) & 0xFF);
2461                         mac_addr[4] = (addr_high & 0xFF);
2462                         mac_addr[5] = ((addr_high >> 8) & 0xFF);
2463
2464                         ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2465                 }
2466
2467                 /* Write Rx addresses to the PHY */
2468                 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2469
2470                 /* Enable jumbo frame workaround in the MAC */
2471                 mac_reg = er32(FFLT_DBG);
2472                 mac_reg &= ~(1 << 14);
2473                 mac_reg |= (7 << 15);
2474                 ew32(FFLT_DBG, mac_reg);
2475
2476                 mac_reg = er32(RCTL);
2477                 mac_reg |= E1000_RCTL_SECRC;
2478                 ew32(RCTL, mac_reg);
2479
2480                 ret_val = e1000e_read_kmrn_reg(hw,
2481                                                E1000_KMRNCTRLSTA_CTRL_OFFSET,
2482                                                &data);
2483                 if (ret_val)
2484                         return ret_val;
2485                 ret_val = e1000e_write_kmrn_reg(hw,
2486                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2487                                                 data | (1 << 0));
2488                 if (ret_val)
2489                         return ret_val;
2490                 ret_val = e1000e_read_kmrn_reg(hw,
2491                                                E1000_KMRNCTRLSTA_HD_CTRL,
2492                                                &data);
2493                 if (ret_val)
2494                         return ret_val;
2495                 data &= ~(0xF << 8);
2496                 data |= (0xB << 8);
2497                 ret_val = e1000e_write_kmrn_reg(hw,
2498                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2499                                                 data);
2500                 if (ret_val)
2501                         return ret_val;
2502
2503                 /* Enable jumbo frame workaround in the PHY */
2504                 e1e_rphy(hw, PHY_REG(769, 23), &data);
2505                 data &= ~(0x7F << 5);
2506                 data |= (0x37 << 5);
2507                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2508                 if (ret_val)
2509                         return ret_val;
2510                 e1e_rphy(hw, PHY_REG(769, 16), &data);
2511                 data &= ~(1 << 13);
2512                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2513                 if (ret_val)
2514                         return ret_val;
2515                 e1e_rphy(hw, PHY_REG(776, 20), &data);
2516                 data &= ~(0x3FF << 2);
2517                 data |= (E1000_TX_PTR_GAP << 2);
2518                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2519                 if (ret_val)
2520                         return ret_val;
2521                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2522                 if (ret_val)
2523                         return ret_val;
2524                 e1e_rphy(hw, HV_PM_CTRL, &data);
2525                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
2526                 if (ret_val)
2527                         return ret_val;
2528         } else {
2529                 /* Write MAC register values back to h/w defaults */
2530                 mac_reg = er32(FFLT_DBG);
2531                 mac_reg &= ~(0xF << 14);
2532                 ew32(FFLT_DBG, mac_reg);
2533
2534                 mac_reg = er32(RCTL);
2535                 mac_reg &= ~E1000_RCTL_SECRC;
2536                 ew32(RCTL, mac_reg);
2537
2538                 ret_val = e1000e_read_kmrn_reg(hw,
2539                                                E1000_KMRNCTRLSTA_CTRL_OFFSET,
2540                                                &data);
2541                 if (ret_val)
2542                         return ret_val;
2543                 ret_val = e1000e_write_kmrn_reg(hw,
2544                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2545                                                 data & ~(1 << 0));
2546                 if (ret_val)
2547                         return ret_val;
2548                 ret_val = e1000e_read_kmrn_reg(hw,
2549                                                E1000_KMRNCTRLSTA_HD_CTRL,
2550                                                &data);
2551                 if (ret_val)
2552                         return ret_val;
2553                 data &= ~(0xF << 8);
2554                 data |= (0xB << 8);
2555                 ret_val = e1000e_write_kmrn_reg(hw,
2556                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2557                                                 data);
2558                 if (ret_val)
2559                         return ret_val;
2560
2561                 /* Write PHY register values back to h/w defaults */
2562                 e1e_rphy(hw, PHY_REG(769, 23), &data);
2563                 data &= ~(0x7F << 5);
2564                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2565                 if (ret_val)
2566                         return ret_val;
2567                 e1e_rphy(hw, PHY_REG(769, 16), &data);
2568                 data |= (1 << 13);
2569                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2570                 if (ret_val)
2571                         return ret_val;
2572                 e1e_rphy(hw, PHY_REG(776, 20), &data);
2573                 data &= ~(0x3FF << 2);
2574                 data |= (0x8 << 2);
2575                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2576                 if (ret_val)
2577                         return ret_val;
2578                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2579                 if (ret_val)
2580                         return ret_val;
2581                 e1e_rphy(hw, HV_PM_CTRL, &data);
2582                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
2583                 if (ret_val)
2584                         return ret_val;
2585         }
2586
2587         /* re-enable Rx path after enabling/disabling workaround */
2588         return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
2589 }
2590
2591 /**
2592  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2593  *  done after every PHY reset.
2594  **/
2595 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2596 {
2597         s32 ret_val = 0;
2598
2599         if (hw->mac.type != e1000_pch2lan)
2600                 return 0;
2601
2602         /* Set MDIO slow mode before any other MDIO access */
2603         ret_val = e1000_set_mdio_slow_mode_hv(hw);
2604         if (ret_val)
2605                 return ret_val;
2606
2607         ret_val = hw->phy.ops.acquire(hw);
2608         if (ret_val)
2609                 return ret_val;
2610         /* set MSE higher to enable link to stay up when noise is high */
2611         ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2612         if (ret_val)
2613                 goto release;
2614         /* drop link after 5 times MSE threshold was reached */
2615         ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2616 release:
2617         hw->phy.ops.release(hw);
2618
2619         return ret_val;
2620 }
2621
2622 /**
2623  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2624  *  @hw:   pointer to the HW structure
2625  *
2626  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2627  *  Disable K1 in 1000Mbps and 100Mbps
2628  **/
2629 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2630 {
2631         s32 ret_val = 0;
2632         u16 status_reg = 0;
2633
2634         if (hw->mac.type != e1000_pch2lan)
2635                 return 0;
2636
2637         /* Set K1 beacon duration based on 10Mbs speed */
2638         ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2639         if (ret_val)
2640                 return ret_val;
2641
2642         if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2643             == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2644                 if (status_reg &
2645                     (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2646                         u16 pm_phy_reg;
2647
2648                         /* LV 1G/100 Packet drop issue wa  */
2649                         ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2650                         if (ret_val)
2651                                 return ret_val;
2652                         pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2653                         ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2654                         if (ret_val)
2655                                 return ret_val;
2656                 } else {
2657                         u32 mac_reg;
2658
2659                         mac_reg = er32(FEXTNVM4);
2660                         mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2661                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2662                         ew32(FEXTNVM4, mac_reg);
2663                 }
2664         }
2665
2666         return ret_val;
2667 }
2668
2669 /**
2670  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2671  *  @hw:   pointer to the HW structure
2672  *  @gate: boolean set to true to gate, false to ungate
2673  *
2674  *  Gate/ungate the automatic PHY configuration via hardware; perform
2675  *  the configuration via software instead.
2676  **/
2677 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2678 {
2679         u32 extcnf_ctrl;
2680
2681         if (hw->mac.type < e1000_pch2lan)
2682                 return;
2683
2684         extcnf_ctrl = er32(EXTCNF_CTRL);
2685
2686         if (gate)
2687                 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2688         else
2689                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2690
2691         ew32(EXTCNF_CTRL, extcnf_ctrl);
2692 }
2693
2694 /**
2695  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2696  *  @hw: pointer to the HW structure
2697  *
2698  *  Check the appropriate indication the MAC has finished configuring the
2699  *  PHY after a software reset.
2700  **/
2701 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2702 {
2703         u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2704
2705         /* Wait for basic configuration completes before proceeding */
2706         do {
2707                 data = er32(STATUS);
2708                 data &= E1000_STATUS_LAN_INIT_DONE;
2709                 usleep_range(100, 200);
2710         } while ((!data) && --loop);
2711
2712         /* If basic configuration is incomplete before the above loop
2713          * count reaches 0, loading the configuration from NVM will
2714          * leave the PHY in a bad state possibly resulting in no link.
2715          */
2716         if (loop == 0)
2717                 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2718
2719         /* Clear the Init Done bit for the next init event */
2720         data = er32(STATUS);
2721         data &= ~E1000_STATUS_LAN_INIT_DONE;
2722         ew32(STATUS, data);
2723 }
2724
2725 /**
2726  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2727  *  @hw: pointer to the HW structure
2728  **/
2729 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2730 {
2731         s32 ret_val = 0;
2732         u16 reg;
2733
2734         if (hw->phy.ops.check_reset_block(hw))
2735                 return 0;
2736
2737         /* Allow time for h/w to get to quiescent state after reset */
2738         usleep_range(10000, 20000);
2739
2740         /* Perform any necessary post-reset workarounds */
2741         switch (hw->mac.type) {
2742         case e1000_pchlan:
2743                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2744                 if (ret_val)
2745                         return ret_val;
2746                 break;
2747         case e1000_pch2lan:
2748                 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2749                 if (ret_val)
2750                         return ret_val;
2751                 break;
2752         default:
2753                 break;
2754         }
2755
2756         /* Clear the host wakeup bit after lcd reset */
2757         if (hw->mac.type >= e1000_pchlan) {
2758                 e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2759                 reg &= ~BM_WUC_HOST_WU_BIT;
2760                 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2761         }
2762
2763         /* Configure the LCD with the extended configuration region in NVM */
2764         ret_val = e1000_sw_lcd_config_ich8lan(hw);
2765         if (ret_val)
2766                 return ret_val;
2767
2768         /* Configure the LCD with the OEM bits in NVM */
2769         ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2770
2771         if (hw->mac.type == e1000_pch2lan) {
2772                 /* Ungate automatic PHY configuration on non-managed 82579 */
2773                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2774                         usleep_range(10000, 20000);
2775                         e1000_gate_hw_phy_config_ich8lan(hw, false);
2776                 }
2777
2778                 /* Set EEE LPI Update Timer to 200usec */
2779                 ret_val = hw->phy.ops.acquire(hw);
2780                 if (ret_val)
2781                         return ret_val;
2782                 ret_val = e1000_write_emi_reg_locked(hw,
2783                                                      I82579_LPI_UPDATE_TIMER,
2784                                                      0x1387);
2785                 hw->phy.ops.release(hw);
2786         }
2787
2788         return ret_val;
2789 }
2790
2791 /**
2792  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2793  *  @hw: pointer to the HW structure
2794  *
2795  *  Resets the PHY
2796  *  This is a function pointer entry point called by drivers
2797  *  or other shared routines.
2798  **/
2799 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2800 {
2801         s32 ret_val = 0;
2802
2803         /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2804         if ((hw->mac.type == e1000_pch2lan) &&
2805             !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2806                 e1000_gate_hw_phy_config_ich8lan(hw, true);
2807
2808         ret_val = e1000e_phy_hw_reset_generic(hw);
2809         if (ret_val)
2810                 return ret_val;
2811
2812         return e1000_post_phy_reset_ich8lan(hw);
2813 }
2814
2815 /**
2816  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2817  *  @hw: pointer to the HW structure
2818  *  @active: true to enable LPLU, false to disable
2819  *
2820  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2821  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2822  *  the phy speed. This function will manually set the LPLU bit and restart
2823  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2824  *  since it configures the same bit.
2825  **/
2826 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2827 {
2828         s32 ret_val;
2829         u16 oem_reg;
2830
2831         ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2832         if (ret_val)
2833                 return ret_val;
2834
2835         if (active)
2836                 oem_reg |= HV_OEM_BITS_LPLU;
2837         else
2838                 oem_reg &= ~HV_OEM_BITS_LPLU;
2839
2840         if (!hw->phy.ops.check_reset_block(hw))
2841                 oem_reg |= HV_OEM_BITS_RESTART_AN;
2842
2843         return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2844 }
2845
2846 /**
2847  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2848  *  @hw: pointer to the HW structure
2849  *  @active: true to enable LPLU, false to disable
2850  *
2851  *  Sets the LPLU D0 state according to the active flag.  When
2852  *  activating LPLU this function also disables smart speed
2853  *  and vice versa.  LPLU will not be activated unless the
2854  *  device autonegotiation advertisement meets standards of
2855  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2856  *  This is a function pointer entry point only called by
2857  *  PHY setup routines.
2858  **/
2859 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2860 {
2861         struct e1000_phy_info *phy = &hw->phy;
2862         u32 phy_ctrl;
2863         s32 ret_val = 0;
2864         u16 data;
2865
2866         if (phy->type == e1000_phy_ife)
2867                 return 0;
2868
2869         phy_ctrl = er32(PHY_CTRL);
2870
2871         if (active) {
2872                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2873                 ew32(PHY_CTRL, phy_ctrl);
2874
2875                 if (phy->type != e1000_phy_igp_3)
2876                         return 0;
2877
2878                 /* Call gig speed drop workaround on LPLU before accessing
2879                  * any PHY registers
2880                  */
2881                 if (hw->mac.type == e1000_ich8lan)
2882                         e1000e_gig_downshift_workaround_ich8lan(hw);
2883
2884                 /* When LPLU is enabled, we should disable SmartSpeed */
2885                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2886                 if (ret_val)
2887                         return ret_val;
2888                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2889                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2890                 if (ret_val)
2891                         return ret_val;
2892         } else {
2893                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2894                 ew32(PHY_CTRL, phy_ctrl);
2895
2896                 if (phy->type != e1000_phy_igp_3)
2897                         return 0;
2898
2899                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2900                  * during Dx states where the power conservation is most
2901                  * important.  During driver activity we should enable
2902                  * SmartSpeed, so performance is maintained.
2903                  */
2904                 if (phy->smart_speed == e1000_smart_speed_on) {
2905                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2906                                            &data);
2907                         if (ret_val)
2908                                 return ret_val;
2909
2910                         data |= IGP01E1000_PSCFR_SMART_SPEED;
2911                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2912                                            data);
2913                         if (ret_val)
2914                                 return ret_val;
2915                 } else if (phy->smart_speed == e1000_smart_speed_off) {
2916                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2917                                            &data);
2918                         if (ret_val)
2919                                 return ret_val;
2920
2921                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2922                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2923                                            data);
2924                         if (ret_val)
2925                                 return ret_val;
2926                 }
2927         }
2928
2929         return 0;
2930 }
2931
2932 /**
2933  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
2934  *  @hw: pointer to the HW structure
2935  *  @active: true to enable LPLU, false to disable
2936  *
2937  *  Sets the LPLU D3 state according to the active flag.  When
2938  *  activating LPLU this function also disables smart speed
2939  *  and vice versa.  LPLU will not be activated unless the
2940  *  device autonegotiation advertisement meets standards of
2941  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2942  *  This is a function pointer entry point only called by
2943  *  PHY setup routines.
2944  **/
2945 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2946 {
2947         struct e1000_phy_info *phy = &hw->phy;
2948         u32 phy_ctrl;
2949         s32 ret_val = 0;
2950         u16 data;
2951
2952         phy_ctrl = er32(PHY_CTRL);
2953
2954         if (!active) {
2955                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2956                 ew32(PHY_CTRL, phy_ctrl);
2957
2958                 if (phy->type != e1000_phy_igp_3)
2959                         return 0;
2960
2961                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2962                  * during Dx states where the power conservation is most
2963                  * important.  During driver activity we should enable
2964                  * SmartSpeed, so performance is maintained.
2965                  */
2966                 if (phy->smart_speed == e1000_smart_speed_on) {
2967                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2968                                            &data);
2969                         if (ret_val)
2970                                 return ret_val;
2971
2972                         data |= IGP01E1000_PSCFR_SMART_SPEED;
2973                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2974                                            data);
2975                         if (ret_val)
2976                                 return ret_val;
2977                 } else if (phy->smart_speed == e1000_smart_speed_off) {
2978                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2979                                            &data);
2980                         if (ret_val)
2981                                 return ret_val;
2982
2983                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2984                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2985                                            data);
2986                         if (ret_val)
2987                                 return ret_val;
2988                 }
2989         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2990                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2991                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2992                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2993                 ew32(PHY_CTRL, phy_ctrl);
2994
2995                 if (phy->type != e1000_phy_igp_3)
2996                         return 0;
2997
2998                 /* Call gig speed drop workaround on LPLU before accessing
2999                  * any PHY registers
3000                  */
3001                 if (hw->mac.type == e1000_ich8lan)
3002                         e1000e_gig_downshift_workaround_ich8lan(hw);
3003
3004                 /* When LPLU is enabled, we should disable SmartSpeed */
3005                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3006                 if (ret_val)
3007                         return ret_val;
3008
3009                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3010                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3011         }
3012
3013         return ret_val;
3014 }
3015
3016 /**
3017  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3018  *  @hw: pointer to the HW structure
3019  *  @bank:  pointer to the variable that returns the active bank
3020  *
3021  *  Reads signature byte from the NVM using the flash access registers.
3022  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3023  **/
3024 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3025 {
3026         u32 eecd;
3027         struct e1000_nvm_info *nvm = &hw->nvm;
3028         u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3029         u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3030         u8 sig_byte = 0;
3031         s32 ret_val;
3032
3033         switch (hw->mac.type) {
3034                 /* In SPT, read from the CTRL_EXT reg instead of
3035                  * accessing the sector valid bits from the nvm
3036                  */
3037         case e1000_pch_spt:
3038                 *bank = er32(CTRL_EXT)
3039                     & E1000_CTRL_EXT_NVMVS;
3040                 if ((*bank == 0) || (*bank == 1)) {
3041                         e_dbg("ERROR: No valid NVM bank present\n");
3042                         return -E1000_ERR_NVM;
3043                 } else {
3044                         *bank = *bank - 2;
3045                         return 0;
3046                 }
3047                 break;
3048         case e1000_ich8lan:
3049         case e1000_ich9lan:
3050                 eecd = er32(EECD);
3051                 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3052                     E1000_EECD_SEC1VAL_VALID_MASK) {
3053                         if (eecd & E1000_EECD_SEC1VAL)
3054                                 *bank = 1;
3055                         else
3056                                 *bank = 0;
3057
3058                         return 0;
3059                 }
3060                 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3061                 /* fall-thru */
3062         default:
3063                 /* set bank to 0 in case flash read fails */
3064                 *bank = 0;
3065
3066                 /* Check bank 0 */
3067                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3068                                                         &sig_byte);
3069                 if (ret_val)
3070                         return ret_val;
3071                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3072                     E1000_ICH_NVM_SIG_VALUE) {
3073                         *bank = 0;
3074                         return 0;
3075                 }
3076
3077                 /* Check bank 1 */
3078                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3079                                                         bank1_offset,
3080                                                         &sig_byte);
3081                 if (ret_val)
3082                         return ret_val;
3083                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3084                     E1000_ICH_NVM_SIG_VALUE) {
3085                         *bank = 1;
3086                         return 0;
3087                 }
3088
3089                 e_dbg("ERROR: No valid NVM bank present\n");
3090                 return -E1000_ERR_NVM;
3091         }
3092 }
3093
3094 /**
3095  *  e1000_read_nvm_spt - NVM access for SPT
3096  *  @hw: pointer to the HW structure
3097  *  @offset: The offset (in bytes) of the word(s) to read.
3098  *  @words: Size of data to read in words.
3099  *  @data: pointer to the word(s) to read at offset.
3100  *
3101  *  Reads a word(s) from the NVM
3102  **/
3103 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3104                               u16 *data)
3105 {
3106         struct e1000_nvm_info *nvm = &hw->nvm;
3107         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3108         u32 act_offset;
3109         s32 ret_val = 0;
3110         u32 bank = 0;
3111         u32 dword = 0;
3112         u16 offset_to_read;
3113         u16 i;
3114
3115         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3116             (words == 0)) {
3117                 e_dbg("nvm parameter(s) out of bounds\n");
3118                 ret_val = -E1000_ERR_NVM;
3119                 goto out;
3120         }
3121
3122         nvm->ops.acquire(hw);
3123
3124         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3125         if (ret_val) {
3126                 e_dbg("Could not detect valid bank, assuming bank 0\n");
3127                 bank = 0;
3128         }
3129
3130         act_offset = (bank) ? nvm->flash_bank_size : 0;
3131         act_offset += offset;
3132
3133         ret_val = 0;
3134
3135         for (i = 0; i < words; i += 2) {
3136                 if (words - i == 1) {
3137                         if (dev_spec->shadow_ram[offset + i].modified) {
3138                                 data[i] =
3139                                     dev_spec->shadow_ram[offset + i].value;
3140                         } else {
3141                                 offset_to_read = act_offset + i -
3142                                     ((act_offset + i) % 2);
3143                                 ret_val =
3144                                   e1000_read_flash_dword_ich8lan(hw,
3145                                                                  offset_to_read,
3146                                                                  &dword);
3147                                 if (ret_val)
3148                                         break;
3149                                 if ((act_offset + i) % 2 == 0)
3150                                         data[i] = (u16)(dword & 0xFFFF);
3151                                 else
3152                                         data[i] = (u16)((dword >> 16) & 0xFFFF);
3153                         }
3154                 } else {
3155                         offset_to_read = act_offset + i;
3156                         if (!(dev_spec->shadow_ram[offset + i].modified) ||
3157                             !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3158                                 ret_val =
3159                                   e1000_read_flash_dword_ich8lan(hw,
3160                                                                  offset_to_read,
3161                                                                  &dword);
3162                                 if (ret_val)
3163                                         break;
3164                         }
3165                         if (dev_spec->shadow_ram[offset + i].modified)
3166                                 data[i] =
3167                                     dev_spec->shadow_ram[offset + i].value;
3168                         else
3169                                 data[i] = (u16)(dword & 0xFFFF);
3170                         if (dev_spec->shadow_ram[offset + i].modified)
3171                                 data[i + 1] =
3172                                     dev_spec->shadow_ram[offset + i + 1].value;
3173                         else
3174                                 data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3175                 }
3176         }
3177
3178         nvm->ops.release(hw);
3179
3180 out:
3181         if (ret_val)
3182                 e_dbg("NVM read error: %d\n", ret_val);
3183
3184         return ret_val;
3185 }
3186
3187 /**
3188  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3189  *  @hw: pointer to the HW structure
3190  *  @offset: The offset (in bytes) of the word(s) to read.
3191  *  @words: Size of data to read in words
3192  *  @data: Pointer to the word(s) to read at offset.
3193  *
3194  *  Reads a word(s) from the NVM using the flash access registers.
3195  **/
3196 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3197                                   u16 *data)
3198 {
3199         struct e1000_nvm_info *nvm = &hw->nvm;
3200         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3201         u32 act_offset;
3202         s32 ret_val = 0;
3203         u32 bank = 0;
3204         u16 i, word;
3205
3206         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3207             (words == 0)) {
3208                 e_dbg("nvm parameter(s) out of bounds\n");
3209                 ret_val = -E1000_ERR_NVM;
3210                 goto out;
3211         }
3212
3213         nvm->ops.acquire(hw);
3214
3215         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3216         if (ret_val) {
3217                 e_dbg("Could not detect valid bank, assuming bank 0\n");
3218                 bank = 0;
3219         }
3220
3221         act_offset = (bank) ? nvm->flash_bank_size : 0;
3222         act_offset += offset;
3223
3224         ret_val = 0;
3225         for (i = 0; i < words; i++) {
3226                 if (dev_spec->shadow_ram[offset + i].modified) {
3227                         data[i] = dev_spec->shadow_ram[offset + i].value;
3228                 } else {
3229                         ret_val = e1000_read_flash_word_ich8lan(hw,
3230                                                                 act_offset + i,
3231                                                                 &word);
3232                         if (ret_val)
3233                                 break;
3234                         data[i] = word;
3235                 }
3236         }
3237
3238         nvm->ops.release(hw);
3239
3240 out:
3241         if (ret_val)
3242                 e_dbg("NVM read error: %d\n", ret_val);
3243
3244         return ret_val;
3245 }
3246
3247 /**
3248  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3249  *  @hw: pointer to the HW structure
3250  *
3251  *  This function does initial flash setup so that a new read/write/erase cycle
3252  *  can be started.
3253  **/
3254 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3255 {
3256         union ich8_hws_flash_status hsfsts;
3257         s32 ret_val = -E1000_ERR_NVM;
3258
3259         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3260
3261         /* Check if the flash descriptor is valid */
3262         if (!hsfsts.hsf_status.fldesvalid) {
3263                 e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3264                 return -E1000_ERR_NVM;
3265         }
3266
3267         /* Clear FCERR and DAEL in hw status by writing 1 */
3268         hsfsts.hsf_status.flcerr = 1;
3269         hsfsts.hsf_status.dael = 1;
3270         if (hw->mac.type == e1000_pch_spt)
3271                 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3272         else
3273                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3274
3275         /* Either we should have a hardware SPI cycle in progress
3276          * bit to check against, in order to start a new cycle or
3277          * FDONE bit should be changed in the hardware so that it
3278          * is 1 after hardware reset, which can then be used as an
3279          * indication whether a cycle is in progress or has been
3280          * completed.
3281          */
3282
3283         if (!hsfsts.hsf_status.flcinprog) {
3284                 /* There is no cycle running at present,
3285                  * so we can start a cycle.
3286                  * Begin by setting Flash Cycle Done.
3287                  */
3288                 hsfsts.hsf_status.flcdone = 1;
3289                 if (hw->mac.type == e1000_pch_spt)
3290                         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3291                 else
3292                         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3293                 ret_val = 0;
3294         } else {
3295                 s32 i;
3296
3297                 /* Otherwise poll for sometime so the current
3298                  * cycle has a chance to end before giving up.
3299                  */
3300                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3301                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3302                         if (!hsfsts.hsf_status.flcinprog) {
3303                                 ret_val = 0;
3304                                 break;
3305                         }
3306                         udelay(1);
3307                 }
3308                 if (!ret_val) {
3309                         /* Successful in waiting for previous cycle to timeout,
3310                          * now set the Flash Cycle Done.
3311                          */
3312                         hsfsts.hsf_status.flcdone = 1;
3313                         if (hw->mac.type == e1000_pch_spt)
3314                                 ew32flash(ICH_FLASH_HSFSTS,
3315                                           hsfsts.regval & 0xFFFF);
3316                         else
3317                                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3318                 } else {
3319                         e_dbg("Flash controller busy, cannot get access\n");
3320                 }
3321         }
3322
3323         return ret_val;
3324 }
3325
3326 /**
3327  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3328  *  @hw: pointer to the HW structure
3329  *  @timeout: maximum time to wait for completion
3330  *
3331  *  This function starts a flash cycle and waits for its completion.
3332  **/
3333 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3334 {
3335         union ich8_hws_flash_ctrl hsflctl;
3336         union ich8_hws_flash_status hsfsts;
3337         u32 i = 0;
3338
3339         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3340         if (hw->mac.type == e1000_pch_spt)
3341                 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3342         else
3343                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3344         hsflctl.hsf_ctrl.flcgo = 1;
3345
3346         if (hw->mac.type == e1000_pch_spt)
3347                 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3348         else
3349                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3350
3351         /* wait till FDONE bit is set to 1 */
3352         do {
3353                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3354                 if (hsfsts.hsf_status.flcdone)
3355                         break;
3356                 udelay(1);
3357         } while (i++ < timeout);
3358
3359         if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3360                 return 0;
3361
3362         return -E1000_ERR_NVM;
3363 }
3364
3365 /**
3366  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3367  *  @hw: pointer to the HW structure
3368  *  @offset: offset to data location
3369  *  @data: pointer to the location for storing the data
3370  *
3371  *  Reads the flash dword at offset into data.  Offset is converted
3372  *  to bytes before read.
3373  **/
3374 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3375                                           u32 *data)
3376 {
3377         /* Must convert word offset into bytes. */
3378         offset <<= 1;
3379         return e1000_read_flash_data32_ich8lan(hw, offset, data);
3380 }
3381
3382 /**
3383  *  e1000_read_flash_word_ich8lan - Read word from flash
3384  *  @hw: pointer to the HW structure
3385  *  @offset: offset to data location
3386  *  @data: pointer to the location for storing the data
3387  *
3388  *  Reads the flash word at offset into data.  Offset is converted
3389  *  to bytes before read.
3390  **/
3391 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3392                                          u16 *data)
3393 {
3394         /* Must convert offset into bytes. */
3395         offset <<= 1;
3396
3397         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3398 }
3399
3400 /**
3401  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3402  *  @hw: pointer to the HW structure
3403  *  @offset: The offset of the byte to read.
3404  *  @data: Pointer to a byte to store the value read.
3405  *
3406  *  Reads a single byte from the NVM using the flash access registers.
3407  **/
3408 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3409                                          u8 *data)
3410 {
3411         s32 ret_val;
3412         u16 word = 0;
3413
3414         /* In SPT, only 32 bits access is supported,
3415          * so this function should not be called.
3416          */
3417         if (hw->mac.type == e1000_pch_spt)
3418                 return -E1000_ERR_NVM;
3419         else
3420                 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3421
3422         if (ret_val)
3423                 return ret_val;
3424
3425         *data = (u8)word;
3426
3427         return 0;
3428 }
3429
3430 /**
3431  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3432  *  @hw: pointer to the HW structure
3433  *  @offset: The offset (in bytes) of the byte or word to read.
3434  *  @size: Size of data to read, 1=byte 2=word
3435  *  @data: Pointer to the word to store the value read.
3436  *
3437  *  Reads a byte or word from the NVM using the flash access registers.
3438  **/
3439 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3440                                          u8 size, u16 *data)
3441 {
3442         union ich8_hws_flash_status hsfsts;
3443         union ich8_hws_flash_ctrl hsflctl;
3444         u32 flash_linear_addr;
3445         u32 flash_data = 0;
3446         s32 ret_val = -E1000_ERR_NVM;
3447         u8 count = 0;
3448
3449         if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3450                 return -E1000_ERR_NVM;
3451
3452         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3453                              hw->nvm.flash_base_addr);
3454
3455         do {
3456                 udelay(1);
3457                 /* Steps */
3458                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3459                 if (ret_val)
3460                         break;
3461
3462                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3463                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3464                 hsflctl.hsf_ctrl.fldbcount = size - 1;
3465                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3466                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3467
3468                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3469
3470                 ret_val =
3471                     e1000_flash_cycle_ich8lan(hw,
3472                                               ICH_FLASH_READ_COMMAND_TIMEOUT);
3473
3474                 /* Check if FCERR is set to 1, if set to 1, clear it
3475                  * and try the whole sequence a few more times, else
3476                  * read in (shift in) the Flash Data0, the order is
3477                  * least significant byte first msb to lsb
3478                  */
3479                 if (!ret_val) {
3480                         flash_data = er32flash(ICH_FLASH_FDATA0);
3481                         if (size == 1)
3482                                 *data = (u8)(flash_data & 0x000000FF);
3483                         else if (size == 2)
3484                                 *data = (u16)(flash_data & 0x0000FFFF);
3485                         break;
3486                 } else {
3487                         /* If we've gotten here, then things are probably
3488                          * completely hosed, but if the error condition is
3489                          * detected, it won't hurt to give it another try...
3490                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3491                          */
3492                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3493                         if (hsfsts.hsf_status.flcerr) {
3494                                 /* Repeat for some time before giving up. */
3495                                 continue;
3496                         } else if (!hsfsts.hsf_status.flcdone) {
3497                                 e_dbg("Timeout error - flash cycle did not complete.\n");
3498                                 break;
3499                         }
3500                 }
3501         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3502
3503         return ret_val;
3504 }
3505
3506 /**
3507  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3508  *  @hw: pointer to the HW structure
3509  *  @offset: The offset (in bytes) of the dword to read.
3510  *  @data: Pointer to the dword to store the value read.
3511  *
3512  *  Reads a byte or word from the NVM using the flash access registers.
3513  **/
3514
3515 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3516                                            u32 *data)
3517 {
3518         union ich8_hws_flash_status hsfsts;
3519         union ich8_hws_flash_ctrl hsflctl;
3520         u32 flash_linear_addr;
3521         s32 ret_val = -E1000_ERR_NVM;
3522         u8 count = 0;
3523
3524         if (offset > ICH_FLASH_LINEAR_ADDR_MASK ||
3525             hw->mac.type != e1000_pch_spt)
3526                 return -E1000_ERR_NVM;
3527         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3528                              hw->nvm.flash_base_addr);
3529
3530         do {
3531                 udelay(1);
3532                 /* Steps */
3533                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3534                 if (ret_val)
3535                         break;
3536                 /* In SPT, This register is in Lan memory space, not flash.
3537                  * Therefore, only 32 bit access is supported
3538                  */
3539                 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3540
3541                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3542                 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3543                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3544                 /* In SPT, This register is in Lan memory space, not flash.
3545                  * Therefore, only 32 bit access is supported
3546                  */
3547                 ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3548                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3549
3550                 ret_val =
3551                    e1000_flash_cycle_ich8lan(hw,
3552                                              ICH_FLASH_READ_COMMAND_TIMEOUT);
3553
3554                 /* Check if FCERR is set to 1, if set to 1, clear it
3555                  * and try the whole sequence a few more times, else
3556                  * read in (shift in) the Flash Data0, the order is
3557                  * least significant byte first msb to lsb
3558                  */
3559                 if (!ret_val) {
3560                         *data = er32flash(ICH_FLASH_FDATA0);
3561                         break;
3562                 } else {
3563                         /* If we've gotten here, then things are probably
3564                          * completely hosed, but if the error condition is
3565                          * detected, it won't hurt to give it another try...
3566                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3567                          */
3568                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3569                         if (hsfsts.hsf_status.flcerr) {
3570                                 /* Repeat for some time before giving up. */
3571                                 continue;
3572                         } else if (!hsfsts.hsf_status.flcdone) {
3573                                 e_dbg("Timeout error - flash cycle did not complete.\n");
3574                                 break;
3575                         }
3576                 }
3577         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3578
3579         return ret_val;
3580 }
3581
3582 /**
3583  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3584  *  @hw: pointer to the HW structure
3585  *  @offset: The offset (in bytes) of the word(s) to write.
3586  *  @words: Size of data to write in words
3587  *  @data: Pointer to the word(s) to write at offset.
3588  *
3589  *  Writes a byte or word to the NVM using the flash access registers.
3590  **/
3591 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3592                                    u16 *data)
3593 {
3594         struct e1000_nvm_info *nvm = &hw->nvm;
3595         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3596         u16 i;
3597
3598         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3599             (words == 0)) {
3600                 e_dbg("nvm parameter(s) out of bounds\n");
3601                 return -E1000_ERR_NVM;
3602         }
3603
3604         nvm->ops.acquire(hw);
3605
3606         for (i = 0; i < words; i++) {
3607                 dev_spec->shadow_ram[offset + i].modified = true;
3608                 dev_spec->shadow_ram[offset + i].value = data[i];
3609         }
3610
3611         nvm->ops.release(hw);
3612
3613         return 0;
3614 }
3615
3616 /**
3617  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3618  *  @hw: pointer to the HW structure
3619  *
3620  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3621  *  which writes the checksum to the shadow ram.  The changes in the shadow
3622  *  ram are then committed to the EEPROM by processing each bank at a time
3623  *  checking for the modified bit and writing only the pending changes.
3624  *  After a successful commit, the shadow ram is cleared and is ready for
3625  *  future writes.
3626  **/
3627 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3628 {
3629         struct e1000_nvm_info *nvm = &hw->nvm;
3630         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3631         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3632         s32 ret_val;
3633         u32 dword = 0;
3634
3635         ret_val = e1000e_update_nvm_checksum_generic(hw);
3636         if (ret_val)
3637                 goto out;
3638
3639         if (nvm->type != e1000_nvm_flash_sw)
3640                 goto out;
3641
3642         nvm->ops.acquire(hw);
3643
3644         /* We're writing to the opposite bank so if we're on bank 1,
3645          * write to bank 0 etc.  We also need to erase the segment that
3646          * is going to be written
3647          */
3648         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3649         if (ret_val) {
3650                 e_dbg("Could not detect valid bank, assuming bank 0\n");
3651                 bank = 0;
3652         }
3653
3654         if (bank == 0) {
3655                 new_bank_offset = nvm->flash_bank_size;
3656                 old_bank_offset = 0;
3657                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3658                 if (ret_val)
3659                         goto release;
3660         } else {
3661                 old_bank_offset = nvm->flash_bank_size;
3662                 new_bank_offset = 0;
3663                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3664                 if (ret_val)
3665                         goto release;
3666         }
3667         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3668                 /* Determine whether to write the value stored
3669                  * in the other NVM bank or a modified value stored
3670                  * in the shadow RAM
3671                  */
3672                 ret_val = e1000_read_flash_dword_ich8lan(hw,
3673                                                          i + old_bank_offset,
3674                                                          &dword);
3675
3676                 if (dev_spec->shadow_ram[i].modified) {
3677                         dword &= 0xffff0000;
3678                         dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3679                 }
3680                 if (dev_spec->shadow_ram[i + 1].modified) {
3681                         dword &= 0x0000ffff;
3682                         dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3683                                   << 16);
3684                 }
3685                 if (ret_val)
3686                         break;
3687
3688                 /* If the word is 0x13, then make sure the signature bits
3689                  * (15:14) are 11b until the commit has completed.
3690                  * This will allow us to write 10b which indicates the
3691                  * signature is valid.  We want to do this after the write
3692                  * has completed so that we don't mark the segment valid
3693                  * while the write is still in progress
3694                  */
3695                 if (i == E1000_ICH_NVM_SIG_WORD - 1)
3696                         dword |= E1000_ICH_NVM_SIG_MASK << 16;
3697
3698                 /* Convert offset to bytes. */
3699                 act_offset = (i + new_bank_offset) << 1;
3700
3701                 usleep_range(100, 200);
3702
3703                 /* Write the data to the new bank. Offset in words */
3704                 act_offset = i + new_bank_offset;
3705                 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3706                                                                 dword);
3707                 if (ret_val)
3708                         break;
3709         }
3710
3711         /* Don't bother writing the segment valid bits if sector
3712          * programming failed.
3713          */
3714         if (ret_val) {
3715                 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3716                 e_dbg("Flash commit failed.\n");
3717                 goto release;
3718         }
3719
3720         /* Finally validate the new segment by setting bit 15:14
3721          * to 10b in word 0x13 , this can be done without an
3722          * erase as well since these bits are 11 to start with
3723          * and we need to change bit 14 to 0b
3724          */
3725         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3726
3727         /*offset in words but we read dword */
3728         --act_offset;
3729         ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3730
3731         if (ret_val)
3732                 goto release;
3733
3734         dword &= 0xBFFFFFFF;
3735         ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3736
3737         if (ret_val)
3738                 goto release;
3739
3740         /* And invalidate the previously valid segment by setting
3741          * its signature word (0x13) high_byte to 0b. This can be
3742          * done without an erase because flash erase sets all bits
3743          * to 1's. We can write 1's to 0's without an erase
3744          */
3745         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3746
3747         /* offset in words but we read dword */
3748         act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3749         ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3750
3751         if (ret_val)
3752                 goto release;
3753
3754         dword &= 0x00FFFFFF;
3755         ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3756
3757         if (ret_val)
3758                 goto release;
3759
3760         /* Great!  Everything worked, we can now clear the cached entries. */
3761         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3762                 dev_spec->shadow_ram[i].modified = false;
3763                 dev_spec->shadow_ram[i].value = 0xFFFF;
3764         }
3765
3766 release:
3767         nvm->ops.release(hw);
3768
3769         /* Reload the EEPROM, or else modifications will not appear
3770          * until after the next adapter reset.
3771          */
3772         if (!ret_val) {
3773                 nvm->ops.reload(hw);
3774                 usleep_range(10000, 20000);
3775         }
3776
3777 out:
3778         if (ret_val)
3779                 e_dbg("NVM update error: %d\n", ret_val);
3780
3781         return ret_val;
3782 }
3783
3784 /**
3785  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3786  *  @hw: pointer to the HW structure
3787  *
3788  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3789  *  which writes the checksum to the shadow ram.  The changes in the shadow
3790  *  ram are then committed to the EEPROM by processing each bank at a time
3791  *  checking for the modified bit and writing only the pending changes.
3792  *  After a successful commit, the shadow ram is cleared and is ready for
3793  *  future writes.
3794  **/
3795 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3796 {
3797         struct e1000_nvm_info *nvm = &hw->nvm;
3798         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3799         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3800         s32 ret_val;
3801         u16 data = 0;
3802
3803         ret_val = e1000e_update_nvm_checksum_generic(hw);
3804         if (ret_val)
3805                 goto out;
3806
3807         if (nvm->type != e1000_nvm_flash_sw)
3808                 goto out;
3809
3810         nvm->ops.acquire(hw);
3811
3812         /* We're writing to the opposite bank so if we're on bank 1,
3813          * write to bank 0 etc.  We also need to erase the segment that
3814          * is going to be written
3815          */
3816         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3817         if (ret_val) {
3818                 e_dbg("Could not detect valid bank, assuming bank 0\n");
3819                 bank = 0;
3820         }
3821
3822         if (bank == 0) {
3823                 new_bank_offset = nvm->flash_bank_size;
3824                 old_bank_offset = 0;
3825                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3826                 if (ret_val)
3827                         goto release;
3828         } else {
3829                 old_bank_offset = nvm->flash_bank_size;
3830                 new_bank_offset = 0;
3831                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3832                 if (ret_val)
3833                         goto release;
3834         }
3835         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3836                 if (dev_spec->shadow_ram[i].modified) {
3837                         data = dev_spec->shadow_ram[i].value;
3838                 } else {
3839                         ret_val = e1000_read_flash_word_ich8lan(hw, i +
3840                                                                 old_bank_offset,
3841                                                                 &data);
3842                         if (ret_val)
3843                                 break;
3844                 }
3845
3846                 /* If the word is 0x13, then make sure the signature bits
3847                  * (15:14) are 11b until the commit has completed.
3848                  * This will allow us to write 10b which indicates the
3849                  * signature is valid.  We want to do this after the write
3850                  * has completed so that we don't mark the segment valid
3851                  * while the write is still in progress
3852                  */
3853                 if (i == E1000_ICH_NVM_SIG_WORD)
3854                         data |= E1000_ICH_NVM_SIG_MASK;
3855
3856                 /* Convert offset to bytes. */
3857                 act_offset = (i + new_bank_offset) << 1;
3858
3859                 usleep_range(100, 200);
3860                 /* Write the bytes to the new bank. */
3861                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3862                                                                act_offset,
3863                                                                (u8)data);
3864                 if (ret_val)
3865                         break;
3866
3867                 usleep_range(100, 200);
3868                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3869                                                                act_offset + 1,
3870                                                                (u8)(data >> 8));
3871                 if (ret_val)
3872                         break;
3873         }
3874
3875         /* Don't bother writing the segment valid bits if sector
3876          * programming failed.
3877          */
3878         if (ret_val) {
3879                 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3880                 e_dbg("Flash commit failed.\n");
3881                 goto release;
3882         }
3883
3884         /* Finally validate the new segment by setting bit 15:14
3885          * to 10b in word 0x13 , this can be done without an
3886          * erase as well since these bits are 11 to start with
3887          * and we need to change bit 14 to 0b
3888          */
3889         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3890         ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
3891         if (ret_val)
3892                 goto release;
3893
3894         data &= 0xBFFF;
3895         ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3896                                                        act_offset * 2 + 1,
3897                                                        (u8)(data >> 8));
3898         if (ret_val)
3899                 goto release;
3900
3901         /* And invalidate the previously valid segment by setting
3902          * its signature word (0x13) high_byte to 0b. This can be
3903          * done without an erase because flash erase sets all bits
3904          * to 1's. We can write 1's to 0's without an erase
3905          */
3906         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3907         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
3908         if (ret_val)
3909                 goto release;
3910
3911         /* Great!  Everything worked, we can now clear the cached entries. */
3912         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3913                 dev_spec->shadow_ram[i].modified = false;
3914                 dev_spec->shadow_ram[i].value = 0xFFFF;
3915         }
3916
3917 release:
3918         nvm->ops.release(hw);
3919
3920         /* Reload the EEPROM, or else modifications will not appear
3921          * until after the next adapter reset.
3922          */
3923         if (!ret_val) {
3924                 nvm->ops.reload(hw);
3925                 usleep_range(10000, 20000);
3926         }
3927
3928 out:
3929         if (ret_val)
3930                 e_dbg("NVM update error: %d\n", ret_val);
3931
3932         return ret_val;
3933 }
3934
3935 /**
3936  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
3937  *  @hw: pointer to the HW structure
3938  *
3939  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
3940  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
3941  *  calculated, in which case we need to calculate the checksum and set bit 6.
3942  **/
3943 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
3944 {
3945         s32 ret_val;
3946         u16 data;
3947         u16 word;
3948         u16 valid_csum_mask;
3949
3950         /* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
3951          * the checksum needs to be fixed.  This bit is an indication that
3952          * the NVM was prepared by OEM software and did not calculate
3953          * the checksum...a likely scenario.
3954          */
3955         switch (hw->mac.type) {
3956         case e1000_pch_lpt:
3957         case e1000_pch_spt:
3958                 word = NVM_COMPAT;
3959                 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
3960                 break;
3961         default:
3962                 word = NVM_FUTURE_INIT_WORD1;
3963                 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
3964                 break;
3965         }
3966
3967         ret_val = e1000_read_nvm(hw, word, 1, &data);
3968         if (ret_val)
3969                 return ret_val;
3970
3971         if (!(data & valid_csum_mask)) {
3972                 data |= valid_csum_mask;
3973                 ret_val = e1000_write_nvm(hw, word, 1, &data);
3974                 if (ret_val)
3975                         return ret_val;
3976                 ret_val = e1000e_update_nvm_checksum(hw);
3977                 if (ret_val)
3978                         return ret_val;
3979         }
3980
3981         return e1000e_validate_nvm_checksum_generic(hw);
3982 }
3983
3984 /**
3985  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
3986  *  @hw: pointer to the HW structure
3987  *
3988  *  To prevent malicious write/erase of the NVM, set it to be read-only
3989  *  so that the hardware ignores all write/erase cycles of the NVM via
3990  *  the flash control registers.  The shadow-ram copy of the NVM will
3991  *  still be updated, however any updates to this copy will not stick
3992  *  across driver reloads.
3993  **/
3994 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
3995 {
3996         struct e1000_nvm_info *nvm = &hw->nvm;
3997         union ich8_flash_protected_range pr0;
3998         union ich8_hws_flash_status hsfsts;
3999         u32 gfpreg;
4000
4001         nvm->ops.acquire(hw);
4002
4003         gfpreg = er32flash(ICH_FLASH_GFPREG);
4004
4005         /* Write-protect GbE Sector of NVM */
4006         pr0.regval = er32flash(ICH_FLASH_PR0);
4007         pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4008         pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4009         pr0.range.wpe = true;
4010         ew32flash(ICH_FLASH_PR0, pr0.regval);
4011
4012         /* Lock down a subset of GbE Flash Control Registers, e.g.
4013          * PR0 to prevent the write-protection from being lifted.
4014          * Once FLOCKDN is set, the registers protected by it cannot
4015          * be written until FLOCKDN is cleared by a hardware reset.
4016          */
4017         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4018         hsfsts.hsf_status.flockdn = true;
4019         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4020
4021         nvm->ops.release(hw);
4022 }
4023
4024 /**
4025  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4026  *  @hw: pointer to the HW structure
4027  *  @offset: The offset (in bytes) of the byte/word to read.
4028  *  @size: Size of data to read, 1=byte 2=word
4029  *  @data: The byte(s) to write to the NVM.
4030  *
4031  *  Writes one/two bytes to the NVM using the flash access registers.
4032  **/
4033 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4034                                           u8 size, u16 data)
4035 {
4036         union ich8_hws_flash_status hsfsts;
4037         union ich8_hws_flash_ctrl hsflctl;
4038         u32 flash_linear_addr;
4039         u32 flash_data = 0;
4040         s32 ret_val;
4041         u8 count = 0;
4042
4043         if (hw->mac.type == e1000_pch_spt) {
4044                 if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4045                         return -E1000_ERR_NVM;
4046         } else {
4047                 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4048                         return -E1000_ERR_NVM;
4049         }
4050
4051         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4052                              hw->nvm.flash_base_addr);
4053
4054         do {
4055                 udelay(1);
4056                 /* Steps */
4057                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4058                 if (ret_val)
4059                         break;
4060                 /* In SPT, This register is in Lan memory space, not
4061                  * flash.  Therefore, only 32 bit access is supported
4062                  */
4063                 if (hw->mac.type == e1000_pch_spt)
4064                         hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4065                 else
4066                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4067
4068                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4069                 hsflctl.hsf_ctrl.fldbcount = size - 1;
4070                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4071                 /* In SPT, This register is in Lan memory space,
4072                  * not flash.  Therefore, only 32 bit access is
4073                  * supported
4074                  */
4075                 if (hw->mac.type == e1000_pch_spt)
4076                         ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4077                 else
4078                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4079
4080                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4081
4082                 if (size == 1)
4083                         flash_data = (u32)data & 0x00FF;
4084                 else
4085                         flash_data = (u32)data;
4086
4087                 ew32flash(ICH_FLASH_FDATA0, flash_data);
4088
4089                 /* check if FCERR is set to 1 , if set to 1, clear it
4090                  * and try the whole sequence a few more times else done
4091                  */
4092                 ret_val =
4093                     e1000_flash_cycle_ich8lan(hw,
4094                                               ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4095                 if (!ret_val)
4096                         break;
4097
4098                 /* If we're here, then things are most likely
4099                  * completely hosed, but if the error condition
4100                  * is detected, it won't hurt to give it another
4101                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4102                  */
4103                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4104                 if (hsfsts.hsf_status.flcerr)
4105                         /* Repeat for some time before giving up. */
4106                         continue;
4107                 if (!hsfsts.hsf_status.flcdone) {
4108                         e_dbg("Timeout error - flash cycle did not complete.\n");
4109                         break;
4110                 }
4111         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4112
4113         return ret_val;
4114 }
4115
4116 /**
4117 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4118 *  @hw: pointer to the HW structure
4119 *  @offset: The offset (in bytes) of the dwords to read.
4120 *  @data: The 4 bytes to write to the NVM.
4121 *
4122 *  Writes one/two/four bytes to the NVM using the flash access registers.
4123 **/
4124 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4125                                             u32 data)
4126 {
4127         union ich8_hws_flash_status hsfsts;
4128         union ich8_hws_flash_ctrl hsflctl;
4129         u32 flash_linear_addr;
4130         s32 ret_val;
4131         u8 count = 0;
4132
4133         if (hw->mac.type == e1000_pch_spt) {
4134                 if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4135                         return -E1000_ERR_NVM;
4136         }
4137         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4138                              hw->nvm.flash_base_addr);
4139         do {
4140                 udelay(1);
4141                 /* Steps */
4142                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4143                 if (ret_val)
4144                         break;
4145
4146                 /* In SPT, This register is in Lan memory space, not
4147                  * flash.  Therefore, only 32 bit access is supported
4148                  */
4149                 if (hw->mac.type == e1000_pch_spt)
4150                         hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4151                             >> 16;
4152                 else
4153                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4154
4155                 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4156                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4157
4158                 /* In SPT, This register is in Lan memory space,
4159                  * not flash.  Therefore, only 32 bit access is
4160                  * supported
4161                  */
4162                 if (hw->mac.type == e1000_pch_spt)
4163                         ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4164                 else
4165                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4166
4167                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4168
4169                 ew32flash(ICH_FLASH_FDATA0, data);
4170
4171                 /* check if FCERR is set to 1 , if set to 1, clear it
4172                  * and try the whole sequence a few more times else done
4173                  */
4174                 ret_val =
4175                    e1000_flash_cycle_ich8lan(hw,
4176                                              ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4177
4178                 if (!ret_val)
4179                         break;
4180
4181                 /* If we're here, then things are most likely
4182                  * completely hosed, but if the error condition
4183                  * is detected, it won't hurt to give it another
4184                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4185                  */
4186                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4187
4188                 if (hsfsts.hsf_status.flcerr)
4189                         /* Repeat for some time before giving up. */
4190                         continue;
4191                 if (!hsfsts.hsf_status.flcdone) {
4192                         e_dbg("Timeout error - flash cycle did not complete.\n");
4193                         break;
4194                 }
4195         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4196
4197         return ret_val;
4198 }
4199
4200 /**
4201  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4202  *  @hw: pointer to the HW structure
4203  *  @offset: The index of the byte to read.
4204  *  @data: The byte to write to the NVM.
4205  *
4206  *  Writes a single byte to the NVM using the flash access registers.
4207  **/
4208 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4209                                           u8 data)
4210 {
4211         u16 word = (u16)data;
4212
4213         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4214 }
4215
4216 /**
4217 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4218 *  @hw: pointer to the HW structure
4219 *  @offset: The offset of the word to write.
4220 *  @dword: The dword to write to the NVM.
4221 *
4222 *  Writes a single dword to the NVM using the flash access registers.
4223 *  Goes through a retry algorithm before giving up.
4224 **/
4225 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4226                                                  u32 offset, u32 dword)
4227 {
4228         s32 ret_val;
4229         u16 program_retries;
4230
4231         /* Must convert word offset into bytes. */
4232         offset <<= 1;
4233         ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4234
4235         if (!ret_val)
4236                 return ret_val;
4237         for (program_retries = 0; program_retries < 100; program_retries++) {
4238                 e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4239                 usleep_range(100, 200);
4240                 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4241                 if (!ret_val)
4242                         break;
4243         }
4244         if (program_retries == 100)
4245                 return -E1000_ERR_NVM;
4246
4247         return 0;
4248 }
4249
4250 /**
4251  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4252  *  @hw: pointer to the HW structure
4253  *  @offset: The offset of the byte to write.
4254  *  @byte: The byte to write to the NVM.
4255  *
4256  *  Writes a single byte to the NVM using the flash access registers.
4257  *  Goes through a retry algorithm before giving up.
4258  **/
4259 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4260                                                 u32 offset, u8 byte)
4261 {
4262         s32 ret_val;
4263         u16 program_retries;
4264
4265         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4266         if (!ret_val)
4267                 return ret_val;
4268
4269         for (program_retries = 0; program_retries < 100; program_retries++) {
4270                 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4271                 usleep_range(100, 200);
4272                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4273                 if (!ret_val)
4274                         break;
4275         }
4276         if (program_retries == 100)
4277                 return -E1000_ERR_NVM;
4278
4279         return 0;
4280 }
4281
4282 /**
4283  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4284  *  @hw: pointer to the HW structure
4285  *  @bank: 0 for first bank, 1 for second bank, etc.
4286  *
4287  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4288  *  bank N is 4096 * N + flash_reg_addr.
4289  **/
4290 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4291 {
4292         struct e1000_nvm_info *nvm = &hw->nvm;
4293         union ich8_hws_flash_status hsfsts;
4294         union ich8_hws_flash_ctrl hsflctl;
4295         u32 flash_linear_addr;
4296         /* bank size is in 16bit words - adjust to bytes */
4297         u32 flash_bank_size = nvm->flash_bank_size * 2;
4298         s32 ret_val;
4299         s32 count = 0;
4300         s32 j, iteration, sector_size;
4301
4302         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4303
4304         /* Determine HW Sector size: Read BERASE bits of hw flash status
4305          * register
4306          * 00: The Hw sector is 256 bytes, hence we need to erase 16
4307          *     consecutive sectors.  The start index for the nth Hw sector
4308          *     can be calculated as = bank * 4096 + n * 256
4309          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4310          *     The start index for the nth Hw sector can be calculated
4311          *     as = bank * 4096
4312          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4313          *     (ich9 only, otherwise error condition)
4314          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4315          */
4316         switch (hsfsts.hsf_status.berasesz) {
4317         case 0:
4318                 /* Hw sector size 256 */
4319                 sector_size = ICH_FLASH_SEG_SIZE_256;
4320                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4321                 break;
4322         case 1:
4323                 sector_size = ICH_FLASH_SEG_SIZE_4K;
4324                 iteration = 1;
4325                 break;
4326         case 2:
4327                 sector_size = ICH_FLASH_SEG_SIZE_8K;
4328                 iteration = 1;
4329                 break;
4330         case 3:
4331                 sector_size = ICH_FLASH_SEG_SIZE_64K;
4332                 iteration = 1;
4333                 break;
4334         default:
4335                 return -E1000_ERR_NVM;
4336         }
4337
4338         /* Start with the base address, then add the sector offset. */
4339         flash_linear_addr = hw->nvm.flash_base_addr;
4340         flash_linear_addr += (bank) ? flash_bank_size : 0;
4341
4342         for (j = 0; j < iteration; j++) {
4343                 do {
4344                         u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4345
4346                         /* Steps */
4347                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
4348                         if (ret_val)
4349                                 return ret_val;
4350
4351                         /* Write a value 11 (block Erase) in Flash
4352                          * Cycle field in hw flash control
4353                          */
4354                         if (hw->mac.type == e1000_pch_spt)
4355                                 hsflctl.regval =
4356                                     er32flash(ICH_FLASH_HSFSTS) >> 16;
4357                         else
4358                                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4359
4360                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4361                         if (hw->mac.type == e1000_pch_spt)
4362                                 ew32flash(ICH_FLASH_HSFSTS,
4363                                           hsflctl.regval << 16);
4364                         else
4365                                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4366
4367                         /* Write the last 24 bits of an index within the
4368                          * block into Flash Linear address field in Flash
4369                          * Address.
4370                          */
4371                         flash_linear_addr += (j * sector_size);
4372                         ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4373
4374                         ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4375                         if (!ret_val)
4376                                 break;
4377
4378                         /* Check if FCERR is set to 1.  If 1,
4379                          * clear it and try the whole sequence
4380                          * a few more times else Done
4381                          */
4382                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4383                         if (hsfsts.hsf_status.flcerr)
4384                                 /* repeat for some time before giving up */
4385                                 continue;
4386                         else if (!hsfsts.hsf_status.flcdone)
4387                                 return ret_val;
4388                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4389         }
4390
4391         return 0;
4392 }
4393
4394 /**
4395  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4396  *  @hw: pointer to the HW structure
4397  *  @data: Pointer to the LED settings
4398  *
4399  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4400  *  settings is all 0's or F's, set the LED default to a valid LED default
4401  *  setting.
4402  **/
4403 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4404 {
4405         s32 ret_val;
4406
4407         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4408         if (ret_val) {
4409                 e_dbg("NVM Read Error\n");
4410                 return ret_val;
4411         }
4412
4413         if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4414                 *data = ID_LED_DEFAULT_ICH8LAN;
4415
4416         return 0;
4417 }
4418
4419 /**
4420  *  e1000_id_led_init_pchlan - store LED configurations
4421  *  @hw: pointer to the HW structure
4422  *
4423  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4424  *  the PHY LED configuration register.
4425  *
4426  *  PCH also does not have an "always on" or "always off" mode which
4427  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4428  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4429  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4430  *  link based on logic in e1000_led_[on|off]_pchlan().
4431  **/
4432 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4433 {
4434         struct e1000_mac_info *mac = &hw->mac;
4435         s32 ret_val;
4436         const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4437         const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4438         u16 data, i, temp, shift;
4439
4440         /* Get default ID LED modes */
4441         ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4442         if (ret_val)
4443                 return ret_val;
4444
4445         mac->ledctl_default = er32(LEDCTL);
4446         mac->ledctl_mode1 = mac->ledctl_default;
4447         mac->ledctl_mode2 = mac->ledctl_default;
4448
4449         for (i = 0; i < 4; i++) {
4450                 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4451                 shift = (i * 5);
4452                 switch (temp) {
4453                 case ID_LED_ON1_DEF2:
4454                 case ID_LED_ON1_ON2:
4455                 case ID_LED_ON1_OFF2:
4456                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4457                         mac->ledctl_mode1 |= (ledctl_on << shift);
4458                         break;
4459                 case ID_LED_OFF1_DEF2:
4460                 case ID_LED_OFF1_ON2:
4461                 case ID_LED_OFF1_OFF2:
4462                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4463                         mac->ledctl_mode1 |= (ledctl_off << shift);
4464                         break;
4465                 default:
4466                         /* Do nothing */
4467                         break;
4468                 }
4469                 switch (temp) {
4470                 case ID_LED_DEF1_ON2:
4471                 case ID_LED_ON1_ON2:
4472                 case ID_LED_OFF1_ON2:
4473                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4474                         mac->ledctl_mode2 |= (ledctl_on << shift);
4475                         break;
4476                 case ID_LED_DEF1_OFF2:
4477                 case ID_LED_ON1_OFF2:
4478                 case ID_LED_OFF1_OFF2:
4479                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4480                         mac->ledctl_mode2 |= (ledctl_off << shift);
4481                         break;
4482                 default:
4483                         /* Do nothing */
4484                         break;
4485                 }
4486         }
4487
4488         return 0;
4489 }
4490
4491 /**
4492  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4493  *  @hw: pointer to the HW structure
4494  *
4495  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4496  *  register, so the the bus width is hard coded.
4497  **/
4498 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4499 {
4500         struct e1000_bus_info *bus = &hw->bus;
4501         s32 ret_val;
4502
4503         ret_val = e1000e_get_bus_info_pcie(hw);
4504
4505         /* ICH devices are "PCI Express"-ish.  They have
4506          * a configuration space, but do not contain
4507          * PCI Express Capability registers, so bus width
4508          * must be hardcoded.
4509          */
4510         if (bus->width == e1000_bus_width_unknown)
4511                 bus->width = e1000_bus_width_pcie_x1;
4512
4513         return ret_val;
4514 }
4515
4516 /**
4517  *  e1000_reset_hw_ich8lan - Reset the hardware
4518  *  @hw: pointer to the HW structure
4519  *
4520  *  Does a full reset of the hardware which includes a reset of the PHY and
4521  *  MAC.
4522  **/
4523 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4524 {
4525         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4526         u16 kum_cfg;
4527         u32 ctrl, reg;
4528         s32 ret_val;
4529
4530         /* Prevent the PCI-E bus from sticking if there is no TLP connection
4531          * on the last TLP read/write transaction when MAC is reset.
4532          */
4533         ret_val = e1000e_disable_pcie_master(hw);
4534         if (ret_val)
4535                 e_dbg("PCI-E Master disable polling has failed.\n");
4536
4537         e_dbg("Masking off all interrupts\n");
4538         ew32(IMC, 0xffffffff);
4539
4540         /* Disable the Transmit and Receive units.  Then delay to allow
4541          * any pending transactions to complete before we hit the MAC
4542          * with the global reset.
4543          */
4544         ew32(RCTL, 0);
4545         ew32(TCTL, E1000_TCTL_PSP);
4546         e1e_flush();
4547
4548         usleep_range(10000, 20000);
4549
4550         /* Workaround for ICH8 bit corruption issue in FIFO memory */
4551         if (hw->mac.type == e1000_ich8lan) {
4552                 /* Set Tx and Rx buffer allocation to 8k apiece. */
4553                 ew32(PBA, E1000_PBA_8K);
4554                 /* Set Packet Buffer Size to 16k. */
4555                 ew32(PBS, E1000_PBS_16K);
4556         }
4557
4558         if (hw->mac.type == e1000_pchlan) {
4559                 /* Save the NVM K1 bit setting */
4560                 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4561                 if (ret_val)
4562                         return ret_val;
4563
4564                 if (kum_cfg & E1000_NVM_K1_ENABLE)
4565                         dev_spec->nvm_k1_enabled = true;
4566                 else
4567                         dev_spec->nvm_k1_enabled = false;
4568         }
4569
4570         ctrl = er32(CTRL);
4571
4572         if (!hw->phy.ops.check_reset_block(hw)) {
4573                 /* Full-chip reset requires MAC and PHY reset at the same
4574                  * time to make sure the interface between MAC and the
4575                  * external PHY is reset.
4576                  */
4577                 ctrl |= E1000_CTRL_PHY_RST;
4578
4579                 /* Gate automatic PHY configuration by hardware on
4580                  * non-managed 82579
4581                  */
4582                 if ((hw->mac.type == e1000_pch2lan) &&
4583                     !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4584                         e1000_gate_hw_phy_config_ich8lan(hw, true);
4585         }
4586         ret_val = e1000_acquire_swflag_ich8lan(hw);
4587         e_dbg("Issuing a global reset to ich8lan\n");
4588         ew32(CTRL, (ctrl | E1000_CTRL_RST));
4589         /* cannot issue a flush here because it hangs the hardware */
4590         msleep(20);
4591
4592         /* Set Phy Config Counter to 50msec */
4593         if (hw->mac.type == e1000_pch2lan) {
4594                 reg = er32(FEXTNVM3);
4595                 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4596                 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4597                 ew32(FEXTNVM3, reg);
4598         }
4599
4600         if (!ret_val)
4601                 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4602
4603         if (ctrl & E1000_CTRL_PHY_RST) {
4604                 ret_val = hw->phy.ops.get_cfg_done(hw);
4605                 if (ret_val)
4606                         return ret_val;
4607
4608                 ret_val = e1000_post_phy_reset_ich8lan(hw);
4609                 if (ret_val)
4610                         return ret_val;
4611         }
4612
4613         /* For PCH, this write will make sure that any noise
4614          * will be detected as a CRC error and be dropped rather than show up
4615          * as a bad packet to the DMA engine.
4616          */
4617         if (hw->mac.type == e1000_pchlan)
4618                 ew32(CRC_OFFSET, 0x65656565);
4619
4620         ew32(IMC, 0xffffffff);
4621         er32(ICR);
4622
4623         reg = er32(KABGTXD);
4624         reg |= E1000_KABGTXD_BGSQLBIAS;
4625         ew32(KABGTXD, reg);
4626
4627         return 0;
4628 }
4629
4630 /**
4631  *  e1000_init_hw_ich8lan - Initialize the hardware
4632  *  @hw: pointer to the HW structure
4633  *
4634  *  Prepares the hardware for transmit and receive by doing the following:
4635  *   - initialize hardware bits
4636  *   - initialize LED identification
4637  *   - setup receive address registers
4638  *   - setup flow control
4639  *   - setup transmit descriptors
4640  *   - clear statistics
4641  **/
4642 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4643 {
4644         struct e1000_mac_info *mac = &hw->mac;
4645         u32 ctrl_ext, txdctl, snoop;
4646         s32 ret_val;
4647         u16 i;
4648
4649         e1000_initialize_hw_bits_ich8lan(hw);
4650
4651         /* Initialize identification LED */
4652         ret_val = mac->ops.id_led_init(hw);
4653         /* An error is not fatal and we should not stop init due to this */
4654         if (ret_val)
4655                 e_dbg("Error initializing identification LED\n");
4656
4657         /* Setup the receive address. */
4658         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4659
4660         /* Zero out the Multicast HASH table */
4661         e_dbg("Zeroing the MTA\n");
4662         for (i = 0; i < mac->mta_reg_count; i++)
4663                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4664
4665         /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4666          * the ME.  Disable wakeup by clearing the host wakeup bit.
4667          * Reset the phy after disabling host wakeup to reset the Rx buffer.
4668          */
4669         if (hw->phy.type == e1000_phy_82578) {
4670                 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4671                 i &= ~BM_WUC_HOST_WU_BIT;
4672                 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4673                 ret_val = e1000_phy_hw_reset_ich8lan(hw);
4674                 if (ret_val)
4675                         return ret_val;
4676         }
4677
4678         /* Setup link and flow control */
4679         ret_val = mac->ops.setup_link(hw);
4680
4681         /* Set the transmit descriptor write-back policy for both queues */
4682         txdctl = er32(TXDCTL(0));
4683         txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4684                   E1000_TXDCTL_FULL_TX_DESC_WB);
4685         txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4686                   E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4687         ew32(TXDCTL(0), txdctl);
4688         txdctl = er32(TXDCTL(1));
4689         txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4690                   E1000_TXDCTL_FULL_TX_DESC_WB);
4691         txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4692                   E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4693         ew32(TXDCTL(1), txdctl);
4694
4695         /* ICH8 has opposite polarity of no_snoop bits.
4696          * By default, we should use snoop behavior.
4697          */
4698         if (mac->type == e1000_ich8lan)
4699                 snoop = PCIE_ICH8_SNOOP_ALL;
4700         else
4701                 snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4702         e1000e_set_pcie_no_snoop(hw, snoop);
4703
4704         ctrl_ext = er32(CTRL_EXT);
4705         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4706         ew32(CTRL_EXT, ctrl_ext);
4707
4708         /* Clear all of the statistics registers (clear on read).  It is
4709          * important that we do this after we have tried to establish link
4710          * because the symbol error count will increment wildly if there
4711          * is no link.
4712          */
4713         e1000_clear_hw_cntrs_ich8lan(hw);
4714
4715         return ret_val;
4716 }
4717
4718 /**
4719  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4720  *  @hw: pointer to the HW structure
4721  *
4722  *  Sets/Clears required hardware bits necessary for correctly setting up the
4723  *  hardware for transmit and receive.
4724  **/
4725 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4726 {
4727         u32 reg;
4728
4729         /* Extended Device Control */
4730         reg = er32(CTRL_EXT);
4731         reg |= (1 << 22);
4732         /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4733         if (hw->mac.type >= e1000_pchlan)
4734                 reg |= E1000_CTRL_EXT_PHYPDEN;
4735         ew32(CTRL_EXT, reg);
4736
4737         /* Transmit Descriptor Control 0 */
4738         reg = er32(TXDCTL(0));
4739         reg |= (1 << 22);
4740         ew32(TXDCTL(0), reg);
4741
4742         /* Transmit Descriptor Control 1 */
4743         reg = er32(TXDCTL(1));
4744         reg |= (1 << 22);
4745         ew32(TXDCTL(1), reg);
4746
4747         /* Transmit Arbitration Control 0 */
4748         reg = er32(TARC(0));
4749         if (hw->mac.type == e1000_ich8lan)
4750                 reg |= (1 << 28) | (1 << 29);
4751         reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
4752         ew32(TARC(0), reg);
4753
4754         /* Transmit Arbitration Control 1 */
4755         reg = er32(TARC(1));
4756         if (er32(TCTL) & E1000_TCTL_MULR)
4757                 reg &= ~(1 << 28);
4758         else
4759                 reg |= (1 << 28);
4760         reg |= (1 << 24) | (1 << 26) | (1 << 30);
4761         ew32(TARC(1), reg);
4762
4763         /* Device Status */
4764         if (hw->mac.type == e1000_ich8lan) {
4765                 reg = er32(STATUS);
4766                 reg &= ~(1 << 31);
4767                 ew32(STATUS, reg);
4768         }
4769
4770         /* work-around descriptor data corruption issue during nfs v2 udp
4771          * traffic, just disable the nfs filtering capability
4772          */
4773         reg = er32(RFCTL);
4774         reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4775
4776         /* Disable IPv6 extension header parsing because some malformed
4777          * IPv6 headers can hang the Rx.
4778          */
4779         if (hw->mac.type == e1000_ich8lan)
4780                 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4781         ew32(RFCTL, reg);
4782
4783         /* Enable ECC on Lynxpoint */
4784         if ((hw->mac.type == e1000_pch_lpt) ||
4785             (hw->mac.type == e1000_pch_spt)) {
4786                 reg = er32(PBECCSTS);
4787                 reg |= E1000_PBECCSTS_ECC_ENABLE;
4788                 ew32(PBECCSTS, reg);
4789
4790                 reg = er32(CTRL);
4791                 reg |= E1000_CTRL_MEHE;
4792                 ew32(CTRL, reg);
4793         }
4794 }
4795
4796 /**
4797  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4798  *  @hw: pointer to the HW structure
4799  *
4800  *  Determines which flow control settings to use, then configures flow
4801  *  control.  Calls the appropriate media-specific link configuration
4802  *  function.  Assuming the adapter has a valid link partner, a valid link
4803  *  should be established.  Assumes the hardware has previously been reset
4804  *  and the transmitter and receiver are not enabled.
4805  **/
4806 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4807 {
4808         s32 ret_val;
4809
4810         if (hw->phy.ops.check_reset_block(hw))
4811                 return 0;
4812
4813         /* ICH parts do not have a word in the NVM to determine
4814          * the default flow control setting, so we explicitly
4815          * set it to full.
4816          */
4817         if (hw->fc.requested_mode == e1000_fc_default) {
4818                 /* Workaround h/w hang when Tx flow control enabled */
4819                 if (hw->mac.type == e1000_pchlan)
4820                         hw->fc.requested_mode = e1000_fc_rx_pause;
4821                 else
4822                         hw->fc.requested_mode = e1000_fc_full;
4823         }
4824
4825         /* Save off the requested flow control mode for use later.  Depending
4826          * on the link partner's capabilities, we may or may not use this mode.
4827          */
4828         hw->fc.current_mode = hw->fc.requested_mode;
4829
4830         e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4831
4832         /* Continue to configure the copper link. */
4833         ret_val = hw->mac.ops.setup_physical_interface(hw);
4834         if (ret_val)
4835                 return ret_val;
4836
4837         ew32(FCTTV, hw->fc.pause_time);
4838         if ((hw->phy.type == e1000_phy_82578) ||
4839             (hw->phy.type == e1000_phy_82579) ||
4840             (hw->phy.type == e1000_phy_i217) ||
4841             (hw->phy.type == e1000_phy_82577)) {
4842                 ew32(FCRTV_PCH, hw->fc.refresh_time);
4843
4844                 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4845                                    hw->fc.pause_time);
4846                 if (ret_val)
4847                         return ret_val;
4848         }
4849
4850         return e1000e_set_fc_watermarks(hw);
4851 }
4852
4853 /**
4854  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4855  *  @hw: pointer to the HW structure
4856  *
4857  *  Configures the kumeran interface to the PHY to wait the appropriate time
4858  *  when polling the PHY, then call the generic setup_copper_link to finish
4859  *  configuring the copper link.
4860  **/
4861 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4862 {
4863         u32 ctrl;
4864         s32 ret_val;
4865         u16 reg_data;
4866
4867         ctrl = er32(CTRL);
4868         ctrl |= E1000_CTRL_SLU;
4869         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4870         ew32(CTRL, ctrl);
4871
4872         /* Set the mac to wait the maximum time between each iteration
4873          * and increase the max iterations when polling the phy;
4874          * this fixes erroneous timeouts at 10Mbps.
4875          */
4876         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
4877         if (ret_val)
4878                 return ret_val;
4879         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4880                                        &reg_data);
4881         if (ret_val)
4882                 return ret_val;
4883         reg_data |= 0x3F;
4884         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4885                                         reg_data);
4886         if (ret_val)
4887                 return ret_val;
4888
4889         switch (hw->phy.type) {
4890         case e1000_phy_igp_3:
4891                 ret_val = e1000e_copper_link_setup_igp(hw);
4892                 if (ret_val)
4893                         return ret_val;
4894                 break;
4895         case e1000_phy_bm:
4896         case e1000_phy_82578:
4897                 ret_val = e1000e_copper_link_setup_m88(hw);
4898                 if (ret_val)
4899                         return ret_val;
4900                 break;
4901         case e1000_phy_82577:
4902         case e1000_phy_82579:
4903                 ret_val = e1000_copper_link_setup_82577(hw);
4904                 if (ret_val)
4905                         return ret_val;
4906                 break;
4907         case e1000_phy_ife:
4908                 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
4909                 if (ret_val)
4910                         return ret_val;
4911
4912                 reg_data &= ~IFE_PMC_AUTO_MDIX;
4913
4914                 switch (hw->phy.mdix) {
4915                 case 1:
4916                         reg_data &= ~IFE_PMC_FORCE_MDIX;
4917                         break;
4918                 case 2:
4919                         reg_data |= IFE_PMC_FORCE_MDIX;
4920                         break;
4921                 case 0:
4922                 default:
4923                         reg_data |= IFE_PMC_AUTO_MDIX;
4924                         break;
4925                 }
4926                 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
4927                 if (ret_val)
4928                         return ret_val;
4929                 break;
4930         default:
4931                 break;
4932         }
4933
4934         return e1000e_setup_copper_link(hw);
4935 }
4936
4937 /**
4938  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
4939  *  @hw: pointer to the HW structure
4940  *
4941  *  Calls the PHY specific link setup function and then calls the
4942  *  generic setup_copper_link to finish configuring the link for
4943  *  Lynxpoint PCH devices
4944  **/
4945 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
4946 {
4947         u32 ctrl;
4948         s32 ret_val;
4949
4950         ctrl = er32(CTRL);
4951         ctrl |= E1000_CTRL_SLU;
4952         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4953         ew32(CTRL, ctrl);
4954
4955         ret_val = e1000_copper_link_setup_82577(hw);
4956         if (ret_val)
4957                 return ret_val;
4958
4959         return e1000e_setup_copper_link(hw);
4960 }
4961
4962 /**
4963  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
4964  *  @hw: pointer to the HW structure
4965  *  @speed: pointer to store current link speed
4966  *  @duplex: pointer to store the current link duplex
4967  *
4968  *  Calls the generic get_speed_and_duplex to retrieve the current link
4969  *  information and then calls the Kumeran lock loss workaround for links at
4970  *  gigabit speeds.
4971  **/
4972 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
4973                                           u16 *duplex)
4974 {
4975         s32 ret_val;
4976
4977         ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
4978         if (ret_val)
4979                 return ret_val;
4980
4981         if ((hw->mac.type == e1000_ich8lan) &&
4982             (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
4983                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
4984         }
4985
4986         return ret_val;
4987 }
4988
4989 /**
4990  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
4991  *  @hw: pointer to the HW structure
4992  *
4993  *  Work-around for 82566 Kumeran PCS lock loss:
4994  *  On link status change (i.e. PCI reset, speed change) and link is up and
4995  *  speed is gigabit-
4996  *    0) if workaround is optionally disabled do nothing
4997  *    1) wait 1ms for Kumeran link to come up
4998  *    2) check Kumeran Diagnostic register PCS lock loss bit
4999  *    3) if not set the link is locked (all is good), otherwise...
5000  *    4) reset the PHY
5001  *    5) repeat up to 10 times
5002  *  Note: this is only called for IGP3 copper when speed is 1gb.
5003  **/
5004 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5005 {
5006         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5007         u32 phy_ctrl;
5008         s32 ret_val;
5009         u16 i, data;
5010         bool link;
5011
5012         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5013                 return 0;
5014
5015         /* Make sure link is up before proceeding.  If not just return.
5016          * Attempting this while link is negotiating fouled up link
5017          * stability
5018          */
5019         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5020         if (!link)
5021                 return 0;
5022
5023         for (i = 0; i < 10; i++) {
5024                 /* read once to clear */
5025                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5026                 if (ret_val)
5027                         return ret_val;
5028                 /* and again to get new status */
5029                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5030                 if (ret_val)
5031                         return ret_val;
5032
5033                 /* check for PCS lock */
5034                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5035                         return 0;
5036
5037                 /* Issue PHY reset */
5038                 e1000_phy_hw_reset(hw);
5039                 mdelay(5);
5040         }
5041         /* Disable GigE link negotiation */
5042         phy_ctrl = er32(PHY_CTRL);
5043         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5044                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5045         ew32(PHY_CTRL, phy_ctrl);
5046
5047         /* Call gig speed drop workaround on Gig disable before accessing
5048          * any PHY registers
5049          */
5050         e1000e_gig_downshift_workaround_ich8lan(hw);
5051
5052         /* unable to acquire PCS lock */
5053         return -E1000_ERR_PHY;
5054 }
5055
5056 /**
5057  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5058  *  @hw: pointer to the HW structure
5059  *  @state: boolean value used to set the current Kumeran workaround state
5060  *
5061  *  If ICH8, set the current Kumeran workaround state (enabled - true
5062  *  /disabled - false).
5063  **/
5064 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5065                                                   bool state)
5066 {
5067         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5068
5069         if (hw->mac.type != e1000_ich8lan) {
5070                 e_dbg("Workaround applies to ICH8 only.\n");
5071                 return;
5072         }
5073
5074         dev_spec->kmrn_lock_loss_workaround_enabled = state;
5075 }
5076
5077 /**
5078  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5079  *  @hw: pointer to the HW structure
5080  *
5081  *  Workaround for 82566 power-down on D3 entry:
5082  *    1) disable gigabit link
5083  *    2) write VR power-down enable
5084  *    3) read it back
5085  *  Continue if successful, else issue LCD reset and repeat
5086  **/
5087 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5088 {
5089         u32 reg;
5090         u16 data;
5091         u8 retry = 0;
5092
5093         if (hw->phy.type != e1000_phy_igp_3)
5094                 return;
5095
5096         /* Try the workaround twice (if needed) */
5097         do {
5098                 /* Disable link */
5099                 reg = er32(PHY_CTRL);
5100                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5101                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5102                 ew32(PHY_CTRL, reg);
5103
5104                 /* Call gig speed drop workaround on Gig disable before
5105                  * accessing any PHY registers
5106                  */
5107                 if (hw->mac.type == e1000_ich8lan)
5108                         e1000e_gig_downshift_workaround_ich8lan(hw);
5109
5110                 /* Write VR power-down enable */
5111                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5112                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5113                 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5114
5115                 /* Read it back and test */
5116                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5117                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5118                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5119                         break;
5120
5121                 /* Issue PHY reset and repeat at most one more time */
5122                 reg = er32(CTRL);
5123                 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5124                 retry++;
5125         } while (retry);
5126 }
5127
5128 /**
5129  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5130  *  @hw: pointer to the HW structure
5131  *
5132  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5133  *  LPLU, Gig disable, MDIC PHY reset):
5134  *    1) Set Kumeran Near-end loopback
5135  *    2) Clear Kumeran Near-end loopback
5136  *  Should only be called for ICH8[m] devices with any 1G Phy.
5137  **/
5138 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5139 {
5140         s32 ret_val;
5141         u16 reg_data;
5142
5143         if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5144                 return;
5145
5146         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5147                                        &reg_data);
5148         if (ret_val)
5149                 return;
5150         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5151         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5152                                         reg_data);
5153         if (ret_val)
5154                 return;
5155         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5156         e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5157 }
5158
5159 /**
5160  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5161  *  @hw: pointer to the HW structure
5162  *
5163  *  During S0 to Sx transition, it is possible the link remains at gig
5164  *  instead of negotiating to a lower speed.  Before going to Sx, set
5165  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5166  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5167  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5168  *  needs to be written.
5169  *  Parts that support (and are linked to a partner which support) EEE in
5170  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5171  *  than 10Mbps w/o EEE.
5172  **/
5173 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5174 {
5175         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5176         u32 phy_ctrl;
5177         s32 ret_val;
5178
5179         phy_ctrl = er32(PHY_CTRL);
5180         phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5181
5182         if (hw->phy.type == e1000_phy_i217) {
5183                 u16 phy_reg, device_id = hw->adapter->pdev->device;
5184
5185                 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5186                     (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5187                     (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5188                     (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5189                     (hw->mac.type == e1000_pch_spt)) {
5190                         u32 fextnvm6 = er32(FEXTNVM6);
5191
5192                         ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5193                 }
5194
5195                 ret_val = hw->phy.ops.acquire(hw);
5196                 if (ret_val)
5197                         goto out;
5198
5199                 if (!dev_spec->eee_disable) {
5200                         u16 eee_advert;
5201
5202                         ret_val =
5203                             e1000_read_emi_reg_locked(hw,
5204                                                       I217_EEE_ADVERTISEMENT,
5205                                                       &eee_advert);
5206                         if (ret_val)
5207                                 goto release;
5208
5209                         /* Disable LPLU if both link partners support 100BaseT
5210                          * EEE and 100Full is advertised on both ends of the
5211                          * link, and enable Auto Enable LPI since there will
5212                          * be no driver to enable LPI while in Sx.
5213                          */
5214                         if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5215                             (dev_spec->eee_lp_ability &
5216                              I82579_EEE_100_SUPPORTED) &&
5217                             (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5218                                 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5219                                               E1000_PHY_CTRL_NOND0A_LPLU);
5220
5221                                 /* Set Auto Enable LPI after link up */
5222                                 e1e_rphy_locked(hw,
5223                                                 I217_LPI_GPIO_CTRL, &phy_reg);
5224                                 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5225                                 e1e_wphy_locked(hw,
5226                                                 I217_LPI_GPIO_CTRL, phy_reg);
5227                         }
5228                 }
5229
5230                 /* For i217 Intel Rapid Start Technology support,
5231                  * when the system is going into Sx and no manageability engine
5232                  * is present, the driver must configure proxy to reset only on
5233                  * power good.  LPI (Low Power Idle) state must also reset only
5234                  * on power good, as well as the MTA (Multicast table array).
5235                  * The SMBus release must also be disabled on LCD reset.
5236                  */
5237                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5238                         /* Enable proxy to reset only on power good. */
5239                         e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5240                         phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5241                         e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5242
5243                         /* Set bit enable LPI (EEE) to reset only on
5244                          * power good.
5245                          */
5246                         e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5247                         phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5248                         e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5249
5250                         /* Disable the SMB release on LCD reset. */
5251                         e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5252                         phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5253                         e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5254                 }
5255
5256                 /* Enable MTA to reset for Intel Rapid Start Technology
5257                  * Support
5258                  */
5259                 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5260                 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5261                 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5262
5263 release:
5264                 hw->phy.ops.release(hw);
5265         }
5266 out:
5267         ew32(PHY_CTRL, phy_ctrl);
5268
5269         if (hw->mac.type == e1000_ich8lan)
5270                 e1000e_gig_downshift_workaround_ich8lan(hw);
5271
5272         if (hw->mac.type >= e1000_pchlan) {
5273                 e1000_oem_bits_config_ich8lan(hw, false);
5274
5275                 /* Reset PHY to activate OEM bits on 82577/8 */
5276                 if (hw->mac.type == e1000_pchlan)
5277                         e1000e_phy_hw_reset_generic(hw);
5278
5279                 ret_val = hw->phy.ops.acquire(hw);
5280                 if (ret_val)
5281                         return;
5282                 e1000_write_smbus_addr(hw);
5283                 hw->phy.ops.release(hw);
5284         }
5285 }
5286
5287 /**
5288  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5289  *  @hw: pointer to the HW structure
5290  *
5291  *  During Sx to S0 transitions on non-managed devices or managed devices
5292  *  on which PHY resets are not blocked, if the PHY registers cannot be
5293  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5294  *  the PHY.
5295  *  On i217, setup Intel Rapid Start Technology.
5296  **/
5297 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5298 {
5299         s32 ret_val;
5300
5301         if (hw->mac.type < e1000_pch2lan)
5302                 return;
5303
5304         ret_val = e1000_init_phy_workarounds_pchlan(hw);
5305         if (ret_val) {
5306                 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5307                 return;
5308         }
5309
5310         /* For i217 Intel Rapid Start Technology support when the system
5311          * is transitioning from Sx and no manageability engine is present
5312          * configure SMBus to restore on reset, disable proxy, and enable
5313          * the reset on MTA (Multicast table array).
5314          */
5315         if (hw->phy.type == e1000_phy_i217) {
5316                 u16 phy_reg;
5317
5318                 ret_val = hw->phy.ops.acquire(hw);
5319                 if (ret_val) {
5320                         e_dbg("Failed to setup iRST\n");
5321                         return;
5322                 }
5323
5324                 /* Clear Auto Enable LPI after link up */
5325                 e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5326                 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5327                 e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5328
5329                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5330                         /* Restore clear on SMB if no manageability engine
5331                          * is present
5332                          */
5333                         ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5334                         if (ret_val)
5335                                 goto release;
5336                         phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5337                         e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5338
5339                         /* Disable Proxy */
5340                         e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5341                 }
5342                 /* Enable reset on MTA */
5343                 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5344                 if (ret_val)
5345                         goto release;
5346                 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5347                 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5348 release:
5349                 if (ret_val)
5350                         e_dbg("Error %d in resume workarounds\n", ret_val);
5351                 hw->phy.ops.release(hw);
5352         }
5353 }
5354
5355 /**
5356  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5357  *  @hw: pointer to the HW structure
5358  *
5359  *  Return the LED back to the default configuration.
5360  **/
5361 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5362 {
5363         if (hw->phy.type == e1000_phy_ife)
5364                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5365
5366         ew32(LEDCTL, hw->mac.ledctl_default);
5367         return 0;
5368 }
5369
5370 /**
5371  *  e1000_led_on_ich8lan - Turn LEDs on
5372  *  @hw: pointer to the HW structure
5373  *
5374  *  Turn on the LEDs.
5375  **/
5376 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5377 {
5378         if (hw->phy.type == e1000_phy_ife)
5379                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5380                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5381
5382         ew32(LEDCTL, hw->mac.ledctl_mode2);
5383         return 0;
5384 }
5385
5386 /**
5387  *  e1000_led_off_ich8lan - Turn LEDs off
5388  *  @hw: pointer to the HW structure
5389  *
5390  *  Turn off the LEDs.
5391  **/
5392 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5393 {
5394         if (hw->phy.type == e1000_phy_ife)
5395                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5396                                 (IFE_PSCL_PROBE_MODE |
5397                                  IFE_PSCL_PROBE_LEDS_OFF));
5398
5399         ew32(LEDCTL, hw->mac.ledctl_mode1);
5400         return 0;
5401 }
5402
5403 /**
5404  *  e1000_setup_led_pchlan - Configures SW controllable LED
5405  *  @hw: pointer to the HW structure
5406  *
5407  *  This prepares the SW controllable LED for use.
5408  **/
5409 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5410 {
5411         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5412 }
5413
5414 /**
5415  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5416  *  @hw: pointer to the HW structure
5417  *
5418  *  Return the LED back to the default configuration.
5419  **/
5420 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5421 {
5422         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5423 }
5424
5425 /**
5426  *  e1000_led_on_pchlan - Turn LEDs on
5427  *  @hw: pointer to the HW structure
5428  *
5429  *  Turn on the LEDs.
5430  **/
5431 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5432 {
5433         u16 data = (u16)hw->mac.ledctl_mode2;
5434         u32 i, led;
5435
5436         /* If no link, then turn LED on by setting the invert bit
5437          * for each LED that's mode is "link_up" in ledctl_mode2.
5438          */
5439         if (!(er32(STATUS) & E1000_STATUS_LU)) {
5440                 for (i = 0; i < 3; i++) {
5441                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5442                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
5443                             E1000_LEDCTL_MODE_LINK_UP)
5444                                 continue;
5445                         if (led & E1000_PHY_LED0_IVRT)
5446                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5447                         else
5448                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5449                 }
5450         }
5451
5452         return e1e_wphy(hw, HV_LED_CONFIG, data);
5453 }
5454
5455 /**
5456  *  e1000_led_off_pchlan - Turn LEDs off
5457  *  @hw: pointer to the HW structure
5458  *
5459  *  Turn off the LEDs.
5460  **/
5461 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5462 {
5463         u16 data = (u16)hw->mac.ledctl_mode1;
5464         u32 i, led;
5465
5466         /* If no link, then turn LED off by clearing the invert bit
5467          * for each LED that's mode is "link_up" in ledctl_mode1.
5468          */
5469         if (!(er32(STATUS) & E1000_STATUS_LU)) {
5470                 for (i = 0; i < 3; i++) {
5471                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5472                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
5473                             E1000_LEDCTL_MODE_LINK_UP)
5474                                 continue;
5475                         if (led & E1000_PHY_LED0_IVRT)
5476                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5477                         else
5478                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5479                 }
5480         }
5481
5482         return e1e_wphy(hw, HV_LED_CONFIG, data);
5483 }
5484
5485 /**
5486  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5487  *  @hw: pointer to the HW structure
5488  *
5489  *  Read appropriate register for the config done bit for completion status
5490  *  and configure the PHY through s/w for EEPROM-less parts.
5491  *
5492  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5493  *  config done bit, so only an error is logged and continues.  If we were
5494  *  to return with error, EEPROM-less silicon would not be able to be reset
5495  *  or change link.
5496  **/
5497 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5498 {
5499         s32 ret_val = 0;
5500         u32 bank = 0;
5501         u32 status;
5502
5503         e1000e_get_cfg_done_generic(hw);
5504
5505         /* Wait for indication from h/w that it has completed basic config */
5506         if (hw->mac.type >= e1000_ich10lan) {
5507                 e1000_lan_init_done_ich8lan(hw);
5508         } else {
5509                 ret_val = e1000e_get_auto_rd_done(hw);
5510                 if (ret_val) {
5511                         /* When auto config read does not complete, do not
5512                          * return with an error. This can happen in situations
5513                          * where there is no eeprom and prevents getting link.
5514                          */
5515                         e_dbg("Auto Read Done did not complete\n");
5516                         ret_val = 0;
5517                 }
5518         }
5519
5520         /* Clear PHY Reset Asserted bit */
5521         status = er32(STATUS);
5522         if (status & E1000_STATUS_PHYRA)
5523                 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5524         else
5525                 e_dbg("PHY Reset Asserted not set - needs delay\n");
5526
5527         /* If EEPROM is not marked present, init the IGP 3 PHY manually */
5528         if (hw->mac.type <= e1000_ich9lan) {
5529                 if (!(er32(EECD) & E1000_EECD_PRES) &&
5530                     (hw->phy.type == e1000_phy_igp_3)) {
5531                         e1000e_phy_init_script_igp3(hw);
5532                 }
5533         } else {
5534                 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5535                         /* Maybe we should do a basic PHY config */
5536                         e_dbg("EEPROM not present\n");
5537                         ret_val = -E1000_ERR_CONFIG;
5538                 }
5539         }
5540
5541         return ret_val;
5542 }
5543
5544 /**
5545  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5546  * @hw: pointer to the HW structure
5547  *
5548  * In the case of a PHY power down to save power, or to turn off link during a
5549  * driver unload, or wake on lan is not enabled, remove the link.
5550  **/
5551 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5552 {
5553         /* If the management interface is not enabled, then power down */
5554         if (!(hw->mac.ops.check_mng_mode(hw) ||
5555               hw->phy.ops.check_reset_block(hw)))
5556                 e1000_power_down_phy_copper(hw);
5557 }
5558
5559 /**
5560  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5561  *  @hw: pointer to the HW structure
5562  *
5563  *  Clears hardware counters specific to the silicon family and calls
5564  *  clear_hw_cntrs_generic to clear all general purpose counters.
5565  **/
5566 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5567 {
5568         u16 phy_data;
5569         s32 ret_val;
5570
5571         e1000e_clear_hw_cntrs_base(hw);
5572
5573         er32(ALGNERRC);
5574         er32(RXERRC);
5575         er32(TNCRS);
5576         er32(CEXTERR);
5577         er32(TSCTC);
5578         er32(TSCTFC);
5579
5580         er32(MGTPRC);
5581         er32(MGTPDC);
5582         er32(MGTPTC);
5583
5584         er32(IAC);
5585         er32(ICRXOC);
5586
5587         /* Clear PHY statistics registers */
5588         if ((hw->phy.type == e1000_phy_82578) ||
5589             (hw->phy.type == e1000_phy_82579) ||
5590             (hw->phy.type == e1000_phy_i217) ||
5591             (hw->phy.type == e1000_phy_82577)) {
5592                 ret_val = hw->phy.ops.acquire(hw);
5593                 if (ret_val)
5594                         return;
5595                 ret_val = hw->phy.ops.set_page(hw,
5596                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
5597                 if (ret_val)
5598                         goto release;
5599                 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5600                 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5601                 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5602                 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5603                 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5604                 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5605                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5606                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5607                 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5608                 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5609                 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5610                 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5611                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5612                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5613 release:
5614                 hw->phy.ops.release(hw);
5615         }
5616 }
5617
5618 static const struct e1000_mac_operations ich8_mac_ops = {
5619         /* check_mng_mode dependent on mac type */
5620         .check_for_link         = e1000_check_for_copper_link_ich8lan,
5621         /* cleanup_led dependent on mac type */
5622         .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
5623         .get_bus_info           = e1000_get_bus_info_ich8lan,
5624         .set_lan_id             = e1000_set_lan_id_single_port,
5625         .get_link_up_info       = e1000_get_link_up_info_ich8lan,
5626         /* led_on dependent on mac type */
5627         /* led_off dependent on mac type */
5628         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
5629         .reset_hw               = e1000_reset_hw_ich8lan,
5630         .init_hw                = e1000_init_hw_ich8lan,
5631         .setup_link             = e1000_setup_link_ich8lan,
5632         .setup_physical_interface = e1000_setup_copper_link_ich8lan,
5633         /* id_led_init dependent on mac type */
5634         .config_collision_dist  = e1000e_config_collision_dist_generic,
5635         .rar_set                = e1000e_rar_set_generic,
5636         .rar_get_count          = e1000e_rar_get_count_generic,
5637 };
5638
5639 static const struct e1000_phy_operations ich8_phy_ops = {
5640         .acquire                = e1000_acquire_swflag_ich8lan,
5641         .check_reset_block      = e1000_check_reset_block_ich8lan,
5642         .commit                 = NULL,
5643         .get_cfg_done           = e1000_get_cfg_done_ich8lan,
5644         .get_cable_length       = e1000e_get_cable_length_igp_2,
5645         .read_reg               = e1000e_read_phy_reg_igp,
5646         .release                = e1000_release_swflag_ich8lan,
5647         .reset                  = e1000_phy_hw_reset_ich8lan,
5648         .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
5649         .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
5650         .write_reg              = e1000e_write_phy_reg_igp,
5651 };
5652
5653 static const struct e1000_nvm_operations ich8_nvm_ops = {
5654         .acquire                = e1000_acquire_nvm_ich8lan,
5655         .read                   = e1000_read_nvm_ich8lan,
5656         .release                = e1000_release_nvm_ich8lan,
5657         .reload                 = e1000e_reload_nvm_generic,
5658         .update                 = e1000_update_nvm_checksum_ich8lan,
5659         .valid_led_default      = e1000_valid_led_default_ich8lan,
5660         .validate               = e1000_validate_nvm_checksum_ich8lan,
5661         .write                  = e1000_write_nvm_ich8lan,
5662 };
5663
5664 static const struct e1000_nvm_operations spt_nvm_ops = {
5665         .acquire                = e1000_acquire_nvm_ich8lan,
5666         .release                = e1000_release_nvm_ich8lan,
5667         .read                   = e1000_read_nvm_spt,
5668         .update                 = e1000_update_nvm_checksum_spt,
5669         .reload                 = e1000e_reload_nvm_generic,
5670         .valid_led_default      = e1000_valid_led_default_ich8lan,
5671         .validate               = e1000_validate_nvm_checksum_ich8lan,
5672         .write                  = e1000_write_nvm_ich8lan,
5673 };
5674
5675 const struct e1000_info e1000_ich8_info = {
5676         .mac                    = e1000_ich8lan,
5677         .flags                  = FLAG_HAS_WOL
5678                                   | FLAG_IS_ICH
5679                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5680                                   | FLAG_HAS_AMT
5681                                   | FLAG_HAS_FLASH
5682                                   | FLAG_APME_IN_WUC,
5683         .pba                    = 8,
5684         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
5685         .get_variants           = e1000_get_variants_ich8lan,
5686         .mac_ops                = &ich8_mac_ops,
5687         .phy_ops                = &ich8_phy_ops,
5688         .nvm_ops                = &ich8_nvm_ops,
5689 };
5690
5691 const struct e1000_info e1000_ich9_info = {
5692         .mac                    = e1000_ich9lan,
5693         .flags                  = FLAG_HAS_JUMBO_FRAMES
5694                                   | FLAG_IS_ICH
5695                                   | FLAG_HAS_WOL
5696                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5697                                   | FLAG_HAS_AMT
5698                                   | FLAG_HAS_FLASH
5699                                   | FLAG_APME_IN_WUC,
5700         .pba                    = 18,
5701         .max_hw_frame_size      = DEFAULT_JUMBO,
5702         .get_variants           = e1000_get_variants_ich8lan,
5703         .mac_ops                = &ich8_mac_ops,
5704         .phy_ops                = &ich8_phy_ops,
5705         .nvm_ops                = &ich8_nvm_ops,
5706 };
5707
5708 const struct e1000_info e1000_ich10_info = {
5709         .mac                    = e1000_ich10lan,
5710         .flags                  = FLAG_HAS_JUMBO_FRAMES
5711                                   | FLAG_IS_ICH
5712                                   | FLAG_HAS_WOL
5713                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5714                                   | FLAG_HAS_AMT
5715                                   | FLAG_HAS_FLASH
5716                                   | FLAG_APME_IN_WUC,
5717         .pba                    = 18,
5718         .max_hw_frame_size      = DEFAULT_JUMBO,
5719         .get_variants           = e1000_get_variants_ich8lan,
5720         .mac_ops                = &ich8_mac_ops,
5721         .phy_ops                = &ich8_phy_ops,
5722         .nvm_ops                = &ich8_nvm_ops,
5723 };
5724
5725 const struct e1000_info e1000_pch_info = {
5726         .mac                    = e1000_pchlan,
5727         .flags                  = FLAG_IS_ICH
5728                                   | FLAG_HAS_WOL
5729                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5730                                   | FLAG_HAS_AMT
5731                                   | FLAG_HAS_FLASH
5732                                   | FLAG_HAS_JUMBO_FRAMES
5733                                   | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5734                                   | FLAG_APME_IN_WUC,
5735         .flags2                 = FLAG2_HAS_PHY_STATS,
5736         .pba                    = 26,
5737         .max_hw_frame_size      = 4096,
5738         .get_variants           = e1000_get_variants_ich8lan,
5739         .mac_ops                = &ich8_mac_ops,
5740         .phy_ops                = &ich8_phy_ops,
5741         .nvm_ops                = &ich8_nvm_ops,
5742 };
5743
5744 const struct e1000_info e1000_pch2_info = {
5745         .mac                    = e1000_pch2lan,
5746         .flags                  = FLAG_IS_ICH
5747                                   | FLAG_HAS_WOL
5748                                   | FLAG_HAS_HW_TIMESTAMP
5749                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5750                                   | FLAG_HAS_AMT
5751                                   | FLAG_HAS_FLASH
5752                                   | FLAG_HAS_JUMBO_FRAMES
5753                                   | FLAG_APME_IN_WUC,
5754         .flags2                 = FLAG2_HAS_PHY_STATS
5755                                   | FLAG2_HAS_EEE,
5756         .pba                    = 26,
5757         .max_hw_frame_size      = 9018,
5758         .get_variants           = e1000_get_variants_ich8lan,
5759         .mac_ops                = &ich8_mac_ops,
5760         .phy_ops                = &ich8_phy_ops,
5761         .nvm_ops                = &ich8_nvm_ops,
5762 };
5763
5764 const struct e1000_info e1000_pch_lpt_info = {
5765         .mac                    = e1000_pch_lpt,
5766         .flags                  = FLAG_IS_ICH
5767                                   | FLAG_HAS_WOL
5768                                   | FLAG_HAS_HW_TIMESTAMP
5769                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5770                                   | FLAG_HAS_AMT
5771                                   | FLAG_HAS_FLASH
5772                                   | FLAG_HAS_JUMBO_FRAMES
5773                                   | FLAG_APME_IN_WUC,
5774         .flags2                 = FLAG2_HAS_PHY_STATS
5775                                   | FLAG2_HAS_EEE,
5776         .pba                    = 26,
5777         .max_hw_frame_size      = 9018,
5778         .get_variants           = e1000_get_variants_ich8lan,
5779         .mac_ops                = &ich8_mac_ops,
5780         .phy_ops                = &ich8_phy_ops,
5781         .nvm_ops                = &ich8_nvm_ops,
5782 };
5783
5784 const struct e1000_info e1000_pch_spt_info = {
5785         .mac                    = e1000_pch_spt,
5786         .flags                  = FLAG_IS_ICH
5787                                   | FLAG_HAS_WOL
5788                                   | FLAG_HAS_HW_TIMESTAMP
5789                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5790                                   | FLAG_HAS_AMT
5791                                   | FLAG_HAS_FLASH
5792                                   | FLAG_HAS_JUMBO_FRAMES
5793                                   | FLAG_APME_IN_WUC,
5794         .flags2                 = FLAG2_HAS_PHY_STATS
5795                                   | FLAG2_HAS_EEE,
5796         .pba                    = 26,
5797         .max_hw_frame_size      = 9018,
5798         .get_variants           = e1000_get_variants_ich8lan,
5799         .mac_ops                = &ich8_mac_ops,
5800         .phy_ops                = &ich8_phy_ops,
5801         .nvm_ops                = &spt_nvm_ops,
5802 };