Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / net / ethernet / icplus / ipg.c
1 /*
2  * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter
3  *
4  * Copyright (C) 2003, 2007  IC Plus Corp
5  *
6  * Original Author:
7  *
8  *   Craig Rich
9  *   Sundance Technology, Inc.
10  *   www.sundanceti.com
11  *   craig_rich@sundanceti.com
12  *
13  * Current Maintainer:
14  *
15  *   Sorbica Shieh.
16  *   http://www.icplus.com.tw
17  *   sorbica@icplus.com.tw
18  *
19  *   Jesse Huang
20  *   http://www.icplus.com.tw
21  *   jesse@icplus.com.tw
22  */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/crc32.h>
27 #include <linux/ethtool.h>
28 #include <linux/interrupt.h>
29 #include <linux/gfp.h>
30 #include <linux/mii.h>
31 #include <linux/mutex.h>
32
33 #include <asm/div64.h>
34
35 #define IPG_RX_RING_BYTES       (sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH)
36 #define IPG_TX_RING_BYTES       (sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH)
37 #define IPG_RESET_MASK \
38         (IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \
39          IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \
40          IPG_AC_AUTO_INIT)
41
42 #define ipg_w32(val32, reg)     iowrite32((val32), ioaddr + (reg))
43 #define ipg_w16(val16, reg)     iowrite16((val16), ioaddr + (reg))
44 #define ipg_w8(val8, reg)       iowrite8((val8), ioaddr + (reg))
45
46 #define ipg_r32(reg)            ioread32(ioaddr + (reg))
47 #define ipg_r16(reg)            ioread16(ioaddr + (reg))
48 #define ipg_r8(reg)             ioread8(ioaddr + (reg))
49
50 enum {
51         netdev_io_size = 128
52 };
53
54 #include "ipg.h"
55 #define DRV_NAME        "ipg"
56
57 MODULE_AUTHOR("IC Plus Corp. 2003");
58 MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver");
59 MODULE_LICENSE("GPL");
60
61 /*
62  * Defaults
63  */
64 #define IPG_MAX_RXFRAME_SIZE    0x0600
65 #define IPG_RXFRAG_SIZE         0x0600
66 #define IPG_RXSUPPORT_SIZE      0x0600
67 #define IPG_IS_JUMBO            false
68
69 /*
70  * Variable record -- index by leading revision/length
71  * Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN
72  */
73 static const unsigned short DefaultPhyParam[] = {
74         /* 11/12/03 IP1000A v1-3 rev=0x40 */
75         /*--------------------------------------------------------------------------
76         (0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2,
77                                  27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6,
78                                  31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7,  9, 0x0700,
79           --------------------------------------------------------------------------*/
80         /* 12/17/03 IP1000A v1-4 rev=0x40 */
81         (0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
82             0x0000,
83         30, 0x005e, 9, 0x0700,
84         /* 01/09/04 IP1000A v1-5 rev=0x41 */
85         (0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
86             0x0000,
87         30, 0x005e, 9, 0x0700,
88         0x0000
89 };
90
91 static const char * const ipg_brand_name[] = {
92         "IC PLUS IP1000 1000/100/10 based NIC",
93         "Sundance Technology ST2021 based NIC",
94         "Tamarack Microelectronics TC9020/9021 based NIC",
95         "D-Link NIC IP1000A"
96 };
97
98 static const struct pci_device_id ipg_pci_tbl[] = {
99         { PCI_VDEVICE(SUNDANCE, 0x1023), 0 },
100         { PCI_VDEVICE(SUNDANCE, 0x2021), 1 },
101         { PCI_VDEVICE(DLINK,    0x9021), 2 },
102         { PCI_VDEVICE(DLINK,    0x4020), 3 },
103         { 0, }
104 };
105
106 MODULE_DEVICE_TABLE(pci, ipg_pci_tbl);
107
108 static inline void __iomem *ipg_ioaddr(struct net_device *dev)
109 {
110         struct ipg_nic_private *sp = netdev_priv(dev);
111         return sp->ioaddr;
112 }
113
114 #ifdef IPG_DEBUG
115 static void ipg_dump_rfdlist(struct net_device *dev)
116 {
117         struct ipg_nic_private *sp = netdev_priv(dev);
118         void __iomem *ioaddr = sp->ioaddr;
119         unsigned int i;
120         u32 offset;
121
122         IPG_DEBUG_MSG("_dump_rfdlist\n");
123
124         netdev_info(dev, "rx_current = %02x\n", sp->rx_current);
125         netdev_info(dev, "rx_dirty   = %02x\n", sp->rx_dirty);
126         netdev_info(dev, "RFDList start address = %016lx\n",
127                     (unsigned long)sp->rxd_map);
128         netdev_info(dev, "RFDListPtr register   = %08x%08x\n",
129                     ipg_r32(IPG_RFDLISTPTR1), ipg_r32(IPG_RFDLISTPTR0));
130
131         for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
132                 offset = (u32) &sp->rxd[i].next_desc - (u32) sp->rxd;
133                 netdev_info(dev, "%02x %04x RFDNextPtr = %016lx\n",
134                             i, offset, (unsigned long)sp->rxd[i].next_desc);
135                 offset = (u32) &sp->rxd[i].rfs - (u32) sp->rxd;
136                 netdev_info(dev, "%02x %04x RFS        = %016lx\n",
137                             i, offset, (unsigned long)sp->rxd[i].rfs);
138                 offset = (u32) &sp->rxd[i].frag_info - (u32) sp->rxd;
139                 netdev_info(dev, "%02x %04x frag_info   = %016lx\n",
140                             i, offset, (unsigned long)sp->rxd[i].frag_info);
141         }
142 }
143
144 static void ipg_dump_tfdlist(struct net_device *dev)
145 {
146         struct ipg_nic_private *sp = netdev_priv(dev);
147         void __iomem *ioaddr = sp->ioaddr;
148         unsigned int i;
149         u32 offset;
150
151         IPG_DEBUG_MSG("_dump_tfdlist\n");
152
153         netdev_info(dev, "tx_current         = %02x\n", sp->tx_current);
154         netdev_info(dev, "tx_dirty = %02x\n", sp->tx_dirty);
155         netdev_info(dev, "TFDList start address = %016lx\n",
156                     (unsigned long) sp->txd_map);
157         netdev_info(dev, "TFDListPtr register   = %08x%08x\n",
158                     ipg_r32(IPG_TFDLISTPTR1), ipg_r32(IPG_TFDLISTPTR0));
159
160         for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
161                 offset = (u32) &sp->txd[i].next_desc - (u32) sp->txd;
162                 netdev_info(dev, "%02x %04x TFDNextPtr = %016lx\n",
163                             i, offset, (unsigned long)sp->txd[i].next_desc);
164
165                 offset = (u32) &sp->txd[i].tfc - (u32) sp->txd;
166                 netdev_info(dev, "%02x %04x TFC        = %016lx\n",
167                             i, offset, (unsigned long) sp->txd[i].tfc);
168                 offset = (u32) &sp->txd[i].frag_info - (u32) sp->txd;
169                 netdev_info(dev, "%02x %04x frag_info   = %016lx\n",
170                             i, offset, (unsigned long) sp->txd[i].frag_info);
171         }
172 }
173 #endif
174
175 static void ipg_write_phy_ctl(void __iomem *ioaddr, u8 data)
176 {
177         ipg_w8(IPG_PC_RSVD_MASK & data, PHY_CTRL);
178         ndelay(IPG_PC_PHYCTRLWAIT_NS);
179 }
180
181 static void ipg_drive_phy_ctl_low_high(void __iomem *ioaddr, u8 data)
182 {
183         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | data);
184         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | data);
185 }
186
187 static void send_three_state(void __iomem *ioaddr, u8 phyctrlpolarity)
188 {
189         phyctrlpolarity |= (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR;
190
191         ipg_drive_phy_ctl_low_high(ioaddr, phyctrlpolarity);
192 }
193
194 static void send_end(void __iomem *ioaddr, u8 phyctrlpolarity)
195 {
196         ipg_w8((IPG_PC_MGMTCLK_LO | (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR |
197                 phyctrlpolarity) & IPG_PC_RSVD_MASK, PHY_CTRL);
198 }
199
200 static u16 read_phy_bit(void __iomem *ioaddr, u8 phyctrlpolarity)
201 {
202         u16 bit_data;
203
204         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | phyctrlpolarity);
205
206         bit_data = ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) & 1;
207
208         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | phyctrlpolarity);
209
210         return bit_data;
211 }
212
213 /*
214  * Read a register from the Physical Layer device located
215  * on the IPG NIC, using the IPG PHYCTRL register.
216  */
217 static int mdio_read(struct net_device *dev, int phy_id, int phy_reg)
218 {
219         void __iomem *ioaddr = ipg_ioaddr(dev);
220         /*
221          * The GMII mangement frame structure for a read is as follows:
222          *
223          * |Preamble|st|op|phyad|regad|ta|      data      |idle|
224          * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z   |
225          *
226          * <32 1s> = 32 consecutive logic 1 values
227          * A = bit of Physical Layer device address (MSB first)
228          * R = bit of register address (MSB first)
229          * z = High impedance state
230          * D = bit of read data (MSB first)
231          *
232          * Transmission order is 'Preamble' field first, bits transmitted
233          * left to right (first to last).
234          */
235         struct {
236                 u32 field;
237                 unsigned int len;
238         } p[] = {
239                 { GMII_PREAMBLE,        32 },   /* Preamble */
240                 { GMII_ST,              2  },   /* ST */
241                 { GMII_READ,            2  },   /* OP */
242                 { phy_id,               5  },   /* PHYAD */
243                 { phy_reg,              5  },   /* REGAD */
244                 { 0x0000,               2  },   /* TA */
245                 { 0x0000,               16 },   /* DATA */
246                 { 0x0000,               1  }    /* IDLE */
247         };
248         unsigned int i, j;
249         u8 polarity, data;
250
251         polarity  = ipg_r8(PHY_CTRL);
252         polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
253
254         /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
255         for (j = 0; j < 5; j++) {
256                 for (i = 0; i < p[j].len; i++) {
257                         /* For each variable length field, the MSB must be
258                          * transmitted first. Rotate through the field bits,
259                          * starting with the MSB, and move each bit into the
260                          * the 1st (2^1) bit position (this is the bit position
261                          * corresponding to the MgmtData bit of the PhyCtrl
262                          * register for the IPG).
263                          *
264                          * Example: ST = 01;
265                          *
266                          *          First write a '0' to bit 1 of the PhyCtrl
267                          *          register, then write a '1' to bit 1 of the
268                          *          PhyCtrl register.
269                          *
270                          * To do this, right shift the MSB of ST by the value:
271                          * [field length - 1 - #ST bits already written]
272                          * then left shift this result by 1.
273                          */
274                         data  = (p[j].field >> (p[j].len - 1 - i)) << 1;
275                         data &= IPG_PC_MGMTDATA;
276                         data |= polarity | IPG_PC_MGMTDIR;
277
278                         ipg_drive_phy_ctl_low_high(ioaddr, data);
279                 }
280         }
281
282         send_three_state(ioaddr, polarity);
283
284         read_phy_bit(ioaddr, polarity);
285
286         /*
287          * For a read cycle, the bits for the next two fields (TA and
288          * DATA) are driven by the PHY (the IPG reads these bits).
289          */
290         for (i = 0; i < p[6].len; i++) {
291                 p[6].field |=
292                     (read_phy_bit(ioaddr, polarity) << (p[6].len - 1 - i));
293         }
294
295         send_three_state(ioaddr, polarity);
296         send_three_state(ioaddr, polarity);
297         send_three_state(ioaddr, polarity);
298         send_end(ioaddr, polarity);
299
300         /* Return the value of the DATA field. */
301         return p[6].field;
302 }
303
304 /*
305  * Write to a register from the Physical Layer device located
306  * on the IPG NIC, using the IPG PHYCTRL register.
307  */
308 static void mdio_write(struct net_device *dev, int phy_id, int phy_reg, int val)
309 {
310         void __iomem *ioaddr = ipg_ioaddr(dev);
311         /*
312          * The GMII mangement frame structure for a read is as follows:
313          *
314          * |Preamble|st|op|phyad|regad|ta|      data      |idle|
315          * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z   |
316          *
317          * <32 1s> = 32 consecutive logic 1 values
318          * A = bit of Physical Layer device address (MSB first)
319          * R = bit of register address (MSB first)
320          * z = High impedance state
321          * D = bit of write data (MSB first)
322          *
323          * Transmission order is 'Preamble' field first, bits transmitted
324          * left to right (first to last).
325          */
326         struct {
327                 u32 field;
328                 unsigned int len;
329         } p[] = {
330                 { GMII_PREAMBLE,        32 },   /* Preamble */
331                 { GMII_ST,              2  },   /* ST */
332                 { GMII_WRITE,           2  },   /* OP */
333                 { phy_id,               5  },   /* PHYAD */
334                 { phy_reg,              5  },   /* REGAD */
335                 { 0x0002,               2  },   /* TA */
336                 { val & 0xffff,         16 },   /* DATA */
337                 { 0x0000,               1  }    /* IDLE */
338         };
339         unsigned int i, j;
340         u8 polarity, data;
341
342         polarity  = ipg_r8(PHY_CTRL);
343         polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
344
345         /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
346         for (j = 0; j < 7; j++) {
347                 for (i = 0; i < p[j].len; i++) {
348                         /* For each variable length field, the MSB must be
349                          * transmitted first. Rotate through the field bits,
350                          * starting with the MSB, and move each bit into the
351                          * the 1st (2^1) bit position (this is the bit position
352                          * corresponding to the MgmtData bit of the PhyCtrl
353                          * register for the IPG).
354                          *
355                          * Example: ST = 01;
356                          *
357                          *          First write a '0' to bit 1 of the PhyCtrl
358                          *          register, then write a '1' to bit 1 of the
359                          *          PhyCtrl register.
360                          *
361                          * To do this, right shift the MSB of ST by the value:
362                          * [field length - 1 - #ST bits already written]
363                          * then left shift this result by 1.
364                          */
365                         data  = (p[j].field >> (p[j].len - 1 - i)) << 1;
366                         data &= IPG_PC_MGMTDATA;
367                         data |= polarity | IPG_PC_MGMTDIR;
368
369                         ipg_drive_phy_ctl_low_high(ioaddr, data);
370                 }
371         }
372
373         /* The last cycle is a tri-state, so read from the PHY. */
374         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | polarity);
375         ipg_r8(PHY_CTRL);
376         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | polarity);
377 }
378
379 static void ipg_set_led_mode(struct net_device *dev)
380 {
381         struct ipg_nic_private *sp = netdev_priv(dev);
382         void __iomem *ioaddr = sp->ioaddr;
383         u32 mode;
384
385         mode = ipg_r32(ASIC_CTRL);
386         mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
387
388         if ((sp->led_mode & 0x03) > 1)
389                 mode |= IPG_AC_LED_MODE_BIT_1;  /* Write Asic Control Bit 29 */
390
391         if ((sp->led_mode & 0x01) == 1)
392                 mode |= IPG_AC_LED_MODE;        /* Write Asic Control Bit 14 */
393
394         if ((sp->led_mode & 0x08) == 8)
395                 mode |= IPG_AC_LED_SPEED;       /* Write Asic Control Bit 27 */
396
397         ipg_w32(mode, ASIC_CTRL);
398 }
399
400 static void ipg_set_phy_set(struct net_device *dev)
401 {
402         struct ipg_nic_private *sp = netdev_priv(dev);
403         void __iomem *ioaddr = sp->ioaddr;
404         int physet;
405
406         physet = ipg_r8(PHY_SET);
407         physet &= ~(IPG_PS_MEM_LENB9B | IPG_PS_MEM_LEN9 | IPG_PS_NON_COMPDET);
408         physet |= ((sp->led_mode & 0x70) >> 4);
409         ipg_w8(physet, PHY_SET);
410 }
411
412 static int ipg_reset(struct net_device *dev, u32 resetflags)
413 {
414         /* Assert functional resets via the IPG AsicCtrl
415          * register as specified by the 'resetflags' input
416          * parameter.
417          */
418         void __iomem *ioaddr = ipg_ioaddr(dev);
419         unsigned int timeout_count = 0;
420
421         IPG_DEBUG_MSG("_reset\n");
422
423         ipg_w32(ipg_r32(ASIC_CTRL) | resetflags, ASIC_CTRL);
424
425         /* Delay added to account for problem with 10Mbps reset. */
426         mdelay(IPG_AC_RESETWAIT);
427
428         while (IPG_AC_RESET_BUSY & ipg_r32(ASIC_CTRL)) {
429                 mdelay(IPG_AC_RESETWAIT);
430                 if (++timeout_count > IPG_AC_RESET_TIMEOUT)
431                         return -ETIME;
432         }
433         /* Set LED Mode in Asic Control */
434         ipg_set_led_mode(dev);
435
436         /* Set PHYSet Register Value */
437         ipg_set_phy_set(dev);
438         return 0;
439 }
440
441 /* Find the GMII PHY address. */
442 static int ipg_find_phyaddr(struct net_device *dev)
443 {
444         unsigned int phyaddr, i;
445
446         for (i = 0; i < 32; i++) {
447                 u32 status;
448
449                 /* Search for the correct PHY address among 32 possible. */
450                 phyaddr = (IPG_NIC_PHY_ADDRESS + i) % 32;
451
452                 /* 10/22/03 Grace change verify from GMII_PHY_STATUS to
453                    GMII_PHY_ID1
454                  */
455
456                 status = mdio_read(dev, phyaddr, MII_BMSR);
457
458                 if ((status != 0xFFFF) && (status != 0))
459                         return phyaddr;
460         }
461
462         return 0x1f;
463 }
464
465 /*
466  * Configure IPG based on result of IEEE 802.3 PHY
467  * auto-negotiation.
468  */
469 static int ipg_config_autoneg(struct net_device *dev)
470 {
471         struct ipg_nic_private *sp = netdev_priv(dev);
472         void __iomem *ioaddr = sp->ioaddr;
473         unsigned int txflowcontrol;
474         unsigned int rxflowcontrol;
475         unsigned int fullduplex;
476         u32 mac_ctrl_val;
477         u32 asicctrl;
478         u8 phyctrl;
479         const char *speed;
480         const char *duplex;
481         const char *tx_desc;
482         const char *rx_desc;
483
484         IPG_DEBUG_MSG("_config_autoneg\n");
485
486         asicctrl = ipg_r32(ASIC_CTRL);
487         phyctrl = ipg_r8(PHY_CTRL);
488         mac_ctrl_val = ipg_r32(MAC_CTRL);
489
490         /* Set flags for use in resolving auto-negotiation, assuming
491          * non-1000Mbps, half duplex, no flow control.
492          */
493         fullduplex = 0;
494         txflowcontrol = 0;
495         rxflowcontrol = 0;
496
497         /* To accommodate a problem in 10Mbps operation,
498          * set a global flag if PHY running in 10Mbps mode.
499          */
500         sp->tenmbpsmode = 0;
501
502         /* Determine actual speed of operation. */
503         switch (phyctrl & IPG_PC_LINK_SPEED) {
504         case IPG_PC_LINK_SPEED_10MBPS:
505                 speed = "10Mbps";
506                 sp->tenmbpsmode = 1;
507                 break;
508         case IPG_PC_LINK_SPEED_100MBPS:
509                 speed = "100Mbps";
510                 break;
511         case IPG_PC_LINK_SPEED_1000MBPS:
512                 speed = "1000Mbps";
513                 break;
514         default:
515                 speed = "undefined!";
516                 return 0;
517         }
518
519         netdev_info(dev, "Link speed = %s\n", speed);
520         if (sp->tenmbpsmode == 1)
521                 netdev_info(dev, "10Mbps operational mode enabled\n");
522
523         if (phyctrl & IPG_PC_DUPLEX_STATUS) {
524                 fullduplex = 1;
525                 txflowcontrol = 1;
526                 rxflowcontrol = 1;
527         }
528
529         /* Configure full duplex, and flow control. */
530         if (fullduplex == 1) {
531
532                 /* Configure IPG for full duplex operation. */
533
534                 duplex = "full";
535
536                 mac_ctrl_val |= IPG_MC_DUPLEX_SELECT_FD;
537
538                 if (txflowcontrol == 1) {
539                         tx_desc  = "";
540                         mac_ctrl_val |= IPG_MC_TX_FLOW_CONTROL_ENABLE;
541                 } else {
542                         tx_desc = "no ";
543                         mac_ctrl_val &= ~IPG_MC_TX_FLOW_CONTROL_ENABLE;
544                 }
545
546                 if (rxflowcontrol == 1) {
547                         rx_desc = "";
548                         mac_ctrl_val |= IPG_MC_RX_FLOW_CONTROL_ENABLE;
549                 } else {
550                         rx_desc = "no ";
551                         mac_ctrl_val &= ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
552                 }
553         } else {
554                 duplex = "half";
555                 tx_desc = "no ";
556                 rx_desc = "no ";
557                 mac_ctrl_val &= (~IPG_MC_DUPLEX_SELECT_FD &
558                                  ~IPG_MC_TX_FLOW_CONTROL_ENABLE &
559                                  ~IPG_MC_RX_FLOW_CONTROL_ENABLE);
560         }
561
562         netdev_info(dev, "setting %s duplex, %sTX, %sRX flow control\n",
563                     duplex, tx_desc, rx_desc);
564         ipg_w32(mac_ctrl_val, MAC_CTRL);
565
566         return 0;
567 }
568
569 /* Determine and configure multicast operation and set
570  * receive mode for IPG.
571  */
572 static void ipg_nic_set_multicast_list(struct net_device *dev)
573 {
574         void __iomem *ioaddr = ipg_ioaddr(dev);
575         struct netdev_hw_addr *ha;
576         unsigned int hashindex;
577         u32 hashtable[2];
578         u8 receivemode;
579
580         IPG_DEBUG_MSG("_nic_set_multicast_list\n");
581
582         receivemode = IPG_RM_RECEIVEUNICAST | IPG_RM_RECEIVEBROADCAST;
583
584         if (dev->flags & IFF_PROMISC) {
585                 /* NIC to be configured in promiscuous mode. */
586                 receivemode = IPG_RM_RECEIVEALLFRAMES;
587         } else if ((dev->flags & IFF_ALLMULTI) ||
588                    ((dev->flags & IFF_MULTICAST) &&
589                     (netdev_mc_count(dev) > IPG_MULTICAST_HASHTABLE_SIZE))) {
590                 /* NIC to be configured to receive all multicast
591                  * frames. */
592                 receivemode |= IPG_RM_RECEIVEMULTICAST;
593         } else if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
594                 /* NIC to be configured to receive selected
595                  * multicast addresses. */
596                 receivemode |= IPG_RM_RECEIVEMULTICASTHASH;
597         }
598
599         /* Calculate the bits to set for the 64 bit, IPG HASHTABLE.
600          * The IPG applies a cyclic-redundancy-check (the same CRC
601          * used to calculate the frame data FCS) to the destination
602          * address all incoming multicast frames whose destination
603          * address has the multicast bit set. The least significant
604          * 6 bits of the CRC result are used as an addressing index
605          * into the hash table. If the value of the bit addressed by
606          * this index is a 1, the frame is passed to the host system.
607          */
608
609         /* Clear hashtable. */
610         hashtable[0] = 0x00000000;
611         hashtable[1] = 0x00000000;
612
613         /* Cycle through all multicast addresses to filter. */
614         netdev_for_each_mc_addr(ha, dev) {
615                 /* Calculate CRC result for each multicast address. */
616                 hashindex = crc32_le(0xffffffff, ha->addr,
617                                      ETH_ALEN);
618
619                 /* Use only the least significant 6 bits. */
620                 hashindex = hashindex & 0x3F;
621
622                 /* Within "hashtable", set bit number "hashindex"
623                  * to a logic 1.
624                  */
625                 set_bit(hashindex, (void *)hashtable);
626         }
627
628         /* Write the value of the hashtable, to the 4, 16 bit
629          * HASHTABLE IPG registers.
630          */
631         ipg_w32(hashtable[0], HASHTABLE_0);
632         ipg_w32(hashtable[1], HASHTABLE_1);
633
634         ipg_w8(IPG_RM_RSVD_MASK & receivemode, RECEIVE_MODE);
635
636         IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE));
637 }
638
639 static int ipg_io_config(struct net_device *dev)
640 {
641         struct ipg_nic_private *sp = netdev_priv(dev);
642         void __iomem *ioaddr = ipg_ioaddr(dev);
643         u32 origmacctrl;
644         u32 restoremacctrl;
645
646         IPG_DEBUG_MSG("_io_config\n");
647
648         origmacctrl = ipg_r32(MAC_CTRL);
649
650         restoremacctrl = origmacctrl | IPG_MC_STATISTICS_ENABLE;
651
652         /* Based on compilation option, determine if FCS is to be
653          * stripped on receive frames by IPG.
654          */
655         if (!IPG_STRIP_FCS_ON_RX)
656                 restoremacctrl |= IPG_MC_RCV_FCS;
657
658         /* Determine if transmitter and/or receiver are
659          * enabled so we may restore MACCTRL correctly.
660          */
661         if (origmacctrl & IPG_MC_TX_ENABLED)
662                 restoremacctrl |= IPG_MC_TX_ENABLE;
663
664         if (origmacctrl & IPG_MC_RX_ENABLED)
665                 restoremacctrl |= IPG_MC_RX_ENABLE;
666
667         /* Transmitter and receiver must be disabled before setting
668          * IFSSelect.
669          */
670         ipg_w32((origmacctrl & (IPG_MC_RX_DISABLE | IPG_MC_TX_DISABLE)) &
671                 IPG_MC_RSVD_MASK, MAC_CTRL);
672
673         /* Now that transmitter and receiver are disabled, write
674          * to IFSSelect.
675          */
676         ipg_w32((origmacctrl & IPG_MC_IFS_96BIT) & IPG_MC_RSVD_MASK, MAC_CTRL);
677
678         /* Set RECEIVEMODE register. */
679         ipg_nic_set_multicast_list(dev);
680
681         ipg_w16(sp->max_rxframe_size, MAX_FRAME_SIZE);
682
683         ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE,   RX_DMA_POLL_PERIOD);
684         ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH);
685         ipg_w8(IPG_RXDMABURSTTHRESH_VALUE,  RX_DMA_BURST_THRESH);
686         ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE,   TX_DMA_POLL_PERIOD);
687         ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE, TX_DMA_URGENT_THRESH);
688         ipg_w8(IPG_TXDMABURSTTHRESH_VALUE,  TX_DMA_BURST_THRESH);
689         ipg_w16((IPG_IE_HOST_ERROR | IPG_IE_TX_DMA_COMPLETE |
690                  IPG_IE_TX_COMPLETE | IPG_IE_INT_REQUESTED |
691                  IPG_IE_UPDATE_STATS | IPG_IE_LINK_EVENT |
692                  IPG_IE_RX_DMA_COMPLETE | IPG_IE_RX_DMA_PRIORITY), INT_ENABLE);
693         ipg_w16(IPG_FLOWONTHRESH_VALUE,  FLOW_ON_THRESH);
694         ipg_w16(IPG_FLOWOFFTHRESH_VALUE, FLOW_OFF_THRESH);
695
696         /* IPG multi-frag frame bug workaround.
697          * Per silicon revision B3 eratta.
698          */
699         ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0200, DEBUG_CTRL);
700
701         /* IPG TX poll now bug workaround.
702          * Per silicon revision B3 eratta.
703          */
704         ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0010, DEBUG_CTRL);
705
706         /* IPG RX poll now bug workaround.
707          * Per silicon revision B3 eratta.
708          */
709         ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0020, DEBUG_CTRL);
710
711         /* Now restore MACCTRL to original setting. */
712         ipg_w32(IPG_MC_RSVD_MASK & restoremacctrl, MAC_CTRL);
713
714         /* Disable unused RMON statistics. */
715         ipg_w32(IPG_RZ_ALL, RMON_STATISTICS_MASK);
716
717         /* Disable unused MIB statistics. */
718         ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD | IPG_SM_MACCONTROLFRAMESRCVD |
719                 IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK | IPG_SM_TXJUMBOFRAMES |
720                 IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK | IPG_SM_RXJUMBOFRAMES |
721                 IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK |
722                 IPG_SM_UDPCHECKSUMERRORS | IPG_SM_TCPCHECKSUMERRORS |
723                 IPG_SM_IPCHECKSUMERRORS, STATISTICS_MASK);
724
725         return 0;
726 }
727
728 /*
729  * Create a receive buffer within system memory and update
730  * NIC private structure appropriately.
731  */
732 static int ipg_get_rxbuff(struct net_device *dev, int entry)
733 {
734         struct ipg_nic_private *sp = netdev_priv(dev);
735         struct ipg_rx *rxfd = sp->rxd + entry;
736         struct sk_buff *skb;
737         u64 rxfragsize;
738
739         IPG_DEBUG_MSG("_get_rxbuff\n");
740
741         skb = netdev_alloc_skb_ip_align(dev, sp->rxsupport_size);
742         if (!skb) {
743                 sp->rx_buff[entry] = NULL;
744                 return -ENOMEM;
745         }
746
747         /* Save the address of the sk_buff structure. */
748         sp->rx_buff[entry] = skb;
749
750         rxfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
751                 sp->rx_buf_sz, PCI_DMA_FROMDEVICE));
752
753         /* Set the RFD fragment length. */
754         rxfragsize = sp->rxfrag_size;
755         rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN);
756
757         return 0;
758 }
759
760 static int init_rfdlist(struct net_device *dev)
761 {
762         struct ipg_nic_private *sp = netdev_priv(dev);
763         void __iomem *ioaddr = sp->ioaddr;
764         unsigned int i;
765
766         IPG_DEBUG_MSG("_init_rfdlist\n");
767
768         for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
769                 struct ipg_rx *rxfd = sp->rxd + i;
770
771                 if (sp->rx_buff[i]) {
772                         pci_unmap_single(sp->pdev,
773                                 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
774                                 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
775                         dev_kfree_skb_irq(sp->rx_buff[i]);
776                         sp->rx_buff[i] = NULL;
777                 }
778
779                 /* Clear out the RFS field. */
780                 rxfd->rfs = 0x0000000000000000;
781
782                 if (ipg_get_rxbuff(dev, i) < 0) {
783                         /*
784                          * A receive buffer was not ready, break the
785                          * RFD list here.
786                          */
787                         IPG_DEBUG_MSG("Cannot allocate Rx buffer\n");
788
789                         /* Just in case we cannot allocate a single RFD.
790                          * Should not occur.
791                          */
792                         if (i == 0) {
793                                 netdev_err(dev, "No memory available for RFD list\n");
794                                 return -ENOMEM;
795                         }
796                 }
797
798                 rxfd->next_desc = cpu_to_le64(sp->rxd_map +
799                         sizeof(struct ipg_rx)*(i + 1));
800         }
801         sp->rxd[i - 1].next_desc = cpu_to_le64(sp->rxd_map);
802
803         sp->rx_current = 0;
804         sp->rx_dirty = 0;
805
806         /* Write the location of the RFDList to the IPG. */
807         ipg_w32((u32) sp->rxd_map, RFD_LIST_PTR_0);
808         ipg_w32(0x00000000, RFD_LIST_PTR_1);
809
810         return 0;
811 }
812
813 static void init_tfdlist(struct net_device *dev)
814 {
815         struct ipg_nic_private *sp = netdev_priv(dev);
816         void __iomem *ioaddr = sp->ioaddr;
817         unsigned int i;
818
819         IPG_DEBUG_MSG("_init_tfdlist\n");
820
821         for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
822                 struct ipg_tx *txfd = sp->txd + i;
823
824                 txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
825
826                 if (sp->tx_buff[i]) {
827                         dev_kfree_skb_irq(sp->tx_buff[i]);
828                         sp->tx_buff[i] = NULL;
829                 }
830
831                 txfd->next_desc = cpu_to_le64(sp->txd_map +
832                         sizeof(struct ipg_tx)*(i + 1));
833         }
834         sp->txd[i - 1].next_desc = cpu_to_le64(sp->txd_map);
835
836         sp->tx_current = 0;
837         sp->tx_dirty = 0;
838
839         /* Write the location of the TFDList to the IPG. */
840         IPG_DDEBUG_MSG("Starting TFDListPtr = %08x\n",
841                        (u32) sp->txd_map);
842         ipg_w32((u32) sp->txd_map, TFD_LIST_PTR_0);
843         ipg_w32(0x00000000, TFD_LIST_PTR_1);
844
845         sp->reset_current_tfd = 1;
846 }
847
848 /*
849  * Free all transmit buffers which have already been transferred
850  * via DMA to the IPG.
851  */
852 static void ipg_nic_txfree(struct net_device *dev)
853 {
854         struct ipg_nic_private *sp = netdev_priv(dev);
855         unsigned int released, pending, dirty;
856
857         IPG_DEBUG_MSG("_nic_txfree\n");
858
859         pending = sp->tx_current - sp->tx_dirty;
860         dirty = sp->tx_dirty % IPG_TFDLIST_LENGTH;
861
862         for (released = 0; released < pending; released++) {
863                 struct sk_buff *skb = sp->tx_buff[dirty];
864                 struct ipg_tx *txfd = sp->txd + dirty;
865
866                 IPG_DEBUG_MSG("TFC = %016lx\n", (unsigned long) txfd->tfc);
867
868                 /* Look at each TFD's TFC field beginning
869                  * at the last freed TFD up to the current TFD.
870                  * If the TFDDone bit is set, free the associated
871                  * buffer.
872                  */
873                 if (!(txfd->tfc & cpu_to_le64(IPG_TFC_TFDDONE)))
874                         break;
875
876                 /* Free the transmit buffer. */
877                 if (skb) {
878                         pci_unmap_single(sp->pdev,
879                                 le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
880                                 skb->len, PCI_DMA_TODEVICE);
881
882                         dev_kfree_skb_irq(skb);
883
884                         sp->tx_buff[dirty] = NULL;
885                 }
886                 dirty = (dirty + 1) % IPG_TFDLIST_LENGTH;
887         }
888
889         sp->tx_dirty += released;
890
891         if (netif_queue_stopped(dev) &&
892             (sp->tx_current != (sp->tx_dirty + IPG_TFDLIST_LENGTH))) {
893                 netif_wake_queue(dev);
894         }
895 }
896
897 static void ipg_tx_timeout(struct net_device *dev)
898 {
899         struct ipg_nic_private *sp = netdev_priv(dev);
900         void __iomem *ioaddr = sp->ioaddr;
901
902         ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK |
903                   IPG_AC_FIFO);
904
905         spin_lock_irq(&sp->lock);
906
907         /* Re-configure after DMA reset. */
908         if (ipg_io_config(dev) < 0)
909                 netdev_info(dev, "Error during re-configuration\n");
910
911         init_tfdlist(dev);
912
913         spin_unlock_irq(&sp->lock);
914
915         ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK,
916                 MAC_CTRL);
917 }
918
919 /*
920  * For TxComplete interrupts, free all transmit
921  * buffers which have already been transferred via DMA
922  * to the IPG.
923  */
924 static void ipg_nic_txcleanup(struct net_device *dev)
925 {
926         struct ipg_nic_private *sp = netdev_priv(dev);
927         void __iomem *ioaddr = sp->ioaddr;
928         unsigned int i;
929
930         IPG_DEBUG_MSG("_nic_txcleanup\n");
931
932         for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
933                 /* Reading the TXSTATUS register clears the
934                  * TX_COMPLETE interrupt.
935                  */
936                 u32 txstatusdword = ipg_r32(TX_STATUS);
937
938                 IPG_DEBUG_MSG("TxStatus = %08x\n", txstatusdword);
939
940                 /* Check for Transmit errors. Error bits only valid if
941                  * TX_COMPLETE bit in the TXSTATUS register is a 1.
942                  */
943                 if (!(txstatusdword & IPG_TS_TX_COMPLETE))
944                         break;
945
946                 /* If in 10Mbps mode, indicate transmit is ready. */
947                 if (sp->tenmbpsmode) {
948                         netif_wake_queue(dev);
949                 }
950
951                 /* Transmit error, increment stat counters. */
952                 if (txstatusdword & IPG_TS_TX_ERROR) {
953                         IPG_DEBUG_MSG("Transmit error\n");
954                         sp->stats.tx_errors++;
955                 }
956
957                 /* Late collision, re-enable transmitter. */
958                 if (txstatusdword & IPG_TS_LATE_COLLISION) {
959                         IPG_DEBUG_MSG("Late collision on transmit\n");
960                         ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
961                                 IPG_MC_RSVD_MASK, MAC_CTRL);
962                 }
963
964                 /* Maximum collisions, re-enable transmitter. */
965                 if (txstatusdword & IPG_TS_TX_MAX_COLL) {
966                         IPG_DEBUG_MSG("Maximum collisions on transmit\n");
967                         ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
968                                 IPG_MC_RSVD_MASK, MAC_CTRL);
969                 }
970
971                 /* Transmit underrun, reset and re-enable
972                  * transmitter.
973                  */
974                 if (txstatusdword & IPG_TS_TX_UNDERRUN) {
975                         IPG_DEBUG_MSG("Transmitter underrun\n");
976                         sp->stats.tx_fifo_errors++;
977                         ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA |
978                                   IPG_AC_NETWORK | IPG_AC_FIFO);
979
980                         /* Re-configure after DMA reset. */
981                         if (ipg_io_config(dev) < 0) {
982                                 netdev_info(dev, "Error during re-configuration\n");
983                         }
984                         init_tfdlist(dev);
985
986                         ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
987                                 IPG_MC_RSVD_MASK, MAC_CTRL);
988                 }
989         }
990
991         ipg_nic_txfree(dev);
992 }
993
994 /* Provides statistical information about the IPG NIC. */
995 static struct net_device_stats *ipg_nic_get_stats(struct net_device *dev)
996 {
997         struct ipg_nic_private *sp = netdev_priv(dev);
998         void __iomem *ioaddr = sp->ioaddr;
999         u16 temp1;
1000         u16 temp2;
1001
1002         IPG_DEBUG_MSG("_nic_get_stats\n");
1003
1004         /* Check to see if the NIC has been initialized via nic_open,
1005          * before trying to read statistic registers.
1006          */
1007         if (!netif_running(dev))
1008                 return &sp->stats;
1009
1010         sp->stats.rx_packets += ipg_r32(IPG_FRAMESRCVDOK);
1011         sp->stats.tx_packets += ipg_r32(IPG_FRAMESXMTDOK);
1012         sp->stats.rx_bytes += ipg_r32(IPG_OCTETRCVOK);
1013         sp->stats.tx_bytes += ipg_r32(IPG_OCTETXMTOK);
1014         temp1 = ipg_r16(IPG_FRAMESLOSTRXERRORS);
1015         sp->stats.rx_errors += temp1;
1016         sp->stats.rx_missed_errors += temp1;
1017         temp1 = ipg_r32(IPG_SINGLECOLFRAMES) + ipg_r32(IPG_MULTICOLFRAMES) +
1018                 ipg_r32(IPG_LATECOLLISIONS);
1019         temp2 = ipg_r16(IPG_CARRIERSENSEERRORS);
1020         sp->stats.collisions += temp1;
1021         sp->stats.tx_dropped += ipg_r16(IPG_FRAMESABORTXSCOLLS);
1022         sp->stats.tx_errors += ipg_r16(IPG_FRAMESWEXDEFERRAL) +
1023                 ipg_r32(IPG_FRAMESWDEFERREDXMT) + temp1 + temp2;
1024         sp->stats.multicast += ipg_r32(IPG_MCSTOCTETRCVDOK);
1025
1026         /* detailed tx_errors */
1027         sp->stats.tx_carrier_errors += temp2;
1028
1029         /* detailed rx_errors */
1030         sp->stats.rx_length_errors += ipg_r16(IPG_INRANGELENGTHERRORS) +
1031                 ipg_r16(IPG_FRAMETOOLONGERRRORS);
1032         sp->stats.rx_crc_errors += ipg_r16(IPG_FRAMECHECKSEQERRORS);
1033
1034         /* Unutilized IPG statistic registers. */
1035         ipg_r32(IPG_MCSTFRAMESRCVDOK);
1036
1037         return &sp->stats;
1038 }
1039
1040 /* Restore used receive buffers. */
1041 static int ipg_nic_rxrestore(struct net_device *dev)
1042 {
1043         struct ipg_nic_private *sp = netdev_priv(dev);
1044         const unsigned int curr = sp->rx_current;
1045         unsigned int dirty = sp->rx_dirty;
1046
1047         IPG_DEBUG_MSG("_nic_rxrestore\n");
1048
1049         for (dirty = sp->rx_dirty; curr - dirty > 0; dirty++) {
1050                 unsigned int entry = dirty % IPG_RFDLIST_LENGTH;
1051
1052                 /* rx_copybreak may poke hole here and there. */
1053                 if (sp->rx_buff[entry])
1054                         continue;
1055
1056                 /* Generate a new receive buffer to replace the
1057                  * current buffer (which will be released by the
1058                  * Linux system).
1059                  */
1060                 if (ipg_get_rxbuff(dev, entry) < 0) {
1061                         IPG_DEBUG_MSG("Cannot allocate new Rx buffer\n");
1062
1063                         break;
1064                 }
1065
1066                 /* Reset the RFS field. */
1067                 sp->rxd[entry].rfs = 0x0000000000000000;
1068         }
1069         sp->rx_dirty = dirty;
1070
1071         return 0;
1072 }
1073
1074 /* use jumboindex and jumbosize to control jumbo frame status
1075  * initial status is jumboindex=-1 and jumbosize=0
1076  * 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done.
1077  * 2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving
1078  * 3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump
1079  *               previous receiving and need to continue dumping the current one
1080  */
1081 enum {
1082         NORMAL_PACKET,
1083         ERROR_PACKET
1084 };
1085
1086 enum {
1087         FRAME_NO_START_NO_END   = 0,
1088         FRAME_WITH_START                = 1,
1089         FRAME_WITH_END          = 10,
1090         FRAME_WITH_START_WITH_END = 11
1091 };
1092
1093 static void ipg_nic_rx_free_skb(struct net_device *dev)
1094 {
1095         struct ipg_nic_private *sp = netdev_priv(dev);
1096         unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
1097
1098         if (sp->rx_buff[entry]) {
1099                 struct ipg_rx *rxfd = sp->rxd + entry;
1100
1101                 pci_unmap_single(sp->pdev,
1102                         le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1103                         sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1104                 dev_kfree_skb_irq(sp->rx_buff[entry]);
1105                 sp->rx_buff[entry] = NULL;
1106         }
1107 }
1108
1109 static int ipg_nic_rx_check_frame_type(struct net_device *dev)
1110 {
1111         struct ipg_nic_private *sp = netdev_priv(dev);
1112         struct ipg_rx *rxfd = sp->rxd + (sp->rx_current % IPG_RFDLIST_LENGTH);
1113         int type = FRAME_NO_START_NO_END;
1114
1115         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART)
1116                 type += FRAME_WITH_START;
1117         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND)
1118                 type += FRAME_WITH_END;
1119         return type;
1120 }
1121
1122 static int ipg_nic_rx_check_error(struct net_device *dev)
1123 {
1124         struct ipg_nic_private *sp = netdev_priv(dev);
1125         unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
1126         struct ipg_rx *rxfd = sp->rxd + entry;
1127
1128         if (IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1129              (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
1130               IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
1131               IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))) {
1132                 IPG_DEBUG_MSG("Rx error, RFS = %016lx\n",
1133                               (unsigned long) rxfd->rfs);
1134
1135                 /* Increment general receive error statistic. */
1136                 sp->stats.rx_errors++;
1137
1138                 /* Increment detailed receive error statistics. */
1139                 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1140                         IPG_DEBUG_MSG("RX FIFO overrun occurred\n");
1141
1142                         sp->stats.rx_fifo_errors++;
1143                 }
1144
1145                 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1146                         IPG_DEBUG_MSG("RX runt occurred\n");
1147                         sp->stats.rx_length_errors++;
1148                 }
1149
1150                 /* Do nothing for IPG_RFS_RXOVERSIZEDFRAME,
1151                  * error count handled by a IPG statistic register.
1152                  */
1153
1154                 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1155                         IPG_DEBUG_MSG("RX alignment error occurred\n");
1156                         sp->stats.rx_frame_errors++;
1157                 }
1158
1159                 /* Do nothing for IPG_RFS_RXFCSERROR, error count
1160                  * handled by a IPG statistic register.
1161                  */
1162
1163                 /* Free the memory associated with the RX
1164                  * buffer since it is erroneous and we will
1165                  * not pass it to higher layer processes.
1166                  */
1167                 if (sp->rx_buff[entry]) {
1168                         pci_unmap_single(sp->pdev,
1169                                 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1170                                 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1171
1172                         dev_kfree_skb_irq(sp->rx_buff[entry]);
1173                         sp->rx_buff[entry] = NULL;
1174                 }
1175                 return ERROR_PACKET;
1176         }
1177         return NORMAL_PACKET;
1178 }
1179
1180 static void ipg_nic_rx_with_start_and_end(struct net_device *dev,
1181                                           struct ipg_nic_private *sp,
1182                                           struct ipg_rx *rxfd, unsigned entry)
1183 {
1184         struct ipg_jumbo *jumbo = &sp->jumbo;
1185         struct sk_buff *skb;
1186         int framelen;
1187
1188         if (jumbo->found_start) {
1189                 dev_kfree_skb_irq(jumbo->skb);
1190                 jumbo->found_start = 0;
1191                 jumbo->current_size = 0;
1192                 jumbo->skb = NULL;
1193         }
1194
1195         /* 1: found error, 0 no error */
1196         if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET)
1197                 return;
1198
1199         skb = sp->rx_buff[entry];
1200         if (!skb)
1201                 return;
1202
1203         /* accept this frame and send to upper layer */
1204         framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1205         if (framelen > sp->rxfrag_size)
1206                 framelen = sp->rxfrag_size;
1207
1208         skb_put(skb, framelen);
1209         skb->protocol = eth_type_trans(skb, dev);
1210         skb_checksum_none_assert(skb);
1211         netif_rx(skb);
1212         sp->rx_buff[entry] = NULL;
1213 }
1214
1215 static void ipg_nic_rx_with_start(struct net_device *dev,
1216                                   struct ipg_nic_private *sp,
1217                                   struct ipg_rx *rxfd, unsigned entry)
1218 {
1219         struct ipg_jumbo *jumbo = &sp->jumbo;
1220         struct pci_dev *pdev = sp->pdev;
1221         struct sk_buff *skb;
1222
1223         /* 1: found error, 0 no error */
1224         if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET)
1225                 return;
1226
1227         /* accept this frame and send to upper layer */
1228         skb = sp->rx_buff[entry];
1229         if (!skb)
1230                 return;
1231
1232         if (jumbo->found_start)
1233                 dev_kfree_skb_irq(jumbo->skb);
1234
1235         pci_unmap_single(pdev, le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1236                          sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1237
1238         skb_put(skb, sp->rxfrag_size);
1239
1240         jumbo->found_start = 1;
1241         jumbo->current_size = sp->rxfrag_size;
1242         jumbo->skb = skb;
1243
1244         sp->rx_buff[entry] = NULL;
1245 }
1246
1247 static void ipg_nic_rx_with_end(struct net_device *dev,
1248                                 struct ipg_nic_private *sp,
1249                                 struct ipg_rx *rxfd, unsigned entry)
1250 {
1251         struct ipg_jumbo *jumbo = &sp->jumbo;
1252
1253         /* 1: found error, 0 no error */
1254         if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) {
1255                 struct sk_buff *skb = sp->rx_buff[entry];
1256
1257                 if (!skb)
1258                         return;
1259
1260                 if (jumbo->found_start) {
1261                         int framelen, endframelen;
1262
1263                         framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1264
1265                         endframelen = framelen - jumbo->current_size;
1266                         if (framelen > sp->rxsupport_size)
1267                                 dev_kfree_skb_irq(jumbo->skb);
1268                         else {
1269                                 memcpy(skb_put(jumbo->skb, endframelen),
1270                                        skb->data, endframelen);
1271
1272                                 jumbo->skb->protocol =
1273                                     eth_type_trans(jumbo->skb, dev);
1274
1275                                 skb_checksum_none_assert(jumbo->skb);
1276                                 netif_rx(jumbo->skb);
1277                         }
1278                 }
1279
1280                 jumbo->found_start = 0;
1281                 jumbo->current_size = 0;
1282                 jumbo->skb = NULL;
1283
1284                 ipg_nic_rx_free_skb(dev);
1285         } else {
1286                 dev_kfree_skb_irq(jumbo->skb);
1287                 jumbo->found_start = 0;
1288                 jumbo->current_size = 0;
1289                 jumbo->skb = NULL;
1290         }
1291 }
1292
1293 static void ipg_nic_rx_no_start_no_end(struct net_device *dev,
1294                                        struct ipg_nic_private *sp,
1295                                        struct ipg_rx *rxfd, unsigned entry)
1296 {
1297         struct ipg_jumbo *jumbo = &sp->jumbo;
1298
1299         /* 1: found error, 0 no error */
1300         if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) {
1301                 struct sk_buff *skb = sp->rx_buff[entry];
1302
1303                 if (skb) {
1304                         if (jumbo->found_start) {
1305                                 jumbo->current_size += sp->rxfrag_size;
1306                                 if (jumbo->current_size <= sp->rxsupport_size) {
1307                                         memcpy(skb_put(jumbo->skb,
1308                                                        sp->rxfrag_size),
1309                                                skb->data, sp->rxfrag_size);
1310                                 }
1311                         }
1312                         ipg_nic_rx_free_skb(dev);
1313                 }
1314         } else {
1315                 dev_kfree_skb_irq(jumbo->skb);
1316                 jumbo->found_start = 0;
1317                 jumbo->current_size = 0;
1318                 jumbo->skb = NULL;
1319         }
1320 }
1321
1322 static int ipg_nic_rx_jumbo(struct net_device *dev)
1323 {
1324         struct ipg_nic_private *sp = netdev_priv(dev);
1325         unsigned int curr = sp->rx_current;
1326         void __iomem *ioaddr = sp->ioaddr;
1327         unsigned int i;
1328
1329         IPG_DEBUG_MSG("_nic_rx\n");
1330
1331         for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
1332                 unsigned int entry = curr % IPG_RFDLIST_LENGTH;
1333                 struct ipg_rx *rxfd = sp->rxd + entry;
1334
1335                 if (!(rxfd->rfs & cpu_to_le64(IPG_RFS_RFDDONE)))
1336                         break;
1337
1338                 switch (ipg_nic_rx_check_frame_type(dev)) {
1339                 case FRAME_WITH_START_WITH_END:
1340                         ipg_nic_rx_with_start_and_end(dev, sp, rxfd, entry);
1341                         break;
1342                 case FRAME_WITH_START:
1343                         ipg_nic_rx_with_start(dev, sp, rxfd, entry);
1344                         break;
1345                 case FRAME_WITH_END:
1346                         ipg_nic_rx_with_end(dev, sp, rxfd, entry);
1347                         break;
1348                 case FRAME_NO_START_NO_END:
1349                         ipg_nic_rx_no_start_no_end(dev, sp, rxfd, entry);
1350                         break;
1351                 }
1352         }
1353
1354         sp->rx_current = curr;
1355
1356         if (i == IPG_MAXRFDPROCESS_COUNT) {
1357                 /* There are more RFDs to process, however the
1358                  * allocated amount of RFD processing time has
1359                  * expired. Assert Interrupt Requested to make
1360                  * sure we come back to process the remaining RFDs.
1361                  */
1362                 ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
1363         }
1364
1365         ipg_nic_rxrestore(dev);
1366
1367         return 0;
1368 }
1369
1370 static int ipg_nic_rx(struct net_device *dev)
1371 {
1372         /* Transfer received Ethernet frames to higher network layers. */
1373         struct ipg_nic_private *sp = netdev_priv(dev);
1374         unsigned int curr = sp->rx_current;
1375         void __iomem *ioaddr = sp->ioaddr;
1376         struct ipg_rx *rxfd;
1377         unsigned int i;
1378
1379         IPG_DEBUG_MSG("_nic_rx\n");
1380
1381 #define __RFS_MASK \
1382         cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND)
1383
1384         for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
1385                 unsigned int entry = curr % IPG_RFDLIST_LENGTH;
1386                 struct sk_buff *skb = sp->rx_buff[entry];
1387                 unsigned int framelen;
1388
1389                 rxfd = sp->rxd + entry;
1390
1391                 if (((rxfd->rfs & __RFS_MASK) != __RFS_MASK) || !skb)
1392                         break;
1393
1394                 /* Get received frame length. */
1395                 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1396
1397                 /* Check for jumbo frame arrival with too small
1398                  * RXFRAG_SIZE.
1399                  */
1400                 if (framelen > sp->rxfrag_size) {
1401                         IPG_DEBUG_MSG
1402                             ("RFS FrameLen > allocated fragment size\n");
1403
1404                         framelen = sp->rxfrag_size;
1405                 }
1406
1407                 if ((IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1408                        (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
1409                         IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
1410                         IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR)))) {
1411
1412                         IPG_DEBUG_MSG("Rx error, RFS = %016lx\n",
1413                                       (unsigned long int) rxfd->rfs);
1414
1415                         /* Increment general receive error statistic. */
1416                         sp->stats.rx_errors++;
1417
1418                         /* Increment detailed receive error statistics. */
1419                         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1420                                 IPG_DEBUG_MSG("RX FIFO overrun occurred\n");
1421                                 sp->stats.rx_fifo_errors++;
1422                         }
1423
1424                         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1425                                 IPG_DEBUG_MSG("RX runt occurred\n");
1426                                 sp->stats.rx_length_errors++;
1427                         }
1428
1429                         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXOVERSIZEDFRAME) ;
1430                         /* Do nothing, error count handled by a IPG
1431                          * statistic register.
1432                          */
1433
1434                         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1435                                 IPG_DEBUG_MSG("RX alignment error occurred\n");
1436                                 sp->stats.rx_frame_errors++;
1437                         }
1438
1439                         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFCSERROR) ;
1440                         /* Do nothing, error count handled by a IPG
1441                          * statistic register.
1442                          */
1443
1444                         /* Free the memory associated with the RX
1445                          * buffer since it is erroneous and we will
1446                          * not pass it to higher layer processes.
1447                          */
1448                         if (skb) {
1449                                 __le64 info = rxfd->frag_info;
1450
1451                                 pci_unmap_single(sp->pdev,
1452                                         le64_to_cpu(info) & ~IPG_RFI_FRAGLEN,
1453                                         sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1454
1455                                 dev_kfree_skb_irq(skb);
1456                         }
1457                 } else {
1458
1459                         /* Adjust the new buffer length to accommodate the size
1460                          * of the received frame.
1461                          */
1462                         skb_put(skb, framelen);
1463
1464                         /* Set the buffer's protocol field to Ethernet. */
1465                         skb->protocol = eth_type_trans(skb, dev);
1466
1467                         /* The IPG encountered an error with (or
1468                          * there were no) IP/TCP/UDP checksums.
1469                          * This may or may not indicate an invalid
1470                          * IP/TCP/UDP frame was received. Let the
1471                          * upper layer decide.
1472                          */
1473                         skb_checksum_none_assert(skb);
1474
1475                         /* Hand off frame for higher layer processing.
1476                          * The function netif_rx() releases the sk_buff
1477                          * when processing completes.
1478                          */
1479                         netif_rx(skb);
1480                 }
1481
1482                 /* Assure RX buffer is not reused by IPG. */
1483                 sp->rx_buff[entry] = NULL;
1484         }
1485
1486         /*
1487          * If there are more RFDs to process and the allocated amount of RFD
1488          * processing time has expired, assert Interrupt Requested to make
1489          * sure we come back to process the remaining RFDs.
1490          */
1491         if (i == IPG_MAXRFDPROCESS_COUNT)
1492                 ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
1493
1494 #ifdef IPG_DEBUG
1495         /* Check if the RFD list contained no receive frame data. */
1496         if (!i)
1497                 sp->EmptyRFDListCount++;
1498 #endif
1499         while ((le64_to_cpu(rxfd->rfs) & IPG_RFS_RFDDONE) &&
1500                !((le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) &&
1501                  (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND))) {
1502                 unsigned int entry = curr++ % IPG_RFDLIST_LENGTH;
1503
1504                 rxfd = sp->rxd + entry;
1505
1506                 IPG_DEBUG_MSG("Frame requires multiple RFDs\n");
1507
1508                 /* An unexpected event, additional code needed to handle
1509                  * properly. So for the time being, just disregard the
1510                  * frame.
1511                  */
1512
1513                 /* Free the memory associated with the RX
1514                  * buffer since it is erroneous and we will
1515                  * not pass it to higher layer processes.
1516                  */
1517                 if (sp->rx_buff[entry]) {
1518                         pci_unmap_single(sp->pdev,
1519                                 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1520                                 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1521                         dev_kfree_skb_irq(sp->rx_buff[entry]);
1522                 }
1523
1524                 /* Assure RX buffer is not reused by IPG. */
1525                 sp->rx_buff[entry] = NULL;
1526         }
1527
1528         sp->rx_current = curr;
1529
1530         /* Check to see if there are a minimum number of used
1531          * RFDs before restoring any (should improve performance.)
1532          */
1533         if ((curr - sp->rx_dirty) >= IPG_MINUSEDRFDSTOFREE)
1534                 ipg_nic_rxrestore(dev);
1535
1536         return 0;
1537 }
1538
1539 static void ipg_reset_after_host_error(struct work_struct *work)
1540 {
1541         struct ipg_nic_private *sp =
1542                 container_of(work, struct ipg_nic_private, task.work);
1543         struct net_device *dev = sp->dev;
1544
1545         /*
1546          * Acknowledge HostError interrupt by resetting
1547          * IPG DMA and HOST.
1548          */
1549         ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
1550
1551         init_rfdlist(dev);
1552         init_tfdlist(dev);
1553
1554         if (ipg_io_config(dev) < 0) {
1555                 netdev_info(dev, "Cannot recover from PCI error\n");
1556                 schedule_delayed_work(&sp->task, HZ);
1557         }
1558 }
1559
1560 static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst)
1561 {
1562         struct net_device *dev = dev_inst;
1563         struct ipg_nic_private *sp = netdev_priv(dev);
1564         void __iomem *ioaddr = sp->ioaddr;
1565         unsigned int handled = 0;
1566         u16 status;
1567
1568         IPG_DEBUG_MSG("_interrupt_handler\n");
1569
1570         if (sp->is_jumbo)
1571                 ipg_nic_rxrestore(dev);
1572
1573         spin_lock(&sp->lock);
1574
1575         /* Get interrupt source information, and acknowledge
1576          * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly,
1577          * IntRequested, MacControlFrame, LinkEvent) interrupts
1578          * if issued. Also, all IPG interrupts are disabled by
1579          * reading IntStatusAck.
1580          */
1581         status = ipg_r16(INT_STATUS_ACK);
1582
1583         IPG_DEBUG_MSG("IntStatusAck = %04x\n", status);
1584
1585         /* Shared IRQ of remove event. */
1586         if (!(status & IPG_IS_RSVD_MASK))
1587                 goto out_enable;
1588
1589         handled = 1;
1590
1591         if (unlikely(!netif_running(dev)))
1592                 goto out_unlock;
1593
1594         /* If RFDListEnd interrupt, restore all used RFDs. */
1595         if (status & IPG_IS_RFD_LIST_END) {
1596                 IPG_DEBUG_MSG("RFDListEnd Interrupt\n");
1597
1598                 /* The RFD list end indicates an RFD was encountered
1599                  * with a 0 NextPtr, or with an RFDDone bit set to 1
1600                  * (indicating the RFD is not read for use by the
1601                  * IPG.) Try to restore all RFDs.
1602                  */
1603                 ipg_nic_rxrestore(dev);
1604
1605 #ifdef IPG_DEBUG
1606                 /* Increment the RFDlistendCount counter. */
1607                 sp->RFDlistendCount++;
1608 #endif
1609         }
1610
1611         /* If RFDListEnd, RxDMAPriority, RxDMAComplete, or
1612          * IntRequested interrupt, process received frames. */
1613         if ((status & IPG_IS_RX_DMA_PRIORITY) ||
1614             (status & IPG_IS_RFD_LIST_END) ||
1615             (status & IPG_IS_RX_DMA_COMPLETE) ||
1616             (status & IPG_IS_INT_REQUESTED)) {
1617 #ifdef IPG_DEBUG
1618                 /* Increment the RFD list checked counter if interrupted
1619                  * only to check the RFD list. */
1620                 if (status & (~(IPG_IS_RX_DMA_PRIORITY | IPG_IS_RFD_LIST_END |
1621                                 IPG_IS_RX_DMA_COMPLETE | IPG_IS_INT_REQUESTED) &
1622                                (IPG_IS_HOST_ERROR | IPG_IS_TX_DMA_COMPLETE |
1623                                 IPG_IS_LINK_EVENT | IPG_IS_TX_COMPLETE |
1624                                 IPG_IS_UPDATE_STATS)))
1625                         sp->RFDListCheckedCount++;
1626 #endif
1627
1628                 if (sp->is_jumbo)
1629                         ipg_nic_rx_jumbo(dev);
1630                 else
1631                         ipg_nic_rx(dev);
1632         }
1633
1634         /* If TxDMAComplete interrupt, free used TFDs. */
1635         if (status & IPG_IS_TX_DMA_COMPLETE)
1636                 ipg_nic_txfree(dev);
1637
1638         /* TxComplete interrupts indicate one of numerous actions.
1639          * Determine what action to take based on TXSTATUS register.
1640          */
1641         if (status & IPG_IS_TX_COMPLETE)
1642                 ipg_nic_txcleanup(dev);
1643
1644         /* If UpdateStats interrupt, update Linux Ethernet statistics */
1645         if (status & IPG_IS_UPDATE_STATS)
1646                 ipg_nic_get_stats(dev);
1647
1648         /* If HostError interrupt, reset IPG. */
1649         if (status & IPG_IS_HOST_ERROR) {
1650                 IPG_DDEBUG_MSG("HostError Interrupt\n");
1651
1652                 schedule_delayed_work(&sp->task, 0);
1653         }
1654
1655         /* If LinkEvent interrupt, resolve autonegotiation. */
1656         if (status & IPG_IS_LINK_EVENT) {
1657                 if (ipg_config_autoneg(dev) < 0)
1658                         netdev_info(dev, "Auto-negotiation error\n");
1659         }
1660
1661         /* If MACCtrlFrame interrupt, do nothing. */
1662         if (status & IPG_IS_MAC_CTRL_FRAME)
1663                 IPG_DEBUG_MSG("MACCtrlFrame interrupt\n");
1664
1665         /* If RxComplete interrupt, do nothing. */
1666         if (status & IPG_IS_RX_COMPLETE)
1667                 IPG_DEBUG_MSG("RxComplete interrupt\n");
1668
1669         /* If RxEarly interrupt, do nothing. */
1670         if (status & IPG_IS_RX_EARLY)
1671                 IPG_DEBUG_MSG("RxEarly interrupt\n");
1672
1673 out_enable:
1674         /* Re-enable IPG interrupts. */
1675         ipg_w16(IPG_IE_TX_DMA_COMPLETE | IPG_IE_RX_DMA_COMPLETE |
1676                 IPG_IE_HOST_ERROR | IPG_IE_INT_REQUESTED | IPG_IE_TX_COMPLETE |
1677                 IPG_IE_LINK_EVENT | IPG_IE_UPDATE_STATS, INT_ENABLE);
1678 out_unlock:
1679         spin_unlock(&sp->lock);
1680
1681         return IRQ_RETVAL(handled);
1682 }
1683
1684 static void ipg_rx_clear(struct ipg_nic_private *sp)
1685 {
1686         unsigned int i;
1687
1688         for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
1689                 if (sp->rx_buff[i]) {
1690                         struct ipg_rx *rxfd = sp->rxd + i;
1691
1692                         dev_kfree_skb_irq(sp->rx_buff[i]);
1693                         sp->rx_buff[i] = NULL;
1694                         pci_unmap_single(sp->pdev,
1695                                 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1696                                 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1697                 }
1698         }
1699 }
1700
1701 static void ipg_tx_clear(struct ipg_nic_private *sp)
1702 {
1703         unsigned int i;
1704
1705         for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
1706                 if (sp->tx_buff[i]) {
1707                         struct ipg_tx *txfd = sp->txd + i;
1708
1709                         pci_unmap_single(sp->pdev,
1710                                 le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
1711                                 sp->tx_buff[i]->len, PCI_DMA_TODEVICE);
1712
1713                         dev_kfree_skb_irq(sp->tx_buff[i]);
1714
1715                         sp->tx_buff[i] = NULL;
1716                 }
1717         }
1718 }
1719
1720 static int ipg_nic_open(struct net_device *dev)
1721 {
1722         struct ipg_nic_private *sp = netdev_priv(dev);
1723         void __iomem *ioaddr = sp->ioaddr;
1724         struct pci_dev *pdev = sp->pdev;
1725         int rc;
1726
1727         IPG_DEBUG_MSG("_nic_open\n");
1728
1729         sp->rx_buf_sz = sp->rxsupport_size;
1730
1731         /* Check for interrupt line conflicts, and request interrupt
1732          * line for IPG.
1733          *
1734          * IMPORTANT: Disable IPG interrupts prior to registering
1735          *            IRQ.
1736          */
1737         ipg_w16(0x0000, INT_ENABLE);
1738
1739         /* Register the interrupt line to be used by the IPG within
1740          * the Linux system.
1741          */
1742         rc = request_irq(pdev->irq, ipg_interrupt_handler, IRQF_SHARED,
1743                          dev->name, dev);
1744         if (rc < 0) {
1745                 netdev_info(dev, "Error when requesting interrupt\n");
1746                 goto out;
1747         }
1748
1749         dev->irq = pdev->irq;
1750
1751         rc = -ENOMEM;
1752
1753         sp->rxd = dma_alloc_coherent(&pdev->dev, IPG_RX_RING_BYTES,
1754                                      &sp->rxd_map, GFP_KERNEL);
1755         if (!sp->rxd)
1756                 goto err_free_irq_0;
1757
1758         sp->txd = dma_alloc_coherent(&pdev->dev, IPG_TX_RING_BYTES,
1759                                      &sp->txd_map, GFP_KERNEL);
1760         if (!sp->txd)
1761                 goto err_free_rx_1;
1762
1763         rc = init_rfdlist(dev);
1764         if (rc < 0) {
1765                 netdev_info(dev, "Error during configuration\n");
1766                 goto err_free_tx_2;
1767         }
1768
1769         init_tfdlist(dev);
1770
1771         rc = ipg_io_config(dev);
1772         if (rc < 0) {
1773                 netdev_info(dev, "Error during configuration\n");
1774                 goto err_release_tfdlist_3;
1775         }
1776
1777         /* Resolve autonegotiation. */
1778         if (ipg_config_autoneg(dev) < 0)
1779                 netdev_info(dev, "Auto-negotiation error\n");
1780
1781         /* initialize JUMBO Frame control variable */
1782         sp->jumbo.found_start = 0;
1783         sp->jumbo.current_size = 0;
1784         sp->jumbo.skb = NULL;
1785
1786         /* Enable transmit and receive operation of the IPG. */
1787         ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_RX_ENABLE | IPG_MC_TX_ENABLE) &
1788                  IPG_MC_RSVD_MASK, MAC_CTRL);
1789
1790         netif_start_queue(dev);
1791 out:
1792         return rc;
1793
1794 err_release_tfdlist_3:
1795         ipg_tx_clear(sp);
1796         ipg_rx_clear(sp);
1797 err_free_tx_2:
1798         dma_free_coherent(&pdev->dev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
1799 err_free_rx_1:
1800         dma_free_coherent(&pdev->dev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
1801 err_free_irq_0:
1802         free_irq(pdev->irq, dev);
1803         goto out;
1804 }
1805
1806 static int ipg_nic_stop(struct net_device *dev)
1807 {
1808         struct ipg_nic_private *sp = netdev_priv(dev);
1809         void __iomem *ioaddr = sp->ioaddr;
1810         struct pci_dev *pdev = sp->pdev;
1811
1812         IPG_DEBUG_MSG("_nic_stop\n");
1813
1814         netif_stop_queue(dev);
1815
1816         IPG_DUMPTFDLIST(dev);
1817
1818         do {
1819                 (void) ipg_r16(INT_STATUS_ACK);
1820
1821                 ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
1822
1823                 synchronize_irq(pdev->irq);
1824         } while (ipg_r16(INT_ENABLE) & IPG_IE_RSVD_MASK);
1825
1826         ipg_rx_clear(sp);
1827
1828         ipg_tx_clear(sp);
1829
1830         pci_free_consistent(pdev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
1831         pci_free_consistent(pdev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
1832
1833         free_irq(pdev->irq, dev);
1834
1835         return 0;
1836 }
1837
1838 static netdev_tx_t ipg_nic_hard_start_xmit(struct sk_buff *skb,
1839                                            struct net_device *dev)
1840 {
1841         struct ipg_nic_private *sp = netdev_priv(dev);
1842         void __iomem *ioaddr = sp->ioaddr;
1843         unsigned int entry = sp->tx_current % IPG_TFDLIST_LENGTH;
1844         unsigned long flags;
1845         struct ipg_tx *txfd;
1846
1847         IPG_DDEBUG_MSG("_nic_hard_start_xmit\n");
1848
1849         /* If in 10Mbps mode, stop the transmit queue so
1850          * no more transmit frames are accepted.
1851          */
1852         if (sp->tenmbpsmode)
1853                 netif_stop_queue(dev);
1854
1855         if (sp->reset_current_tfd) {
1856                 sp->reset_current_tfd = 0;
1857                 entry = 0;
1858         }
1859
1860         txfd = sp->txd + entry;
1861
1862         sp->tx_buff[entry] = skb;
1863
1864         /* Clear all TFC fields, except TFDDONE. */
1865         txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
1866
1867         /* Specify the TFC field within the TFD. */
1868         txfd->tfc |= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED |
1869                 (IPG_TFC_FRAMEID & sp->tx_current) |
1870                 (IPG_TFC_FRAGCOUNT & (1 << 24)));
1871         /*
1872          * 16--17 (WordAlign) <- 3 (disable),
1873          * 0--15 (FrameId) <- sp->tx_current,
1874          * 24--27 (FragCount) <- 1
1875          */
1876
1877         /* Request TxComplete interrupts at an interval defined
1878          * by the constant IPG_FRAMESBETWEENTXCOMPLETES.
1879          * Request TxComplete interrupt for every frame
1880          * if in 10Mbps mode to accommodate problem with 10Mbps
1881          * processing.
1882          */
1883         if (sp->tenmbpsmode)
1884                 txfd->tfc |= cpu_to_le64(IPG_TFC_TXINDICATE);
1885         txfd->tfc |= cpu_to_le64(IPG_TFC_TXDMAINDICATE);
1886         /* Based on compilation option, determine if FCS is to be
1887          * appended to transmit frame by IPG.
1888          */
1889         if (!(IPG_APPEND_FCS_ON_TX))
1890                 txfd->tfc |= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE);
1891
1892         /* Based on compilation option, determine if IP, TCP and/or
1893          * UDP checksums are to be added to transmit frame by IPG.
1894          */
1895         if (IPG_ADD_IPCHECKSUM_ON_TX)
1896                 txfd->tfc |= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE);
1897
1898         if (IPG_ADD_TCPCHECKSUM_ON_TX)
1899                 txfd->tfc |= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE);
1900
1901         if (IPG_ADD_UDPCHECKSUM_ON_TX)
1902                 txfd->tfc |= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE);
1903
1904         /* Based on compilation option, determine if VLAN tag info is to be
1905          * inserted into transmit frame by IPG.
1906          */
1907         if (IPG_INSERT_MANUAL_VLAN_TAG) {
1908                 txfd->tfc |= cpu_to_le64(IPG_TFC_VLANTAGINSERT |
1909                         ((u64) IPG_MANUAL_VLAN_VID << 32) |
1910                         ((u64) IPG_MANUAL_VLAN_CFI << 44) |
1911                         ((u64) IPG_MANUAL_VLAN_USERPRIORITY << 45));
1912         }
1913
1914         /* The fragment start location within system memory is defined
1915          * by the sk_buff structure's data field. The physical address
1916          * of this location within the system's virtual memory space
1917          * is determined using the IPG_HOST2BUS_MAP function.
1918          */
1919         txfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
1920                 skb->len, PCI_DMA_TODEVICE));
1921
1922         /* The length of the fragment within system memory is defined by
1923          * the sk_buff structure's len field.
1924          */
1925         txfd->frag_info |= cpu_to_le64(IPG_TFI_FRAGLEN &
1926                 ((u64) (skb->len & 0xffff) << 48));
1927
1928         /* Clear the TFDDone bit last to indicate the TFD is ready
1929          * for transfer to the IPG.
1930          */
1931         txfd->tfc &= cpu_to_le64(~IPG_TFC_TFDDONE);
1932
1933         spin_lock_irqsave(&sp->lock, flags);
1934
1935         sp->tx_current++;
1936
1937         mmiowb();
1938
1939         ipg_w32(IPG_DC_TX_DMA_POLL_NOW, DMA_CTRL);
1940
1941         if (sp->tx_current == (sp->tx_dirty + IPG_TFDLIST_LENGTH))
1942                 netif_stop_queue(dev);
1943
1944         spin_unlock_irqrestore(&sp->lock, flags);
1945
1946         return NETDEV_TX_OK;
1947 }
1948
1949 static void ipg_set_phy_default_param(unsigned char rev,
1950                                       struct net_device *dev, int phy_address)
1951 {
1952         unsigned short length;
1953         unsigned char revision;
1954         const unsigned short *phy_param;
1955         unsigned short address, value;
1956
1957         phy_param = &DefaultPhyParam[0];
1958         length = *phy_param & 0x00FF;
1959         revision = (unsigned char)((*phy_param) >> 8);
1960         phy_param++;
1961         while (length != 0) {
1962                 if (rev == revision) {
1963                         while (length > 1) {
1964                                 address = *phy_param;
1965                                 value = *(phy_param + 1);
1966                                 phy_param += 2;
1967                                 mdio_write(dev, phy_address, address, value);
1968                                 length -= 4;
1969                         }
1970                         break;
1971                 } else {
1972                         phy_param += length / 2;
1973                         length = *phy_param & 0x00FF;
1974                         revision = (unsigned char)((*phy_param) >> 8);
1975                         phy_param++;
1976                 }
1977         }
1978 }
1979
1980 static int read_eeprom(struct net_device *dev, int eep_addr)
1981 {
1982         void __iomem *ioaddr = ipg_ioaddr(dev);
1983         unsigned int i;
1984         int ret = 0;
1985         u16 value;
1986
1987         value = IPG_EC_EEPROM_READOPCODE | (eep_addr & 0xff);
1988         ipg_w16(value, EEPROM_CTRL);
1989
1990         for (i = 0; i < 1000; i++) {
1991                 u16 data;
1992
1993                 mdelay(10);
1994                 data = ipg_r16(EEPROM_CTRL);
1995                 if (!(data & IPG_EC_EEPROM_BUSY)) {
1996                         ret = ipg_r16(EEPROM_DATA);
1997                         break;
1998                 }
1999         }
2000         return ret;
2001 }
2002
2003 static void ipg_init_mii(struct net_device *dev)
2004 {
2005         struct ipg_nic_private *sp = netdev_priv(dev);
2006         struct mii_if_info *mii_if = &sp->mii_if;
2007         int phyaddr;
2008
2009         mii_if->dev          = dev;
2010         mii_if->mdio_read    = mdio_read;
2011         mii_if->mdio_write   = mdio_write;
2012         mii_if->phy_id_mask  = 0x1f;
2013         mii_if->reg_num_mask = 0x1f;
2014
2015         mii_if->phy_id = phyaddr = ipg_find_phyaddr(dev);
2016
2017         if (phyaddr != 0x1f) {
2018                 u16 mii_phyctrl, mii_1000cr;
2019
2020                 mii_1000cr  = mdio_read(dev, phyaddr, MII_CTRL1000);
2021                 mii_1000cr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF |
2022                         GMII_PHY_1000BASETCONTROL_PreferMaster;
2023                 mdio_write(dev, phyaddr, MII_CTRL1000, mii_1000cr);
2024
2025                 mii_phyctrl = mdio_read(dev, phyaddr, MII_BMCR);
2026
2027                 /* Set default phyparam */
2028                 ipg_set_phy_default_param(sp->pdev->revision, dev, phyaddr);
2029
2030                 /* Reset PHY */
2031                 mii_phyctrl |= BMCR_RESET | BMCR_ANRESTART;
2032                 mdio_write(dev, phyaddr, MII_BMCR, mii_phyctrl);
2033
2034         }
2035 }
2036
2037 static int ipg_hw_init(struct net_device *dev)
2038 {
2039         struct ipg_nic_private *sp = netdev_priv(dev);
2040         void __iomem *ioaddr = sp->ioaddr;
2041         unsigned int i;
2042         int rc;
2043
2044         /* Read/Write and Reset EEPROM Value */
2045         /* Read LED Mode Configuration from EEPROM */
2046         sp->led_mode = read_eeprom(dev, 6);
2047
2048         /* Reset all functions within the IPG. Do not assert
2049          * RST_OUT as not compatible with some PHYs.
2050          */
2051         rc = ipg_reset(dev, IPG_RESET_MASK);
2052         if (rc < 0)
2053                 goto out;
2054
2055         ipg_init_mii(dev);
2056
2057         /* Read MAC Address from EEPROM */
2058         for (i = 0; i < 3; i++)
2059                 sp->station_addr[i] = read_eeprom(dev, 16 + i);
2060
2061         for (i = 0; i < 3; i++)
2062                 ipg_w16(sp->station_addr[i], STATION_ADDRESS_0 + 2*i);
2063
2064         /* Set station address in ethernet_device structure. */
2065         dev->dev_addr[0] =  ipg_r16(STATION_ADDRESS_0) & 0x00ff;
2066         dev->dev_addr[1] = (ipg_r16(STATION_ADDRESS_0) & 0xff00) >> 8;
2067         dev->dev_addr[2] =  ipg_r16(STATION_ADDRESS_1) & 0x00ff;
2068         dev->dev_addr[3] = (ipg_r16(STATION_ADDRESS_1) & 0xff00) >> 8;
2069         dev->dev_addr[4] =  ipg_r16(STATION_ADDRESS_2) & 0x00ff;
2070         dev->dev_addr[5] = (ipg_r16(STATION_ADDRESS_2) & 0xff00) >> 8;
2071 out:
2072         return rc;
2073 }
2074
2075 static int ipg_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2076 {
2077         struct ipg_nic_private *sp = netdev_priv(dev);
2078         int rc;
2079
2080         mutex_lock(&sp->mii_mutex);
2081         rc = generic_mii_ioctl(&sp->mii_if, if_mii(ifr), cmd, NULL);
2082         mutex_unlock(&sp->mii_mutex);
2083
2084         return rc;
2085 }
2086
2087 static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu)
2088 {
2089         struct ipg_nic_private *sp = netdev_priv(dev);
2090         int err;
2091
2092         /* Function to accommodate changes to Maximum Transfer Unit
2093          * (or MTU) of IPG NIC. Cannot use default function since
2094          * the default will not allow for MTU > 1500 bytes.
2095          */
2096
2097         IPG_DEBUG_MSG("_nic_change_mtu\n");
2098
2099         /*
2100          * Check that the new MTU value is between 68 (14 byte header, 46 byte
2101          * payload, 4 byte FCS) and 10 KB, which is the largest supported MTU.
2102          */
2103         if (new_mtu < 68 || new_mtu > 10240)
2104                 return -EINVAL;
2105
2106         err = ipg_nic_stop(dev);
2107         if (err)
2108                 return err;
2109
2110         dev->mtu = new_mtu;
2111
2112         sp->max_rxframe_size = new_mtu;
2113
2114         sp->rxfrag_size = new_mtu;
2115         if (sp->rxfrag_size > 4088)
2116                 sp->rxfrag_size = 4088;
2117
2118         sp->rxsupport_size = sp->max_rxframe_size;
2119
2120         if (new_mtu > 0x0600)
2121                 sp->is_jumbo = true;
2122         else
2123                 sp->is_jumbo = false;
2124
2125         return ipg_nic_open(dev);
2126 }
2127
2128 static int ipg_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2129 {
2130         struct ipg_nic_private *sp = netdev_priv(dev);
2131         int rc;
2132
2133         mutex_lock(&sp->mii_mutex);
2134         rc = mii_ethtool_gset(&sp->mii_if, cmd);
2135         mutex_unlock(&sp->mii_mutex);
2136
2137         return rc;
2138 }
2139
2140 static int ipg_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2141 {
2142         struct ipg_nic_private *sp = netdev_priv(dev);
2143         int rc;
2144
2145         mutex_lock(&sp->mii_mutex);
2146         rc = mii_ethtool_sset(&sp->mii_if, cmd);
2147         mutex_unlock(&sp->mii_mutex);
2148
2149         return rc;
2150 }
2151
2152 static int ipg_nway_reset(struct net_device *dev)
2153 {
2154         struct ipg_nic_private *sp = netdev_priv(dev);
2155         int rc;
2156
2157         mutex_lock(&sp->mii_mutex);
2158         rc = mii_nway_restart(&sp->mii_if);
2159         mutex_unlock(&sp->mii_mutex);
2160
2161         return rc;
2162 }
2163
2164 static const struct ethtool_ops ipg_ethtool_ops = {
2165         .get_settings = ipg_get_settings,
2166         .set_settings = ipg_set_settings,
2167         .nway_reset   = ipg_nway_reset,
2168 };
2169
2170 static void ipg_remove(struct pci_dev *pdev)
2171 {
2172         struct net_device *dev = pci_get_drvdata(pdev);
2173         struct ipg_nic_private *sp = netdev_priv(dev);
2174
2175         IPG_DEBUG_MSG("_remove\n");
2176
2177         /* Un-register Ethernet device. */
2178         unregister_netdev(dev);
2179
2180         pci_iounmap(pdev, sp->ioaddr);
2181
2182         pci_release_regions(pdev);
2183
2184         free_netdev(dev);
2185         pci_disable_device(pdev);
2186 }
2187
2188 static const struct net_device_ops ipg_netdev_ops = {
2189         .ndo_open               = ipg_nic_open,
2190         .ndo_stop               = ipg_nic_stop,
2191         .ndo_start_xmit         = ipg_nic_hard_start_xmit,
2192         .ndo_get_stats          = ipg_nic_get_stats,
2193         .ndo_set_rx_mode        = ipg_nic_set_multicast_list,
2194         .ndo_do_ioctl           = ipg_ioctl,
2195         .ndo_tx_timeout         = ipg_tx_timeout,
2196         .ndo_change_mtu         = ipg_nic_change_mtu,
2197         .ndo_set_mac_address    = eth_mac_addr,
2198         .ndo_validate_addr      = eth_validate_addr,
2199 };
2200
2201 static int ipg_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2202 {
2203         unsigned int i = id->driver_data;
2204         struct ipg_nic_private *sp;
2205         struct net_device *dev;
2206         void __iomem *ioaddr;
2207         int rc;
2208
2209         rc = pci_enable_device(pdev);
2210         if (rc < 0)
2211                 goto out;
2212
2213         pr_info("%s: %s\n", pci_name(pdev), ipg_brand_name[i]);
2214
2215         pci_set_master(pdev);
2216
2217         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
2218         if (rc < 0) {
2219                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2220                 if (rc < 0) {
2221                         pr_err("%s: DMA config failed\n", pci_name(pdev));
2222                         goto err_disable_0;
2223                 }
2224         }
2225
2226         /*
2227          * Initialize net device.
2228          */
2229         dev = alloc_etherdev(sizeof(struct ipg_nic_private));
2230         if (!dev) {
2231                 rc = -ENOMEM;
2232                 goto err_disable_0;
2233         }
2234
2235         sp = netdev_priv(dev);
2236         spin_lock_init(&sp->lock);
2237         mutex_init(&sp->mii_mutex);
2238
2239         sp->is_jumbo = IPG_IS_JUMBO;
2240         sp->rxfrag_size = IPG_RXFRAG_SIZE;
2241         sp->rxsupport_size = IPG_RXSUPPORT_SIZE;
2242         sp->max_rxframe_size = IPG_MAX_RXFRAME_SIZE;
2243
2244         /* Declare IPG NIC functions for Ethernet device methods.
2245          */
2246         dev->netdev_ops = &ipg_netdev_ops;
2247         SET_NETDEV_DEV(dev, &pdev->dev);
2248         dev->ethtool_ops = &ipg_ethtool_ops;
2249
2250         rc = pci_request_regions(pdev, DRV_NAME);
2251         if (rc)
2252                 goto err_free_dev_1;
2253
2254         ioaddr = pci_iomap(pdev, 1, pci_resource_len(pdev, 1));
2255         if (!ioaddr) {
2256                 pr_err("%s: cannot map MMIO\n", pci_name(pdev));
2257                 rc = -EIO;
2258                 goto err_release_regions_2;
2259         }
2260
2261         /* Save the pointer to the PCI device information. */
2262         sp->ioaddr = ioaddr;
2263         sp->pdev = pdev;
2264         sp->dev = dev;
2265
2266         INIT_DELAYED_WORK(&sp->task, ipg_reset_after_host_error);
2267
2268         pci_set_drvdata(pdev, dev);
2269
2270         rc = ipg_hw_init(dev);
2271         if (rc < 0)
2272                 goto err_unmap_3;
2273
2274         rc = register_netdev(dev);
2275         if (rc < 0)
2276                 goto err_unmap_3;
2277
2278         netdev_info(dev, "Ethernet device registered\n");
2279 out:
2280         return rc;
2281
2282 err_unmap_3:
2283         pci_iounmap(pdev, ioaddr);
2284 err_release_regions_2:
2285         pci_release_regions(pdev);
2286 err_free_dev_1:
2287         free_netdev(dev);
2288 err_disable_0:
2289         pci_disable_device(pdev);
2290         goto out;
2291 }
2292
2293 static struct pci_driver ipg_pci_driver = {
2294         .name           = IPG_DRIVER_NAME,
2295         .id_table       = ipg_pci_tbl,
2296         .probe          = ipg_probe,
2297         .remove         = ipg_remove,
2298 };
2299
2300 module_pci_driver(ipg_pci_driver);