Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / net / ethernet / dec / tulip / de4x5.c
1 /*  de4x5.c: A DIGITAL DC21x4x DECchip and DE425/DE434/DE435/DE450/DE500
2              ethernet driver for Linux.
3
4     Copyright 1994, 1995 Digital Equipment Corporation.
5
6     Testing resources for this driver have been made available
7     in part by NASA Ames Research Center (mjacob@nas.nasa.gov).
8
9     The author may be reached at davies@maniac.ultranet.com.
10
11     This program is free software; you can redistribute  it and/or modify it
12     under  the terms of  the GNU General  Public License as published by the
13     Free Software Foundation;  either version 2 of the  License, or (at your
14     option) any later version.
15
16     THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR   IMPLIED
17     WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
18     MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
19     NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT,  INDIRECT,
20     INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21     NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF
22     USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23     ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT
24     (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25     THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
27     You should have received a copy of the  GNU General Public License along
28     with this program; if not, write  to the Free Software Foundation, Inc.,
29     675 Mass Ave, Cambridge, MA 02139, USA.
30
31     Originally,   this  driver  was    written  for the  Digital   Equipment
32     Corporation series of EtherWORKS ethernet cards:
33
34         DE425 TP/COAX EISA
35         DE434 TP PCI
36         DE435 TP/COAX/AUI PCI
37         DE450 TP/COAX/AUI PCI
38         DE500 10/100 PCI Fasternet
39
40     but it  will  now attempt  to  support all  cards which   conform to the
41     Digital Semiconductor   SROM   Specification.    The  driver   currently
42     recognises the following chips:
43
44         DC21040  (no SROM)
45         DC21041[A]
46         DC21140[A]
47         DC21142
48         DC21143
49
50     So far the driver is known to work with the following cards:
51
52         KINGSTON
53         Linksys
54         ZNYX342
55         SMC8432
56         SMC9332 (w/new SROM)
57         ZNYX31[45]
58         ZNYX346 10/100 4 port (can act as a 10/100 bridge!)
59
60     The driver has been tested on a relatively busy network using the DE425,
61     DE434, DE435 and DE500 cards and benchmarked with 'ttcp': it transferred
62     16M of data to a DECstation 5000/200 as follows:
63
64                 TCP           UDP
65              TX     RX     TX     RX
66     DE425   1030k  997k   1170k  1128k
67     DE434   1063k  995k   1170k  1125k
68     DE435   1063k  995k   1170k  1125k
69     DE500   1063k  998k   1170k  1125k  in 10Mb/s mode
70
71     All  values are typical (in   kBytes/sec) from a  sample  of 4 for  each
72     measurement. Their error is +/-20k on a quiet (private) network and also
73     depend on what load the CPU has.
74
75     =========================================================================
76     This driver  has been written substantially  from  scratch, although its
77     inheritance of style and stack interface from 'ewrk3.c' and in turn from
78     Donald Becker's 'lance.c' should be obvious. With the module autoload of
79     every  usable DECchip board,  I  pinched Donald's 'next_module' field to
80     link my modules together.
81
82     Up to 15 EISA cards can be supported under this driver, limited primarily
83     by the available IRQ lines.  I have  checked different configurations of
84     multiple depca, EtherWORKS 3 cards and de4x5 cards and  have not found a
85     problem yet (provided you have at least depca.c v0.38) ...
86
87     PCI support has been added  to allow the driver  to work with the DE434,
88     DE435, DE450 and DE500 cards. The I/O accesses are a bit of a kludge due
89     to the differences in the EISA and PCI CSR address offsets from the base
90     address.
91
92     The ability to load this  driver as a loadable  module has been included
93     and used extensively  during the driver development  (to save those long
94     reboot sequences).  Loadable module support  under PCI and EISA has been
95     achieved by letting the driver autoprobe as if it were compiled into the
96     kernel. Do make sure  you're not sharing  interrupts with anything  that
97     cannot accommodate  interrupt  sharing!
98
99     To utilise this ability, you have to do 8 things:
100
101     0) have a copy of the loadable modules code installed on your system.
102     1) copy de4x5.c from the  /linux/drivers/net directory to your favourite
103     temporary directory.
104     2) for fixed  autoprobes (not  recommended),  edit the source code  near
105     line 5594 to reflect the I/O address  you're using, or assign these when
106     loading by:
107
108                    insmod de4x5 io=0xghh           where g = bus number
109                                                         hh = device number
110
111        NB: autoprobing for modules is now supported by default. You may just
112            use:
113
114                    insmod de4x5
115
116            to load all available boards. For a specific board, still use
117            the 'io=?' above.
118     3) compile  de4x5.c, but include -DMODULE in  the command line to ensure
119     that the correct bits are compiled (see end of source code).
120     4) if you are wanting to add a new  card, goto 5. Otherwise, recompile a
121     kernel with the de4x5 configuration turned off and reboot.
122     5) insmod de4x5 [io=0xghh]
123     6) run the net startup bits for your new eth?? interface(s) manually
124     (usually /etc/rc.inet[12] at boot time).
125     7) enjoy!
126
127     To unload a module, turn off the associated interface(s)
128     'ifconfig eth?? down' then 'rmmod de4x5'.
129
130     Automedia detection is included so that in  principal you can disconnect
131     from, e.g.  TP, reconnect  to BNC  and  things will still work  (after a
132     pause whilst the   driver figures out   where its media went).  My tests
133     using ping showed that it appears to work....
134
135     By  default,  the driver will  now   autodetect any  DECchip based card.
136     Should you have a need to restrict the driver to DIGITAL only cards, you
137     can compile with a  DEC_ONLY define, or if  loading as a module, use the
138     'dec_only=1'  parameter.
139
140     I've changed the timing routines to  use the kernel timer and scheduling
141     functions  so that the  hangs  and other assorted problems that occurred
142     while autosensing the  media  should be gone.  A  bonus  for the DC21040
143     auto  media sense algorithm is  that it can now  use one that is more in
144     line with the  rest (the DC21040  chip doesn't  have a hardware  timer).
145     The downside is the 1 'jiffies' (10ms) resolution.
146
147     IEEE 802.3u MII interface code has  been added in anticipation that some
148     products may use it in the future.
149
150     The SMC9332 card  has a non-compliant SROM  which needs fixing -  I have
151     patched this  driver to detect it  because the SROM format used complies
152     to a previous DEC-STD format.
153
154     I have removed the buffer copies needed for receive on Intels.  I cannot
155     remove them for   Alphas since  the  Tulip hardware   only does longword
156     aligned  DMA transfers  and  the  Alphas get   alignment traps with  non
157     longword aligned data copies (which makes them really slow). No comment.
158
159     I  have added SROM decoding  routines to make this  driver work with any
160     card that  supports the Digital  Semiconductor SROM spec. This will help
161     all  cards running the dc2114x  series chips in particular.  Cards using
162     the dc2104x  chips should run correctly with  the basic  driver.  I'm in
163     debt to <mjacob@feral.com> for the  testing and feedback that helped get
164     this feature working.  So far we have  tested KINGSTON, SMC8432, SMC9332
165     (with the latest SROM complying  with the SROM spec  V3: their first was
166     broken), ZNYX342  and  LinkSys. ZYNX314 (dual  21041  MAC) and  ZNYX 315
167     (quad 21041 MAC)  cards also  appear  to work despite their  incorrectly
168     wired IRQs.
169
170     I have added a temporary fix for interrupt problems when some SCSI cards
171     share the same interrupt as the DECchip based  cards. The problem occurs
172     because  the SCSI card wants to  grab the interrupt  as a fast interrupt
173     (runs the   service routine with interrupts turned   off) vs.  this card
174     which really needs to run the service routine with interrupts turned on.
175     This driver will  now   add the interrupt service   routine  as  a  fast
176     interrupt if it   is bounced from the   slow interrupt.  THIS IS NOT   A
177     RECOMMENDED WAY TO RUN THE DRIVER  and has been done  for a limited time
178     until  people   sort  out their  compatibility    issues and the  kernel
179     interrupt  service code  is  fixed.   YOU  SHOULD SEPARATE OUT  THE FAST
180     INTERRUPT CARDS FROM THE SLOW INTERRUPT CARDS to ensure that they do not
181     run on the same interrupt. PCMCIA/CardBus is another can of worms...
182
183     Finally, I think  I have really  fixed  the module  loading problem with
184     more than one DECchip based  card.  As a  side effect, I don't mess with
185     the  device structure any  more which means that  if more than 1 card in
186     2.0.x is    installed (4  in   2.1.x),  the  user   will have   to  edit
187     linux/drivers/net/Space.c  to make room for  them. Hence, module loading
188     is  the preferred way to use   this driver, since  it  doesn't have this
189     limitation.
190
191     Where SROM media  detection is used and  full duplex is specified in the
192     SROM,  the feature is  ignored unless  lp->params.fdx  is set at compile
193     time  OR during  a   module load  (insmod  de4x5   args='eth??:fdx' [see
194     below]).  This is because there  is no way  to automatically detect full
195     duplex   links  except through   autonegotiation.    When I  include the
196     autonegotiation feature in  the SROM autoconf  code, this detection will
197     occur automatically for that case.
198
199     Command  line arguments are  now  allowed, similar  to passing arguments
200     through LILO. This will allow a per adapter board  set up of full duplex
201     and media. The only lexical constraints  are: the board name (dev->name)
202     appears in the list before its  parameters.  The list of parameters ends
203     either at the end of the parameter list or with another board name.  The
204     following parameters are allowed:
205
206             fdx        for full duplex
207             autosense  to set the media/speed; with the following
208                        sub-parameters:
209                        TP, TP_NW, BNC, AUI, BNC_AUI, 100Mb, 10Mb, AUTO
210
211     Case sensitivity is important  for  the sub-parameters. They *must*   be
212     upper case. Examples:
213
214         insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
215
216     For a compiled in driver, at or above line 548, place e.g.
217         #define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP"
218
219     Yes,  I know full duplex isn't  permissible on BNC  or AUI; they're just
220     examples. By default, full duplex is turned off and  AUTO is the default
221     autosense setting.  In reality, I expect only  the full duplex option to
222     be used. Note the use of single quotes in the two examples above and the
223     lack of commas to separate items. ALSO, you must get the requested media
224     correct in relation to what the adapter SROM says it has. There's no way
225     to  determine this in  advance other than by  trial and error and common
226     sense, e.g. call a BNC connectored port 'BNC', not '10Mb'.
227
228     Changed the bus probing.  EISA used to be  done first,  followed by PCI.
229     Most people probably don't even know  what a de425 is today and the EISA
230     probe has messed  up some SCSI cards  in the past,  so now PCI is always
231     probed  first  followed by  EISA if  a) the architecture allows EISA and
232     either  b) there have been no PCI cards detected or  c) an EISA probe is
233     forced by  the user.  To force  a probe  include  "force_eisa"  in  your
234     insmod "args" line;  for built-in kernels either change the driver to do
235     this  automatically  or include  #define DE4X5_FORCE_EISA  on or  before
236     line 1040 in the driver.
237
238     TO DO:
239     ------
240
241     Revision History
242     ----------------
243
244     Version   Date        Description
245
246       0.1     17-Nov-94   Initial writing. ALPHA code release.
247       0.2     13-Jan-95   Added PCI support for DE435's.
248       0.21    19-Jan-95   Added auto media detection.
249       0.22    10-Feb-95   Fix interrupt handler call <chris@cosy.sbg.ac.at>.
250                           Fix recognition bug reported by <bkm@star.rl.ac.uk>.
251                           Add request/release_region code.
252                           Add loadable modules support for PCI.
253                           Clean up loadable modules support.
254       0.23    28-Feb-95   Added DC21041 and DC21140 support.
255                           Fix missed frame counter value and initialisation.
256                           Fixed EISA probe.
257       0.24    11-Apr-95   Change delay routine to use <linux/udelay>.
258                           Change TX_BUFFS_AVAIL macro.
259                           Change media autodetection to allow manual setting.
260                           Completed DE500 (DC21140) support.
261       0.241   18-Apr-95   Interim release without DE500 Autosense Algorithm.
262       0.242   10-May-95   Minor changes.
263       0.30    12-Jun-95   Timer fix for DC21140.
264                           Portability changes.
265                           Add ALPHA changes from <jestabro@ant.tay1.dec.com>.
266                           Add DE500 semi automatic autosense.
267                           Add Link Fail interrupt TP failure detection.
268                           Add timer based link change detection.
269                           Plugged a memory leak in de4x5_queue_pkt().
270       0.31    13-Jun-95   Fixed PCI stuff for 1.3.1.
271       0.32    26-Jun-95   Added verify_area() calls in de4x5_ioctl() from a
272                           suggestion by <heiko@colossus.escape.de>.
273       0.33     8-Aug-95   Add shared interrupt support (not released yet).
274       0.331   21-Aug-95   Fix de4x5_open() with fast CPUs.
275                           Fix de4x5_interrupt().
276                           Fix dc21140_autoconf() mess.
277                           No shared interrupt support.
278       0.332   11-Sep-95   Added MII management interface routines.
279       0.40     5-Mar-96   Fix setup frame timeout <maartenb@hpkuipc.cern.ch>.
280                           Add kernel timer code (h/w is too flaky).
281                           Add MII based PHY autosense.
282                           Add new multicasting code.
283                           Add new autosense algorithms for media/mode
284                           selection using kernel scheduling/timing.
285                           Re-formatted.
286                           Made changes suggested by <jeff@router.patch.net>:
287                             Change driver to detect all DECchip based cards
288                             with DEC_ONLY restriction a special case.
289                             Changed driver to autoprobe as a module. No irq
290                             checking is done now - assume BIOS is good!
291                           Added SMC9332 detection <manabe@Roy.dsl.tutics.ac.jp>
292       0.41    21-Mar-96   Don't check for get_hw_addr checksum unless DEC card
293                           only <niles@axp745gsfc.nasa.gov>
294                           Fix for multiple PCI cards reported by <jos@xos.nl>
295                           Duh, put the IRQF_SHARED flag into request_interrupt().
296                           Fix SMC ethernet address in enet_det[].
297                           Print chip name instead of "UNKNOWN" during boot.
298       0.42    26-Apr-96   Fix MII write TA bit error.
299                           Fix bug in dc21040 and dc21041 autosense code.
300                           Remove buffer copies on receive for Intels.
301                           Change sk_buff handling during media disconnects to
302                            eliminate DUP packets.
303                           Add dynamic TX thresholding.
304                           Change all chips to use perfect multicast filtering.
305                           Fix alloc_device() bug <jari@markkus2.fimr.fi>
306       0.43   21-Jun-96    Fix unconnected media TX retry bug.
307                           Add Accton to the list of broken cards.
308                           Fix TX under-run bug for non DC21140 chips.
309                           Fix boot command probe bug in alloc_device() as
310                            reported by <koen.gadeyne@barco.com> and
311                            <orava@nether.tky.hut.fi>.
312                           Add cache locks to prevent a race condition as
313                            reported by <csd@microplex.com> and
314                            <baba@beckman.uiuc.edu>.
315                           Upgraded alloc_device() code.
316       0.431  28-Jun-96    Fix potential bug in queue_pkt() from discussion
317                           with <csd@microplex.com>
318       0.44   13-Aug-96    Fix RX overflow bug in 2114[023] chips.
319                           Fix EISA probe bugs reported by <os2@kpi.kharkov.ua>
320                           and <michael@compurex.com>.
321       0.441   9-Sep-96    Change dc21041_autoconf() to probe quiet BNC media
322                            with a loopback packet.
323       0.442   9-Sep-96    Include AUI in dc21041 media printout. Bug reported
324                            by <bhat@mundook.cs.mu.OZ.AU>
325       0.45    8-Dec-96    Include endian functions for PPC use, from work
326                            by <cort@cs.nmt.edu> and <g.thomas@opengroup.org>.
327       0.451  28-Dec-96    Added fix to allow autoprobe for modules after
328                            suggestion from <mjacob@feral.com>.
329       0.5    30-Jan-97    Added SROM decoding functions.
330                           Updated debug flags.
331                           Fix sleep/wakeup calls for PCI cards, bug reported
332                            by <cross@gweep.lkg.dec.com>.
333                           Added multi-MAC, one SROM feature from discussion
334                            with <mjacob@feral.com>.
335                           Added full module autoprobe capability.
336                           Added attempt to use an SMC9332 with broken SROM.
337                           Added fix for ZYNX multi-mac cards that didn't
338                            get their IRQs wired correctly.
339       0.51   13-Feb-97    Added endian fixes for the SROM accesses from
340                            <paubert@iram.es>
341                           Fix init_connection() to remove extra device reset.
342                           Fix MAC/PHY reset ordering in dc21140m_autoconf().
343                           Fix initialisation problem with lp->timeout in
344                            typeX_infoblock() from <paubert@iram.es>.
345                           Fix MII PHY reset problem from work done by
346                            <paubert@iram.es>.
347       0.52   26-Apr-97    Some changes may not credit the right people -
348                            a disk crash meant I lost some mail.
349                           Change RX interrupt routine to drop rather than
350                            defer packets to avoid hang reported by
351                            <g.thomas@opengroup.org>.
352                           Fix srom_exec() to return for COMPACT and type 1
353                            infoblocks.
354                           Added DC21142 and DC21143 functions.
355                           Added byte counters from <phil@tazenda.demon.co.uk>
356                           Added IRQF_DISABLED temporary fix from
357                            <mjacob@feral.com>.
358       0.53   12-Nov-97    Fix the *_probe() to include 'eth??' name during
359                            module load: bug reported by
360                            <Piete.Brooks@cl.cam.ac.uk>
361                           Fix multi-MAC, one SROM, to work with 2114x chips:
362                            bug reported by <cmetz@inner.net>.
363                           Make above search independent of BIOS device scan
364                            direction.
365                           Completed DC2114[23] autosense functions.
366       0.531  21-Dec-97    Fix DE500-XA 100Mb/s bug reported by
367                            <robin@intercore.com
368                           Fix type1_infoblock() bug introduced in 0.53, from
369                            problem reports by
370                            <parmee@postecss.ncrfran.france.ncr.com> and
371                            <jo@ice.dillingen.baynet.de>.
372                           Added argument list to set up each board from either
373                            a module's command line or a compiled in #define.
374                           Added generic MII PHY functionality to deal with
375                            newer PHY chips.
376                           Fix the mess in 2.1.67.
377       0.532   5-Jan-98    Fix bug in mii_get_phy() reported by
378                            <redhat@cococo.net>.
379                           Fix bug in pci_probe() for 64 bit systems reported
380                            by <belliott@accessone.com>.
381       0.533   9-Jan-98    Fix more 64 bit bugs reported by <jal@cs.brown.edu>.
382       0.534  24-Jan-98    Fix last (?) endian bug from <geert@linux-m68k.org>
383       0.535  21-Feb-98    Fix Ethernet Address PROM reset bug for DC21040.
384       0.536  21-Mar-98    Change pci_probe() to use the pci_dev structure.
385                           **Incompatible with 2.0.x from here.**
386       0.540   5-Jul-98    Atomicize assertion of dev->interrupt for SMP
387                            from <lma@varesearch.com>
388                           Add TP, AUI and BNC cases to 21140m_autoconf() for
389                            case where a 21140 under SROM control uses, e.g. AUI
390                            from problem report by <delchini@lpnp09.in2p3.fr>
391                           Add MII parallel detection to 2114x_autoconf() for
392                            case where no autonegotiation partner exists from
393                            problem report by <mlapsley@ndirect.co.uk>.
394                           Add ability to force connection type directly even
395                            when using SROM control from problem report by
396                            <earl@exis.net>.
397                           Updated the PCI interface to conform with the latest
398                            version. I hope nothing is broken...
399                           Add TX done interrupt modification from suggestion
400                            by <Austin.Donnelly@cl.cam.ac.uk>.
401                           Fix is_anc_capable() bug reported by
402                            <Austin.Donnelly@cl.cam.ac.uk>.
403                           Fix type[13]_infoblock() bug: during MII search, PHY
404                            lp->rst not run because lp->ibn not initialised -
405                            from report & fix by <paubert@iram.es>.
406                           Fix probe bug with EISA & PCI cards present from
407                            report by <eirik@netcom.com>.
408       0.541  24-Aug-98    Fix compiler problems associated with i386-string
409                            ops from multiple bug reports and temporary fix
410                            from <paubert@iram.es>.
411                           Fix pci_probe() to correctly emulate the old
412                            pcibios_find_class() function.
413                           Add an_exception() for old ZYNX346 and fix compile
414                            warning on PPC & SPARC, from <ecd@skynet.be>.
415                           Fix lastPCI to correctly work with compiled in
416                            kernels and modules from bug report by
417                            <Zlatko.Calusic@CARNet.hr> et al.
418       0.542  15-Sep-98    Fix dc2114x_autoconf() to stop multiple messages
419                            when media is unconnected.
420                           Change dev->interrupt to lp->interrupt to ensure
421                            alignment for Alpha's and avoid their unaligned
422                            access traps. This flag is merely for log messages:
423                            should do something more definitive though...
424       0.543  30-Dec-98    Add SMP spin locking.
425       0.544   8-May-99    Fix for buggy SROM in Motorola embedded boards using
426                            a 21143 by <mmporter@home.com>.
427                           Change PCI/EISA bus probing order.
428       0.545  28-Nov-99    Further Moto SROM bug fix from
429                            <mporter@eng.mcd.mot.com>
430                           Remove double checking for DEBUG_RX in de4x5_dbg_rx()
431                            from report by <geert@linux-m68k.org>
432       0.546  22-Feb-01    Fixes Alpha XP1000 oops.  The srom_search function
433                            was causing a page fault when initializing the
434                            variable 'pb', on a non de4x5 PCI device, in this
435                            case a PCI bridge (DEC chip 21152). The value of
436                            'pb' is now only initialized if a de4x5 chip is
437                            present.
438                            <france@handhelds.org>
439       0.547  08-Nov-01    Use library crc32 functions by <Matt_Domsch@dell.com>
440       0.548  30-Aug-03    Big 2.6 cleanup. Ported to PCI/EISA probing and
441                            generic DMA APIs. Fixed DE425 support on Alpha.
442                            <maz@wild-wind.fr.eu.org>
443     =========================================================================
444 */
445
446 #include <linux/module.h>
447 #include <linux/kernel.h>
448 #include <linux/string.h>
449 #include <linux/interrupt.h>
450 #include <linux/ptrace.h>
451 #include <linux/errno.h>
452 #include <linux/ioport.h>
453 #include <linux/pci.h>
454 #include <linux/eisa.h>
455 #include <linux/delay.h>
456 #include <linux/init.h>
457 #include <linux/spinlock.h>
458 #include <linux/crc32.h>
459 #include <linux/netdevice.h>
460 #include <linux/etherdevice.h>
461 #include <linux/skbuff.h>
462 #include <linux/time.h>
463 #include <linux/types.h>
464 #include <linux/unistd.h>
465 #include <linux/ctype.h>
466 #include <linux/dma-mapping.h>
467 #include <linux/moduleparam.h>
468 #include <linux/bitops.h>
469 #include <linux/gfp.h>
470
471 #include <asm/io.h>
472 #include <asm/dma.h>
473 #include <asm/byteorder.h>
474 #include <asm/unaligned.h>
475 #include <asm/uaccess.h>
476 #ifdef CONFIG_PPC_PMAC
477 #include <asm/machdep.h>
478 #endif /* CONFIG_PPC_PMAC */
479
480 #include "de4x5.h"
481
482 static const char version[] =
483         KERN_INFO "de4x5.c:V0.546 2001/02/22 davies@maniac.ultranet.com\n";
484
485 #define c_char const char
486
487 /*
488 ** MII Information
489 */
490 struct phy_table {
491     int reset;              /* Hard reset required?                         */
492     int id;                 /* IEEE OUI                                     */
493     int ta;                 /* One cycle TA time - 802.3u is confusing here */
494     struct {                /* Non autonegotiation (parallel) speed det.    */
495         int reg;
496         int mask;
497         int value;
498     } spd;
499 };
500
501 struct mii_phy {
502     int reset;              /* Hard reset required?                      */
503     int id;                 /* IEEE OUI                                  */
504     int ta;                 /* One cycle TA time                         */
505     struct {                /* Non autonegotiation (parallel) speed det. */
506         int reg;
507         int mask;
508         int value;
509     } spd;
510     int addr;               /* MII address for the PHY                   */
511     u_char  *gep;           /* Start of GEP sequence block in SROM       */
512     u_char  *rst;           /* Start of reset sequence in SROM           */
513     u_int mc;               /* Media Capabilities                        */
514     u_int ana;              /* NWay Advertisement                        */
515     u_int fdx;              /* Full DupleX capabilities for each media   */
516     u_int ttm;              /* Transmit Threshold Mode for each media    */
517     u_int mci;              /* 21142 MII Connector Interrupt info        */
518 };
519
520 #define DE4X5_MAX_PHY 8     /* Allow up to 8 attached PHY devices per board */
521
522 struct sia_phy {
523     u_char mc;              /* Media Code                                */
524     u_char ext;             /* csr13-15 valid when set                   */
525     int csr13;              /* SIA Connectivity Register                 */
526     int csr14;              /* SIA TX/RX Register                        */
527     int csr15;              /* SIA General Register                      */
528     int gepc;               /* SIA GEP Control Information               */
529     int gep;                /* SIA GEP Data                              */
530 };
531
532 /*
533 ** Define the know universe of PHY devices that can be
534 ** recognised by this driver.
535 */
536 static struct phy_table phy_info[] = {
537     {0, NATIONAL_TX, 1, {0x19, 0x40, 0x00}},       /* National TX      */
538     {1, BROADCOM_T4, 1, {0x10, 0x02, 0x02}},       /* Broadcom T4      */
539     {0, SEEQ_T4    , 1, {0x12, 0x10, 0x10}},       /* SEEQ T4          */
540     {0, CYPRESS_T4 , 1, {0x05, 0x20, 0x20}},       /* Cypress T4       */
541     {0, 0x7810     , 1, {0x14, 0x0800, 0x0800}}    /* Level One LTX970 */
542 };
543
544 /*
545 ** These GENERIC values assumes that the PHY devices follow 802.3u and
546 ** allow parallel detection to set the link partner ability register.
547 ** Detection of 100Base-TX [H/F Duplex] and 100Base-T4 is supported.
548 */
549 #define GENERIC_REG   0x05      /* Autoneg. Link Partner Advertisement Reg. */
550 #define GENERIC_MASK  MII_ANLPA_100M /* All 100Mb/s Technologies            */
551 #define GENERIC_VALUE MII_ANLPA_100M /* 100B-TX, 100B-TX FDX, 100B-T4       */
552
553 /*
554 ** Define special SROM detection cases
555 */
556 static c_char enet_det[][ETH_ALEN] = {
557     {0x00, 0x00, 0xc0, 0x00, 0x00, 0x00},
558     {0x00, 0x00, 0xe8, 0x00, 0x00, 0x00}
559 };
560
561 #define SMC    1
562 #define ACCTON 2
563
564 /*
565 ** SROM Repair definitions. If a broken SROM is detected a card may
566 ** use this information to help figure out what to do. This is a
567 ** "stab in the dark" and so far for SMC9332's only.
568 */
569 static c_char srom_repair_info[][100] = {
570     {0x00,0x1e,0x00,0x00,0x00,0x08,             /* SMC9332 */
571      0x1f,0x01,0x8f,0x01,0x00,0x01,0x00,0x02,
572      0x01,0x00,0x00,0x78,0xe0,0x01,0x00,0x50,
573      0x00,0x18,}
574 };
575
576
577 #ifdef DE4X5_DEBUG
578 static int de4x5_debug = DE4X5_DEBUG;
579 #else
580 /*static int de4x5_debug = (DEBUG_MII | DEBUG_SROM | DEBUG_PCICFG | DEBUG_MEDIA | DEBUG_VERSION);*/
581 static int de4x5_debug = (DEBUG_MEDIA | DEBUG_VERSION);
582 #endif
583
584 /*
585 ** Allow per adapter set up. For modules this is simply a command line
586 ** parameter, e.g.:
587 ** insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
588 **
589 ** For a compiled in driver, place e.g.
590 **     #define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP"
591 ** here
592 */
593 #ifdef DE4X5_PARM
594 static char *args = DE4X5_PARM;
595 #else
596 static char *args;
597 #endif
598
599 struct parameters {
600     bool fdx;
601     int autosense;
602 };
603
604 #define DE4X5_AUTOSENSE_MS 250      /* msec autosense tick (DE500) */
605
606 #define DE4X5_NDA 0xffe0            /* No Device (I/O) Address */
607
608 /*
609 ** Ethernet PROM defines
610 */
611 #define PROBE_LENGTH    32
612 #define ETH_PROM_SIG    0xAA5500FFUL
613
614 /*
615 ** Ethernet Info
616 */
617 #define PKT_BUF_SZ      1536            /* Buffer size for each Tx/Rx buffer */
618 #define IEEE802_3_SZ    1518            /* Packet + CRC */
619 #define MAX_PKT_SZ      1514            /* Maximum ethernet packet length */
620 #define MAX_DAT_SZ      1500            /* Maximum ethernet data length */
621 #define MIN_DAT_SZ      1               /* Minimum ethernet data length */
622 #define PKT_HDR_LEN     14              /* Addresses and data length info */
623 #define FAKE_FRAME_LEN  (MAX_PKT_SZ + 1)
624 #define QUEUE_PKT_TIMEOUT (3*HZ)        /* 3 second timeout */
625
626
627 /*
628 ** EISA bus defines
629 */
630 #define DE4X5_EISA_IO_PORTS   0x0c00    /* I/O port base address, slot 0 */
631 #define DE4X5_EISA_TOTAL_SIZE 0x100     /* I/O address extent */
632
633 #define EISA_ALLOWED_IRQ_LIST  {5, 9, 10, 11}
634
635 #define DE4X5_SIGNATURE {"DE425","DE434","DE435","DE450","DE500"}
636 #define DE4X5_NAME_LENGTH 8
637
638 static c_char *de4x5_signatures[] = DE4X5_SIGNATURE;
639
640 /*
641 ** Ethernet PROM defines for DC21040
642 */
643 #define PROBE_LENGTH    32
644 #define ETH_PROM_SIG    0xAA5500FFUL
645
646 /*
647 ** PCI Bus defines
648 */
649 #define PCI_MAX_BUS_NUM      8
650 #define DE4X5_PCI_TOTAL_SIZE 0x80       /* I/O address extent */
651 #define DE4X5_CLASS_CODE     0x00020000 /* Network controller, Ethernet */
652
653 /*
654 ** Memory Alignment. Each descriptor is 4 longwords long. To force a
655 ** particular alignment on the TX descriptor, adjust DESC_SKIP_LEN and
656 ** DESC_ALIGN. ALIGN aligns the start address of the private memory area
657 ** and hence the RX descriptor ring's first entry.
658 */
659 #define DE4X5_ALIGN4      ((u_long)4 - 1)     /* 1 longword align */
660 #define DE4X5_ALIGN8      ((u_long)8 - 1)     /* 2 longword align */
661 #define DE4X5_ALIGN16     ((u_long)16 - 1)    /* 4 longword align */
662 #define DE4X5_ALIGN32     ((u_long)32 - 1)    /* 8 longword align */
663 #define DE4X5_ALIGN64     ((u_long)64 - 1)    /* 16 longword align */
664 #define DE4X5_ALIGN128    ((u_long)128 - 1)   /* 32 longword align */
665
666 #define DE4X5_ALIGN         DE4X5_ALIGN32           /* Keep the DC21040 happy... */
667 #define DE4X5_CACHE_ALIGN   CAL_16LONG
668 #define DESC_SKIP_LEN DSL_0             /* Must agree with DESC_ALIGN */
669 /*#define DESC_ALIGN    u32 dummy[4];  / * Must agree with DESC_SKIP_LEN */
670 #define DESC_ALIGN
671
672 #ifndef DEC_ONLY                        /* See README.de4x5 for using this */
673 static int dec_only;
674 #else
675 static int dec_only = 1;
676 #endif
677
678 /*
679 ** DE4X5 IRQ ENABLE/DISABLE
680 */
681 #define ENABLE_IRQs { \
682     imr |= lp->irq_en;\
683     outl(imr, DE4X5_IMR);               /* Enable the IRQs */\
684 }
685
686 #define DISABLE_IRQs {\
687     imr = inl(DE4X5_IMR);\
688     imr &= ~lp->irq_en;\
689     outl(imr, DE4X5_IMR);               /* Disable the IRQs */\
690 }
691
692 #define UNMASK_IRQs {\
693     imr |= lp->irq_mask;\
694     outl(imr, DE4X5_IMR);               /* Unmask the IRQs */\
695 }
696
697 #define MASK_IRQs {\
698     imr = inl(DE4X5_IMR);\
699     imr &= ~lp->irq_mask;\
700     outl(imr, DE4X5_IMR);               /* Mask the IRQs */\
701 }
702
703 /*
704 ** DE4X5 START/STOP
705 */
706 #define START_DE4X5 {\
707     omr = inl(DE4X5_OMR);\
708     omr |= OMR_ST | OMR_SR;\
709     outl(omr, DE4X5_OMR);               /* Enable the TX and/or RX */\
710 }
711
712 #define STOP_DE4X5 {\
713     omr = inl(DE4X5_OMR);\
714     omr &= ~(OMR_ST|OMR_SR);\
715     outl(omr, DE4X5_OMR);               /* Disable the TX and/or RX */ \
716 }
717
718 /*
719 ** DE4X5 SIA RESET
720 */
721 #define RESET_SIA outl(0, DE4X5_SICR);  /* Reset SIA connectivity regs */
722
723 /*
724 ** DE500 AUTOSENSE TIMER INTERVAL (MILLISECS)
725 */
726 #define DE4X5_AUTOSENSE_MS  250
727
728 /*
729 ** SROM Structure
730 */
731 struct de4x5_srom {
732     char sub_vendor_id[2];
733     char sub_system_id[2];
734     char reserved[12];
735     char id_block_crc;
736     char reserved2;
737     char version;
738     char num_controllers;
739     char ieee_addr[6];
740     char info[100];
741     short chksum;
742 };
743 #define SUB_VENDOR_ID 0x500a
744
745 /*
746 ** DE4X5 Descriptors. Make sure that all the RX buffers are contiguous
747 ** and have sizes of both a power of 2 and a multiple of 4.
748 ** A size of 256 bytes for each buffer could be chosen because over 90% of
749 ** all packets in our network are <256 bytes long and 64 longword alignment
750 ** is possible. 1536 showed better 'ttcp' performance. Take your pick. 32 TX
751 ** descriptors are needed for machines with an ALPHA CPU.
752 */
753 #define NUM_RX_DESC 8                   /* Number of RX descriptors   */
754 #define NUM_TX_DESC 32                  /* Number of TX descriptors   */
755 #define RX_BUFF_SZ  1536                /* Power of 2 for kmalloc and */
756                                         /* Multiple of 4 for DC21040  */
757                                         /* Allows 512 byte alignment  */
758 struct de4x5_desc {
759     volatile __le32 status;
760     __le32 des1;
761     __le32 buf;
762     __le32 next;
763     DESC_ALIGN
764 };
765
766 /*
767 ** The DE4X5 private structure
768 */
769 #define DE4X5_PKT_STAT_SZ 16
770 #define DE4X5_PKT_BIN_SZ  128            /* Should be >=100 unless you
771                                             increase DE4X5_PKT_STAT_SZ */
772
773 struct pkt_stats {
774         u_int bins[DE4X5_PKT_STAT_SZ];      /* Private stats counters       */
775         u_int unicast;
776         u_int multicast;
777         u_int broadcast;
778         u_int excessive_collisions;
779         u_int tx_underruns;
780         u_int excessive_underruns;
781         u_int rx_runt_frames;
782         u_int rx_collision;
783         u_int rx_dribble;
784         u_int rx_overflow;
785 };
786
787 struct de4x5_private {
788     char adapter_name[80];                  /* Adapter name                 */
789     u_long interrupt;                       /* Aligned ISR flag             */
790     struct de4x5_desc *rx_ring;             /* RX descriptor ring           */
791     struct de4x5_desc *tx_ring;             /* TX descriptor ring           */
792     struct sk_buff *tx_skb[NUM_TX_DESC];    /* TX skb for freeing when sent */
793     struct sk_buff *rx_skb[NUM_RX_DESC];    /* RX skb's                     */
794     int rx_new, rx_old;                     /* RX descriptor ring pointers  */
795     int tx_new, tx_old;                     /* TX descriptor ring pointers  */
796     char setup_frame[SETUP_FRAME_LEN];      /* Holds MCA and PA info.       */
797     char frame[64];                         /* Min sized packet for loopback*/
798     spinlock_t lock;                        /* Adapter specific spinlock    */
799     struct net_device_stats stats;          /* Public stats                 */
800     struct pkt_stats pktStats;              /* Private stats counters       */
801     char rxRingSize;
802     char txRingSize;
803     int  bus;                               /* EISA or PCI                  */
804     int  bus_num;                           /* PCI Bus number               */
805     int  device;                            /* Device number on PCI bus     */
806     int  state;                             /* Adapter OPENED or CLOSED     */
807     int  chipset;                           /* DC21040, DC21041 or DC21140  */
808     s32  irq_mask;                          /* Interrupt Mask (Enable) bits */
809     s32  irq_en;                            /* Summary interrupt bits       */
810     int  media;                             /* Media (eg TP), mode (eg 100B)*/
811     int  c_media;                           /* Remember the last media conn */
812     bool fdx;                               /* media full duplex flag       */
813     int  linkOK;                            /* Link is OK                   */
814     int  autosense;                         /* Allow/disallow autosensing   */
815     bool tx_enable;                         /* Enable descriptor polling    */
816     int  setup_f;                           /* Setup frame filtering type   */
817     int  local_state;                       /* State within a 'media' state */
818     struct mii_phy phy[DE4X5_MAX_PHY];      /* List of attached PHY devices */
819     struct sia_phy sia;                     /* SIA PHY Information          */
820     int  active;                            /* Index to active PHY device   */
821     int  mii_cnt;                           /* Number of attached PHY's     */
822     int  timeout;                           /* Scheduling counter           */
823     struct timer_list timer;                /* Timer info for kernel        */
824     int tmp;                                /* Temporary global per card    */
825     struct {
826         u_long lock;                        /* Lock the cache accesses      */
827         s32 csr0;                           /* Saved Bus Mode Register      */
828         s32 csr6;                           /* Saved Operating Mode Reg.    */
829         s32 csr7;                           /* Saved IRQ Mask Register      */
830         s32 gep;                            /* Saved General Purpose Reg.   */
831         s32 gepc;                           /* Control info for GEP         */
832         s32 csr13;                          /* Saved SIA Connectivity Reg.  */
833         s32 csr14;                          /* Saved SIA TX/RX Register     */
834         s32 csr15;                          /* Saved SIA General Register   */
835         int save_cnt;                       /* Flag if state already saved  */
836         struct sk_buff_head queue;          /* Save the (re-ordered) skb's  */
837     } cache;
838     struct de4x5_srom srom;                 /* A copy of the SROM           */
839     int cfrv;                               /* Card CFRV copy */
840     int rx_ovf;                             /* Check for 'RX overflow' tag  */
841     bool useSROM;                           /* For non-DEC card use SROM    */
842     bool useMII;                            /* Infoblock using the MII      */
843     int asBitValid;                         /* Autosense bits in GEP?       */
844     int asPolarity;                         /* 0 => asserted high           */
845     int asBit;                              /* Autosense bit number in GEP  */
846     int defMedium;                          /* SROM default medium          */
847     int tcount;                             /* Last infoblock number        */
848     int infoblock_init;                     /* Initialised this infoblock?  */
849     int infoleaf_offset;                    /* SROM infoleaf for controller */
850     s32 infoblock_csr6;                     /* csr6 value in SROM infoblock */
851     int infoblock_media;                    /* infoblock media              */
852     int (*infoleaf_fn)(struct net_device *);    /* Pointer to infoleaf function */
853     u_char *rst;                            /* Pointer to Type 5 reset info */
854     u_char  ibn;                            /* Infoblock number             */
855     struct parameters params;               /* Command line/ #defined params */
856     struct device *gendev;                  /* Generic device */
857     dma_addr_t dma_rings;                   /* DMA handle for rings         */
858     int dma_size;                           /* Size of the DMA area         */
859     char *rx_bufs;                          /* rx bufs on alpha, sparc, ... */
860 };
861
862 /*
863 ** To get around certain poxy cards that don't provide an SROM
864 ** for the second and more DECchip, I have to key off the first
865 ** chip's address. I'll assume there's not a bad SROM iff:
866 **
867 **      o the chipset is the same
868 **      o the bus number is the same and > 0
869 **      o the sum of all the returned hw address bytes is 0 or 0x5fa
870 **
871 ** Also have to save the irq for those cards whose hardware designers
872 ** can't follow the PCI to PCI Bridge Architecture spec.
873 */
874 static struct {
875     int chipset;
876     int bus;
877     int irq;
878     u_char addr[ETH_ALEN];
879 } last = {0,};
880
881 /*
882 ** The transmit ring full condition is described by the tx_old and tx_new
883 ** pointers by:
884 **    tx_old            = tx_new    Empty ring
885 **    tx_old            = tx_new+1  Full ring
886 **    tx_old+txRingSize = tx_new+1  Full ring  (wrapped condition)
887 */
888 #define TX_BUFFS_AVAIL ((lp->tx_old<=lp->tx_new)?\
889                         lp->tx_old+lp->txRingSize-lp->tx_new-1:\
890                         lp->tx_old               -lp->tx_new-1)
891
892 #define TX_PKT_PENDING (lp->tx_old != lp->tx_new)
893
894 /*
895 ** Public Functions
896 */
897 static int     de4x5_open(struct net_device *dev);
898 static netdev_tx_t de4x5_queue_pkt(struct sk_buff *skb,
899                                          struct net_device *dev);
900 static irqreturn_t de4x5_interrupt(int irq, void *dev_id);
901 static int     de4x5_close(struct net_device *dev);
902 static struct  net_device_stats *de4x5_get_stats(struct net_device *dev);
903 static void    de4x5_local_stats(struct net_device *dev, char *buf, int pkt_len);
904 static void    set_multicast_list(struct net_device *dev);
905 static int     de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
906
907 /*
908 ** Private functions
909 */
910 static int     de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev);
911 static int     de4x5_init(struct net_device *dev);
912 static int     de4x5_sw_reset(struct net_device *dev);
913 static int     de4x5_rx(struct net_device *dev);
914 static int     de4x5_tx(struct net_device *dev);
915 static void    de4x5_ast(struct net_device *dev);
916 static int     de4x5_txur(struct net_device *dev);
917 static int     de4x5_rx_ovfc(struct net_device *dev);
918
919 static int     autoconf_media(struct net_device *dev);
920 static void    create_packet(struct net_device *dev, char *frame, int len);
921 static void    load_packet(struct net_device *dev, char *buf, u32 flags, struct sk_buff *skb);
922 static int     dc21040_autoconf(struct net_device *dev);
923 static int     dc21041_autoconf(struct net_device *dev);
924 static int     dc21140m_autoconf(struct net_device *dev);
925 static int     dc2114x_autoconf(struct net_device *dev);
926 static int     srom_autoconf(struct net_device *dev);
927 static int     de4x5_suspect_state(struct net_device *dev, int timeout, int prev_state, int (*fn)(struct net_device *, int), int (*asfn)(struct net_device *));
928 static int     dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeout, int next_state, int suspect_state, int (*fn)(struct net_device *, int));
929 static int     test_media(struct net_device *dev, s32 irqs, s32 irq_mask, s32 csr13, s32 csr14, s32 csr15, s32 msec);
930 static int     test_for_100Mb(struct net_device *dev, int msec);
931 static int     wait_for_link(struct net_device *dev);
932 static int     test_mii_reg(struct net_device *dev, int reg, int mask, bool pol, long msec);
933 static int     is_spd_100(struct net_device *dev);
934 static int     is_100_up(struct net_device *dev);
935 static int     is_10_up(struct net_device *dev);
936 static int     is_anc_capable(struct net_device *dev);
937 static int     ping_media(struct net_device *dev, int msec);
938 static struct sk_buff *de4x5_alloc_rx_buff(struct net_device *dev, int index, int len);
939 static void    de4x5_free_rx_buffs(struct net_device *dev);
940 static void    de4x5_free_tx_buffs(struct net_device *dev);
941 static void    de4x5_save_skbs(struct net_device *dev);
942 static void    de4x5_rst_desc_ring(struct net_device *dev);
943 static void    de4x5_cache_state(struct net_device *dev, int flag);
944 static void    de4x5_put_cache(struct net_device *dev, struct sk_buff *skb);
945 static void    de4x5_putb_cache(struct net_device *dev, struct sk_buff *skb);
946 static struct  sk_buff *de4x5_get_cache(struct net_device *dev);
947 static void    de4x5_setup_intr(struct net_device *dev);
948 static void    de4x5_init_connection(struct net_device *dev);
949 static int     de4x5_reset_phy(struct net_device *dev);
950 static void    reset_init_sia(struct net_device *dev, s32 sicr, s32 strr, s32 sigr);
951 static int     test_ans(struct net_device *dev, s32 irqs, s32 irq_mask, s32 msec);
952 static int     test_tp(struct net_device *dev, s32 msec);
953 static int     EISA_signature(char *name, struct device *device);
954 static int     PCI_signature(char *name, struct de4x5_private *lp);
955 static void    DevicePresent(struct net_device *dev, u_long iobase);
956 static void    enet_addr_rst(u_long aprom_addr);
957 static int     de4x5_bad_srom(struct de4x5_private *lp);
958 static short   srom_rd(u_long address, u_char offset);
959 static void    srom_latch(u_int command, u_long address);
960 static void    srom_command(u_int command, u_long address);
961 static void    srom_address(u_int command, u_long address, u_char offset);
962 static short   srom_data(u_int command, u_long address);
963 /*static void    srom_busy(u_int command, u_long address);*/
964 static void    sendto_srom(u_int command, u_long addr);
965 static int     getfrom_srom(u_long addr);
966 static int     srom_map_media(struct net_device *dev);
967 static int     srom_infoleaf_info(struct net_device *dev);
968 static void    srom_init(struct net_device *dev);
969 static void    srom_exec(struct net_device *dev, u_char *p);
970 static int     mii_rd(u_char phyreg, u_char phyaddr, u_long ioaddr);
971 static void    mii_wr(int data, u_char phyreg, u_char phyaddr, u_long ioaddr);
972 static int     mii_rdata(u_long ioaddr);
973 static void    mii_wdata(int data, int len, u_long ioaddr);
974 static void    mii_ta(u_long rw, u_long ioaddr);
975 static int     mii_swap(int data, int len);
976 static void    mii_address(u_char addr, u_long ioaddr);
977 static void    sendto_mii(u32 command, int data, u_long ioaddr);
978 static int     getfrom_mii(u32 command, u_long ioaddr);
979 static int     mii_get_oui(u_char phyaddr, u_long ioaddr);
980 static int     mii_get_phy(struct net_device *dev);
981 static void    SetMulticastFilter(struct net_device *dev);
982 static int     get_hw_addr(struct net_device *dev);
983 static void    srom_repair(struct net_device *dev, int card);
984 static int     test_bad_enet(struct net_device *dev, int status);
985 static int     an_exception(struct de4x5_private *lp);
986 static char    *build_setup_frame(struct net_device *dev, int mode);
987 static void    disable_ast(struct net_device *dev);
988 static long    de4x5_switch_mac_port(struct net_device *dev);
989 static int     gep_rd(struct net_device *dev);
990 static void    gep_wr(s32 data, struct net_device *dev);
991 static void    yawn(struct net_device *dev, int state);
992 static void    de4x5_parse_params(struct net_device *dev);
993 static void    de4x5_dbg_open(struct net_device *dev);
994 static void    de4x5_dbg_mii(struct net_device *dev, int k);
995 static void    de4x5_dbg_media(struct net_device *dev);
996 static void    de4x5_dbg_srom(struct de4x5_srom *p);
997 static void    de4x5_dbg_rx(struct sk_buff *skb, int len);
998 static int     dc21041_infoleaf(struct net_device *dev);
999 static int     dc21140_infoleaf(struct net_device *dev);
1000 static int     dc21142_infoleaf(struct net_device *dev);
1001 static int     dc21143_infoleaf(struct net_device *dev);
1002 static int     type0_infoblock(struct net_device *dev, u_char count, u_char *p);
1003 static int     type1_infoblock(struct net_device *dev, u_char count, u_char *p);
1004 static int     type2_infoblock(struct net_device *dev, u_char count, u_char *p);
1005 static int     type3_infoblock(struct net_device *dev, u_char count, u_char *p);
1006 static int     type4_infoblock(struct net_device *dev, u_char count, u_char *p);
1007 static int     type5_infoblock(struct net_device *dev, u_char count, u_char *p);
1008 static int     compact_infoblock(struct net_device *dev, u_char count, u_char *p);
1009
1010 /*
1011 ** Note now that module autoprobing is allowed under EISA and PCI. The
1012 ** IRQ lines will not be auto-detected; instead I'll rely on the BIOSes
1013 ** to "do the right thing".
1014 */
1015
1016 static int io=0x0;/* EDIT THIS LINE FOR YOUR CONFIGURATION IF NEEDED        */
1017
1018 module_param(io, int, 0);
1019 module_param(de4x5_debug, int, 0);
1020 module_param(dec_only, int, 0);
1021 module_param(args, charp, 0);
1022
1023 MODULE_PARM_DESC(io, "de4x5 I/O base address");
1024 MODULE_PARM_DESC(de4x5_debug, "de4x5 debug mask");
1025 MODULE_PARM_DESC(dec_only, "de4x5 probe only for Digital boards (0-1)");
1026 MODULE_PARM_DESC(args, "de4x5 full duplex and media type settings; see de4x5.c for details");
1027 MODULE_LICENSE("GPL");
1028
1029 /*
1030 ** List the SROM infoleaf functions and chipsets
1031 */
1032 struct InfoLeaf {
1033     int chipset;
1034     int (*fn)(struct net_device *);
1035 };
1036 static struct InfoLeaf infoleaf_array[] = {
1037     {DC21041, dc21041_infoleaf},
1038     {DC21140, dc21140_infoleaf},
1039     {DC21142, dc21142_infoleaf},
1040     {DC21143, dc21143_infoleaf}
1041 };
1042 #define INFOLEAF_SIZE ARRAY_SIZE(infoleaf_array)
1043
1044 /*
1045 ** List the SROM info block functions
1046 */
1047 static int (*dc_infoblock[])(struct net_device *dev, u_char, u_char *) = {
1048     type0_infoblock,
1049     type1_infoblock,
1050     type2_infoblock,
1051     type3_infoblock,
1052     type4_infoblock,
1053     type5_infoblock,
1054     compact_infoblock
1055 };
1056
1057 #define COMPACT (ARRAY_SIZE(dc_infoblock) - 1)
1058
1059 /*
1060 ** Miscellaneous defines...
1061 */
1062 #define RESET_DE4X5 {\
1063     int i;\
1064     i=inl(DE4X5_BMR);\
1065     mdelay(1);\
1066     outl(i | BMR_SWR, DE4X5_BMR);\
1067     mdelay(1);\
1068     outl(i, DE4X5_BMR);\
1069     mdelay(1);\
1070     for (i=0;i<5;i++) {inl(DE4X5_BMR); mdelay(1);}\
1071     mdelay(1);\
1072 }
1073
1074 #define PHY_HARD_RESET {\
1075     outl(GEP_HRST, DE4X5_GEP);           /* Hard RESET the PHY dev. */\
1076     mdelay(1);                           /* Assert for 1ms */\
1077     outl(0x00, DE4X5_GEP);\
1078     mdelay(2);                           /* Wait for 2ms */\
1079 }
1080
1081 static const struct net_device_ops de4x5_netdev_ops = {
1082     .ndo_open           = de4x5_open,
1083     .ndo_stop           = de4x5_close,
1084     .ndo_start_xmit     = de4x5_queue_pkt,
1085     .ndo_get_stats      = de4x5_get_stats,
1086     .ndo_set_rx_mode    = set_multicast_list,
1087     .ndo_do_ioctl       = de4x5_ioctl,
1088     .ndo_change_mtu     = eth_change_mtu,
1089     .ndo_set_mac_address= eth_mac_addr,
1090     .ndo_validate_addr  = eth_validate_addr,
1091 };
1092
1093
1094 static int
1095 de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev)
1096 {
1097     char name[DE4X5_NAME_LENGTH + 1];
1098     struct de4x5_private *lp = netdev_priv(dev);
1099     struct pci_dev *pdev = NULL;
1100     int i, status=0;
1101
1102     dev_set_drvdata(gendev, dev);
1103
1104     /* Ensure we're not sleeping */
1105     if (lp->bus == EISA) {
1106         outb(WAKEUP, PCI_CFPM);
1107     } else {
1108         pdev = to_pci_dev (gendev);
1109         pci_write_config_byte(pdev, PCI_CFDA_PSM, WAKEUP);
1110     }
1111     mdelay(10);
1112
1113     RESET_DE4X5;
1114
1115     if ((inl(DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
1116         return -ENXIO;                       /* Hardware could not reset */
1117     }
1118
1119     /*
1120     ** Now find out what kind of DC21040/DC21041/DC21140 board we have.
1121     */
1122     lp->useSROM = false;
1123     if (lp->bus == PCI) {
1124         PCI_signature(name, lp);
1125     } else {
1126         EISA_signature(name, gendev);
1127     }
1128
1129     if (*name == '\0') {                     /* Not found a board signature */
1130         return -ENXIO;
1131     }
1132
1133     dev->base_addr = iobase;
1134     printk ("%s: %s at 0x%04lx", dev_name(gendev), name, iobase);
1135
1136     status = get_hw_addr(dev);
1137     printk(", h/w address %pM\n", dev->dev_addr);
1138
1139     if (status != 0) {
1140         printk("      which has an Ethernet PROM CRC error.\n");
1141         return -ENXIO;
1142     } else {
1143         skb_queue_head_init(&lp->cache.queue);
1144         lp->cache.gepc = GEP_INIT;
1145         lp->asBit = GEP_SLNK;
1146         lp->asPolarity = GEP_SLNK;
1147         lp->asBitValid = ~0;
1148         lp->timeout = -1;
1149         lp->gendev = gendev;
1150         spin_lock_init(&lp->lock);
1151         init_timer(&lp->timer);
1152         lp->timer.function = (void (*)(unsigned long))de4x5_ast;
1153         lp->timer.data = (unsigned long)dev;
1154         de4x5_parse_params(dev);
1155
1156         /*
1157         ** Choose correct autosensing in case someone messed up
1158         */
1159         lp->autosense = lp->params.autosense;
1160         if (lp->chipset != DC21140) {
1161             if ((lp->chipset==DC21040) && (lp->params.autosense&TP_NW)) {
1162                 lp->params.autosense = TP;
1163             }
1164             if ((lp->chipset==DC21041) && (lp->params.autosense&BNC_AUI)) {
1165                 lp->params.autosense = BNC;
1166             }
1167         }
1168         lp->fdx = lp->params.fdx;
1169         sprintf(lp->adapter_name,"%s (%s)", name, dev_name(gendev));
1170
1171         lp->dma_size = (NUM_RX_DESC + NUM_TX_DESC) * sizeof(struct de4x5_desc);
1172 #if defined(__alpha__) || defined(__powerpc__) || defined(CONFIG_SPARC) || defined(DE4X5_DO_MEMCPY)
1173         lp->dma_size += RX_BUFF_SZ * NUM_RX_DESC + DE4X5_ALIGN;
1174 #endif
1175         lp->rx_ring = dma_alloc_coherent(gendev, lp->dma_size,
1176                                          &lp->dma_rings, GFP_ATOMIC);
1177         if (lp->rx_ring == NULL) {
1178             return -ENOMEM;
1179         }
1180
1181         lp->tx_ring = lp->rx_ring + NUM_RX_DESC;
1182
1183         /*
1184         ** Set up the RX descriptor ring (Intels)
1185         ** Allocate contiguous receive buffers, long word aligned (Alphas)
1186         */
1187 #if !defined(__alpha__) && !defined(__powerpc__) && !defined(CONFIG_SPARC) && !defined(DE4X5_DO_MEMCPY)
1188         for (i=0; i<NUM_RX_DESC; i++) {
1189             lp->rx_ring[i].status = 0;
1190             lp->rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
1191             lp->rx_ring[i].buf = 0;
1192             lp->rx_ring[i].next = 0;
1193             lp->rx_skb[i] = (struct sk_buff *) 1;     /* Dummy entry */
1194         }
1195
1196 #else
1197         {
1198                 dma_addr_t dma_rx_bufs;
1199
1200                 dma_rx_bufs = lp->dma_rings + (NUM_RX_DESC + NUM_TX_DESC)
1201                         * sizeof(struct de4x5_desc);
1202                 dma_rx_bufs = (dma_rx_bufs + DE4X5_ALIGN) & ~DE4X5_ALIGN;
1203                 lp->rx_bufs = (char *)(((long)(lp->rx_ring + NUM_RX_DESC
1204                         + NUM_TX_DESC) + DE4X5_ALIGN) & ~DE4X5_ALIGN);
1205                 for (i=0; i<NUM_RX_DESC; i++) {
1206                         lp->rx_ring[i].status = 0;
1207                         lp->rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
1208                         lp->rx_ring[i].buf =
1209                                 cpu_to_le32(dma_rx_bufs+i*RX_BUFF_SZ);
1210                         lp->rx_ring[i].next = 0;
1211                         lp->rx_skb[i] = (struct sk_buff *) 1; /* Dummy entry */
1212                 }
1213
1214         }
1215 #endif
1216
1217         barrier();
1218
1219         lp->rxRingSize = NUM_RX_DESC;
1220         lp->txRingSize = NUM_TX_DESC;
1221
1222         /* Write the end of list marker to the descriptor lists */
1223         lp->rx_ring[lp->rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
1224         lp->tx_ring[lp->txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
1225
1226         /* Tell the adapter where the TX/RX rings are located. */
1227         outl(lp->dma_rings, DE4X5_RRBA);
1228         outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
1229              DE4X5_TRBA);
1230
1231         /* Initialise the IRQ mask and Enable/Disable */
1232         lp->irq_mask = IMR_RIM | IMR_TIM | IMR_TUM | IMR_UNM;
1233         lp->irq_en   = IMR_NIM | IMR_AIM;
1234
1235         /* Create a loopback packet frame for later media probing */
1236         create_packet(dev, lp->frame, sizeof(lp->frame));
1237
1238         /* Check if the RX overflow bug needs testing for */
1239         i = lp->cfrv & 0x000000fe;
1240         if ((lp->chipset == DC21140) && (i == 0x20)) {
1241             lp->rx_ovf = 1;
1242         }
1243
1244         /* Initialise the SROM pointers if possible */
1245         if (lp->useSROM) {
1246             lp->state = INITIALISED;
1247             if (srom_infoleaf_info(dev)) {
1248                 dma_free_coherent (gendev, lp->dma_size,
1249                                lp->rx_ring, lp->dma_rings);
1250                 return -ENXIO;
1251             }
1252             srom_init(dev);
1253         }
1254
1255         lp->state = CLOSED;
1256
1257         /*
1258         ** Check for an MII interface
1259         */
1260         if ((lp->chipset != DC21040) && (lp->chipset != DC21041)) {
1261             mii_get_phy(dev);
1262         }
1263
1264         printk("      and requires IRQ%d (provided by %s).\n", dev->irq,
1265                ((lp->bus == PCI) ? "PCI BIOS" : "EISA CNFG"));
1266     }
1267
1268     if (de4x5_debug & DEBUG_VERSION) {
1269         printk(version);
1270     }
1271
1272     /* The DE4X5-specific entries in the device structure. */
1273     SET_NETDEV_DEV(dev, gendev);
1274     dev->netdev_ops = &de4x5_netdev_ops;
1275     dev->mem_start = 0;
1276
1277     /* Fill in the generic fields of the device structure. */
1278     if ((status = register_netdev (dev))) {
1279             dma_free_coherent (gendev, lp->dma_size,
1280                                lp->rx_ring, lp->dma_rings);
1281             return status;
1282     }
1283
1284     /* Let the adapter sleep to save power */
1285     yawn(dev, SLEEP);
1286
1287     return status;
1288 }
1289
1290
1291 static int
1292 de4x5_open(struct net_device *dev)
1293 {
1294     struct de4x5_private *lp = netdev_priv(dev);
1295     u_long iobase = dev->base_addr;
1296     int i, status = 0;
1297     s32 omr;
1298
1299     /* Allocate the RX buffers */
1300     for (i=0; i<lp->rxRingSize; i++) {
1301         if (de4x5_alloc_rx_buff(dev, i, 0) == NULL) {
1302             de4x5_free_rx_buffs(dev);
1303             return -EAGAIN;
1304         }
1305     }
1306
1307     /*
1308     ** Wake up the adapter
1309     */
1310     yawn(dev, WAKEUP);
1311
1312     /*
1313     ** Re-initialize the DE4X5...
1314     */
1315     status = de4x5_init(dev);
1316     spin_lock_init(&lp->lock);
1317     lp->state = OPEN;
1318     de4x5_dbg_open(dev);
1319
1320     if (request_irq(dev->irq, de4x5_interrupt, IRQF_SHARED,
1321                                                      lp->adapter_name, dev)) {
1322         printk("de4x5_open(): Requested IRQ%d is busy - attemping FAST/SHARE...", dev->irq);
1323         if (request_irq(dev->irq, de4x5_interrupt, IRQF_SHARED,
1324                                                      lp->adapter_name, dev)) {
1325             printk("\n              Cannot get IRQ- reconfigure your hardware.\n");
1326             disable_ast(dev);
1327             de4x5_free_rx_buffs(dev);
1328             de4x5_free_tx_buffs(dev);
1329             yawn(dev, SLEEP);
1330             lp->state = CLOSED;
1331             return -EAGAIN;
1332         } else {
1333             printk("\n              Succeeded, but you should reconfigure your hardware to avoid this.\n");
1334             printk("WARNING: there may be IRQ related problems in heavily loaded systems.\n");
1335         }
1336     }
1337
1338     lp->interrupt = UNMASK_INTERRUPTS;
1339     dev->trans_start = jiffies; /* prevent tx timeout */
1340
1341     START_DE4X5;
1342
1343     de4x5_setup_intr(dev);
1344
1345     if (de4x5_debug & DEBUG_OPEN) {
1346         printk("\tsts:  0x%08x\n", inl(DE4X5_STS));
1347         printk("\tbmr:  0x%08x\n", inl(DE4X5_BMR));
1348         printk("\timr:  0x%08x\n", inl(DE4X5_IMR));
1349         printk("\tomr:  0x%08x\n", inl(DE4X5_OMR));
1350         printk("\tsisr: 0x%08x\n", inl(DE4X5_SISR));
1351         printk("\tsicr: 0x%08x\n", inl(DE4X5_SICR));
1352         printk("\tstrr: 0x%08x\n", inl(DE4X5_STRR));
1353         printk("\tsigr: 0x%08x\n", inl(DE4X5_SIGR));
1354     }
1355
1356     return status;
1357 }
1358
1359 /*
1360 ** Initialize the DE4X5 operating conditions. NB: a chip problem with the
1361 ** DC21140 requires using perfect filtering mode for that chip. Since I can't
1362 ** see why I'd want > 14 multicast addresses, I have changed all chips to use
1363 ** the perfect filtering mode. Keep the DMA burst length at 8: there seems
1364 ** to be data corruption problems if it is larger (UDP errors seen from a
1365 ** ttcp source).
1366 */
1367 static int
1368 de4x5_init(struct net_device *dev)
1369 {
1370     /* Lock out other processes whilst setting up the hardware */
1371     netif_stop_queue(dev);
1372
1373     de4x5_sw_reset(dev);
1374
1375     /* Autoconfigure the connected port */
1376     autoconf_media(dev);
1377
1378     return 0;
1379 }
1380
1381 static int
1382 de4x5_sw_reset(struct net_device *dev)
1383 {
1384     struct de4x5_private *lp = netdev_priv(dev);
1385     u_long iobase = dev->base_addr;
1386     int i, j, status = 0;
1387     s32 bmr, omr;
1388
1389     /* Select the MII or SRL port now and RESET the MAC */
1390     if (!lp->useSROM) {
1391         if (lp->phy[lp->active].id != 0) {
1392             lp->infoblock_csr6 = OMR_SDP | OMR_PS | OMR_HBD;
1393         } else {
1394             lp->infoblock_csr6 = OMR_SDP | OMR_TTM;
1395         }
1396         de4x5_switch_mac_port(dev);
1397     }
1398
1399     /*
1400     ** Set the programmable burst length to 8 longwords for all the DC21140
1401     ** Fasternet chips and 4 longwords for all others: DMA errors result
1402     ** without these values. Cache align 16 long.
1403     */
1404     bmr = (lp->chipset==DC21140 ? PBL_8 : PBL_4) | DESC_SKIP_LEN | DE4X5_CACHE_ALIGN;
1405     bmr |= ((lp->chipset & ~0x00ff)==DC2114x ? BMR_RML : 0);
1406     outl(bmr, DE4X5_BMR);
1407
1408     omr = inl(DE4X5_OMR) & ~OMR_PR;             /* Turn off promiscuous mode */
1409     if (lp->chipset == DC21140) {
1410         omr |= (OMR_SDP | OMR_SB);
1411     }
1412     lp->setup_f = PERFECT;
1413     outl(lp->dma_rings, DE4X5_RRBA);
1414     outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
1415          DE4X5_TRBA);
1416
1417     lp->rx_new = lp->rx_old = 0;
1418     lp->tx_new = lp->tx_old = 0;
1419
1420     for (i = 0; i < lp->rxRingSize; i++) {
1421         lp->rx_ring[i].status = cpu_to_le32(R_OWN);
1422     }
1423
1424     for (i = 0; i < lp->txRingSize; i++) {
1425         lp->tx_ring[i].status = cpu_to_le32(0);
1426     }
1427
1428     barrier();
1429
1430     /* Build the setup frame depending on filtering mode */
1431     SetMulticastFilter(dev);
1432
1433     load_packet(dev, lp->setup_frame, PERFECT_F|TD_SET|SETUP_FRAME_LEN, (struct sk_buff *)1);
1434     outl(omr|OMR_ST, DE4X5_OMR);
1435
1436     /* Poll for setup frame completion (adapter interrupts are disabled now) */
1437
1438     for (j=0, i=0;(i<500) && (j==0);i++) {       /* Up to 500ms delay */
1439         mdelay(1);
1440         if ((s32)le32_to_cpu(lp->tx_ring[lp->tx_new].status) >= 0) j=1;
1441     }
1442     outl(omr, DE4X5_OMR);                        /* Stop everything! */
1443
1444     if (j == 0) {
1445         printk("%s: Setup frame timed out, status %08x\n", dev->name,
1446                inl(DE4X5_STS));
1447         status = -EIO;
1448     }
1449
1450     lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
1451     lp->tx_old = lp->tx_new;
1452
1453     return status;
1454 }
1455
1456 /*
1457 ** Writes a socket buffer address to the next available transmit descriptor.
1458 */
1459 static netdev_tx_t
1460 de4x5_queue_pkt(struct sk_buff *skb, struct net_device *dev)
1461 {
1462     struct de4x5_private *lp = netdev_priv(dev);
1463     u_long iobase = dev->base_addr;
1464     u_long flags = 0;
1465
1466     netif_stop_queue(dev);
1467     if (!lp->tx_enable)                   /* Cannot send for now */
1468         return NETDEV_TX_LOCKED;
1469
1470     /*
1471     ** Clean out the TX ring asynchronously to interrupts - sometimes the
1472     ** interrupts are lost by delayed descriptor status updates relative to
1473     ** the irq assertion, especially with a busy PCI bus.
1474     */
1475     spin_lock_irqsave(&lp->lock, flags);
1476     de4x5_tx(dev);
1477     spin_unlock_irqrestore(&lp->lock, flags);
1478
1479     /* Test if cache is already locked - requeue skb if so */
1480     if (test_and_set_bit(0, (void *)&lp->cache.lock) && !lp->interrupt)
1481         return NETDEV_TX_LOCKED;
1482
1483     /* Transmit descriptor ring full or stale skb */
1484     if (netif_queue_stopped(dev) || (u_long) lp->tx_skb[lp->tx_new] > 1) {
1485         if (lp->interrupt) {
1486             de4x5_putb_cache(dev, skb);          /* Requeue the buffer */
1487         } else {
1488             de4x5_put_cache(dev, skb);
1489         }
1490         if (de4x5_debug & DEBUG_TX) {
1491             printk("%s: transmit busy, lost media or stale skb found:\n  STS:%08x\n  tbusy:%d\n  IMR:%08x\n  OMR:%08x\n Stale skb: %s\n",dev->name, inl(DE4X5_STS), netif_queue_stopped(dev), inl(DE4X5_IMR), inl(DE4X5_OMR), ((u_long) lp->tx_skb[lp->tx_new] > 1) ? "YES" : "NO");
1492         }
1493     } else if (skb->len > 0) {
1494         /* If we already have stuff queued locally, use that first */
1495         if (!skb_queue_empty(&lp->cache.queue) && !lp->interrupt) {
1496             de4x5_put_cache(dev, skb);
1497             skb = de4x5_get_cache(dev);
1498         }
1499
1500         while (skb && !netif_queue_stopped(dev) &&
1501                (u_long) lp->tx_skb[lp->tx_new] <= 1) {
1502             spin_lock_irqsave(&lp->lock, flags);
1503             netif_stop_queue(dev);
1504             load_packet(dev, skb->data, TD_IC | TD_LS | TD_FS | skb->len, skb);
1505             lp->stats.tx_bytes += skb->len;
1506             outl(POLL_DEMAND, DE4X5_TPD);/* Start the TX */
1507
1508             lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
1509
1510             if (TX_BUFFS_AVAIL) {
1511                 netif_start_queue(dev);         /* Another pkt may be queued */
1512             }
1513             skb = de4x5_get_cache(dev);
1514             spin_unlock_irqrestore(&lp->lock, flags);
1515         }
1516         if (skb) de4x5_putb_cache(dev, skb);
1517     }
1518
1519     lp->cache.lock = 0;
1520
1521     return NETDEV_TX_OK;
1522 }
1523
1524 /*
1525 ** The DE4X5 interrupt handler.
1526 **
1527 ** I/O Read/Writes through intermediate PCI bridges are never 'posted',
1528 ** so that the asserted interrupt always has some real data to work with -
1529 ** if these I/O accesses are ever changed to memory accesses, ensure the
1530 ** STS write is read immediately to complete the transaction if the adapter
1531 ** is not on bus 0. Lost interrupts can still occur when the PCI bus load
1532 ** is high and descriptor status bits cannot be set before the associated
1533 ** interrupt is asserted and this routine entered.
1534 */
1535 static irqreturn_t
1536 de4x5_interrupt(int irq, void *dev_id)
1537 {
1538     struct net_device *dev = dev_id;
1539     struct de4x5_private *lp;
1540     s32 imr, omr, sts, limit;
1541     u_long iobase;
1542     unsigned int handled = 0;
1543
1544     lp = netdev_priv(dev);
1545     spin_lock(&lp->lock);
1546     iobase = dev->base_addr;
1547
1548     DISABLE_IRQs;                        /* Ensure non re-entrancy */
1549
1550     if (test_and_set_bit(MASK_INTERRUPTS, (void*) &lp->interrupt))
1551         printk("%s: Re-entering the interrupt handler.\n", dev->name);
1552
1553     synchronize_irq(dev->irq);
1554
1555     for (limit=0; limit<8; limit++) {
1556         sts = inl(DE4X5_STS);            /* Read IRQ status */
1557         outl(sts, DE4X5_STS);            /* Reset the board interrupts */
1558
1559         if (!(sts & lp->irq_mask)) break;/* All done */
1560         handled = 1;
1561
1562         if (sts & (STS_RI | STS_RU))     /* Rx interrupt (packet[s] arrived) */
1563           de4x5_rx(dev);
1564
1565         if (sts & (STS_TI | STS_TU))     /* Tx interrupt (packet sent) */
1566           de4x5_tx(dev);
1567
1568         if (sts & STS_LNF) {             /* TP Link has failed */
1569             lp->irq_mask &= ~IMR_LFM;
1570         }
1571
1572         if (sts & STS_UNF) {             /* Transmit underrun */
1573             de4x5_txur(dev);
1574         }
1575
1576         if (sts & STS_SE) {              /* Bus Error */
1577             STOP_DE4X5;
1578             printk("%s: Fatal bus error occurred, sts=%#8x, device stopped.\n",
1579                    dev->name, sts);
1580             spin_unlock(&lp->lock);
1581             return IRQ_HANDLED;
1582         }
1583     }
1584
1585     /* Load the TX ring with any locally stored packets */
1586     if (!test_and_set_bit(0, (void *)&lp->cache.lock)) {
1587         while (!skb_queue_empty(&lp->cache.queue) && !netif_queue_stopped(dev) && lp->tx_enable) {
1588             de4x5_queue_pkt(de4x5_get_cache(dev), dev);
1589         }
1590         lp->cache.lock = 0;
1591     }
1592
1593     lp->interrupt = UNMASK_INTERRUPTS;
1594     ENABLE_IRQs;
1595     spin_unlock(&lp->lock);
1596
1597     return IRQ_RETVAL(handled);
1598 }
1599
1600 static int
1601 de4x5_rx(struct net_device *dev)
1602 {
1603     struct de4x5_private *lp = netdev_priv(dev);
1604     u_long iobase = dev->base_addr;
1605     int entry;
1606     s32 status;
1607
1608     for (entry=lp->rx_new; (s32)le32_to_cpu(lp->rx_ring[entry].status)>=0;
1609                                                             entry=lp->rx_new) {
1610         status = (s32)le32_to_cpu(lp->rx_ring[entry].status);
1611
1612         if (lp->rx_ovf) {
1613             if (inl(DE4X5_MFC) & MFC_FOCM) {
1614                 de4x5_rx_ovfc(dev);
1615                 break;
1616             }
1617         }
1618
1619         if (status & RD_FS) {                 /* Remember the start of frame */
1620             lp->rx_old = entry;
1621         }
1622
1623         if (status & RD_LS) {                 /* Valid frame status */
1624             if (lp->tx_enable) lp->linkOK++;
1625             if (status & RD_ES) {             /* There was an error. */
1626                 lp->stats.rx_errors++;        /* Update the error stats. */
1627                 if (status & (RD_RF | RD_TL)) lp->stats.rx_frame_errors++;
1628                 if (status & RD_CE)           lp->stats.rx_crc_errors++;
1629                 if (status & RD_OF)           lp->stats.rx_fifo_errors++;
1630                 if (status & RD_TL)           lp->stats.rx_length_errors++;
1631                 if (status & RD_RF)           lp->pktStats.rx_runt_frames++;
1632                 if (status & RD_CS)           lp->pktStats.rx_collision++;
1633                 if (status & RD_DB)           lp->pktStats.rx_dribble++;
1634                 if (status & RD_OF)           lp->pktStats.rx_overflow++;
1635             } else {                          /* A valid frame received */
1636                 struct sk_buff *skb;
1637                 short pkt_len = (short)(le32_to_cpu(lp->rx_ring[entry].status)
1638                                                                     >> 16) - 4;
1639
1640                 if ((skb = de4x5_alloc_rx_buff(dev, entry, pkt_len)) == NULL) {
1641                     printk("%s: Insufficient memory; nuking packet.\n",
1642                                                                     dev->name);
1643                     lp->stats.rx_dropped++;
1644                 } else {
1645                     de4x5_dbg_rx(skb, pkt_len);
1646
1647                     /* Push up the protocol stack */
1648                     skb->protocol=eth_type_trans(skb,dev);
1649                     de4x5_local_stats(dev, skb->data, pkt_len);
1650                     netif_rx(skb);
1651
1652                     /* Update stats */
1653                     lp->stats.rx_packets++;
1654                     lp->stats.rx_bytes += pkt_len;
1655                 }
1656             }
1657
1658             /* Change buffer ownership for this frame, back to the adapter */
1659             for (;lp->rx_old!=entry;lp->rx_old=(lp->rx_old + 1)%lp->rxRingSize) {
1660                 lp->rx_ring[lp->rx_old].status = cpu_to_le32(R_OWN);
1661                 barrier();
1662             }
1663             lp->rx_ring[entry].status = cpu_to_le32(R_OWN);
1664             barrier();
1665         }
1666
1667         /*
1668         ** Update entry information
1669         */
1670         lp->rx_new = (lp->rx_new + 1) % lp->rxRingSize;
1671     }
1672
1673     return 0;
1674 }
1675
1676 static inline void
1677 de4x5_free_tx_buff(struct de4x5_private *lp, int entry)
1678 {
1679     dma_unmap_single(lp->gendev, le32_to_cpu(lp->tx_ring[entry].buf),
1680                      le32_to_cpu(lp->tx_ring[entry].des1) & TD_TBS1,
1681                      DMA_TO_DEVICE);
1682     if ((u_long) lp->tx_skb[entry] > 1)
1683         dev_kfree_skb_irq(lp->tx_skb[entry]);
1684     lp->tx_skb[entry] = NULL;
1685 }
1686
1687 /*
1688 ** Buffer sent - check for TX buffer errors.
1689 */
1690 static int
1691 de4x5_tx(struct net_device *dev)
1692 {
1693     struct de4x5_private *lp = netdev_priv(dev);
1694     u_long iobase = dev->base_addr;
1695     int entry;
1696     s32 status;
1697
1698     for (entry = lp->tx_old; entry != lp->tx_new; entry = lp->tx_old) {
1699         status = (s32)le32_to_cpu(lp->tx_ring[entry].status);
1700         if (status < 0) {                     /* Buffer not sent yet */
1701             break;
1702         } else if (status != 0x7fffffff) {    /* Not setup frame */
1703             if (status & TD_ES) {             /* An error happened */
1704                 lp->stats.tx_errors++;
1705                 if (status & TD_NC) lp->stats.tx_carrier_errors++;
1706                 if (status & TD_LC) lp->stats.tx_window_errors++;
1707                 if (status & TD_UF) lp->stats.tx_fifo_errors++;
1708                 if (status & TD_EC) lp->pktStats.excessive_collisions++;
1709                 if (status & TD_DE) lp->stats.tx_aborted_errors++;
1710
1711                 if (TX_PKT_PENDING) {
1712                     outl(POLL_DEMAND, DE4X5_TPD);/* Restart a stalled TX */
1713                 }
1714             } else {                      /* Packet sent */
1715                 lp->stats.tx_packets++;
1716                 if (lp->tx_enable) lp->linkOK++;
1717             }
1718             /* Update the collision counter */
1719             lp->stats.collisions += ((status & TD_EC) ? 16 :
1720                                                       ((status & TD_CC) >> 3));
1721
1722             /* Free the buffer. */
1723             if (lp->tx_skb[entry] != NULL)
1724                 de4x5_free_tx_buff(lp, entry);
1725         }
1726
1727         /* Update all the pointers */
1728         lp->tx_old = (lp->tx_old + 1) % lp->txRingSize;
1729     }
1730
1731     /* Any resources available? */
1732     if (TX_BUFFS_AVAIL && netif_queue_stopped(dev)) {
1733         if (lp->interrupt)
1734             netif_wake_queue(dev);
1735         else
1736             netif_start_queue(dev);
1737     }
1738
1739     return 0;
1740 }
1741
1742 static void
1743 de4x5_ast(struct net_device *dev)
1744 {
1745         struct de4x5_private *lp = netdev_priv(dev);
1746         int next_tick = DE4X5_AUTOSENSE_MS;
1747         int dt;
1748
1749         if (lp->useSROM)
1750                 next_tick = srom_autoconf(dev);
1751         else if (lp->chipset == DC21140)
1752                 next_tick = dc21140m_autoconf(dev);
1753         else if (lp->chipset == DC21041)
1754                 next_tick = dc21041_autoconf(dev);
1755         else if (lp->chipset == DC21040)
1756                 next_tick = dc21040_autoconf(dev);
1757         lp->linkOK = 0;
1758
1759         dt = (next_tick * HZ) / 1000;
1760
1761         if (!dt)
1762                 dt = 1;
1763
1764         mod_timer(&lp->timer, jiffies + dt);
1765 }
1766
1767 static int
1768 de4x5_txur(struct net_device *dev)
1769 {
1770     struct de4x5_private *lp = netdev_priv(dev);
1771     u_long iobase = dev->base_addr;
1772     int omr;
1773
1774     omr = inl(DE4X5_OMR);
1775     if (!(omr & OMR_SF) || (lp->chipset==DC21041) || (lp->chipset==DC21040)) {
1776         omr &= ~(OMR_ST|OMR_SR);
1777         outl(omr, DE4X5_OMR);
1778         while (inl(DE4X5_STS) & STS_TS);
1779         if ((omr & OMR_TR) < OMR_TR) {
1780             omr += 0x4000;
1781         } else {
1782             omr |= OMR_SF;
1783         }
1784         outl(omr | OMR_ST | OMR_SR, DE4X5_OMR);
1785     }
1786
1787     return 0;
1788 }
1789
1790 static int
1791 de4x5_rx_ovfc(struct net_device *dev)
1792 {
1793     struct de4x5_private *lp = netdev_priv(dev);
1794     u_long iobase = dev->base_addr;
1795     int omr;
1796
1797     omr = inl(DE4X5_OMR);
1798     outl(omr & ~OMR_SR, DE4X5_OMR);
1799     while (inl(DE4X5_STS) & STS_RS);
1800
1801     for (; (s32)le32_to_cpu(lp->rx_ring[lp->rx_new].status)>=0;) {
1802         lp->rx_ring[lp->rx_new].status = cpu_to_le32(R_OWN);
1803         lp->rx_new = (lp->rx_new + 1) % lp->rxRingSize;
1804     }
1805
1806     outl(omr, DE4X5_OMR);
1807
1808     return 0;
1809 }
1810
1811 static int
1812 de4x5_close(struct net_device *dev)
1813 {
1814     struct de4x5_private *lp = netdev_priv(dev);
1815     u_long iobase = dev->base_addr;
1816     s32 imr, omr;
1817
1818     disable_ast(dev);
1819
1820     netif_stop_queue(dev);
1821
1822     if (de4x5_debug & DEBUG_CLOSE) {
1823         printk("%s: Shutting down ethercard, status was %8.8x.\n",
1824                dev->name, inl(DE4X5_STS));
1825     }
1826
1827     /*
1828     ** We stop the DE4X5 here... mask interrupts and stop TX & RX
1829     */
1830     DISABLE_IRQs;
1831     STOP_DE4X5;
1832
1833     /* Free the associated irq */
1834     free_irq(dev->irq, dev);
1835     lp->state = CLOSED;
1836
1837     /* Free any socket buffers */
1838     de4x5_free_rx_buffs(dev);
1839     de4x5_free_tx_buffs(dev);
1840
1841     /* Put the adapter to sleep to save power */
1842     yawn(dev, SLEEP);
1843
1844     return 0;
1845 }
1846
1847 static struct net_device_stats *
1848 de4x5_get_stats(struct net_device *dev)
1849 {
1850     struct de4x5_private *lp = netdev_priv(dev);
1851     u_long iobase = dev->base_addr;
1852
1853     lp->stats.rx_missed_errors = (int)(inl(DE4X5_MFC) & (MFC_OVFL | MFC_CNTR));
1854
1855     return &lp->stats;
1856 }
1857
1858 static void
1859 de4x5_local_stats(struct net_device *dev, char *buf, int pkt_len)
1860 {
1861     struct de4x5_private *lp = netdev_priv(dev);
1862     int i;
1863
1864     for (i=1; i<DE4X5_PKT_STAT_SZ-1; i++) {
1865         if (pkt_len < (i*DE4X5_PKT_BIN_SZ)) {
1866             lp->pktStats.bins[i]++;
1867             i = DE4X5_PKT_STAT_SZ;
1868         }
1869     }
1870     if (is_multicast_ether_addr(buf)) {
1871         if (is_broadcast_ether_addr(buf)) {
1872             lp->pktStats.broadcast++;
1873         } else {
1874             lp->pktStats.multicast++;
1875         }
1876     } else if (ether_addr_equal(buf, dev->dev_addr)) {
1877         lp->pktStats.unicast++;
1878     }
1879
1880     lp->pktStats.bins[0]++;       /* Duplicates stats.rx_packets */
1881     if (lp->pktStats.bins[0] == 0) { /* Reset counters */
1882         memset((char *)&lp->pktStats, 0, sizeof(lp->pktStats));
1883     }
1884 }
1885
1886 /*
1887 ** Removes the TD_IC flag from previous descriptor to improve TX performance.
1888 ** If the flag is changed on a descriptor that is being read by the hardware,
1889 ** I assume PCI transaction ordering will mean you are either successful or
1890 ** just miss asserting the change to the hardware. Anyway you're messing with
1891 ** a descriptor you don't own, but this shouldn't kill the chip provided
1892 ** the descriptor register is read only to the hardware.
1893 */
1894 static void
1895 load_packet(struct net_device *dev, char *buf, u32 flags, struct sk_buff *skb)
1896 {
1897     struct de4x5_private *lp = netdev_priv(dev);
1898     int entry = (lp->tx_new ? lp->tx_new-1 : lp->txRingSize-1);
1899     dma_addr_t buf_dma = dma_map_single(lp->gendev, buf, flags & TD_TBS1, DMA_TO_DEVICE);
1900
1901     lp->tx_ring[lp->tx_new].buf = cpu_to_le32(buf_dma);
1902     lp->tx_ring[lp->tx_new].des1 &= cpu_to_le32(TD_TER);
1903     lp->tx_ring[lp->tx_new].des1 |= cpu_to_le32(flags);
1904     lp->tx_skb[lp->tx_new] = skb;
1905     lp->tx_ring[entry].des1 &= cpu_to_le32(~TD_IC);
1906     barrier();
1907
1908     lp->tx_ring[lp->tx_new].status = cpu_to_le32(T_OWN);
1909     barrier();
1910 }
1911
1912 /*
1913 ** Set or clear the multicast filter for this adaptor.
1914 */
1915 static void
1916 set_multicast_list(struct net_device *dev)
1917 {
1918     struct de4x5_private *lp = netdev_priv(dev);
1919     u_long iobase = dev->base_addr;
1920
1921     /* First, double check that the adapter is open */
1922     if (lp->state == OPEN) {
1923         if (dev->flags & IFF_PROMISC) {         /* set promiscuous mode */
1924             u32 omr;
1925             omr = inl(DE4X5_OMR);
1926             omr |= OMR_PR;
1927             outl(omr, DE4X5_OMR);
1928         } else {
1929             SetMulticastFilter(dev);
1930             load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
1931                                                         SETUP_FRAME_LEN, (struct sk_buff *)1);
1932
1933             lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
1934             outl(POLL_DEMAND, DE4X5_TPD);       /* Start the TX */
1935             dev->trans_start = jiffies; /* prevent tx timeout */
1936         }
1937     }
1938 }
1939
1940 /*
1941 ** Calculate the hash code and update the logical address filter
1942 ** from a list of ethernet multicast addresses.
1943 ** Little endian crc one liner from Matt Thomas, DEC.
1944 */
1945 static void
1946 SetMulticastFilter(struct net_device *dev)
1947 {
1948     struct de4x5_private *lp = netdev_priv(dev);
1949     struct netdev_hw_addr *ha;
1950     u_long iobase = dev->base_addr;
1951     int i, bit, byte;
1952     u16 hashcode;
1953     u32 omr, crc;
1954     char *pa;
1955     unsigned char *addrs;
1956
1957     omr = inl(DE4X5_OMR);
1958     omr &= ~(OMR_PR | OMR_PM);
1959     pa = build_setup_frame(dev, ALL);        /* Build the basic frame */
1960
1961     if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 14)) {
1962         omr |= OMR_PM;                       /* Pass all multicasts */
1963     } else if (lp->setup_f == HASH_PERF) {   /* Hash Filtering */
1964         netdev_for_each_mc_addr(ha, dev) {
1965                 crc = ether_crc_le(ETH_ALEN, ha->addr);
1966                 hashcode = crc & HASH_BITS;  /* hashcode is 9 LSb of CRC */
1967
1968                 byte = hashcode >> 3;        /* bit[3-8] -> byte in filter */
1969                 bit = 1 << (hashcode & 0x07);/* bit[0-2] -> bit in byte */
1970
1971                 byte <<= 1;                  /* calc offset into setup frame */
1972                 if (byte & 0x02) {
1973                     byte -= 1;
1974                 }
1975                 lp->setup_frame[byte] |= bit;
1976         }
1977     } else {                                 /* Perfect filtering */
1978         netdev_for_each_mc_addr(ha, dev) {
1979             addrs = ha->addr;
1980             for (i=0; i<ETH_ALEN; i++) {
1981                 *(pa + (i&1)) = *addrs++;
1982                 if (i & 0x01) pa += 4;
1983             }
1984         }
1985     }
1986     outl(omr, DE4X5_OMR);
1987 }
1988
1989 #ifdef CONFIG_EISA
1990
1991 static u_char de4x5_irq[] = EISA_ALLOWED_IRQ_LIST;
1992
1993 static int __init de4x5_eisa_probe (struct device *gendev)
1994 {
1995         struct eisa_device *edev;
1996         u_long iobase;
1997         u_char irq, regval;
1998         u_short vendor;
1999         u32 cfid;
2000         int status, device;
2001         struct net_device *dev;
2002         struct de4x5_private *lp;
2003
2004         edev = to_eisa_device (gendev);
2005         iobase = edev->base_addr;
2006
2007         if (!request_region (iobase, DE4X5_EISA_TOTAL_SIZE, "de4x5"))
2008                 return -EBUSY;
2009
2010         if (!request_region (iobase + DE4X5_EISA_IO_PORTS,
2011                              DE4X5_EISA_TOTAL_SIZE, "de4x5")) {
2012                 status = -EBUSY;
2013                 goto release_reg_1;
2014         }
2015
2016         if (!(dev = alloc_etherdev (sizeof (struct de4x5_private)))) {
2017                 status = -ENOMEM;
2018                 goto release_reg_2;
2019         }
2020         lp = netdev_priv(dev);
2021
2022         cfid = (u32) inl(PCI_CFID);
2023         lp->cfrv = (u_short) inl(PCI_CFRV);
2024         device = (cfid >> 8) & 0x00ffff00;
2025         vendor = (u_short) cfid;
2026
2027         /* Read the EISA Configuration Registers */
2028         regval = inb(EISA_REG0) & (ER0_INTL | ER0_INTT);
2029 #ifdef CONFIG_ALPHA
2030         /* Looks like the Jensen firmware (rev 2.2) doesn't really
2031          * care about the EISA configuration, and thus doesn't
2032          * configure the PLX bridge properly. Oh well... Simply mimic
2033          * the EISA config file to sort it out. */
2034
2035         /* EISA REG1: Assert DecChip 21040 HW Reset */
2036         outb (ER1_IAM | 1, EISA_REG1);
2037         mdelay (1);
2038
2039         /* EISA REG1: Deassert DecChip 21040 HW Reset */
2040         outb (ER1_IAM, EISA_REG1);
2041         mdelay (1);
2042
2043         /* EISA REG3: R/W Burst Transfer Enable */
2044         outb (ER3_BWE | ER3_BRE, EISA_REG3);
2045
2046         /* 32_bit slave/master, Preempt Time=23 bclks, Unlatched Interrupt */
2047         outb (ER0_BSW | ER0_BMW | ER0_EPT | regval, EISA_REG0);
2048 #endif
2049         irq = de4x5_irq[(regval >> 1) & 0x03];
2050
2051         if (is_DC2114x) {
2052             device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
2053         }
2054         lp->chipset = device;
2055         lp->bus = EISA;
2056
2057         /* Write the PCI Configuration Registers */
2058         outl(PCI_COMMAND_IO | PCI_COMMAND_MASTER, PCI_CFCS);
2059         outl(0x00006000, PCI_CFLT);
2060         outl(iobase, PCI_CBIO);
2061
2062         DevicePresent(dev, EISA_APROM);
2063
2064         dev->irq = irq;
2065
2066         if (!(status = de4x5_hw_init (dev, iobase, gendev))) {
2067                 return 0;
2068         }
2069
2070         free_netdev (dev);
2071  release_reg_2:
2072         release_region (iobase + DE4X5_EISA_IO_PORTS, DE4X5_EISA_TOTAL_SIZE);
2073  release_reg_1:
2074         release_region (iobase, DE4X5_EISA_TOTAL_SIZE);
2075
2076         return status;
2077 }
2078
2079 static int de4x5_eisa_remove(struct device *device)
2080 {
2081         struct net_device *dev;
2082         u_long iobase;
2083
2084         dev = dev_get_drvdata(device);
2085         iobase = dev->base_addr;
2086
2087         unregister_netdev (dev);
2088         free_netdev (dev);
2089         release_region (iobase + DE4X5_EISA_IO_PORTS, DE4X5_EISA_TOTAL_SIZE);
2090         release_region (iobase, DE4X5_EISA_TOTAL_SIZE);
2091
2092         return 0;
2093 }
2094
2095 static struct eisa_device_id de4x5_eisa_ids[] = {
2096         { "DEC4250", 0 },       /* 0 is the board name index... */
2097         { "" }
2098 };
2099 MODULE_DEVICE_TABLE(eisa, de4x5_eisa_ids);
2100
2101 static struct eisa_driver de4x5_eisa_driver = {
2102         .id_table = de4x5_eisa_ids,
2103         .driver   = {
2104                 .name    = "de4x5",
2105                 .probe   = de4x5_eisa_probe,
2106                 .remove  = de4x5_eisa_remove,
2107         }
2108 };
2109 MODULE_DEVICE_TABLE(eisa, de4x5_eisa_ids);
2110 #endif
2111
2112 #ifdef CONFIG_PCI
2113
2114 /*
2115 ** This function searches the current bus (which is >0) for a DECchip with an
2116 ** SROM, so that in multiport cards that have one SROM shared between multiple
2117 ** DECchips, we can find the base SROM irrespective of the BIOS scan direction.
2118 ** For single port cards this is a time waster...
2119 */
2120 static void
2121 srom_search(struct net_device *dev, struct pci_dev *pdev)
2122 {
2123     u_char pb;
2124     u_short vendor, status;
2125     u_int irq = 0, device;
2126     u_long iobase = 0;                     /* Clear upper 32 bits in Alphas */
2127     int i, j;
2128     struct de4x5_private *lp = netdev_priv(dev);
2129     struct pci_dev *this_dev;
2130
2131     list_for_each_entry(this_dev, &pdev->bus->devices, bus_list) {
2132         vendor = this_dev->vendor;
2133         device = this_dev->device << 8;
2134         if (!(is_DC21040 || is_DC21041 || is_DC21140 || is_DC2114x)) continue;
2135
2136         /* Get the chip configuration revision register */
2137         pb = this_dev->bus->number;
2138
2139         /* Set the device number information */
2140         lp->device = PCI_SLOT(this_dev->devfn);
2141         lp->bus_num = pb;
2142
2143         /* Set the chipset information */
2144         if (is_DC2114x) {
2145             device = ((this_dev->revision & CFRV_RN) < DC2114x_BRK
2146                       ? DC21142 : DC21143);
2147         }
2148         lp->chipset = device;
2149
2150         /* Get the board I/O address (64 bits on sparc64) */
2151         iobase = pci_resource_start(this_dev, 0);
2152
2153         /* Fetch the IRQ to be used */
2154         irq = this_dev->irq;
2155         if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) continue;
2156
2157         /* Check if I/O accesses are enabled */
2158         pci_read_config_word(this_dev, PCI_COMMAND, &status);
2159         if (!(status & PCI_COMMAND_IO)) continue;
2160
2161         /* Search for a valid SROM attached to this DECchip */
2162         DevicePresent(dev, DE4X5_APROM);
2163         for (j=0, i=0; i<ETH_ALEN; i++) {
2164             j += (u_char) *((u_char *)&lp->srom + SROM_HWADD + i);
2165         }
2166         if (j != 0 && j != 6 * 0xff) {
2167             last.chipset = device;
2168             last.bus = pb;
2169             last.irq = irq;
2170             for (i=0; i<ETH_ALEN; i++) {
2171                 last.addr[i] = (u_char)*((u_char *)&lp->srom + SROM_HWADD + i);
2172             }
2173             return;
2174         }
2175     }
2176 }
2177
2178 /*
2179 ** PCI bus I/O device probe
2180 ** NB: PCI I/O accesses and Bus Mastering are enabled by the PCI BIOS, not
2181 ** the driver. Some PCI BIOS's, pre V2.1, need the slot + features to be
2182 ** enabled by the user first in the set up utility. Hence we just check for
2183 ** enabled features and silently ignore the card if they're not.
2184 **
2185 ** STOP PRESS: Some BIOS's __require__ the driver to enable the bus mastering
2186 ** bit. Here, check for I/O accesses and then set BM. If you put the card in
2187 ** a non BM slot, you're on your own (and complain to the PC vendor that your
2188 ** PC doesn't conform to the PCI standard)!
2189 **
2190 ** This function is only compatible with the *latest* 2.1.x kernels. For 2.0.x
2191 ** kernels use the V0.535[n] drivers.
2192 */
2193
2194 static int de4x5_pci_probe(struct pci_dev *pdev,
2195                            const struct pci_device_id *ent)
2196 {
2197         u_char pb, pbus = 0, dev_num, dnum = 0, timer;
2198         u_short vendor, status;
2199         u_int irq = 0, device;
2200         u_long iobase = 0;      /* Clear upper 32 bits in Alphas */
2201         int error;
2202         struct net_device *dev;
2203         struct de4x5_private *lp;
2204
2205         dev_num = PCI_SLOT(pdev->devfn);
2206         pb = pdev->bus->number;
2207
2208         if (io) { /* probe a single PCI device */
2209                 pbus = (u_short)(io >> 8);
2210                 dnum = (u_short)(io & 0xff);
2211                 if ((pbus != pb) || (dnum != dev_num))
2212                         return -ENODEV;
2213         }
2214
2215         vendor = pdev->vendor;
2216         device = pdev->device << 8;
2217         if (!(is_DC21040 || is_DC21041 || is_DC21140 || is_DC2114x))
2218                 return -ENODEV;
2219
2220         /* Ok, the device seems to be for us. */
2221         if ((error = pci_enable_device (pdev)))
2222                 return error;
2223
2224         if (!(dev = alloc_etherdev (sizeof (struct de4x5_private)))) {
2225                 error = -ENOMEM;
2226                 goto disable_dev;
2227         }
2228
2229         lp = netdev_priv(dev);
2230         lp->bus = PCI;
2231         lp->bus_num = 0;
2232
2233         /* Search for an SROM on this bus */
2234         if (lp->bus_num != pb) {
2235             lp->bus_num = pb;
2236             srom_search(dev, pdev);
2237         }
2238
2239         /* Get the chip configuration revision register */
2240         lp->cfrv = pdev->revision;
2241
2242         /* Set the device number information */
2243         lp->device = dev_num;
2244         lp->bus_num = pb;
2245
2246         /* Set the chipset information */
2247         if (is_DC2114x) {
2248             device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
2249         }
2250         lp->chipset = device;
2251
2252         /* Get the board I/O address (64 bits on sparc64) */
2253         iobase = pci_resource_start(pdev, 0);
2254
2255         /* Fetch the IRQ to be used */
2256         irq = pdev->irq;
2257         if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) {
2258                 error = -ENODEV;
2259                 goto free_dev;
2260         }
2261
2262         /* Check if I/O accesses and Bus Mastering are enabled */
2263         pci_read_config_word(pdev, PCI_COMMAND, &status);
2264 #ifdef __powerpc__
2265         if (!(status & PCI_COMMAND_IO)) {
2266             status |= PCI_COMMAND_IO;
2267             pci_write_config_word(pdev, PCI_COMMAND, status);
2268             pci_read_config_word(pdev, PCI_COMMAND, &status);
2269         }
2270 #endif /* __powerpc__ */
2271         if (!(status & PCI_COMMAND_IO)) {
2272                 error = -ENODEV;
2273                 goto free_dev;
2274         }
2275
2276         if (!(status & PCI_COMMAND_MASTER)) {
2277             status |= PCI_COMMAND_MASTER;
2278             pci_write_config_word(pdev, PCI_COMMAND, status);
2279             pci_read_config_word(pdev, PCI_COMMAND, &status);
2280         }
2281         if (!(status & PCI_COMMAND_MASTER)) {
2282                 error = -ENODEV;
2283                 goto free_dev;
2284         }
2285
2286         /* Check the latency timer for values >= 0x60 */
2287         pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &timer);
2288         if (timer < 0x60) {
2289             pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x60);
2290         }
2291
2292         DevicePresent(dev, DE4X5_APROM);
2293
2294         if (!request_region (iobase, DE4X5_PCI_TOTAL_SIZE, "de4x5")) {
2295                 error = -EBUSY;
2296                 goto free_dev;
2297         }
2298
2299         dev->irq = irq;
2300
2301         if ((error = de4x5_hw_init(dev, iobase, &pdev->dev))) {
2302                 goto release;
2303         }
2304
2305         return 0;
2306
2307  release:
2308         release_region (iobase, DE4X5_PCI_TOTAL_SIZE);
2309  free_dev:
2310         free_netdev (dev);
2311  disable_dev:
2312         pci_disable_device (pdev);
2313         return error;
2314 }
2315
2316 static void de4x5_pci_remove(struct pci_dev *pdev)
2317 {
2318         struct net_device *dev;
2319         u_long iobase;
2320
2321         dev = pci_get_drvdata(pdev);
2322         iobase = dev->base_addr;
2323
2324         unregister_netdev (dev);
2325         free_netdev (dev);
2326         release_region (iobase, DE4X5_PCI_TOTAL_SIZE);
2327         pci_disable_device (pdev);
2328 }
2329
2330 static const struct pci_device_id de4x5_pci_tbl[] = {
2331         { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP,
2332           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
2333         { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_PLUS,
2334           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
2335         { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST,
2336           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2 },
2337         { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142,
2338           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 3 },
2339         { },
2340 };
2341
2342 static struct pci_driver de4x5_pci_driver = {
2343         .name           = "de4x5",
2344         .id_table       = de4x5_pci_tbl,
2345         .probe          = de4x5_pci_probe,
2346         .remove         = de4x5_pci_remove,
2347 };
2348
2349 #endif
2350
2351 /*
2352 ** Auto configure the media here rather than setting the port at compile
2353 ** time. This routine is called by de4x5_init() and when a loss of media is
2354 ** detected (excessive collisions, loss of carrier, no carrier or link fail
2355 ** [TP] or no recent receive activity) to check whether the user has been
2356 ** sneaky and changed the port on us.
2357 */
2358 static int
2359 autoconf_media(struct net_device *dev)
2360 {
2361         struct de4x5_private *lp = netdev_priv(dev);
2362         u_long iobase = dev->base_addr;
2363
2364         disable_ast(dev);
2365
2366         lp->c_media = AUTO;                     /* Bogus last media */
2367         inl(DE4X5_MFC);                         /* Zero the lost frames counter */
2368         lp->media = INIT;
2369         lp->tcount = 0;
2370
2371         de4x5_ast(dev);
2372
2373         return lp->media;
2374 }
2375
2376 /*
2377 ** Autoconfigure the media when using the DC21040. AUI cannot be distinguished
2378 ** from BNC as the port has a jumper to set thick or thin wire. When set for
2379 ** BNC, the BNC port will indicate activity if it's not terminated correctly.
2380 ** The only way to test for that is to place a loopback packet onto the
2381 ** network and watch for errors. Since we're messing with the interrupt mask
2382 ** register, disable the board interrupts and do not allow any more packets to
2383 ** be queued to the hardware. Re-enable everything only when the media is
2384 ** found.
2385 ** I may have to "age out" locally queued packets so that the higher layer
2386 ** timeouts don't effectively duplicate packets on the network.
2387 */
2388 static int
2389 dc21040_autoconf(struct net_device *dev)
2390 {
2391     struct de4x5_private *lp = netdev_priv(dev);
2392     u_long iobase = dev->base_addr;
2393     int next_tick = DE4X5_AUTOSENSE_MS;
2394     s32 imr;
2395
2396     switch (lp->media) {
2397     case INIT:
2398         DISABLE_IRQs;
2399         lp->tx_enable = false;
2400         lp->timeout = -1;
2401         de4x5_save_skbs(dev);
2402         if ((lp->autosense == AUTO) || (lp->autosense == TP)) {
2403             lp->media = TP;
2404         } else if ((lp->autosense == BNC) || (lp->autosense == AUI) || (lp->autosense == BNC_AUI)) {
2405             lp->media = BNC_AUI;
2406         } else if (lp->autosense == EXT_SIA) {
2407             lp->media = EXT_SIA;
2408         } else {
2409             lp->media = NC;
2410         }
2411         lp->local_state = 0;
2412         next_tick = dc21040_autoconf(dev);
2413         break;
2414
2415     case TP:
2416         next_tick = dc21040_state(dev, 0x8f01, 0xffff, 0x0000, 3000, BNC_AUI,
2417                                                          TP_SUSPECT, test_tp);
2418         break;
2419
2420     case TP_SUSPECT:
2421         next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21040_autoconf);
2422         break;
2423
2424     case BNC:
2425     case AUI:
2426     case BNC_AUI:
2427         next_tick = dc21040_state(dev, 0x8f09, 0x0705, 0x0006, 3000, EXT_SIA,
2428                                                   BNC_AUI_SUSPECT, ping_media);
2429         break;
2430
2431     case BNC_AUI_SUSPECT:
2432         next_tick = de4x5_suspect_state(dev, 1000, BNC_AUI, ping_media, dc21040_autoconf);
2433         break;
2434
2435     case EXT_SIA:
2436         next_tick = dc21040_state(dev, 0x3041, 0x0000, 0x0006, 3000,
2437                                               NC, EXT_SIA_SUSPECT, ping_media);
2438         break;
2439
2440     case EXT_SIA_SUSPECT:
2441         next_tick = de4x5_suspect_state(dev, 1000, EXT_SIA, ping_media, dc21040_autoconf);
2442         break;
2443
2444     case NC:
2445         /* default to TP for all */
2446         reset_init_sia(dev, 0x8f01, 0xffff, 0x0000);
2447         if (lp->media != lp->c_media) {
2448             de4x5_dbg_media(dev);
2449             lp->c_media = lp->media;
2450         }
2451         lp->media = INIT;
2452         lp->tx_enable = false;
2453         break;
2454     }
2455
2456     return next_tick;
2457 }
2458
2459 static int
2460 dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeout,
2461               int next_state, int suspect_state,
2462               int (*fn)(struct net_device *, int))
2463 {
2464     struct de4x5_private *lp = netdev_priv(dev);
2465     int next_tick = DE4X5_AUTOSENSE_MS;
2466     int linkBad;
2467
2468     switch (lp->local_state) {
2469     case 0:
2470         reset_init_sia(dev, csr13, csr14, csr15);
2471         lp->local_state++;
2472         next_tick = 500;
2473         break;
2474
2475     case 1:
2476         if (!lp->tx_enable) {
2477             linkBad = fn(dev, timeout);
2478             if (linkBad < 0) {
2479                 next_tick = linkBad & ~TIMER_CB;
2480             } else {
2481                 if (linkBad && (lp->autosense == AUTO)) {
2482                     lp->local_state = 0;
2483                     lp->media = next_state;
2484                 } else {
2485                     de4x5_init_connection(dev);
2486                 }
2487             }
2488         } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2489             lp->media = suspect_state;
2490             next_tick = 3000;
2491         }
2492         break;
2493     }
2494
2495     return next_tick;
2496 }
2497
2498 static int
2499 de4x5_suspect_state(struct net_device *dev, int timeout, int prev_state,
2500                       int (*fn)(struct net_device *, int),
2501                       int (*asfn)(struct net_device *))
2502 {
2503     struct de4x5_private *lp = netdev_priv(dev);
2504     int next_tick = DE4X5_AUTOSENSE_MS;
2505     int linkBad;
2506
2507     switch (lp->local_state) {
2508     case 1:
2509         if (lp->linkOK) {
2510             lp->media = prev_state;
2511         } else {
2512             lp->local_state++;
2513             next_tick = asfn(dev);
2514         }
2515         break;
2516
2517     case 2:
2518         linkBad = fn(dev, timeout);
2519         if (linkBad < 0) {
2520             next_tick = linkBad & ~TIMER_CB;
2521         } else if (!linkBad) {
2522             lp->local_state--;
2523             lp->media = prev_state;
2524         } else {
2525             lp->media = INIT;
2526             lp->tcount++;
2527         }
2528     }
2529
2530     return next_tick;
2531 }
2532
2533 /*
2534 ** Autoconfigure the media when using the DC21041. AUI needs to be tested
2535 ** before BNC, because the BNC port will indicate activity if it's not
2536 ** terminated correctly. The only way to test for that is to place a loopback
2537 ** packet onto the network and watch for errors. Since we're messing with
2538 ** the interrupt mask register, disable the board interrupts and do not allow
2539 ** any more packets to be queued to the hardware. Re-enable everything only
2540 ** when the media is found.
2541 */
2542 static int
2543 dc21041_autoconf(struct net_device *dev)
2544 {
2545     struct de4x5_private *lp = netdev_priv(dev);
2546     u_long iobase = dev->base_addr;
2547     s32 sts, irqs, irq_mask, imr, omr;
2548     int next_tick = DE4X5_AUTOSENSE_MS;
2549
2550     switch (lp->media) {
2551     case INIT:
2552         DISABLE_IRQs;
2553         lp->tx_enable = false;
2554         lp->timeout = -1;
2555         de4x5_save_skbs(dev);          /* Save non transmitted skb's */
2556         if ((lp->autosense == AUTO) || (lp->autosense == TP_NW)) {
2557             lp->media = TP;            /* On chip auto negotiation is broken */
2558         } else if (lp->autosense == TP) {
2559             lp->media = TP;
2560         } else if (lp->autosense == BNC) {
2561             lp->media = BNC;
2562         } else if (lp->autosense == AUI) {
2563             lp->media = AUI;
2564         } else {
2565             lp->media = NC;
2566         }
2567         lp->local_state = 0;
2568         next_tick = dc21041_autoconf(dev);
2569         break;
2570
2571     case TP_NW:
2572         if (lp->timeout < 0) {
2573             omr = inl(DE4X5_OMR);/* Set up full duplex for the autonegotiate */
2574             outl(omr | OMR_FDX, DE4X5_OMR);
2575         }
2576         irqs = STS_LNF | STS_LNP;
2577         irq_mask = IMR_LFM | IMR_LPM;
2578         sts = test_media(dev, irqs, irq_mask, 0xef01, 0xffff, 0x0008, 2400);
2579         if (sts < 0) {
2580             next_tick = sts & ~TIMER_CB;
2581         } else {
2582             if (sts & STS_LNP) {
2583                 lp->media = ANS;
2584             } else {
2585                 lp->media = AUI;
2586             }
2587             next_tick = dc21041_autoconf(dev);
2588         }
2589         break;
2590
2591     case ANS:
2592         if (!lp->tx_enable) {
2593             irqs = STS_LNP;
2594             irq_mask = IMR_LPM;
2595             sts = test_ans(dev, irqs, irq_mask, 3000);
2596             if (sts < 0) {
2597                 next_tick = sts & ~TIMER_CB;
2598             } else {
2599                 if (!(sts & STS_LNP) && (lp->autosense == AUTO)) {
2600                     lp->media = TP;
2601                     next_tick = dc21041_autoconf(dev);
2602                 } else {
2603                     lp->local_state = 1;
2604                     de4x5_init_connection(dev);
2605                 }
2606             }
2607         } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2608             lp->media = ANS_SUSPECT;
2609             next_tick = 3000;
2610         }
2611         break;
2612
2613     case ANS_SUSPECT:
2614         next_tick = de4x5_suspect_state(dev, 1000, ANS, test_tp, dc21041_autoconf);
2615         break;
2616
2617     case TP:
2618         if (!lp->tx_enable) {
2619             if (lp->timeout < 0) {
2620                 omr = inl(DE4X5_OMR);          /* Set up half duplex for TP */
2621                 outl(omr & ~OMR_FDX, DE4X5_OMR);
2622             }
2623             irqs = STS_LNF | STS_LNP;
2624             irq_mask = IMR_LFM | IMR_LPM;
2625             sts = test_media(dev,irqs, irq_mask, 0xef01, 0xff3f, 0x0008, 2400);
2626             if (sts < 0) {
2627                 next_tick = sts & ~TIMER_CB;
2628             } else {
2629                 if (!(sts & STS_LNP) && (lp->autosense == AUTO)) {
2630                     if (inl(DE4X5_SISR) & SISR_NRA) {
2631                         lp->media = AUI;       /* Non selected port activity */
2632                     } else {
2633                         lp->media = BNC;
2634                     }
2635                     next_tick = dc21041_autoconf(dev);
2636                 } else {
2637                     lp->local_state = 1;
2638                     de4x5_init_connection(dev);
2639                 }
2640             }
2641         } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2642             lp->media = TP_SUSPECT;
2643             next_tick = 3000;
2644         }
2645         break;
2646
2647     case TP_SUSPECT:
2648         next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21041_autoconf);
2649         break;
2650
2651     case AUI:
2652         if (!lp->tx_enable) {
2653             if (lp->timeout < 0) {
2654                 omr = inl(DE4X5_OMR);          /* Set up half duplex for AUI */
2655                 outl(omr & ~OMR_FDX, DE4X5_OMR);
2656             }
2657             irqs = 0;
2658             irq_mask = 0;
2659             sts = test_media(dev,irqs, irq_mask, 0xef09, 0xf73d, 0x000e, 1000);
2660             if (sts < 0) {
2661                 next_tick = sts & ~TIMER_CB;
2662             } else {
2663                 if (!(inl(DE4X5_SISR) & SISR_SRA) && (lp->autosense == AUTO)) {
2664                     lp->media = BNC;
2665                     next_tick = dc21041_autoconf(dev);
2666                 } else {
2667                     lp->local_state = 1;
2668                     de4x5_init_connection(dev);
2669                 }
2670             }
2671         } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2672             lp->media = AUI_SUSPECT;
2673             next_tick = 3000;
2674         }
2675         break;
2676
2677     case AUI_SUSPECT:
2678         next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc21041_autoconf);
2679         break;
2680
2681     case BNC:
2682         switch (lp->local_state) {
2683         case 0:
2684             if (lp->timeout < 0) {
2685                 omr = inl(DE4X5_OMR);          /* Set up half duplex for BNC */
2686                 outl(omr & ~OMR_FDX, DE4X5_OMR);
2687             }
2688             irqs = 0;
2689             irq_mask = 0;
2690             sts = test_media(dev,irqs, irq_mask, 0xef09, 0xf73d, 0x0006, 1000);
2691             if (sts < 0) {
2692                 next_tick = sts & ~TIMER_CB;
2693             } else {
2694                 lp->local_state++;             /* Ensure media connected */
2695                 next_tick = dc21041_autoconf(dev);
2696             }
2697             break;
2698
2699         case 1:
2700             if (!lp->tx_enable) {
2701                 if ((sts = ping_media(dev, 3000)) < 0) {
2702                     next_tick = sts & ~TIMER_CB;
2703                 } else {
2704                     if (sts) {
2705                         lp->local_state = 0;
2706                         lp->media = NC;
2707                     } else {
2708                         de4x5_init_connection(dev);
2709                     }
2710                 }
2711             } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2712                 lp->media = BNC_SUSPECT;
2713                 next_tick = 3000;
2714             }
2715             break;
2716         }
2717         break;
2718
2719     case BNC_SUSPECT:
2720         next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc21041_autoconf);
2721         break;
2722
2723     case NC:
2724         omr = inl(DE4X5_OMR);    /* Set up full duplex for the autonegotiate */
2725         outl(omr | OMR_FDX, DE4X5_OMR);
2726         reset_init_sia(dev, 0xef01, 0xffff, 0x0008);/* Initialise the SIA */
2727         if (lp->media != lp->c_media) {
2728             de4x5_dbg_media(dev);
2729             lp->c_media = lp->media;
2730         }
2731         lp->media = INIT;
2732         lp->tx_enable = false;
2733         break;
2734     }
2735
2736     return next_tick;
2737 }
2738
2739 /*
2740 ** Some autonegotiation chips are broken in that they do not return the
2741 ** acknowledge bit (anlpa & MII_ANLPA_ACK) in the link partner advertisement
2742 ** register, except at the first power up negotiation.
2743 */
2744 static int
2745 dc21140m_autoconf(struct net_device *dev)
2746 {
2747     struct de4x5_private *lp = netdev_priv(dev);
2748     int ana, anlpa, cap, cr, slnk, sr;
2749     int next_tick = DE4X5_AUTOSENSE_MS;
2750     u_long imr, omr, iobase = dev->base_addr;
2751
2752     switch(lp->media) {
2753     case INIT:
2754         if (lp->timeout < 0) {
2755             DISABLE_IRQs;
2756             lp->tx_enable = false;
2757             lp->linkOK = 0;
2758             de4x5_save_skbs(dev);          /* Save non transmitted skb's */
2759         }
2760         if ((next_tick = de4x5_reset_phy(dev)) < 0) {
2761             next_tick &= ~TIMER_CB;
2762         } else {
2763             if (lp->useSROM) {
2764                 if (srom_map_media(dev) < 0) {
2765                     lp->tcount++;
2766                     return next_tick;
2767                 }
2768                 srom_exec(dev, lp->phy[lp->active].gep);
2769                 if (lp->infoblock_media == ANS) {
2770                     ana = lp->phy[lp->active].ana | MII_ANA_CSMA;
2771                     mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2772                 }
2773             } else {
2774                 lp->tmp = MII_SR_ASSC;     /* Fake out the MII speed set */
2775                 SET_10Mb;
2776                 if (lp->autosense == _100Mb) {
2777                     lp->media = _100Mb;
2778                 } else if (lp->autosense == _10Mb) {
2779                     lp->media = _10Mb;
2780                 } else if ((lp->autosense == AUTO) &&
2781                                     ((sr=is_anc_capable(dev)) & MII_SR_ANC)) {
2782                     ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA);
2783                     ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM);
2784                     mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2785                     lp->media = ANS;
2786                 } else if (lp->autosense == AUTO) {
2787                     lp->media = SPD_DET;
2788                 } else if (is_spd_100(dev) && is_100_up(dev)) {
2789                     lp->media = _100Mb;
2790                 } else {
2791                     lp->media = NC;
2792                 }
2793             }
2794             lp->local_state = 0;
2795             next_tick = dc21140m_autoconf(dev);
2796         }
2797         break;
2798
2799     case ANS:
2800         switch (lp->local_state) {
2801         case 0:
2802             if (lp->timeout < 0) {
2803                 mii_wr(MII_CR_ASSE | MII_CR_RAN, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
2804             }
2805             cr = test_mii_reg(dev, MII_CR, MII_CR_RAN, false, 500);
2806             if (cr < 0) {
2807                 next_tick = cr & ~TIMER_CB;
2808             } else {
2809                 if (cr) {
2810                     lp->local_state = 0;
2811                     lp->media = SPD_DET;
2812                 } else {
2813                     lp->local_state++;
2814                 }
2815                 next_tick = dc21140m_autoconf(dev);
2816             }
2817             break;
2818
2819         case 1:
2820             if ((sr=test_mii_reg(dev, MII_SR, MII_SR_ASSC, true, 2000)) < 0) {
2821                 next_tick = sr & ~TIMER_CB;
2822             } else {
2823                 lp->media = SPD_DET;
2824                 lp->local_state = 0;
2825                 if (sr) {                         /* Success! */
2826                     lp->tmp = MII_SR_ASSC;
2827                     anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII);
2828                     ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2829                     if (!(anlpa & MII_ANLPA_RF) &&
2830                          (cap = anlpa & MII_ANLPA_TAF & ana)) {
2831                         if (cap & MII_ANA_100M) {
2832                             lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) != 0;
2833                             lp->media = _100Mb;
2834                         } else if (cap & MII_ANA_10M) {
2835                             lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_10M) != 0;
2836
2837                             lp->media = _10Mb;
2838                         }
2839                     }
2840                 }                       /* Auto Negotiation failed to finish */
2841                 next_tick = dc21140m_autoconf(dev);
2842             }                           /* Auto Negotiation failed to start */
2843             break;
2844         }
2845         break;
2846
2847     case SPD_DET:                              /* Choose 10Mb/s or 100Mb/s */
2848         if (lp->timeout < 0) {
2849             lp->tmp = (lp->phy[lp->active].id ? MII_SR_LKS :
2850                                                   (~gep_rd(dev) & GEP_LNP));
2851             SET_100Mb_PDET;
2852         }
2853         if ((slnk = test_for_100Mb(dev, 6500)) < 0) {
2854             next_tick = slnk & ~TIMER_CB;
2855         } else {
2856             if (is_spd_100(dev) && is_100_up(dev)) {
2857                 lp->media = _100Mb;
2858             } else if ((!is_spd_100(dev) && (is_10_up(dev) & lp->tmp))) {
2859                 lp->media = _10Mb;
2860             } else {
2861                 lp->media = NC;
2862             }
2863             next_tick = dc21140m_autoconf(dev);
2864         }
2865         break;
2866
2867     case _100Mb:                               /* Set 100Mb/s */
2868         next_tick = 3000;
2869         if (!lp->tx_enable) {
2870             SET_100Mb;
2871             de4x5_init_connection(dev);
2872         } else {
2873             if (!lp->linkOK && (lp->autosense == AUTO)) {
2874                 if (!is_100_up(dev) || (!lp->useSROM && !is_spd_100(dev))) {
2875                     lp->media = INIT;
2876                     lp->tcount++;
2877                     next_tick = DE4X5_AUTOSENSE_MS;
2878                 }
2879             }
2880         }
2881         break;
2882
2883     case BNC:
2884     case AUI:
2885     case _10Mb:                                /* Set 10Mb/s */
2886         next_tick = 3000;
2887         if (!lp->tx_enable) {
2888             SET_10Mb;
2889             de4x5_init_connection(dev);
2890         } else {
2891             if (!lp->linkOK && (lp->autosense == AUTO)) {
2892                 if (!is_10_up(dev) || (!lp->useSROM && is_spd_100(dev))) {
2893                     lp->media = INIT;
2894                     lp->tcount++;
2895                     next_tick = DE4X5_AUTOSENSE_MS;
2896                 }
2897             }
2898         }
2899         break;
2900
2901     case NC:
2902         if (lp->media != lp->c_media) {
2903             de4x5_dbg_media(dev);
2904             lp->c_media = lp->media;
2905         }
2906         lp->media = INIT;
2907         lp->tx_enable = false;
2908         break;
2909     }
2910
2911     return next_tick;
2912 }
2913
2914 /*
2915 ** This routine may be merged into dc21140m_autoconf() sometime as I'm
2916 ** changing how I figure out the media - but trying to keep it backwards
2917 ** compatible with the de500-xa and de500-aa.
2918 ** Whether it's BNC, AUI, SYM or MII is sorted out in the infoblock
2919 ** functions and set during de4x5_mac_port() and/or de4x5_reset_phy().
2920 ** This routine just has to figure out whether 10Mb/s or 100Mb/s is
2921 ** active.
2922 ** When autonegotiation is working, the ANS part searches the SROM for
2923 ** the highest common speed (TP) link that both can run and if that can
2924 ** be full duplex. That infoblock is executed and then the link speed set.
2925 **
2926 ** Only _10Mb and _100Mb are tested here.
2927 */
2928 static int
2929 dc2114x_autoconf(struct net_device *dev)
2930 {
2931     struct de4x5_private *lp = netdev_priv(dev);
2932     u_long iobase = dev->base_addr;
2933     s32 cr, anlpa, ana, cap, irqs, irq_mask, imr, omr, slnk, sr, sts;
2934     int next_tick = DE4X5_AUTOSENSE_MS;
2935
2936     switch (lp->media) {
2937     case INIT:
2938         if (lp->timeout < 0) {
2939             DISABLE_IRQs;
2940             lp->tx_enable = false;
2941             lp->linkOK = 0;
2942             lp->timeout = -1;
2943             de4x5_save_skbs(dev);            /* Save non transmitted skb's */
2944             if (lp->params.autosense & ~AUTO) {
2945                 srom_map_media(dev);         /* Fixed media requested      */
2946                 if (lp->media != lp->params.autosense) {
2947                     lp->tcount++;
2948                     lp->media = INIT;
2949                     return next_tick;
2950                 }
2951                 lp->media = INIT;
2952             }
2953         }
2954         if ((next_tick = de4x5_reset_phy(dev)) < 0) {
2955             next_tick &= ~TIMER_CB;
2956         } else {
2957             if (lp->autosense == _100Mb) {
2958                 lp->media = _100Mb;
2959             } else if (lp->autosense == _10Mb) {
2960                 lp->media = _10Mb;
2961             } else if (lp->autosense == TP) {
2962                 lp->media = TP;
2963             } else if (lp->autosense == BNC) {
2964                 lp->media = BNC;
2965             } else if (lp->autosense == AUI) {
2966                 lp->media = AUI;
2967             } else {
2968                 lp->media = SPD_DET;
2969                 if ((lp->infoblock_media == ANS) &&
2970                                     ((sr=is_anc_capable(dev)) & MII_SR_ANC)) {
2971                     ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA);
2972                     ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM);
2973                     mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2974                     lp->media = ANS;
2975                 }
2976             }
2977             lp->local_state = 0;
2978             next_tick = dc2114x_autoconf(dev);
2979         }
2980         break;
2981
2982     case ANS:
2983         switch (lp->local_state) {
2984         case 0:
2985             if (lp->timeout < 0) {
2986                 mii_wr(MII_CR_ASSE | MII_CR_RAN, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
2987             }
2988             cr = test_mii_reg(dev, MII_CR, MII_CR_RAN, false, 500);
2989             if (cr < 0) {
2990                 next_tick = cr & ~TIMER_CB;
2991             } else {
2992                 if (cr) {
2993                     lp->local_state = 0;
2994                     lp->media = SPD_DET;
2995                 } else {
2996                     lp->local_state++;
2997                 }
2998                 next_tick = dc2114x_autoconf(dev);
2999             }
3000             break;
3001
3002         case 1:
3003             sr = test_mii_reg(dev, MII_SR, MII_SR_ASSC, true, 2000);
3004             if (sr < 0) {
3005                 next_tick = sr & ~TIMER_CB;
3006             } else {
3007                 lp->media = SPD_DET;
3008                 lp->local_state = 0;
3009                 if (sr) {                         /* Success! */
3010                     lp->tmp = MII_SR_ASSC;
3011                     anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII);
3012                     ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
3013                     if (!(anlpa & MII_ANLPA_RF) &&
3014                          (cap = anlpa & MII_ANLPA_TAF & ana)) {
3015                         if (cap & MII_ANA_100M) {
3016                             lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) != 0;
3017                             lp->media = _100Mb;
3018                         } else if (cap & MII_ANA_10M) {
3019                             lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_10M) != 0;
3020                             lp->media = _10Mb;
3021                         }
3022                     }
3023                 }                       /* Auto Negotiation failed to finish */
3024                 next_tick = dc2114x_autoconf(dev);
3025             }                           /* Auto Negotiation failed to start  */
3026             break;
3027         }
3028         break;
3029
3030     case AUI:
3031         if (!lp->tx_enable) {
3032             if (lp->timeout < 0) {
3033                 omr = inl(DE4X5_OMR);   /* Set up half duplex for AUI        */
3034                 outl(omr & ~OMR_FDX, DE4X5_OMR);
3035             }
3036             irqs = 0;
3037             irq_mask = 0;
3038             sts = test_media(dev,irqs, irq_mask, 0, 0, 0, 1000);
3039             if (sts < 0) {
3040                 next_tick = sts & ~TIMER_CB;
3041             } else {
3042                 if (!(inl(DE4X5_SISR) & SISR_SRA) && (lp->autosense == AUTO)) {
3043                     lp->media = BNC;
3044                     next_tick = dc2114x_autoconf(dev);
3045                 } else {
3046                     lp->local_state = 1;
3047                     de4x5_init_connection(dev);
3048                 }
3049             }
3050         } else if (!lp->linkOK && (lp->autosense == AUTO)) {
3051             lp->media = AUI_SUSPECT;
3052             next_tick = 3000;
3053         }
3054         break;
3055
3056     case AUI_SUSPECT:
3057         next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc2114x_autoconf);
3058         break;
3059
3060     case BNC:
3061         switch (lp->local_state) {
3062         case 0:
3063             if (lp->timeout < 0) {
3064                 omr = inl(DE4X5_OMR);          /* Set up half duplex for BNC */
3065                 outl(omr & ~OMR_FDX, DE4X5_OMR);
3066             }
3067             irqs = 0;
3068             irq_mask = 0;
3069             sts = test_media(dev,irqs, irq_mask, 0, 0, 0, 1000);
3070             if (sts < 0) {
3071                 next_tick = sts & ~TIMER_CB;
3072             } else {
3073                 lp->local_state++;             /* Ensure media connected */
3074                 next_tick = dc2114x_autoconf(dev);
3075             }
3076             break;
3077
3078         case 1:
3079             if (!lp->tx_enable) {
3080                 if ((sts = ping_media(dev, 3000)) < 0) {
3081                     next_tick = sts & ~TIMER_CB;
3082                 } else {
3083                     if (sts) {
3084                         lp->local_state = 0;
3085                         lp->tcount++;
3086                         lp->media = INIT;
3087                     } else {
3088                         de4x5_init_connection(dev);
3089                     }
3090                 }
3091             } else if (!lp->linkOK && (lp->autosense == AUTO)) {
3092                 lp->media = BNC_SUSPECT;
3093                 next_tick = 3000;
3094             }
3095             break;
3096         }
3097         break;
3098
3099     case BNC_SUSPECT:
3100         next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc2114x_autoconf);
3101         break;
3102
3103     case SPD_DET:                              /* Choose 10Mb/s or 100Mb/s */
3104           if (srom_map_media(dev) < 0) {
3105               lp->tcount++;
3106               lp->media = INIT;
3107               return next_tick;
3108           }
3109           if (lp->media == _100Mb) {
3110               if ((slnk = test_for_100Mb(dev, 6500)) < 0) {
3111                   lp->media = SPD_DET;
3112                   return slnk & ~TIMER_CB;
3113               }
3114           } else {
3115               if (wait_for_link(dev) < 0) {
3116                   lp->media = SPD_DET;
3117                   return PDET_LINK_WAIT;
3118               }
3119           }
3120           if (lp->media == ANS) {           /* Do MII parallel detection */
3121               if (is_spd_100(dev)) {
3122                   lp->media = _100Mb;
3123               } else {
3124                   lp->media = _10Mb;
3125               }
3126               next_tick = dc2114x_autoconf(dev);
3127           } else if (((lp->media == _100Mb) && is_100_up(dev)) ||
3128                      (((lp->media == _10Mb) || (lp->media == TP) ||
3129                        (lp->media == BNC)   || (lp->media == AUI)) &&
3130                       is_10_up(dev))) {
3131               next_tick = dc2114x_autoconf(dev);
3132           } else {
3133               lp->tcount++;
3134               lp->media = INIT;
3135           }
3136           break;
3137
3138     case _10Mb:
3139         next_tick = 3000;
3140         if (!lp->tx_enable) {
3141             SET_10Mb;
3142             de4x5_init_connection(dev);
3143         } else {
3144             if (!lp->linkOK && (lp->autosense == AUTO)) {
3145                 if (!is_10_up(dev) || (!lp->useSROM && is_spd_100(dev))) {
3146                     lp->media = INIT;
3147                     lp->tcount++;
3148                     next_tick = DE4X5_AUTOSENSE_MS;
3149                 }
3150             }
3151         }
3152         break;
3153
3154     case _100Mb:
3155         next_tick = 3000;
3156         if (!lp->tx_enable) {
3157             SET_100Mb;
3158             de4x5_init_connection(dev);
3159         } else {
3160             if (!lp->linkOK && (lp->autosense == AUTO)) {
3161                 if (!is_100_up(dev) || (!lp->useSROM && !is_spd_100(dev))) {
3162                     lp->media = INIT;
3163                     lp->tcount++;
3164                     next_tick = DE4X5_AUTOSENSE_MS;
3165                 }
3166             }
3167         }
3168         break;
3169
3170     default:
3171         lp->tcount++;
3172 printk("Huh?: media:%02x\n", lp->media);
3173         lp->media = INIT;
3174         break;
3175     }
3176
3177     return next_tick;
3178 }
3179
3180 static int
3181 srom_autoconf(struct net_device *dev)
3182 {
3183     struct de4x5_private *lp = netdev_priv(dev);
3184
3185     return lp->infoleaf_fn(dev);
3186 }
3187
3188 /*
3189 ** This mapping keeps the original media codes and FDX flag unchanged.
3190 ** While it isn't strictly necessary, it helps me for the moment...
3191 ** The early return avoids a media state / SROM media space clash.
3192 */
3193 static int
3194 srom_map_media(struct net_device *dev)
3195 {
3196     struct de4x5_private *lp = netdev_priv(dev);
3197
3198     lp->fdx = false;
3199     if (lp->infoblock_media == lp->media)
3200       return 0;
3201
3202     switch(lp->infoblock_media) {
3203       case SROM_10BASETF:
3204         if (!lp->params.fdx) return -1;
3205         lp->fdx = true;
3206       case SROM_10BASET:
3207         if (lp->params.fdx && !lp->fdx) return -1;
3208         if ((lp->chipset == DC21140) || ((lp->chipset & ~0x00ff) == DC2114x)) {
3209             lp->media = _10Mb;
3210         } else {
3211             lp->media = TP;
3212         }
3213         break;
3214
3215       case SROM_10BASE2:
3216         lp->media = BNC;
3217         break;
3218
3219       case SROM_10BASE5:
3220         lp->media = AUI;
3221         break;
3222
3223       case SROM_100BASETF:
3224         if (!lp->params.fdx) return -1;
3225         lp->fdx = true;
3226       case SROM_100BASET:
3227         if (lp->params.fdx && !lp->fdx) return -1;
3228         lp->media = _100Mb;
3229         break;
3230
3231       case SROM_100BASET4:
3232         lp->media = _100Mb;
3233         break;
3234
3235       case SROM_100BASEFF:
3236         if (!lp->params.fdx) return -1;
3237         lp->fdx = true;
3238       case SROM_100BASEF:
3239         if (lp->params.fdx && !lp->fdx) return -1;
3240         lp->media = _100Mb;
3241         break;
3242
3243       case ANS:
3244         lp->media = ANS;
3245         lp->fdx = lp->params.fdx;
3246         break;
3247
3248       default:
3249         printk("%s: Bad media code [%d] detected in SROM!\n", dev->name,
3250                                                           lp->infoblock_media);
3251         return -1;
3252     }
3253
3254     return 0;
3255 }
3256
3257 static void
3258 de4x5_init_connection(struct net_device *dev)
3259 {
3260     struct de4x5_private *lp = netdev_priv(dev);
3261     u_long iobase = dev->base_addr;
3262     u_long flags = 0;
3263
3264     if (lp->media != lp->c_media) {
3265         de4x5_dbg_media(dev);
3266         lp->c_media = lp->media;          /* Stop scrolling media messages */
3267     }
3268
3269     spin_lock_irqsave(&lp->lock, flags);
3270     de4x5_rst_desc_ring(dev);
3271     de4x5_setup_intr(dev);
3272     lp->tx_enable = true;
3273     spin_unlock_irqrestore(&lp->lock, flags);
3274     outl(POLL_DEMAND, DE4X5_TPD);
3275
3276     netif_wake_queue(dev);
3277 }
3278
3279 /*
3280 ** General PHY reset function. Some MII devices don't reset correctly
3281 ** since their MII address pins can float at voltages that are dependent
3282 ** on the signal pin use. Do a double reset to ensure a reset.
3283 */
3284 static int
3285 de4x5_reset_phy(struct net_device *dev)
3286 {
3287     struct de4x5_private *lp = netdev_priv(dev);
3288     u_long iobase = dev->base_addr;
3289     int next_tick = 0;
3290
3291     if ((lp->useSROM) || (lp->phy[lp->active].id)) {
3292         if (lp->timeout < 0) {
3293             if (lp->useSROM) {
3294                 if (lp->phy[lp->active].rst) {
3295                     srom_exec(dev, lp->phy[lp->active].rst);
3296                     srom_exec(dev, lp->phy[lp->active].rst);
3297                 } else if (lp->rst) {          /* Type 5 infoblock reset */
3298                     srom_exec(dev, lp->rst);
3299                     srom_exec(dev, lp->rst);
3300                 }
3301             } else {
3302                 PHY_HARD_RESET;
3303             }
3304             if (lp->useMII) {
3305                 mii_wr(MII_CR_RST, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
3306             }
3307         }
3308         if (lp->useMII) {
3309             next_tick = test_mii_reg(dev, MII_CR, MII_CR_RST, false, 500);
3310         }
3311     } else if (lp->chipset == DC21140) {
3312         PHY_HARD_RESET;
3313     }
3314
3315     return next_tick;
3316 }
3317
3318 static int
3319 test_media(struct net_device *dev, s32 irqs, s32 irq_mask, s32 csr13, s32 csr14, s32 csr15, s32 msec)
3320 {
3321     struct de4x5_private *lp = netdev_priv(dev);
3322     u_long iobase = dev->base_addr;
3323     s32 sts, csr12;
3324
3325     if (lp->timeout < 0) {
3326         lp->timeout = msec/100;
3327         if (!lp->useSROM) {      /* Already done if by SROM, else dc2104[01] */
3328             reset_init_sia(dev, csr13, csr14, csr15);
3329         }
3330
3331         /* set up the interrupt mask */
3332         outl(irq_mask, DE4X5_IMR);
3333
3334         /* clear all pending interrupts */
3335         sts = inl(DE4X5_STS);
3336         outl(sts, DE4X5_STS);
3337
3338         /* clear csr12 NRA and SRA bits */
3339         if ((lp->chipset == DC21041) || lp->useSROM) {
3340             csr12 = inl(DE4X5_SISR);
3341             outl(csr12, DE4X5_SISR);
3342         }
3343     }
3344
3345     sts = inl(DE4X5_STS) & ~TIMER_CB;
3346
3347     if (!(sts & irqs) && --lp->timeout) {
3348         sts = 100 | TIMER_CB;
3349     } else {
3350         lp->timeout = -1;
3351     }
3352
3353     return sts;
3354 }
3355
3356 static int
3357 test_tp(struct net_device *dev, s32 msec)
3358 {
3359     struct de4x5_private *lp = netdev_priv(dev);
3360     u_long iobase = dev->base_addr;
3361     int sisr;
3362
3363     if (lp->timeout < 0) {
3364         lp->timeout = msec/100;
3365     }
3366
3367     sisr = (inl(DE4X5_SISR) & ~TIMER_CB) & (SISR_LKF | SISR_NCR);
3368
3369     if (sisr && --lp->timeout) {
3370         sisr = 100 | TIMER_CB;
3371     } else {
3372         lp->timeout = -1;
3373     }
3374
3375     return sisr;
3376 }
3377
3378 /*
3379 ** Samples the 100Mb Link State Signal. The sample interval is important
3380 ** because too fast a rate can give erroneous results and confuse the
3381 ** speed sense algorithm.
3382 */
3383 #define SAMPLE_INTERVAL 500  /* ms */
3384 #define SAMPLE_DELAY    2000 /* ms */
3385 static int
3386 test_for_100Mb(struct net_device *dev, int msec)
3387 {
3388     struct de4x5_private *lp = netdev_priv(dev);
3389     int gep = 0, ret = ((lp->chipset & ~0x00ff)==DC2114x? -1 :GEP_SLNK);
3390
3391     if (lp->timeout < 0) {
3392         if ((msec/SAMPLE_INTERVAL) <= 0) return 0;
3393         if (msec > SAMPLE_DELAY) {
3394             lp->timeout = (msec - SAMPLE_DELAY)/SAMPLE_INTERVAL;
3395             gep = SAMPLE_DELAY | TIMER_CB;
3396             return gep;
3397         } else {
3398             lp->timeout = msec/SAMPLE_INTERVAL;
3399         }
3400     }
3401
3402     if (lp->phy[lp->active].id || lp->useSROM) {
3403         gep = is_100_up(dev) | is_spd_100(dev);
3404     } else {
3405         gep = (~gep_rd(dev) & (GEP_SLNK | GEP_LNP));
3406     }
3407     if (!(gep & ret) && --lp->timeout) {
3408         gep = SAMPLE_INTERVAL | TIMER_CB;
3409     } else {
3410         lp->timeout = -1;
3411     }
3412
3413     return gep;
3414 }
3415
3416 static int
3417 wait_for_link(struct net_device *dev)
3418 {
3419     struct de4x5_private *lp = netdev_priv(dev);
3420
3421     if (lp->timeout < 0) {
3422         lp->timeout = 1;
3423     }
3424
3425     if (lp->timeout--) {
3426         return TIMER_CB;
3427     } else {
3428         lp->timeout = -1;
3429     }
3430
3431     return 0;
3432 }
3433
3434 /*
3435 **
3436 **
3437 */
3438 static int
3439 test_mii_reg(struct net_device *dev, int reg, int mask, bool pol, long msec)
3440 {
3441     struct de4x5_private *lp = netdev_priv(dev);
3442     int test;
3443     u_long iobase = dev->base_addr;
3444
3445     if (lp->timeout < 0) {
3446         lp->timeout = msec/100;
3447     }
3448
3449     reg = mii_rd((u_char)reg, lp->phy[lp->active].addr, DE4X5_MII) & mask;
3450     test = (reg ^ (pol ? ~0 : 0)) & mask;
3451
3452     if (test && --lp->timeout) {
3453         reg = 100 | TIMER_CB;
3454     } else {
3455         lp->timeout = -1;
3456     }
3457
3458     return reg;
3459 }
3460
3461 static int
3462 is_spd_100(struct net_device *dev)
3463 {
3464     struct de4x5_private *lp = netdev_priv(dev);
3465     u_long iobase = dev->base_addr;
3466     int spd;
3467
3468     if (lp->useMII) {
3469         spd = mii_rd(lp->phy[lp->active].spd.reg, lp->phy[lp->active].addr, DE4X5_MII);
3470         spd = ~(spd ^ lp->phy[lp->active].spd.value);
3471         spd &= lp->phy[lp->active].spd.mask;
3472     } else if (!lp->useSROM) {                      /* de500-xa */
3473         spd = ((~gep_rd(dev)) & GEP_SLNK);
3474     } else {
3475         if ((lp->ibn == 2) || !lp->asBitValid)
3476             return (lp->chipset == DC21143) ? (~inl(DE4X5_SISR)&SISR_LS100) : 0;
3477
3478         spd = (lp->asBitValid & (lp->asPolarity ^ (gep_rd(dev) & lp->asBit))) |
3479                   (lp->linkOK & ~lp->asBitValid);
3480     }
3481
3482     return spd;
3483 }
3484
3485 static int
3486 is_100_up(struct net_device *dev)
3487 {
3488     struct de4x5_private *lp = netdev_priv(dev);
3489     u_long iobase = dev->base_addr;
3490
3491     if (lp->useMII) {
3492         /* Double read for sticky bits & temporary drops */
3493         mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3494         return mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII) & MII_SR_LKS;
3495     } else if (!lp->useSROM) {                       /* de500-xa */
3496         return (~gep_rd(dev)) & GEP_SLNK;
3497     } else {
3498         if ((lp->ibn == 2) || !lp->asBitValid)
3499             return (lp->chipset == DC21143) ? (~inl(DE4X5_SISR)&SISR_LS100) : 0;
3500
3501         return (lp->asBitValid&(lp->asPolarity^(gep_rd(dev)&lp->asBit))) |
3502                 (lp->linkOK & ~lp->asBitValid);
3503     }
3504 }
3505
3506 static int
3507 is_10_up(struct net_device *dev)
3508 {
3509     struct de4x5_private *lp = netdev_priv(dev);
3510     u_long iobase = dev->base_addr;
3511
3512     if (lp->useMII) {
3513         /* Double read for sticky bits & temporary drops */
3514         mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3515         return mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII) & MII_SR_LKS;
3516     } else if (!lp->useSROM) {                       /* de500-xa */
3517         return (~gep_rd(dev)) & GEP_LNP;
3518     } else {
3519         if ((lp->ibn == 2) || !lp->asBitValid)
3520             return ((lp->chipset & ~0x00ff) == DC2114x) ?
3521                     (~inl(DE4X5_SISR)&SISR_LS10):
3522                     0;
3523
3524         return  (lp->asBitValid&(lp->asPolarity^(gep_rd(dev)&lp->asBit))) |
3525                 (lp->linkOK & ~lp->asBitValid);
3526     }
3527 }
3528
3529 static int
3530 is_anc_capable(struct net_device *dev)
3531 {
3532     struct de4x5_private *lp = netdev_priv(dev);
3533     u_long iobase = dev->base_addr;
3534
3535     if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
3536         return mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3537     } else if ((lp->chipset & ~0x00ff) == DC2114x) {
3538         return (inl(DE4X5_SISR) & SISR_LPN) >> 12;
3539     } else {
3540         return 0;
3541     }
3542 }
3543
3544 /*
3545 ** Send a packet onto the media and watch for send errors that indicate the
3546 ** media is bad or unconnected.
3547 */
3548 static int
3549 ping_media(struct net_device *dev, int msec)
3550 {
3551     struct de4x5_private *lp = netdev_priv(dev);
3552     u_long iobase = dev->base_addr;
3553     int sisr;
3554
3555     if (lp->timeout < 0) {
3556         lp->timeout = msec/100;
3557
3558         lp->tmp = lp->tx_new;                /* Remember the ring position */
3559         load_packet(dev, lp->frame, TD_LS | TD_FS | sizeof(lp->frame), (struct sk_buff *)1);
3560         lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
3561         outl(POLL_DEMAND, DE4X5_TPD);
3562     }
3563
3564     sisr = inl(DE4X5_SISR);
3565
3566     if ((!(sisr & SISR_NCR)) &&
3567         ((s32)le32_to_cpu(lp->tx_ring[lp->tmp].status) < 0) &&
3568          (--lp->timeout)) {
3569         sisr = 100 | TIMER_CB;
3570     } else {
3571         if ((!(sisr & SISR_NCR)) &&
3572             !(le32_to_cpu(lp->tx_ring[lp->tmp].status) & (T_OWN | TD_ES)) &&
3573             lp->timeout) {
3574             sisr = 0;
3575         } else {
3576             sisr = 1;
3577         }
3578         lp->timeout = -1;
3579     }
3580
3581     return sisr;
3582 }
3583
3584 /*
3585 ** This function does 2 things: on Intels it kmalloc's another buffer to
3586 ** replace the one about to be passed up. On Alpha's it kmallocs a buffer
3587 ** into which the packet is copied.
3588 */
3589 static struct sk_buff *
3590 de4x5_alloc_rx_buff(struct net_device *dev, int index, int len)
3591 {
3592     struct de4x5_private *lp = netdev_priv(dev);
3593     struct sk_buff *p;
3594
3595 #if !defined(__alpha__) && !defined(__powerpc__) && !defined(CONFIG_SPARC) && !defined(DE4X5_DO_MEMCPY)
3596     struct sk_buff *ret;
3597     u_long i=0, tmp;
3598
3599     p = netdev_alloc_skb(dev, IEEE802_3_SZ + DE4X5_ALIGN + 2);
3600     if (!p) return NULL;
3601
3602     tmp = virt_to_bus(p->data);
3603     i = ((tmp + DE4X5_ALIGN) & ~DE4X5_ALIGN) - tmp;
3604     skb_reserve(p, i);
3605     lp->rx_ring[index].buf = cpu_to_le32(tmp + i);
3606
3607     ret = lp->rx_skb[index];
3608     lp->rx_skb[index] = p;
3609
3610     if ((u_long) ret > 1) {
3611         skb_put(ret, len);
3612     }
3613
3614     return ret;
3615
3616 #else
3617     if (lp->state != OPEN) return (struct sk_buff *)1; /* Fake out the open */
3618
3619     p = netdev_alloc_skb(dev, len + 2);
3620     if (!p) return NULL;
3621
3622     skb_reserve(p, 2);                                 /* Align */
3623     if (index < lp->rx_old) {                          /* Wrapped buffer */
3624         short tlen = (lp->rxRingSize - lp->rx_old) * RX_BUFF_SZ;
3625         memcpy(skb_put(p,tlen),lp->rx_bufs + lp->rx_old * RX_BUFF_SZ,tlen);
3626         memcpy(skb_put(p,len-tlen),lp->rx_bufs,len-tlen);
3627     } else {                                           /* Linear buffer */
3628         memcpy(skb_put(p,len),lp->rx_bufs + lp->rx_old * RX_BUFF_SZ,len);
3629     }
3630
3631     return p;
3632 #endif
3633 }
3634
3635 static void
3636 de4x5_free_rx_buffs(struct net_device *dev)
3637 {
3638     struct de4x5_private *lp = netdev_priv(dev);
3639     int i;
3640
3641     for (i=0; i<lp->rxRingSize; i++) {
3642         if ((u_long) lp->rx_skb[i] > 1) {
3643             dev_kfree_skb(lp->rx_skb[i]);
3644         }
3645         lp->rx_ring[i].status = 0;
3646         lp->rx_skb[i] = (struct sk_buff *)1;    /* Dummy entry */
3647     }
3648 }
3649
3650 static void
3651 de4x5_free_tx_buffs(struct net_device *dev)
3652 {
3653     struct de4x5_private *lp = netdev_priv(dev);
3654     int i;
3655
3656     for (i=0; i<lp->txRingSize; i++) {
3657         if (lp->tx_skb[i])
3658             de4x5_free_tx_buff(lp, i);
3659         lp->tx_ring[i].status = 0;
3660     }
3661
3662     /* Unload the locally queued packets */
3663     __skb_queue_purge(&lp->cache.queue);
3664 }
3665
3666 /*
3667 ** When a user pulls a connection, the DECchip can end up in a
3668 ** 'running - waiting for end of transmission' state. This means that we
3669 ** have to perform a chip soft reset to ensure that we can synchronize
3670 ** the hardware and software and make any media probes using a loopback
3671 ** packet meaningful.
3672 */
3673 static void
3674 de4x5_save_skbs(struct net_device *dev)
3675 {
3676     struct de4x5_private *lp = netdev_priv(dev);
3677     u_long iobase = dev->base_addr;
3678     s32 omr;
3679
3680     if (!lp->cache.save_cnt) {
3681         STOP_DE4X5;
3682         de4x5_tx(dev);                          /* Flush any sent skb's */
3683         de4x5_free_tx_buffs(dev);
3684         de4x5_cache_state(dev, DE4X5_SAVE_STATE);
3685         de4x5_sw_reset(dev);
3686         de4x5_cache_state(dev, DE4X5_RESTORE_STATE);
3687         lp->cache.save_cnt++;
3688         START_DE4X5;
3689     }
3690 }
3691
3692 static void
3693 de4x5_rst_desc_ring(struct net_device *dev)
3694 {
3695     struct de4x5_private *lp = netdev_priv(dev);
3696     u_long iobase = dev->base_addr;
3697     int i;
3698     s32 omr;
3699
3700     if (lp->cache.save_cnt) {
3701         STOP_DE4X5;
3702         outl(lp->dma_rings, DE4X5_RRBA);
3703         outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
3704              DE4X5_TRBA);
3705
3706         lp->rx_new = lp->rx_old = 0;
3707         lp->tx_new = lp->tx_old = 0;
3708
3709         for (i = 0; i < lp->rxRingSize; i++) {
3710             lp->rx_ring[i].status = cpu_to_le32(R_OWN);
3711         }
3712
3713         for (i = 0; i < lp->txRingSize; i++) {
3714             lp->tx_ring[i].status = cpu_to_le32(0);
3715         }
3716
3717         barrier();
3718         lp->cache.save_cnt--;
3719         START_DE4X5;
3720     }
3721 }
3722
3723 static void
3724 de4x5_cache_state(struct net_device *dev, int flag)
3725 {
3726     struct de4x5_private *lp = netdev_priv(dev);
3727     u_long iobase = dev->base_addr;
3728
3729     switch(flag) {
3730       case DE4X5_SAVE_STATE:
3731         lp->cache.csr0 = inl(DE4X5_BMR);
3732         lp->cache.csr6 = (inl(DE4X5_OMR) & ~(OMR_ST | OMR_SR));
3733         lp->cache.csr7 = inl(DE4X5_IMR);
3734         break;
3735
3736       case DE4X5_RESTORE_STATE:
3737         outl(lp->cache.csr0, DE4X5_BMR);
3738         outl(lp->cache.csr6, DE4X5_OMR);
3739         outl(lp->cache.csr7, DE4X5_IMR);
3740         if (lp->chipset == DC21140) {
3741             gep_wr(lp->cache.gepc, dev);
3742             gep_wr(lp->cache.gep, dev);
3743         } else {
3744             reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14,
3745                                                               lp->cache.csr15);
3746         }
3747         break;
3748     }
3749 }
3750
3751 static void
3752 de4x5_put_cache(struct net_device *dev, struct sk_buff *skb)
3753 {
3754     struct de4x5_private *lp = netdev_priv(dev);
3755
3756     __skb_queue_tail(&lp->cache.queue, skb);
3757 }
3758
3759 static void
3760 de4x5_putb_cache(struct net_device *dev, struct sk_buff *skb)
3761 {
3762     struct de4x5_private *lp = netdev_priv(dev);
3763
3764     __skb_queue_head(&lp->cache.queue, skb);
3765 }
3766
3767 static struct sk_buff *
3768 de4x5_get_cache(struct net_device *dev)
3769 {
3770     struct de4x5_private *lp = netdev_priv(dev);
3771
3772     return __skb_dequeue(&lp->cache.queue);
3773 }
3774
3775 /*
3776 ** Check the Auto Negotiation State. Return OK when a link pass interrupt
3777 ** is received and the auto-negotiation status is NWAY OK.
3778 */
3779 static int
3780 test_ans(struct net_device *dev, s32 irqs, s32 irq_mask, s32 msec)
3781 {
3782     struct de4x5_private *lp = netdev_priv(dev);
3783     u_long iobase = dev->base_addr;
3784     s32 sts, ans;
3785
3786     if (lp->timeout < 0) {
3787         lp->timeout = msec/100;
3788         outl(irq_mask, DE4X5_IMR);
3789
3790         /* clear all pending interrupts */
3791         sts = inl(DE4X5_STS);
3792         outl(sts, DE4X5_STS);
3793     }
3794
3795     ans = inl(DE4X5_SISR) & SISR_ANS;
3796     sts = inl(DE4X5_STS) & ~TIMER_CB;
3797
3798     if (!(sts & irqs) && (ans ^ ANS_NWOK) && --lp->timeout) {
3799         sts = 100 | TIMER_CB;
3800     } else {
3801         lp->timeout = -1;
3802     }
3803
3804     return sts;
3805 }
3806
3807 static void
3808 de4x5_setup_intr(struct net_device *dev)
3809 {
3810     struct de4x5_private *lp = netdev_priv(dev);
3811     u_long iobase = dev->base_addr;
3812     s32 imr, sts;
3813
3814     if (inl(DE4X5_OMR) & OMR_SR) {   /* Only unmask if TX/RX is enabled */
3815         imr = 0;
3816         UNMASK_IRQs;
3817         sts = inl(DE4X5_STS);        /* Reset any pending (stale) interrupts */
3818         outl(sts, DE4X5_STS);
3819         ENABLE_IRQs;
3820     }
3821 }
3822
3823 /*
3824 **
3825 */
3826 static void
3827 reset_init_sia(struct net_device *dev, s32 csr13, s32 csr14, s32 csr15)
3828 {
3829     struct de4x5_private *lp = netdev_priv(dev);
3830     u_long iobase = dev->base_addr;
3831
3832     RESET_SIA;
3833     if (lp->useSROM) {
3834         if (lp->ibn == 3) {
3835             srom_exec(dev, lp->phy[lp->active].rst);
3836             srom_exec(dev, lp->phy[lp->active].gep);
3837             outl(1, DE4X5_SICR);
3838             return;
3839         } else {
3840             csr15 = lp->cache.csr15;
3841             csr14 = lp->cache.csr14;
3842             csr13 = lp->cache.csr13;
3843             outl(csr15 | lp->cache.gepc, DE4X5_SIGR);
3844             outl(csr15 | lp->cache.gep, DE4X5_SIGR);
3845         }
3846     } else {
3847         outl(csr15, DE4X5_SIGR);
3848     }
3849     outl(csr14, DE4X5_STRR);
3850     outl(csr13, DE4X5_SICR);
3851
3852     mdelay(10);
3853 }
3854
3855 /*
3856 ** Create a loopback ethernet packet
3857 */
3858 static void
3859 create_packet(struct net_device *dev, char *frame, int len)
3860 {
3861     int i;
3862     char *buf = frame;
3863
3864     for (i=0; i<ETH_ALEN; i++) {             /* Use this source address */
3865         *buf++ = dev->dev_addr[i];
3866     }
3867     for (i=0; i<ETH_ALEN; i++) {             /* Use this destination address */
3868         *buf++ = dev->dev_addr[i];
3869     }
3870
3871     *buf++ = 0;                              /* Packet length (2 bytes) */
3872     *buf++ = 1;
3873 }
3874
3875 /*
3876 ** Look for a particular board name in the EISA configuration space
3877 */
3878 static int
3879 EISA_signature(char *name, struct device *device)
3880 {
3881     int i, status = 0, siglen = ARRAY_SIZE(de4x5_signatures);
3882     struct eisa_device *edev;
3883
3884     *name = '\0';
3885     edev = to_eisa_device (device);
3886     i = edev->id.driver_data;
3887
3888     if (i >= 0 && i < siglen) {
3889             strcpy (name, de4x5_signatures[i]);
3890             status = 1;
3891     }
3892
3893     return status;                         /* return the device name string */
3894 }
3895
3896 /*
3897 ** Look for a particular board name in the PCI configuration space
3898 */
3899 static int
3900 PCI_signature(char *name, struct de4x5_private *lp)
3901 {
3902     int i, status = 0, siglen = ARRAY_SIZE(de4x5_signatures);
3903
3904     if (lp->chipset == DC21040) {
3905         strcpy(name, "DE434/5");
3906         return status;
3907     } else {                           /* Search for a DEC name in the SROM */
3908         int tmp = *((char *)&lp->srom + 19) * 3;
3909         strncpy(name, (char *)&lp->srom + 26 + tmp, 8);
3910     }
3911     name[8] = '\0';
3912     for (i=0; i<siglen; i++) {
3913         if (strstr(name,de4x5_signatures[i])!=NULL) break;
3914     }
3915     if (i == siglen) {
3916         if (dec_only) {
3917             *name = '\0';
3918         } else {                        /* Use chip name to avoid confusion */
3919             strcpy(name, (((lp->chipset == DC21040) ? "DC21040" :
3920                            ((lp->chipset == DC21041) ? "DC21041" :
3921                             ((lp->chipset == DC21140) ? "DC21140" :
3922                              ((lp->chipset == DC21142) ? "DC21142" :
3923                               ((lp->chipset == DC21143) ? "DC21143" : "UNKNOWN"
3924                              )))))));
3925         }
3926         if (lp->chipset != DC21041) {
3927             lp->useSROM = true;             /* card is not recognisably DEC */
3928         }
3929     } else if ((lp->chipset & ~0x00ff) == DC2114x) {
3930         lp->useSROM = true;
3931     }
3932
3933     return status;
3934 }
3935
3936 /*
3937 ** Set up the Ethernet PROM counter to the start of the Ethernet address on
3938 ** the DC21040, else  read the SROM for the other chips.
3939 ** The SROM may not be present in a multi-MAC card, so first read the
3940 ** MAC address and check for a bad address. If there is a bad one then exit
3941 ** immediately with the prior srom contents intact (the h/w address will
3942 ** be fixed up later).
3943 */
3944 static void
3945 DevicePresent(struct net_device *dev, u_long aprom_addr)
3946 {
3947     int i, j=0;
3948     struct de4x5_private *lp = netdev_priv(dev);
3949
3950     if (lp->chipset == DC21040) {
3951         if (lp->bus == EISA) {
3952             enet_addr_rst(aprom_addr); /* Reset Ethernet Address ROM Pointer */
3953         } else {
3954             outl(0, aprom_addr);       /* Reset Ethernet Address ROM Pointer */
3955         }
3956     } else {                           /* Read new srom */
3957         u_short tmp;
3958         __le16 *p = (__le16 *)((char *)&lp->srom + SROM_HWADD);
3959         for (i=0; i<(ETH_ALEN>>1); i++) {
3960             tmp = srom_rd(aprom_addr, (SROM_HWADD>>1) + i);
3961             j += tmp;   /* for check for 0:0:0:0:0:0 or ff:ff:ff:ff:ff:ff */
3962             *p = cpu_to_le16(tmp);
3963         }
3964         if (j == 0 || j == 3 * 0xffff) {
3965                 /* could get 0 only from all-0 and 3 * 0xffff only from all-1 */
3966                 return;
3967         }
3968
3969         p = (__le16 *)&lp->srom;
3970         for (i=0; i<(sizeof(struct de4x5_srom)>>1); i++) {
3971             tmp = srom_rd(aprom_addr, i);
3972             *p++ = cpu_to_le16(tmp);
3973         }
3974         de4x5_dbg_srom(&lp->srom);
3975     }
3976 }
3977
3978 /*
3979 ** Since the write on the Enet PROM register doesn't seem to reset the PROM
3980 ** pointer correctly (at least on my DE425 EISA card), this routine should do
3981 ** it...from depca.c.
3982 */
3983 static void
3984 enet_addr_rst(u_long aprom_addr)
3985 {
3986     union {
3987         struct {
3988             u32 a;
3989             u32 b;
3990         } llsig;
3991         char Sig[sizeof(u32) << 1];
3992     } dev;
3993     short sigLength=0;
3994     s8 data;
3995     int i, j;
3996
3997     dev.llsig.a = ETH_PROM_SIG;
3998     dev.llsig.b = ETH_PROM_SIG;
3999     sigLength = sizeof(u32) << 1;
4000
4001     for (i=0,j=0;j<sigLength && i<PROBE_LENGTH+sigLength-1;i++) {
4002         data = inb(aprom_addr);
4003         if (dev.Sig[j] == data) {    /* track signature */
4004             j++;
4005         } else {                     /* lost signature; begin search again */
4006             if (data == dev.Sig[0]) {  /* rare case.... */
4007                 j=1;
4008             } else {
4009                 j=0;
4010             }
4011         }
4012     }
4013 }
4014
4015 /*
4016 ** For the bad status case and no SROM, then add one to the previous
4017 ** address. However, need to add one backwards in case we have 0xff
4018 ** as one or more of the bytes. Only the last 3 bytes should be checked
4019 ** as the first three are invariant - assigned to an organisation.
4020 */
4021 static int
4022 get_hw_addr(struct net_device *dev)
4023 {
4024     u_long iobase = dev->base_addr;
4025     int broken, i, k, tmp, status = 0;
4026     u_short j,chksum;
4027     struct de4x5_private *lp = netdev_priv(dev);
4028
4029     broken = de4x5_bad_srom(lp);
4030
4031     for (i=0,k=0,j=0;j<3;j++) {
4032         k <<= 1;
4033         if (k > 0xffff) k-=0xffff;
4034
4035         if (lp->bus == PCI) {
4036             if (lp->chipset == DC21040) {
4037                 while ((tmp = inl(DE4X5_APROM)) < 0);
4038                 k += (u_char) tmp;
4039                 dev->dev_addr[i++] = (u_char) tmp;
4040                 while ((tmp = inl(DE4X5_APROM)) < 0);
4041                 k += (u_short) (tmp << 8);
4042                 dev->dev_addr[i++] = (u_char) tmp;
4043             } else if (!broken) {
4044                 dev->dev_addr[i] = (u_char) lp->srom.ieee_addr[i]; i++;
4045                 dev->dev_addr[i] = (u_char) lp->srom.ieee_addr[i]; i++;
4046             } else if ((broken == SMC) || (broken == ACCTON)) {
4047                 dev->dev_addr[i] = *((u_char *)&lp->srom + i); i++;
4048                 dev->dev_addr[i] = *((u_char *)&lp->srom + i); i++;
4049             }
4050         } else {
4051             k += (u_char) (tmp = inb(EISA_APROM));
4052             dev->dev_addr[i++] = (u_char) tmp;
4053             k += (u_short) ((tmp = inb(EISA_APROM)) << 8);
4054             dev->dev_addr[i++] = (u_char) tmp;
4055         }
4056
4057         if (k > 0xffff) k-=0xffff;
4058     }
4059     if (k == 0xffff) k=0;
4060
4061     if (lp->bus == PCI) {
4062         if (lp->chipset == DC21040) {
4063             while ((tmp = inl(DE4X5_APROM)) < 0);
4064             chksum = (u_char) tmp;
4065             while ((tmp = inl(DE4X5_APROM)) < 0);
4066             chksum |= (u_short) (tmp << 8);
4067             if ((k != chksum) && (dec_only)) status = -1;
4068         }
4069     } else {
4070         chksum = (u_char) inb(EISA_APROM);
4071         chksum |= (u_short) (inb(EISA_APROM) << 8);
4072         if ((k != chksum) && (dec_only)) status = -1;
4073     }
4074
4075     /* If possible, try to fix a broken card - SMC only so far */
4076     srom_repair(dev, broken);
4077
4078 #ifdef CONFIG_PPC_PMAC
4079     /*
4080     ** If the address starts with 00 a0, we have to bit-reverse
4081     ** each byte of the address.
4082     */
4083     if ( machine_is(powermac) &&
4084          (dev->dev_addr[0] == 0) &&
4085          (dev->dev_addr[1] == 0xa0) )
4086     {
4087             for (i = 0; i < ETH_ALEN; ++i)
4088             {
4089                     int x = dev->dev_addr[i];
4090                     x = ((x & 0xf) << 4) + ((x & 0xf0) >> 4);
4091                     x = ((x & 0x33) << 2) + ((x & 0xcc) >> 2);
4092                     dev->dev_addr[i] = ((x & 0x55) << 1) + ((x & 0xaa) >> 1);
4093             }
4094     }
4095 #endif /* CONFIG_PPC_PMAC */
4096
4097     /* Test for a bad enet address */
4098     status = test_bad_enet(dev, status);
4099
4100     return status;
4101 }
4102
4103 /*
4104 ** Test for enet addresses in the first 32 bytes.
4105 */
4106 static int
4107 de4x5_bad_srom(struct de4x5_private *lp)
4108 {
4109     int i, status = 0;
4110
4111     for (i = 0; i < ARRAY_SIZE(enet_det); i++) {
4112         if (!memcmp(&lp->srom, &enet_det[i], 3) &&
4113             !memcmp((char *)&lp->srom+0x10, &enet_det[i], 3)) {
4114             if (i == 0) {
4115                 status = SMC;
4116             } else if (i == 1) {
4117                 status = ACCTON;
4118             }
4119             break;
4120         }
4121     }
4122
4123     return status;
4124 }
4125
4126 static void
4127 srom_repair(struct net_device *dev, int card)
4128 {
4129     struct de4x5_private *lp = netdev_priv(dev);
4130
4131     switch(card) {
4132       case SMC:
4133         memset((char *)&lp->srom, 0, sizeof(struct de4x5_srom));
4134         memcpy(lp->srom.ieee_addr, (char *)dev->dev_addr, ETH_ALEN);
4135         memcpy(lp->srom.info, (char *)&srom_repair_info[SMC-1], 100);
4136         lp->useSROM = true;
4137         break;
4138     }
4139 }
4140
4141 /*
4142 ** Assume that the irq's do not follow the PCI spec - this is seems
4143 ** to be true so far (2 for 2).
4144 */
4145 static int
4146 test_bad_enet(struct net_device *dev, int status)
4147 {
4148     struct de4x5_private *lp = netdev_priv(dev);
4149     int i, tmp;
4150
4151     for (tmp=0,i=0; i<ETH_ALEN; i++) tmp += (u_char)dev->dev_addr[i];
4152     if ((tmp == 0) || (tmp == 0x5fa)) {
4153         if ((lp->chipset == last.chipset) &&
4154             (lp->bus_num == last.bus) && (lp->bus_num > 0)) {
4155             for (i=0; i<ETH_ALEN; i++) dev->dev_addr[i] = last.addr[i];
4156             for (i=ETH_ALEN-1; i>2; --i) {
4157                 dev->dev_addr[i] += 1;
4158                 if (dev->dev_addr[i] != 0) break;
4159             }
4160             for (i=0; i<ETH_ALEN; i++) last.addr[i] = dev->dev_addr[i];
4161             if (!an_exception(lp)) {
4162                 dev->irq = last.irq;
4163             }
4164
4165             status = 0;
4166         }
4167     } else if (!status) {
4168         last.chipset = lp->chipset;
4169         last.bus = lp->bus_num;
4170         last.irq = dev->irq;
4171         for (i=0; i<ETH_ALEN; i++) last.addr[i] = dev->dev_addr[i];
4172     }
4173
4174     return status;
4175 }
4176
4177 /*
4178 ** List of board exceptions with correctly wired IRQs
4179 */
4180 static int
4181 an_exception(struct de4x5_private *lp)
4182 {
4183     if ((*(u_short *)lp->srom.sub_vendor_id == 0x00c0) &&
4184         (*(u_short *)lp->srom.sub_system_id == 0x95e0)) {
4185         return -1;
4186     }
4187
4188     return 0;
4189 }
4190
4191 /*
4192 ** SROM Read
4193 */
4194 static short
4195 srom_rd(u_long addr, u_char offset)
4196 {
4197     sendto_srom(SROM_RD | SROM_SR, addr);
4198
4199     srom_latch(SROM_RD | SROM_SR | DT_CS, addr);
4200     srom_command(SROM_RD | SROM_SR | DT_IN | DT_CS, addr);
4201     srom_address(SROM_RD | SROM_SR | DT_CS, addr, offset);
4202
4203     return srom_data(SROM_RD | SROM_SR | DT_CS, addr);
4204 }
4205
4206 static void
4207 srom_latch(u_int command, u_long addr)
4208 {
4209     sendto_srom(command, addr);
4210     sendto_srom(command | DT_CLK, addr);
4211     sendto_srom(command, addr);
4212 }
4213
4214 static void
4215 srom_command(u_int command, u_long addr)
4216 {
4217     srom_latch(command, addr);
4218     srom_latch(command, addr);
4219     srom_latch((command & 0x0000ff00) | DT_CS, addr);
4220 }
4221
4222 static void
4223 srom_address(u_int command, u_long addr, u_char offset)
4224 {
4225     int i, a;
4226
4227     a = offset << 2;
4228     for (i=0; i<6; i++, a <<= 1) {
4229         srom_latch(command | ((a & 0x80) ? DT_IN : 0), addr);
4230     }
4231     udelay(1);
4232
4233     i = (getfrom_srom(addr) >> 3) & 0x01;
4234 }
4235
4236 static short
4237 srom_data(u_int command, u_long addr)
4238 {
4239     int i;
4240     short word = 0;
4241     s32 tmp;
4242
4243     for (i=0; i<16; i++) {
4244         sendto_srom(command  | DT_CLK, addr);
4245         tmp = getfrom_srom(addr);
4246         sendto_srom(command, addr);
4247
4248         word = (word << 1) | ((tmp >> 3) & 0x01);
4249     }
4250
4251     sendto_srom(command & 0x0000ff00, addr);
4252
4253     return word;
4254 }
4255
4256 /*
4257 static void
4258 srom_busy(u_int command, u_long addr)
4259 {
4260    sendto_srom((command & 0x0000ff00) | DT_CS, addr);
4261
4262    while (!((getfrom_srom(addr) >> 3) & 0x01)) {
4263        mdelay(1);
4264    }
4265
4266    sendto_srom(command & 0x0000ff00, addr);
4267 }
4268 */
4269
4270 static void
4271 sendto_srom(u_int command, u_long addr)
4272 {
4273     outl(command, addr);
4274     udelay(1);
4275 }
4276
4277 static int
4278 getfrom_srom(u_long addr)
4279 {
4280     s32 tmp;
4281
4282     tmp = inl(addr);
4283     udelay(1);
4284
4285     return tmp;
4286 }
4287
4288 static int
4289 srom_infoleaf_info(struct net_device *dev)
4290 {
4291     struct de4x5_private *lp = netdev_priv(dev);
4292     int i, count;
4293     u_char *p;
4294
4295     /* Find the infoleaf decoder function that matches this chipset */
4296     for (i=0; i<INFOLEAF_SIZE; i++) {
4297         if (lp->chipset == infoleaf_array[i].chipset) break;
4298     }
4299     if (i == INFOLEAF_SIZE) {
4300         lp->useSROM = false;
4301         printk("%s: Cannot find correct chipset for SROM decoding!\n",
4302                                                                   dev->name);
4303         return -ENXIO;
4304     }
4305
4306     lp->infoleaf_fn = infoleaf_array[i].fn;
4307
4308     /* Find the information offset that this function should use */
4309     count = *((u_char *)&lp->srom + 19);
4310     p  = (u_char *)&lp->srom + 26;
4311
4312     if (count > 1) {
4313         for (i=count; i; --i, p+=3) {
4314             if (lp->device == *p) break;
4315         }
4316         if (i == 0) {
4317             lp->useSROM = false;
4318             printk("%s: Cannot find correct PCI device [%d] for SROM decoding!\n",
4319                                                        dev->name, lp->device);
4320             return -ENXIO;
4321         }
4322     }
4323
4324         lp->infoleaf_offset = get_unaligned_le16(p + 1);
4325
4326     return 0;
4327 }
4328
4329 /*
4330 ** This routine loads any type 1 or 3 MII info into the mii device
4331 ** struct and executes any type 5 code to reset PHY devices for this
4332 ** controller.
4333 ** The info for the MII devices will be valid since the index used
4334 ** will follow the discovery process from MII address 1-31 then 0.
4335 */
4336 static void
4337 srom_init(struct net_device *dev)
4338 {
4339     struct de4x5_private *lp = netdev_priv(dev);
4340     u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4341     u_char count;
4342
4343     p+=2;
4344     if (lp->chipset == DC21140) {
4345         lp->cache.gepc = (*p++ | GEP_CTRL);
4346         gep_wr(lp->cache.gepc, dev);
4347     }
4348
4349     /* Block count */
4350     count = *p++;
4351
4352     /* Jump the infoblocks to find types */
4353     for (;count; --count) {
4354         if (*p < 128) {
4355             p += COMPACT_LEN;
4356         } else if (*(p+1) == 5) {
4357             type5_infoblock(dev, 1, p);
4358             p += ((*p & BLOCK_LEN) + 1);
4359         } else if (*(p+1) == 4) {
4360             p += ((*p & BLOCK_LEN) + 1);
4361         } else if (*(p+1) == 3) {
4362             type3_infoblock(dev, 1, p);
4363             p += ((*p & BLOCK_LEN) + 1);
4364         } else if (*(p+1) == 2) {
4365             p += ((*p & BLOCK_LEN) + 1);
4366         } else if (*(p+1) == 1) {
4367             type1_infoblock(dev, 1, p);
4368             p += ((*p & BLOCK_LEN) + 1);
4369         } else {
4370             p += ((*p & BLOCK_LEN) + 1);
4371         }
4372     }
4373 }
4374
4375 /*
4376 ** A generic routine that writes GEP control, data and reset information
4377 ** to the GEP register (21140) or csr15 GEP portion (2114[23]).
4378 */
4379 static void
4380 srom_exec(struct net_device *dev, u_char *p)
4381 {
4382     struct de4x5_private *lp = netdev_priv(dev);
4383     u_long iobase = dev->base_addr;
4384     u_char count = (p ? *p++ : 0);
4385     u_short *w = (u_short *)p;
4386
4387     if (((lp->ibn != 1) && (lp->ibn != 3) && (lp->ibn != 5)) || !count) return;
4388
4389     if (lp->chipset != DC21140) RESET_SIA;
4390
4391     while (count--) {
4392         gep_wr(((lp->chipset==DC21140) && (lp->ibn!=5) ?
4393                                                    *p++ : get_unaligned_le16(w++)), dev);
4394         mdelay(2);                          /* 2ms per action */
4395     }
4396
4397     if (lp->chipset != DC21140) {
4398         outl(lp->cache.csr14, DE4X5_STRR);
4399         outl(lp->cache.csr13, DE4X5_SICR);
4400     }
4401 }
4402
4403 /*
4404 ** Basically this function is a NOP since it will never be called,
4405 ** unless I implement the DC21041 SROM functions. There's no need
4406 ** since the existing code will be satisfactory for all boards.
4407 */
4408 static int
4409 dc21041_infoleaf(struct net_device *dev)
4410 {
4411     return DE4X5_AUTOSENSE_MS;
4412 }
4413
4414 static int
4415 dc21140_infoleaf(struct net_device *dev)
4416 {
4417     struct de4x5_private *lp = netdev_priv(dev);
4418     u_char count = 0;
4419     u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4420     int next_tick = DE4X5_AUTOSENSE_MS;
4421
4422     /* Read the connection type */
4423     p+=2;
4424
4425     /* GEP control */
4426     lp->cache.gepc = (*p++ | GEP_CTRL);
4427
4428     /* Block count */
4429     count = *p++;
4430
4431     /* Recursively figure out the info blocks */
4432     if (*p < 128) {
4433         next_tick = dc_infoblock[COMPACT](dev, count, p);
4434     } else {
4435         next_tick = dc_infoblock[*(p+1)](dev, count, p);
4436     }
4437
4438     if (lp->tcount == count) {
4439         lp->media = NC;
4440         if (lp->media != lp->c_media) {
4441             de4x5_dbg_media(dev);
4442             lp->c_media = lp->media;
4443         }
4444         lp->media = INIT;
4445         lp->tcount = 0;
4446         lp->tx_enable = false;
4447     }
4448
4449     return next_tick & ~TIMER_CB;
4450 }
4451
4452 static int
4453 dc21142_infoleaf(struct net_device *dev)
4454 {
4455     struct de4x5_private *lp = netdev_priv(dev);
4456     u_char count = 0;
4457     u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4458     int next_tick = DE4X5_AUTOSENSE_MS;
4459
4460     /* Read the connection type */
4461     p+=2;
4462
4463     /* Block count */
4464     count = *p++;
4465
4466     /* Recursively figure out the info blocks */
4467     if (*p < 128) {
4468         next_tick = dc_infoblock[COMPACT](dev, count, p);
4469     } else {
4470         next_tick = dc_infoblock[*(p+1)](dev, count, p);
4471     }
4472
4473     if (lp->tcount == count) {
4474         lp->media = NC;
4475         if (lp->media != lp->c_media) {
4476             de4x5_dbg_media(dev);
4477             lp->c_media = lp->media;
4478         }
4479         lp->media = INIT;
4480         lp->tcount = 0;
4481         lp->tx_enable = false;
4482     }
4483
4484     return next_tick & ~TIMER_CB;
4485 }
4486
4487 static int
4488 dc21143_infoleaf(struct net_device *dev)
4489 {
4490     struct de4x5_private *lp = netdev_priv(dev);
4491     u_char count = 0;
4492     u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4493     int next_tick = DE4X5_AUTOSENSE_MS;
4494
4495     /* Read the connection type */
4496     p+=2;
4497
4498     /* Block count */
4499     count = *p++;
4500
4501     /* Recursively figure out the info blocks */
4502     if (*p < 128) {
4503         next_tick = dc_infoblock[COMPACT](dev, count, p);
4504     } else {
4505         next_tick = dc_infoblock[*(p+1)](dev, count, p);
4506     }
4507     if (lp->tcount == count) {
4508         lp->media = NC;
4509         if (lp->media != lp->c_media) {
4510             de4x5_dbg_media(dev);
4511             lp->c_media = lp->media;
4512         }
4513         lp->media = INIT;
4514         lp->tcount = 0;
4515         lp->tx_enable = false;
4516     }
4517
4518     return next_tick & ~TIMER_CB;
4519 }
4520
4521 /*
4522 ** The compact infoblock is only designed for DC21140[A] chips, so
4523 ** we'll reuse the dc21140m_autoconf function. Non MII media only.
4524 */
4525 static int
4526 compact_infoblock(struct net_device *dev, u_char count, u_char *p)
4527 {
4528     struct de4x5_private *lp = netdev_priv(dev);
4529     u_char flags, csr6;
4530
4531     /* Recursively figure out the info blocks */
4532     if (--count > lp->tcount) {
4533         if (*(p+COMPACT_LEN) < 128) {
4534             return dc_infoblock[COMPACT](dev, count, p+COMPACT_LEN);
4535         } else {
4536             return dc_infoblock[*(p+COMPACT_LEN+1)](dev, count, p+COMPACT_LEN);
4537         }
4538     }
4539
4540     if ((lp->media == INIT) && (lp->timeout < 0)) {
4541         lp->ibn = COMPACT;
4542         lp->active = 0;
4543         gep_wr(lp->cache.gepc, dev);
4544         lp->infoblock_media = (*p++) & COMPACT_MC;
4545         lp->cache.gep = *p++;
4546         csr6 = *p++;
4547         flags = *p++;
4548
4549         lp->asBitValid = (flags & 0x80) ? 0 : -1;
4550         lp->defMedium = (flags & 0x40) ? -1 : 0;
4551         lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4552         lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4553         lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4554         lp->useMII = false;
4555
4556         de4x5_switch_mac_port(dev);
4557     }
4558
4559     return dc21140m_autoconf(dev);
4560 }
4561
4562 /*
4563 ** This block describes non MII media for the DC21140[A] only.
4564 */
4565 static int
4566 type0_infoblock(struct net_device *dev, u_char count, u_char *p)
4567 {
4568     struct de4x5_private *lp = netdev_priv(dev);
4569     u_char flags, csr6, len = (*p & BLOCK_LEN)+1;
4570
4571     /* Recursively figure out the info blocks */
4572     if (--count > lp->tcount) {
4573         if (*(p+len) < 128) {
4574             return dc_infoblock[COMPACT](dev, count, p+len);
4575         } else {
4576             return dc_infoblock[*(p+len+1)](dev, count, p+len);
4577         }
4578     }
4579
4580     if ((lp->media == INIT) && (lp->timeout < 0)) {
4581         lp->ibn = 0;
4582         lp->active = 0;
4583         gep_wr(lp->cache.gepc, dev);
4584         p+=2;
4585         lp->infoblock_media = (*p++) & BLOCK0_MC;
4586         lp->cache.gep = *p++;
4587         csr6 = *p++;
4588         flags = *p++;
4589
4590         lp->asBitValid = (flags & 0x80) ? 0 : -1;
4591         lp->defMedium = (flags & 0x40) ? -1 : 0;
4592         lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4593         lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4594         lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4595         lp->useMII = false;
4596
4597         de4x5_switch_mac_port(dev);
4598     }
4599
4600     return dc21140m_autoconf(dev);
4601 }
4602
4603 /* These functions are under construction! */
4604
4605 static int
4606 type1_infoblock(struct net_device *dev, u_char count, u_char *p)
4607 {
4608     struct de4x5_private *lp = netdev_priv(dev);
4609     u_char len = (*p & BLOCK_LEN)+1;
4610
4611     /* Recursively figure out the info blocks */
4612     if (--count > lp->tcount) {
4613         if (*(p+len) < 128) {
4614             return dc_infoblock[COMPACT](dev, count, p+len);
4615         } else {
4616             return dc_infoblock[*(p+len+1)](dev, count, p+len);
4617         }
4618     }
4619
4620     p += 2;
4621     if (lp->state == INITIALISED) {
4622         lp->ibn = 1;
4623         lp->active = *p++;
4624         lp->phy[lp->active].gep = (*p ? p : NULL); p += (*p + 1);
4625         lp->phy[lp->active].rst = (*p ? p : NULL); p += (*p + 1);
4626         lp->phy[lp->active].mc  = get_unaligned_le16(p); p += 2;
4627         lp->phy[lp->active].ana = get_unaligned_le16(p); p += 2;
4628         lp->phy[lp->active].fdx = get_unaligned_le16(p); p += 2;
4629         lp->phy[lp->active].ttm = get_unaligned_le16(p);
4630         return 0;
4631     } else if ((lp->media == INIT) && (lp->timeout < 0)) {
4632         lp->ibn = 1;
4633         lp->active = *p;
4634         lp->infoblock_csr6 = OMR_MII_100;
4635         lp->useMII = true;
4636         lp->infoblock_media = ANS;
4637
4638         de4x5_switch_mac_port(dev);
4639     }
4640
4641     return dc21140m_autoconf(dev);
4642 }
4643
4644 static int
4645 type2_infoblock(struct net_device *dev, u_char count, u_char *p)
4646 {
4647     struct de4x5_private *lp = netdev_priv(dev);
4648     u_char len = (*p & BLOCK_LEN)+1;
4649
4650     /* Recursively figure out the info blocks */
4651     if (--count > lp->tcount) {
4652         if (*(p+len) < 128) {
4653             return dc_infoblock[COMPACT](dev, count, p+len);
4654         } else {
4655             return dc_infoblock[*(p+len+1)](dev, count, p+len);
4656         }
4657     }
4658
4659     if ((lp->media == INIT) && (lp->timeout < 0)) {
4660         lp->ibn = 2;
4661         lp->active = 0;
4662         p += 2;
4663         lp->infoblock_media = (*p) & MEDIA_CODE;
4664
4665         if ((*p++) & EXT_FIELD) {
4666             lp->cache.csr13 = get_unaligned_le16(p); p += 2;
4667             lp->cache.csr14 = get_unaligned_le16(p); p += 2;
4668             lp->cache.csr15 = get_unaligned_le16(p); p += 2;
4669         } else {
4670             lp->cache.csr13 = CSR13;
4671             lp->cache.csr14 = CSR14;
4672             lp->cache.csr15 = CSR15;
4673         }
4674         lp->cache.gepc = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4675         lp->cache.gep  = ((s32)(get_unaligned_le16(p)) << 16);
4676         lp->infoblock_csr6 = OMR_SIA;
4677         lp->useMII = false;
4678
4679         de4x5_switch_mac_port(dev);
4680     }
4681
4682     return dc2114x_autoconf(dev);
4683 }
4684
4685 static int
4686 type3_infoblock(struct net_device *dev, u_char count, u_char *p)
4687 {
4688     struct de4x5_private *lp = netdev_priv(dev);
4689     u_char len = (*p & BLOCK_LEN)+1;
4690
4691     /* Recursively figure out the info blocks */
4692     if (--count > lp->tcount) {
4693         if (*(p+len) < 128) {
4694             return dc_infoblock[COMPACT](dev, count, p+len);
4695         } else {
4696             return dc_infoblock[*(p+len+1)](dev, count, p+len);
4697         }
4698     }
4699
4700     p += 2;
4701     if (lp->state == INITIALISED) {
4702         lp->ibn = 3;
4703         lp->active = *p++;
4704         if (MOTO_SROM_BUG) lp->active = 0;
4705         lp->phy[lp->active].gep = (*p ? p : NULL); p += (2 * (*p) + 1);
4706         lp->phy[lp->active].rst = (*p ? p : NULL); p += (2 * (*p) + 1);
4707         lp->phy[lp->active].mc  = get_unaligned_le16(p); p += 2;
4708         lp->phy[lp->active].ana = get_unaligned_le16(p); p += 2;
4709         lp->phy[lp->active].fdx = get_unaligned_le16(p); p += 2;
4710         lp->phy[lp->active].ttm = get_unaligned_le16(p); p += 2;
4711         lp->phy[lp->active].mci = *p;
4712         return 0;
4713     } else if ((lp->media == INIT) && (lp->timeout < 0)) {
4714         lp->ibn = 3;
4715         lp->active = *p;
4716         if (MOTO_SROM_BUG) lp->active = 0;
4717         lp->infoblock_csr6 = OMR_MII_100;
4718         lp->useMII = true;
4719         lp->infoblock_media = ANS;
4720
4721         de4x5_switch_mac_port(dev);
4722     }
4723
4724     return dc2114x_autoconf(dev);
4725 }
4726
4727 static int
4728 type4_infoblock(struct net_device *dev, u_char count, u_char *p)
4729 {
4730     struct de4x5_private *lp = netdev_priv(dev);
4731     u_char flags, csr6, len = (*p & BLOCK_LEN)+1;
4732
4733     /* Recursively figure out the info blocks */
4734     if (--count > lp->tcount) {
4735         if (*(p+len) < 128) {
4736             return dc_infoblock[COMPACT](dev, count, p+len);
4737         } else {
4738             return dc_infoblock[*(p+len+1)](dev, count, p+len);
4739         }
4740     }
4741
4742     if ((lp->media == INIT) && (lp->timeout < 0)) {
4743         lp->ibn = 4;
4744         lp->active = 0;
4745         p+=2;
4746         lp->infoblock_media = (*p++) & MEDIA_CODE;
4747         lp->cache.csr13 = CSR13;              /* Hard coded defaults */
4748         lp->cache.csr14 = CSR14;
4749         lp->cache.csr15 = CSR15;
4750         lp->cache.gepc = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4751         lp->cache.gep  = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4752         csr6 = *p++;
4753         flags = *p++;
4754
4755         lp->asBitValid = (flags & 0x80) ? 0 : -1;
4756         lp->defMedium = (flags & 0x40) ? -1 : 0;
4757         lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4758         lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4759         lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4760         lp->useMII = false;
4761
4762         de4x5_switch_mac_port(dev);
4763     }
4764
4765     return dc2114x_autoconf(dev);
4766 }
4767
4768 /*
4769 ** This block type provides information for resetting external devices
4770 ** (chips) through the General Purpose Register.
4771 */
4772 static int
4773 type5_infoblock(struct net_device *dev, u_char count, u_char *p)
4774 {
4775     struct de4x5_private *lp = netdev_priv(dev);
4776     u_char len = (*p & BLOCK_LEN)+1;
4777
4778     /* Recursively figure out the info blocks */
4779     if (--count > lp->tcount) {
4780         if (*(p+len) < 128) {
4781             return dc_infoblock[COMPACT](dev, count, p+len);
4782         } else {
4783             return dc_infoblock[*(p+len+1)](dev, count, p+len);
4784         }
4785     }
4786
4787     /* Must be initializing to run this code */
4788     if ((lp->state == INITIALISED) || (lp->media == INIT)) {
4789         p+=2;
4790         lp->rst = p;
4791         srom_exec(dev, lp->rst);
4792     }
4793
4794     return DE4X5_AUTOSENSE_MS;
4795 }
4796
4797 /*
4798 ** MII Read/Write
4799 */
4800
4801 static int
4802 mii_rd(u_char phyreg, u_char phyaddr, u_long ioaddr)
4803 {
4804     mii_wdata(MII_PREAMBLE,  2, ioaddr);   /* Start of 34 bit preamble...    */
4805     mii_wdata(MII_PREAMBLE, 32, ioaddr);   /* ...continued                   */
4806     mii_wdata(MII_STRD, 4, ioaddr);        /* SFD and Read operation         */
4807     mii_address(phyaddr, ioaddr);          /* PHY address to be accessed     */
4808     mii_address(phyreg, ioaddr);           /* PHY Register to read           */
4809     mii_ta(MII_STRD, ioaddr);              /* Turn around time - 2 MDC       */
4810
4811     return mii_rdata(ioaddr);              /* Read data                      */
4812 }
4813
4814 static void
4815 mii_wr(int data, u_char phyreg, u_char phyaddr, u_long ioaddr)
4816 {
4817     mii_wdata(MII_PREAMBLE,  2, ioaddr);   /* Start of 34 bit preamble...    */
4818     mii_wdata(MII_PREAMBLE, 32, ioaddr);   /* ...continued                   */
4819     mii_wdata(MII_STWR, 4, ioaddr);        /* SFD and Write operation        */
4820     mii_address(phyaddr, ioaddr);          /* PHY address to be accessed     */
4821     mii_address(phyreg, ioaddr);           /* PHY Register to write          */
4822     mii_ta(MII_STWR, ioaddr);              /* Turn around time - 2 MDC       */
4823     data = mii_swap(data, 16);             /* Swap data bit ordering         */
4824     mii_wdata(data, 16, ioaddr);           /* Write data                     */
4825 }
4826
4827 static int
4828 mii_rdata(u_long ioaddr)
4829 {
4830     int i;
4831     s32 tmp = 0;
4832
4833     for (i=0; i<16; i++) {
4834         tmp <<= 1;
4835         tmp |= getfrom_mii(MII_MRD | MII_RD, ioaddr);
4836     }
4837
4838     return tmp;
4839 }
4840
4841 static void
4842 mii_wdata(int data, int len, u_long ioaddr)
4843 {
4844     int i;
4845
4846     for (i=0; i<len; i++) {
4847         sendto_mii(MII_MWR | MII_WR, data, ioaddr);
4848         data >>= 1;
4849     }
4850 }
4851
4852 static void
4853 mii_address(u_char addr, u_long ioaddr)
4854 {
4855     int i;
4856
4857     addr = mii_swap(addr, 5);
4858     for (i=0; i<5; i++) {
4859         sendto_mii(MII_MWR | MII_WR, addr, ioaddr);
4860         addr >>= 1;
4861     }
4862 }
4863
4864 static void
4865 mii_ta(u_long rw, u_long ioaddr)
4866 {
4867     if (rw == MII_STWR) {
4868         sendto_mii(MII_MWR | MII_WR, 1, ioaddr);
4869         sendto_mii(MII_MWR | MII_WR, 0, ioaddr);
4870     } else {
4871         getfrom_mii(MII_MRD | MII_RD, ioaddr);        /* Tri-state MDIO */
4872     }
4873 }
4874
4875 static int
4876 mii_swap(int data, int len)
4877 {
4878     int i, tmp = 0;
4879
4880     for (i=0; i<len; i++) {
4881         tmp <<= 1;
4882         tmp |= (data & 1);
4883         data >>= 1;
4884     }
4885
4886     return tmp;
4887 }
4888
4889 static void
4890 sendto_mii(u32 command, int data, u_long ioaddr)
4891 {
4892     u32 j;
4893
4894     j = (data & 1) << 17;
4895     outl(command | j, ioaddr);
4896     udelay(1);
4897     outl(command | MII_MDC | j, ioaddr);
4898     udelay(1);
4899 }
4900
4901 static int
4902 getfrom_mii(u32 command, u_long ioaddr)
4903 {
4904     outl(command, ioaddr);
4905     udelay(1);
4906     outl(command | MII_MDC, ioaddr);
4907     udelay(1);
4908
4909     return (inl(ioaddr) >> 19) & 1;
4910 }
4911
4912 /*
4913 ** Here's 3 ways to calculate the OUI from the ID registers.
4914 */
4915 static int
4916 mii_get_oui(u_char phyaddr, u_long ioaddr)
4917 {
4918 /*
4919     union {
4920         u_short reg;
4921         u_char breg[2];
4922     } a;
4923     int i, r2, r3, ret=0;*/
4924     int r2, r3;
4925
4926     /* Read r2 and r3 */
4927     r2 = mii_rd(MII_ID0, phyaddr, ioaddr);
4928     r3 = mii_rd(MII_ID1, phyaddr, ioaddr);
4929                                                 /* SEEQ and Cypress way * /
4930     / * Shuffle r2 and r3 * /
4931     a.reg=0;
4932     r3 = ((r3>>10)|(r2<<6))&0x0ff;
4933     r2 = ((r2>>2)&0x3fff);
4934
4935     / * Bit reverse r3 * /
4936     for (i=0;i<8;i++) {
4937         ret<<=1;
4938         ret |= (r3&1);
4939         r3>>=1;
4940     }
4941
4942     / * Bit reverse r2 * /
4943     for (i=0;i<16;i++) {
4944         a.reg<<=1;
4945         a.reg |= (r2&1);
4946         r2>>=1;
4947     }
4948
4949     / * Swap r2 bytes * /
4950     i=a.breg[0];
4951     a.breg[0]=a.breg[1];
4952     a.breg[1]=i;
4953
4954     return (a.reg<<8)|ret; */                 /* SEEQ and Cypress way */
4955 /*    return (r2<<6)|(u_int)(r3>>10); */      /* NATIONAL and BROADCOM way */
4956     return r2;                                  /* (I did it) My way */
4957 }
4958
4959 /*
4960 ** The SROM spec forces us to search addresses [1-31 0]. Bummer.
4961 */
4962 static int
4963 mii_get_phy(struct net_device *dev)
4964 {
4965     struct de4x5_private *lp = netdev_priv(dev);
4966     u_long iobase = dev->base_addr;
4967     int i, j, k, n, limit=ARRAY_SIZE(phy_info);
4968     int id;
4969
4970     lp->active = 0;
4971     lp->useMII = true;
4972
4973     /* Search the MII address space for possible PHY devices */
4974     for (n=0, lp->mii_cnt=0, i=1; !((i==1) && (n==1)); i=(i+1)%DE4X5_MAX_MII) {
4975         lp->phy[lp->active].addr = i;
4976         if (i==0) n++;                             /* Count cycles */
4977         while (de4x5_reset_phy(dev)<0) udelay(100);/* Wait for reset */
4978         id = mii_get_oui(i, DE4X5_MII);
4979         if ((id == 0) || (id == 65535)) continue;  /* Valid ID? */
4980         for (j=0; j<limit; j++) {                  /* Search PHY table */
4981             if (id != phy_info[j].id) continue;    /* ID match? */
4982             for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++);
4983             if (k < DE4X5_MAX_PHY) {
4984                 memcpy((char *)&lp->phy[k],
4985                        (char *)&phy_info[j], sizeof(struct phy_table));
4986                 lp->phy[k].addr = i;
4987                 lp->mii_cnt++;
4988                 lp->active++;
4989             } else {
4990                 goto purgatory;                    /* Stop the search */
4991             }
4992             break;
4993         }
4994         if ((j == limit) && (i < DE4X5_MAX_MII)) {
4995             for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++);
4996             lp->phy[k].addr = i;
4997             lp->phy[k].id = id;
4998             lp->phy[k].spd.reg = GENERIC_REG;      /* ANLPA register         */
4999             lp->phy[k].spd.mask = GENERIC_MASK;    /* 100Mb/s technologies   */
5000             lp->phy[k].spd.value = GENERIC_VALUE;  /* TX & T4, H/F Duplex    */
5001             lp->mii_cnt++;
5002             lp->active++;
5003             printk("%s: Using generic MII device control. If the board doesn't operate,\nplease mail the following dump to the author:\n", dev->name);
5004             j = de4x5_debug;
5005             de4x5_debug |= DEBUG_MII;
5006             de4x5_dbg_mii(dev, k);
5007             de4x5_debug = j;
5008             printk("\n");
5009         }
5010     }
5011   purgatory:
5012     lp->active = 0;
5013     if (lp->phy[0].id) {                           /* Reset the PHY devices */
5014         for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++) { /*For each PHY*/
5015             mii_wr(MII_CR_RST, MII_CR, lp->phy[k].addr, DE4X5_MII);
5016             while (mii_rd(MII_CR, lp->phy[k].addr, DE4X5_MII) & MII_CR_RST);
5017
5018             de4x5_dbg_mii(dev, k);
5019         }
5020     }
5021     if (!lp->mii_cnt) lp->useMII = false;
5022
5023     return lp->mii_cnt;
5024 }
5025
5026 static char *
5027 build_setup_frame(struct net_device *dev, int mode)
5028 {
5029     struct de4x5_private *lp = netdev_priv(dev);
5030     int i;
5031     char *pa = lp->setup_frame;
5032
5033     /* Initialise the setup frame */
5034     if (mode == ALL) {
5035         memset(lp->setup_frame, 0, SETUP_FRAME_LEN);
5036     }
5037
5038     if (lp->setup_f == HASH_PERF) {
5039         for (pa=lp->setup_frame+IMPERF_PA_OFFSET, i=0; i<ETH_ALEN; i++) {
5040             *(pa + i) = dev->dev_addr[i];                 /* Host address */
5041             if (i & 0x01) pa += 2;
5042         }
5043         *(lp->setup_frame + (HASH_TABLE_LEN >> 3) - 3) = 0x80;
5044     } else {
5045         for (i=0; i<ETH_ALEN; i++) { /* Host address */
5046             *(pa + (i&1)) = dev->dev_addr[i];
5047             if (i & 0x01) pa += 4;
5048         }
5049         for (i=0; i<ETH_ALEN; i++) { /* Broadcast address */
5050             *(pa + (i&1)) = (char) 0xff;
5051             if (i & 0x01) pa += 4;
5052         }
5053     }
5054
5055     return pa;                     /* Points to the next entry */
5056 }
5057
5058 static void
5059 disable_ast(struct net_device *dev)
5060 {
5061         struct de4x5_private *lp = netdev_priv(dev);
5062         del_timer_sync(&lp->timer);
5063 }
5064
5065 static long
5066 de4x5_switch_mac_port(struct net_device *dev)
5067 {
5068     struct de4x5_private *lp = netdev_priv(dev);
5069     u_long iobase = dev->base_addr;
5070     s32 omr;
5071
5072     STOP_DE4X5;
5073
5074     /* Assert the OMR_PS bit in CSR6 */
5075     omr = (inl(DE4X5_OMR) & ~(OMR_PS | OMR_HBD | OMR_TTM | OMR_PCS | OMR_SCR |
5076                                                                      OMR_FDX));
5077     omr |= lp->infoblock_csr6;
5078     if (omr & OMR_PS) omr |= OMR_HBD;
5079     outl(omr, DE4X5_OMR);
5080
5081     /* Soft Reset */
5082     RESET_DE4X5;
5083
5084     /* Restore the GEP - especially for COMPACT and Type 0 Infoblocks */
5085     if (lp->chipset == DC21140) {
5086         gep_wr(lp->cache.gepc, dev);
5087         gep_wr(lp->cache.gep, dev);
5088     } else if ((lp->chipset & ~0x0ff) == DC2114x) {
5089         reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14, lp->cache.csr15);
5090     }
5091
5092     /* Restore CSR6 */
5093     outl(omr, DE4X5_OMR);
5094
5095     /* Reset CSR8 */
5096     inl(DE4X5_MFC);
5097
5098     return omr;
5099 }
5100
5101 static void
5102 gep_wr(s32 data, struct net_device *dev)
5103 {
5104     struct de4x5_private *lp = netdev_priv(dev);
5105     u_long iobase = dev->base_addr;
5106
5107     if (lp->chipset == DC21140) {
5108         outl(data, DE4X5_GEP);
5109     } else if ((lp->chipset & ~0x00ff) == DC2114x) {
5110         outl((data<<16) | lp->cache.csr15, DE4X5_SIGR);
5111     }
5112 }
5113
5114 static int
5115 gep_rd(struct net_device *dev)
5116 {
5117     struct de4x5_private *lp = netdev_priv(dev);
5118     u_long iobase = dev->base_addr;
5119
5120     if (lp->chipset == DC21140) {
5121         return inl(DE4X5_GEP);
5122     } else if ((lp->chipset & ~0x00ff) == DC2114x) {
5123         return inl(DE4X5_SIGR) & 0x000fffff;
5124     }
5125
5126     return 0;
5127 }
5128
5129 static void
5130 yawn(struct net_device *dev, int state)
5131 {
5132     struct de4x5_private *lp = netdev_priv(dev);
5133     u_long iobase = dev->base_addr;
5134
5135     if ((lp->chipset == DC21040) || (lp->chipset == DC21140)) return;
5136
5137     if(lp->bus == EISA) {
5138         switch(state) {
5139           case WAKEUP:
5140             outb(WAKEUP, PCI_CFPM);
5141             mdelay(10);
5142             break;
5143
5144           case SNOOZE:
5145             outb(SNOOZE, PCI_CFPM);
5146             break;
5147
5148           case SLEEP:
5149             outl(0, DE4X5_SICR);
5150             outb(SLEEP, PCI_CFPM);
5151             break;
5152         }
5153     } else {
5154         struct pci_dev *pdev = to_pci_dev (lp->gendev);
5155         switch(state) {
5156           case WAKEUP:
5157             pci_write_config_byte(pdev, PCI_CFDA_PSM, WAKEUP);
5158             mdelay(10);
5159             break;
5160
5161           case SNOOZE:
5162             pci_write_config_byte(pdev, PCI_CFDA_PSM, SNOOZE);
5163             break;
5164
5165           case SLEEP:
5166             outl(0, DE4X5_SICR);
5167             pci_write_config_byte(pdev, PCI_CFDA_PSM, SLEEP);
5168             break;
5169         }
5170     }
5171 }
5172
5173 static void
5174 de4x5_parse_params(struct net_device *dev)
5175 {
5176     struct de4x5_private *lp = netdev_priv(dev);
5177     char *p, *q, t;
5178
5179     lp->params.fdx = false;
5180     lp->params.autosense = AUTO;
5181
5182     if (args == NULL) return;
5183
5184     if ((p = strstr(args, dev->name))) {
5185         if (!(q = strstr(p+strlen(dev->name), "eth"))) q = p + strlen(p);
5186         t = *q;
5187         *q = '\0';
5188
5189         if (strstr(p, "fdx") || strstr(p, "FDX")) lp->params.fdx = true;
5190
5191         if (strstr(p, "autosense") || strstr(p, "AUTOSENSE")) {
5192             if (strstr(p, "TP")) {
5193                 lp->params.autosense = TP;
5194             } else if (strstr(p, "TP_NW")) {
5195                 lp->params.autosense = TP_NW;
5196             } else if (strstr(p, "BNC")) {
5197                 lp->params.autosense = BNC;
5198             } else if (strstr(p, "AUI")) {
5199                 lp->params.autosense = AUI;
5200             } else if (strstr(p, "BNC_AUI")) {
5201                 lp->params.autosense = BNC;
5202             } else if (strstr(p, "10Mb")) {
5203                 lp->params.autosense = _10Mb;
5204             } else if (strstr(p, "100Mb")) {
5205                 lp->params.autosense = _100Mb;
5206             } else if (strstr(p, "AUTO")) {
5207                 lp->params.autosense = AUTO;
5208             }
5209         }
5210         *q = t;
5211     }
5212 }
5213
5214 static void
5215 de4x5_dbg_open(struct net_device *dev)
5216 {
5217     struct de4x5_private *lp = netdev_priv(dev);
5218     int i;
5219
5220     if (de4x5_debug & DEBUG_OPEN) {
5221         printk("%s: de4x5 opening with irq %d\n",dev->name,dev->irq);
5222         printk("\tphysical address: %pM\n", dev->dev_addr);
5223         printk("Descriptor head addresses:\n");
5224         printk("\t0x%8.8lx  0x%8.8lx\n",(u_long)lp->rx_ring,(u_long)lp->tx_ring);
5225         printk("Descriptor addresses:\nRX: ");
5226         for (i=0;i<lp->rxRingSize-1;i++){
5227             if (i < 3) {
5228                 printk("0x%8.8lx  ",(u_long)&lp->rx_ring[i].status);
5229             }
5230         }
5231         printk("...0x%8.8lx\n",(u_long)&lp->rx_ring[i].status);
5232         printk("TX: ");
5233         for (i=0;i<lp->txRingSize-1;i++){
5234             if (i < 3) {
5235                 printk("0x%8.8lx  ", (u_long)&lp->tx_ring[i].status);
5236             }
5237         }
5238         printk("...0x%8.8lx\n", (u_long)&lp->tx_ring[i].status);
5239         printk("Descriptor buffers:\nRX: ");
5240         for (i=0;i<lp->rxRingSize-1;i++){
5241             if (i < 3) {
5242                 printk("0x%8.8x  ",le32_to_cpu(lp->rx_ring[i].buf));
5243             }
5244         }
5245         printk("...0x%8.8x\n",le32_to_cpu(lp->rx_ring[i].buf));
5246         printk("TX: ");
5247         for (i=0;i<lp->txRingSize-1;i++){
5248             if (i < 3) {
5249                 printk("0x%8.8x  ", le32_to_cpu(lp->tx_ring[i].buf));
5250             }
5251         }
5252         printk("...0x%8.8x\n", le32_to_cpu(lp->tx_ring[i].buf));
5253         printk("Ring size:\nRX: %d\nTX: %d\n",
5254                (short)lp->rxRingSize,
5255                (short)lp->txRingSize);
5256     }
5257 }
5258
5259 static void
5260 de4x5_dbg_mii(struct net_device *dev, int k)
5261 {
5262     struct de4x5_private *lp = netdev_priv(dev);
5263     u_long iobase = dev->base_addr;
5264
5265     if (de4x5_debug & DEBUG_MII) {
5266         printk("\nMII device address: %d\n", lp->phy[k].addr);
5267         printk("MII CR:  %x\n",mii_rd(MII_CR,lp->phy[k].addr,DE4X5_MII));
5268         printk("MII SR:  %x\n",mii_rd(MII_SR,lp->phy[k].addr,DE4X5_MII));
5269         printk("MII ID0: %x\n",mii_rd(MII_ID0,lp->phy[k].addr,DE4X5_MII));
5270         printk("MII ID1: %x\n",mii_rd(MII_ID1,lp->phy[k].addr,DE4X5_MII));
5271         if (lp->phy[k].id != BROADCOM_T4) {
5272             printk("MII ANA: %x\n",mii_rd(0x04,lp->phy[k].addr,DE4X5_MII));
5273             printk("MII ANC: %x\n",mii_rd(0x05,lp->phy[k].addr,DE4X5_MII));
5274         }
5275         printk("MII 16:  %x\n",mii_rd(0x10,lp->phy[k].addr,DE4X5_MII));
5276         if (lp->phy[k].id != BROADCOM_T4) {
5277             printk("MII 17:  %x\n",mii_rd(0x11,lp->phy[k].addr,DE4X5_MII));
5278             printk("MII 18:  %x\n",mii_rd(0x12,lp->phy[k].addr,DE4X5_MII));
5279         } else {
5280             printk("MII 20:  %x\n",mii_rd(0x14,lp->phy[k].addr,DE4X5_MII));
5281         }
5282     }
5283 }
5284
5285 static void
5286 de4x5_dbg_media(struct net_device *dev)
5287 {
5288     struct de4x5_private *lp = netdev_priv(dev);
5289
5290     if (lp->media != lp->c_media) {
5291         if (de4x5_debug & DEBUG_MEDIA) {
5292             printk("%s: media is %s%s\n", dev->name,
5293                    (lp->media == NC  ? "unconnected, link down or incompatible connection" :
5294                     (lp->media == TP  ? "TP" :
5295                      (lp->media == ANS ? "TP/Nway" :
5296                       (lp->media == BNC ? "BNC" :
5297                        (lp->media == AUI ? "AUI" :
5298                         (lp->media == BNC_AUI ? "BNC/AUI" :
5299                          (lp->media == EXT_SIA ? "EXT SIA" :
5300                           (lp->media == _100Mb  ? "100Mb/s" :
5301                            (lp->media == _10Mb   ? "10Mb/s" :
5302                             "???"
5303                             ))))))))), (lp->fdx?" full duplex.":"."));
5304         }
5305         lp->c_media = lp->media;
5306     }
5307 }
5308
5309 static void
5310 de4x5_dbg_srom(struct de4x5_srom *p)
5311 {
5312     int i;
5313
5314     if (de4x5_debug & DEBUG_SROM) {
5315         printk("Sub-system Vendor ID: %04x\n", *((u_short *)p->sub_vendor_id));
5316         printk("Sub-system ID:        %04x\n", *((u_short *)p->sub_system_id));
5317         printk("ID Block CRC:         %02x\n", (u_char)(p->id_block_crc));
5318         printk("SROM version:         %02x\n", (u_char)(p->version));
5319         printk("# controllers:        %02x\n", (u_char)(p->num_controllers));
5320
5321         printk("Hardware Address:     %pM\n", p->ieee_addr);
5322         printk("CRC checksum:         %04x\n", (u_short)(p->chksum));
5323         for (i=0; i<64; i++) {
5324             printk("%3d %04x\n", i<<1, (u_short)*((u_short *)p+i));
5325         }
5326     }
5327 }
5328
5329 static void
5330 de4x5_dbg_rx(struct sk_buff *skb, int len)
5331 {
5332     int i, j;
5333
5334     if (de4x5_debug & DEBUG_RX) {
5335         printk("R: %pM <- %pM len/SAP:%02x%02x [%d]\n",
5336                skb->data, &skb->data[6],
5337                (u_char)skb->data[12],
5338                (u_char)skb->data[13],
5339                len);
5340         for (j=0; len>0;j+=16, len-=16) {
5341           printk("    %03x: ",j);
5342           for (i=0; i<16 && i<len; i++) {
5343             printk("%02x ",(u_char)skb->data[i+j]);
5344           }
5345           printk("\n");
5346         }
5347     }
5348 }
5349
5350 /*
5351 ** Perform IOCTL call functions here. Some are privileged operations and the
5352 ** effective uid is checked in those cases. In the normal course of events
5353 ** this function is only used for my testing.
5354 */
5355 static int
5356 de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5357 {
5358     struct de4x5_private *lp = netdev_priv(dev);
5359     struct de4x5_ioctl *ioc = (struct de4x5_ioctl *) &rq->ifr_ifru;
5360     u_long iobase = dev->base_addr;
5361     int i, j, status = 0;
5362     s32 omr;
5363     union {
5364         u8  addr[144];
5365         u16 sval[72];
5366         u32 lval[36];
5367     } tmp;
5368     u_long flags = 0;
5369
5370     switch(ioc->cmd) {
5371     case DE4X5_GET_HWADDR:           /* Get the hardware address */
5372         ioc->len = ETH_ALEN;
5373         for (i=0; i<ETH_ALEN; i++) {
5374             tmp.addr[i] = dev->dev_addr[i];
5375         }
5376         if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5377         break;
5378
5379     case DE4X5_SET_HWADDR:           /* Set the hardware address */
5380         if (!capable(CAP_NET_ADMIN)) return -EPERM;
5381         if (copy_from_user(tmp.addr, ioc->data, ETH_ALEN)) return -EFAULT;
5382         if (netif_queue_stopped(dev))
5383                 return -EBUSY;
5384         netif_stop_queue(dev);
5385         for (i=0; i<ETH_ALEN; i++) {
5386             dev->dev_addr[i] = tmp.addr[i];
5387         }
5388         build_setup_frame(dev, PHYS_ADDR_ONLY);
5389         /* Set up the descriptor and give ownership to the card */
5390         load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
5391                                                        SETUP_FRAME_LEN, (struct sk_buff *)1);
5392         lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
5393         outl(POLL_DEMAND, DE4X5_TPD);                /* Start the TX */
5394         netif_wake_queue(dev);                      /* Unlock the TX ring */
5395         break;
5396
5397     case DE4X5_SAY_BOO:              /* Say "Boo!" to the kernel log file */
5398         if (!capable(CAP_NET_ADMIN)) return -EPERM;
5399         printk("%s: Boo!\n", dev->name);
5400         break;
5401
5402     case DE4X5_MCA_EN:               /* Enable pass all multicast addressing */
5403         if (!capable(CAP_NET_ADMIN)) return -EPERM;
5404         omr = inl(DE4X5_OMR);
5405         omr |= OMR_PM;
5406         outl(omr, DE4X5_OMR);
5407         break;
5408
5409     case DE4X5_GET_STATS:            /* Get the driver statistics */
5410     {
5411         struct pkt_stats statbuf;
5412         ioc->len = sizeof(statbuf);
5413         spin_lock_irqsave(&lp->lock, flags);
5414         memcpy(&statbuf, &lp->pktStats, ioc->len);
5415         spin_unlock_irqrestore(&lp->lock, flags);
5416         if (copy_to_user(ioc->data, &statbuf, ioc->len))
5417                 return -EFAULT;
5418         break;
5419     }
5420     case DE4X5_CLR_STATS:            /* Zero out the driver statistics */
5421         if (!capable(CAP_NET_ADMIN)) return -EPERM;
5422         spin_lock_irqsave(&lp->lock, flags);
5423         memset(&lp->pktStats, 0, sizeof(lp->pktStats));
5424         spin_unlock_irqrestore(&lp->lock, flags);
5425         break;
5426
5427     case DE4X5_GET_OMR:              /* Get the OMR Register contents */
5428         tmp.addr[0] = inl(DE4X5_OMR);
5429         if (copy_to_user(ioc->data, tmp.addr, 1)) return -EFAULT;
5430         break;
5431
5432     case DE4X5_SET_OMR:              /* Set the OMR Register contents */
5433         if (!capable(CAP_NET_ADMIN)) return -EPERM;
5434         if (copy_from_user(tmp.addr, ioc->data, 1)) return -EFAULT;
5435         outl(tmp.addr[0], DE4X5_OMR);
5436         break;
5437
5438     case DE4X5_GET_REG:              /* Get the DE4X5 Registers */
5439         j = 0;
5440         tmp.lval[0] = inl(DE4X5_STS); j+=4;
5441         tmp.lval[1] = inl(DE4X5_BMR); j+=4;
5442         tmp.lval[2] = inl(DE4X5_IMR); j+=4;
5443         tmp.lval[3] = inl(DE4X5_OMR); j+=4;
5444         tmp.lval[4] = inl(DE4X5_SISR); j+=4;
5445         tmp.lval[5] = inl(DE4X5_SICR); j+=4;
5446         tmp.lval[6] = inl(DE4X5_STRR); j+=4;
5447         tmp.lval[7] = inl(DE4X5_SIGR); j+=4;
5448         ioc->len = j;
5449         if (copy_to_user(ioc->data, tmp.lval, ioc->len))
5450                 return -EFAULT;
5451         break;
5452
5453 #define DE4X5_DUMP              0x0f /* Dump the DE4X5 Status */
5454 /*
5455       case DE4X5_DUMP:
5456         j = 0;
5457         tmp.addr[j++] = dev->irq;
5458         for (i=0; i<ETH_ALEN; i++) {
5459             tmp.addr[j++] = dev->dev_addr[i];
5460         }
5461         tmp.addr[j++] = lp->rxRingSize;
5462         tmp.lval[j>>2] = (long)lp->rx_ring; j+=4;
5463         tmp.lval[j>>2] = (long)lp->tx_ring; j+=4;
5464
5465         for (i=0;i<lp->rxRingSize-1;i++){
5466             if (i < 3) {
5467                 tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
5468             }
5469         }
5470         tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
5471         for (i=0;i<lp->txRingSize-1;i++){
5472             if (i < 3) {
5473                 tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5474             }
5475         }
5476         tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5477
5478         for (i=0;i<lp->rxRingSize-1;i++){
5479             if (i < 3) {
5480                 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
5481             }
5482         }
5483         tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
5484         for (i=0;i<lp->txRingSize-1;i++){
5485             if (i < 3) {
5486                 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5487             }
5488         }
5489         tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5490
5491         for (i=0;i<lp->rxRingSize;i++){
5492             tmp.lval[j>>2] = le32_to_cpu(lp->rx_ring[i].status); j+=4;
5493         }
5494         for (i=0;i<lp->txRingSize;i++){
5495             tmp.lval[j>>2] = le32_to_cpu(lp->tx_ring[i].status); j+=4;
5496         }
5497
5498         tmp.lval[j>>2] = inl(DE4X5_BMR);  j+=4;
5499         tmp.lval[j>>2] = inl(DE4X5_TPD);  j+=4;
5500         tmp.lval[j>>2] = inl(DE4X5_RPD);  j+=4;
5501         tmp.lval[j>>2] = inl(DE4X5_RRBA); j+=4;
5502         tmp.lval[j>>2] = inl(DE4X5_TRBA); j+=4;
5503         tmp.lval[j>>2] = inl(DE4X5_STS);  j+=4;
5504         tmp.lval[j>>2] = inl(DE4X5_OMR);  j+=4;
5505         tmp.lval[j>>2] = inl(DE4X5_IMR);  j+=4;
5506         tmp.lval[j>>2] = lp->chipset; j+=4;
5507         if (lp->chipset == DC21140) {
5508             tmp.lval[j>>2] = gep_rd(dev);  j+=4;
5509         } else {
5510             tmp.lval[j>>2] = inl(DE4X5_SISR); j+=4;
5511             tmp.lval[j>>2] = inl(DE4X5_SICR); j+=4;
5512             tmp.lval[j>>2] = inl(DE4X5_STRR); j+=4;
5513             tmp.lval[j>>2] = inl(DE4X5_SIGR); j+=4;
5514         }
5515         tmp.lval[j>>2] = lp->phy[lp->active].id; j+=4;
5516         if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
5517             tmp.lval[j>>2] = lp->active; j+=4;
5518             tmp.lval[j>>2]=mii_rd(MII_CR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5519             tmp.lval[j>>2]=mii_rd(MII_SR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5520             tmp.lval[j>>2]=mii_rd(MII_ID0,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5521             tmp.lval[j>>2]=mii_rd(MII_ID1,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5522             if (lp->phy[lp->active].id != BROADCOM_T4) {
5523                 tmp.lval[j>>2]=mii_rd(MII_ANA,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5524                 tmp.lval[j>>2]=mii_rd(MII_ANLPA,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5525             }
5526             tmp.lval[j>>2]=mii_rd(0x10,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5527             if (lp->phy[lp->active].id != BROADCOM_T4) {
5528                 tmp.lval[j>>2]=mii_rd(0x11,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5529                 tmp.lval[j>>2]=mii_rd(0x12,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5530             } else {
5531                 tmp.lval[j>>2]=mii_rd(0x14,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5532             }
5533         }
5534
5535         tmp.addr[j++] = lp->txRingSize;
5536         tmp.addr[j++] = netif_queue_stopped(dev);
5537
5538         ioc->len = j;
5539         if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5540         break;
5541
5542 */
5543     default:
5544         return -EOPNOTSUPP;
5545     }
5546
5547     return status;
5548 }
5549
5550 static int __init de4x5_module_init (void)
5551 {
5552         int err = 0;
5553
5554 #ifdef CONFIG_PCI
5555         err = pci_register_driver(&de4x5_pci_driver);
5556 #endif
5557 #ifdef CONFIG_EISA
5558         err |= eisa_driver_register (&de4x5_eisa_driver);
5559 #endif
5560
5561         return err;
5562 }
5563
5564 static void __exit de4x5_module_exit (void)
5565 {
5566 #ifdef CONFIG_PCI
5567         pci_unregister_driver (&de4x5_pci_driver);
5568 #endif
5569 #ifdef CONFIG_EISA
5570         eisa_driver_unregister (&de4x5_eisa_driver);
5571 #endif
5572 }
5573
5574 module_init (de4x5_module_init);
5575 module_exit (de4x5_module_exit);