Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / net / ethernet / intel / e1000e / 80003es2lan.c
1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21
22 /* 80003ES2LAN Gigabit Ethernet Controller (Copper)
23  * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
24  */
25
26 #include "e1000.h"
27
28 /* A table for the GG82563 cable length where the range is defined
29  * with a lower bound at "index" and the upper bound at
30  * "index + 5".
31  */
32 static const u16 e1000_gg82563_cable_length_table[] = {
33         0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF
34 };
35
36 #define GG82563_CABLE_LENGTH_TABLE_SIZE \
37                 ARRAY_SIZE(e1000_gg82563_cable_length_table)
38
39 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
40 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
41 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
42 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
43 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
44 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
45 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
46 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
47                                            u16 *data);
48 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
49                                             u16 data);
50 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
51
52 /**
53  *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
54  *  @hw: pointer to the HW structure
55  **/
56 static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
57 {
58         struct e1000_phy_info *phy = &hw->phy;
59         s32 ret_val;
60
61         if (hw->phy.media_type != e1000_media_type_copper) {
62                 phy->type = e1000_phy_none;
63                 return 0;
64         } else {
65                 phy->ops.power_up = e1000_power_up_phy_copper;
66                 phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
67         }
68
69         phy->addr = 1;
70         phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
71         phy->reset_delay_us = 100;
72         phy->type = e1000_phy_gg82563;
73
74         /* This can only be done after all function pointers are setup. */
75         ret_val = e1000e_get_phy_id(hw);
76
77         /* Verify phy id */
78         if (phy->id != GG82563_E_PHY_ID)
79                 return -E1000_ERR_PHY;
80
81         return ret_val;
82 }
83
84 /**
85  *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
86  *  @hw: pointer to the HW structure
87  **/
88 static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
89 {
90         struct e1000_nvm_info *nvm = &hw->nvm;
91         u32 eecd = er32(EECD);
92         u16 size;
93
94         nvm->opcode_bits = 8;
95         nvm->delay_usec = 1;
96         switch (nvm->override) {
97         case e1000_nvm_override_spi_large:
98                 nvm->page_size = 32;
99                 nvm->address_bits = 16;
100                 break;
101         case e1000_nvm_override_spi_small:
102                 nvm->page_size = 8;
103                 nvm->address_bits = 8;
104                 break;
105         default:
106                 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
107                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
108                 break;
109         }
110
111         nvm->type = e1000_nvm_eeprom_spi;
112
113         size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
114                      E1000_EECD_SIZE_EX_SHIFT);
115
116         /* Added to a constant, "size" becomes the left-shift value
117          * for setting word_size.
118          */
119         size += NVM_WORD_SIZE_BASE_SHIFT;
120
121         /* EEPROM access above 16k is unsupported */
122         if (size > 14)
123                 size = 14;
124         nvm->word_size = 1 << size;
125
126         return 0;
127 }
128
129 /**
130  *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
131  *  @hw: pointer to the HW structure
132  **/
133 static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
134 {
135         struct e1000_mac_info *mac = &hw->mac;
136
137         /* Set media type and media-dependent function pointers */
138         switch (hw->adapter->pdev->device) {
139         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
140                 hw->phy.media_type = e1000_media_type_internal_serdes;
141                 mac->ops.check_for_link = e1000e_check_for_serdes_link;
142                 mac->ops.setup_physical_interface =
143                     e1000e_setup_fiber_serdes_link;
144                 break;
145         default:
146                 hw->phy.media_type = e1000_media_type_copper;
147                 mac->ops.check_for_link = e1000e_check_for_copper_link;
148                 mac->ops.setup_physical_interface =
149                     e1000_setup_copper_link_80003es2lan;
150                 break;
151         }
152
153         /* Set mta register count */
154         mac->mta_reg_count = 128;
155         /* Set rar entry count */
156         mac->rar_entry_count = E1000_RAR_ENTRIES;
157         /* FWSM register */
158         mac->has_fwsm = true;
159         /* ARC supported; valid only if manageability features are enabled. */
160         mac->arc_subsystem_valid = !!(er32(FWSM) & E1000_FWSM_MODE_MASK);
161         /* Adaptive IFS not supported */
162         mac->adaptive_ifs = false;
163
164         /* set lan id for port to determine which phy lock to use */
165         hw->mac.ops.set_lan_id(hw);
166
167         return 0;
168 }
169
170 static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
171 {
172         struct e1000_hw *hw = &adapter->hw;
173         s32 rc;
174
175         rc = e1000_init_mac_params_80003es2lan(hw);
176         if (rc)
177                 return rc;
178
179         rc = e1000_init_nvm_params_80003es2lan(hw);
180         if (rc)
181                 return rc;
182
183         rc = e1000_init_phy_params_80003es2lan(hw);
184         if (rc)
185                 return rc;
186
187         return 0;
188 }
189
190 /**
191  *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
192  *  @hw: pointer to the HW structure
193  *
194  *  A wrapper to acquire access rights to the correct PHY.
195  **/
196 static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
197 {
198         u16 mask;
199
200         mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
201         return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
202 }
203
204 /**
205  *  e1000_release_phy_80003es2lan - Release rights to access PHY
206  *  @hw: pointer to the HW structure
207  *
208  *  A wrapper to release access rights to the correct PHY.
209  **/
210 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
211 {
212         u16 mask;
213
214         mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
215         e1000_release_swfw_sync_80003es2lan(hw, mask);
216 }
217
218 /**
219  *  e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
220  *  @hw: pointer to the HW structure
221  *
222  *  Acquire the semaphore to access the Kumeran interface.
223  *
224  **/
225 static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
226 {
227         u16 mask;
228
229         mask = E1000_SWFW_CSR_SM;
230
231         return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
232 }
233
234 /**
235  *  e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
236  *  @hw: pointer to the HW structure
237  *
238  *  Release the semaphore used to access the Kumeran interface
239  **/
240 static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
241 {
242         u16 mask;
243
244         mask = E1000_SWFW_CSR_SM;
245
246         e1000_release_swfw_sync_80003es2lan(hw, mask);
247 }
248
249 /**
250  *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
251  *  @hw: pointer to the HW structure
252  *
253  *  Acquire the semaphore to access the EEPROM.
254  **/
255 static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
256 {
257         s32 ret_val;
258
259         ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
260         if (ret_val)
261                 return ret_val;
262
263         ret_val = e1000e_acquire_nvm(hw);
264
265         if (ret_val)
266                 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
267
268         return ret_val;
269 }
270
271 /**
272  *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
273  *  @hw: pointer to the HW structure
274  *
275  *  Release the semaphore used to access the EEPROM.
276  **/
277 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
278 {
279         e1000e_release_nvm(hw);
280         e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
281 }
282
283 /**
284  *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
285  *  @hw: pointer to the HW structure
286  *  @mask: specifies which semaphore to acquire
287  *
288  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
289  *  will also specify which port we're acquiring the lock for.
290  **/
291 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
292 {
293         u32 swfw_sync;
294         u32 swmask = mask;
295         u32 fwmask = mask << 16;
296         s32 i = 0;
297         s32 timeout = 50;
298
299         while (i < timeout) {
300                 if (e1000e_get_hw_semaphore(hw))
301                         return -E1000_ERR_SWFW_SYNC;
302
303                 swfw_sync = er32(SW_FW_SYNC);
304                 if (!(swfw_sync & (fwmask | swmask)))
305                         break;
306
307                 /* Firmware currently using resource (fwmask)
308                  * or other software thread using resource (swmask)
309                  */
310                 e1000e_put_hw_semaphore(hw);
311                 mdelay(5);
312                 i++;
313         }
314
315         if (i == timeout) {
316                 e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
317                 return -E1000_ERR_SWFW_SYNC;
318         }
319
320         swfw_sync |= swmask;
321         ew32(SW_FW_SYNC, swfw_sync);
322
323         e1000e_put_hw_semaphore(hw);
324
325         return 0;
326 }
327
328 /**
329  *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
330  *  @hw: pointer to the HW structure
331  *  @mask: specifies which semaphore to acquire
332  *
333  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
334  *  will also specify which port we're releasing the lock for.
335  **/
336 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
337 {
338         u32 swfw_sync;
339
340         while (e1000e_get_hw_semaphore(hw) != 0)
341                 ; /* Empty */
342
343         swfw_sync = er32(SW_FW_SYNC);
344         swfw_sync &= ~mask;
345         ew32(SW_FW_SYNC, swfw_sync);
346
347         e1000e_put_hw_semaphore(hw);
348 }
349
350 /**
351  *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
352  *  @hw: pointer to the HW structure
353  *  @offset: offset of the register to read
354  *  @data: pointer to the data returned from the operation
355  *
356  *  Read the GG82563 PHY register.
357  **/
358 static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
359                                                   u32 offset, u16 *data)
360 {
361         s32 ret_val;
362         u32 page_select;
363         u16 temp;
364
365         ret_val = e1000_acquire_phy_80003es2lan(hw);
366         if (ret_val)
367                 return ret_val;
368
369         /* Select Configuration Page */
370         if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
371                 page_select = GG82563_PHY_PAGE_SELECT;
372         } else {
373                 /* Use Alternative Page Select register to access
374                  * registers 30 and 31
375                  */
376                 page_select = GG82563_PHY_PAGE_SELECT_ALT;
377         }
378
379         temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
380         ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
381         if (ret_val) {
382                 e1000_release_phy_80003es2lan(hw);
383                 return ret_val;
384         }
385
386         if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
387                 /* The "ready" bit in the MDIC register may be incorrectly set
388                  * before the device has completed the "Page Select" MDI
389                  * transaction.  So we wait 200us after each MDI command...
390                  */
391                 usleep_range(200, 400);
392
393                 /* ...and verify the command was successful. */
394                 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
395
396                 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
397                         e1000_release_phy_80003es2lan(hw);
398                         return -E1000_ERR_PHY;
399                 }
400
401                 usleep_range(200, 400);
402
403                 ret_val = e1000e_read_phy_reg_mdic(hw,
404                                                    MAX_PHY_REG_ADDRESS & offset,
405                                                    data);
406
407                 usleep_range(200, 400);
408         } else {
409                 ret_val = e1000e_read_phy_reg_mdic(hw,
410                                                    MAX_PHY_REG_ADDRESS & offset,
411                                                    data);
412         }
413
414         e1000_release_phy_80003es2lan(hw);
415
416         return ret_val;
417 }
418
419 /**
420  *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
421  *  @hw: pointer to the HW structure
422  *  @offset: offset of the register to read
423  *  @data: value to write to the register
424  *
425  *  Write to the GG82563 PHY register.
426  **/
427 static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
428                                                    u32 offset, u16 data)
429 {
430         s32 ret_val;
431         u32 page_select;
432         u16 temp;
433
434         ret_val = e1000_acquire_phy_80003es2lan(hw);
435         if (ret_val)
436                 return ret_val;
437
438         /* Select Configuration Page */
439         if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
440                 page_select = GG82563_PHY_PAGE_SELECT;
441         } else {
442                 /* Use Alternative Page Select register to access
443                  * registers 30 and 31
444                  */
445                 page_select = GG82563_PHY_PAGE_SELECT_ALT;
446         }
447
448         temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
449         ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
450         if (ret_val) {
451                 e1000_release_phy_80003es2lan(hw);
452                 return ret_val;
453         }
454
455         if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
456                 /* The "ready" bit in the MDIC register may be incorrectly set
457                  * before the device has completed the "Page Select" MDI
458                  * transaction.  So we wait 200us after each MDI command...
459                  */
460                 usleep_range(200, 400);
461
462                 /* ...and verify the command was successful. */
463                 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
464
465                 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
466                         e1000_release_phy_80003es2lan(hw);
467                         return -E1000_ERR_PHY;
468                 }
469
470                 usleep_range(200, 400);
471
472                 ret_val = e1000e_write_phy_reg_mdic(hw,
473                                                     MAX_PHY_REG_ADDRESS &
474                                                     offset, data);
475
476                 usleep_range(200, 400);
477         } else {
478                 ret_val = e1000e_write_phy_reg_mdic(hw,
479                                                     MAX_PHY_REG_ADDRESS &
480                                                     offset, data);
481         }
482
483         e1000_release_phy_80003es2lan(hw);
484
485         return ret_val;
486 }
487
488 /**
489  *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
490  *  @hw: pointer to the HW structure
491  *  @offset: offset of the register to read
492  *  @words: number of words to write
493  *  @data: buffer of data to write to the NVM
494  *
495  *  Write "words" of data to the ESB2 NVM.
496  **/
497 static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
498                                        u16 words, u16 *data)
499 {
500         return e1000e_write_nvm_spi(hw, offset, words, data);
501 }
502
503 /**
504  *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
505  *  @hw: pointer to the HW structure
506  *
507  *  Wait a specific amount of time for manageability processes to complete.
508  *  This is a function pointer entry point called by the phy module.
509  **/
510 static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
511 {
512         s32 timeout = PHY_CFG_TIMEOUT;
513         u32 mask = E1000_NVM_CFG_DONE_PORT_0;
514
515         if (hw->bus.func == 1)
516                 mask = E1000_NVM_CFG_DONE_PORT_1;
517
518         while (timeout) {
519                 if (er32(EEMNGCTL) & mask)
520                         break;
521                 usleep_range(1000, 2000);
522                 timeout--;
523         }
524         if (!timeout) {
525                 e_dbg("MNG configuration cycle has not completed.\n");
526                 return -E1000_ERR_RESET;
527         }
528
529         return 0;
530 }
531
532 /**
533  *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
534  *  @hw: pointer to the HW structure
535  *
536  *  Force the speed and duplex settings onto the PHY.  This is a
537  *  function pointer entry point called by the phy module.
538  **/
539 static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
540 {
541         s32 ret_val;
542         u16 phy_data;
543         bool link;
544
545         /* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
546          * forced whenever speed and duplex are forced.
547          */
548         ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
549         if (ret_val)
550                 return ret_val;
551
552         phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
553         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
554         if (ret_val)
555                 return ret_val;
556
557         e_dbg("GG82563 PSCR: %X\n", phy_data);
558
559         ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
560         if (ret_val)
561                 return ret_val;
562
563         e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
564
565         /* Reset the phy to commit changes. */
566         phy_data |= BMCR_RESET;
567
568         ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
569         if (ret_val)
570                 return ret_val;
571
572         udelay(1);
573
574         if (hw->phy.autoneg_wait_to_complete) {
575                 e_dbg("Waiting for forced speed/duplex link on GG82563 phy.\n");
576
577                 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
578                                                       100000, &link);
579                 if (ret_val)
580                         return ret_val;
581
582                 if (!link) {
583                         /* We didn't get link.
584                          * Reset the DSP and cross our fingers.
585                          */
586                         ret_val = e1000e_phy_reset_dsp(hw);
587                         if (ret_val)
588                                 return ret_val;
589                 }
590
591                 /* Try once more */
592                 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
593                                                       100000, &link);
594                 if (ret_val)
595                         return ret_val;
596         }
597
598         ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
599         if (ret_val)
600                 return ret_val;
601
602         /* Resetting the phy means we need to verify the TX_CLK corresponds
603          * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
604          */
605         phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
606         if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
607                 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
608         else
609                 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
610
611         /* In addition, we must re-enable CRS on Tx for both half and full
612          * duplex.
613          */
614         phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
615         ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
616
617         return ret_val;
618 }
619
620 /**
621  *  e1000_get_cable_length_80003es2lan - Set approximate cable length
622  *  @hw: pointer to the HW structure
623  *
624  *  Find the approximate cable length as measured by the GG82563 PHY.
625  *  This is a function pointer entry point called by the phy module.
626  **/
627 static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
628 {
629         struct e1000_phy_info *phy = &hw->phy;
630         s32 ret_val;
631         u16 phy_data, index;
632
633         ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
634         if (ret_val)
635                 return ret_val;
636
637         index = phy_data & GG82563_DSPD_CABLE_LENGTH;
638
639         if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5)
640                 return -E1000_ERR_PHY;
641
642         phy->min_cable_length = e1000_gg82563_cable_length_table[index];
643         phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
644
645         phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
646
647         return 0;
648 }
649
650 /**
651  *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
652  *  @hw: pointer to the HW structure
653  *  @speed: pointer to speed buffer
654  *  @duplex: pointer to duplex buffer
655  *
656  *  Retrieve the current speed and duplex configuration.
657  **/
658 static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
659                                               u16 *duplex)
660 {
661         s32 ret_val;
662
663         if (hw->phy.media_type == e1000_media_type_copper) {
664                 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
665                 hw->phy.ops.cfg_on_link_up(hw);
666         } else {
667                 ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
668                                                                    speed,
669                                                                    duplex);
670         }
671
672         return ret_val;
673 }
674
675 /**
676  *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
677  *  @hw: pointer to the HW structure
678  *
679  *  Perform a global reset to the ESB2 controller.
680  **/
681 static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
682 {
683         u32 ctrl;
684         s32 ret_val;
685         u16 kum_reg_data;
686
687         /* Prevent the PCI-E bus from sticking if there is no TLP connection
688          * on the last TLP read/write transaction when MAC is reset.
689          */
690         ret_val = e1000e_disable_pcie_master(hw);
691         if (ret_val)
692                 e_dbg("PCI-E Master disable polling has failed.\n");
693
694         e_dbg("Masking off all interrupts\n");
695         ew32(IMC, 0xffffffff);
696
697         ew32(RCTL, 0);
698         ew32(TCTL, E1000_TCTL_PSP);
699         e1e_flush();
700
701         usleep_range(10000, 20000);
702
703         ctrl = er32(CTRL);
704
705         ret_val = e1000_acquire_phy_80003es2lan(hw);
706         if (ret_val)
707                 return ret_val;
708
709         e_dbg("Issuing a global reset to MAC\n");
710         ew32(CTRL, ctrl | E1000_CTRL_RST);
711         e1000_release_phy_80003es2lan(hw);
712
713         /* Disable IBIST slave mode (far-end loopback) */
714         ret_val =
715             e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
716                                             &kum_reg_data);
717         if (ret_val)
718                 return ret_val;
719         kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
720         e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
721                                          kum_reg_data);
722
723         ret_val = e1000e_get_auto_rd_done(hw);
724         if (ret_val)
725                 /* We don't want to continue accessing MAC registers. */
726                 return ret_val;
727
728         /* Clear any pending interrupt events. */
729         ew32(IMC, 0xffffffff);
730         er32(ICR);
731
732         return e1000_check_alt_mac_addr_generic(hw);
733 }
734
735 /**
736  *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
737  *  @hw: pointer to the HW structure
738  *
739  *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
740  **/
741 static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
742 {
743         struct e1000_mac_info *mac = &hw->mac;
744         u32 reg_data;
745         s32 ret_val;
746         u16 kum_reg_data;
747         u16 i;
748
749         e1000_initialize_hw_bits_80003es2lan(hw);
750
751         /* Initialize identification LED */
752         ret_val = mac->ops.id_led_init(hw);
753         /* An error is not fatal and we should not stop init due to this */
754         if (ret_val)
755                 e_dbg("Error initializing identification LED\n");
756
757         /* Disabling VLAN filtering */
758         e_dbg("Initializing the IEEE VLAN\n");
759         mac->ops.clear_vfta(hw);
760
761         /* Setup the receive address. */
762         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
763
764         /* Zero out the Multicast HASH table */
765         e_dbg("Zeroing the MTA\n");
766         for (i = 0; i < mac->mta_reg_count; i++)
767                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
768
769         /* Setup link and flow control */
770         ret_val = mac->ops.setup_link(hw);
771         if (ret_val)
772                 return ret_val;
773
774         /* Disable IBIST slave mode (far-end loopback) */
775         e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
776                                         &kum_reg_data);
777         kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
778         e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
779                                          kum_reg_data);
780
781         /* Set the transmit descriptor write-back policy */
782         reg_data = er32(TXDCTL(0));
783         reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
784                     E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
785         ew32(TXDCTL(0), reg_data);
786
787         /* ...for both queues. */
788         reg_data = er32(TXDCTL(1));
789         reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
790                     E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
791         ew32(TXDCTL(1), reg_data);
792
793         /* Enable retransmit on late collisions */
794         reg_data = er32(TCTL);
795         reg_data |= E1000_TCTL_RTLC;
796         ew32(TCTL, reg_data);
797
798         /* Configure Gigabit Carry Extend Padding */
799         reg_data = er32(TCTL_EXT);
800         reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
801         reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
802         ew32(TCTL_EXT, reg_data);
803
804         /* Configure Transmit Inter-Packet Gap */
805         reg_data = er32(TIPG);
806         reg_data &= ~E1000_TIPG_IPGT_MASK;
807         reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
808         ew32(TIPG, reg_data);
809
810         reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
811         reg_data &= ~0x00100000;
812         E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
813
814         /* default to true to enable the MDIC W/A */
815         hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
816
817         ret_val =
818             e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >>
819                                             E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i);
820         if (!ret_val) {
821                 if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
822                     E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
823                         hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
824         }
825
826         /* Clear all of the statistics registers (clear on read).  It is
827          * important that we do this after we have tried to establish link
828          * because the symbol error count will increment wildly if there
829          * is no link.
830          */
831         e1000_clear_hw_cntrs_80003es2lan(hw);
832
833         return ret_val;
834 }
835
836 /**
837  *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
838  *  @hw: pointer to the HW structure
839  *
840  *  Initializes required hardware-dependent bits needed for normal operation.
841  **/
842 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
843 {
844         u32 reg;
845
846         /* Transmit Descriptor Control 0 */
847         reg = er32(TXDCTL(0));
848         reg |= (1 << 22);
849         ew32(TXDCTL(0), reg);
850
851         /* Transmit Descriptor Control 1 */
852         reg = er32(TXDCTL(1));
853         reg |= (1 << 22);
854         ew32(TXDCTL(1), reg);
855
856         /* Transmit Arbitration Control 0 */
857         reg = er32(TARC(0));
858         reg &= ~(0xF << 27);    /* 30:27 */
859         if (hw->phy.media_type != e1000_media_type_copper)
860                 reg &= ~(1 << 20);
861         ew32(TARC(0), reg);
862
863         /* Transmit Arbitration Control 1 */
864         reg = er32(TARC(1));
865         if (er32(TCTL) & E1000_TCTL_MULR)
866                 reg &= ~(1 << 28);
867         else
868                 reg |= (1 << 28);
869         ew32(TARC(1), reg);
870
871         /* Disable IPv6 extension header parsing because some malformed
872          * IPv6 headers can hang the Rx.
873          */
874         reg = er32(RFCTL);
875         reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
876         ew32(RFCTL, reg);
877 }
878
879 /**
880  *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
881  *  @hw: pointer to the HW structure
882  *
883  *  Setup some GG82563 PHY registers for obtaining link
884  **/
885 static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
886 {
887         struct e1000_phy_info *phy = &hw->phy;
888         s32 ret_val;
889         u32 reg;
890         u16 data;
891
892         ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
893         if (ret_val)
894                 return ret_val;
895
896         data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
897         /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
898         data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
899
900         ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
901         if (ret_val)
902                 return ret_val;
903
904         /* Options:
905          *   MDI/MDI-X = 0 (default)
906          *   0 - Auto for all speeds
907          *   1 - MDI mode
908          *   2 - MDI-X mode
909          *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
910          */
911         ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
912         if (ret_val)
913                 return ret_val;
914
915         data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
916
917         switch (phy->mdix) {
918         case 1:
919                 data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
920                 break;
921         case 2:
922                 data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
923                 break;
924         case 0:
925         default:
926                 data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
927                 break;
928         }
929
930         /* Options:
931          *   disable_polarity_correction = 0 (default)
932          *       Automatic Correction for Reversed Cable Polarity
933          *   0 - Disabled
934          *   1 - Enabled
935          */
936         data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
937         if (phy->disable_polarity_correction)
938                 data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
939
940         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
941         if (ret_val)
942                 return ret_val;
943
944         /* SW Reset the PHY so all changes take effect */
945         ret_val = hw->phy.ops.commit(hw);
946         if (ret_val) {
947                 e_dbg("Error Resetting the PHY\n");
948                 return ret_val;
949         }
950
951         /* Bypass Rx and Tx FIFO's */
952         reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL;
953         data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
954                 E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
955         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
956         if (ret_val)
957                 return ret_val;
958
959         reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE;
960         ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data);
961         if (ret_val)
962                 return ret_val;
963         data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
964         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
965         if (ret_val)
966                 return ret_val;
967
968         ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
969         if (ret_val)
970                 return ret_val;
971
972         data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
973         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
974         if (ret_val)
975                 return ret_val;
976
977         reg = er32(CTRL_EXT);
978         reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
979         ew32(CTRL_EXT, reg);
980
981         ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
982         if (ret_val)
983                 return ret_val;
984
985         /* Do not init these registers when the HW is in IAMT mode, since the
986          * firmware will have already initialized them.  We only initialize
987          * them if the HW is not in IAMT mode.
988          */
989         if (!hw->mac.ops.check_mng_mode(hw)) {
990                 /* Enable Electrical Idle on the PHY */
991                 data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
992                 ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
993                 if (ret_val)
994                         return ret_val;
995
996                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
997                 if (ret_val)
998                         return ret_val;
999
1000                 data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1001                 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
1002                 if (ret_val)
1003                         return ret_val;
1004         }
1005
1006         /* Workaround: Disable padding in Kumeran interface in the MAC
1007          * and in the PHY to avoid CRC errors.
1008          */
1009         ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1010         if (ret_val)
1011                 return ret_val;
1012
1013         data |= GG82563_ICR_DIS_PADDING;
1014         ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1015         if (ret_val)
1016                 return ret_val;
1017
1018         return 0;
1019 }
1020
1021 /**
1022  *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1023  *  @hw: pointer to the HW structure
1024  *
1025  *  Essentially a wrapper for setting up all things "copper" related.
1026  *  This is a function pointer entry point called by the mac module.
1027  **/
1028 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1029 {
1030         u32 ctrl;
1031         s32 ret_val;
1032         u16 reg_data;
1033
1034         ctrl = er32(CTRL);
1035         ctrl |= E1000_CTRL_SLU;
1036         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1037         ew32(CTRL, ctrl);
1038
1039         /* Set the mac to wait the maximum time between each
1040          * iteration and increase the max iterations when
1041          * polling the phy; this fixes erroneous timeouts at 10Mbps.
1042          */
1043         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1044                                                    0xFFFF);
1045         if (ret_val)
1046                 return ret_val;
1047         ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1048                                                   &reg_data);
1049         if (ret_val)
1050                 return ret_val;
1051         reg_data |= 0x3F;
1052         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1053                                                    reg_data);
1054         if (ret_val)
1055                 return ret_val;
1056         ret_val =
1057             e1000_read_kmrn_reg_80003es2lan(hw,
1058                                             E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1059                                             &reg_data);
1060         if (ret_val)
1061                 return ret_val;
1062         reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1063         ret_val =
1064             e1000_write_kmrn_reg_80003es2lan(hw,
1065                                              E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1066                                              reg_data);
1067         if (ret_val)
1068                 return ret_val;
1069
1070         ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1071         if (ret_val)
1072                 return ret_val;
1073
1074         return e1000e_setup_copper_link(hw);
1075 }
1076
1077 /**
1078  *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1079  *  @hw: pointer to the HW structure
1080  *  @duplex: current duplex setting
1081  *
1082  *  Configure the KMRN interface by applying last minute quirks for
1083  *  10/100 operation.
1084  **/
1085 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1086 {
1087         s32 ret_val = 0;
1088         u16 speed;
1089         u16 duplex;
1090
1091         if (hw->phy.media_type == e1000_media_type_copper) {
1092                 ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1093                                                              &duplex);
1094                 if (ret_val)
1095                         return ret_val;
1096
1097                 if (speed == SPEED_1000)
1098                         ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1099                 else
1100                         ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1101         }
1102
1103         return ret_val;
1104 }
1105
1106 /**
1107  *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1108  *  @hw: pointer to the HW structure
1109  *  @duplex: current duplex setting
1110  *
1111  *  Configure the KMRN interface by applying last minute quirks for
1112  *  10/100 operation.
1113  **/
1114 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1115 {
1116         s32 ret_val;
1117         u32 tipg;
1118         u32 i = 0;
1119         u16 reg_data, reg_data2;
1120
1121         reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1122         ret_val =
1123             e1000_write_kmrn_reg_80003es2lan(hw,
1124                                              E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1125                                              reg_data);
1126         if (ret_val)
1127                 return ret_val;
1128
1129         /* Configure Transmit Inter-Packet Gap */
1130         tipg = er32(TIPG);
1131         tipg &= ~E1000_TIPG_IPGT_MASK;
1132         tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1133         ew32(TIPG, tipg);
1134
1135         do {
1136                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1137                 if (ret_val)
1138                         return ret_val;
1139
1140                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1141                 if (ret_val)
1142                         return ret_val;
1143                 i++;
1144         } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1145
1146         if (duplex == HALF_DUPLEX)
1147                 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1148         else
1149                 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1150
1151         return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1152 }
1153
1154 /**
1155  *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1156  *  @hw: pointer to the HW structure
1157  *
1158  *  Configure the KMRN interface by applying last minute quirks for
1159  *  gigabit operation.
1160  **/
1161 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1162 {
1163         s32 ret_val;
1164         u16 reg_data, reg_data2;
1165         u32 tipg;
1166         u32 i = 0;
1167
1168         reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1169         ret_val =
1170             e1000_write_kmrn_reg_80003es2lan(hw,
1171                                              E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1172                                              reg_data);
1173         if (ret_val)
1174                 return ret_val;
1175
1176         /* Configure Transmit Inter-Packet Gap */
1177         tipg = er32(TIPG);
1178         tipg &= ~E1000_TIPG_IPGT_MASK;
1179         tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1180         ew32(TIPG, tipg);
1181
1182         do {
1183                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1184                 if (ret_val)
1185                         return ret_val;
1186
1187                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1188                 if (ret_val)
1189                         return ret_val;
1190                 i++;
1191         } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1192
1193         reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1194
1195         return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1196 }
1197
1198 /**
1199  *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1200  *  @hw: pointer to the HW structure
1201  *  @offset: register offset to be read
1202  *  @data: pointer to the read data
1203  *
1204  *  Acquire semaphore, then read the PHY register at offset
1205  *  using the kumeran interface.  The information retrieved is stored in data.
1206  *  Release the semaphore before exiting.
1207  **/
1208 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1209                                            u16 *data)
1210 {
1211         u32 kmrnctrlsta;
1212         s32 ret_val;
1213
1214         ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1215         if (ret_val)
1216                 return ret_val;
1217
1218         kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1219                        E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1220         ew32(KMRNCTRLSTA, kmrnctrlsta);
1221         e1e_flush();
1222
1223         udelay(2);
1224
1225         kmrnctrlsta = er32(KMRNCTRLSTA);
1226         *data = (u16)kmrnctrlsta;
1227
1228         e1000_release_mac_csr_80003es2lan(hw);
1229
1230         return ret_val;
1231 }
1232
1233 /**
1234  *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1235  *  @hw: pointer to the HW structure
1236  *  @offset: register offset to write to
1237  *  @data: data to write at register offset
1238  *
1239  *  Acquire semaphore, then write the data to PHY register
1240  *  at the offset using the kumeran interface.  Release semaphore
1241  *  before exiting.
1242  **/
1243 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1244                                             u16 data)
1245 {
1246         u32 kmrnctrlsta;
1247         s32 ret_val;
1248
1249         ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1250         if (ret_val)
1251                 return ret_val;
1252
1253         kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1254                        E1000_KMRNCTRLSTA_OFFSET) | data;
1255         ew32(KMRNCTRLSTA, kmrnctrlsta);
1256         e1e_flush();
1257
1258         udelay(2);
1259
1260         e1000_release_mac_csr_80003es2lan(hw);
1261
1262         return ret_val;
1263 }
1264
1265 /**
1266  *  e1000_read_mac_addr_80003es2lan - Read device MAC address
1267  *  @hw: pointer to the HW structure
1268  **/
1269 static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
1270 {
1271         s32 ret_val;
1272
1273         /* If there's an alternate MAC address place it in RAR0
1274          * so that it will override the Si installed default perm
1275          * address.
1276          */
1277         ret_val = e1000_check_alt_mac_addr_generic(hw);
1278         if (ret_val)
1279                 return ret_val;
1280
1281         return e1000_read_mac_addr_generic(hw);
1282 }
1283
1284 /**
1285  * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
1286  * @hw: pointer to the HW structure
1287  *
1288  * In the case of a PHY power down to save power, or to turn off link during a
1289  * driver unload, or wake on lan is not enabled, remove the link.
1290  **/
1291 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
1292 {
1293         /* If the management interface is not enabled, then power down */
1294         if (!(hw->mac.ops.check_mng_mode(hw) ||
1295               hw->phy.ops.check_reset_block(hw)))
1296                 e1000_power_down_phy_copper(hw);
1297 }
1298
1299 /**
1300  *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1301  *  @hw: pointer to the HW structure
1302  *
1303  *  Clears the hardware counters by reading the counter registers.
1304  **/
1305 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1306 {
1307         e1000e_clear_hw_cntrs_base(hw);
1308
1309         er32(PRC64);
1310         er32(PRC127);
1311         er32(PRC255);
1312         er32(PRC511);
1313         er32(PRC1023);
1314         er32(PRC1522);
1315         er32(PTC64);
1316         er32(PTC127);
1317         er32(PTC255);
1318         er32(PTC511);
1319         er32(PTC1023);
1320         er32(PTC1522);
1321
1322         er32(ALGNERRC);
1323         er32(RXERRC);
1324         er32(TNCRS);
1325         er32(CEXTERR);
1326         er32(TSCTC);
1327         er32(TSCTFC);
1328
1329         er32(MGTPRC);
1330         er32(MGTPDC);
1331         er32(MGTPTC);
1332
1333         er32(IAC);
1334         er32(ICRXOC);
1335
1336         er32(ICRXPTC);
1337         er32(ICRXATC);
1338         er32(ICTXPTC);
1339         er32(ICTXATC);
1340         er32(ICTXQEC);
1341         er32(ICTXQMTC);
1342         er32(ICRXDMTC);
1343 }
1344
1345 static const struct e1000_mac_operations es2_mac_ops = {
1346         .read_mac_addr          = e1000_read_mac_addr_80003es2lan,
1347         .id_led_init            = e1000e_id_led_init_generic,
1348         .blink_led              = e1000e_blink_led_generic,
1349         .check_mng_mode         = e1000e_check_mng_mode_generic,
1350         /* check_for_link dependent on media type */
1351         .cleanup_led            = e1000e_cleanup_led_generic,
1352         .clear_hw_cntrs         = e1000_clear_hw_cntrs_80003es2lan,
1353         .get_bus_info           = e1000e_get_bus_info_pcie,
1354         .set_lan_id             = e1000_set_lan_id_multi_port_pcie,
1355         .get_link_up_info       = e1000_get_link_up_info_80003es2lan,
1356         .led_on                 = e1000e_led_on_generic,
1357         .led_off                = e1000e_led_off_generic,
1358         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
1359         .write_vfta             = e1000_write_vfta_generic,
1360         .clear_vfta             = e1000_clear_vfta_generic,
1361         .reset_hw               = e1000_reset_hw_80003es2lan,
1362         .init_hw                = e1000_init_hw_80003es2lan,
1363         .setup_link             = e1000e_setup_link_generic,
1364         /* setup_physical_interface dependent on media type */
1365         .setup_led              = e1000e_setup_led_generic,
1366         .config_collision_dist  = e1000e_config_collision_dist_generic,
1367         .rar_set                = e1000e_rar_set_generic,
1368         .rar_get_count          = e1000e_rar_get_count_generic,
1369 };
1370
1371 static const struct e1000_phy_operations es2_phy_ops = {
1372         .acquire                = e1000_acquire_phy_80003es2lan,
1373         .check_polarity         = e1000_check_polarity_m88,
1374         .check_reset_block      = e1000e_check_reset_block_generic,
1375         .commit                 = e1000e_phy_sw_reset,
1376         .force_speed_duplex     = e1000_phy_force_speed_duplex_80003es2lan,
1377         .get_cfg_done           = e1000_get_cfg_done_80003es2lan,
1378         .get_cable_length       = e1000_get_cable_length_80003es2lan,
1379         .get_info               = e1000e_get_phy_info_m88,
1380         .read_reg               = e1000_read_phy_reg_gg82563_80003es2lan,
1381         .release                = e1000_release_phy_80003es2lan,
1382         .reset                  = e1000e_phy_hw_reset_generic,
1383         .set_d0_lplu_state      = NULL,
1384         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1385         .write_reg              = e1000_write_phy_reg_gg82563_80003es2lan,
1386         .cfg_on_link_up         = e1000_cfg_on_link_up_80003es2lan,
1387 };
1388
1389 static const struct e1000_nvm_operations es2_nvm_ops = {
1390         .acquire                = e1000_acquire_nvm_80003es2lan,
1391         .read                   = e1000e_read_nvm_eerd,
1392         .release                = e1000_release_nvm_80003es2lan,
1393         .reload                 = e1000e_reload_nvm_generic,
1394         .update                 = e1000e_update_nvm_checksum_generic,
1395         .valid_led_default      = e1000e_valid_led_default,
1396         .validate               = e1000e_validate_nvm_checksum_generic,
1397         .write                  = e1000_write_nvm_80003es2lan,
1398 };
1399
1400 const struct e1000_info e1000_es2_info = {
1401         .mac                    = e1000_80003es2lan,
1402         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1403                                   | FLAG_HAS_JUMBO_FRAMES
1404                                   | FLAG_HAS_WOL
1405                                   | FLAG_APME_IN_CTRL3
1406                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1407                                   | FLAG_RX_NEEDS_RESTART /* errata */
1408                                   | FLAG_TARC_SET_BIT_ZERO /* errata */
1409                                   | FLAG_APME_CHECK_PORT_B
1410                                   | FLAG_DISABLE_FC_PAUSE_TIME, /* errata */
1411         .flags2                 = FLAG2_DMA_BURST,
1412         .pba                    = 38,
1413         .max_hw_frame_size      = DEFAULT_JUMBO,
1414         .get_variants           = e1000_get_variants_80003es2lan,
1415         .mac_ops                = &es2_mac_ops,
1416         .phy_ops                = &es2_phy_ops,
1417         .nvm_ops                = &es2_nvm_ops,
1418 };