Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / net / ethernet / freescale / gianfar.c
1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
79 #include <linux/mm.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
89
90 #include <asm/io.h>
91 #ifdef CONFIG_PPC
92 #include <asm/reg.h>
93 #include <asm/mpc85xx.h>
94 #endif
95 #include <asm/irq.h>
96 #include <asm/uaccess.h>
97 #include <linux/module.h>
98 #include <linux/dma-mapping.h>
99 #include <linux/crc32.h>
100 #include <linux/mii.h>
101 #include <linux/phy.h>
102 #include <linux/phy_fixed.h>
103 #include <linux/of.h>
104 #include <linux/of_net.h>
105 #include <linux/of_address.h>
106 #include <linux/of_irq.h>
107
108 #include "gianfar.h"
109
110 #define TX_TIMEOUT      (1*HZ)
111
112 const char gfar_driver_version[] = "1.3";
113
114 static int gfar_enet_open(struct net_device *dev);
115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_reset_task(struct work_struct *work);
117 static void gfar_timeout(struct net_device *dev);
118 static int gfar_close(struct net_device *dev);
119 static struct sk_buff *gfar_new_skb(struct net_device *dev,
120                                     dma_addr_t *bufaddr);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id);
125 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
126 static void adjust_link(struct net_device *dev);
127 static noinline void gfar_update_link_state(struct gfar_private *priv);
128 static int init_phy(struct net_device *dev);
129 static int gfar_probe(struct platform_device *ofdev);
130 static int gfar_remove(struct platform_device *ofdev);
131 static void free_skb_resources(struct gfar_private *priv);
132 static void gfar_set_multi(struct net_device *dev);
133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134 static void gfar_configure_serdes(struct net_device *dev);
135 static int gfar_poll_rx(struct napi_struct *napi, int budget);
136 static int gfar_poll_tx(struct napi_struct *napi, int budget);
137 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
138 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
139 #ifdef CONFIG_NET_POLL_CONTROLLER
140 static void gfar_netpoll(struct net_device *dev);
141 #endif
142 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
143 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
144 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
145                                int amount_pull, struct napi_struct *napi);
146 static void gfar_halt_nodisable(struct gfar_private *priv);
147 static void gfar_clear_exact_match(struct net_device *dev);
148 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
149                                   const u8 *addr);
150 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
151
152 MODULE_AUTHOR("Freescale Semiconductor, Inc");
153 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
154 MODULE_LICENSE("GPL");
155
156 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
157                             dma_addr_t buf)
158 {
159         u32 lstatus;
160
161         bdp->bufPtr = cpu_to_be32(buf);
162
163         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
164         if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
165                 lstatus |= BD_LFLAG(RXBD_WRAP);
166
167         gfar_wmb();
168
169         bdp->lstatus = cpu_to_be32(lstatus);
170 }
171
172 static int gfar_init_bds(struct net_device *ndev)
173 {
174         struct gfar_private *priv = netdev_priv(ndev);
175         struct gfar __iomem *regs = priv->gfargrp[0].regs;
176         struct gfar_priv_tx_q *tx_queue = NULL;
177         struct gfar_priv_rx_q *rx_queue = NULL;
178         struct txbd8 *txbdp;
179         struct rxbd8 *rxbdp;
180         u32 __iomem *rfbptr;
181         int i, j;
182         dma_addr_t bufaddr;
183
184         for (i = 0; i < priv->num_tx_queues; i++) {
185                 tx_queue = priv->tx_queue[i];
186                 /* Initialize some variables in our dev structure */
187                 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
188                 tx_queue->dirty_tx = tx_queue->tx_bd_base;
189                 tx_queue->cur_tx = tx_queue->tx_bd_base;
190                 tx_queue->skb_curtx = 0;
191                 tx_queue->skb_dirtytx = 0;
192
193                 /* Initialize Transmit Descriptor Ring */
194                 txbdp = tx_queue->tx_bd_base;
195                 for (j = 0; j < tx_queue->tx_ring_size; j++) {
196                         txbdp->lstatus = 0;
197                         txbdp->bufPtr = 0;
198                         txbdp++;
199                 }
200
201                 /* Set the last descriptor in the ring to indicate wrap */
202                 txbdp--;
203                 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
204                                             TXBD_WRAP);
205         }
206
207         rfbptr = &regs->rfbptr0;
208         for (i = 0; i < priv->num_rx_queues; i++) {
209                 rx_queue = priv->rx_queue[i];
210                 rx_queue->cur_rx = rx_queue->rx_bd_base;
211                 rx_queue->skb_currx = 0;
212                 rxbdp = rx_queue->rx_bd_base;
213
214                 for (j = 0; j < rx_queue->rx_ring_size; j++) {
215                         struct sk_buff *skb = rx_queue->rx_skbuff[j];
216
217                         if (skb) {
218                                 bufaddr = be32_to_cpu(rxbdp->bufPtr);
219                         } else {
220                                 skb = gfar_new_skb(ndev, &bufaddr);
221                                 if (!skb) {
222                                         netdev_err(ndev, "Can't allocate RX buffers\n");
223                                         return -ENOMEM;
224                                 }
225                                 rx_queue->rx_skbuff[j] = skb;
226                         }
227
228                         gfar_init_rxbdp(rx_queue, rxbdp, bufaddr);
229                         rxbdp++;
230                 }
231
232                 rx_queue->rfbptr = rfbptr;
233                 rfbptr += 2;
234         }
235
236         return 0;
237 }
238
239 static int gfar_alloc_skb_resources(struct net_device *ndev)
240 {
241         void *vaddr;
242         dma_addr_t addr;
243         int i, j, k;
244         struct gfar_private *priv = netdev_priv(ndev);
245         struct device *dev = priv->dev;
246         struct gfar_priv_tx_q *tx_queue = NULL;
247         struct gfar_priv_rx_q *rx_queue = NULL;
248
249         priv->total_tx_ring_size = 0;
250         for (i = 0; i < priv->num_tx_queues; i++)
251                 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
252
253         priv->total_rx_ring_size = 0;
254         for (i = 0; i < priv->num_rx_queues; i++)
255                 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
256
257         /* Allocate memory for the buffer descriptors */
258         vaddr = dma_alloc_coherent(dev,
259                                    (priv->total_tx_ring_size *
260                                     sizeof(struct txbd8)) +
261                                    (priv->total_rx_ring_size *
262                                     sizeof(struct rxbd8)),
263                                    &addr, GFP_KERNEL);
264         if (!vaddr)
265                 return -ENOMEM;
266
267         for (i = 0; i < priv->num_tx_queues; i++) {
268                 tx_queue = priv->tx_queue[i];
269                 tx_queue->tx_bd_base = vaddr;
270                 tx_queue->tx_bd_dma_base = addr;
271                 tx_queue->dev = ndev;
272                 /* enet DMA only understands physical addresses */
273                 addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
274                 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
275         }
276
277         /* Start the rx descriptor ring where the tx ring leaves off */
278         for (i = 0; i < priv->num_rx_queues; i++) {
279                 rx_queue = priv->rx_queue[i];
280                 rx_queue->rx_bd_base = vaddr;
281                 rx_queue->rx_bd_dma_base = addr;
282                 rx_queue->dev = ndev;
283                 addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
284                 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
285         }
286
287         /* Setup the skbuff rings */
288         for (i = 0; i < priv->num_tx_queues; i++) {
289                 tx_queue = priv->tx_queue[i];
290                 tx_queue->tx_skbuff =
291                         kmalloc_array(tx_queue->tx_ring_size,
292                                       sizeof(*tx_queue->tx_skbuff),
293                                       GFP_KERNEL);
294                 if (!tx_queue->tx_skbuff)
295                         goto cleanup;
296
297                 for (k = 0; k < tx_queue->tx_ring_size; k++)
298                         tx_queue->tx_skbuff[k] = NULL;
299         }
300
301         for (i = 0; i < priv->num_rx_queues; i++) {
302                 rx_queue = priv->rx_queue[i];
303                 rx_queue->rx_skbuff =
304                         kmalloc_array(rx_queue->rx_ring_size,
305                                       sizeof(*rx_queue->rx_skbuff),
306                                       GFP_KERNEL);
307                 if (!rx_queue->rx_skbuff)
308                         goto cleanup;
309
310                 for (j = 0; j < rx_queue->rx_ring_size; j++)
311                         rx_queue->rx_skbuff[j] = NULL;
312         }
313
314         if (gfar_init_bds(ndev))
315                 goto cleanup;
316
317         return 0;
318
319 cleanup:
320         free_skb_resources(priv);
321         return -ENOMEM;
322 }
323
324 static void gfar_init_tx_rx_base(struct gfar_private *priv)
325 {
326         struct gfar __iomem *regs = priv->gfargrp[0].regs;
327         u32 __iomem *baddr;
328         int i;
329
330         baddr = &regs->tbase0;
331         for (i = 0; i < priv->num_tx_queues; i++) {
332                 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
333                 baddr += 2;
334         }
335
336         baddr = &regs->rbase0;
337         for (i = 0; i < priv->num_rx_queues; i++) {
338                 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
339                 baddr += 2;
340         }
341 }
342
343 static void gfar_init_rqprm(struct gfar_private *priv)
344 {
345         struct gfar __iomem *regs = priv->gfargrp[0].regs;
346         u32 __iomem *baddr;
347         int i;
348
349         baddr = &regs->rqprm0;
350         for (i = 0; i < priv->num_rx_queues; i++) {
351                 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
352                            (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
353                 baddr++;
354         }
355 }
356
357 static void gfar_rx_buff_size_config(struct gfar_private *priv)
358 {
359         int frame_size = priv->ndev->mtu + ETH_HLEN + ETH_FCS_LEN;
360
361         /* set this when rx hw offload (TOE) functions are being used */
362         priv->uses_rxfcb = 0;
363
364         if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
365                 priv->uses_rxfcb = 1;
366
367         if (priv->hwts_rx_en)
368                 priv->uses_rxfcb = 1;
369
370         if (priv->uses_rxfcb)
371                 frame_size += GMAC_FCB_LEN;
372
373         frame_size += priv->padding;
374
375         frame_size = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
376                      INCREMENTAL_BUFFER_SIZE;
377
378         priv->rx_buffer_size = frame_size;
379 }
380
381 static void gfar_mac_rx_config(struct gfar_private *priv)
382 {
383         struct gfar __iomem *regs = priv->gfargrp[0].regs;
384         u32 rctrl = 0;
385
386         if (priv->rx_filer_enable) {
387                 rctrl |= RCTRL_FILREN;
388                 /* Program the RIR0 reg with the required distribution */
389                 if (priv->poll_mode == GFAR_SQ_POLLING)
390                         gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
391                 else /* GFAR_MQ_POLLING */
392                         gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
393         }
394
395         /* Restore PROMISC mode */
396         if (priv->ndev->flags & IFF_PROMISC)
397                 rctrl |= RCTRL_PROM;
398
399         if (priv->ndev->features & NETIF_F_RXCSUM)
400                 rctrl |= RCTRL_CHECKSUMMING;
401
402         if (priv->extended_hash)
403                 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
404
405         if (priv->padding) {
406                 rctrl &= ~RCTRL_PAL_MASK;
407                 rctrl |= RCTRL_PADDING(priv->padding);
408         }
409
410         /* Enable HW time stamping if requested from user space */
411         if (priv->hwts_rx_en)
412                 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
413
414         if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
415                 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
416
417         /* Clear the LFC bit */
418         gfar_write(&regs->rctrl, rctrl);
419         /* Init flow control threshold values */
420         gfar_init_rqprm(priv);
421         gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
422         rctrl |= RCTRL_LFC;
423
424         /* Init rctrl based on our settings */
425         gfar_write(&regs->rctrl, rctrl);
426 }
427
428 static void gfar_mac_tx_config(struct gfar_private *priv)
429 {
430         struct gfar __iomem *regs = priv->gfargrp[0].regs;
431         u32 tctrl = 0;
432
433         if (priv->ndev->features & NETIF_F_IP_CSUM)
434                 tctrl |= TCTRL_INIT_CSUM;
435
436         if (priv->prio_sched_en)
437                 tctrl |= TCTRL_TXSCHED_PRIO;
438         else {
439                 tctrl |= TCTRL_TXSCHED_WRRS;
440                 gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
441                 gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
442         }
443
444         if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
445                 tctrl |= TCTRL_VLINS;
446
447         gfar_write(&regs->tctrl, tctrl);
448 }
449
450 static void gfar_configure_coalescing(struct gfar_private *priv,
451                                unsigned long tx_mask, unsigned long rx_mask)
452 {
453         struct gfar __iomem *regs = priv->gfargrp[0].regs;
454         u32 __iomem *baddr;
455
456         if (priv->mode == MQ_MG_MODE) {
457                 int i = 0;
458
459                 baddr = &regs->txic0;
460                 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
461                         gfar_write(baddr + i, 0);
462                         if (likely(priv->tx_queue[i]->txcoalescing))
463                                 gfar_write(baddr + i, priv->tx_queue[i]->txic);
464                 }
465
466                 baddr = &regs->rxic0;
467                 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
468                         gfar_write(baddr + i, 0);
469                         if (likely(priv->rx_queue[i]->rxcoalescing))
470                                 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
471                 }
472         } else {
473                 /* Backward compatible case -- even if we enable
474                  * multiple queues, there's only single reg to program
475                  */
476                 gfar_write(&regs->txic, 0);
477                 if (likely(priv->tx_queue[0]->txcoalescing))
478                         gfar_write(&regs->txic, priv->tx_queue[0]->txic);
479
480                 gfar_write(&regs->rxic, 0);
481                 if (unlikely(priv->rx_queue[0]->rxcoalescing))
482                         gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
483         }
484 }
485
486 void gfar_configure_coalescing_all(struct gfar_private *priv)
487 {
488         gfar_configure_coalescing(priv, 0xFF, 0xFF);
489 }
490
491 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
492 {
493         struct gfar_private *priv = netdev_priv(dev);
494         unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
495         unsigned long tx_packets = 0, tx_bytes = 0;
496         int i;
497
498         for (i = 0; i < priv->num_rx_queues; i++) {
499                 rx_packets += priv->rx_queue[i]->stats.rx_packets;
500                 rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
501                 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
502         }
503
504         dev->stats.rx_packets = rx_packets;
505         dev->stats.rx_bytes   = rx_bytes;
506         dev->stats.rx_dropped = rx_dropped;
507
508         for (i = 0; i < priv->num_tx_queues; i++) {
509                 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
510                 tx_packets += priv->tx_queue[i]->stats.tx_packets;
511         }
512
513         dev->stats.tx_bytes   = tx_bytes;
514         dev->stats.tx_packets = tx_packets;
515
516         return &dev->stats;
517 }
518
519 static const struct net_device_ops gfar_netdev_ops = {
520         .ndo_open = gfar_enet_open,
521         .ndo_start_xmit = gfar_start_xmit,
522         .ndo_stop = gfar_close,
523         .ndo_change_mtu = gfar_change_mtu,
524         .ndo_set_features = gfar_set_features,
525         .ndo_set_rx_mode = gfar_set_multi,
526         .ndo_tx_timeout = gfar_timeout,
527         .ndo_do_ioctl = gfar_ioctl,
528         .ndo_get_stats = gfar_get_stats,
529         .ndo_set_mac_address = eth_mac_addr,
530         .ndo_validate_addr = eth_validate_addr,
531 #ifdef CONFIG_NET_POLL_CONTROLLER
532         .ndo_poll_controller = gfar_netpoll,
533 #endif
534 };
535
536 static void gfar_ints_disable(struct gfar_private *priv)
537 {
538         int i;
539         for (i = 0; i < priv->num_grps; i++) {
540                 struct gfar __iomem *regs = priv->gfargrp[i].regs;
541                 /* Clear IEVENT */
542                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
543
544                 /* Initialize IMASK */
545                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
546         }
547 }
548
549 static void gfar_ints_enable(struct gfar_private *priv)
550 {
551         int i;
552         for (i = 0; i < priv->num_grps; i++) {
553                 struct gfar __iomem *regs = priv->gfargrp[i].regs;
554                 /* Unmask the interrupts we look for */
555                 gfar_write(&regs->imask, IMASK_DEFAULT);
556         }
557 }
558
559 static void lock_tx_qs(struct gfar_private *priv)
560 {
561         int i;
562
563         for (i = 0; i < priv->num_tx_queues; i++)
564                 spin_lock(&priv->tx_queue[i]->txlock);
565 }
566
567 static void unlock_tx_qs(struct gfar_private *priv)
568 {
569         int i;
570
571         for (i = 0; i < priv->num_tx_queues; i++)
572                 spin_unlock(&priv->tx_queue[i]->txlock);
573 }
574
575 static int gfar_alloc_tx_queues(struct gfar_private *priv)
576 {
577         int i;
578
579         for (i = 0; i < priv->num_tx_queues; i++) {
580                 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
581                                             GFP_KERNEL);
582                 if (!priv->tx_queue[i])
583                         return -ENOMEM;
584
585                 priv->tx_queue[i]->tx_skbuff = NULL;
586                 priv->tx_queue[i]->qindex = i;
587                 priv->tx_queue[i]->dev = priv->ndev;
588                 spin_lock_init(&(priv->tx_queue[i]->txlock));
589         }
590         return 0;
591 }
592
593 static int gfar_alloc_rx_queues(struct gfar_private *priv)
594 {
595         int i;
596
597         for (i = 0; i < priv->num_rx_queues; i++) {
598                 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
599                                             GFP_KERNEL);
600                 if (!priv->rx_queue[i])
601                         return -ENOMEM;
602
603                 priv->rx_queue[i]->rx_skbuff = NULL;
604                 priv->rx_queue[i]->qindex = i;
605                 priv->rx_queue[i]->dev = priv->ndev;
606         }
607         return 0;
608 }
609
610 static void gfar_free_tx_queues(struct gfar_private *priv)
611 {
612         int i;
613
614         for (i = 0; i < priv->num_tx_queues; i++)
615                 kfree(priv->tx_queue[i]);
616 }
617
618 static void gfar_free_rx_queues(struct gfar_private *priv)
619 {
620         int i;
621
622         for (i = 0; i < priv->num_rx_queues; i++)
623                 kfree(priv->rx_queue[i]);
624 }
625
626 static void unmap_group_regs(struct gfar_private *priv)
627 {
628         int i;
629
630         for (i = 0; i < MAXGROUPS; i++)
631                 if (priv->gfargrp[i].regs)
632                         iounmap(priv->gfargrp[i].regs);
633 }
634
635 static void free_gfar_dev(struct gfar_private *priv)
636 {
637         int i, j;
638
639         for (i = 0; i < priv->num_grps; i++)
640                 for (j = 0; j < GFAR_NUM_IRQS; j++) {
641                         kfree(priv->gfargrp[i].irqinfo[j]);
642                         priv->gfargrp[i].irqinfo[j] = NULL;
643                 }
644
645         free_netdev(priv->ndev);
646 }
647
648 static void disable_napi(struct gfar_private *priv)
649 {
650         int i;
651
652         for (i = 0; i < priv->num_grps; i++) {
653                 napi_disable(&priv->gfargrp[i].napi_rx);
654                 napi_disable(&priv->gfargrp[i].napi_tx);
655         }
656 }
657
658 static void enable_napi(struct gfar_private *priv)
659 {
660         int i;
661
662         for (i = 0; i < priv->num_grps; i++) {
663                 napi_enable(&priv->gfargrp[i].napi_rx);
664                 napi_enable(&priv->gfargrp[i].napi_tx);
665         }
666 }
667
668 static int gfar_parse_group(struct device_node *np,
669                             struct gfar_private *priv, const char *model)
670 {
671         struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
672         int i;
673
674         for (i = 0; i < GFAR_NUM_IRQS; i++) {
675                 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
676                                           GFP_KERNEL);
677                 if (!grp->irqinfo[i])
678                         return -ENOMEM;
679         }
680
681         grp->regs = of_iomap(np, 0);
682         if (!grp->regs)
683                 return -ENOMEM;
684
685         gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
686
687         /* If we aren't the FEC we have multiple interrupts */
688         if (model && strcasecmp(model, "FEC")) {
689                 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
690                 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
691                 if (gfar_irq(grp, TX)->irq == NO_IRQ ||
692                     gfar_irq(grp, RX)->irq == NO_IRQ ||
693                     gfar_irq(grp, ER)->irq == NO_IRQ)
694                         return -EINVAL;
695         }
696
697         grp->priv = priv;
698         spin_lock_init(&grp->grplock);
699         if (priv->mode == MQ_MG_MODE) {
700                 u32 rxq_mask, txq_mask;
701                 int ret;
702
703                 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
704                 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
705
706                 ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
707                 if (!ret) {
708                         grp->rx_bit_map = rxq_mask ?
709                         rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
710                 }
711
712                 ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
713                 if (!ret) {
714                         grp->tx_bit_map = txq_mask ?
715                         txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
716                 }
717
718                 if (priv->poll_mode == GFAR_SQ_POLLING) {
719                         /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
720                         grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
721                         grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
722                 }
723         } else {
724                 grp->rx_bit_map = 0xFF;
725                 grp->tx_bit_map = 0xFF;
726         }
727
728         /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
729          * right to left, so we need to revert the 8 bits to get the q index
730          */
731         grp->rx_bit_map = bitrev8(grp->rx_bit_map);
732         grp->tx_bit_map = bitrev8(grp->tx_bit_map);
733
734         /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
735          * also assign queues to groups
736          */
737         for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
738                 if (!grp->rx_queue)
739                         grp->rx_queue = priv->rx_queue[i];
740                 grp->num_rx_queues++;
741                 grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
742                 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
743                 priv->rx_queue[i]->grp = grp;
744         }
745
746         for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
747                 if (!grp->tx_queue)
748                         grp->tx_queue = priv->tx_queue[i];
749                 grp->num_tx_queues++;
750                 grp->tstat |= (TSTAT_CLEAR_THALT >> i);
751                 priv->tqueue |= (TQUEUE_EN0 >> i);
752                 priv->tx_queue[i]->grp = grp;
753         }
754
755         priv->num_grps++;
756
757         return 0;
758 }
759
760 static int gfar_of_group_count(struct device_node *np)
761 {
762         struct device_node *child;
763         int num = 0;
764
765         for_each_available_child_of_node(np, child)
766                 if (!of_node_cmp(child->name, "queue-group"))
767                         num++;
768
769         return num;
770 }
771
772 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
773 {
774         const char *model;
775         const char *ctype;
776         const void *mac_addr;
777         int err = 0, i;
778         struct net_device *dev = NULL;
779         struct gfar_private *priv = NULL;
780         struct device_node *np = ofdev->dev.of_node;
781         struct device_node *child = NULL;
782         struct property *stash;
783         u32 stash_len = 0;
784         u32 stash_idx = 0;
785         unsigned int num_tx_qs, num_rx_qs;
786         unsigned short mode, poll_mode;
787
788         if (!np)
789                 return -ENODEV;
790
791         if (of_device_is_compatible(np, "fsl,etsec2")) {
792                 mode = MQ_MG_MODE;
793                 poll_mode = GFAR_SQ_POLLING;
794         } else {
795                 mode = SQ_SG_MODE;
796                 poll_mode = GFAR_SQ_POLLING;
797         }
798
799         if (mode == SQ_SG_MODE) {
800                 num_tx_qs = 1;
801                 num_rx_qs = 1;
802         } else { /* MQ_MG_MODE */
803                 /* get the actual number of supported groups */
804                 unsigned int num_grps = gfar_of_group_count(np);
805
806                 if (num_grps == 0 || num_grps > MAXGROUPS) {
807                         dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
808                                 num_grps);
809                         pr_err("Cannot do alloc_etherdev, aborting\n");
810                         return -EINVAL;
811                 }
812
813                 if (poll_mode == GFAR_SQ_POLLING) {
814                         num_tx_qs = num_grps; /* one txq per int group */
815                         num_rx_qs = num_grps; /* one rxq per int group */
816                 } else { /* GFAR_MQ_POLLING */
817                         u32 tx_queues, rx_queues;
818                         int ret;
819
820                         /* parse the num of HW tx and rx queues */
821                         ret = of_property_read_u32(np, "fsl,num_tx_queues",
822                                                    &tx_queues);
823                         num_tx_qs = ret ? 1 : tx_queues;
824
825                         ret = of_property_read_u32(np, "fsl,num_rx_queues",
826                                                    &rx_queues);
827                         num_rx_qs = ret ? 1 : rx_queues;
828                 }
829         }
830
831         if (num_tx_qs > MAX_TX_QS) {
832                 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
833                        num_tx_qs, MAX_TX_QS);
834                 pr_err("Cannot do alloc_etherdev, aborting\n");
835                 return -EINVAL;
836         }
837
838         if (num_rx_qs > MAX_RX_QS) {
839                 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
840                        num_rx_qs, MAX_RX_QS);
841                 pr_err("Cannot do alloc_etherdev, aborting\n");
842                 return -EINVAL;
843         }
844
845         *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
846         dev = *pdev;
847         if (NULL == dev)
848                 return -ENOMEM;
849
850         priv = netdev_priv(dev);
851         priv->ndev = dev;
852
853         priv->mode = mode;
854         priv->poll_mode = poll_mode;
855
856         priv->num_tx_queues = num_tx_qs;
857         netif_set_real_num_rx_queues(dev, num_rx_qs);
858         priv->num_rx_queues = num_rx_qs;
859
860         err = gfar_alloc_tx_queues(priv);
861         if (err)
862                 goto tx_alloc_failed;
863
864         err = gfar_alloc_rx_queues(priv);
865         if (err)
866                 goto rx_alloc_failed;
867
868         err = of_property_read_string(np, "model", &model);
869         if (err) {
870                 pr_err("Device model property missing, aborting\n");
871                 goto rx_alloc_failed;
872         }
873
874         /* Init Rx queue filer rule set linked list */
875         INIT_LIST_HEAD(&priv->rx_list.list);
876         priv->rx_list.count = 0;
877         mutex_init(&priv->rx_queue_access);
878
879         for (i = 0; i < MAXGROUPS; i++)
880                 priv->gfargrp[i].regs = NULL;
881
882         /* Parse and initialize group specific information */
883         if (priv->mode == MQ_MG_MODE) {
884                 for_each_available_child_of_node(np, child) {
885                         if (of_node_cmp(child->name, "queue-group"))
886                                 continue;
887
888                         err = gfar_parse_group(child, priv, model);
889                         if (err)
890                                 goto err_grp_init;
891                 }
892         } else { /* SQ_SG_MODE */
893                 err = gfar_parse_group(np, priv, model);
894                 if (err)
895                         goto err_grp_init;
896         }
897
898         stash = of_find_property(np, "bd-stash", NULL);
899
900         if (stash) {
901                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
902                 priv->bd_stash_en = 1;
903         }
904
905         err = of_property_read_u32(np, "rx-stash-len", &stash_len);
906
907         if (err == 0)
908                 priv->rx_stash_size = stash_len;
909
910         err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
911
912         if (err == 0)
913                 priv->rx_stash_index = stash_idx;
914
915         if (stash_len || stash_idx)
916                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
917
918         mac_addr = of_get_mac_address(np);
919
920         if (mac_addr)
921                 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
922
923         if (model && !strcasecmp(model, "TSEC"))
924                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
925                                      FSL_GIANFAR_DEV_HAS_COALESCE |
926                                      FSL_GIANFAR_DEV_HAS_RMON |
927                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR;
928
929         if (model && !strcasecmp(model, "eTSEC"))
930                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
931                                      FSL_GIANFAR_DEV_HAS_COALESCE |
932                                      FSL_GIANFAR_DEV_HAS_RMON |
933                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR |
934                                      FSL_GIANFAR_DEV_HAS_CSUM |
935                                      FSL_GIANFAR_DEV_HAS_VLAN |
936                                      FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
937                                      FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
938                                      FSL_GIANFAR_DEV_HAS_TIMER;
939
940         err = of_property_read_string(np, "phy-connection-type", &ctype);
941
942         /* We only care about rgmii-id.  The rest are autodetected */
943         if (err == 0 && !strcmp(ctype, "rgmii-id"))
944                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
945         else
946                 priv->interface = PHY_INTERFACE_MODE_MII;
947
948         if (of_find_property(np, "fsl,magic-packet", NULL))
949                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
950
951         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
952
953         /* In the case of a fixed PHY, the DT node associated
954          * to the PHY is the Ethernet MAC DT node.
955          */
956         if (!priv->phy_node && of_phy_is_fixed_link(np)) {
957                 err = of_phy_register_fixed_link(np);
958                 if (err)
959                         goto err_grp_init;
960
961                 priv->phy_node = of_node_get(np);
962         }
963
964         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
965         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
966
967         return 0;
968
969 err_grp_init:
970         unmap_group_regs(priv);
971 rx_alloc_failed:
972         gfar_free_rx_queues(priv);
973 tx_alloc_failed:
974         gfar_free_tx_queues(priv);
975         free_gfar_dev(priv);
976         return err;
977 }
978
979 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
980 {
981         struct hwtstamp_config config;
982         struct gfar_private *priv = netdev_priv(netdev);
983
984         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
985                 return -EFAULT;
986
987         /* reserved for future extensions */
988         if (config.flags)
989                 return -EINVAL;
990
991         switch (config.tx_type) {
992         case HWTSTAMP_TX_OFF:
993                 priv->hwts_tx_en = 0;
994                 break;
995         case HWTSTAMP_TX_ON:
996                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
997                         return -ERANGE;
998                 priv->hwts_tx_en = 1;
999                 break;
1000         default:
1001                 return -ERANGE;
1002         }
1003
1004         switch (config.rx_filter) {
1005         case HWTSTAMP_FILTER_NONE:
1006                 if (priv->hwts_rx_en) {
1007                         priv->hwts_rx_en = 0;
1008                         reset_gfar(netdev);
1009                 }
1010                 break;
1011         default:
1012                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
1013                         return -ERANGE;
1014                 if (!priv->hwts_rx_en) {
1015                         priv->hwts_rx_en = 1;
1016                         reset_gfar(netdev);
1017                 }
1018                 config.rx_filter = HWTSTAMP_FILTER_ALL;
1019                 break;
1020         }
1021
1022         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1023                 -EFAULT : 0;
1024 }
1025
1026 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
1027 {
1028         struct hwtstamp_config config;
1029         struct gfar_private *priv = netdev_priv(netdev);
1030
1031         config.flags = 0;
1032         config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1033         config.rx_filter = (priv->hwts_rx_en ?
1034                             HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
1035
1036         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1037                 -EFAULT : 0;
1038 }
1039
1040 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1041 {
1042         struct gfar_private *priv = netdev_priv(dev);
1043
1044         if (!netif_running(dev))
1045                 return -EINVAL;
1046
1047         if (cmd == SIOCSHWTSTAMP)
1048                 return gfar_hwtstamp_set(dev, rq);
1049         if (cmd == SIOCGHWTSTAMP)
1050                 return gfar_hwtstamp_get(dev, rq);
1051
1052         if (!priv->phydev)
1053                 return -ENODEV;
1054
1055         return phy_mii_ioctl(priv->phydev, rq, cmd);
1056 }
1057
1058 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1059                                    u32 class)
1060 {
1061         u32 rqfpr = FPR_FILER_MASK;
1062         u32 rqfcr = 0x0;
1063
1064         rqfar--;
1065         rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1066         priv->ftp_rqfpr[rqfar] = rqfpr;
1067         priv->ftp_rqfcr[rqfar] = rqfcr;
1068         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1069
1070         rqfar--;
1071         rqfcr = RQFCR_CMP_NOMATCH;
1072         priv->ftp_rqfpr[rqfar] = rqfpr;
1073         priv->ftp_rqfcr[rqfar] = rqfcr;
1074         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1075
1076         rqfar--;
1077         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1078         rqfpr = class;
1079         priv->ftp_rqfcr[rqfar] = rqfcr;
1080         priv->ftp_rqfpr[rqfar] = rqfpr;
1081         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1082
1083         rqfar--;
1084         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1085         rqfpr = class;
1086         priv->ftp_rqfcr[rqfar] = rqfcr;
1087         priv->ftp_rqfpr[rqfar] = rqfpr;
1088         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1089
1090         return rqfar;
1091 }
1092
1093 static void gfar_init_filer_table(struct gfar_private *priv)
1094 {
1095         int i = 0x0;
1096         u32 rqfar = MAX_FILER_IDX;
1097         u32 rqfcr = 0x0;
1098         u32 rqfpr = FPR_FILER_MASK;
1099
1100         /* Default rule */
1101         rqfcr = RQFCR_CMP_MATCH;
1102         priv->ftp_rqfcr[rqfar] = rqfcr;
1103         priv->ftp_rqfpr[rqfar] = rqfpr;
1104         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1105
1106         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1107         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1108         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1109         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1110         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1111         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1112
1113         /* cur_filer_idx indicated the first non-masked rule */
1114         priv->cur_filer_idx = rqfar;
1115
1116         /* Rest are masked rules */
1117         rqfcr = RQFCR_CMP_NOMATCH;
1118         for (i = 0; i < rqfar; i++) {
1119                 priv->ftp_rqfcr[i] = rqfcr;
1120                 priv->ftp_rqfpr[i] = rqfpr;
1121                 gfar_write_filer(priv, i, rqfcr, rqfpr);
1122         }
1123 }
1124
1125 #ifdef CONFIG_PPC
1126 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1127 {
1128         unsigned int pvr = mfspr(SPRN_PVR);
1129         unsigned int svr = mfspr(SPRN_SVR);
1130         unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1131         unsigned int rev = svr & 0xffff;
1132
1133         /* MPC8313 Rev 2.0 and higher; All MPC837x */
1134         if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1135             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1136                 priv->errata |= GFAR_ERRATA_74;
1137
1138         /* MPC8313 and MPC837x all rev */
1139         if ((pvr == 0x80850010 && mod == 0x80b0) ||
1140             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1141                 priv->errata |= GFAR_ERRATA_76;
1142
1143         /* MPC8313 Rev < 2.0 */
1144         if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1145                 priv->errata |= GFAR_ERRATA_12;
1146 }
1147
1148 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1149 {
1150         unsigned int svr = mfspr(SPRN_SVR);
1151
1152         if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1153                 priv->errata |= GFAR_ERRATA_12;
1154         if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1155             ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)))
1156                 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1157 }
1158 #endif
1159
1160 static void gfar_detect_errata(struct gfar_private *priv)
1161 {
1162         struct device *dev = &priv->ofdev->dev;
1163
1164         /* no plans to fix */
1165         priv->errata |= GFAR_ERRATA_A002;
1166
1167 #ifdef CONFIG_PPC
1168         if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1169                 __gfar_detect_errata_85xx(priv);
1170         else /* non-mpc85xx parts, i.e. e300 core based */
1171                 __gfar_detect_errata_83xx(priv);
1172 #endif
1173
1174         if (priv->errata)
1175                 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1176                          priv->errata);
1177 }
1178
1179 void gfar_mac_reset(struct gfar_private *priv)
1180 {
1181         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1182         u32 tempval;
1183
1184         /* Reset MAC layer */
1185         gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1186
1187         /* We need to delay at least 3 TX clocks */
1188         udelay(3);
1189
1190         /* the soft reset bit is not self-resetting, so we need to
1191          * clear it before resuming normal operation
1192          */
1193         gfar_write(&regs->maccfg1, 0);
1194
1195         udelay(3);
1196
1197         /* Compute rx_buff_size based on config flags */
1198         gfar_rx_buff_size_config(priv);
1199
1200         /* Initialize the max receive frame/buffer lengths */
1201         gfar_write(&regs->maxfrm, priv->rx_buffer_size);
1202         gfar_write(&regs->mrblr, priv->rx_buffer_size);
1203
1204         /* Initialize the Minimum Frame Length Register */
1205         gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1206
1207         /* Initialize MACCFG2. */
1208         tempval = MACCFG2_INIT_SETTINGS;
1209
1210         /* If the mtu is larger than the max size for standard
1211          * ethernet frames (ie, a jumbo frame), then set maccfg2
1212          * to allow huge frames, and to check the length
1213          */
1214         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
1215             gfar_has_errata(priv, GFAR_ERRATA_74))
1216                 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1217
1218         gfar_write(&regs->maccfg2, tempval);
1219
1220         /* Clear mac addr hash registers */
1221         gfar_write(&regs->igaddr0, 0);
1222         gfar_write(&regs->igaddr1, 0);
1223         gfar_write(&regs->igaddr2, 0);
1224         gfar_write(&regs->igaddr3, 0);
1225         gfar_write(&regs->igaddr4, 0);
1226         gfar_write(&regs->igaddr5, 0);
1227         gfar_write(&regs->igaddr6, 0);
1228         gfar_write(&regs->igaddr7, 0);
1229
1230         gfar_write(&regs->gaddr0, 0);
1231         gfar_write(&regs->gaddr1, 0);
1232         gfar_write(&regs->gaddr2, 0);
1233         gfar_write(&regs->gaddr3, 0);
1234         gfar_write(&regs->gaddr4, 0);
1235         gfar_write(&regs->gaddr5, 0);
1236         gfar_write(&regs->gaddr6, 0);
1237         gfar_write(&regs->gaddr7, 0);
1238
1239         if (priv->extended_hash)
1240                 gfar_clear_exact_match(priv->ndev);
1241
1242         gfar_mac_rx_config(priv);
1243
1244         gfar_mac_tx_config(priv);
1245
1246         gfar_set_mac_address(priv->ndev);
1247
1248         gfar_set_multi(priv->ndev);
1249
1250         /* clear ievent and imask before configuring coalescing */
1251         gfar_ints_disable(priv);
1252
1253         /* Configure the coalescing support */
1254         gfar_configure_coalescing_all(priv);
1255 }
1256
1257 static void gfar_hw_init(struct gfar_private *priv)
1258 {
1259         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1260         u32 attrs;
1261
1262         /* Stop the DMA engine now, in case it was running before
1263          * (The firmware could have used it, and left it running).
1264          */
1265         gfar_halt(priv);
1266
1267         gfar_mac_reset(priv);
1268
1269         /* Zero out the rmon mib registers if it has them */
1270         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1271                 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1272
1273                 /* Mask off the CAM interrupts */
1274                 gfar_write(&regs->rmon.cam1, 0xffffffff);
1275                 gfar_write(&regs->rmon.cam2, 0xffffffff);
1276         }
1277
1278         /* Initialize ECNTRL */
1279         gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1280
1281         /* Set the extraction length and index */
1282         attrs = ATTRELI_EL(priv->rx_stash_size) |
1283                 ATTRELI_EI(priv->rx_stash_index);
1284
1285         gfar_write(&regs->attreli, attrs);
1286
1287         /* Start with defaults, and add stashing
1288          * depending on driver parameters
1289          */
1290         attrs = ATTR_INIT_SETTINGS;
1291
1292         if (priv->bd_stash_en)
1293                 attrs |= ATTR_BDSTASH;
1294
1295         if (priv->rx_stash_size != 0)
1296                 attrs |= ATTR_BUFSTASH;
1297
1298         gfar_write(&regs->attr, attrs);
1299
1300         /* FIFO configs */
1301         gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1302         gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1303         gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1304
1305         /* Program the interrupt steering regs, only for MG devices */
1306         if (priv->num_grps > 1)
1307                 gfar_write_isrg(priv);
1308 }
1309
1310 static void gfar_init_addr_hash_table(struct gfar_private *priv)
1311 {
1312         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1313
1314         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1315                 priv->extended_hash = 1;
1316                 priv->hash_width = 9;
1317
1318                 priv->hash_regs[0] = &regs->igaddr0;
1319                 priv->hash_regs[1] = &regs->igaddr1;
1320                 priv->hash_regs[2] = &regs->igaddr2;
1321                 priv->hash_regs[3] = &regs->igaddr3;
1322                 priv->hash_regs[4] = &regs->igaddr4;
1323                 priv->hash_regs[5] = &regs->igaddr5;
1324                 priv->hash_regs[6] = &regs->igaddr6;
1325                 priv->hash_regs[7] = &regs->igaddr7;
1326                 priv->hash_regs[8] = &regs->gaddr0;
1327                 priv->hash_regs[9] = &regs->gaddr1;
1328                 priv->hash_regs[10] = &regs->gaddr2;
1329                 priv->hash_regs[11] = &regs->gaddr3;
1330                 priv->hash_regs[12] = &regs->gaddr4;
1331                 priv->hash_regs[13] = &regs->gaddr5;
1332                 priv->hash_regs[14] = &regs->gaddr6;
1333                 priv->hash_regs[15] = &regs->gaddr7;
1334
1335         } else {
1336                 priv->extended_hash = 0;
1337                 priv->hash_width = 8;
1338
1339                 priv->hash_regs[0] = &regs->gaddr0;
1340                 priv->hash_regs[1] = &regs->gaddr1;
1341                 priv->hash_regs[2] = &regs->gaddr2;
1342                 priv->hash_regs[3] = &regs->gaddr3;
1343                 priv->hash_regs[4] = &regs->gaddr4;
1344                 priv->hash_regs[5] = &regs->gaddr5;
1345                 priv->hash_regs[6] = &regs->gaddr6;
1346                 priv->hash_regs[7] = &regs->gaddr7;
1347         }
1348 }
1349
1350 /* Set up the ethernet device structure, private data,
1351  * and anything else we need before we start
1352  */
1353 static int gfar_probe(struct platform_device *ofdev)
1354 {
1355         struct net_device *dev = NULL;
1356         struct gfar_private *priv = NULL;
1357         int err = 0, i;
1358
1359         err = gfar_of_init(ofdev, &dev);
1360
1361         if (err)
1362                 return err;
1363
1364         priv = netdev_priv(dev);
1365         priv->ndev = dev;
1366         priv->ofdev = ofdev;
1367         priv->dev = &ofdev->dev;
1368         SET_NETDEV_DEV(dev, &ofdev->dev);
1369
1370         spin_lock_init(&priv->bflock);
1371         INIT_WORK(&priv->reset_task, gfar_reset_task);
1372
1373         platform_set_drvdata(ofdev, priv);
1374
1375         gfar_detect_errata(priv);
1376
1377         /* Set the dev->base_addr to the gfar reg region */
1378         dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1379
1380         /* Fill in the dev structure */
1381         dev->watchdog_timeo = TX_TIMEOUT;
1382         dev->mtu = 1500;
1383         dev->netdev_ops = &gfar_netdev_ops;
1384         dev->ethtool_ops = &gfar_ethtool_ops;
1385
1386         /* Register for napi ...We are registering NAPI for each grp */
1387         for (i = 0; i < priv->num_grps; i++) {
1388                 if (priv->poll_mode == GFAR_SQ_POLLING) {
1389                         netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1390                                        gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1391                         netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1392                                        gfar_poll_tx_sq, 2);
1393                 } else {
1394                         netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1395                                        gfar_poll_rx, GFAR_DEV_WEIGHT);
1396                         netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1397                                        gfar_poll_tx, 2);
1398                 }
1399         }
1400
1401         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1402                 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1403                                    NETIF_F_RXCSUM;
1404                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1405                                  NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1406         }
1407
1408         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1409                 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1410                                     NETIF_F_HW_VLAN_CTAG_RX;
1411                 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1412         }
1413
1414         gfar_init_addr_hash_table(priv);
1415
1416         /* Insert receive time stamps into padding alignment bytes */
1417         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1418                 priv->padding = 8;
1419
1420         if (dev->features & NETIF_F_IP_CSUM ||
1421             priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1422                 dev->needed_headroom = GMAC_FCB_LEN;
1423
1424         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1425
1426         /* Initializing some of the rx/tx queue level parameters */
1427         for (i = 0; i < priv->num_tx_queues; i++) {
1428                 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1429                 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1430                 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1431                 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1432         }
1433
1434         for (i = 0; i < priv->num_rx_queues; i++) {
1435                 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1436                 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1437                 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1438         }
1439
1440         /* always enable rx filer */
1441         priv->rx_filer_enable = 1;
1442         /* Enable most messages by default */
1443         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1444         /* use pritority h/w tx queue scheduling for single queue devices */
1445         if (priv->num_tx_queues == 1)
1446                 priv->prio_sched_en = 1;
1447
1448         set_bit(GFAR_DOWN, &priv->state);
1449
1450         gfar_hw_init(priv);
1451
1452         /* Carrier starts down, phylib will bring it up */
1453         netif_carrier_off(dev);
1454
1455         err = register_netdev(dev);
1456
1457         if (err) {
1458                 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1459                 goto register_fail;
1460         }
1461
1462         device_init_wakeup(&dev->dev,
1463                            priv->device_flags &
1464                            FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1465
1466         /* fill out IRQ number and name fields */
1467         for (i = 0; i < priv->num_grps; i++) {
1468                 struct gfar_priv_grp *grp = &priv->gfargrp[i];
1469                 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1470                         sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1471                                 dev->name, "_g", '0' + i, "_tx");
1472                         sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1473                                 dev->name, "_g", '0' + i, "_rx");
1474                         sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1475                                 dev->name, "_g", '0' + i, "_er");
1476                 } else
1477                         strcpy(gfar_irq(grp, TX)->name, dev->name);
1478         }
1479
1480         /* Initialize the filer table */
1481         gfar_init_filer_table(priv);
1482
1483         /* Print out the device info */
1484         netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1485
1486         /* Even more device info helps when determining which kernel
1487          * provided which set of benchmarks.
1488          */
1489         netdev_info(dev, "Running with NAPI enabled\n");
1490         for (i = 0; i < priv->num_rx_queues; i++)
1491                 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1492                             i, priv->rx_queue[i]->rx_ring_size);
1493         for (i = 0; i < priv->num_tx_queues; i++)
1494                 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1495                             i, priv->tx_queue[i]->tx_ring_size);
1496
1497         return 0;
1498
1499 register_fail:
1500         unmap_group_regs(priv);
1501         gfar_free_rx_queues(priv);
1502         gfar_free_tx_queues(priv);
1503         of_node_put(priv->phy_node);
1504         of_node_put(priv->tbi_node);
1505         free_gfar_dev(priv);
1506         return err;
1507 }
1508
1509 static int gfar_remove(struct platform_device *ofdev)
1510 {
1511         struct gfar_private *priv = platform_get_drvdata(ofdev);
1512
1513         of_node_put(priv->phy_node);
1514         of_node_put(priv->tbi_node);
1515
1516         unregister_netdev(priv->ndev);
1517         unmap_group_regs(priv);
1518         gfar_free_rx_queues(priv);
1519         gfar_free_tx_queues(priv);
1520         free_gfar_dev(priv);
1521
1522         return 0;
1523 }
1524
1525 #ifdef CONFIG_PM
1526
1527 static int gfar_suspend(struct device *dev)
1528 {
1529         struct gfar_private *priv = dev_get_drvdata(dev);
1530         struct net_device *ndev = priv->ndev;
1531         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1532         unsigned long flags;
1533         u32 tempval;
1534
1535         int magic_packet = priv->wol_en &&
1536                            (priv->device_flags &
1537                             FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1538
1539         netif_device_detach(ndev);
1540
1541         if (netif_running(ndev)) {
1542
1543                 local_irq_save_nort(flags);
1544                 lock_tx_qs(priv);
1545
1546                 gfar_halt_nodisable(priv);
1547
1548                 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1549                 tempval = gfar_read(&regs->maccfg1);
1550
1551                 tempval &= ~MACCFG1_TX_EN;
1552
1553                 if (!magic_packet)
1554                         tempval &= ~MACCFG1_RX_EN;
1555
1556                 gfar_write(&regs->maccfg1, tempval);
1557
1558                 unlock_tx_qs(priv);
1559                 local_irq_restore_nort(flags);
1560
1561                 disable_napi(priv);
1562
1563                 if (magic_packet) {
1564                         /* Enable interrupt on Magic Packet */
1565                         gfar_write(&regs->imask, IMASK_MAG);
1566
1567                         /* Enable Magic Packet mode */
1568                         tempval = gfar_read(&regs->maccfg2);
1569                         tempval |= MACCFG2_MPEN;
1570                         gfar_write(&regs->maccfg2, tempval);
1571                 } else {
1572                         phy_stop(priv->phydev);
1573                 }
1574         }
1575
1576         return 0;
1577 }
1578
1579 static int gfar_resume(struct device *dev)
1580 {
1581         struct gfar_private *priv = dev_get_drvdata(dev);
1582         struct net_device *ndev = priv->ndev;
1583         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1584         unsigned long flags;
1585         u32 tempval;
1586         int magic_packet = priv->wol_en &&
1587                            (priv->device_flags &
1588                             FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1589
1590         if (!netif_running(ndev)) {
1591                 netif_device_attach(ndev);
1592                 return 0;
1593         }
1594
1595         if (!magic_packet && priv->phydev)
1596                 phy_start(priv->phydev);
1597
1598         /* Disable Magic Packet mode, in case something
1599          * else woke us up.
1600          */
1601         local_irq_save_nort(flags);
1602         lock_tx_qs(priv);
1603
1604         tempval = gfar_read(&regs->maccfg2);
1605         tempval &= ~MACCFG2_MPEN;
1606         gfar_write(&regs->maccfg2, tempval);
1607
1608         gfar_start(priv);
1609
1610         unlock_tx_qs(priv);
1611         local_irq_restore_nort(flags);
1612
1613         netif_device_attach(ndev);
1614
1615         enable_napi(priv);
1616
1617         return 0;
1618 }
1619
1620 static int gfar_restore(struct device *dev)
1621 {
1622         struct gfar_private *priv = dev_get_drvdata(dev);
1623         struct net_device *ndev = priv->ndev;
1624
1625         if (!netif_running(ndev)) {
1626                 netif_device_attach(ndev);
1627
1628                 return 0;
1629         }
1630
1631         if (gfar_init_bds(ndev)) {
1632                 free_skb_resources(priv);
1633                 return -ENOMEM;
1634         }
1635
1636         gfar_mac_reset(priv);
1637
1638         gfar_init_tx_rx_base(priv);
1639
1640         gfar_start(priv);
1641
1642         priv->oldlink = 0;
1643         priv->oldspeed = 0;
1644         priv->oldduplex = -1;
1645
1646         if (priv->phydev)
1647                 phy_start(priv->phydev);
1648
1649         netif_device_attach(ndev);
1650         enable_napi(priv);
1651
1652         return 0;
1653 }
1654
1655 static struct dev_pm_ops gfar_pm_ops = {
1656         .suspend = gfar_suspend,
1657         .resume = gfar_resume,
1658         .freeze = gfar_suspend,
1659         .thaw = gfar_resume,
1660         .restore = gfar_restore,
1661 };
1662
1663 #define GFAR_PM_OPS (&gfar_pm_ops)
1664
1665 #else
1666
1667 #define GFAR_PM_OPS NULL
1668
1669 #endif
1670
1671 /* Reads the controller's registers to determine what interface
1672  * connects it to the PHY.
1673  */
1674 static phy_interface_t gfar_get_interface(struct net_device *dev)
1675 {
1676         struct gfar_private *priv = netdev_priv(dev);
1677         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1678         u32 ecntrl;
1679
1680         ecntrl = gfar_read(&regs->ecntrl);
1681
1682         if (ecntrl & ECNTRL_SGMII_MODE)
1683                 return PHY_INTERFACE_MODE_SGMII;
1684
1685         if (ecntrl & ECNTRL_TBI_MODE) {
1686                 if (ecntrl & ECNTRL_REDUCED_MODE)
1687                         return PHY_INTERFACE_MODE_RTBI;
1688                 else
1689                         return PHY_INTERFACE_MODE_TBI;
1690         }
1691
1692         if (ecntrl & ECNTRL_REDUCED_MODE) {
1693                 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1694                         return PHY_INTERFACE_MODE_RMII;
1695                 }
1696                 else {
1697                         phy_interface_t interface = priv->interface;
1698
1699                         /* This isn't autodetected right now, so it must
1700                          * be set by the device tree or platform code.
1701                          */
1702                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1703                                 return PHY_INTERFACE_MODE_RGMII_ID;
1704
1705                         return PHY_INTERFACE_MODE_RGMII;
1706                 }
1707         }
1708
1709         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1710                 return PHY_INTERFACE_MODE_GMII;
1711
1712         return PHY_INTERFACE_MODE_MII;
1713 }
1714
1715
1716 /* Initializes driver's PHY state, and attaches to the PHY.
1717  * Returns 0 on success.
1718  */
1719 static int init_phy(struct net_device *dev)
1720 {
1721         struct gfar_private *priv = netdev_priv(dev);
1722         uint gigabit_support =
1723                 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1724                 GFAR_SUPPORTED_GBIT : 0;
1725         phy_interface_t interface;
1726
1727         priv->oldlink = 0;
1728         priv->oldspeed = 0;
1729         priv->oldduplex = -1;
1730
1731         interface = gfar_get_interface(dev);
1732
1733         priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1734                                       interface);
1735         if (!priv->phydev) {
1736                 dev_err(&dev->dev, "could not attach to PHY\n");
1737                 return -ENODEV;
1738         }
1739
1740         if (interface == PHY_INTERFACE_MODE_SGMII)
1741                 gfar_configure_serdes(dev);
1742
1743         /* Remove any features not supported by the controller */
1744         priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1745         priv->phydev->advertising = priv->phydev->supported;
1746
1747         /* Add support for flow control, but don't advertise it by default */
1748         priv->phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
1749
1750         return 0;
1751 }
1752
1753 /* Initialize TBI PHY interface for communicating with the
1754  * SERDES lynx PHY on the chip.  We communicate with this PHY
1755  * through the MDIO bus on each controller, treating it as a
1756  * "normal" PHY at the address found in the TBIPA register.  We assume
1757  * that the TBIPA register is valid.  Either the MDIO bus code will set
1758  * it to a value that doesn't conflict with other PHYs on the bus, or the
1759  * value doesn't matter, as there are no other PHYs on the bus.
1760  */
1761 static void gfar_configure_serdes(struct net_device *dev)
1762 {
1763         struct gfar_private *priv = netdev_priv(dev);
1764         struct phy_device *tbiphy;
1765
1766         if (!priv->tbi_node) {
1767                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1768                                     "device tree specify a tbi-handle\n");
1769                 return;
1770         }
1771
1772         tbiphy = of_phy_find_device(priv->tbi_node);
1773         if (!tbiphy) {
1774                 dev_err(&dev->dev, "error: Could not get TBI device\n");
1775                 return;
1776         }
1777
1778         /* If the link is already up, we must already be ok, and don't need to
1779          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1780          * everything for us?  Resetting it takes the link down and requires
1781          * several seconds for it to come back.
1782          */
1783         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1784                 return;
1785
1786         /* Single clk mode, mii mode off(for serdes communication) */
1787         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1788
1789         phy_write(tbiphy, MII_ADVERTISE,
1790                   ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1791                   ADVERTISE_1000XPSE_ASYM);
1792
1793         phy_write(tbiphy, MII_BMCR,
1794                   BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1795                   BMCR_SPEED1000);
1796 }
1797
1798 static int __gfar_is_rx_idle(struct gfar_private *priv)
1799 {
1800         u32 res;
1801
1802         /* Normaly TSEC should not hang on GRS commands, so we should
1803          * actually wait for IEVENT_GRSC flag.
1804          */
1805         if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1806                 return 0;
1807
1808         /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1809          * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1810          * and the Rx can be safely reset.
1811          */
1812         res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1813         res &= 0x7f807f80;
1814         if ((res & 0xffff) == (res >> 16))
1815                 return 1;
1816
1817         return 0;
1818 }
1819
1820 /* Halt the receive and transmit queues */
1821 static void gfar_halt_nodisable(struct gfar_private *priv)
1822 {
1823         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1824         u32 tempval;
1825         unsigned int timeout;
1826         int stopped;
1827
1828         gfar_ints_disable(priv);
1829
1830         if (gfar_is_dma_stopped(priv))
1831                 return;
1832
1833         /* Stop the DMA, and wait for it to stop */
1834         tempval = gfar_read(&regs->dmactrl);
1835         tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1836         gfar_write(&regs->dmactrl, tempval);
1837
1838 retry:
1839         timeout = 1000;
1840         while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1841                 cpu_relax();
1842                 timeout--;
1843         }
1844
1845         if (!timeout)
1846                 stopped = gfar_is_dma_stopped(priv);
1847
1848         if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1849             !__gfar_is_rx_idle(priv))
1850                 goto retry;
1851 }
1852
1853 /* Halt the receive and transmit queues */
1854 void gfar_halt(struct gfar_private *priv)
1855 {
1856         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1857         u32 tempval;
1858
1859         /* Dissable the Rx/Tx hw queues */
1860         gfar_write(&regs->rqueue, 0);
1861         gfar_write(&regs->tqueue, 0);
1862
1863         mdelay(10);
1864
1865         gfar_halt_nodisable(priv);
1866
1867         /* Disable Rx/Tx DMA */
1868         tempval = gfar_read(&regs->maccfg1);
1869         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1870         gfar_write(&regs->maccfg1, tempval);
1871 }
1872
1873 void stop_gfar(struct net_device *dev)
1874 {
1875         struct gfar_private *priv = netdev_priv(dev);
1876
1877         netif_tx_stop_all_queues(dev);
1878
1879         smp_mb__before_atomic();
1880         set_bit(GFAR_DOWN, &priv->state);
1881         smp_mb__after_atomic();
1882
1883         disable_napi(priv);
1884
1885         /* disable ints and gracefully shut down Rx/Tx DMA */
1886         gfar_halt(priv);
1887
1888         phy_stop(priv->phydev);
1889
1890         free_skb_resources(priv);
1891 }
1892
1893 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1894 {
1895         struct txbd8 *txbdp;
1896         struct gfar_private *priv = netdev_priv(tx_queue->dev);
1897         int i, j;
1898
1899         txbdp = tx_queue->tx_bd_base;
1900
1901         for (i = 0; i < tx_queue->tx_ring_size; i++) {
1902                 if (!tx_queue->tx_skbuff[i])
1903                         continue;
1904
1905                 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1906                                  be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1907                 txbdp->lstatus = 0;
1908                 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1909                      j++) {
1910                         txbdp++;
1911                         dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1912                                        be16_to_cpu(txbdp->length),
1913                                        DMA_TO_DEVICE);
1914                 }
1915                 txbdp++;
1916                 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1917                 tx_queue->tx_skbuff[i] = NULL;
1918         }
1919         kfree(tx_queue->tx_skbuff);
1920         tx_queue->tx_skbuff = NULL;
1921 }
1922
1923 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1924 {
1925         struct rxbd8 *rxbdp;
1926         struct gfar_private *priv = netdev_priv(rx_queue->dev);
1927         int i;
1928
1929         rxbdp = rx_queue->rx_bd_base;
1930
1931         for (i = 0; i < rx_queue->rx_ring_size; i++) {
1932                 if (rx_queue->rx_skbuff[i]) {
1933                         dma_unmap_single(priv->dev, be32_to_cpu(rxbdp->bufPtr),
1934                                          priv->rx_buffer_size,
1935                                          DMA_FROM_DEVICE);
1936                         dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1937                         rx_queue->rx_skbuff[i] = NULL;
1938                 }
1939                 rxbdp->lstatus = 0;
1940                 rxbdp->bufPtr = 0;
1941                 rxbdp++;
1942         }
1943         kfree(rx_queue->rx_skbuff);
1944         rx_queue->rx_skbuff = NULL;
1945 }
1946
1947 /* If there are any tx skbs or rx skbs still around, free them.
1948  * Then free tx_skbuff and rx_skbuff
1949  */
1950 static void free_skb_resources(struct gfar_private *priv)
1951 {
1952         struct gfar_priv_tx_q *tx_queue = NULL;
1953         struct gfar_priv_rx_q *rx_queue = NULL;
1954         int i;
1955
1956         /* Go through all the buffer descriptors and free their data buffers */
1957         for (i = 0; i < priv->num_tx_queues; i++) {
1958                 struct netdev_queue *txq;
1959
1960                 tx_queue = priv->tx_queue[i];
1961                 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1962                 if (tx_queue->tx_skbuff)
1963                         free_skb_tx_queue(tx_queue);
1964                 netdev_tx_reset_queue(txq);
1965         }
1966
1967         for (i = 0; i < priv->num_rx_queues; i++) {
1968                 rx_queue = priv->rx_queue[i];
1969                 if (rx_queue->rx_skbuff)
1970                         free_skb_rx_queue(rx_queue);
1971         }
1972
1973         dma_free_coherent(priv->dev,
1974                           sizeof(struct txbd8) * priv->total_tx_ring_size +
1975                           sizeof(struct rxbd8) * priv->total_rx_ring_size,
1976                           priv->tx_queue[0]->tx_bd_base,
1977                           priv->tx_queue[0]->tx_bd_dma_base);
1978 }
1979
1980 void gfar_start(struct gfar_private *priv)
1981 {
1982         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1983         u32 tempval;
1984         int i = 0;
1985
1986         /* Enable Rx/Tx hw queues */
1987         gfar_write(&regs->rqueue, priv->rqueue);
1988         gfar_write(&regs->tqueue, priv->tqueue);
1989
1990         /* Initialize DMACTRL to have WWR and WOP */
1991         tempval = gfar_read(&regs->dmactrl);
1992         tempval |= DMACTRL_INIT_SETTINGS;
1993         gfar_write(&regs->dmactrl, tempval);
1994
1995         /* Make sure we aren't stopped */
1996         tempval = gfar_read(&regs->dmactrl);
1997         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1998         gfar_write(&regs->dmactrl, tempval);
1999
2000         for (i = 0; i < priv->num_grps; i++) {
2001                 regs = priv->gfargrp[i].regs;
2002                 /* Clear THLT/RHLT, so that the DMA starts polling now */
2003                 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
2004                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
2005         }
2006
2007         /* Enable Rx/Tx DMA */
2008         tempval = gfar_read(&regs->maccfg1);
2009         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
2010         gfar_write(&regs->maccfg1, tempval);
2011
2012         gfar_ints_enable(priv);
2013
2014         priv->ndev->trans_start = jiffies; /* prevent tx timeout */
2015 }
2016
2017 static void free_grp_irqs(struct gfar_priv_grp *grp)
2018 {
2019         free_irq(gfar_irq(grp, TX)->irq, grp);
2020         free_irq(gfar_irq(grp, RX)->irq, grp);
2021         free_irq(gfar_irq(grp, ER)->irq, grp);
2022 }
2023
2024 static int register_grp_irqs(struct gfar_priv_grp *grp)
2025 {
2026         struct gfar_private *priv = grp->priv;
2027         struct net_device *dev = priv->ndev;
2028         int err;
2029
2030         /* If the device has multiple interrupts, register for
2031          * them.  Otherwise, only register for the one
2032          */
2033         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2034                 /* Install our interrupt handlers for Error,
2035                  * Transmit, and Receive
2036                  */
2037                 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2038                                   gfar_irq(grp, ER)->name, grp);
2039                 if (err < 0) {
2040                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2041                                   gfar_irq(grp, ER)->irq);
2042
2043                         goto err_irq_fail;
2044                 }
2045                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2046                                   gfar_irq(grp, TX)->name, grp);
2047                 if (err < 0) {
2048                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2049                                   gfar_irq(grp, TX)->irq);
2050                         goto tx_irq_fail;
2051                 }
2052                 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2053                                   gfar_irq(grp, RX)->name, grp);
2054                 if (err < 0) {
2055                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2056                                   gfar_irq(grp, RX)->irq);
2057                         goto rx_irq_fail;
2058                 }
2059         } else {
2060                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2061                                   gfar_irq(grp, TX)->name, grp);
2062                 if (err < 0) {
2063                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2064                                   gfar_irq(grp, TX)->irq);
2065                         goto err_irq_fail;
2066                 }
2067         }
2068
2069         return 0;
2070
2071 rx_irq_fail:
2072         free_irq(gfar_irq(grp, TX)->irq, grp);
2073 tx_irq_fail:
2074         free_irq(gfar_irq(grp, ER)->irq, grp);
2075 err_irq_fail:
2076         return err;
2077
2078 }
2079
2080 static void gfar_free_irq(struct gfar_private *priv)
2081 {
2082         int i;
2083
2084         /* Free the IRQs */
2085         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2086                 for (i = 0; i < priv->num_grps; i++)
2087                         free_grp_irqs(&priv->gfargrp[i]);
2088         } else {
2089                 for (i = 0; i < priv->num_grps; i++)
2090                         free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2091                                  &priv->gfargrp[i]);
2092         }
2093 }
2094
2095 static int gfar_request_irq(struct gfar_private *priv)
2096 {
2097         int err, i, j;
2098
2099         for (i = 0; i < priv->num_grps; i++) {
2100                 err = register_grp_irqs(&priv->gfargrp[i]);
2101                 if (err) {
2102                         for (j = 0; j < i; j++)
2103                                 free_grp_irqs(&priv->gfargrp[j]);
2104                         return err;
2105                 }
2106         }
2107
2108         return 0;
2109 }
2110
2111 /* Bring the controller up and running */
2112 int startup_gfar(struct net_device *ndev)
2113 {
2114         struct gfar_private *priv = netdev_priv(ndev);
2115         int err;
2116
2117         gfar_mac_reset(priv);
2118
2119         err = gfar_alloc_skb_resources(ndev);
2120         if (err)
2121                 return err;
2122
2123         gfar_init_tx_rx_base(priv);
2124
2125         smp_mb__before_atomic();
2126         clear_bit(GFAR_DOWN, &priv->state);
2127         smp_mb__after_atomic();
2128
2129         /* Start Rx/Tx DMA and enable the interrupts */
2130         gfar_start(priv);
2131
2132         phy_start(priv->phydev);
2133
2134         enable_napi(priv);
2135
2136         netif_tx_wake_all_queues(ndev);
2137
2138         return 0;
2139 }
2140
2141 /* Called when something needs to use the ethernet device
2142  * Returns 0 for success.
2143  */
2144 static int gfar_enet_open(struct net_device *dev)
2145 {
2146         struct gfar_private *priv = netdev_priv(dev);
2147         int err;
2148
2149         err = init_phy(dev);
2150         if (err)
2151                 return err;
2152
2153         err = gfar_request_irq(priv);
2154         if (err)
2155                 return err;
2156
2157         err = startup_gfar(dev);
2158         if (err)
2159                 return err;
2160
2161         device_set_wakeup_enable(&dev->dev, priv->wol_en);
2162
2163         return err;
2164 }
2165
2166 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2167 {
2168         struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2169
2170         memset(fcb, 0, GMAC_FCB_LEN);
2171
2172         return fcb;
2173 }
2174
2175 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2176                                     int fcb_length)
2177 {
2178         /* If we're here, it's a IP packet with a TCP or UDP
2179          * payload.  We set it to checksum, using a pseudo-header
2180          * we provide
2181          */
2182         u8 flags = TXFCB_DEFAULT;
2183
2184         /* Tell the controller what the protocol is
2185          * And provide the already calculated phcs
2186          */
2187         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2188                 flags |= TXFCB_UDP;
2189                 fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2190         } else
2191                 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2192
2193         /* l3os is the distance between the start of the
2194          * frame (skb->data) and the start of the IP hdr.
2195          * l4os is the distance between the start of the
2196          * l3 hdr and the l4 hdr
2197          */
2198         fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2199         fcb->l4os = skb_network_header_len(skb);
2200
2201         fcb->flags = flags;
2202 }
2203
2204 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2205 {
2206         fcb->flags |= TXFCB_VLN;
2207         fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2208 }
2209
2210 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2211                                       struct txbd8 *base, int ring_size)
2212 {
2213         struct txbd8 *new_bd = bdp + stride;
2214
2215         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2216 }
2217
2218 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2219                                       int ring_size)
2220 {
2221         return skip_txbd(bdp, 1, base, ring_size);
2222 }
2223
2224 /* eTSEC12: csum generation not supported for some fcb offsets */
2225 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2226                                        unsigned long fcb_addr)
2227 {
2228         return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2229                (fcb_addr % 0x20) > 0x18);
2230 }
2231
2232 /* eTSEC76: csum generation for frames larger than 2500 may
2233  * cause excess delays before start of transmission
2234  */
2235 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2236                                        unsigned int len)
2237 {
2238         return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2239                (len > 2500));
2240 }
2241
2242 /* This is called by the kernel when a frame is ready for transmission.
2243  * It is pointed to by the dev->hard_start_xmit function pointer
2244  */
2245 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2246 {
2247         struct gfar_private *priv = netdev_priv(dev);
2248         struct gfar_priv_tx_q *tx_queue = NULL;
2249         struct netdev_queue *txq;
2250         struct gfar __iomem *regs = NULL;
2251         struct txfcb *fcb = NULL;
2252         struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2253         u32 lstatus;
2254         int i, rq = 0;
2255         int do_tstamp, do_csum, do_vlan;
2256         u32 bufaddr;
2257         unsigned long flags;
2258         unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2259
2260         rq = skb->queue_mapping;
2261         tx_queue = priv->tx_queue[rq];
2262         txq = netdev_get_tx_queue(dev, rq);
2263         base = tx_queue->tx_bd_base;
2264         regs = tx_queue->grp->regs;
2265
2266         do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2267         do_vlan = skb_vlan_tag_present(skb);
2268         do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2269                     priv->hwts_tx_en;
2270
2271         if (do_csum || do_vlan)
2272                 fcb_len = GMAC_FCB_LEN;
2273
2274         /* check if time stamp should be generated */
2275         if (unlikely(do_tstamp))
2276                 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2277
2278         /* make space for additional header when fcb is needed */
2279         if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2280                 struct sk_buff *skb_new;
2281
2282                 skb_new = skb_realloc_headroom(skb, fcb_len);
2283                 if (!skb_new) {
2284                         dev->stats.tx_errors++;
2285                         dev_kfree_skb_any(skb);
2286                         return NETDEV_TX_OK;
2287                 }
2288
2289                 if (skb->sk)
2290                         skb_set_owner_w(skb_new, skb->sk);
2291                 dev_consume_skb_any(skb);
2292                 skb = skb_new;
2293         }
2294
2295         /* total number of fragments in the SKB */
2296         nr_frags = skb_shinfo(skb)->nr_frags;
2297
2298         /* calculate the required number of TxBDs for this skb */
2299         if (unlikely(do_tstamp))
2300                 nr_txbds = nr_frags + 2;
2301         else
2302                 nr_txbds = nr_frags + 1;
2303
2304         /* check if there is space to queue this packet */
2305         if (nr_txbds > tx_queue->num_txbdfree) {
2306                 /* no space, stop the queue */
2307                 netif_tx_stop_queue(txq);
2308                 dev->stats.tx_fifo_errors++;
2309                 return NETDEV_TX_BUSY;
2310         }
2311
2312         /* Update transmit stats */
2313         bytes_sent = skb->len;
2314         tx_queue->stats.tx_bytes += bytes_sent;
2315         /* keep Tx bytes on wire for BQL accounting */
2316         GFAR_CB(skb)->bytes_sent = bytes_sent;
2317         tx_queue->stats.tx_packets++;
2318
2319         txbdp = txbdp_start = tx_queue->cur_tx;
2320         lstatus = be32_to_cpu(txbdp->lstatus);
2321
2322         /* Time stamp insertion requires one additional TxBD */
2323         if (unlikely(do_tstamp))
2324                 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2325                                                  tx_queue->tx_ring_size);
2326
2327         if (nr_frags == 0) {
2328                 if (unlikely(do_tstamp)) {
2329                         u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2330
2331                         lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2332                         txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2333                 } else {
2334                         lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2335                 }
2336         } else {
2337                 /* Place the fragment addresses and lengths into the TxBDs */
2338                 for (i = 0; i < nr_frags; i++) {
2339                         unsigned int frag_len;
2340                         /* Point at the next BD, wrapping as needed */
2341                         txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2342
2343                         frag_len = skb_shinfo(skb)->frags[i].size;
2344
2345                         lstatus = be32_to_cpu(txbdp->lstatus) | frag_len |
2346                                   BD_LFLAG(TXBD_READY);
2347
2348                         /* Handle the last BD specially */
2349                         if (i == nr_frags - 1)
2350                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2351
2352                         bufaddr = skb_frag_dma_map(priv->dev,
2353                                                    &skb_shinfo(skb)->frags[i],
2354                                                    0,
2355                                                    frag_len,
2356                                                    DMA_TO_DEVICE);
2357                         if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2358                                 goto dma_map_err;
2359
2360                         /* set the TxBD length and buffer pointer */
2361                         txbdp->bufPtr = cpu_to_be32(bufaddr);
2362                         txbdp->lstatus = cpu_to_be32(lstatus);
2363                 }
2364
2365                 lstatus = be32_to_cpu(txbdp_start->lstatus);
2366         }
2367
2368         /* Add TxPAL between FCB and frame if required */
2369         if (unlikely(do_tstamp)) {
2370                 skb_push(skb, GMAC_TXPAL_LEN);
2371                 memset(skb->data, 0, GMAC_TXPAL_LEN);
2372         }
2373
2374         /* Add TxFCB if required */
2375         if (fcb_len) {
2376                 fcb = gfar_add_fcb(skb);
2377                 lstatus |= BD_LFLAG(TXBD_TOE);
2378         }
2379
2380         /* Set up checksumming */
2381         if (do_csum) {
2382                 gfar_tx_checksum(skb, fcb, fcb_len);
2383
2384                 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2385                     unlikely(gfar_csum_errata_76(priv, skb->len))) {
2386                         __skb_pull(skb, GMAC_FCB_LEN);
2387                         skb_checksum_help(skb);
2388                         if (do_vlan || do_tstamp) {
2389                                 /* put back a new fcb for vlan/tstamp TOE */
2390                                 fcb = gfar_add_fcb(skb);
2391                         } else {
2392                                 /* Tx TOE not used */
2393                                 lstatus &= ~(BD_LFLAG(TXBD_TOE));
2394                                 fcb = NULL;
2395                         }
2396                 }
2397         }
2398
2399         if (do_vlan)
2400                 gfar_tx_vlan(skb, fcb);
2401
2402         /* Setup tx hardware time stamping if requested */
2403         if (unlikely(do_tstamp)) {
2404                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2405                 fcb->ptp = 1;
2406         }
2407
2408         bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2409                                  DMA_TO_DEVICE);
2410         if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2411                 goto dma_map_err;
2412
2413         txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2414
2415         /* If time stamping is requested one additional TxBD must be set up. The
2416          * first TxBD points to the FCB and must have a data length of
2417          * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2418          * the full frame length.
2419          */
2420         if (unlikely(do_tstamp)) {
2421                 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2422
2423                 bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2424                 bufaddr += fcb_len;
2425                 lstatus_ts |= BD_LFLAG(TXBD_READY) |
2426                               (skb_headlen(skb) - fcb_len);
2427
2428                 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2429                 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2430                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2431         } else {
2432                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2433         }
2434
2435         netdev_tx_sent_queue(txq, bytes_sent);
2436
2437         /* We can work in parallel with gfar_clean_tx_ring(), except
2438          * when modifying num_txbdfree. Note that we didn't grab the lock
2439          * when we were reading the num_txbdfree and checking for available
2440          * space, that's because outside of this function it can only grow,
2441          * and once we've got needed space, it cannot suddenly disappear.
2442          *
2443          * The lock also protects us from gfar_error(), which can modify
2444          * regs->tstat and thus retrigger the transfers, which is why we
2445          * also must grab the lock before setting ready bit for the first
2446          * to be transmitted BD.
2447          */
2448         spin_lock_irqsave(&tx_queue->txlock, flags);
2449
2450         gfar_wmb();
2451
2452         txbdp_start->lstatus = cpu_to_be32(lstatus);
2453
2454         gfar_wmb(); /* force lstatus write before tx_skbuff */
2455
2456         tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2457
2458         /* Update the current skb pointer to the next entry we will use
2459          * (wrapping if necessary)
2460          */
2461         tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2462                               TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2463
2464         tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2465
2466         /* reduce TxBD free count */
2467         tx_queue->num_txbdfree -= (nr_txbds);
2468
2469         /* If the next BD still needs to be cleaned up, then the bds
2470          * are full.  We need to tell the kernel to stop sending us stuff.
2471          */
2472         if (!tx_queue->num_txbdfree) {
2473                 netif_tx_stop_queue(txq);
2474
2475                 dev->stats.tx_fifo_errors++;
2476         }
2477
2478         /* Tell the DMA to go go go */
2479         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2480
2481         /* Unlock priv */
2482         spin_unlock_irqrestore(&tx_queue->txlock, flags);
2483
2484         return NETDEV_TX_OK;
2485
2486 dma_map_err:
2487         txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2488         if (do_tstamp)
2489                 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2490         for (i = 0; i < nr_frags; i++) {
2491                 lstatus = be32_to_cpu(txbdp->lstatus);
2492                 if (!(lstatus & BD_LFLAG(TXBD_READY)))
2493                         break;
2494
2495                 lstatus &= ~BD_LFLAG(TXBD_READY);
2496                 txbdp->lstatus = cpu_to_be32(lstatus);
2497                 bufaddr = be32_to_cpu(txbdp->bufPtr);
2498                 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2499                                DMA_TO_DEVICE);
2500                 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2501         }
2502         gfar_wmb();
2503         dev_kfree_skb_any(skb);
2504         return NETDEV_TX_OK;
2505 }
2506
2507 /* Stops the kernel queue, and halts the controller */
2508 static int gfar_close(struct net_device *dev)
2509 {
2510         struct gfar_private *priv = netdev_priv(dev);
2511
2512         cancel_work_sync(&priv->reset_task);
2513         stop_gfar(dev);
2514
2515         /* Disconnect from the PHY */
2516         phy_disconnect(priv->phydev);
2517         priv->phydev = NULL;
2518
2519         gfar_free_irq(priv);
2520
2521         return 0;
2522 }
2523
2524 /* Changes the mac address if the controller is not running. */
2525 static int gfar_set_mac_address(struct net_device *dev)
2526 {
2527         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2528
2529         return 0;
2530 }
2531
2532 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2533 {
2534         struct gfar_private *priv = netdev_priv(dev);
2535         int frame_size = new_mtu + ETH_HLEN;
2536
2537         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2538                 netif_err(priv, drv, dev, "Invalid MTU setting\n");
2539                 return -EINVAL;
2540         }
2541
2542         while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2543                 cpu_relax();
2544
2545         if (dev->flags & IFF_UP)
2546                 stop_gfar(dev);
2547
2548         dev->mtu = new_mtu;
2549
2550         if (dev->flags & IFF_UP)
2551                 startup_gfar(dev);
2552
2553         clear_bit_unlock(GFAR_RESETTING, &priv->state);
2554
2555         return 0;
2556 }
2557
2558 void reset_gfar(struct net_device *ndev)
2559 {
2560         struct gfar_private *priv = netdev_priv(ndev);
2561
2562         while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2563                 cpu_relax();
2564
2565         stop_gfar(ndev);
2566         startup_gfar(ndev);
2567
2568         clear_bit_unlock(GFAR_RESETTING, &priv->state);
2569 }
2570
2571 /* gfar_reset_task gets scheduled when a packet has not been
2572  * transmitted after a set amount of time.
2573  * For now, assume that clearing out all the structures, and
2574  * starting over will fix the problem.
2575  */
2576 static void gfar_reset_task(struct work_struct *work)
2577 {
2578         struct gfar_private *priv = container_of(work, struct gfar_private,
2579                                                  reset_task);
2580         reset_gfar(priv->ndev);
2581 }
2582
2583 static void gfar_timeout(struct net_device *dev)
2584 {
2585         struct gfar_private *priv = netdev_priv(dev);
2586
2587         dev->stats.tx_errors++;
2588         schedule_work(&priv->reset_task);
2589 }
2590
2591 static void gfar_align_skb(struct sk_buff *skb)
2592 {
2593         /* We need the data buffer to be aligned properly.  We will reserve
2594          * as many bytes as needed to align the data properly
2595          */
2596         skb_reserve(skb, RXBUF_ALIGNMENT -
2597                     (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2598 }
2599
2600 /* Interrupt Handler for Transmit complete */
2601 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2602 {
2603         struct net_device *dev = tx_queue->dev;
2604         struct netdev_queue *txq;
2605         struct gfar_private *priv = netdev_priv(dev);
2606         struct txbd8 *bdp, *next = NULL;
2607         struct txbd8 *lbdp = NULL;
2608         struct txbd8 *base = tx_queue->tx_bd_base;
2609         struct sk_buff *skb;
2610         int skb_dirtytx;
2611         int tx_ring_size = tx_queue->tx_ring_size;
2612         int frags = 0, nr_txbds = 0;
2613         int i;
2614         int howmany = 0;
2615         int tqi = tx_queue->qindex;
2616         unsigned int bytes_sent = 0;
2617         u32 lstatus;
2618         size_t buflen;
2619
2620         txq = netdev_get_tx_queue(dev, tqi);
2621         bdp = tx_queue->dirty_tx;
2622         skb_dirtytx = tx_queue->skb_dirtytx;
2623
2624         while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2625                 unsigned long flags;
2626
2627                 frags = skb_shinfo(skb)->nr_frags;
2628
2629                 /* When time stamping, one additional TxBD must be freed.
2630                  * Also, we need to dma_unmap_single() the TxPAL.
2631                  */
2632                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2633                         nr_txbds = frags + 2;
2634                 else
2635                         nr_txbds = frags + 1;
2636
2637                 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2638
2639                 lstatus = be32_to_cpu(lbdp->lstatus);
2640
2641                 /* Only clean completed frames */
2642                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2643                     (lstatus & BD_LENGTH_MASK))
2644                         break;
2645
2646                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2647                         next = next_txbd(bdp, base, tx_ring_size);
2648                         buflen = be16_to_cpu(next->length) +
2649                                  GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2650                 } else
2651                         buflen = be16_to_cpu(bdp->length);
2652
2653                 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2654                                  buflen, DMA_TO_DEVICE);
2655
2656                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2657                         struct skb_shared_hwtstamps shhwtstamps;
2658                         u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2659
2660                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2661                         shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2662                         skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2663                         skb_tstamp_tx(skb, &shhwtstamps);
2664                         gfar_clear_txbd_status(bdp);
2665                         bdp = next;
2666                 }
2667
2668                 gfar_clear_txbd_status(bdp);
2669                 bdp = next_txbd(bdp, base, tx_ring_size);
2670
2671                 for (i = 0; i < frags; i++) {
2672                         dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2673                                        be16_to_cpu(bdp->length),
2674                                        DMA_TO_DEVICE);
2675                         gfar_clear_txbd_status(bdp);
2676                         bdp = next_txbd(bdp, base, tx_ring_size);
2677                 }
2678
2679                 bytes_sent += GFAR_CB(skb)->bytes_sent;
2680
2681                 dev_kfree_skb_any(skb);
2682
2683                 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2684
2685                 skb_dirtytx = (skb_dirtytx + 1) &
2686                               TX_RING_MOD_MASK(tx_ring_size);
2687
2688                 howmany++;
2689                 spin_lock_irqsave(&tx_queue->txlock, flags);
2690                 tx_queue->num_txbdfree += nr_txbds;
2691                 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2692         }
2693
2694         /* If we freed a buffer, we can restart transmission, if necessary */
2695         if (tx_queue->num_txbdfree &&
2696             netif_tx_queue_stopped(txq) &&
2697             !(test_bit(GFAR_DOWN, &priv->state)))
2698                 netif_wake_subqueue(priv->ndev, tqi);
2699
2700         /* Update dirty indicators */
2701         tx_queue->skb_dirtytx = skb_dirtytx;
2702         tx_queue->dirty_tx = bdp;
2703
2704         netdev_tx_completed_queue(txq, howmany, bytes_sent);
2705 }
2706
2707 static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2708 {
2709         struct gfar_private *priv = netdev_priv(dev);
2710         struct sk_buff *skb;
2711
2712         skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2713         if (!skb)
2714                 return NULL;
2715
2716         gfar_align_skb(skb);
2717
2718         return skb;
2719 }
2720
2721 static struct sk_buff *gfar_new_skb(struct net_device *dev, dma_addr_t *bufaddr)
2722 {
2723         struct gfar_private *priv = netdev_priv(dev);
2724         struct sk_buff *skb;
2725         dma_addr_t addr;
2726
2727         skb = gfar_alloc_skb(dev);
2728         if (!skb)
2729                 return NULL;
2730
2731         addr = dma_map_single(priv->dev, skb->data,
2732                               priv->rx_buffer_size, DMA_FROM_DEVICE);
2733         if (unlikely(dma_mapping_error(priv->dev, addr))) {
2734                 dev_kfree_skb_any(skb);
2735                 return NULL;
2736         }
2737
2738         *bufaddr = addr;
2739         return skb;
2740 }
2741
2742 static inline void count_errors(unsigned short status, struct net_device *dev)
2743 {
2744         struct gfar_private *priv = netdev_priv(dev);
2745         struct net_device_stats *stats = &dev->stats;
2746         struct gfar_extra_stats *estats = &priv->extra_stats;
2747
2748         /* If the packet was truncated, none of the other errors matter */
2749         if (status & RXBD_TRUNCATED) {
2750                 stats->rx_length_errors++;
2751
2752                 atomic64_inc(&estats->rx_trunc);
2753
2754                 return;
2755         }
2756         /* Count the errors, if there were any */
2757         if (status & (RXBD_LARGE | RXBD_SHORT)) {
2758                 stats->rx_length_errors++;
2759
2760                 if (status & RXBD_LARGE)
2761                         atomic64_inc(&estats->rx_large);
2762                 else
2763                         atomic64_inc(&estats->rx_short);
2764         }
2765         if (status & RXBD_NONOCTET) {
2766                 stats->rx_frame_errors++;
2767                 atomic64_inc(&estats->rx_nonoctet);
2768         }
2769         if (status & RXBD_CRCERR) {
2770                 atomic64_inc(&estats->rx_crcerr);
2771                 stats->rx_crc_errors++;
2772         }
2773         if (status & RXBD_OVERRUN) {
2774                 atomic64_inc(&estats->rx_overrun);
2775                 stats->rx_crc_errors++;
2776         }
2777 }
2778
2779 irqreturn_t gfar_receive(int irq, void *grp_id)
2780 {
2781         struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2782         unsigned long flags;
2783         u32 imask;
2784
2785         if (likely(napi_schedule_prep(&grp->napi_rx))) {
2786                 spin_lock_irqsave(&grp->grplock, flags);
2787                 imask = gfar_read(&grp->regs->imask);
2788                 imask &= IMASK_RX_DISABLED;
2789                 gfar_write(&grp->regs->imask, imask);
2790                 spin_unlock_irqrestore(&grp->grplock, flags);
2791                 __napi_schedule(&grp->napi_rx);
2792         } else {
2793                 /* Clear IEVENT, so interrupts aren't called again
2794                  * because of the packets that have already arrived.
2795                  */
2796                 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2797         }
2798
2799         return IRQ_HANDLED;
2800 }
2801
2802 /* Interrupt Handler for Transmit complete */
2803 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2804 {
2805         struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2806         unsigned long flags;
2807         u32 imask;
2808
2809         if (likely(napi_schedule_prep(&grp->napi_tx))) {
2810                 spin_lock_irqsave(&grp->grplock, flags);
2811                 imask = gfar_read(&grp->regs->imask);
2812                 imask &= IMASK_TX_DISABLED;
2813                 gfar_write(&grp->regs->imask, imask);
2814                 spin_unlock_irqrestore(&grp->grplock, flags);
2815                 __napi_schedule(&grp->napi_tx);
2816         } else {
2817                 /* Clear IEVENT, so interrupts aren't called again
2818                  * because of the packets that have already arrived.
2819                  */
2820                 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2821         }
2822
2823         return IRQ_HANDLED;
2824 }
2825
2826 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2827 {
2828         /* If valid headers were found, and valid sums
2829          * were verified, then we tell the kernel that no
2830          * checksumming is necessary.  Otherwise, it is [FIXME]
2831          */
2832         if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2833             (RXFCB_CIP | RXFCB_CTU))
2834                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2835         else
2836                 skb_checksum_none_assert(skb);
2837 }
2838
2839 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2840 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2841                                int amount_pull, struct napi_struct *napi)
2842 {
2843         struct gfar_private *priv = netdev_priv(dev);
2844         struct rxfcb *fcb = NULL;
2845
2846         /* fcb is at the beginning if exists */
2847         fcb = (struct rxfcb *)skb->data;
2848
2849         /* Remove the FCB from the skb
2850          * Remove the padded bytes, if there are any
2851          */
2852         if (amount_pull) {
2853                 skb_record_rx_queue(skb, fcb->rq);
2854                 skb_pull(skb, amount_pull);
2855         }
2856
2857         /* Get receive timestamp from the skb */
2858         if (priv->hwts_rx_en) {
2859                 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2860                 u64 *ns = (u64 *) skb->data;
2861
2862                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2863                 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2864         }
2865
2866         if (priv->padding)
2867                 skb_pull(skb, priv->padding);
2868
2869         if (dev->features & NETIF_F_RXCSUM)
2870                 gfar_rx_checksum(skb, fcb);
2871
2872         /* Tell the skb what kind of packet this is */
2873         skb->protocol = eth_type_trans(skb, dev);
2874
2875         /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2876          * Even if vlan rx accel is disabled, on some chips
2877          * RXFCB_VLN is pseudo randomly set.
2878          */
2879         if (dev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2880             be16_to_cpu(fcb->flags) & RXFCB_VLN)
2881                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2882                                        be16_to_cpu(fcb->vlctl));
2883
2884         /* Send the packet up the stack */
2885         napi_gro_receive(napi, skb);
2886
2887 }
2888
2889 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2890  * until the budget/quota has been reached. Returns the number
2891  * of frames handled
2892  */
2893 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2894 {
2895         struct net_device *dev = rx_queue->dev;
2896         struct rxbd8 *bdp, *base;
2897         struct sk_buff *skb;
2898         int pkt_len;
2899         int amount_pull;
2900         int howmany = 0;
2901         struct gfar_private *priv = netdev_priv(dev);
2902
2903         /* Get the first full descriptor */
2904         bdp = rx_queue->cur_rx;
2905         base = rx_queue->rx_bd_base;
2906
2907         amount_pull = priv->uses_rxfcb ? GMAC_FCB_LEN : 0;
2908
2909         while (!(be16_to_cpu(bdp->status) & RXBD_EMPTY) && rx_work_limit--) {
2910                 struct sk_buff *newskb;
2911                 dma_addr_t bufaddr;
2912
2913                 rmb();
2914
2915                 /* Add another skb for the future */
2916                 newskb = gfar_new_skb(dev, &bufaddr);
2917
2918                 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2919
2920                 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2921                                  priv->rx_buffer_size, DMA_FROM_DEVICE);
2922
2923                 if (unlikely(!(be16_to_cpu(bdp->status) & RXBD_ERR) &&
2924                              be16_to_cpu(bdp->length) > priv->rx_buffer_size))
2925                         bdp->status = cpu_to_be16(RXBD_LARGE);
2926
2927                 /* We drop the frame if we failed to allocate a new buffer */
2928                 if (unlikely(!newskb ||
2929                              !(be16_to_cpu(bdp->status) & RXBD_LAST) ||
2930                              be16_to_cpu(bdp->status) & RXBD_ERR)) {
2931                         count_errors(be16_to_cpu(bdp->status), dev);
2932
2933                         if (unlikely(!newskb)) {
2934                                 newskb = skb;
2935                                 bufaddr = be32_to_cpu(bdp->bufPtr);
2936                         } else if (skb)
2937                                 dev_kfree_skb(skb);
2938                 } else {
2939                         /* Increment the number of packets */
2940                         rx_queue->stats.rx_packets++;
2941                         howmany++;
2942
2943                         if (likely(skb)) {
2944                                 pkt_len = be16_to_cpu(bdp->length) -
2945                                           ETH_FCS_LEN;
2946                                 /* Remove the FCS from the packet length */
2947                                 skb_put(skb, pkt_len);
2948                                 rx_queue->stats.rx_bytes += pkt_len;
2949                                 skb_record_rx_queue(skb, rx_queue->qindex);
2950                                 gfar_process_frame(dev, skb, amount_pull,
2951                                                    &rx_queue->grp->napi_rx);
2952
2953                         } else {
2954                                 netif_warn(priv, rx_err, dev, "Missing skb!\n");
2955                                 rx_queue->stats.rx_dropped++;
2956                                 atomic64_inc(&priv->extra_stats.rx_skbmissing);
2957                         }
2958
2959                 }
2960
2961                 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2962
2963                 /* Setup the new bdp */
2964                 gfar_init_rxbdp(rx_queue, bdp, bufaddr);
2965
2966                 /* Update Last Free RxBD pointer for LFC */
2967                 if (unlikely(rx_queue->rfbptr && priv->tx_actual_en))
2968                         gfar_write(rx_queue->rfbptr, (u32)bdp);
2969
2970                 /* Update to the next pointer */
2971                 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2972
2973                 /* update to point at the next skb */
2974                 rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2975                                       RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2976         }
2977
2978         /* Update the current rxbd pointer to be the next one */
2979         rx_queue->cur_rx = bdp;
2980
2981         return howmany;
2982 }
2983
2984 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2985 {
2986         struct gfar_priv_grp *gfargrp =
2987                 container_of(napi, struct gfar_priv_grp, napi_rx);
2988         struct gfar __iomem *regs = gfargrp->regs;
2989         struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2990         int work_done = 0;
2991
2992         /* Clear IEVENT, so interrupts aren't called again
2993          * because of the packets that have already arrived
2994          */
2995         gfar_write(&regs->ievent, IEVENT_RX_MASK);
2996
2997         work_done = gfar_clean_rx_ring(rx_queue, budget);
2998
2999         if (work_done < budget) {
3000                 u32 imask;
3001                 napi_complete(napi);
3002                 /* Clear the halt bit in RSTAT */
3003                 gfar_write(&regs->rstat, gfargrp->rstat);
3004
3005                 spin_lock_irq(&gfargrp->grplock);
3006                 imask = gfar_read(&regs->imask);
3007                 imask |= IMASK_RX_DEFAULT;
3008                 gfar_write(&regs->imask, imask);
3009                 spin_unlock_irq(&gfargrp->grplock);
3010         }
3011
3012         return work_done;
3013 }
3014
3015 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
3016 {
3017         struct gfar_priv_grp *gfargrp =
3018                 container_of(napi, struct gfar_priv_grp, napi_tx);
3019         struct gfar __iomem *regs = gfargrp->regs;
3020         struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
3021         u32 imask;
3022
3023         /* Clear IEVENT, so interrupts aren't called again
3024          * because of the packets that have already arrived
3025          */
3026         gfar_write(&regs->ievent, IEVENT_TX_MASK);
3027
3028         /* run Tx cleanup to completion */
3029         if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
3030                 gfar_clean_tx_ring(tx_queue);
3031
3032         napi_complete(napi);
3033
3034         spin_lock_irq(&gfargrp->grplock);
3035         imask = gfar_read(&regs->imask);
3036         imask |= IMASK_TX_DEFAULT;
3037         gfar_write(&regs->imask, imask);
3038         spin_unlock_irq(&gfargrp->grplock);
3039
3040         return 0;
3041 }
3042
3043 static int gfar_poll_rx(struct napi_struct *napi, int budget)
3044 {
3045         struct gfar_priv_grp *gfargrp =
3046                 container_of(napi, struct gfar_priv_grp, napi_rx);
3047         struct gfar_private *priv = gfargrp->priv;
3048         struct gfar __iomem *regs = gfargrp->regs;
3049         struct gfar_priv_rx_q *rx_queue = NULL;
3050         int work_done = 0, work_done_per_q = 0;
3051         int i, budget_per_q = 0;
3052         unsigned long rstat_rxf;
3053         int num_act_queues;
3054
3055         /* Clear IEVENT, so interrupts aren't called again
3056          * because of the packets that have already arrived
3057          */
3058         gfar_write(&regs->ievent, IEVENT_RX_MASK);
3059
3060         rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3061
3062         num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3063         if (num_act_queues)
3064                 budget_per_q = budget/num_act_queues;
3065
3066         for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3067                 /* skip queue if not active */
3068                 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3069                         continue;
3070
3071                 rx_queue = priv->rx_queue[i];
3072                 work_done_per_q =
3073                         gfar_clean_rx_ring(rx_queue, budget_per_q);
3074                 work_done += work_done_per_q;
3075
3076                 /* finished processing this queue */
3077                 if (work_done_per_q < budget_per_q) {
3078                         /* clear active queue hw indication */
3079                         gfar_write(&regs->rstat,
3080                                    RSTAT_CLEAR_RXF0 >> i);
3081                         num_act_queues--;
3082
3083                         if (!num_act_queues)
3084                                 break;
3085                 }
3086         }
3087
3088         if (!num_act_queues) {
3089                 u32 imask;
3090                 napi_complete(napi);
3091
3092                 /* Clear the halt bit in RSTAT */
3093                 gfar_write(&regs->rstat, gfargrp->rstat);
3094
3095                 spin_lock_irq(&gfargrp->grplock);
3096                 imask = gfar_read(&regs->imask);
3097                 imask |= IMASK_RX_DEFAULT;
3098                 gfar_write(&regs->imask, imask);
3099                 spin_unlock_irq(&gfargrp->grplock);
3100         }
3101
3102         return work_done;
3103 }
3104
3105 static int gfar_poll_tx(struct napi_struct *napi, int budget)
3106 {
3107         struct gfar_priv_grp *gfargrp =
3108                 container_of(napi, struct gfar_priv_grp, napi_tx);
3109         struct gfar_private *priv = gfargrp->priv;
3110         struct gfar __iomem *regs = gfargrp->regs;
3111         struct gfar_priv_tx_q *tx_queue = NULL;
3112         int has_tx_work = 0;
3113         int i;
3114
3115         /* Clear IEVENT, so interrupts aren't called again
3116          * because of the packets that have already arrived
3117          */
3118         gfar_write(&regs->ievent, IEVENT_TX_MASK);
3119
3120         for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3121                 tx_queue = priv->tx_queue[i];
3122                 /* run Tx cleanup to completion */
3123                 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3124                         gfar_clean_tx_ring(tx_queue);
3125                         has_tx_work = 1;
3126                 }
3127         }
3128
3129         if (!has_tx_work) {
3130                 u32 imask;
3131                 napi_complete(napi);
3132
3133                 spin_lock_irq(&gfargrp->grplock);
3134                 imask = gfar_read(&regs->imask);
3135                 imask |= IMASK_TX_DEFAULT;
3136                 gfar_write(&regs->imask, imask);
3137                 spin_unlock_irq(&gfargrp->grplock);
3138         }
3139
3140         return 0;
3141 }
3142
3143
3144 #ifdef CONFIG_NET_POLL_CONTROLLER
3145 /* Polling 'interrupt' - used by things like netconsole to send skbs
3146  * without having to re-enable interrupts. It's not called while
3147  * the interrupt routine is executing.
3148  */
3149 static void gfar_netpoll(struct net_device *dev)
3150 {
3151         struct gfar_private *priv = netdev_priv(dev);
3152         int i;
3153
3154         /* If the device has multiple interrupts, run tx/rx */
3155         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3156                 for (i = 0; i < priv->num_grps; i++) {
3157                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
3158
3159                         disable_irq(gfar_irq(grp, TX)->irq);
3160                         disable_irq(gfar_irq(grp, RX)->irq);
3161                         disable_irq(gfar_irq(grp, ER)->irq);
3162                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3163                         enable_irq(gfar_irq(grp, ER)->irq);
3164                         enable_irq(gfar_irq(grp, RX)->irq);
3165                         enable_irq(gfar_irq(grp, TX)->irq);
3166                 }
3167         } else {
3168                 for (i = 0; i < priv->num_grps; i++) {
3169                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
3170
3171                         disable_irq(gfar_irq(grp, TX)->irq);
3172                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3173                         enable_irq(gfar_irq(grp, TX)->irq);
3174                 }
3175         }
3176 }
3177 #endif
3178
3179 /* The interrupt handler for devices with one interrupt */
3180 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3181 {
3182         struct gfar_priv_grp *gfargrp = grp_id;
3183
3184         /* Save ievent for future reference */
3185         u32 events = gfar_read(&gfargrp->regs->ievent);
3186
3187         /* Check for reception */
3188         if (events & IEVENT_RX_MASK)
3189                 gfar_receive(irq, grp_id);
3190
3191         /* Check for transmit completion */
3192         if (events & IEVENT_TX_MASK)
3193                 gfar_transmit(irq, grp_id);
3194
3195         /* Check for errors */
3196         if (events & IEVENT_ERR_MASK)
3197                 gfar_error(irq, grp_id);
3198
3199         return IRQ_HANDLED;
3200 }
3201
3202 /* Called every time the controller might need to be made
3203  * aware of new link state.  The PHY code conveys this
3204  * information through variables in the phydev structure, and this
3205  * function converts those variables into the appropriate
3206  * register values, and can bring down the device if needed.
3207  */
3208 static void adjust_link(struct net_device *dev)
3209 {
3210         struct gfar_private *priv = netdev_priv(dev);
3211         struct phy_device *phydev = priv->phydev;
3212
3213         if (unlikely(phydev->link != priv->oldlink ||
3214                      (phydev->link && (phydev->duplex != priv->oldduplex ||
3215                                        phydev->speed != priv->oldspeed))))
3216                 gfar_update_link_state(priv);
3217 }
3218
3219 /* Update the hash table based on the current list of multicast
3220  * addresses we subscribe to.  Also, change the promiscuity of
3221  * the device based on the flags (this function is called
3222  * whenever dev->flags is changed
3223  */
3224 static void gfar_set_multi(struct net_device *dev)
3225 {
3226         struct netdev_hw_addr *ha;
3227         struct gfar_private *priv = netdev_priv(dev);
3228         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3229         u32 tempval;
3230
3231         if (dev->flags & IFF_PROMISC) {
3232                 /* Set RCTRL to PROM */
3233                 tempval = gfar_read(&regs->rctrl);
3234                 tempval |= RCTRL_PROM;
3235                 gfar_write(&regs->rctrl, tempval);
3236         } else {
3237                 /* Set RCTRL to not PROM */
3238                 tempval = gfar_read(&regs->rctrl);
3239                 tempval &= ~(RCTRL_PROM);
3240                 gfar_write(&regs->rctrl, tempval);
3241         }
3242
3243         if (dev->flags & IFF_ALLMULTI) {
3244                 /* Set the hash to rx all multicast frames */
3245                 gfar_write(&regs->igaddr0, 0xffffffff);
3246                 gfar_write(&regs->igaddr1, 0xffffffff);
3247                 gfar_write(&regs->igaddr2, 0xffffffff);
3248                 gfar_write(&regs->igaddr3, 0xffffffff);
3249                 gfar_write(&regs->igaddr4, 0xffffffff);
3250                 gfar_write(&regs->igaddr5, 0xffffffff);
3251                 gfar_write(&regs->igaddr6, 0xffffffff);
3252                 gfar_write(&regs->igaddr7, 0xffffffff);
3253                 gfar_write(&regs->gaddr0, 0xffffffff);
3254                 gfar_write(&regs->gaddr1, 0xffffffff);
3255                 gfar_write(&regs->gaddr2, 0xffffffff);
3256                 gfar_write(&regs->gaddr3, 0xffffffff);
3257                 gfar_write(&regs->gaddr4, 0xffffffff);
3258                 gfar_write(&regs->gaddr5, 0xffffffff);
3259                 gfar_write(&regs->gaddr6, 0xffffffff);
3260                 gfar_write(&regs->gaddr7, 0xffffffff);
3261         } else {
3262                 int em_num;
3263                 int idx;
3264
3265                 /* zero out the hash */
3266                 gfar_write(&regs->igaddr0, 0x0);
3267                 gfar_write(&regs->igaddr1, 0x0);
3268                 gfar_write(&regs->igaddr2, 0x0);
3269                 gfar_write(&regs->igaddr3, 0x0);
3270                 gfar_write(&regs->igaddr4, 0x0);
3271                 gfar_write(&regs->igaddr5, 0x0);
3272                 gfar_write(&regs->igaddr6, 0x0);
3273                 gfar_write(&regs->igaddr7, 0x0);
3274                 gfar_write(&regs->gaddr0, 0x0);
3275                 gfar_write(&regs->gaddr1, 0x0);
3276                 gfar_write(&regs->gaddr2, 0x0);
3277                 gfar_write(&regs->gaddr3, 0x0);
3278                 gfar_write(&regs->gaddr4, 0x0);
3279                 gfar_write(&regs->gaddr5, 0x0);
3280                 gfar_write(&regs->gaddr6, 0x0);
3281                 gfar_write(&regs->gaddr7, 0x0);
3282
3283                 /* If we have extended hash tables, we need to
3284                  * clear the exact match registers to prepare for
3285                  * setting them
3286                  */
3287                 if (priv->extended_hash) {
3288                         em_num = GFAR_EM_NUM + 1;
3289                         gfar_clear_exact_match(dev);
3290                         idx = 1;
3291                 } else {
3292                         idx = 0;
3293                         em_num = 0;
3294                 }
3295
3296                 if (netdev_mc_empty(dev))
3297                         return;
3298
3299                 /* Parse the list, and set the appropriate bits */
3300                 netdev_for_each_mc_addr(ha, dev) {
3301                         if (idx < em_num) {
3302                                 gfar_set_mac_for_addr(dev, idx, ha->addr);
3303                                 idx++;
3304                         } else
3305                                 gfar_set_hash_for_addr(dev, ha->addr);
3306                 }
3307         }
3308 }
3309
3310
3311 /* Clears each of the exact match registers to zero, so they
3312  * don't interfere with normal reception
3313  */
3314 static void gfar_clear_exact_match(struct net_device *dev)
3315 {
3316         int idx;
3317         static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3318
3319         for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3320                 gfar_set_mac_for_addr(dev, idx, zero_arr);
3321 }
3322
3323 /* Set the appropriate hash bit for the given addr */
3324 /* The algorithm works like so:
3325  * 1) Take the Destination Address (ie the multicast address), and
3326  * do a CRC on it (little endian), and reverse the bits of the
3327  * result.
3328  * 2) Use the 8 most significant bits as a hash into a 256-entry
3329  * table.  The table is controlled through 8 32-bit registers:
3330  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3331  * gaddr7.  This means that the 3 most significant bits in the
3332  * hash index which gaddr register to use, and the 5 other bits
3333  * indicate which bit (assuming an IBM numbering scheme, which
3334  * for PowerPC (tm) is usually the case) in the register holds
3335  * the entry.
3336  */
3337 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3338 {
3339         u32 tempval;
3340         struct gfar_private *priv = netdev_priv(dev);
3341         u32 result = ether_crc(ETH_ALEN, addr);
3342         int width = priv->hash_width;
3343         u8 whichbit = (result >> (32 - width)) & 0x1f;
3344         u8 whichreg = result >> (32 - width + 5);
3345         u32 value = (1 << (31-whichbit));
3346
3347         tempval = gfar_read(priv->hash_regs[whichreg]);
3348         tempval |= value;
3349         gfar_write(priv->hash_regs[whichreg], tempval);
3350 }
3351
3352
3353 /* There are multiple MAC Address register pairs on some controllers
3354  * This function sets the numth pair to a given address
3355  */
3356 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3357                                   const u8 *addr)
3358 {
3359         struct gfar_private *priv = netdev_priv(dev);
3360         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3361         u32 tempval;
3362         u32 __iomem *macptr = &regs->macstnaddr1;
3363
3364         macptr += num*2;
3365
3366         /* For a station address of 0x12345678ABCD in transmission
3367          * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3368          * MACnADDR2 is set to 0x34120000.
3369          */
3370         tempval = (addr[5] << 24) | (addr[4] << 16) |
3371                   (addr[3] << 8)  |  addr[2];
3372
3373         gfar_write(macptr, tempval);
3374
3375         tempval = (addr[1] << 24) | (addr[0] << 16);
3376
3377         gfar_write(macptr+1, tempval);
3378 }
3379
3380 /* GFAR error interrupt handler */
3381 static irqreturn_t gfar_error(int irq, void *grp_id)
3382 {
3383         struct gfar_priv_grp *gfargrp = grp_id;
3384         struct gfar __iomem *regs = gfargrp->regs;
3385         struct gfar_private *priv= gfargrp->priv;
3386         struct net_device *dev = priv->ndev;
3387
3388         /* Save ievent for future reference */
3389         u32 events = gfar_read(&regs->ievent);
3390
3391         /* Clear IEVENT */
3392         gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3393
3394         /* Magic Packet is not an error. */
3395         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3396             (events & IEVENT_MAG))
3397                 events &= ~IEVENT_MAG;
3398
3399         /* Hmm... */
3400         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3401                 netdev_dbg(dev,
3402                            "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3403                            events, gfar_read(&regs->imask));
3404
3405         /* Update the error counters */
3406         if (events & IEVENT_TXE) {
3407                 dev->stats.tx_errors++;
3408
3409                 if (events & IEVENT_LC)
3410                         dev->stats.tx_window_errors++;
3411                 if (events & IEVENT_CRL)
3412                         dev->stats.tx_aborted_errors++;
3413                 if (events & IEVENT_XFUN) {
3414                         unsigned long flags;
3415
3416                         netif_dbg(priv, tx_err, dev,
3417                                   "TX FIFO underrun, packet dropped\n");
3418                         dev->stats.tx_dropped++;
3419                         atomic64_inc(&priv->extra_stats.tx_underrun);
3420
3421                         local_irq_save_nort(flags);
3422                         lock_tx_qs(priv);
3423
3424                         /* Reactivate the Tx Queues */
3425                         gfar_write(&regs->tstat, gfargrp->tstat);
3426
3427                         unlock_tx_qs(priv);
3428                         local_irq_restore_nort(flags);
3429                 }
3430                 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3431         }
3432         if (events & IEVENT_BSY) {
3433                 dev->stats.rx_errors++;
3434                 atomic64_inc(&priv->extra_stats.rx_bsy);
3435
3436                 gfar_receive(irq, grp_id);
3437
3438                 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3439                           gfar_read(&regs->rstat));
3440         }
3441         if (events & IEVENT_BABR) {
3442                 dev->stats.rx_errors++;
3443                 atomic64_inc(&priv->extra_stats.rx_babr);
3444
3445                 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3446         }
3447         if (events & IEVENT_EBERR) {
3448                 atomic64_inc(&priv->extra_stats.eberr);
3449                 netif_dbg(priv, rx_err, dev, "bus error\n");
3450         }
3451         if (events & IEVENT_RXC)
3452                 netif_dbg(priv, rx_status, dev, "control frame\n");
3453
3454         if (events & IEVENT_BABT) {
3455                 atomic64_inc(&priv->extra_stats.tx_babt);
3456                 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3457         }
3458         return IRQ_HANDLED;
3459 }
3460
3461 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3462 {
3463         struct phy_device *phydev = priv->phydev;
3464         u32 val = 0;
3465
3466         if (!phydev->duplex)
3467                 return val;
3468
3469         if (!priv->pause_aneg_en) {
3470                 if (priv->tx_pause_en)
3471                         val |= MACCFG1_TX_FLOW;
3472                 if (priv->rx_pause_en)
3473                         val |= MACCFG1_RX_FLOW;
3474         } else {
3475                 u16 lcl_adv, rmt_adv;
3476                 u8 flowctrl;
3477                 /* get link partner capabilities */
3478                 rmt_adv = 0;
3479                 if (phydev->pause)
3480                         rmt_adv = LPA_PAUSE_CAP;
3481                 if (phydev->asym_pause)
3482                         rmt_adv |= LPA_PAUSE_ASYM;
3483
3484                 lcl_adv = 0;
3485                 if (phydev->advertising & ADVERTISED_Pause)
3486                         lcl_adv |= ADVERTISE_PAUSE_CAP;
3487                 if (phydev->advertising & ADVERTISED_Asym_Pause)
3488                         lcl_adv |= ADVERTISE_PAUSE_ASYM;
3489
3490                 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3491                 if (flowctrl & FLOW_CTRL_TX)
3492                         val |= MACCFG1_TX_FLOW;
3493                 if (flowctrl & FLOW_CTRL_RX)
3494                         val |= MACCFG1_RX_FLOW;
3495         }
3496
3497         return val;
3498 }
3499
3500 static noinline void gfar_update_link_state(struct gfar_private *priv)
3501 {
3502         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3503         struct phy_device *phydev = priv->phydev;
3504         struct gfar_priv_rx_q *rx_queue = NULL;
3505         int i;
3506         struct rxbd8 *bdp;
3507
3508         if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3509                 return;
3510
3511         if (phydev->link) {
3512                 u32 tempval1 = gfar_read(&regs->maccfg1);
3513                 u32 tempval = gfar_read(&regs->maccfg2);
3514                 u32 ecntrl = gfar_read(&regs->ecntrl);
3515                 u32 tx_flow_oldval = (tempval & MACCFG1_TX_FLOW);
3516
3517                 if (phydev->duplex != priv->oldduplex) {
3518                         if (!(phydev->duplex))
3519                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
3520                         else
3521                                 tempval |= MACCFG2_FULL_DUPLEX;
3522
3523                         priv->oldduplex = phydev->duplex;
3524                 }
3525
3526                 if (phydev->speed != priv->oldspeed) {
3527                         switch (phydev->speed) {
3528                         case 1000:
3529                                 tempval =
3530                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3531
3532                                 ecntrl &= ~(ECNTRL_R100);
3533                                 break;
3534                         case 100:
3535                         case 10:
3536                                 tempval =
3537                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3538
3539                                 /* Reduced mode distinguishes
3540                                  * between 10 and 100
3541                                  */
3542                                 if (phydev->speed == SPEED_100)
3543                                         ecntrl |= ECNTRL_R100;
3544                                 else
3545                                         ecntrl &= ~(ECNTRL_R100);
3546                                 break;
3547                         default:
3548                                 netif_warn(priv, link, priv->ndev,
3549                                            "Ack!  Speed (%d) is not 10/100/1000!\n",
3550                                            phydev->speed);
3551                                 break;
3552                         }
3553
3554                         priv->oldspeed = phydev->speed;
3555                 }
3556
3557                 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3558                 tempval1 |= gfar_get_flowctrl_cfg(priv);
3559
3560                 /* Turn last free buffer recording on */
3561                 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3562                         for (i = 0; i < priv->num_rx_queues; i++) {
3563                                 rx_queue = priv->rx_queue[i];
3564                                 bdp = rx_queue->cur_rx;
3565                                 /* skip to previous bd */
3566                                 bdp = skip_bd(bdp, rx_queue->rx_ring_size - 1,
3567                                               rx_queue->rx_bd_base,
3568                                               rx_queue->rx_ring_size);
3569
3570                                 if (rx_queue->rfbptr)
3571                                         gfar_write(rx_queue->rfbptr, (u32)bdp);
3572                         }
3573
3574                         priv->tx_actual_en = 1;
3575                 }
3576
3577                 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3578                         priv->tx_actual_en = 0;
3579
3580                 gfar_write(&regs->maccfg1, tempval1);
3581                 gfar_write(&regs->maccfg2, tempval);
3582                 gfar_write(&regs->ecntrl, ecntrl);
3583
3584                 if (!priv->oldlink)
3585                         priv->oldlink = 1;
3586
3587         } else if (priv->oldlink) {
3588                 priv->oldlink = 0;
3589                 priv->oldspeed = 0;
3590                 priv->oldduplex = -1;
3591         }
3592
3593         if (netif_msg_link(priv))
3594                 phy_print_status(phydev);
3595 }
3596
3597 static const struct of_device_id gfar_match[] =
3598 {
3599         {
3600                 .type = "network",
3601                 .compatible = "gianfar",
3602         },
3603         {
3604                 .compatible = "fsl,etsec2",
3605         },
3606         {},
3607 };
3608 MODULE_DEVICE_TABLE(of, gfar_match);
3609
3610 /* Structure for a device driver */
3611 static struct platform_driver gfar_driver = {
3612         .driver = {
3613                 .name = "fsl-gianfar",
3614                 .pm = GFAR_PM_OPS,
3615                 .of_match_table = gfar_match,
3616         },
3617         .probe = gfar_probe,
3618         .remove = gfar_remove,
3619 };
3620
3621 module_platform_driver(gfar_driver);