Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <asm/uaccess.h>
67
68 #include "cxgb4.h"
69 #include "t4_regs.h"
70 #include "t4_values.h"
71 #include "t4_msg.h"
72 #include "t4fw_api.h"
73 #include "t4fw_version.h"
74 #include "cxgb4_dcb.h"
75 #include "cxgb4_debugfs.h"
76 #include "clip_tbl.h"
77 #include "l2t.h"
78
79 char cxgb4_driver_name[] = KBUILD_MODNAME;
80
81 #ifdef DRV_VERSION
82 #undef DRV_VERSION
83 #endif
84 #define DRV_VERSION "2.0.0-ko"
85 const char cxgb4_driver_version[] = DRV_VERSION;
86 #define DRV_DESC "Chelsio T4/T5 Network Driver"
87
88 /* Host shadow copy of ingress filter entry.  This is in host native format
89  * and doesn't match the ordering or bit order, etc. of the hardware of the
90  * firmware command.  The use of bit-field structure elements is purely to
91  * remind ourselves of the field size limitations and save memory in the case
92  * where the filter table is large.
93  */
94 struct filter_entry {
95         /* Administrative fields for filter.
96          */
97         u32 valid:1;            /* filter allocated and valid */
98         u32 locked:1;           /* filter is administratively locked */
99
100         u32 pending:1;          /* filter action is pending firmware reply */
101         u32 smtidx:8;           /* Source MAC Table index for smac */
102         struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
103
104         /* The filter itself.  Most of this is a straight copy of information
105          * provided by the extended ioctl().  Some fields are translated to
106          * internal forms -- for instance the Ingress Queue ID passed in from
107          * the ioctl() is translated into the Absolute Ingress Queue ID.
108          */
109         struct ch_filter_specification fs;
110 };
111
112 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
113                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
114                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
115
116 /* Macros needed to support the PCI Device ID Table ...
117  */
118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
119         static const struct pci_device_id cxgb4_pci_tbl[] = {
120 #define CH_PCI_DEVICE_ID_FUNCTION 0x4
121
122 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
123  * called for both.
124  */
125 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
126
127 #define CH_PCI_ID_TABLE_ENTRY(devid) \
128                 {PCI_VDEVICE(CHELSIO, (devid)), 4}
129
130 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
131                 { 0, } \
132         }
133
134 #include "t4_pci_id_tbl.h"
135
136 #define FW4_FNAME "cxgb4/t4fw.bin"
137 #define FW5_FNAME "cxgb4/t5fw.bin"
138 #define FW4_CFNAME "cxgb4/t4-config.txt"
139 #define FW5_CFNAME "cxgb4/t5-config.txt"
140
141 MODULE_DESCRIPTION(DRV_DESC);
142 MODULE_AUTHOR("Chelsio Communications");
143 MODULE_LICENSE("Dual BSD/GPL");
144 MODULE_VERSION(DRV_VERSION);
145 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
146 MODULE_FIRMWARE(FW4_FNAME);
147 MODULE_FIRMWARE(FW5_FNAME);
148
149 /*
150  * Normally we're willing to become the firmware's Master PF but will be happy
151  * if another PF has already become the Master and initialized the adapter.
152  * Setting "force_init" will cause this driver to forcibly establish itself as
153  * the Master PF and initialize the adapter.
154  */
155 static uint force_init;
156
157 module_param(force_init, uint, 0644);
158 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
159
160 /*
161  * Normally if the firmware we connect to has Configuration File support, we
162  * use that and only fall back to the old Driver-based initialization if the
163  * Configuration File fails for some reason.  If force_old_init is set, then
164  * we'll always use the old Driver-based initialization sequence.
165  */
166 static uint force_old_init;
167
168 module_param(force_old_init, uint, 0644);
169 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence, deprecated"
170                  " parameter");
171
172 static int dflt_msg_enable = DFLT_MSG_ENABLE;
173
174 module_param(dflt_msg_enable, int, 0644);
175 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
176
177 /*
178  * The driver uses the best interrupt scheme available on a platform in the
179  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
180  * of these schemes the driver may consider as follows:
181  *
182  * msi = 2: choose from among all three options
183  * msi = 1: only consider MSI and INTx interrupts
184  * msi = 0: force INTx interrupts
185  */
186 static int msi = 2;
187
188 module_param(msi, int, 0644);
189 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
190
191 /*
192  * Queue interrupt hold-off timer values.  Queues default to the first of these
193  * upon creation.
194  */
195 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
196
197 module_param_array(intr_holdoff, uint, NULL, 0644);
198 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
199                  "0..4 in microseconds, deprecated parameter");
200
201 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
202
203 module_param_array(intr_cnt, uint, NULL, 0644);
204 MODULE_PARM_DESC(intr_cnt,
205                  "thresholds 1..3 for queue interrupt packet counters, "
206                  "deprecated parameter");
207
208 /*
209  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
210  * offset by 2 bytes in order to have the IP headers line up on 4-byte
211  * boundaries.  This is a requirement for many architectures which will throw
212  * a machine check fault if an attempt is made to access one of the 4-byte IP
213  * header fields on a non-4-byte boundary.  And it's a major performance issue
214  * even on some architectures which allow it like some implementations of the
215  * x86 ISA.  However, some architectures don't mind this and for some very
216  * edge-case performance sensitive applications (like forwarding large volumes
217  * of small packets), setting this DMA offset to 0 will decrease the number of
218  * PCI-E Bus transfers enough to measurably affect performance.
219  */
220 static int rx_dma_offset = 2;
221
222 static bool vf_acls;
223
224 #ifdef CONFIG_PCI_IOV
225 module_param(vf_acls, bool, 0644);
226 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement, "
227                  "deprecated parameter");
228
229 /* Configure the number of PCI-E Virtual Function which are to be instantiated
230  * on SR-IOV Capable Physical Functions.
231  */
232 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
233
234 module_param_array(num_vf, uint, NULL, 0644);
235 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
236 #endif
237
238 /* TX Queue select used to determine what algorithm to use for selecting TX
239  * queue. Select between the kernel provided function (select_queue=0) or user
240  * cxgb_select_queue function (select_queue=1)
241  *
242  * Default: select_queue=0
243  */
244 static int select_queue;
245 module_param(select_queue, int, 0644);
246 MODULE_PARM_DESC(select_queue,
247                  "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
248
249 static unsigned int tp_vlan_pri_map = HW_TPL_FR_MT_PR_IV_P_FC;
250
251 module_param(tp_vlan_pri_map, uint, 0644);
252 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration, "
253                  "deprecated parameter");
254
255 static struct dentry *cxgb4_debugfs_root;
256
257 static LIST_HEAD(adapter_list);
258 static DEFINE_MUTEX(uld_mutex);
259 /* Adapter list to be accessed from atomic context */
260 static LIST_HEAD(adap_rcu_list);
261 static DEFINE_SPINLOCK(adap_rcu_lock);
262 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
263 static const char *uld_str[] = { "RDMA", "iSCSI" };
264
265 static void link_report(struct net_device *dev)
266 {
267         if (!netif_carrier_ok(dev))
268                 netdev_info(dev, "link down\n");
269         else {
270                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
271
272                 const char *s = "10Mbps";
273                 const struct port_info *p = netdev_priv(dev);
274
275                 switch (p->link_cfg.speed) {
276                 case 10000:
277                         s = "10Gbps";
278                         break;
279                 case 1000:
280                         s = "1000Mbps";
281                         break;
282                 case 100:
283                         s = "100Mbps";
284                         break;
285                 case 40000:
286                         s = "40Gbps";
287                         break;
288                 }
289
290                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
291                             fc[p->link_cfg.fc]);
292         }
293 }
294
295 #ifdef CONFIG_CHELSIO_T4_DCB
296 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
297 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
298 {
299         struct port_info *pi = netdev_priv(dev);
300         struct adapter *adap = pi->adapter;
301         struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
302         int i;
303
304         /* We use a simple mapping of Port TX Queue Index to DCB
305          * Priority when we're enabling DCB.
306          */
307         for (i = 0; i < pi->nqsets; i++, txq++) {
308                 u32 name, value;
309                 int err;
310
311                 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
312                         FW_PARAMS_PARAM_X_V(
313                                 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
314                         FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
315                 value = enable ? i : 0xffffffff;
316
317                 /* Since we can be called while atomic (from "interrupt
318                  * level") we need to issue the Set Parameters Commannd
319                  * without sleeping (timeout < 0).
320                  */
321                 err = t4_set_params_nosleep(adap, adap->mbox, adap->fn, 0, 1,
322                                             &name, &value);
323
324                 if (err)
325                         dev_err(adap->pdev_dev,
326                                 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
327                                 enable ? "set" : "unset", pi->port_id, i, -err);
328                 else
329                         txq->dcb_prio = value;
330         }
331 }
332 #endif /* CONFIG_CHELSIO_T4_DCB */
333
334 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
335 {
336         struct net_device *dev = adapter->port[port_id];
337
338         /* Skip changes from disabled ports. */
339         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
340                 if (link_stat)
341                         netif_carrier_on(dev);
342                 else {
343 #ifdef CONFIG_CHELSIO_T4_DCB
344                         cxgb4_dcb_state_init(dev);
345                         dcb_tx_queue_prio_enable(dev, false);
346 #endif /* CONFIG_CHELSIO_T4_DCB */
347                         netif_carrier_off(dev);
348                 }
349
350                 link_report(dev);
351         }
352 }
353
354 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
355 {
356         static const char *mod_str[] = {
357                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
358         };
359
360         const struct net_device *dev = adap->port[port_id];
361         const struct port_info *pi = netdev_priv(dev);
362
363         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
364                 netdev_info(dev, "port module unplugged\n");
365         else if (pi->mod_type < ARRAY_SIZE(mod_str))
366                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
367 }
368
369 /*
370  * Configure the exact and hash address filters to handle a port's multicast
371  * and secondary unicast MAC addresses.
372  */
373 static int set_addr_filters(const struct net_device *dev, bool sleep)
374 {
375         u64 mhash = 0;
376         u64 uhash = 0;
377         bool free = true;
378         u16 filt_idx[7];
379         const u8 *addr[7];
380         int ret, naddr = 0;
381         const struct netdev_hw_addr *ha;
382         int uc_cnt = netdev_uc_count(dev);
383         int mc_cnt = netdev_mc_count(dev);
384         const struct port_info *pi = netdev_priv(dev);
385         unsigned int mb = pi->adapter->fn;
386
387         /* first do the secondary unicast addresses */
388         netdev_for_each_uc_addr(ha, dev) {
389                 addr[naddr++] = ha->addr;
390                 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
391                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
392                                         naddr, addr, filt_idx, &uhash, sleep);
393                         if (ret < 0)
394                                 return ret;
395
396                         free = false;
397                         naddr = 0;
398                 }
399         }
400
401         /* next set up the multicast addresses */
402         netdev_for_each_mc_addr(ha, dev) {
403                 addr[naddr++] = ha->addr;
404                 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
405                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
406                                         naddr, addr, filt_idx, &mhash, sleep);
407                         if (ret < 0)
408                                 return ret;
409
410                         free = false;
411                         naddr = 0;
412                 }
413         }
414
415         return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
416                                 uhash | mhash, sleep);
417 }
418
419 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
420 module_param(dbfifo_int_thresh, int, 0644);
421 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
422
423 /*
424  * usecs to sleep while draining the dbfifo
425  */
426 static int dbfifo_drain_delay = 1000;
427 module_param(dbfifo_drain_delay, int, 0644);
428 MODULE_PARM_DESC(dbfifo_drain_delay,
429                  "usecs to sleep while draining the dbfifo");
430
431 /*
432  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
433  * If @mtu is -1 it is left unchanged.
434  */
435 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
436 {
437         int ret;
438         struct port_info *pi = netdev_priv(dev);
439
440         ret = set_addr_filters(dev, sleep_ok);
441         if (ret == 0)
442                 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
443                                     (dev->flags & IFF_PROMISC) ? 1 : 0,
444                                     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
445                                     sleep_ok);
446         return ret;
447 }
448
449 /**
450  *      link_start - enable a port
451  *      @dev: the port to enable
452  *
453  *      Performs the MAC and PHY actions needed to enable a port.
454  */
455 static int link_start(struct net_device *dev)
456 {
457         int ret;
458         struct port_info *pi = netdev_priv(dev);
459         unsigned int mb = pi->adapter->fn;
460
461         /*
462          * We do not set address filters and promiscuity here, the stack does
463          * that step explicitly.
464          */
465         ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
466                             !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
467         if (ret == 0) {
468                 ret = t4_change_mac(pi->adapter, mb, pi->viid,
469                                     pi->xact_addr_filt, dev->dev_addr, true,
470                                     true);
471                 if (ret >= 0) {
472                         pi->xact_addr_filt = ret;
473                         ret = 0;
474                 }
475         }
476         if (ret == 0)
477                 ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
478                                     &pi->link_cfg);
479         if (ret == 0) {
480                 local_bh_disable();
481                 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
482                                           true, CXGB4_DCB_ENABLED);
483                 local_bh_enable();
484         }
485
486         return ret;
487 }
488
489 int cxgb4_dcb_enabled(const struct net_device *dev)
490 {
491 #ifdef CONFIG_CHELSIO_T4_DCB
492         struct port_info *pi = netdev_priv(dev);
493
494         if (!pi->dcb.enabled)
495                 return 0;
496
497         return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
498                 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
499 #else
500         return 0;
501 #endif
502 }
503 EXPORT_SYMBOL(cxgb4_dcb_enabled);
504
505 #ifdef CONFIG_CHELSIO_T4_DCB
506 /* Handle a Data Center Bridging update message from the firmware. */
507 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
508 {
509         int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
510         struct net_device *dev = adap->port[port];
511         int old_dcb_enabled = cxgb4_dcb_enabled(dev);
512         int new_dcb_enabled;
513
514         cxgb4_dcb_handle_fw_update(adap, pcmd);
515         new_dcb_enabled = cxgb4_dcb_enabled(dev);
516
517         /* If the DCB has become enabled or disabled on the port then we're
518          * going to need to set up/tear down DCB Priority parameters for the
519          * TX Queues associated with the port.
520          */
521         if (new_dcb_enabled != old_dcb_enabled)
522                 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
523 }
524 #endif /* CONFIG_CHELSIO_T4_DCB */
525
526 /* Clear a filter and release any of its resources that we own.  This also
527  * clears the filter's "pending" status.
528  */
529 static void clear_filter(struct adapter *adap, struct filter_entry *f)
530 {
531         /* If the new or old filter have loopback rewriteing rules then we'll
532          * need to free any existing Layer Two Table (L2T) entries of the old
533          * filter rule.  The firmware will handle freeing up any Source MAC
534          * Table (SMT) entries used for rewriting Source MAC Addresses in
535          * loopback rules.
536          */
537         if (f->l2t)
538                 cxgb4_l2t_release(f->l2t);
539
540         /* The zeroing of the filter rule below clears the filter valid,
541          * pending, locked flags, l2t pointer, etc. so it's all we need for
542          * this operation.
543          */
544         memset(f, 0, sizeof(*f));
545 }
546
547 /* Handle a filter write/deletion reply.
548  */
549 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
550 {
551         unsigned int idx = GET_TID(rpl);
552         unsigned int nidx = idx - adap->tids.ftid_base;
553         unsigned int ret;
554         struct filter_entry *f;
555
556         if (idx >= adap->tids.ftid_base && nidx <
557            (adap->tids.nftids + adap->tids.nsftids)) {
558                 idx = nidx;
559                 ret = TCB_COOKIE_G(rpl->cookie);
560                 f = &adap->tids.ftid_tab[idx];
561
562                 if (ret == FW_FILTER_WR_FLT_DELETED) {
563                         /* Clear the filter when we get confirmation from the
564                          * hardware that the filter has been deleted.
565                          */
566                         clear_filter(adap, f);
567                 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
568                         dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
569                                 idx);
570                         clear_filter(adap, f);
571                 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
572                         f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
573                         f->pending = 0;  /* asynchronous setup completed */
574                         f->valid = 1;
575                 } else {
576                         /* Something went wrong.  Issue a warning about the
577                          * problem and clear everything out.
578                          */
579                         dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
580                                 idx, ret);
581                         clear_filter(adap, f);
582                 }
583         }
584 }
585
586 /* Response queue handler for the FW event queue.
587  */
588 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
589                           const struct pkt_gl *gl)
590 {
591         u8 opcode = ((const struct rss_header *)rsp)->opcode;
592
593         rsp++;                                          /* skip RSS header */
594
595         /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
596          */
597         if (unlikely(opcode == CPL_FW4_MSG &&
598            ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
599                 rsp++;
600                 opcode = ((const struct rss_header *)rsp)->opcode;
601                 rsp++;
602                 if (opcode != CPL_SGE_EGR_UPDATE) {
603                         dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
604                                 , opcode);
605                         goto out;
606                 }
607         }
608
609         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
610                 const struct cpl_sge_egr_update *p = (void *)rsp;
611                 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
612                 struct sge_txq *txq;
613
614                 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
615                 txq->restarts++;
616                 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
617                         struct sge_eth_txq *eq;
618
619                         eq = container_of(txq, struct sge_eth_txq, q);
620                         netif_tx_wake_queue(eq->txq);
621                 } else {
622                         struct sge_ofld_txq *oq;
623
624                         oq = container_of(txq, struct sge_ofld_txq, q);
625                         tasklet_schedule(&oq->qresume_tsk);
626                 }
627         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
628                 const struct cpl_fw6_msg *p = (void *)rsp;
629
630 #ifdef CONFIG_CHELSIO_T4_DCB
631                 const struct fw_port_cmd *pcmd = (const void *)p->data;
632                 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
633                 unsigned int action =
634                         FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
635
636                 if (cmd == FW_PORT_CMD &&
637                     action == FW_PORT_ACTION_GET_PORT_INFO) {
638                         int port = FW_PORT_CMD_PORTID_G(
639                                         be32_to_cpu(pcmd->op_to_portid));
640                         struct net_device *dev = q->adap->port[port];
641                         int state_input = ((pcmd->u.info.dcbxdis_pkd &
642                                             FW_PORT_CMD_DCBXDIS_F)
643                                            ? CXGB4_DCB_INPUT_FW_DISABLED
644                                            : CXGB4_DCB_INPUT_FW_ENABLED);
645
646                         cxgb4_dcb_state_fsm(dev, state_input);
647                 }
648
649                 if (cmd == FW_PORT_CMD &&
650                     action == FW_PORT_ACTION_L2_DCB_CFG)
651                         dcb_rpl(q->adap, pcmd);
652                 else
653 #endif
654                         if (p->type == 0)
655                                 t4_handle_fw_rpl(q->adap, p->data);
656         } else if (opcode == CPL_L2T_WRITE_RPL) {
657                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
658
659                 do_l2t_write_rpl(q->adap, p);
660         } else if (opcode == CPL_SET_TCB_RPL) {
661                 const struct cpl_set_tcb_rpl *p = (void *)rsp;
662
663                 filter_rpl(q->adap, p);
664         } else
665                 dev_err(q->adap->pdev_dev,
666                         "unexpected CPL %#x on FW event queue\n", opcode);
667 out:
668         return 0;
669 }
670
671 /**
672  *      uldrx_handler - response queue handler for ULD queues
673  *      @q: the response queue that received the packet
674  *      @rsp: the response queue descriptor holding the offload message
675  *      @gl: the gather list of packet fragments
676  *
677  *      Deliver an ingress offload packet to a ULD.  All processing is done by
678  *      the ULD, we just maintain statistics.
679  */
680 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
681                          const struct pkt_gl *gl)
682 {
683         struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
684
685         /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
686          */
687         if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
688             ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
689                 rsp += 2;
690
691         if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
692                 rxq->stats.nomem++;
693                 return -1;
694         }
695         if (gl == NULL)
696                 rxq->stats.imm++;
697         else if (gl == CXGB4_MSG_AN)
698                 rxq->stats.an++;
699         else
700                 rxq->stats.pkts++;
701         return 0;
702 }
703
704 static void disable_msi(struct adapter *adapter)
705 {
706         if (adapter->flags & USING_MSIX) {
707                 pci_disable_msix(adapter->pdev);
708                 adapter->flags &= ~USING_MSIX;
709         } else if (adapter->flags & USING_MSI) {
710                 pci_disable_msi(adapter->pdev);
711                 adapter->flags &= ~USING_MSI;
712         }
713 }
714
715 /*
716  * Interrupt handler for non-data events used with MSI-X.
717  */
718 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
719 {
720         struct adapter *adap = cookie;
721         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
722
723         if (v & PFSW_F) {
724                 adap->swintr = 1;
725                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
726         }
727         if (adap->flags & MASTER_PF)
728                 t4_slow_intr_handler(adap);
729         return IRQ_HANDLED;
730 }
731
732 /*
733  * Name the MSI-X interrupts.
734  */
735 static void name_msix_vecs(struct adapter *adap)
736 {
737         int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
738
739         /* non-data interrupts */
740         snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
741
742         /* FW events */
743         snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
744                  adap->port[0]->name);
745
746         /* Ethernet queues */
747         for_each_port(adap, j) {
748                 struct net_device *d = adap->port[j];
749                 const struct port_info *pi = netdev_priv(d);
750
751                 for (i = 0; i < pi->nqsets; i++, msi_idx++)
752                         snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
753                                  d->name, i);
754         }
755
756         /* offload queues */
757         for_each_ofldrxq(&adap->sge, i)
758                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
759                          adap->port[0]->name, i);
760
761         for_each_rdmarxq(&adap->sge, i)
762                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
763                          adap->port[0]->name, i);
764
765         for_each_rdmaciq(&adap->sge, i)
766                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
767                          adap->port[0]->name, i);
768 }
769
770 static int request_msix_queue_irqs(struct adapter *adap)
771 {
772         struct sge *s = &adap->sge;
773         int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
774         int msi_index = 2;
775
776         err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
777                           adap->msix_info[1].desc, &s->fw_evtq);
778         if (err)
779                 return err;
780
781         for_each_ethrxq(s, ethqidx) {
782                 err = request_irq(adap->msix_info[msi_index].vec,
783                                   t4_sge_intr_msix, 0,
784                                   adap->msix_info[msi_index].desc,
785                                   &s->ethrxq[ethqidx].rspq);
786                 if (err)
787                         goto unwind;
788                 msi_index++;
789         }
790         for_each_ofldrxq(s, ofldqidx) {
791                 err = request_irq(adap->msix_info[msi_index].vec,
792                                   t4_sge_intr_msix, 0,
793                                   adap->msix_info[msi_index].desc,
794                                   &s->ofldrxq[ofldqidx].rspq);
795                 if (err)
796                         goto unwind;
797                 msi_index++;
798         }
799         for_each_rdmarxq(s, rdmaqidx) {
800                 err = request_irq(adap->msix_info[msi_index].vec,
801                                   t4_sge_intr_msix, 0,
802                                   adap->msix_info[msi_index].desc,
803                                   &s->rdmarxq[rdmaqidx].rspq);
804                 if (err)
805                         goto unwind;
806                 msi_index++;
807         }
808         for_each_rdmaciq(s, rdmaciqqidx) {
809                 err = request_irq(adap->msix_info[msi_index].vec,
810                                   t4_sge_intr_msix, 0,
811                                   adap->msix_info[msi_index].desc,
812                                   &s->rdmaciq[rdmaciqqidx].rspq);
813                 if (err)
814                         goto unwind;
815                 msi_index++;
816         }
817         return 0;
818
819 unwind:
820         while (--rdmaciqqidx >= 0)
821                 free_irq(adap->msix_info[--msi_index].vec,
822                          &s->rdmaciq[rdmaciqqidx].rspq);
823         while (--rdmaqidx >= 0)
824                 free_irq(adap->msix_info[--msi_index].vec,
825                          &s->rdmarxq[rdmaqidx].rspq);
826         while (--ofldqidx >= 0)
827                 free_irq(adap->msix_info[--msi_index].vec,
828                          &s->ofldrxq[ofldqidx].rspq);
829         while (--ethqidx >= 0)
830                 free_irq(adap->msix_info[--msi_index].vec,
831                          &s->ethrxq[ethqidx].rspq);
832         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
833         return err;
834 }
835
836 static void free_msix_queue_irqs(struct adapter *adap)
837 {
838         int i, msi_index = 2;
839         struct sge *s = &adap->sge;
840
841         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
842         for_each_ethrxq(s, i)
843                 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
844         for_each_ofldrxq(s, i)
845                 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
846         for_each_rdmarxq(s, i)
847                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
848         for_each_rdmaciq(s, i)
849                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
850 }
851
852 /**
853  *      cxgb4_write_rss - write the RSS table for a given port
854  *      @pi: the port
855  *      @queues: array of queue indices for RSS
856  *
857  *      Sets up the portion of the HW RSS table for the port's VI to distribute
858  *      packets to the Rx queues in @queues.
859  */
860 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
861 {
862         u16 *rss;
863         int i, err;
864         const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset];
865
866         rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
867         if (!rss)
868                 return -ENOMEM;
869
870         /* map the queue indices to queue ids */
871         for (i = 0; i < pi->rss_size; i++, queues++)
872                 rss[i] = q[*queues].rspq.abs_id;
873
874         err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0,
875                                   pi->rss_size, rss, pi->rss_size);
876         kfree(rss);
877         return err;
878 }
879
880 /**
881  *      setup_rss - configure RSS
882  *      @adap: the adapter
883  *
884  *      Sets up RSS for each port.
885  */
886 static int setup_rss(struct adapter *adap)
887 {
888         int i, err;
889
890         for_each_port(adap, i) {
891                 const struct port_info *pi = adap2pinfo(adap, i);
892
893                 err = cxgb4_write_rss(pi, pi->rss);
894                 if (err)
895                         return err;
896         }
897         return 0;
898 }
899
900 /*
901  * Return the channel of the ingress queue with the given qid.
902  */
903 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
904 {
905         qid -= p->ingr_start;
906         return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
907 }
908
909 /*
910  * Wait until all NAPI handlers are descheduled.
911  */
912 static void quiesce_rx(struct adapter *adap)
913 {
914         int i;
915
916         for (i = 0; i < adap->sge.ingr_sz; i++) {
917                 struct sge_rspq *q = adap->sge.ingr_map[i];
918
919                 if (q && q->handler) {
920                         napi_disable(&q->napi);
921                         local_bh_disable();
922                         while (!cxgb_poll_lock_napi(q))
923                                 mdelay(1);
924                         local_bh_enable();
925                 }
926
927         }
928 }
929
930 /* Disable interrupt and napi handler */
931 static void disable_interrupts(struct adapter *adap)
932 {
933         if (adap->flags & FULL_INIT_DONE) {
934                 t4_intr_disable(adap);
935                 if (adap->flags & USING_MSIX) {
936                         free_msix_queue_irqs(adap);
937                         free_irq(adap->msix_info[0].vec, adap);
938                 } else {
939                         free_irq(adap->pdev->irq, adap);
940                 }
941                 quiesce_rx(adap);
942         }
943 }
944
945 /*
946  * Enable NAPI scheduling and interrupt generation for all Rx queues.
947  */
948 static void enable_rx(struct adapter *adap)
949 {
950         int i;
951
952         for (i = 0; i < adap->sge.ingr_sz; i++) {
953                 struct sge_rspq *q = adap->sge.ingr_map[i];
954
955                 if (!q)
956                         continue;
957                 if (q->handler) {
958                         cxgb_busy_poll_init_lock(q);
959                         napi_enable(&q->napi);
960                 }
961                 /* 0-increment GTS to start the timer and enable interrupts */
962                 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
963                              SEINTARM_V(q->intr_params) |
964                              INGRESSQID_V(q->cntxt_id));
965         }
966 }
967
968 static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q,
969                            unsigned int nq, unsigned int per_chan, int msi_idx,
970                            u16 *ids)
971 {
972         int i, err;
973
974         for (i = 0; i < nq; i++, q++) {
975                 if (msi_idx > 0)
976                         msi_idx++;
977                 err = t4_sge_alloc_rxq(adap, &q->rspq, false,
978                                        adap->port[i / per_chan],
979                                        msi_idx, q->fl.size ? &q->fl : NULL,
980                                        uldrx_handler);
981                 if (err)
982                         return err;
983                 memset(&q->stats, 0, sizeof(q->stats));
984                 if (ids)
985                         ids[i] = q->rspq.abs_id;
986         }
987         return 0;
988 }
989
990 /**
991  *      setup_sge_queues - configure SGE Tx/Rx/response queues
992  *      @adap: the adapter
993  *
994  *      Determines how many sets of SGE queues to use and initializes them.
995  *      We support multiple queue sets per port if we have MSI-X, otherwise
996  *      just one queue set per port.
997  */
998 static int setup_sge_queues(struct adapter *adap)
999 {
1000         int err, msi_idx, i, j;
1001         struct sge *s = &adap->sge;
1002
1003         bitmap_zero(s->starving_fl, s->egr_sz);
1004         bitmap_zero(s->txq_maperr, s->egr_sz);
1005
1006         if (adap->flags & USING_MSIX)
1007                 msi_idx = 1;         /* vector 0 is for non-queue interrupts */
1008         else {
1009                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1010                                        NULL, NULL);
1011                 if (err)
1012                         return err;
1013                 msi_idx = -((int)s->intrq.abs_id + 1);
1014         }
1015
1016         /* NOTE: If you add/delete any Ingress/Egress Queue allocations in here,
1017          * don't forget to update the following which need to be
1018          * synchronized to and changes here.
1019          *
1020          * 1. The calculations of MAX_INGQ in cxgb4.h.
1021          *
1022          * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs
1023          *    to accommodate any new/deleted Ingress Queues
1024          *    which need MSI-X Vectors.
1025          *
1026          * 3. Update sge_qinfo_show() to include information on the
1027          *    new/deleted queues.
1028          */
1029         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1030                                msi_idx, NULL, fwevtq_handler);
1031         if (err) {
1032 freeout:        t4_free_sge_resources(adap);
1033                 return err;
1034         }
1035
1036         for_each_port(adap, i) {
1037                 struct net_device *dev = adap->port[i];
1038                 struct port_info *pi = netdev_priv(dev);
1039                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1040                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1041
1042                 for (j = 0; j < pi->nqsets; j++, q++) {
1043                         if (msi_idx > 0)
1044                                 msi_idx++;
1045                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1046                                                msi_idx, &q->fl,
1047                                                t4_ethrx_handler);
1048                         if (err)
1049                                 goto freeout;
1050                         q->rspq.idx = j;
1051                         memset(&q->stats, 0, sizeof(q->stats));
1052                 }
1053                 for (j = 0; j < pi->nqsets; j++, t++) {
1054                         err = t4_sge_alloc_eth_txq(adap, t, dev,
1055                                         netdev_get_tx_queue(dev, j),
1056                                         s->fw_evtq.cntxt_id);
1057                         if (err)
1058                                 goto freeout;
1059                 }
1060         }
1061
1062         j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1063         for_each_ofldrxq(s, i) {
1064                 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
1065                                             adap->port[i / j],
1066                                             s->fw_evtq.cntxt_id);
1067                 if (err)
1068                         goto freeout;
1069         }
1070
1071 #define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids) do { \
1072         err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids); \
1073         if (err) \
1074                 goto freeout; \
1075         if (msi_idx > 0) \
1076                 msi_idx += nq; \
1077 } while (0)
1078
1079         ALLOC_OFLD_RXQS(s->ofldrxq, s->ofldqsets, j, s->ofld_rxq);
1080         ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq);
1081         j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */
1082         ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq);
1083
1084 #undef ALLOC_OFLD_RXQS
1085
1086         for_each_port(adap, i) {
1087                 /*
1088                  * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1089                  * have RDMA queues, and that's the right value.
1090                  */
1091                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1092                                             s->fw_evtq.cntxt_id,
1093                                             s->rdmarxq[i].rspq.cntxt_id);
1094                 if (err)
1095                         goto freeout;
1096         }
1097
1098         t4_write_reg(adap, is_t4(adap->params.chip) ?
1099                                 MPS_TRC_RSS_CONTROL_A :
1100                                 MPS_T5_TRC_RSS_CONTROL_A,
1101                      RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1102                      QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1103         return 0;
1104 }
1105
1106 /*
1107  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1108  * The allocated memory is cleared.
1109  */
1110 void *t4_alloc_mem(size_t size)
1111 {
1112         void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1113
1114         if (!p)
1115                 p = vzalloc(size);
1116         return p;
1117 }
1118
1119 /*
1120  * Free memory allocated through alloc_mem().
1121  */
1122 void t4_free_mem(void *addr)
1123 {
1124         if (is_vmalloc_addr(addr))
1125                 vfree(addr);
1126         else
1127                 kfree(addr);
1128 }
1129
1130 /* Send a Work Request to write the filter at a specified index.  We construct
1131  * a Firmware Filter Work Request to have the work done and put the indicated
1132  * filter into "pending" mode which will prevent any further actions against
1133  * it till we get a reply from the firmware on the completion status of the
1134  * request.
1135  */
1136 static int set_filter_wr(struct adapter *adapter, int fidx)
1137 {
1138         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1139         struct sk_buff *skb;
1140         struct fw_filter_wr *fwr;
1141         unsigned int ftid;
1142
1143         skb = alloc_skb(sizeof(*fwr), GFP_KERNEL);
1144         if (!skb)
1145                 return -ENOMEM;
1146
1147         /* If the new filter requires loopback Destination MAC and/or VLAN
1148          * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1149          * the filter.
1150          */
1151         if (f->fs.newdmac || f->fs.newvlan) {
1152                 /* allocate L2T entry for new filter */
1153                 f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1154                 if (f->l2t == NULL) {
1155                         kfree_skb(skb);
1156                         return -EAGAIN;
1157                 }
1158                 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1159                                         f->fs.eport, f->fs.dmac)) {
1160                         cxgb4_l2t_release(f->l2t);
1161                         f->l2t = NULL;
1162                         kfree_skb(skb);
1163                         return -ENOMEM;
1164                 }
1165         }
1166
1167         ftid = adapter->tids.ftid_base + fidx;
1168
1169         fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1170         memset(fwr, 0, sizeof(*fwr));
1171
1172         /* It would be nice to put most of the following in t4_hw.c but most
1173          * of the work is translating the cxgbtool ch_filter_specification
1174          * into the Work Request and the definition of that structure is
1175          * currently in cxgbtool.h which isn't appropriate to pull into the
1176          * common code.  We may eventually try to come up with a more neutral
1177          * filter specification structure but for now it's easiest to simply
1178          * put this fairly direct code in line ...
1179          */
1180         fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1181         fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
1182         fwr->tid_to_iq =
1183                 htonl(FW_FILTER_WR_TID_V(ftid) |
1184                       FW_FILTER_WR_RQTYPE_V(f->fs.type) |
1185                       FW_FILTER_WR_NOREPLY_V(0) |
1186                       FW_FILTER_WR_IQ_V(f->fs.iq));
1187         fwr->del_filter_to_l2tix =
1188                 htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
1189                       FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
1190                       FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
1191                       FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
1192                       FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
1193                       FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
1194                       FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
1195                       FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
1196                       FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
1197                                              f->fs.newvlan == VLAN_REWRITE) |
1198                       FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
1199                                             f->fs.newvlan == VLAN_REWRITE) |
1200                       FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
1201                       FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
1202                       FW_FILTER_WR_PRIO_V(f->fs.prio) |
1203                       FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
1204         fwr->ethtype = htons(f->fs.val.ethtype);
1205         fwr->ethtypem = htons(f->fs.mask.ethtype);
1206         fwr->frag_to_ovlan_vldm =
1207                 (FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
1208                  FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
1209                  FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
1210                  FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
1211                  FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
1212                  FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
1213         fwr->smac_sel = 0;
1214         fwr->rx_chan_rx_rpl_iq =
1215                 htons(FW_FILTER_WR_RX_CHAN_V(0) |
1216                       FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
1217         fwr->maci_to_matchtypem =
1218                 htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
1219                       FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
1220                       FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
1221                       FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
1222                       FW_FILTER_WR_PORT_V(f->fs.val.iport) |
1223                       FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
1224                       FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
1225                       FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
1226         fwr->ptcl = f->fs.val.proto;
1227         fwr->ptclm = f->fs.mask.proto;
1228         fwr->ttyp = f->fs.val.tos;
1229         fwr->ttypm = f->fs.mask.tos;
1230         fwr->ivlan = htons(f->fs.val.ivlan);
1231         fwr->ivlanm = htons(f->fs.mask.ivlan);
1232         fwr->ovlan = htons(f->fs.val.ovlan);
1233         fwr->ovlanm = htons(f->fs.mask.ovlan);
1234         memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1235         memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1236         memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1237         memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1238         fwr->lp = htons(f->fs.val.lport);
1239         fwr->lpm = htons(f->fs.mask.lport);
1240         fwr->fp = htons(f->fs.val.fport);
1241         fwr->fpm = htons(f->fs.mask.fport);
1242         if (f->fs.newsmac)
1243                 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1244
1245         /* Mark the filter as "pending" and ship off the Filter Work Request.
1246          * When we get the Work Request Reply we'll clear the pending status.
1247          */
1248         f->pending = 1;
1249         set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1250         t4_ofld_send(adapter, skb);
1251         return 0;
1252 }
1253
1254 /* Delete the filter at a specified index.
1255  */
1256 static int del_filter_wr(struct adapter *adapter, int fidx)
1257 {
1258         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1259         struct sk_buff *skb;
1260         struct fw_filter_wr *fwr;
1261         unsigned int len, ftid;
1262
1263         len = sizeof(*fwr);
1264         ftid = adapter->tids.ftid_base + fidx;
1265
1266         skb = alloc_skb(len, GFP_KERNEL);
1267         if (!skb)
1268                 return -ENOMEM;
1269
1270         fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1271         t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1272
1273         /* Mark the filter as "pending" and ship off the Filter Work Request.
1274          * When we get the Work Request Reply we'll clear the pending status.
1275          */
1276         f->pending = 1;
1277         t4_mgmt_tx(adapter, skb);
1278         return 0;
1279 }
1280
1281 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1282                              void *accel_priv, select_queue_fallback_t fallback)
1283 {
1284         int txq;
1285
1286 #ifdef CONFIG_CHELSIO_T4_DCB
1287         /* If a Data Center Bridging has been successfully negotiated on this
1288          * link then we'll use the skb's priority to map it to a TX Queue.
1289          * The skb's priority is determined via the VLAN Tag Priority Code
1290          * Point field.
1291          */
1292         if (cxgb4_dcb_enabled(dev)) {
1293                 u16 vlan_tci;
1294                 int err;
1295
1296                 err = vlan_get_tag(skb, &vlan_tci);
1297                 if (unlikely(err)) {
1298                         if (net_ratelimit())
1299                                 netdev_warn(dev,
1300                                             "TX Packet without VLAN Tag on DCB Link\n");
1301                         txq = 0;
1302                 } else {
1303                         txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1304 #ifdef CONFIG_CHELSIO_T4_FCOE
1305                         if (skb->protocol == htons(ETH_P_FCOE))
1306                                 txq = skb->priority & 0x7;
1307 #endif /* CONFIG_CHELSIO_T4_FCOE */
1308                 }
1309                 return txq;
1310         }
1311 #endif /* CONFIG_CHELSIO_T4_DCB */
1312
1313         if (select_queue) {
1314                 txq = (skb_rx_queue_recorded(skb)
1315                         ? skb_get_rx_queue(skb)
1316                         : smp_processor_id());
1317
1318                 while (unlikely(txq >= dev->real_num_tx_queues))
1319                         txq -= dev->real_num_tx_queues;
1320
1321                 return txq;
1322         }
1323
1324         return fallback(dev, skb) % dev->real_num_tx_queues;
1325 }
1326
1327 static inline int is_offload(const struct adapter *adap)
1328 {
1329         return adap->params.offload;
1330 }
1331
1332 static int closest_timer(const struct sge *s, int time)
1333 {
1334         int i, delta, match = 0, min_delta = INT_MAX;
1335
1336         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1337                 delta = time - s->timer_val[i];
1338                 if (delta < 0)
1339                         delta = -delta;
1340                 if (delta < min_delta) {
1341                         min_delta = delta;
1342                         match = i;
1343                 }
1344         }
1345         return match;
1346 }
1347
1348 static int closest_thres(const struct sge *s, int thres)
1349 {
1350         int i, delta, match = 0, min_delta = INT_MAX;
1351
1352         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1353                 delta = thres - s->counter_val[i];
1354                 if (delta < 0)
1355                         delta = -delta;
1356                 if (delta < min_delta) {
1357                         min_delta = delta;
1358                         match = i;
1359                 }
1360         }
1361         return match;
1362 }
1363
1364 /**
1365  *      cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1366  *      @q: the Rx queue
1367  *      @us: the hold-off time in us, or 0 to disable timer
1368  *      @cnt: the hold-off packet count, or 0 to disable counter
1369  *
1370  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
1371  *      one of the two needs to be enabled for the queue to generate interrupts.
1372  */
1373 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1374                                unsigned int us, unsigned int cnt)
1375 {
1376         struct adapter *adap = q->adap;
1377
1378         if ((us | cnt) == 0)
1379                 cnt = 1;
1380
1381         if (cnt) {
1382                 int err;
1383                 u32 v, new_idx;
1384
1385                 new_idx = closest_thres(&adap->sge, cnt);
1386                 if (q->desc && q->pktcnt_idx != new_idx) {
1387                         /* the queue has already been created, update it */
1388                         v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1389                             FW_PARAMS_PARAM_X_V(
1390                                         FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1391                             FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1392                         err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
1393                                             &new_idx);
1394                         if (err)
1395                                 return err;
1396                 }
1397                 q->pktcnt_idx = new_idx;
1398         }
1399
1400         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1401         q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
1402         return 0;
1403 }
1404
1405 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1406 {
1407         const struct port_info *pi = netdev_priv(dev);
1408         netdev_features_t changed = dev->features ^ features;
1409         int err;
1410
1411         if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1412                 return 0;
1413
1414         err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
1415                             -1, -1, -1,
1416                             !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1417         if (unlikely(err))
1418                 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1419         return err;
1420 }
1421
1422 static int setup_debugfs(struct adapter *adap)
1423 {
1424         if (IS_ERR_OR_NULL(adap->debugfs_root))
1425                 return -1;
1426
1427 #ifdef CONFIG_DEBUG_FS
1428         t4_setup_debugfs(adap);
1429 #endif
1430         return 0;
1431 }
1432
1433 /*
1434  * upper-layer driver support
1435  */
1436
1437 /*
1438  * Allocate an active-open TID and set it to the supplied value.
1439  */
1440 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1441 {
1442         int atid = -1;
1443
1444         spin_lock_bh(&t->atid_lock);
1445         if (t->afree) {
1446                 union aopen_entry *p = t->afree;
1447
1448                 atid = (p - t->atid_tab) + t->atid_base;
1449                 t->afree = p->next;
1450                 p->data = data;
1451                 t->atids_in_use++;
1452         }
1453         spin_unlock_bh(&t->atid_lock);
1454         return atid;
1455 }
1456 EXPORT_SYMBOL(cxgb4_alloc_atid);
1457
1458 /*
1459  * Release an active-open TID.
1460  */
1461 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1462 {
1463         union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1464
1465         spin_lock_bh(&t->atid_lock);
1466         p->next = t->afree;
1467         t->afree = p;
1468         t->atids_in_use--;
1469         spin_unlock_bh(&t->atid_lock);
1470 }
1471 EXPORT_SYMBOL(cxgb4_free_atid);
1472
1473 /*
1474  * Allocate a server TID and set it to the supplied value.
1475  */
1476 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1477 {
1478         int stid;
1479
1480         spin_lock_bh(&t->stid_lock);
1481         if (family == PF_INET) {
1482                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1483                 if (stid < t->nstids)
1484                         __set_bit(stid, t->stid_bmap);
1485                 else
1486                         stid = -1;
1487         } else {
1488                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
1489                 if (stid < 0)
1490                         stid = -1;
1491         }
1492         if (stid >= 0) {
1493                 t->stid_tab[stid].data = data;
1494                 stid += t->stid_base;
1495                 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1496                  * This is equivalent to 4 TIDs. With CLIP enabled it
1497                  * needs 2 TIDs.
1498                  */
1499                 if (family == PF_INET)
1500                         t->stids_in_use++;
1501                 else
1502                         t->stids_in_use += 4;
1503         }
1504         spin_unlock_bh(&t->stid_lock);
1505         return stid;
1506 }
1507 EXPORT_SYMBOL(cxgb4_alloc_stid);
1508
1509 /* Allocate a server filter TID and set it to the supplied value.
1510  */
1511 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1512 {
1513         int stid;
1514
1515         spin_lock_bh(&t->stid_lock);
1516         if (family == PF_INET) {
1517                 stid = find_next_zero_bit(t->stid_bmap,
1518                                 t->nstids + t->nsftids, t->nstids);
1519                 if (stid < (t->nstids + t->nsftids))
1520                         __set_bit(stid, t->stid_bmap);
1521                 else
1522                         stid = -1;
1523         } else {
1524                 stid = -1;
1525         }
1526         if (stid >= 0) {
1527                 t->stid_tab[stid].data = data;
1528                 stid -= t->nstids;
1529                 stid += t->sftid_base;
1530                 t->stids_in_use++;
1531         }
1532         spin_unlock_bh(&t->stid_lock);
1533         return stid;
1534 }
1535 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1536
1537 /* Release a server TID.
1538  */
1539 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1540 {
1541         /* Is it a server filter TID? */
1542         if (t->nsftids && (stid >= t->sftid_base)) {
1543                 stid -= t->sftid_base;
1544                 stid += t->nstids;
1545         } else {
1546                 stid -= t->stid_base;
1547         }
1548
1549         spin_lock_bh(&t->stid_lock);
1550         if (family == PF_INET)
1551                 __clear_bit(stid, t->stid_bmap);
1552         else
1553                 bitmap_release_region(t->stid_bmap, stid, 2);
1554         t->stid_tab[stid].data = NULL;
1555         if (family == PF_INET)
1556                 t->stids_in_use--;
1557         else
1558                 t->stids_in_use -= 4;
1559         spin_unlock_bh(&t->stid_lock);
1560 }
1561 EXPORT_SYMBOL(cxgb4_free_stid);
1562
1563 /*
1564  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1565  */
1566 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1567                            unsigned int tid)
1568 {
1569         struct cpl_tid_release *req;
1570
1571         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1572         req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1573         INIT_TP_WR(req, tid);
1574         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1575 }
1576
1577 /*
1578  * Queue a TID release request and if necessary schedule a work queue to
1579  * process it.
1580  */
1581 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1582                                     unsigned int tid)
1583 {
1584         void **p = &t->tid_tab[tid];
1585         struct adapter *adap = container_of(t, struct adapter, tids);
1586
1587         spin_lock_bh(&adap->tid_release_lock);
1588         *p = adap->tid_release_head;
1589         /* Low 2 bits encode the Tx channel number */
1590         adap->tid_release_head = (void **)((uintptr_t)p | chan);
1591         if (!adap->tid_release_task_busy) {
1592                 adap->tid_release_task_busy = true;
1593                 queue_work(adap->workq, &adap->tid_release_task);
1594         }
1595         spin_unlock_bh(&adap->tid_release_lock);
1596 }
1597
1598 /*
1599  * Process the list of pending TID release requests.
1600  */
1601 static void process_tid_release_list(struct work_struct *work)
1602 {
1603         struct sk_buff *skb;
1604         struct adapter *adap;
1605
1606         adap = container_of(work, struct adapter, tid_release_task);
1607
1608         spin_lock_bh(&adap->tid_release_lock);
1609         while (adap->tid_release_head) {
1610                 void **p = adap->tid_release_head;
1611                 unsigned int chan = (uintptr_t)p & 3;
1612                 p = (void *)p - chan;
1613
1614                 adap->tid_release_head = *p;
1615                 *p = NULL;
1616                 spin_unlock_bh(&adap->tid_release_lock);
1617
1618                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1619                                          GFP_KERNEL)))
1620                         schedule_timeout_uninterruptible(1);
1621
1622                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1623                 t4_ofld_send(adap, skb);
1624                 spin_lock_bh(&adap->tid_release_lock);
1625         }
1626         adap->tid_release_task_busy = false;
1627         spin_unlock_bh(&adap->tid_release_lock);
1628 }
1629
1630 /*
1631  * Release a TID and inform HW.  If we are unable to allocate the release
1632  * message we defer to a work queue.
1633  */
1634 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1635 {
1636         void *old;
1637         struct sk_buff *skb;
1638         struct adapter *adap = container_of(t, struct adapter, tids);
1639
1640         old = t->tid_tab[tid];
1641         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1642         if (likely(skb)) {
1643                 t->tid_tab[tid] = NULL;
1644                 mk_tid_release(skb, chan, tid);
1645                 t4_ofld_send(adap, skb);
1646         } else
1647                 cxgb4_queue_tid_release(t, chan, tid);
1648         if (old)
1649                 atomic_dec(&t->tids_in_use);
1650 }
1651 EXPORT_SYMBOL(cxgb4_remove_tid);
1652
1653 /*
1654  * Allocate and initialize the TID tables.  Returns 0 on success.
1655  */
1656 static int tid_init(struct tid_info *t)
1657 {
1658         size_t size;
1659         unsigned int stid_bmap_size;
1660         unsigned int natids = t->natids;
1661         struct adapter *adap = container_of(t, struct adapter, tids);
1662
1663         stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1664         size = t->ntids * sizeof(*t->tid_tab) +
1665                natids * sizeof(*t->atid_tab) +
1666                t->nstids * sizeof(*t->stid_tab) +
1667                t->nsftids * sizeof(*t->stid_tab) +
1668                stid_bmap_size * sizeof(long) +
1669                t->nftids * sizeof(*t->ftid_tab) +
1670                t->nsftids * sizeof(*t->ftid_tab);
1671
1672         t->tid_tab = t4_alloc_mem(size);
1673         if (!t->tid_tab)
1674                 return -ENOMEM;
1675
1676         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1677         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1678         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1679         t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1680         spin_lock_init(&t->stid_lock);
1681         spin_lock_init(&t->atid_lock);
1682
1683         t->stids_in_use = 0;
1684         t->afree = NULL;
1685         t->atids_in_use = 0;
1686         atomic_set(&t->tids_in_use, 0);
1687
1688         /* Setup the free list for atid_tab and clear the stid bitmap. */
1689         if (natids) {
1690                 while (--natids)
1691                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1692                 t->afree = t->atid_tab;
1693         }
1694         bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1695         /* Reserve stid 0 for T4/T5 adapters */
1696         if (!t->stid_base &&
1697             (is_t4(adap->params.chip) || is_t5(adap->params.chip)))
1698                 __set_bit(0, t->stid_bmap);
1699
1700         return 0;
1701 }
1702
1703 /**
1704  *      cxgb4_create_server - create an IP server
1705  *      @dev: the device
1706  *      @stid: the server TID
1707  *      @sip: local IP address to bind server to
1708  *      @sport: the server's TCP port
1709  *      @queue: queue to direct messages from this server to
1710  *
1711  *      Create an IP server for the given port and address.
1712  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1713  */
1714 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1715                         __be32 sip, __be16 sport, __be16 vlan,
1716                         unsigned int queue)
1717 {
1718         unsigned int chan;
1719         struct sk_buff *skb;
1720         struct adapter *adap;
1721         struct cpl_pass_open_req *req;
1722         int ret;
1723
1724         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1725         if (!skb)
1726                 return -ENOMEM;
1727
1728         adap = netdev2adap(dev);
1729         req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1730         INIT_TP_WR(req, 0);
1731         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1732         req->local_port = sport;
1733         req->peer_port = htons(0);
1734         req->local_ip = sip;
1735         req->peer_ip = htonl(0);
1736         chan = rxq_to_chan(&adap->sge, queue);
1737         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1738         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1739                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1740         ret = t4_mgmt_tx(adap, skb);
1741         return net_xmit_eval(ret);
1742 }
1743 EXPORT_SYMBOL(cxgb4_create_server);
1744
1745 /*      cxgb4_create_server6 - create an IPv6 server
1746  *      @dev: the device
1747  *      @stid: the server TID
1748  *      @sip: local IPv6 address to bind server to
1749  *      @sport: the server's TCP port
1750  *      @queue: queue to direct messages from this server to
1751  *
1752  *      Create an IPv6 server for the given port and address.
1753  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1754  */
1755 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1756                          const struct in6_addr *sip, __be16 sport,
1757                          unsigned int queue)
1758 {
1759         unsigned int chan;
1760         struct sk_buff *skb;
1761         struct adapter *adap;
1762         struct cpl_pass_open_req6 *req;
1763         int ret;
1764
1765         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1766         if (!skb)
1767                 return -ENOMEM;
1768
1769         adap = netdev2adap(dev);
1770         req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1771         INIT_TP_WR(req, 0);
1772         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1773         req->local_port = sport;
1774         req->peer_port = htons(0);
1775         req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1776         req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1777         req->peer_ip_hi = cpu_to_be64(0);
1778         req->peer_ip_lo = cpu_to_be64(0);
1779         chan = rxq_to_chan(&adap->sge, queue);
1780         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1781         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1782                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1783         ret = t4_mgmt_tx(adap, skb);
1784         return net_xmit_eval(ret);
1785 }
1786 EXPORT_SYMBOL(cxgb4_create_server6);
1787
1788 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1789                         unsigned int queue, bool ipv6)
1790 {
1791         struct sk_buff *skb;
1792         struct adapter *adap;
1793         struct cpl_close_listsvr_req *req;
1794         int ret;
1795
1796         adap = netdev2adap(dev);
1797
1798         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1799         if (!skb)
1800                 return -ENOMEM;
1801
1802         req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1803         INIT_TP_WR(req, 0);
1804         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1805         req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1806                                 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1807         ret = t4_mgmt_tx(adap, skb);
1808         return net_xmit_eval(ret);
1809 }
1810 EXPORT_SYMBOL(cxgb4_remove_server);
1811
1812 /**
1813  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1814  *      @mtus: the HW MTU table
1815  *      @mtu: the target MTU
1816  *      @idx: index of selected entry in the MTU table
1817  *
1818  *      Returns the index and the value in the HW MTU table that is closest to
1819  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
1820  *      table, in which case that smallest available value is selected.
1821  */
1822 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1823                             unsigned int *idx)
1824 {
1825         unsigned int i = 0;
1826
1827         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1828                 ++i;
1829         if (idx)
1830                 *idx = i;
1831         return mtus[i];
1832 }
1833 EXPORT_SYMBOL(cxgb4_best_mtu);
1834
1835 /**
1836  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1837  *     @mtus: the HW MTU table
1838  *     @header_size: Header Size
1839  *     @data_size_max: maximum Data Segment Size
1840  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1841  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1842  *
1843  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1844  *     MTU Table based solely on a Maximum MTU parameter, we break that
1845  *     parameter up into a Header Size and Maximum Data Segment Size, and
1846  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1847  *     the Hardware MTU Table which will result in a Data Segment Size with
1848  *     the requested alignment _and_ that MTU isn't "too far" from the
1849  *     closest MTU, then we'll return that rather than the closest MTU.
1850  */
1851 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1852                                     unsigned short header_size,
1853                                     unsigned short data_size_max,
1854                                     unsigned short data_size_align,
1855                                     unsigned int *mtu_idxp)
1856 {
1857         unsigned short max_mtu = header_size + data_size_max;
1858         unsigned short data_size_align_mask = data_size_align - 1;
1859         int mtu_idx, aligned_mtu_idx;
1860
1861         /* Scan the MTU Table till we find an MTU which is larger than our
1862          * Maximum MTU or we reach the end of the table.  Along the way,
1863          * record the last MTU found, if any, which will result in a Data
1864          * Segment Length matching the requested alignment.
1865          */
1866         for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1867                 unsigned short data_size = mtus[mtu_idx] - header_size;
1868
1869                 /* If this MTU minus the Header Size would result in a
1870                  * Data Segment Size of the desired alignment, remember it.
1871                  */
1872                 if ((data_size & data_size_align_mask) == 0)
1873                         aligned_mtu_idx = mtu_idx;
1874
1875                 /* If we're not at the end of the Hardware MTU Table and the
1876                  * next element is larger than our Maximum MTU, drop out of
1877                  * the loop.
1878                  */
1879                 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1880                         break;
1881         }
1882
1883         /* If we fell out of the loop because we ran to the end of the table,
1884          * then we just have to use the last [largest] entry.
1885          */
1886         if (mtu_idx == NMTUS)
1887                 mtu_idx--;
1888
1889         /* If we found an MTU which resulted in the requested Data Segment
1890          * Length alignment and that's "not far" from the largest MTU which is
1891          * less than or equal to the maximum MTU, then use that.
1892          */
1893         if (aligned_mtu_idx >= 0 &&
1894             mtu_idx - aligned_mtu_idx <= 1)
1895                 mtu_idx = aligned_mtu_idx;
1896
1897         /* If the caller has passed in an MTU Index pointer, pass the
1898          * MTU Index back.  Return the MTU value.
1899          */
1900         if (mtu_idxp)
1901                 *mtu_idxp = mtu_idx;
1902         return mtus[mtu_idx];
1903 }
1904 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1905
1906 /**
1907  *      cxgb4_port_chan - get the HW channel of a port
1908  *      @dev: the net device for the port
1909  *
1910  *      Return the HW Tx channel of the given port.
1911  */
1912 unsigned int cxgb4_port_chan(const struct net_device *dev)
1913 {
1914         return netdev2pinfo(dev)->tx_chan;
1915 }
1916 EXPORT_SYMBOL(cxgb4_port_chan);
1917
1918 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1919 {
1920         struct adapter *adap = netdev2adap(dev);
1921         u32 v1, v2, lp_count, hp_count;
1922
1923         v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1924         v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1925         if (is_t4(adap->params.chip)) {
1926                 lp_count = LP_COUNT_G(v1);
1927                 hp_count = HP_COUNT_G(v1);
1928         } else {
1929                 lp_count = LP_COUNT_T5_G(v1);
1930                 hp_count = HP_COUNT_T5_G(v2);
1931         }
1932         return lpfifo ? lp_count : hp_count;
1933 }
1934 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1935
1936 /**
1937  *      cxgb4_port_viid - get the VI id of a port
1938  *      @dev: the net device for the port
1939  *
1940  *      Return the VI id of the given port.
1941  */
1942 unsigned int cxgb4_port_viid(const struct net_device *dev)
1943 {
1944         return netdev2pinfo(dev)->viid;
1945 }
1946 EXPORT_SYMBOL(cxgb4_port_viid);
1947
1948 /**
1949  *      cxgb4_port_idx - get the index of a port
1950  *      @dev: the net device for the port
1951  *
1952  *      Return the index of the given port.
1953  */
1954 unsigned int cxgb4_port_idx(const struct net_device *dev)
1955 {
1956         return netdev2pinfo(dev)->port_id;
1957 }
1958 EXPORT_SYMBOL(cxgb4_port_idx);
1959
1960 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1961                          struct tp_tcp_stats *v6)
1962 {
1963         struct adapter *adap = pci_get_drvdata(pdev);
1964
1965         spin_lock(&adap->stats_lock);
1966         t4_tp_get_tcp_stats(adap, v4, v6);
1967         spin_unlock(&adap->stats_lock);
1968 }
1969 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1970
1971 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1972                       const unsigned int *pgsz_order)
1973 {
1974         struct adapter *adap = netdev2adap(dev);
1975
1976         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1977         t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1978                      HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1979                      HPZ3_V(pgsz_order[3]));
1980 }
1981 EXPORT_SYMBOL(cxgb4_iscsi_init);
1982
1983 int cxgb4_flush_eq_cache(struct net_device *dev)
1984 {
1985         struct adapter *adap = netdev2adap(dev);
1986         int ret;
1987
1988         ret = t4_fwaddrspace_write(adap, adap->mbox,
1989                                    0xe1000000 + SGE_CTXT_CMD_A, 0x20000000);
1990         return ret;
1991 }
1992 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1993
1994 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1995 {
1996         u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1997         __be64 indices;
1998         int ret;
1999
2000         spin_lock(&adap->win0_lock);
2001         ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2002                            sizeof(indices), (__be32 *)&indices,
2003                            T4_MEMORY_READ);
2004         spin_unlock(&adap->win0_lock);
2005         if (!ret) {
2006                 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2007                 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2008         }
2009         return ret;
2010 }
2011
2012 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2013                         u16 size)
2014 {
2015         struct adapter *adap = netdev2adap(dev);
2016         u16 hw_pidx, hw_cidx;
2017         int ret;
2018
2019         ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2020         if (ret)
2021                 goto out;
2022
2023         if (pidx != hw_pidx) {
2024                 u16 delta;
2025                 u32 val;
2026
2027                 if (pidx >= hw_pidx)
2028                         delta = pidx - hw_pidx;
2029                 else
2030                         delta = size - hw_pidx + pidx;
2031
2032                 if (is_t4(adap->params.chip))
2033                         val = PIDX_V(delta);
2034                 else
2035                         val = PIDX_T5_V(delta);
2036                 wmb();
2037                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2038                              QID_V(qid) | val);
2039         }
2040 out:
2041         return ret;
2042 }
2043 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2044
2045 void cxgb4_disable_db_coalescing(struct net_device *dev)
2046 {
2047         struct adapter *adap;
2048
2049         adap = netdev2adap(dev);
2050         t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, NOCOALESCE_F,
2051                          NOCOALESCE_F);
2052 }
2053 EXPORT_SYMBOL(cxgb4_disable_db_coalescing);
2054
2055 void cxgb4_enable_db_coalescing(struct net_device *dev)
2056 {
2057         struct adapter *adap;
2058
2059         adap = netdev2adap(dev);
2060         t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, NOCOALESCE_F, 0);
2061 }
2062 EXPORT_SYMBOL(cxgb4_enable_db_coalescing);
2063
2064 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2065 {
2066         struct adapter *adap;
2067         u32 offset, memtype, memaddr;
2068         u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2069         u32 edc0_end, edc1_end, mc0_end, mc1_end;
2070         int ret;
2071
2072         adap = netdev2adap(dev);
2073
2074         offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2075
2076         /* Figure out where the offset lands in the Memory Type/Address scheme.
2077          * This code assumes that the memory is laid out starting at offset 0
2078          * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2079          * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
2080          * MC0, and some have both MC0 and MC1.
2081          */
2082         size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2083         edc0_size = EDRAM0_SIZE_G(size) << 20;
2084         size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2085         edc1_size = EDRAM1_SIZE_G(size) << 20;
2086         size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2087         mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2088
2089         edc0_end = edc0_size;
2090         edc1_end = edc0_end + edc1_size;
2091         mc0_end = edc1_end + mc0_size;
2092
2093         if (offset < edc0_end) {
2094                 memtype = MEM_EDC0;
2095                 memaddr = offset;
2096         } else if (offset < edc1_end) {
2097                 memtype = MEM_EDC1;
2098                 memaddr = offset - edc0_end;
2099         } else {
2100                 if (offset < mc0_end) {
2101                         memtype = MEM_MC0;
2102                         memaddr = offset - edc1_end;
2103                 } else if (is_t4(adap->params.chip)) {
2104                         /* T4 only has a single memory channel */
2105                         goto err;
2106                 } else {
2107                         size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2108                         mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2109                         mc1_end = mc0_end + mc1_size;
2110                         if (offset < mc1_end) {
2111                                 memtype = MEM_MC1;
2112                                 memaddr = offset - mc0_end;
2113                         } else {
2114                                 /* offset beyond the end of any memory */
2115                                 goto err;
2116                         }
2117                 }
2118         }
2119
2120         spin_lock(&adap->win0_lock);
2121         ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2122         spin_unlock(&adap->win0_lock);
2123         return ret;
2124
2125 err:
2126         dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2127                 stag, offset);
2128         return -EINVAL;
2129 }
2130 EXPORT_SYMBOL(cxgb4_read_tpte);
2131
2132 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2133 {
2134         u32 hi, lo;
2135         struct adapter *adap;
2136
2137         adap = netdev2adap(dev);
2138         lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2139         hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2140
2141         return ((u64)hi << 32) | (u64)lo;
2142 }
2143 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2144
2145 int cxgb4_bar2_sge_qregs(struct net_device *dev,
2146                          unsigned int qid,
2147                          enum cxgb4_bar2_qtype qtype,
2148                          u64 *pbar2_qoffset,
2149                          unsigned int *pbar2_qid)
2150 {
2151         return cxgb4_t4_bar2_sge_qregs(netdev2adap(dev),
2152                                  qid,
2153                                  (qtype == CXGB4_BAR2_QTYPE_EGRESS
2154                                   ? T4_BAR2_QTYPE_EGRESS
2155                                   : T4_BAR2_QTYPE_INGRESS),
2156                                  pbar2_qoffset,
2157                                  pbar2_qid);
2158 }
2159 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2160
2161 static struct pci_driver cxgb4_driver;
2162
2163 static void check_neigh_update(struct neighbour *neigh)
2164 {
2165         const struct device *parent;
2166         const struct net_device *netdev = neigh->dev;
2167
2168         if (netdev->priv_flags & IFF_802_1Q_VLAN)
2169                 netdev = vlan_dev_real_dev(netdev);
2170         parent = netdev->dev.parent;
2171         if (parent && parent->driver == &cxgb4_driver.driver)
2172                 t4_l2t_update(dev_get_drvdata(parent), neigh);
2173 }
2174
2175 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2176                        void *data)
2177 {
2178         switch (event) {
2179         case NETEVENT_NEIGH_UPDATE:
2180                 check_neigh_update(data);
2181                 break;
2182         case NETEVENT_REDIRECT:
2183         default:
2184                 break;
2185         }
2186         return 0;
2187 }
2188
2189 static bool netevent_registered;
2190 static struct notifier_block cxgb4_netevent_nb = {
2191         .notifier_call = netevent_cb
2192 };
2193
2194 static void drain_db_fifo(struct adapter *adap, int usecs)
2195 {
2196         u32 v1, v2, lp_count, hp_count;
2197
2198         do {
2199                 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2200                 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2201                 if (is_t4(adap->params.chip)) {
2202                         lp_count = LP_COUNT_G(v1);
2203                         hp_count = HP_COUNT_G(v1);
2204                 } else {
2205                         lp_count = LP_COUNT_T5_G(v1);
2206                         hp_count = HP_COUNT_T5_G(v2);
2207                 }
2208
2209                 if (lp_count == 0 && hp_count == 0)
2210                         break;
2211                 set_current_state(TASK_UNINTERRUPTIBLE);
2212                 schedule_timeout(usecs_to_jiffies(usecs));
2213         } while (1);
2214 }
2215
2216 static void disable_txq_db(struct sge_txq *q)
2217 {
2218         unsigned long flags;
2219
2220         spin_lock_irqsave(&q->db_lock, flags);
2221         q->db_disabled = 1;
2222         spin_unlock_irqrestore(&q->db_lock, flags);
2223 }
2224
2225 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2226 {
2227         spin_lock_irq(&q->db_lock);
2228         if (q->db_pidx_inc) {
2229                 /* Make sure that all writes to the TX descriptors
2230                  * are committed before we tell HW about them.
2231                  */
2232                 wmb();
2233                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2234                              QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2235                 q->db_pidx_inc = 0;
2236         }
2237         q->db_disabled = 0;
2238         spin_unlock_irq(&q->db_lock);
2239 }
2240
2241 static void disable_dbs(struct adapter *adap)
2242 {
2243         int i;
2244
2245         for_each_ethrxq(&adap->sge, i)
2246                 disable_txq_db(&adap->sge.ethtxq[i].q);
2247         for_each_ofldrxq(&adap->sge, i)
2248                 disable_txq_db(&adap->sge.ofldtxq[i].q);
2249         for_each_port(adap, i)
2250                 disable_txq_db(&adap->sge.ctrlq[i].q);
2251 }
2252
2253 static void enable_dbs(struct adapter *adap)
2254 {
2255         int i;
2256
2257         for_each_ethrxq(&adap->sge, i)
2258                 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2259         for_each_ofldrxq(&adap->sge, i)
2260                 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
2261         for_each_port(adap, i)
2262                 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2263 }
2264
2265 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2266 {
2267         if (adap->uld_handle[CXGB4_ULD_RDMA])
2268                 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
2269                                 cmd);
2270 }
2271
2272 static void process_db_full(struct work_struct *work)
2273 {
2274         struct adapter *adap;
2275
2276         adap = container_of(work, struct adapter, db_full_task);
2277
2278         drain_db_fifo(adap, dbfifo_drain_delay);
2279         enable_dbs(adap);
2280         notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2281         t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2282                          DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2283                          DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2284 }
2285
2286 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2287 {
2288         u16 hw_pidx, hw_cidx;
2289         int ret;
2290
2291         spin_lock_irq(&q->db_lock);
2292         ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2293         if (ret)
2294                 goto out;
2295         if (q->db_pidx != hw_pidx) {
2296                 u16 delta;
2297                 u32 val;
2298
2299                 if (q->db_pidx >= hw_pidx)
2300                         delta = q->db_pidx - hw_pidx;
2301                 else
2302                         delta = q->size - hw_pidx + q->db_pidx;
2303
2304                 if (is_t4(adap->params.chip))
2305                         val = PIDX_V(delta);
2306                 else
2307                         val = PIDX_T5_V(delta);
2308                 wmb();
2309                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2310                              QID_V(q->cntxt_id) | val);
2311         }
2312 out:
2313         q->db_disabled = 0;
2314         q->db_pidx_inc = 0;
2315         spin_unlock_irq(&q->db_lock);
2316         if (ret)
2317                 CH_WARN(adap, "DB drop recovery failed.\n");
2318 }
2319 static void recover_all_queues(struct adapter *adap)
2320 {
2321         int i;
2322
2323         for_each_ethrxq(&adap->sge, i)
2324                 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2325         for_each_ofldrxq(&adap->sge, i)
2326                 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2327         for_each_port(adap, i)
2328                 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2329 }
2330
2331 static void process_db_drop(struct work_struct *work)
2332 {
2333         struct adapter *adap;
2334
2335         adap = container_of(work, struct adapter, db_drop_task);
2336
2337         if (is_t4(adap->params.chip)) {
2338                 drain_db_fifo(adap, dbfifo_drain_delay);
2339                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2340                 drain_db_fifo(adap, dbfifo_drain_delay);
2341                 recover_all_queues(adap);
2342                 drain_db_fifo(adap, dbfifo_drain_delay);
2343                 enable_dbs(adap);
2344                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2345         } else {
2346                 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2347                 u16 qid = (dropped_db >> 15) & 0x1ffff;
2348                 u16 pidx_inc = dropped_db & 0x1fff;
2349                 u64 bar2_qoffset;
2350                 unsigned int bar2_qid;
2351                 int ret;
2352
2353                 ret = cxgb4_t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2354                                         &bar2_qoffset, &bar2_qid);
2355                 if (ret)
2356                         dev_err(adap->pdev_dev, "doorbell drop recovery: "
2357                                 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2358                 else
2359                         writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2360                                adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2361
2362                 /* Re-enable BAR2 WC */
2363                 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2364         }
2365
2366         t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2367 }
2368
2369 void t4_db_full(struct adapter *adap)
2370 {
2371         if (is_t4(adap->params.chip)) {
2372                 disable_dbs(adap);
2373                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2374                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2375                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2376                 queue_work(adap->workq, &adap->db_full_task);
2377         }
2378 }
2379
2380 void t4_db_dropped(struct adapter *adap)
2381 {
2382         if (is_t4(adap->params.chip)) {
2383                 disable_dbs(adap);
2384                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2385         }
2386         queue_work(adap->workq, &adap->db_drop_task);
2387 }
2388
2389 static void uld_attach(struct adapter *adap, unsigned int uld)
2390 {
2391         void *handle;
2392         struct cxgb4_lld_info lli;
2393         unsigned short i;
2394
2395         lli.pdev = adap->pdev;
2396         lli.pf = adap->fn;
2397         lli.l2t = adap->l2t;
2398         lli.tids = &adap->tids;
2399         lli.ports = adap->port;
2400         lli.vr = &adap->vres;
2401         lli.mtus = adap->params.mtus;
2402         if (uld == CXGB4_ULD_RDMA) {
2403                 lli.rxq_ids = adap->sge.rdma_rxq;
2404                 lli.ciq_ids = adap->sge.rdma_ciq;
2405                 lli.nrxq = adap->sge.rdmaqs;
2406                 lli.nciq = adap->sge.rdmaciqs;
2407         } else if (uld == CXGB4_ULD_ISCSI) {
2408                 lli.rxq_ids = adap->sge.ofld_rxq;
2409                 lli.nrxq = adap->sge.ofldqsets;
2410         }
2411         lli.ntxq = adap->sge.ofldqsets;
2412         lli.nchan = adap->params.nports;
2413         lli.nports = adap->params.nports;
2414         lli.wr_cred = adap->params.ofldq_wr_cred;
2415         lli.adapter_type = adap->params.chip;
2416         lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A));
2417         lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
2418         lli.udb_density = 1 << adap->params.sge.eq_qpp;
2419         lli.ucq_density = 1 << adap->params.sge.iq_qpp;
2420         lli.filt_mode = adap->params.tp.vlan_pri_map;
2421         /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
2422         for (i = 0; i < NCHAN; i++)
2423                 lli.tx_modq[i] = i;
2424         lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A);
2425         lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A);
2426         lli.fw_vers = adap->params.fw_vers;
2427         lli.dbfifo_int_thresh = dbfifo_int_thresh;
2428         lli.sge_ingpadboundary = adap->sge.fl_align;
2429         lli.sge_egrstatuspagesize = adap->sge.stat_len;
2430         lli.sge_pktshift = adap->sge.pktshift;
2431         lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
2432         lli.max_ordird_qp = adap->params.max_ordird_qp;
2433         lli.max_ird_adapter = adap->params.max_ird_adapter;
2434         lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
2435
2436         handle = ulds[uld].add(&lli);
2437         if (IS_ERR(handle)) {
2438                 dev_warn(adap->pdev_dev,
2439                          "could not attach to the %s driver, error %ld\n",
2440                          uld_str[uld], PTR_ERR(handle));
2441                 return;
2442         }
2443
2444         adap->uld_handle[uld] = handle;
2445
2446         if (!netevent_registered) {
2447                 register_netevent_notifier(&cxgb4_netevent_nb);
2448                 netevent_registered = true;
2449         }
2450
2451         if (adap->flags & FULL_INIT_DONE)
2452                 ulds[uld].state_change(handle, CXGB4_STATE_UP);
2453 }
2454
2455 static void attach_ulds(struct adapter *adap)
2456 {
2457         unsigned int i;
2458
2459         spin_lock(&adap_rcu_lock);
2460         list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
2461         spin_unlock(&adap_rcu_lock);
2462
2463         mutex_lock(&uld_mutex);
2464         list_add_tail(&adap->list_node, &adapter_list);
2465         for (i = 0; i < CXGB4_ULD_MAX; i++)
2466                 if (ulds[i].add)
2467                         uld_attach(adap, i);
2468         mutex_unlock(&uld_mutex);
2469 }
2470
2471 static void detach_ulds(struct adapter *adap)
2472 {
2473         unsigned int i;
2474
2475         mutex_lock(&uld_mutex);
2476         list_del(&adap->list_node);
2477         for (i = 0; i < CXGB4_ULD_MAX; i++)
2478                 if (adap->uld_handle[i]) {
2479                         ulds[i].state_change(adap->uld_handle[i],
2480                                              CXGB4_STATE_DETACH);
2481                         adap->uld_handle[i] = NULL;
2482                 }
2483         if (netevent_registered && list_empty(&adapter_list)) {
2484                 unregister_netevent_notifier(&cxgb4_netevent_nb);
2485                 netevent_registered = false;
2486         }
2487         mutex_unlock(&uld_mutex);
2488
2489         spin_lock(&adap_rcu_lock);
2490         list_del_rcu(&adap->rcu_node);
2491         spin_unlock(&adap_rcu_lock);
2492 }
2493
2494 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2495 {
2496         unsigned int i;
2497
2498         mutex_lock(&uld_mutex);
2499         for (i = 0; i < CXGB4_ULD_MAX; i++)
2500                 if (adap->uld_handle[i])
2501                         ulds[i].state_change(adap->uld_handle[i], new_state);
2502         mutex_unlock(&uld_mutex);
2503 }
2504
2505 /**
2506  *      cxgb4_register_uld - register an upper-layer driver
2507  *      @type: the ULD type
2508  *      @p: the ULD methods
2509  *
2510  *      Registers an upper-layer driver with this driver and notifies the ULD
2511  *      about any presently available devices that support its type.  Returns
2512  *      %-EBUSY if a ULD of the same type is already registered.
2513  */
2514 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2515 {
2516         int ret = 0;
2517         struct adapter *adap;
2518
2519         if (type >= CXGB4_ULD_MAX)
2520                 return -EINVAL;
2521         mutex_lock(&uld_mutex);
2522         if (ulds[type].add) {
2523                 ret = -EBUSY;
2524                 goto out;
2525         }
2526         ulds[type] = *p;
2527         list_for_each_entry(adap, &adapter_list, list_node)
2528                 uld_attach(adap, type);
2529 out:    mutex_unlock(&uld_mutex);
2530         return ret;
2531 }
2532 EXPORT_SYMBOL(cxgb4_register_uld);
2533
2534 /**
2535  *      cxgb4_unregister_uld - unregister an upper-layer driver
2536  *      @type: the ULD type
2537  *
2538  *      Unregisters an existing upper-layer driver.
2539  */
2540 int cxgb4_unregister_uld(enum cxgb4_uld type)
2541 {
2542         struct adapter *adap;
2543
2544         if (type >= CXGB4_ULD_MAX)
2545                 return -EINVAL;
2546         mutex_lock(&uld_mutex);
2547         list_for_each_entry(adap, &adapter_list, list_node)
2548                 adap->uld_handle[type] = NULL;
2549         ulds[type].add = NULL;
2550         mutex_unlock(&uld_mutex);
2551         return 0;
2552 }
2553 EXPORT_SYMBOL(cxgb4_unregister_uld);
2554
2555 #if IS_ENABLED(CONFIG_IPV6)
2556 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2557                                    unsigned long event, void *data)
2558 {
2559         struct inet6_ifaddr *ifa = data;
2560         struct net_device *event_dev = ifa->idev->dev;
2561         const struct device *parent = NULL;
2562 #if IS_ENABLED(CONFIG_BONDING)
2563         struct adapter *adap;
2564 #endif
2565         if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2566                 event_dev = vlan_dev_real_dev(event_dev);
2567 #if IS_ENABLED(CONFIG_BONDING)
2568         if (event_dev->flags & IFF_MASTER) {
2569                 list_for_each_entry(adap, &adapter_list, list_node) {
2570                         switch (event) {
2571                         case NETDEV_UP:
2572                                 cxgb4_clip_get(adap->port[0],
2573                                                (const u32 *)ifa, 1);
2574                                 break;
2575                         case NETDEV_DOWN:
2576                                 cxgb4_clip_release(adap->port[0],
2577                                                    (const u32 *)ifa, 1);
2578                                 break;
2579                         default:
2580                                 break;
2581                         }
2582                 }
2583                 return NOTIFY_OK;
2584         }
2585 #endif
2586
2587         if (event_dev)
2588                 parent = event_dev->dev.parent;
2589
2590         if (parent && parent->driver == &cxgb4_driver.driver) {
2591                 switch (event) {
2592                 case NETDEV_UP:
2593                         cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2594                         break;
2595                 case NETDEV_DOWN:
2596                         cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2597                         break;
2598                 default:
2599                         break;
2600                 }
2601         }
2602         return NOTIFY_OK;
2603 }
2604
2605 static bool inet6addr_registered;
2606 static struct notifier_block cxgb4_inet6addr_notifier = {
2607         .notifier_call = cxgb4_inet6addr_handler
2608 };
2609
2610 static void update_clip(const struct adapter *adap)
2611 {
2612         int i;
2613         struct net_device *dev;
2614         int ret;
2615
2616         rcu_read_lock();
2617
2618         for (i = 0; i < MAX_NPORTS; i++) {
2619                 dev = adap->port[i];
2620                 ret = 0;
2621
2622                 if (dev)
2623                         ret = cxgb4_update_root_dev_clip(dev);
2624
2625                 if (ret < 0)
2626                         break;
2627         }
2628         rcu_read_unlock();
2629 }
2630 #endif /* IS_ENABLED(CONFIG_IPV6) */
2631
2632 /**
2633  *      cxgb_up - enable the adapter
2634  *      @adap: adapter being enabled
2635  *
2636  *      Called when the first port is enabled, this function performs the
2637  *      actions necessary to make an adapter operational, such as completing
2638  *      the initialization of HW modules, and enabling interrupts.
2639  *
2640  *      Must be called with the rtnl lock held.
2641  */
2642 static int cxgb_up(struct adapter *adap)
2643 {
2644         int err;
2645
2646         err = setup_sge_queues(adap);
2647         if (err)
2648                 goto out;
2649         err = setup_rss(adap);
2650         if (err)
2651                 goto freeq;
2652
2653         if (adap->flags & USING_MSIX) {
2654                 name_msix_vecs(adap);
2655                 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2656                                   adap->msix_info[0].desc, adap);
2657                 if (err)
2658                         goto irq_err;
2659
2660                 err = request_msix_queue_irqs(adap);
2661                 if (err) {
2662                         free_irq(adap->msix_info[0].vec, adap);
2663                         goto irq_err;
2664                 }
2665         } else {
2666                 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2667                                   (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2668                                   adap->port[0]->name, adap);
2669                 if (err)
2670                         goto irq_err;
2671         }
2672         enable_rx(adap);
2673         t4_sge_start(adap);
2674         t4_intr_enable(adap);
2675         adap->flags |= FULL_INIT_DONE;
2676         notify_ulds(adap, CXGB4_STATE_UP);
2677 #if IS_ENABLED(CONFIG_IPV6)
2678         update_clip(adap);
2679 #endif
2680  out:
2681         return err;
2682  irq_err:
2683         dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2684  freeq:
2685         t4_free_sge_resources(adap);
2686         goto out;
2687 }
2688
2689 static void cxgb_down(struct adapter *adapter)
2690 {
2691         cancel_work_sync(&adapter->tid_release_task);
2692         cancel_work_sync(&adapter->db_full_task);
2693         cancel_work_sync(&adapter->db_drop_task);
2694         adapter->tid_release_task_busy = false;
2695         adapter->tid_release_head = NULL;
2696
2697         t4_sge_stop(adapter);
2698         t4_free_sge_resources(adapter);
2699         adapter->flags &= ~FULL_INIT_DONE;
2700 }
2701
2702 /*
2703  * net_device operations
2704  */
2705 static int cxgb_open(struct net_device *dev)
2706 {
2707         int err;
2708         struct port_info *pi = netdev_priv(dev);
2709         struct adapter *adapter = pi->adapter;
2710
2711         netif_carrier_off(dev);
2712
2713         if (!(adapter->flags & FULL_INIT_DONE)) {
2714                 err = cxgb_up(adapter);
2715                 if (err < 0)
2716                         return err;
2717         }
2718
2719         err = link_start(dev);
2720         if (!err)
2721                 netif_tx_start_all_queues(dev);
2722         return err;
2723 }
2724
2725 static int cxgb_close(struct net_device *dev)
2726 {
2727         struct port_info *pi = netdev_priv(dev);
2728         struct adapter *adapter = pi->adapter;
2729
2730         netif_tx_stop_all_queues(dev);
2731         netif_carrier_off(dev);
2732         return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
2733 }
2734
2735 /* Return an error number if the indicated filter isn't writable ...
2736  */
2737 static int writable_filter(struct filter_entry *f)
2738 {
2739         if (f->locked)
2740                 return -EPERM;
2741         if (f->pending)
2742                 return -EBUSY;
2743
2744         return 0;
2745 }
2746
2747 /* Delete the filter at the specified index (if valid).  The checks for all
2748  * the common problems with doing this like the filter being locked, currently
2749  * pending in another operation, etc.
2750  */
2751 static int delete_filter(struct adapter *adapter, unsigned int fidx)
2752 {
2753         struct filter_entry *f;
2754         int ret;
2755
2756         if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
2757                 return -EINVAL;
2758
2759         f = &adapter->tids.ftid_tab[fidx];
2760         ret = writable_filter(f);
2761         if (ret)
2762                 return ret;
2763         if (f->valid)
2764                 return del_filter_wr(adapter, fidx);
2765
2766         return 0;
2767 }
2768
2769 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2770                 __be32 sip, __be16 sport, __be16 vlan,
2771                 unsigned int queue, unsigned char port, unsigned char mask)
2772 {
2773         int ret;
2774         struct filter_entry *f;
2775         struct adapter *adap;
2776         int i;
2777         u8 *val;
2778
2779         adap = netdev2adap(dev);
2780
2781         /* Adjust stid to correct filter index */
2782         stid -= adap->tids.sftid_base;
2783         stid += adap->tids.nftids;
2784
2785         /* Check to make sure the filter requested is writable ...
2786          */
2787         f = &adap->tids.ftid_tab[stid];
2788         ret = writable_filter(f);
2789         if (ret)
2790                 return ret;
2791
2792         /* Clear out any old resources being used by the filter before
2793          * we start constructing the new filter.
2794          */
2795         if (f->valid)
2796                 clear_filter(adap, f);
2797
2798         /* Clear out filter specifications */
2799         memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2800         f->fs.val.lport = cpu_to_be16(sport);
2801         f->fs.mask.lport  = ~0;
2802         val = (u8 *)&sip;
2803         if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2804                 for (i = 0; i < 4; i++) {
2805                         f->fs.val.lip[i] = val[i];
2806                         f->fs.mask.lip[i] = ~0;
2807                 }
2808                 if (adap->params.tp.vlan_pri_map & PORT_F) {
2809                         f->fs.val.iport = port;
2810                         f->fs.mask.iport = mask;
2811                 }
2812         }
2813
2814         if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2815                 f->fs.val.proto = IPPROTO_TCP;
2816                 f->fs.mask.proto = ~0;
2817         }
2818
2819         f->fs.dirsteer = 1;
2820         f->fs.iq = queue;
2821         /* Mark filter as locked */
2822         f->locked = 1;
2823         f->fs.rpttid = 1;
2824
2825         ret = set_filter_wr(adap, stid);
2826         if (ret) {
2827                 clear_filter(adap, f);
2828                 return ret;
2829         }
2830
2831         return 0;
2832 }
2833 EXPORT_SYMBOL(cxgb4_create_server_filter);
2834
2835 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2836                 unsigned int queue, bool ipv6)
2837 {
2838         int ret;
2839         struct filter_entry *f;
2840         struct adapter *adap;
2841
2842         adap = netdev2adap(dev);
2843
2844         /* Adjust stid to correct filter index */
2845         stid -= adap->tids.sftid_base;
2846         stid += adap->tids.nftids;
2847
2848         f = &adap->tids.ftid_tab[stid];
2849         /* Unlock the filter */
2850         f->locked = 0;
2851
2852         ret = delete_filter(adap, stid);
2853         if (ret)
2854                 return ret;
2855
2856         return 0;
2857 }
2858 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2859
2860 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2861                                                 struct rtnl_link_stats64 *ns)
2862 {
2863         struct port_stats stats;
2864         struct port_info *p = netdev_priv(dev);
2865         struct adapter *adapter = p->adapter;
2866
2867         /* Block retrieving statistics during EEH error
2868          * recovery. Otherwise, the recovery might fail
2869          * and the PCI device will be removed permanently
2870          */
2871         spin_lock(&adapter->stats_lock);
2872         if (!netif_device_present(dev)) {
2873                 spin_unlock(&adapter->stats_lock);
2874                 return ns;
2875         }
2876         t4_get_port_stats(adapter, p->tx_chan, &stats);
2877         spin_unlock(&adapter->stats_lock);
2878
2879         ns->tx_bytes   = stats.tx_octets;
2880         ns->tx_packets = stats.tx_frames;
2881         ns->rx_bytes   = stats.rx_octets;
2882         ns->rx_packets = stats.rx_frames;
2883         ns->multicast  = stats.rx_mcast_frames;
2884
2885         /* detailed rx_errors */
2886         ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2887                                stats.rx_runt;
2888         ns->rx_over_errors   = 0;
2889         ns->rx_crc_errors    = stats.rx_fcs_err;
2890         ns->rx_frame_errors  = stats.rx_symbol_err;
2891         ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
2892                                stats.rx_ovflow2 + stats.rx_ovflow3 +
2893                                stats.rx_trunc0 + stats.rx_trunc1 +
2894                                stats.rx_trunc2 + stats.rx_trunc3;
2895         ns->rx_missed_errors = 0;
2896
2897         /* detailed tx_errors */
2898         ns->tx_aborted_errors   = 0;
2899         ns->tx_carrier_errors   = 0;
2900         ns->tx_fifo_errors      = 0;
2901         ns->tx_heartbeat_errors = 0;
2902         ns->tx_window_errors    = 0;
2903
2904         ns->tx_errors = stats.tx_error_frames;
2905         ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2906                 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2907         return ns;
2908 }
2909
2910 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2911 {
2912         unsigned int mbox;
2913         int ret = 0, prtad, devad;
2914         struct port_info *pi = netdev_priv(dev);
2915         struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2916
2917         switch (cmd) {
2918         case SIOCGMIIPHY:
2919                 if (pi->mdio_addr < 0)
2920                         return -EOPNOTSUPP;
2921                 data->phy_id = pi->mdio_addr;
2922                 break;
2923         case SIOCGMIIREG:
2924         case SIOCSMIIREG:
2925                 if (mdio_phy_id_is_c45(data->phy_id)) {
2926                         prtad = mdio_phy_id_prtad(data->phy_id);
2927                         devad = mdio_phy_id_devad(data->phy_id);
2928                 } else if (data->phy_id < 32) {
2929                         prtad = data->phy_id;
2930                         devad = 0;
2931                         data->reg_num &= 0x1f;
2932                 } else
2933                         return -EINVAL;
2934
2935                 mbox = pi->adapter->fn;
2936                 if (cmd == SIOCGMIIREG)
2937                         ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2938                                          data->reg_num, &data->val_out);
2939                 else
2940                         ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2941                                          data->reg_num, data->val_in);
2942                 break;
2943         default:
2944                 return -EOPNOTSUPP;
2945         }
2946         return ret;
2947 }
2948
2949 static void cxgb_set_rxmode(struct net_device *dev)
2950 {
2951         /* unfortunately we can't return errors to the stack */
2952         set_rxmode(dev, -1, false);
2953 }
2954
2955 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2956 {
2957         int ret;
2958         struct port_info *pi = netdev_priv(dev);
2959
2960         if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
2961                 return -EINVAL;
2962         ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
2963                             -1, -1, -1, true);
2964         if (!ret)
2965                 dev->mtu = new_mtu;
2966         return ret;
2967 }
2968
2969 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2970 {
2971         int ret;
2972         struct sockaddr *addr = p;
2973         struct port_info *pi = netdev_priv(dev);
2974
2975         if (!is_valid_ether_addr(addr->sa_data))
2976                 return -EADDRNOTAVAIL;
2977
2978         ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
2979                             pi->xact_addr_filt, addr->sa_data, true, true);
2980         if (ret < 0)
2981                 return ret;
2982
2983         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2984         pi->xact_addr_filt = ret;
2985         return 0;
2986 }
2987
2988 #ifdef CONFIG_NET_POLL_CONTROLLER
2989 static void cxgb_netpoll(struct net_device *dev)
2990 {
2991         struct port_info *pi = netdev_priv(dev);
2992         struct adapter *adap = pi->adapter;
2993
2994         if (adap->flags & USING_MSIX) {
2995                 int i;
2996                 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2997
2998                 for (i = pi->nqsets; i; i--, rx++)
2999                         t4_sge_intr_msix(0, &rx->rspq);
3000         } else
3001                 t4_intr_handler(adap)(0, adap);
3002 }
3003 #endif
3004
3005 static const struct net_device_ops cxgb4_netdev_ops = {
3006         .ndo_open             = cxgb_open,
3007         .ndo_stop             = cxgb_close,
3008         .ndo_start_xmit       = t4_eth_xmit,
3009         .ndo_select_queue     = cxgb_select_queue,
3010         .ndo_get_stats64      = cxgb_get_stats,
3011         .ndo_set_rx_mode      = cxgb_set_rxmode,
3012         .ndo_set_mac_address  = cxgb_set_mac_addr,
3013         .ndo_set_features     = cxgb_set_features,
3014         .ndo_validate_addr    = eth_validate_addr,
3015         .ndo_do_ioctl         = cxgb_ioctl,
3016         .ndo_change_mtu       = cxgb_change_mtu,
3017 #ifdef CONFIG_NET_POLL_CONTROLLER
3018         .ndo_poll_controller  = cxgb_netpoll,
3019 #endif
3020 #ifdef CONFIG_CHELSIO_T4_FCOE
3021         .ndo_fcoe_enable      = cxgb_fcoe_enable,
3022         .ndo_fcoe_disable     = cxgb_fcoe_disable,
3023 #endif /* CONFIG_CHELSIO_T4_FCOE */
3024 #ifdef CONFIG_NET_RX_BUSY_POLL
3025         .ndo_busy_poll        = cxgb_busy_poll,
3026 #endif
3027
3028 };
3029
3030 void t4_fatal_err(struct adapter *adap)
3031 {
3032         t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
3033         t4_intr_disable(adap);
3034         dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3035 }
3036
3037 /* Return the specified PCI-E Configuration Space register from our Physical
3038  * Function.  We try first via a Firmware LDST Command since we prefer to let
3039  * the firmware own all of these registers, but if that fails we go for it
3040  * directly ourselves.
3041  */
3042 static u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
3043 {
3044         struct fw_ldst_cmd ldst_cmd;
3045         u32 val;
3046         int ret;
3047
3048         /* Construct and send the Firmware LDST Command to retrieve the
3049          * specified PCI-E Configuration Space register.
3050          */
3051         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
3052         ldst_cmd.op_to_addrspace =
3053                 htonl(FW_CMD_OP_V(FW_LDST_CMD) |
3054                       FW_CMD_REQUEST_F |
3055                       FW_CMD_READ_F |
3056                       FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE));
3057         ldst_cmd.cycles_to_len16 = htonl(FW_LEN16(ldst_cmd));
3058         ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
3059         ldst_cmd.u.pcie.ctrl_to_fn =
3060                 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->fn));
3061         ldst_cmd.u.pcie.r = reg;
3062         ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
3063                          &ldst_cmd);
3064
3065         /* If the LDST Command suucceeded, exctract the returned register
3066          * value.  Otherwise read it directly ourself.
3067          */
3068         if (ret == 0)
3069                 val = ntohl(ldst_cmd.u.pcie.data[0]);
3070         else
3071                 t4_hw_pci_read_cfg4(adap, reg, &val);
3072
3073         return val;
3074 }
3075
3076 static void setup_memwin(struct adapter *adap)
3077 {
3078         u32 mem_win0_base, mem_win1_base, mem_win2_base, mem_win2_aperture;
3079
3080         if (is_t4(adap->params.chip)) {
3081                 u32 bar0;
3082
3083                 /* Truncation intentional: we only read the bottom 32-bits of
3084                  * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
3085                  * mechanism to read BAR0 instead of using
3086                  * pci_resource_start() because we could be operating from
3087                  * within a Virtual Machine which is trapping our accesses to
3088                  * our Configuration Space and we need to set up the PCI-E
3089                  * Memory Window decoders with the actual addresses which will
3090                  * be coming across the PCI-E link.
3091                  */
3092                 bar0 = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_0);
3093                 bar0 &= PCI_BASE_ADDRESS_MEM_MASK;
3094                 adap->t4_bar0 = bar0;
3095
3096                 mem_win0_base = bar0 + MEMWIN0_BASE;
3097                 mem_win1_base = bar0 + MEMWIN1_BASE;
3098                 mem_win2_base = bar0 + MEMWIN2_BASE;
3099                 mem_win2_aperture = MEMWIN2_APERTURE;
3100         } else {
3101                 /* For T5, only relative offset inside the PCIe BAR is passed */
3102                 mem_win0_base = MEMWIN0_BASE;
3103                 mem_win1_base = MEMWIN1_BASE;
3104                 mem_win2_base = MEMWIN2_BASE_T5;
3105                 mem_win2_aperture = MEMWIN2_APERTURE_T5;
3106         }
3107         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 0),
3108                      mem_win0_base | BIR_V(0) |
3109                      WINDOW_V(ilog2(MEMWIN0_APERTURE) - 10));
3110         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 1),
3111                      mem_win1_base | BIR_V(0) |
3112                      WINDOW_V(ilog2(MEMWIN1_APERTURE) - 10));
3113         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 2),
3114                      mem_win2_base | BIR_V(0) |
3115                      WINDOW_V(ilog2(mem_win2_aperture) - 10));
3116         t4_read_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 2));
3117 }
3118
3119 static void setup_memwin_rdma(struct adapter *adap)
3120 {
3121         if (adap->vres.ocq.size) {
3122                 u32 start;
3123                 unsigned int sz_kb;
3124
3125                 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3126                 start &= PCI_BASE_ADDRESS_MEM_MASK;
3127                 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3128                 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3129                 t4_write_reg(adap,
3130                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3131                              start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3132                 t4_write_reg(adap,
3133                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3134                              adap->vres.ocq.start);
3135                 t4_read_reg(adap,
3136                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3137         }
3138 }
3139
3140 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3141 {
3142         u32 v;
3143         int ret;
3144
3145         /* get device capabilities */
3146         memset(c, 0, sizeof(*c));
3147         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3148                                FW_CMD_REQUEST_F | FW_CMD_READ_F);
3149         c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3150         ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
3151         if (ret < 0)
3152                 return ret;
3153
3154         /* select capabilities we'll be using */
3155         if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
3156                 if (!vf_acls)
3157                         c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
3158                 else
3159                         c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
3160         } else if (vf_acls) {
3161                 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
3162                 return ret;
3163         }
3164         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3165                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3166         ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
3167         if (ret < 0)
3168                 return ret;
3169
3170         ret = t4_config_glbl_rss(adap, adap->fn,
3171                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3172                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3173                                  FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3174         if (ret < 0)
3175                 return ret;
3176
3177         ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, adap->sge.egr_sz, 64,
3178                           MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3179                           FW_CMD_CAP_PF);
3180         if (ret < 0)
3181                 return ret;
3182
3183         t4_sge_init(adap);
3184
3185         /* tweak some settings */
3186         t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3187         t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3188         t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3189         v = t4_read_reg(adap, TP_PIO_DATA_A);
3190         t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3191
3192         /* first 4 Tx modulation queues point to consecutive Tx channels */
3193         adap->params.tp.tx_modq_map = 0xE4;
3194         t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3195                      TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3196
3197         /* associate each Tx modulation queue with consecutive Tx channels */
3198         v = 0x84218421;
3199         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3200                           &v, 1, TP_TX_SCHED_HDR_A);
3201         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3202                           &v, 1, TP_TX_SCHED_FIFO_A);
3203         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3204                           &v, 1, TP_TX_SCHED_PCMD_A);
3205
3206 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3207         if (is_offload(adap)) {
3208                 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3209                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3210                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3211                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3212                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3213                 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3214                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3215                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3216                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3217                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3218         }
3219
3220         /* get basic stuff going */
3221         return t4_early_init(adap, adap->fn);
3222 }
3223
3224 /*
3225  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3226  */
3227 #define MAX_ATIDS 8192U
3228
3229 /*
3230  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3231  *
3232  * If the firmware we're dealing with has Configuration File support, then
3233  * we use that to perform all configuration
3234  */
3235
3236 /*
3237  * Tweak configuration based on module parameters, etc.  Most of these have
3238  * defaults assigned to them by Firmware Configuration Files (if we're using
3239  * them) but need to be explicitly set if we're using hard-coded
3240  * initialization.  But even in the case of using Firmware Configuration
3241  * Files, we'd like to expose the ability to change these via module
3242  * parameters so these are essentially common tweaks/settings for
3243  * Configuration Files and hard-coded initialization ...
3244  */
3245 static int adap_init0_tweaks(struct adapter *adapter)
3246 {
3247         /*
3248          * Fix up various Host-Dependent Parameters like Page Size, Cache
3249          * Line Size, etc.  The firmware default is for a 4KB Page Size and
3250          * 64B Cache Line Size ...
3251          */
3252         t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3253
3254         /*
3255          * Process module parameters which affect early initialization.
3256          */
3257         if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3258                 dev_err(&adapter->pdev->dev,
3259                         "Ignoring illegal rx_dma_offset=%d, using 2\n",
3260                         rx_dma_offset);
3261                 rx_dma_offset = 2;
3262         }
3263         t4_set_reg_field(adapter, SGE_CONTROL_A,
3264                          PKTSHIFT_V(PKTSHIFT_M),
3265                          PKTSHIFT_V(rx_dma_offset));
3266
3267         /*
3268          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3269          * adds the pseudo header itself.
3270          */
3271         t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3272                                CSUM_HAS_PSEUDO_HDR_F, 0);
3273
3274         return 0;
3275 }
3276
3277 /*
3278  * Attempt to initialize the adapter via a Firmware Configuration File.
3279  */
3280 static int adap_init0_config(struct adapter *adapter, int reset)
3281 {
3282         struct fw_caps_config_cmd caps_cmd;
3283         const struct firmware *cf;
3284         unsigned long mtype = 0, maddr = 0;
3285         u32 finiver, finicsum, cfcsum;
3286         int ret;
3287         int config_issued = 0;
3288         char *fw_config_file, fw_config_file_path[256];
3289         char *config_name = NULL;
3290
3291         /*
3292          * Reset device if necessary.
3293          */
3294         if (reset) {
3295                 ret = t4_fw_reset(adapter, adapter->mbox,
3296                                   PIORSTMODE_F | PIORST_F);
3297                 if (ret < 0)
3298                         goto bye;
3299         }
3300
3301         /*
3302          * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3303          * then use that.  Otherwise, use the configuration file stored
3304          * in the adapter flash ...
3305          */
3306         switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3307         case CHELSIO_T4:
3308                 fw_config_file = FW4_CFNAME;
3309                 break;
3310         case CHELSIO_T5:
3311                 fw_config_file = FW5_CFNAME;
3312                 break;
3313         default:
3314                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3315                        adapter->pdev->device);
3316                 ret = -EINVAL;
3317                 goto bye;
3318         }
3319
3320         ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3321         if (ret < 0) {
3322                 config_name = "On FLASH";
3323                 mtype = FW_MEMTYPE_CF_FLASH;
3324                 maddr = t4_flash_cfg_addr(adapter);
3325         } else {
3326                 u32 params[7], val[7];
3327
3328                 sprintf(fw_config_file_path,
3329                         "/lib/firmware/%s", fw_config_file);
3330                 config_name = fw_config_file_path;
3331
3332                 if (cf->size >= FLASH_CFG_MAX_SIZE)
3333                         ret = -ENOMEM;
3334                 else {
3335                         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3336                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3337                         ret = t4_query_params(adapter, adapter->mbox,
3338                                               adapter->fn, 0, 1, params, val);
3339                         if (ret == 0) {
3340                                 /*
3341                                  * For t4_memory_rw() below addresses and
3342                                  * sizes have to be in terms of multiples of 4
3343                                  * bytes.  So, if the Configuration File isn't
3344                                  * a multiple of 4 bytes in length we'll have
3345                                  * to write that out separately since we can't
3346                                  * guarantee that the bytes following the
3347                                  * residual byte in the buffer returned by
3348                                  * request_firmware() are zeroed out ...
3349                                  */
3350                                 size_t resid = cf->size & 0x3;
3351                                 size_t size = cf->size & ~0x3;
3352                                 __be32 *data = (__be32 *)cf->data;
3353
3354                                 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3355                                 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3356
3357                                 spin_lock(&adapter->win0_lock);
3358                                 ret = t4_memory_rw(adapter, 0, mtype, maddr,
3359                                                    size, data, T4_MEMORY_WRITE);
3360                                 if (ret == 0 && resid != 0) {
3361                                         union {
3362                                                 __be32 word;
3363                                                 char buf[4];
3364                                         } last;
3365                                         int i;
3366
3367                                         last.word = data[size >> 2];
3368                                         for (i = resid; i < 4; i++)
3369                                                 last.buf[i] = 0;
3370                                         ret = t4_memory_rw(adapter, 0, mtype,
3371                                                            maddr + size,
3372                                                            4, &last.word,
3373                                                            T4_MEMORY_WRITE);
3374                                 }
3375                                 spin_unlock(&adapter->win0_lock);
3376                         }
3377                 }
3378
3379                 release_firmware(cf);
3380                 if (ret)
3381                         goto bye;
3382         }
3383
3384         /*
3385          * Issue a Capability Configuration command to the firmware to get it
3386          * to parse the Configuration File.  We don't use t4_fw_config_file()
3387          * because we want the ability to modify various features after we've
3388          * processed the configuration file ...
3389          */
3390         memset(&caps_cmd, 0, sizeof(caps_cmd));
3391         caps_cmd.op_to_write =
3392                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3393                       FW_CMD_REQUEST_F |
3394                       FW_CMD_READ_F);
3395         caps_cmd.cfvalid_to_len16 =
3396                 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3397                       FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3398                       FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3399                       FW_LEN16(caps_cmd));
3400         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3401                          &caps_cmd);
3402
3403         /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3404          * Configuration File in FLASH), our last gasp effort is to use the
3405          * Firmware Configuration File which is embedded in the firmware.  A
3406          * very few early versions of the firmware didn't have one embedded
3407          * but we can ignore those.
3408          */
3409         if (ret == -ENOENT) {
3410                 memset(&caps_cmd, 0, sizeof(caps_cmd));
3411                 caps_cmd.op_to_write =
3412                         htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3413                                         FW_CMD_REQUEST_F |
3414                                         FW_CMD_READ_F);
3415                 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3416                 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3417                                 sizeof(caps_cmd), &caps_cmd);
3418                 config_name = "Firmware Default";
3419         }
3420
3421         config_issued = 1;
3422         if (ret < 0)
3423                 goto bye;
3424
3425         finiver = ntohl(caps_cmd.finiver);
3426         finicsum = ntohl(caps_cmd.finicsum);
3427         cfcsum = ntohl(caps_cmd.cfcsum);
3428         if (finicsum != cfcsum)
3429                 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3430                          "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3431                          finicsum, cfcsum);
3432
3433         /*
3434          * And now tell the firmware to use the configuration we just loaded.
3435          */
3436         caps_cmd.op_to_write =
3437                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3438                       FW_CMD_REQUEST_F |
3439                       FW_CMD_WRITE_F);
3440         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3441         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3442                          NULL);
3443         if (ret < 0)
3444                 goto bye;
3445
3446         /*
3447          * Tweak configuration based on system architecture, module
3448          * parameters, etc.
3449          */
3450         ret = adap_init0_tweaks(adapter);
3451         if (ret < 0)
3452                 goto bye;
3453
3454         /*
3455          * And finally tell the firmware to initialize itself using the
3456          * parameters from the Configuration File.
3457          */
3458         ret = t4_fw_initialize(adapter, adapter->mbox);
3459         if (ret < 0)
3460                 goto bye;
3461
3462         /* Emit Firmware Configuration File information and return
3463          * successfully.
3464          */
3465         dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3466                  "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3467                  config_name, finiver, cfcsum);
3468         return 0;
3469
3470         /*
3471          * Something bad happened.  Return the error ...  (If the "error"
3472          * is that there's no Configuration File on the adapter we don't
3473          * want to issue a warning since this is fairly common.)
3474          */
3475 bye:
3476         if (config_issued && ret != -ENOENT)
3477                 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3478                          config_name, -ret);
3479         return ret;
3480 }
3481
3482 static struct fw_info fw_info_array[] = {
3483         {
3484                 .chip = CHELSIO_T4,
3485                 .fs_name = FW4_CFNAME,
3486                 .fw_mod_name = FW4_FNAME,
3487                 .fw_hdr = {
3488                         .chip = FW_HDR_CHIP_T4,
3489                         .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3490                         .intfver_nic = FW_INTFVER(T4, NIC),
3491                         .intfver_vnic = FW_INTFVER(T4, VNIC),
3492                         .intfver_ri = FW_INTFVER(T4, RI),
3493                         .intfver_iscsi = FW_INTFVER(T4, ISCSI),
3494                         .intfver_fcoe = FW_INTFVER(T4, FCOE),
3495                 },
3496         }, {
3497                 .chip = CHELSIO_T5,
3498                 .fs_name = FW5_CFNAME,
3499                 .fw_mod_name = FW5_FNAME,
3500                 .fw_hdr = {
3501                         .chip = FW_HDR_CHIP_T5,
3502                         .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3503                         .intfver_nic = FW_INTFVER(T5, NIC),
3504                         .intfver_vnic = FW_INTFVER(T5, VNIC),
3505                         .intfver_ri = FW_INTFVER(T5, RI),
3506                         .intfver_iscsi = FW_INTFVER(T5, ISCSI),
3507                         .intfver_fcoe = FW_INTFVER(T5, FCOE),
3508                 },
3509         }
3510 };
3511
3512 static struct fw_info *find_fw_info(int chip)
3513 {
3514         int i;
3515
3516         for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3517                 if (fw_info_array[i].chip == chip)
3518                         return &fw_info_array[i];
3519         }
3520         return NULL;
3521 }
3522
3523 /*
3524  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3525  */
3526 static int adap_init0(struct adapter *adap)
3527 {
3528         int ret;
3529         u32 v, port_vec;
3530         enum dev_state state;
3531         u32 params[7], val[7];
3532         struct fw_caps_config_cmd caps_cmd;
3533         int reset = 1;
3534
3535         /* Grab Firmware Device Log parameters as early as possible so we have
3536          * access to it for debugging, etc.
3537          */
3538         ret = t4_init_devlog_params(adap);
3539         if (ret < 0)
3540                 return ret;
3541
3542         /* Contact FW, advertising Master capability */
3543         ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
3544         if (ret < 0) {
3545                 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3546                         ret);
3547                 return ret;
3548         }
3549         if (ret == adap->mbox)
3550                 adap->flags |= MASTER_PF;
3551
3552         /*
3553          * If we're the Master PF Driver and the device is uninitialized,
3554          * then let's consider upgrading the firmware ...  (We always want
3555          * to check the firmware version number in order to A. get it for
3556          * later reporting and B. to warn if the currently loaded firmware
3557          * is excessively mismatched relative to the driver.)
3558          */
3559         t4_get_fw_version(adap, &adap->params.fw_vers);
3560         t4_get_tp_version(adap, &adap->params.tp_vers);
3561         if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3562                 struct fw_info *fw_info;
3563                 struct fw_hdr *card_fw;
3564                 const struct firmware *fw;
3565                 const u8 *fw_data = NULL;
3566                 unsigned int fw_size = 0;
3567
3568                 /* This is the firmware whose headers the driver was compiled
3569                  * against
3570                  */
3571                 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3572                 if (fw_info == NULL) {
3573                         dev_err(adap->pdev_dev,
3574                                 "unable to get firmware info for chip %d.\n",
3575                                 CHELSIO_CHIP_VERSION(adap->params.chip));
3576                         return -EINVAL;
3577                 }
3578
3579                 /* allocate memory to read the header of the firmware on the
3580                  * card
3581                  */
3582                 card_fw = t4_alloc_mem(sizeof(*card_fw));
3583
3584                 /* Get FW from from /lib/firmware/ */
3585                 ret = request_firmware(&fw, fw_info->fw_mod_name,
3586                                        adap->pdev_dev);
3587                 if (ret < 0) {
3588                         dev_err(adap->pdev_dev,
3589                                 "unable to load firmware image %s, error %d\n",
3590                                 fw_info->fw_mod_name, ret);
3591                 } else {
3592                         fw_data = fw->data;
3593                         fw_size = fw->size;
3594                 }
3595
3596                 /* upgrade FW logic */
3597                 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3598                                  state, &reset);
3599
3600                 /* Cleaning up */
3601                 release_firmware(fw);
3602                 t4_free_mem(card_fw);
3603
3604                 if (ret < 0)
3605                         goto bye;
3606         }
3607
3608         /*
3609          * Grab VPD parameters.  This should be done after we establish a
3610          * connection to the firmware since some of the VPD parameters
3611          * (notably the Core Clock frequency) are retrieved via requests to
3612          * the firmware.  On the other hand, we need these fairly early on
3613          * so we do this right after getting ahold of the firmware.
3614          */
3615         ret = get_vpd_params(adap, &adap->params.vpd);
3616         if (ret < 0)
3617                 goto bye;
3618
3619         /*
3620          * Find out what ports are available to us.  Note that we need to do
3621          * this before calling adap_init0_no_config() since it needs nports
3622          * and portvec ...
3623          */
3624         v =
3625             FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3626             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3627         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec);
3628         if (ret < 0)
3629                 goto bye;
3630
3631         adap->params.nports = hweight32(port_vec);
3632         adap->params.portvec = port_vec;
3633
3634         /* If the firmware is initialized already, emit a simply note to that
3635          * effect. Otherwise, it's time to try initializing the adapter.
3636          */
3637         if (state == DEV_STATE_INIT) {
3638                 dev_info(adap->pdev_dev, "Coming up as %s: "\
3639                          "Adapter already initialized\n",
3640                          adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3641         } else {
3642                 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3643                          "Initializing adapter\n");
3644
3645                 /* Find out whether we're dealing with a version of the
3646                  * firmware which has configuration file support.
3647                  */
3648                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3649                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3650                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1,
3651                                       params, val);
3652
3653                 /* If the firmware doesn't support Configuration Files,
3654                  * return an error.
3655                  */
3656                 if (ret < 0) {
3657                         dev_err(adap->pdev_dev, "firmware doesn't support "
3658                                 "Firmware Configuration Files\n");
3659                         goto bye;
3660                 }
3661
3662                 /* The firmware provides us with a memory buffer where we can
3663                  * load a Configuration File from the host if we want to
3664                  * override the Configuration File in flash.
3665                  */
3666                 ret = adap_init0_config(adap, reset);
3667                 if (ret == -ENOENT) {
3668                         dev_err(adap->pdev_dev, "no Configuration File "
3669                                 "present on adapter.\n");
3670                         goto bye;
3671                 }
3672                 if (ret < 0) {
3673                         dev_err(adap->pdev_dev, "could not initialize "
3674                                 "adapter, error %d\n", -ret);
3675                         goto bye;
3676                 }
3677         }
3678
3679         /* Give the SGE code a chance to pull in anything that it needs ...
3680          * Note that this must be called after we retrieve our VPD parameters
3681          * in order to know how to convert core ticks to seconds, etc.
3682          */
3683         ret = t4_sge_init(adap);
3684         if (ret < 0)
3685                 goto bye;
3686
3687         if (is_bypass_device(adap->pdev->device))
3688                 adap->params.bypass = 1;
3689
3690         /*
3691          * Grab some of our basic fundamental operating parameters.
3692          */
3693 #define FW_PARAM_DEV(param) \
3694         (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3695         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3696
3697 #define FW_PARAM_PFVF(param) \
3698         FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3699         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
3700         FW_PARAMS_PARAM_Y_V(0) | \
3701         FW_PARAMS_PARAM_Z_V(0)
3702
3703         params[0] = FW_PARAM_PFVF(EQ_START);
3704         params[1] = FW_PARAM_PFVF(L2T_START);
3705         params[2] = FW_PARAM_PFVF(L2T_END);
3706         params[3] = FW_PARAM_PFVF(FILTER_START);
3707         params[4] = FW_PARAM_PFVF(FILTER_END);
3708         params[5] = FW_PARAM_PFVF(IQFLINT_START);
3709         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val);
3710         if (ret < 0)
3711                 goto bye;
3712         adap->sge.egr_start = val[0];
3713         adap->l2t_start = val[1];
3714         adap->l2t_end = val[2];
3715         adap->tids.ftid_base = val[3];
3716         adap->tids.nftids = val[4] - val[3] + 1;
3717         adap->sge.ingr_start = val[5];
3718
3719         /* qids (ingress/egress) returned from firmware can be anywhere
3720          * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3721          * Hence driver needs to allocate memory for this range to
3722          * store the queue info. Get the highest IQFLINT/EQ index returned
3723          * in FW_EQ_*_CMD.alloc command.
3724          */
3725         params[0] = FW_PARAM_PFVF(EQ_END);
3726         params[1] = FW_PARAM_PFVF(IQFLINT_END);
3727         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
3728         if (ret < 0)
3729                 goto bye;
3730         adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3731         adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3732
3733         adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3734                                     sizeof(*adap->sge.egr_map), GFP_KERNEL);
3735         if (!adap->sge.egr_map) {
3736                 ret = -ENOMEM;
3737                 goto bye;
3738         }
3739
3740         adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3741                                      sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3742         if (!adap->sge.ingr_map) {
3743                 ret = -ENOMEM;
3744                 goto bye;
3745         }
3746
3747         /* Allocate the memory for the vaious egress queue bitmaps
3748          * ie starving_fl and txq_maperr.
3749          */
3750         adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3751                                         sizeof(long), GFP_KERNEL);
3752         if (!adap->sge.starving_fl) {
3753                 ret = -ENOMEM;
3754                 goto bye;
3755         }
3756
3757         adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3758                                        sizeof(long), GFP_KERNEL);
3759         if (!adap->sge.txq_maperr) {
3760                 ret = -ENOMEM;
3761                 goto bye;
3762         }
3763
3764         params[0] = FW_PARAM_PFVF(CLIP_START);
3765         params[1] = FW_PARAM_PFVF(CLIP_END);
3766         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
3767         if (ret < 0)
3768                 goto bye;
3769         adap->clipt_start = val[0];
3770         adap->clipt_end = val[1];
3771
3772         /* query params related to active filter region */
3773         params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3774         params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3775         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
3776         /* If Active filter size is set we enable establishing
3777          * offload connection through firmware work request
3778          */
3779         if ((val[0] != val[1]) && (ret >= 0)) {
3780                 adap->flags |= FW_OFLD_CONN;
3781                 adap->tids.aftid_base = val[0];
3782                 adap->tids.aftid_end = val[1];
3783         }
3784
3785         /* If we're running on newer firmware, let it know that we're
3786          * prepared to deal with encapsulated CPL messages.  Older
3787          * firmware won't understand this and we'll just get
3788          * unencapsulated messages ...
3789          */
3790         params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3791         val[0] = 1;
3792         (void) t4_set_params(adap, adap->mbox, adap->fn, 0, 1, params, val);
3793
3794         /*
3795          * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3796          * capability.  Earlier versions of the firmware didn't have the
3797          * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3798          * permission to use ULPTX MEMWRITE DSGL.
3799          */
3800         if (is_t4(adap->params.chip)) {
3801                 adap->params.ulptx_memwrite_dsgl = false;
3802         } else {
3803                 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3804                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0,
3805                                       1, params, val);
3806                 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3807         }
3808
3809         /*
3810          * Get device capabilities so we can determine what resources we need
3811          * to manage.
3812          */
3813         memset(&caps_cmd, 0, sizeof(caps_cmd));
3814         caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3815                                      FW_CMD_REQUEST_F | FW_CMD_READ_F);
3816         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3817         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3818                          &caps_cmd);
3819         if (ret < 0)
3820                 goto bye;
3821
3822         if (caps_cmd.ofldcaps) {
3823                 /* query offload-related parameters */
3824                 params[0] = FW_PARAM_DEV(NTID);
3825                 params[1] = FW_PARAM_PFVF(SERVER_START);
3826                 params[2] = FW_PARAM_PFVF(SERVER_END);
3827                 params[3] = FW_PARAM_PFVF(TDDP_START);
3828                 params[4] = FW_PARAM_PFVF(TDDP_END);
3829                 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3830                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
3831                                       params, val);
3832                 if (ret < 0)
3833                         goto bye;
3834                 adap->tids.ntids = val[0];
3835                 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3836                 adap->tids.stid_base = val[1];
3837                 adap->tids.nstids = val[2] - val[1] + 1;
3838                 /*
3839                  * Setup server filter region. Divide the available filter
3840                  * region into two parts. Regular filters get 1/3rd and server
3841                  * filters get 2/3rd part. This is only enabled if workarond
3842                  * path is enabled.
3843                  * 1. For regular filters.
3844                  * 2. Server filter: This are special filters which are used
3845                  * to redirect SYN packets to offload queue.
3846                  */
3847                 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
3848                         adap->tids.sftid_base = adap->tids.ftid_base +
3849                                         DIV_ROUND_UP(adap->tids.nftids, 3);
3850                         adap->tids.nsftids = adap->tids.nftids -
3851                                          DIV_ROUND_UP(adap->tids.nftids, 3);
3852                         adap->tids.nftids = adap->tids.sftid_base -
3853                                                 adap->tids.ftid_base;
3854                 }
3855                 adap->vres.ddp.start = val[3];
3856                 adap->vres.ddp.size = val[4] - val[3] + 1;
3857                 adap->params.ofldq_wr_cred = val[5];
3858
3859                 adap->params.offload = 1;
3860         }
3861         if (caps_cmd.rdmacaps) {
3862                 params[0] = FW_PARAM_PFVF(STAG_START);
3863                 params[1] = FW_PARAM_PFVF(STAG_END);
3864                 params[2] = FW_PARAM_PFVF(RQ_START);
3865                 params[3] = FW_PARAM_PFVF(RQ_END);
3866                 params[4] = FW_PARAM_PFVF(PBL_START);
3867                 params[5] = FW_PARAM_PFVF(PBL_END);
3868                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
3869                                       params, val);
3870                 if (ret < 0)
3871                         goto bye;
3872                 adap->vres.stag.start = val[0];
3873                 adap->vres.stag.size = val[1] - val[0] + 1;
3874                 adap->vres.rq.start = val[2];
3875                 adap->vres.rq.size = val[3] - val[2] + 1;
3876                 adap->vres.pbl.start = val[4];
3877                 adap->vres.pbl.size = val[5] - val[4] + 1;
3878
3879                 params[0] = FW_PARAM_PFVF(SQRQ_START);
3880                 params[1] = FW_PARAM_PFVF(SQRQ_END);
3881                 params[2] = FW_PARAM_PFVF(CQ_START);
3882                 params[3] = FW_PARAM_PFVF(CQ_END);
3883                 params[4] = FW_PARAM_PFVF(OCQ_START);
3884                 params[5] = FW_PARAM_PFVF(OCQ_END);
3885                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params,
3886                                       val);
3887                 if (ret < 0)
3888                         goto bye;
3889                 adap->vres.qp.start = val[0];
3890                 adap->vres.qp.size = val[1] - val[0] + 1;
3891                 adap->vres.cq.start = val[2];
3892                 adap->vres.cq.size = val[3] - val[2] + 1;
3893                 adap->vres.ocq.start = val[4];
3894                 adap->vres.ocq.size = val[5] - val[4] + 1;
3895
3896                 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
3897                 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
3898                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params,
3899                                       val);
3900                 if (ret < 0) {
3901                         adap->params.max_ordird_qp = 8;
3902                         adap->params.max_ird_adapter = 32 * adap->tids.ntids;
3903                         ret = 0;
3904                 } else {
3905                         adap->params.max_ordird_qp = val[0];
3906                         adap->params.max_ird_adapter = val[1];
3907                 }
3908                 dev_info(adap->pdev_dev,
3909                          "max_ordird_qp %d max_ird_adapter %d\n",
3910                          adap->params.max_ordird_qp,
3911                          adap->params.max_ird_adapter);
3912         }
3913         if (caps_cmd.iscsicaps) {
3914                 params[0] = FW_PARAM_PFVF(ISCSI_START);
3915                 params[1] = FW_PARAM_PFVF(ISCSI_END);
3916                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2,
3917                                       params, val);
3918                 if (ret < 0)
3919                         goto bye;
3920                 adap->vres.iscsi.start = val[0];
3921                 adap->vres.iscsi.size = val[1] - val[0] + 1;
3922         }
3923 #undef FW_PARAM_PFVF
3924 #undef FW_PARAM_DEV
3925
3926         /* The MTU/MSS Table is initialized by now, so load their values.  If
3927          * we're initializing the adapter, then we'll make any modifications
3928          * we want to the MTU/MSS Table and also initialize the congestion
3929          * parameters.
3930          */
3931         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
3932         if (state != DEV_STATE_INIT) {
3933                 int i;
3934
3935                 /* The default MTU Table contains values 1492 and 1500.
3936                  * However, for TCP, it's better to have two values which are
3937                  * a multiple of 8 +/- 4 bytes apart near this popular MTU.
3938                  * This allows us to have a TCP Data Payload which is a
3939                  * multiple of 8 regardless of what combination of TCP Options
3940                  * are in use (always a multiple of 4 bytes) which is
3941                  * important for performance reasons.  For instance, if no
3942                  * options are in use, then we have a 20-byte IP header and a
3943                  * 20-byte TCP header.  In this case, a 1500-byte MSS would
3944                  * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
3945                  * which is not a multiple of 8.  So using an MSS of 1488 in
3946                  * this case results in a TCP Data Payload of 1448 bytes which
3947                  * is a multiple of 8.  On the other hand, if 12-byte TCP Time
3948                  * Stamps have been negotiated, then an MTU of 1500 bytes
3949                  * results in a TCP Data Payload of 1448 bytes which, as
3950                  * above, is a multiple of 8 bytes ...
3951                  */
3952                 for (i = 0; i < NMTUS; i++)
3953                         if (adap->params.mtus[i] == 1492) {
3954                                 adap->params.mtus[i] = 1488;
3955                                 break;
3956                         }
3957
3958                 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
3959                              adap->params.b_wnd);
3960         }
3961         t4_init_sge_params(adap);
3962         t4_init_tp_params(adap);
3963         adap->flags |= FW_OK;
3964         return 0;
3965
3966         /*
3967          * Something bad happened.  If a command timed out or failed with EIO
3968          * FW does not operate within its spec or something catastrophic
3969          * happened to HW/FW, stop issuing commands.
3970          */
3971 bye:
3972         kfree(adap->sge.egr_map);
3973         kfree(adap->sge.ingr_map);
3974         kfree(adap->sge.starving_fl);
3975         kfree(adap->sge.txq_maperr);
3976         if (ret != -ETIMEDOUT && ret != -EIO)
3977                 t4_fw_bye(adap, adap->mbox);
3978         return ret;
3979 }
3980
3981 /* EEH callbacks */
3982
3983 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
3984                                          pci_channel_state_t state)
3985 {
3986         int i;
3987         struct adapter *adap = pci_get_drvdata(pdev);
3988
3989         if (!adap)
3990                 goto out;
3991
3992         rtnl_lock();
3993         adap->flags &= ~FW_OK;
3994         notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
3995         spin_lock(&adap->stats_lock);
3996         for_each_port(adap, i) {
3997                 struct net_device *dev = adap->port[i];
3998
3999                 netif_device_detach(dev);
4000                 netif_carrier_off(dev);
4001         }
4002         spin_unlock(&adap->stats_lock);
4003         disable_interrupts(adap);
4004         if (adap->flags & FULL_INIT_DONE)
4005                 cxgb_down(adap);
4006         rtnl_unlock();
4007         if ((adap->flags & DEV_ENABLED)) {
4008                 pci_disable_device(pdev);
4009                 adap->flags &= ~DEV_ENABLED;
4010         }
4011 out:    return state == pci_channel_io_perm_failure ?
4012                 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4013 }
4014
4015 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4016 {
4017         int i, ret;
4018         struct fw_caps_config_cmd c;
4019         struct adapter *adap = pci_get_drvdata(pdev);
4020
4021         if (!adap) {
4022                 pci_restore_state(pdev);
4023                 pci_save_state(pdev);
4024                 return PCI_ERS_RESULT_RECOVERED;
4025         }
4026
4027         if (!(adap->flags & DEV_ENABLED)) {
4028                 if (pci_enable_device(pdev)) {
4029                         dev_err(&pdev->dev, "Cannot reenable PCI "
4030                                             "device after reset\n");
4031                         return PCI_ERS_RESULT_DISCONNECT;
4032                 }
4033                 adap->flags |= DEV_ENABLED;
4034         }
4035
4036         pci_set_master(pdev);
4037         pci_restore_state(pdev);
4038         pci_save_state(pdev);
4039         pci_cleanup_aer_uncorrect_error_status(pdev);
4040
4041         if (t4_wait_dev_ready(adap->regs) < 0)
4042                 return PCI_ERS_RESULT_DISCONNECT;
4043         if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL) < 0)
4044                 return PCI_ERS_RESULT_DISCONNECT;
4045         adap->flags |= FW_OK;
4046         if (adap_init1(adap, &c))
4047                 return PCI_ERS_RESULT_DISCONNECT;
4048
4049         for_each_port(adap, i) {
4050                 struct port_info *p = adap2pinfo(adap, i);
4051
4052                 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
4053                                   NULL, NULL);
4054                 if (ret < 0)
4055                         return PCI_ERS_RESULT_DISCONNECT;
4056                 p->viid = ret;
4057                 p->xact_addr_filt = -1;
4058         }
4059
4060         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4061                      adap->params.b_wnd);
4062         setup_memwin(adap);
4063         if (cxgb_up(adap))
4064                 return PCI_ERS_RESULT_DISCONNECT;
4065         return PCI_ERS_RESULT_RECOVERED;
4066 }
4067
4068 static void eeh_resume(struct pci_dev *pdev)
4069 {
4070         int i;
4071         struct adapter *adap = pci_get_drvdata(pdev);
4072
4073         if (!adap)
4074                 return;
4075
4076         rtnl_lock();
4077         for_each_port(adap, i) {
4078                 struct net_device *dev = adap->port[i];
4079
4080                 if (netif_running(dev)) {
4081                         link_start(dev);
4082                         cxgb_set_rxmode(dev);
4083                 }
4084                 netif_device_attach(dev);
4085         }
4086         rtnl_unlock();
4087 }
4088
4089 static const struct pci_error_handlers cxgb4_eeh = {
4090         .error_detected = eeh_err_detected,
4091         .slot_reset     = eeh_slot_reset,
4092         .resume         = eeh_resume,
4093 };
4094
4095 static inline bool is_x_10g_port(const struct link_config *lc)
4096 {
4097         return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
4098                (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
4099 }
4100
4101 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
4102                              unsigned int us, unsigned int cnt,
4103                              unsigned int size, unsigned int iqe_size)
4104 {
4105         q->adap = adap;
4106         cxgb4_set_rspq_intr_params(q, us, cnt);
4107         q->iqe_len = iqe_size;
4108         q->size = size;
4109 }
4110
4111 /*
4112  * Perform default configuration of DMA queues depending on the number and type
4113  * of ports we found and the number of available CPUs.  Most settings can be
4114  * modified by the admin prior to actual use.
4115  */
4116 static void cfg_queues(struct adapter *adap)
4117 {
4118         struct sge *s = &adap->sge;
4119         int i, n10g = 0, qidx = 0;
4120 #ifndef CONFIG_CHELSIO_T4_DCB
4121         int q10g = 0;
4122 #endif
4123         int ciq_size;
4124
4125         for_each_port(adap, i)
4126                 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4127 #ifdef CONFIG_CHELSIO_T4_DCB
4128         /* For Data Center Bridging support we need to be able to support up
4129          * to 8 Traffic Priorities; each of which will be assigned to its
4130          * own TX Queue in order to prevent Head-Of-Line Blocking.
4131          */
4132         if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4133                 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4134                         MAX_ETH_QSETS, adap->params.nports * 8);
4135                 BUG_ON(1);
4136         }
4137
4138         for_each_port(adap, i) {
4139                 struct port_info *pi = adap2pinfo(adap, i);
4140
4141                 pi->first_qset = qidx;
4142                 pi->nqsets = 8;
4143                 qidx += pi->nqsets;
4144         }
4145 #else /* !CONFIG_CHELSIO_T4_DCB */
4146         /*
4147          * We default to 1 queue per non-10G port and up to # of cores queues
4148          * per 10G port.
4149          */
4150         if (n10g)
4151                 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4152         if (q10g > netif_get_num_default_rss_queues())
4153                 q10g = netif_get_num_default_rss_queues();
4154
4155         for_each_port(adap, i) {
4156                 struct port_info *pi = adap2pinfo(adap, i);
4157
4158                 pi->first_qset = qidx;
4159                 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4160                 qidx += pi->nqsets;
4161         }
4162 #endif /* !CONFIG_CHELSIO_T4_DCB */
4163
4164         s->ethqsets = qidx;
4165         s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4166
4167         if (is_offload(adap)) {
4168                 /*
4169                  * For offload we use 1 queue/channel if all ports are up to 1G,
4170                  * otherwise we divide all available queues amongst the channels
4171                  * capped by the number of available cores.
4172                  */
4173                 if (n10g) {
4174                         i = min_t(int, ARRAY_SIZE(s->ofldrxq),
4175                                   num_online_cpus());
4176                         s->ofldqsets = roundup(i, adap->params.nports);
4177                 } else
4178                         s->ofldqsets = adap->params.nports;
4179                 /* For RDMA one Rx queue per channel suffices */
4180                 s->rdmaqs = adap->params.nports;
4181                 /* Try and allow at least 1 CIQ per cpu rounding down
4182                  * to the number of ports, with a minimum of 1 per port.
4183                  * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port.
4184                  * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port.
4185                  * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port.
4186                  */
4187                 s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus());
4188                 s->rdmaciqs = (s->rdmaciqs / adap->params.nports) *
4189                                 adap->params.nports;
4190                 s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports);
4191         }
4192
4193         for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4194                 struct sge_eth_rxq *r = &s->ethrxq[i];
4195
4196                 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4197                 r->fl.size = 72;
4198         }
4199
4200         for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4201                 s->ethtxq[i].q.size = 1024;
4202
4203         for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4204                 s->ctrlq[i].q.size = 512;
4205
4206         for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4207                 s->ofldtxq[i].q.size = 1024;
4208
4209         for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
4210                 struct sge_ofld_rxq *r = &s->ofldrxq[i];
4211
4212                 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4213                 r->rspq.uld = CXGB4_ULD_ISCSI;
4214                 r->fl.size = 72;
4215         }
4216
4217         for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
4218                 struct sge_ofld_rxq *r = &s->rdmarxq[i];
4219
4220                 init_rspq(adap, &r->rspq, 5, 1, 511, 64);
4221                 r->rspq.uld = CXGB4_ULD_RDMA;
4222                 r->fl.size = 72;
4223         }
4224
4225         ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
4226         if (ciq_size > SGE_MAX_IQ_SIZE) {
4227                 CH_WARN(adap, "CIQ size too small for available IQs\n");
4228                 ciq_size = SGE_MAX_IQ_SIZE;
4229         }
4230
4231         for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
4232                 struct sge_ofld_rxq *r = &s->rdmaciq[i];
4233
4234                 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
4235                 r->rspq.uld = CXGB4_ULD_RDMA;
4236         }
4237
4238         init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4239         init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
4240 }
4241
4242 /*
4243  * Reduce the number of Ethernet queues across all ports to at most n.
4244  * n provides at least one queue per port.
4245  */
4246 static void reduce_ethqs(struct adapter *adap, int n)
4247 {
4248         int i;
4249         struct port_info *pi;
4250
4251         while (n < adap->sge.ethqsets)
4252                 for_each_port(adap, i) {
4253                         pi = adap2pinfo(adap, i);
4254                         if (pi->nqsets > 1) {
4255                                 pi->nqsets--;
4256                                 adap->sge.ethqsets--;
4257                                 if (adap->sge.ethqsets <= n)
4258                                         break;
4259                         }
4260                 }
4261
4262         n = 0;
4263         for_each_port(adap, i) {
4264                 pi = adap2pinfo(adap, i);
4265                 pi->first_qset = n;
4266                 n += pi->nqsets;
4267         }
4268 }
4269
4270 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4271 #define EXTRA_VECS 2
4272
4273 static int enable_msix(struct adapter *adap)
4274 {
4275         int ofld_need = 0;
4276         int i, want, need, allocated;
4277         struct sge *s = &adap->sge;
4278         unsigned int nchan = adap->params.nports;
4279         struct msix_entry *entries;
4280
4281         entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1),
4282                           GFP_KERNEL);
4283         if (!entries)
4284                 return -ENOMEM;
4285
4286         for (i = 0; i < MAX_INGQ + 1; ++i)
4287                 entries[i].entry = i;
4288
4289         want = s->max_ethqsets + EXTRA_VECS;
4290         if (is_offload(adap)) {
4291                 want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
4292                 /* need nchan for each possible ULD */
4293                 ofld_need = 3 * nchan;
4294         }
4295 #ifdef CONFIG_CHELSIO_T4_DCB
4296         /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4297          * each port.
4298          */
4299         need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
4300 #else
4301         need = adap->params.nports + EXTRA_VECS + ofld_need;
4302 #endif
4303         allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4304         if (allocated < 0) {
4305                 dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4306                          " not using MSI-X\n");
4307                 kfree(entries);
4308                 return allocated;
4309         }
4310
4311         /* Distribute available vectors to the various queue groups.
4312          * Every group gets its minimum requirement and NIC gets top
4313          * priority for leftovers.
4314          */
4315         i = allocated - EXTRA_VECS - ofld_need;
4316         if (i < s->max_ethqsets) {
4317                 s->max_ethqsets = i;
4318                 if (i < s->ethqsets)
4319                         reduce_ethqs(adap, i);
4320         }
4321         if (is_offload(adap)) {
4322                 if (allocated < want) {
4323                         s->rdmaqs = nchan;
4324                         s->rdmaciqs = nchan;
4325                 }
4326
4327                 /* leftovers go to OFLD */
4328                 i = allocated - EXTRA_VECS - s->max_ethqsets -
4329                     s->rdmaqs - s->rdmaciqs;
4330                 s->ofldqsets = (i / nchan) * nchan;  /* round down */
4331         }
4332         for (i = 0; i < allocated; ++i)
4333                 adap->msix_info[i].vec = entries[i].vector;
4334
4335         kfree(entries);
4336         return 0;
4337 }
4338
4339 #undef EXTRA_VECS
4340
4341 static int init_rss(struct adapter *adap)
4342 {
4343         unsigned int i, j;
4344
4345         for_each_port(adap, i) {
4346                 struct port_info *pi = adap2pinfo(adap, i);
4347
4348                 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4349                 if (!pi->rss)
4350                         return -ENOMEM;
4351                 for (j = 0; j < pi->rss_size; j++)
4352                         pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets);
4353         }
4354         return 0;
4355 }
4356
4357 static void print_port_info(const struct net_device *dev)
4358 {
4359         char buf[80];
4360         char *bufp = buf;
4361         const char *spd = "";
4362         const struct port_info *pi = netdev_priv(dev);
4363         const struct adapter *adap = pi->adapter;
4364
4365         if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4366                 spd = " 2.5 GT/s";
4367         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4368                 spd = " 5 GT/s";
4369         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4370                 spd = " 8 GT/s";
4371
4372         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4373                 bufp += sprintf(bufp, "100/");
4374         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4375                 bufp += sprintf(bufp, "1000/");
4376         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4377                 bufp += sprintf(bufp, "10G/");
4378         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4379                 bufp += sprintf(bufp, "40G/");
4380         if (bufp != buf)
4381                 --bufp;
4382         sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4383
4384         netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
4385                     adap->params.vpd.id,
4386                     CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
4387                     is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
4388                     (adap->flags & USING_MSIX) ? " MSI-X" :
4389                     (adap->flags & USING_MSI) ? " MSI" : "");
4390         netdev_info(dev, "S/N: %s, P/N: %s\n",
4391                     adap->params.vpd.sn, adap->params.vpd.pn);
4392 }
4393
4394 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4395 {
4396         pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4397 }
4398
4399 /*
4400  * Free the following resources:
4401  * - memory used for tables
4402  * - MSI/MSI-X
4403  * - net devices
4404  * - resources FW is holding for us
4405  */
4406 static void free_some_resources(struct adapter *adapter)
4407 {
4408         unsigned int i;
4409
4410         t4_free_mem(adapter->l2t);
4411         t4_free_mem(adapter->tids.tid_tab);
4412         kfree(adapter->sge.egr_map);
4413         kfree(adapter->sge.ingr_map);
4414         kfree(adapter->sge.starving_fl);
4415         kfree(adapter->sge.txq_maperr);
4416         disable_msi(adapter);
4417
4418         for_each_port(adapter, i)
4419                 if (adapter->port[i]) {
4420                         kfree(adap2pinfo(adapter, i)->rss);
4421                         free_netdev(adapter->port[i]);
4422                 }
4423         if (adapter->flags & FW_OK)
4424                 t4_fw_bye(adapter, adapter->fn);
4425 }
4426
4427 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4428 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4429                    NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4430 #define SEGMENT_SIZE 128
4431
4432 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4433 {
4434         int func, i, err, s_qpp, qpp, num_seg;
4435         struct port_info *pi;
4436         bool highdma = false;
4437         struct adapter *adapter = NULL;
4438         void __iomem *regs;
4439
4440         printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4441
4442         err = pci_request_regions(pdev, KBUILD_MODNAME);
4443         if (err) {
4444                 /* Just info, some other driver may have claimed the device. */
4445                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4446                 return err;
4447         }
4448
4449         err = pci_enable_device(pdev);
4450         if (err) {
4451                 dev_err(&pdev->dev, "cannot enable PCI device\n");
4452                 goto out_release_regions;
4453         }
4454
4455         regs = pci_ioremap_bar(pdev, 0);
4456         if (!regs) {
4457                 dev_err(&pdev->dev, "cannot map device registers\n");
4458                 err = -ENOMEM;
4459                 goto out_disable_device;
4460         }
4461
4462         err = t4_wait_dev_ready(regs);
4463         if (err < 0)
4464                 goto out_unmap_bar0;
4465
4466         /* We control everything through one PF */
4467         func = SOURCEPF_G(readl(regs + PL_WHOAMI_A));
4468         if (func != ent->driver_data) {
4469                 iounmap(regs);
4470                 pci_disable_device(pdev);
4471                 pci_save_state(pdev);        /* to restore SR-IOV later */
4472                 goto sriov;
4473         }
4474
4475         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4476                 highdma = true;
4477                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4478                 if (err) {
4479                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4480                                 "coherent allocations\n");
4481                         goto out_unmap_bar0;
4482                 }
4483         } else {
4484                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4485                 if (err) {
4486                         dev_err(&pdev->dev, "no usable DMA configuration\n");
4487                         goto out_unmap_bar0;
4488                 }
4489         }
4490
4491         pci_enable_pcie_error_reporting(pdev);
4492         enable_pcie_relaxed_ordering(pdev);
4493         pci_set_master(pdev);
4494         pci_save_state(pdev);
4495
4496         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4497         if (!adapter) {
4498                 err = -ENOMEM;
4499                 goto out_unmap_bar0;
4500         }
4501
4502         adapter->workq = create_singlethread_workqueue("cxgb4");
4503         if (!adapter->workq) {
4504                 err = -ENOMEM;
4505                 goto out_free_adapter;
4506         }
4507
4508         /* PCI device has been enabled */
4509         adapter->flags |= DEV_ENABLED;
4510
4511         adapter->regs = regs;
4512         adapter->pdev = pdev;
4513         adapter->pdev_dev = &pdev->dev;
4514         adapter->mbox = func;
4515         adapter->fn = func;
4516         adapter->msg_enable = dflt_msg_enable;
4517         memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4518
4519         spin_lock_init(&adapter->stats_lock);
4520         spin_lock_init(&adapter->tid_release_lock);
4521         spin_lock_init(&adapter->win0_lock);
4522
4523         INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4524         INIT_WORK(&adapter->db_full_task, process_db_full);
4525         INIT_WORK(&adapter->db_drop_task, process_db_drop);
4526
4527         err = t4_prep_adapter(adapter);
4528         if (err)
4529                 goto out_free_adapter;
4530
4531
4532         if (!is_t4(adapter->params.chip)) {
4533                 s_qpp = (QUEUESPERPAGEPF0_S +
4534                         (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4535                         adapter->fn);
4536                 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4537                       SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4538                 num_seg = PAGE_SIZE / SEGMENT_SIZE;
4539
4540                 /* Each segment size is 128B. Write coalescing is enabled only
4541                  * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4542                  * queue is less no of segments that can be accommodated in
4543                  * a page size.
4544                  */
4545                 if (qpp > num_seg) {
4546                         dev_err(&pdev->dev,
4547                                 "Incorrect number of egress queues per page\n");
4548                         err = -EINVAL;
4549                         goto out_free_adapter;
4550                 }
4551                 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4552                 pci_resource_len(pdev, 2));
4553                 if (!adapter->bar2) {
4554                         dev_err(&pdev->dev, "cannot map device bar2 region\n");
4555                         err = -ENOMEM;
4556                         goto out_free_adapter;
4557                 }
4558         }
4559
4560         setup_memwin(adapter);
4561         err = adap_init0(adapter);
4562         setup_memwin_rdma(adapter);
4563         if (err)
4564                 goto out_unmap_bar;
4565
4566         for_each_port(adapter, i) {
4567                 struct net_device *netdev;
4568
4569                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
4570                                            MAX_ETH_QSETS);
4571                 if (!netdev) {
4572                         err = -ENOMEM;
4573                         goto out_free_dev;
4574                 }
4575
4576                 SET_NETDEV_DEV(netdev, &pdev->dev);
4577
4578                 adapter->port[i] = netdev;
4579                 pi = netdev_priv(netdev);
4580                 pi->adapter = adapter;
4581                 pi->xact_addr_filt = -1;
4582                 pi->port_id = i;
4583                 netdev->irq = pdev->irq;
4584
4585                 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4586                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4587                         NETIF_F_RXCSUM | NETIF_F_RXHASH |
4588                         NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
4589                 if (highdma)
4590                         netdev->hw_features |= NETIF_F_HIGHDMA;
4591                 netdev->features |= netdev->hw_features;
4592                 netdev->vlan_features = netdev->features & VLAN_FEAT;
4593
4594                 netdev->priv_flags |= IFF_UNICAST_FLT;
4595
4596                 netdev->netdev_ops = &cxgb4_netdev_ops;
4597 #ifdef CONFIG_CHELSIO_T4_DCB
4598                 netdev->dcbnl_ops = &cxgb4_dcb_ops;
4599                 cxgb4_dcb_state_init(netdev);
4600 #endif
4601                 cxgb4_set_ethtool_ops(netdev);
4602         }
4603
4604         pci_set_drvdata(pdev, adapter);
4605
4606         if (adapter->flags & FW_OK) {
4607                 err = t4_port_init(adapter, func, func, 0);
4608                 if (err)
4609                         goto out_free_dev;
4610         }
4611
4612         /*
4613          * Configure queues and allocate tables now, they can be needed as
4614          * soon as the first register_netdev completes.
4615          */
4616         cfg_queues(adapter);
4617
4618         adapter->l2t = t4_init_l2t();
4619         if (!adapter->l2t) {
4620                 /* We tolerate a lack of L2T, giving up some functionality */
4621                 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
4622                 adapter->params.offload = 0;
4623         }
4624
4625 #if IS_ENABLED(CONFIG_IPV6)
4626         adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
4627                                           adapter->clipt_end);
4628         if (!adapter->clipt) {
4629                 /* We tolerate a lack of clip_table, giving up
4630                  * some functionality
4631                  */
4632                 dev_warn(&pdev->dev,
4633                          "could not allocate Clip table, continuing\n");
4634                 adapter->params.offload = 0;
4635         }
4636 #endif
4637         if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
4638                 dev_warn(&pdev->dev, "could not allocate TID table, "
4639                          "continuing\n");
4640                 adapter->params.offload = 0;
4641         }
4642
4643         /* See what interrupts we'll be using */
4644         if (msi > 1 && enable_msix(adapter) == 0)
4645                 adapter->flags |= USING_MSIX;
4646         else if (msi > 0 && pci_enable_msi(pdev) == 0)
4647                 adapter->flags |= USING_MSI;
4648
4649         err = init_rss(adapter);
4650         if (err)
4651                 goto out_free_dev;
4652
4653         /*
4654          * The card is now ready to go.  If any errors occur during device
4655          * registration we do not fail the whole card but rather proceed only
4656          * with the ports we manage to register successfully.  However we must
4657          * register at least one net device.
4658          */
4659         for_each_port(adapter, i) {
4660                 pi = adap2pinfo(adapter, i);
4661                 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
4662                 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
4663
4664                 err = register_netdev(adapter->port[i]);
4665                 if (err)
4666                         break;
4667                 adapter->chan_map[pi->tx_chan] = i;
4668                 print_port_info(adapter->port[i]);
4669         }
4670         if (i == 0) {
4671                 dev_err(&pdev->dev, "could not register any net devices\n");
4672                 goto out_free_dev;
4673         }
4674         if (err) {
4675                 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
4676                 err = 0;
4677         }
4678
4679         if (cxgb4_debugfs_root) {
4680                 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
4681                                                            cxgb4_debugfs_root);
4682                 setup_debugfs(adapter);
4683         }
4684
4685         /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
4686         pdev->needs_freset = 1;
4687
4688         if (is_offload(adapter))
4689                 attach_ulds(adapter);
4690
4691 sriov:
4692 #ifdef CONFIG_PCI_IOV
4693         if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
4694                 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
4695                         dev_info(&pdev->dev,
4696                                  "instantiated %u virtual functions\n",
4697                                  num_vf[func]);
4698 #endif
4699         return 0;
4700
4701  out_free_dev:
4702         free_some_resources(adapter);
4703  out_unmap_bar:
4704         if (!is_t4(adapter->params.chip))
4705                 iounmap(adapter->bar2);
4706  out_free_adapter:
4707         if (adapter->workq)
4708                 destroy_workqueue(adapter->workq);
4709
4710         kfree(adapter);
4711  out_unmap_bar0:
4712         iounmap(regs);
4713  out_disable_device:
4714         pci_disable_pcie_error_reporting(pdev);
4715         pci_disable_device(pdev);
4716  out_release_regions:
4717         pci_release_regions(pdev);
4718         return err;
4719 }
4720
4721 static void remove_one(struct pci_dev *pdev)
4722 {
4723         struct adapter *adapter = pci_get_drvdata(pdev);
4724
4725 #ifdef CONFIG_PCI_IOV
4726         pci_disable_sriov(pdev);
4727
4728 #endif
4729
4730         if (adapter) {
4731                 int i;
4732
4733                 /* Tear down per-adapter Work Queue first since it can contain
4734                  * references to our adapter data structure.
4735                  */
4736                 destroy_workqueue(adapter->workq);
4737
4738                 if (is_offload(adapter))
4739                         detach_ulds(adapter);
4740
4741                 disable_interrupts(adapter);
4742
4743                 for_each_port(adapter, i)
4744                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
4745                                 unregister_netdev(adapter->port[i]);
4746
4747                 debugfs_remove_recursive(adapter->debugfs_root);
4748
4749                 /* If we allocated filters, free up state associated with any
4750                  * valid filters ...
4751                  */
4752                 if (adapter->tids.ftid_tab) {
4753                         struct filter_entry *f = &adapter->tids.ftid_tab[0];
4754                         for (i = 0; i < (adapter->tids.nftids +
4755                                         adapter->tids.nsftids); i++, f++)
4756                                 if (f->valid)
4757                                         clear_filter(adapter, f);
4758                 }
4759
4760                 if (adapter->flags & FULL_INIT_DONE)
4761                         cxgb_down(adapter);
4762
4763                 free_some_resources(adapter);
4764 #if IS_ENABLED(CONFIG_IPV6)
4765                 t4_cleanup_clip_tbl(adapter);
4766 #endif
4767                 iounmap(adapter->regs);
4768                 if (!is_t4(adapter->params.chip))
4769                         iounmap(adapter->bar2);
4770                 pci_disable_pcie_error_reporting(pdev);
4771                 if ((adapter->flags & DEV_ENABLED)) {
4772                         pci_disable_device(pdev);
4773                         adapter->flags &= ~DEV_ENABLED;
4774                 }
4775                 pci_release_regions(pdev);
4776                 synchronize_rcu();
4777                 kfree(adapter);
4778         } else
4779                 pci_release_regions(pdev);
4780 }
4781
4782 static struct pci_driver cxgb4_driver = {
4783         .name     = KBUILD_MODNAME,
4784         .id_table = cxgb4_pci_tbl,
4785         .probe    = init_one,
4786         .remove   = remove_one,
4787         .shutdown = remove_one,
4788         .err_handler = &cxgb4_eeh,
4789 };
4790
4791 static int __init cxgb4_init_module(void)
4792 {
4793         int ret;
4794
4795         /* Debugfs support is optional, just warn if this fails */
4796         cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
4797         if (!cxgb4_debugfs_root)
4798                 pr_warn("could not create debugfs entry, continuing\n");
4799
4800         ret = pci_register_driver(&cxgb4_driver);
4801         if (ret < 0)
4802                 debugfs_remove(cxgb4_debugfs_root);
4803
4804 #if IS_ENABLED(CONFIG_IPV6)
4805         if (!inet6addr_registered) {
4806                 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
4807                 inet6addr_registered = true;
4808         }
4809 #endif
4810
4811         return ret;
4812 }
4813
4814 static void __exit cxgb4_cleanup_module(void)
4815 {
4816 #if IS_ENABLED(CONFIG_IPV6)
4817         if (inet6addr_registered) {
4818                 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
4819                 inet6addr_registered = false;
4820         }
4821 #endif
4822         pci_unregister_driver(&cxgb4_driver);
4823         debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
4824 }
4825
4826 module_init(cxgb4_init_module);
4827 module_exit(cxgb4_cleanup_module);