Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / net / ethernet / chelsio / cxgb / sge.c
1 /*****************************************************************************
2  *                                                                           *
3  * File: sge.c                                                               *
4  * $Revision: 1.26 $                                                         *
5  * $Date: 2005/06/21 18:29:48 $                                              *
6  * Description:                                                              *
7  *  DMA engine.                                                              *
8  *  part of the Chelsio 10Gb Ethernet Driver.                                *
9  *                                                                           *
10  * This program is free software; you can redistribute it and/or modify      *
11  * it under the terms of the GNU General Public License, version 2, as       *
12  * published by the Free Software Foundation.                                *
13  *                                                                           *
14  * You should have received a copy of the GNU General Public License along   *
15  * with this program; if not, see <http://www.gnu.org/licenses/>.            *
16  *                                                                           *
17  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED    *
18  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF      *
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.                     *
20  *                                                                           *
21  * http://www.chelsio.com                                                    *
22  *                                                                           *
23  * Copyright (c) 2003 - 2005 Chelsio Communications, Inc.                    *
24  * All rights reserved.                                                      *
25  *                                                                           *
26  * Maintainers: maintainers@chelsio.com                                      *
27  *                                                                           *
28  * Authors: Dimitrios Michailidis   <dm@chelsio.com>                         *
29  *          Tina Yang               <tainay@chelsio.com>                     *
30  *          Felix Marti             <felix@chelsio.com>                      *
31  *          Scott Bardone           <sbardone@chelsio.com>                   *
32  *          Kurt Ottaway            <kottaway@chelsio.com>                   *
33  *          Frank DiMambro          <frank@chelsio.com>                      *
34  *                                                                           *
35  * History:                                                                  *
36  *                                                                           *
37  ****************************************************************************/
38
39 #include "common.h"
40
41 #include <linux/types.h>
42 #include <linux/errno.h>
43 #include <linux/pci.h>
44 #include <linux/ktime.h>
45 #include <linux/netdevice.h>
46 #include <linux/etherdevice.h>
47 #include <linux/if_vlan.h>
48 #include <linux/skbuff.h>
49 #include <linux/mm.h>
50 #include <linux/tcp.h>
51 #include <linux/ip.h>
52 #include <linux/in.h>
53 #include <linux/if_arp.h>
54 #include <linux/slab.h>
55 #include <linux/prefetch.h>
56
57 #include "cpl5_cmd.h"
58 #include "sge.h"
59 #include "regs.h"
60 #include "espi.h"
61
62 /* This belongs in if_ether.h */
63 #define ETH_P_CPL5 0xf
64
65 #define SGE_CMDQ_N              2
66 #define SGE_FREELQ_N            2
67 #define SGE_CMDQ0_E_N           1024
68 #define SGE_CMDQ1_E_N           128
69 #define SGE_FREEL_SIZE          4096
70 #define SGE_JUMBO_FREEL_SIZE    512
71 #define SGE_FREEL_REFILL_THRESH 16
72 #define SGE_RESPQ_E_N           1024
73 #define SGE_INTRTIMER_NRES      1000
74 #define SGE_RX_SM_BUF_SIZE      1536
75 #define SGE_TX_DESC_MAX_PLEN    16384
76
77 #define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
78
79 /*
80  * Period of the TX buffer reclaim timer.  This timer does not need to run
81  * frequently as TX buffers are usually reclaimed by new TX packets.
82  */
83 #define TX_RECLAIM_PERIOD (HZ / 4)
84
85 #define M_CMD_LEN       0x7fffffff
86 #define V_CMD_LEN(v)    (v)
87 #define G_CMD_LEN(v)    ((v) & M_CMD_LEN)
88 #define V_CMD_GEN1(v)   ((v) << 31)
89 #define V_CMD_GEN2(v)   (v)
90 #define F_CMD_DATAVALID (1 << 1)
91 #define F_CMD_SOP       (1 << 2)
92 #define V_CMD_EOP(v)    ((v) << 3)
93
94 /*
95  * Command queue, receive buffer list, and response queue descriptors.
96  */
97 #if defined(__BIG_ENDIAN_BITFIELD)
98 struct cmdQ_e {
99         u32 addr_lo;
100         u32 len_gen;
101         u32 flags;
102         u32 addr_hi;
103 };
104
105 struct freelQ_e {
106         u32 addr_lo;
107         u32 len_gen;
108         u32 gen2;
109         u32 addr_hi;
110 };
111
112 struct respQ_e {
113         u32 Qsleeping           : 4;
114         u32 Cmdq1CreditReturn   : 5;
115         u32 Cmdq1DmaComplete    : 5;
116         u32 Cmdq0CreditReturn   : 5;
117         u32 Cmdq0DmaComplete    : 5;
118         u32 FreelistQid         : 2;
119         u32 CreditValid         : 1;
120         u32 DataValid           : 1;
121         u32 Offload             : 1;
122         u32 Eop                 : 1;
123         u32 Sop                 : 1;
124         u32 GenerationBit       : 1;
125         u32 BufferLength;
126 };
127 #elif defined(__LITTLE_ENDIAN_BITFIELD)
128 struct cmdQ_e {
129         u32 len_gen;
130         u32 addr_lo;
131         u32 addr_hi;
132         u32 flags;
133 };
134
135 struct freelQ_e {
136         u32 len_gen;
137         u32 addr_lo;
138         u32 addr_hi;
139         u32 gen2;
140 };
141
142 struct respQ_e {
143         u32 BufferLength;
144         u32 GenerationBit       : 1;
145         u32 Sop                 : 1;
146         u32 Eop                 : 1;
147         u32 Offload             : 1;
148         u32 DataValid           : 1;
149         u32 CreditValid         : 1;
150         u32 FreelistQid         : 2;
151         u32 Cmdq0DmaComplete    : 5;
152         u32 Cmdq0CreditReturn   : 5;
153         u32 Cmdq1DmaComplete    : 5;
154         u32 Cmdq1CreditReturn   : 5;
155         u32 Qsleeping           : 4;
156 } ;
157 #endif
158
159 /*
160  * SW Context Command and Freelist Queue Descriptors
161  */
162 struct cmdQ_ce {
163         struct sk_buff *skb;
164         DEFINE_DMA_UNMAP_ADDR(dma_addr);
165         DEFINE_DMA_UNMAP_LEN(dma_len);
166 };
167
168 struct freelQ_ce {
169         struct sk_buff *skb;
170         DEFINE_DMA_UNMAP_ADDR(dma_addr);
171         DEFINE_DMA_UNMAP_LEN(dma_len);
172 };
173
174 /*
175  * SW command, freelist and response rings
176  */
177 struct cmdQ {
178         unsigned long   status;         /* HW DMA fetch status */
179         unsigned int    in_use;         /* # of in-use command descriptors */
180         unsigned int    size;           /* # of descriptors */
181         unsigned int    processed;      /* total # of descs HW has processed */
182         unsigned int    cleaned;        /* total # of descs SW has reclaimed */
183         unsigned int    stop_thres;     /* SW TX queue suspend threshold */
184         u16             pidx;           /* producer index (SW) */
185         u16             cidx;           /* consumer index (HW) */
186         u8              genbit;         /* current generation (=valid) bit */
187         u8              sop;            /* is next entry start of packet? */
188         struct cmdQ_e  *entries;        /* HW command descriptor Q */
189         struct cmdQ_ce *centries;       /* SW command context descriptor Q */
190         dma_addr_t      dma_addr;       /* DMA addr HW command descriptor Q */
191         spinlock_t      lock;           /* Lock to protect cmdQ enqueuing */
192 };
193
194 struct freelQ {
195         unsigned int    credits;        /* # of available RX buffers */
196         unsigned int    size;           /* free list capacity */
197         u16             pidx;           /* producer index (SW) */
198         u16             cidx;           /* consumer index (HW) */
199         u16             rx_buffer_size; /* Buffer size on this free list */
200         u16             dma_offset;     /* DMA offset to align IP headers */
201         u16             recycleq_idx;   /* skb recycle q to use */
202         u8              genbit;         /* current generation (=valid) bit */
203         struct freelQ_e *entries;       /* HW freelist descriptor Q */
204         struct freelQ_ce *centries;     /* SW freelist context descriptor Q */
205         dma_addr_t      dma_addr;       /* DMA addr HW freelist descriptor Q */
206 };
207
208 struct respQ {
209         unsigned int    credits;        /* credits to be returned to SGE */
210         unsigned int    size;           /* # of response Q descriptors */
211         u16             cidx;           /* consumer index (SW) */
212         u8              genbit;         /* current generation(=valid) bit */
213         struct respQ_e *entries;        /* HW response descriptor Q */
214         dma_addr_t      dma_addr;       /* DMA addr HW response descriptor Q */
215 };
216
217 /* Bit flags for cmdQ.status */
218 enum {
219         CMDQ_STAT_RUNNING = 1,          /* fetch engine is running */
220         CMDQ_STAT_LAST_PKT_DB = 2       /* last packet rung the doorbell */
221 };
222
223 /* T204 TX SW scheduler */
224
225 /* Per T204 TX port */
226 struct sched_port {
227         unsigned int    avail;          /* available bits - quota */
228         unsigned int    drain_bits_per_1024ns; /* drain rate */
229         unsigned int    speed;          /* drain rate, mbps */
230         unsigned int    mtu;            /* mtu size */
231         struct sk_buff_head skbq;       /* pending skbs */
232 };
233
234 /* Per T204 device */
235 struct sched {
236         ktime_t         last_updated;   /* last time quotas were computed */
237         unsigned int    max_avail;      /* max bits to be sent to any port */
238         unsigned int    port;           /* port index (round robin ports) */
239         unsigned int    num;            /* num skbs in per port queues */
240         struct sched_port p[MAX_NPORTS];
241         struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */
242 };
243 static void restart_sched(unsigned long);
244
245
246 /*
247  * Main SGE data structure
248  *
249  * Interrupts are handled by a single CPU and it is likely that on a MP system
250  * the application is migrated to another CPU. In that scenario, we try to
251  * separate the RX(in irq context) and TX state in order to decrease memory
252  * contention.
253  */
254 struct sge {
255         struct adapter *adapter;        /* adapter backpointer */
256         struct net_device *netdev;      /* netdevice backpointer */
257         struct freelQ   freelQ[SGE_FREELQ_N]; /* buffer free lists */
258         struct respQ    respQ;          /* response Q */
259         unsigned long   stopped_tx_queues; /* bitmap of suspended Tx queues */
260         unsigned int    rx_pkt_pad;     /* RX padding for L2 packets */
261         unsigned int    jumbo_fl;       /* jumbo freelist Q index */
262         unsigned int    intrtimer_nres; /* no-resource interrupt timer */
263         unsigned int    fixed_intrtimer;/* non-adaptive interrupt timer */
264         struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
265         struct timer_list espibug_timer;
266         unsigned long   espibug_timeout;
267         struct sk_buff  *espibug_skb[MAX_NPORTS];
268         u32             sge_control;    /* shadow value of sge control reg */
269         struct sge_intr_counts stats;
270         struct sge_port_stats __percpu *port_stats[MAX_NPORTS];
271         struct sched    *tx_sched;
272         struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
273 };
274
275 static const u8 ch_mac_addr[ETH_ALEN] = {
276         0x0, 0x7, 0x43, 0x0, 0x0, 0x0
277 };
278
279 /*
280  * stop tasklet and free all pending skb's
281  */
282 static void tx_sched_stop(struct sge *sge)
283 {
284         struct sched *s = sge->tx_sched;
285         int i;
286
287         tasklet_kill(&s->sched_tsk);
288
289         for (i = 0; i < MAX_NPORTS; i++)
290                 __skb_queue_purge(&s->p[s->port].skbq);
291 }
292
293 /*
294  * t1_sched_update_parms() is called when the MTU or link speed changes. It
295  * re-computes scheduler parameters to scope with the change.
296  */
297 unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port,
298                                    unsigned int mtu, unsigned int speed)
299 {
300         struct sched *s = sge->tx_sched;
301         struct sched_port *p = &s->p[port];
302         unsigned int max_avail_segs;
303
304         pr_debug("%s mtu=%d speed=%d\n", __func__, mtu, speed);
305         if (speed)
306                 p->speed = speed;
307         if (mtu)
308                 p->mtu = mtu;
309
310         if (speed || mtu) {
311                 unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40);
312                 do_div(drain, (p->mtu + 50) * 1000);
313                 p->drain_bits_per_1024ns = (unsigned int) drain;
314
315                 if (p->speed < 1000)
316                         p->drain_bits_per_1024ns =
317                                 90 * p->drain_bits_per_1024ns / 100;
318         }
319
320         if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) {
321                 p->drain_bits_per_1024ns -= 16;
322                 s->max_avail = max(4096U, p->mtu + 16 + 14 + 4);
323                 max_avail_segs = max(1U, 4096 / (p->mtu - 40));
324         } else {
325                 s->max_avail = 16384;
326                 max_avail_segs = max(1U, 9000 / (p->mtu - 40));
327         }
328
329         pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
330                  "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu,
331                  p->speed, s->max_avail, max_avail_segs,
332                  p->drain_bits_per_1024ns);
333
334         return max_avail_segs * (p->mtu - 40);
335 }
336
337 #if 0
338
339 /*
340  * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
341  * data that can be pushed per port.
342  */
343 void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val)
344 {
345         struct sched *s = sge->tx_sched;
346         unsigned int i;
347
348         s->max_avail = val;
349         for (i = 0; i < MAX_NPORTS; i++)
350                 t1_sched_update_parms(sge, i, 0, 0);
351 }
352
353 /*
354  * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
355  * is draining.
356  */
357 void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port,
358                                          unsigned int val)
359 {
360         struct sched *s = sge->tx_sched;
361         struct sched_port *p = &s->p[port];
362         p->drain_bits_per_1024ns = val * 1024 / 1000;
363         t1_sched_update_parms(sge, port, 0, 0);
364 }
365
366 #endif  /*  0  */
367
368 /*
369  * tx_sched_init() allocates resources and does basic initialization.
370  */
371 static int tx_sched_init(struct sge *sge)
372 {
373         struct sched *s;
374         int i;
375
376         s = kzalloc(sizeof (struct sched), GFP_KERNEL);
377         if (!s)
378                 return -ENOMEM;
379
380         pr_debug("tx_sched_init\n");
381         tasklet_init(&s->sched_tsk, restart_sched, (unsigned long) sge);
382         sge->tx_sched = s;
383
384         for (i = 0; i < MAX_NPORTS; i++) {
385                 skb_queue_head_init(&s->p[i].skbq);
386                 t1_sched_update_parms(sge, i, 1500, 1000);
387         }
388
389         return 0;
390 }
391
392 /*
393  * sched_update_avail() computes the delta since the last time it was called
394  * and updates the per port quota (number of bits that can be sent to the any
395  * port).
396  */
397 static inline int sched_update_avail(struct sge *sge)
398 {
399         struct sched *s = sge->tx_sched;
400         ktime_t now = ktime_get();
401         unsigned int i;
402         long long delta_time_ns;
403
404         delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated));
405
406         pr_debug("sched_update_avail delta=%lld\n", delta_time_ns);
407         if (delta_time_ns < 15000)
408                 return 0;
409
410         for (i = 0; i < MAX_NPORTS; i++) {
411                 struct sched_port *p = &s->p[i];
412                 unsigned int delta_avail;
413
414                 delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13;
415                 p->avail = min(p->avail + delta_avail, s->max_avail);
416         }
417
418         s->last_updated = now;
419
420         return 1;
421 }
422
423 /*
424  * sched_skb() is called from two different places. In the tx path, any
425  * packet generating load on an output port will call sched_skb()
426  * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
427  * context (skb == NULL).
428  * The scheduler only returns a skb (which will then be sent) if the
429  * length of the skb is <= the current quota of the output port.
430  */
431 static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb,
432                                 unsigned int credits)
433 {
434         struct sched *s = sge->tx_sched;
435         struct sk_buff_head *skbq;
436         unsigned int i, len, update = 1;
437
438         pr_debug("sched_skb %p\n", skb);
439         if (!skb) {
440                 if (!s->num)
441                         return NULL;
442         } else {
443                 skbq = &s->p[skb->dev->if_port].skbq;
444                 __skb_queue_tail(skbq, skb);
445                 s->num++;
446                 skb = NULL;
447         }
448
449         if (credits < MAX_SKB_FRAGS + 1)
450                 goto out;
451
452 again:
453         for (i = 0; i < MAX_NPORTS; i++) {
454                 s->port = (s->port + 1) & (MAX_NPORTS - 1);
455                 skbq = &s->p[s->port].skbq;
456
457                 skb = skb_peek(skbq);
458
459                 if (!skb)
460                         continue;
461
462                 len = skb->len;
463                 if (len <= s->p[s->port].avail) {
464                         s->p[s->port].avail -= len;
465                         s->num--;
466                         __skb_unlink(skb, skbq);
467                         goto out;
468                 }
469                 skb = NULL;
470         }
471
472         if (update-- && sched_update_avail(sge))
473                 goto again;
474
475 out:
476         /* If there are more pending skbs, we use the hardware to schedule us
477          * again.
478          */
479         if (s->num && !skb) {
480                 struct cmdQ *q = &sge->cmdQ[0];
481                 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
482                 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
483                         set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
484                         writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
485                 }
486         }
487         pr_debug("sched_skb ret %p\n", skb);
488
489         return skb;
490 }
491
492 /*
493  * PIO to indicate that memory mapped Q contains valid descriptor(s).
494  */
495 static inline void doorbell_pio(struct adapter *adapter, u32 val)
496 {
497         wmb();
498         writel(val, adapter->regs + A_SG_DOORBELL);
499 }
500
501 /*
502  * Frees all RX buffers on the freelist Q. The caller must make sure that
503  * the SGE is turned off before calling this function.
504  */
505 static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
506 {
507         unsigned int cidx = q->cidx;
508
509         while (q->credits--) {
510                 struct freelQ_ce *ce = &q->centries[cidx];
511
512                 pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
513                                  dma_unmap_len(ce, dma_len),
514                                  PCI_DMA_FROMDEVICE);
515                 dev_kfree_skb(ce->skb);
516                 ce->skb = NULL;
517                 if (++cidx == q->size)
518                         cidx = 0;
519         }
520 }
521
522 /*
523  * Free RX free list and response queue resources.
524  */
525 static void free_rx_resources(struct sge *sge)
526 {
527         struct pci_dev *pdev = sge->adapter->pdev;
528         unsigned int size, i;
529
530         if (sge->respQ.entries) {
531                 size = sizeof(struct respQ_e) * sge->respQ.size;
532                 pci_free_consistent(pdev, size, sge->respQ.entries,
533                                     sge->respQ.dma_addr);
534         }
535
536         for (i = 0; i < SGE_FREELQ_N; i++) {
537                 struct freelQ *q = &sge->freelQ[i];
538
539                 if (q->centries) {
540                         free_freelQ_buffers(pdev, q);
541                         kfree(q->centries);
542                 }
543                 if (q->entries) {
544                         size = sizeof(struct freelQ_e) * q->size;
545                         pci_free_consistent(pdev, size, q->entries,
546                                             q->dma_addr);
547                 }
548         }
549 }
550
551 /*
552  * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
553  * response queue.
554  */
555 static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
556 {
557         struct pci_dev *pdev = sge->adapter->pdev;
558         unsigned int size, i;
559
560         for (i = 0; i < SGE_FREELQ_N; i++) {
561                 struct freelQ *q = &sge->freelQ[i];
562
563                 q->genbit = 1;
564                 q->size = p->freelQ_size[i];
565                 q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
566                 size = sizeof(struct freelQ_e) * q->size;
567                 q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
568                 if (!q->entries)
569                         goto err_no_mem;
570
571                 size = sizeof(struct freelQ_ce) * q->size;
572                 q->centries = kzalloc(size, GFP_KERNEL);
573                 if (!q->centries)
574                         goto err_no_mem;
575         }
576
577         /*
578          * Calculate the buffer sizes for the two free lists.  FL0 accommodates
579          * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
580          * including all the sk_buff overhead.
581          *
582          * Note: For T2 FL0 and FL1 are reversed.
583          */
584         sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
585                 sizeof(struct cpl_rx_data) +
586                 sge->freelQ[!sge->jumbo_fl].dma_offset;
587
588                 size = (16 * 1024) -
589                     SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
590
591         sge->freelQ[sge->jumbo_fl].rx_buffer_size = size;
592
593         /*
594          * Setup which skb recycle Q should be used when recycling buffers from
595          * each free list.
596          */
597         sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
598         sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
599
600         sge->respQ.genbit = 1;
601         sge->respQ.size = SGE_RESPQ_E_N;
602         sge->respQ.credits = 0;
603         size = sizeof(struct respQ_e) * sge->respQ.size;
604         sge->respQ.entries =
605                 pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr);
606         if (!sge->respQ.entries)
607                 goto err_no_mem;
608         return 0;
609
610 err_no_mem:
611         free_rx_resources(sge);
612         return -ENOMEM;
613 }
614
615 /*
616  * Reclaims n TX descriptors and frees the buffers associated with them.
617  */
618 static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
619 {
620         struct cmdQ_ce *ce;
621         struct pci_dev *pdev = sge->adapter->pdev;
622         unsigned int cidx = q->cidx;
623
624         q->in_use -= n;
625         ce = &q->centries[cidx];
626         while (n--) {
627                 if (likely(dma_unmap_len(ce, dma_len))) {
628                         pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
629                                          dma_unmap_len(ce, dma_len),
630                                          PCI_DMA_TODEVICE);
631                         if (q->sop)
632                                 q->sop = 0;
633                 }
634                 if (ce->skb) {
635                         dev_kfree_skb_any(ce->skb);
636                         q->sop = 1;
637                 }
638                 ce++;
639                 if (++cidx == q->size) {
640                         cidx = 0;
641                         ce = q->centries;
642                 }
643         }
644         q->cidx = cidx;
645 }
646
647 /*
648  * Free TX resources.
649  *
650  * Assumes that SGE is stopped and all interrupts are disabled.
651  */
652 static void free_tx_resources(struct sge *sge)
653 {
654         struct pci_dev *pdev = sge->adapter->pdev;
655         unsigned int size, i;
656
657         for (i = 0; i < SGE_CMDQ_N; i++) {
658                 struct cmdQ *q = &sge->cmdQ[i];
659
660                 if (q->centries) {
661                         if (q->in_use)
662                                 free_cmdQ_buffers(sge, q, q->in_use);
663                         kfree(q->centries);
664                 }
665                 if (q->entries) {
666                         size = sizeof(struct cmdQ_e) * q->size;
667                         pci_free_consistent(pdev, size, q->entries,
668                                             q->dma_addr);
669                 }
670         }
671 }
672
673 /*
674  * Allocates basic TX resources, consisting of memory mapped command Qs.
675  */
676 static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
677 {
678         struct pci_dev *pdev = sge->adapter->pdev;
679         unsigned int size, i;
680
681         for (i = 0; i < SGE_CMDQ_N; i++) {
682                 struct cmdQ *q = &sge->cmdQ[i];
683
684                 q->genbit = 1;
685                 q->sop = 1;
686                 q->size = p->cmdQ_size[i];
687                 q->in_use = 0;
688                 q->status = 0;
689                 q->processed = q->cleaned = 0;
690                 q->stop_thres = 0;
691                 spin_lock_init(&q->lock);
692                 size = sizeof(struct cmdQ_e) * q->size;
693                 q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
694                 if (!q->entries)
695                         goto err_no_mem;
696
697                 size = sizeof(struct cmdQ_ce) * q->size;
698                 q->centries = kzalloc(size, GFP_KERNEL);
699                 if (!q->centries)
700                         goto err_no_mem;
701         }
702
703         /*
704          * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
705          * only.  For queue 0 set the stop threshold so we can handle one more
706          * packet from each port, plus reserve an additional 24 entries for
707          * Ethernet packets only.  Queue 1 never suspends nor do we reserve
708          * space for Ethernet packets.
709          */
710         sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
711                 (MAX_SKB_FRAGS + 1);
712         return 0;
713
714 err_no_mem:
715         free_tx_resources(sge);
716         return -ENOMEM;
717 }
718
719 static inline void setup_ring_params(struct adapter *adapter, u64 addr,
720                                      u32 size, int base_reg_lo,
721                                      int base_reg_hi, int size_reg)
722 {
723         writel((u32)addr, adapter->regs + base_reg_lo);
724         writel(addr >> 32, adapter->regs + base_reg_hi);
725         writel(size, adapter->regs + size_reg);
726 }
727
728 /*
729  * Enable/disable VLAN acceleration.
730  */
731 void t1_vlan_mode(struct adapter *adapter, netdev_features_t features)
732 {
733         struct sge *sge = adapter->sge;
734
735         if (features & NETIF_F_HW_VLAN_CTAG_RX)
736                 sge->sge_control |= F_VLAN_XTRACT;
737         else
738                 sge->sge_control &= ~F_VLAN_XTRACT;
739         if (adapter->open_device_map) {
740                 writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
741                 readl(adapter->regs + A_SG_CONTROL);   /* flush */
742         }
743 }
744
745 /*
746  * Programs the various SGE registers. However, the engine is not yet enabled,
747  * but sge->sge_control is setup and ready to go.
748  */
749 static void configure_sge(struct sge *sge, struct sge_params *p)
750 {
751         struct adapter *ap = sge->adapter;
752
753         writel(0, ap->regs + A_SG_CONTROL);
754         setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
755                           A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
756         setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
757                           A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
758         setup_ring_params(ap, sge->freelQ[0].dma_addr,
759                           sge->freelQ[0].size, A_SG_FL0BASELWR,
760                           A_SG_FL0BASEUPR, A_SG_FL0SIZE);
761         setup_ring_params(ap, sge->freelQ[1].dma_addr,
762                           sge->freelQ[1].size, A_SG_FL1BASELWR,
763                           A_SG_FL1BASEUPR, A_SG_FL1SIZE);
764
765         /* The threshold comparison uses <. */
766         writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
767
768         setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
769                           A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
770         writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
771
772         sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
773                 F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
774                 V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
775                 V_RX_PKT_OFFSET(sge->rx_pkt_pad);
776
777 #if defined(__BIG_ENDIAN_BITFIELD)
778         sge->sge_control |= F_ENABLE_BIG_ENDIAN;
779 #endif
780
781         /* Initialize no-resource timer */
782         sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
783
784         t1_sge_set_coalesce_params(sge, p);
785 }
786
787 /*
788  * Return the payload capacity of the jumbo free-list buffers.
789  */
790 static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
791 {
792         return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
793                 sge->freelQ[sge->jumbo_fl].dma_offset -
794                 sizeof(struct cpl_rx_data);
795 }
796
797 /*
798  * Frees all SGE related resources and the sge structure itself
799  */
800 void t1_sge_destroy(struct sge *sge)
801 {
802         int i;
803
804         for_each_port(sge->adapter, i)
805                 free_percpu(sge->port_stats[i]);
806
807         kfree(sge->tx_sched);
808         free_tx_resources(sge);
809         free_rx_resources(sge);
810         kfree(sge);
811 }
812
813 /*
814  * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
815  * context Q) until the Q is full or alloc_skb fails.
816  *
817  * It is possible that the generation bits already match, indicating that the
818  * buffer is already valid and nothing needs to be done. This happens when we
819  * copied a received buffer into a new sk_buff during the interrupt processing.
820  *
821  * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
822  * we specify a RX_OFFSET in order to make sure that the IP header is 4B
823  * aligned.
824  */
825 static void refill_free_list(struct sge *sge, struct freelQ *q)
826 {
827         struct pci_dev *pdev = sge->adapter->pdev;
828         struct freelQ_ce *ce = &q->centries[q->pidx];
829         struct freelQ_e *e = &q->entries[q->pidx];
830         unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
831
832         while (q->credits < q->size) {
833                 struct sk_buff *skb;
834                 dma_addr_t mapping;
835
836                 skb = dev_alloc_skb(q->rx_buffer_size);
837                 if (!skb)
838                         break;
839
840                 skb_reserve(skb, q->dma_offset);
841                 mapping = pci_map_single(pdev, skb->data, dma_len,
842                                          PCI_DMA_FROMDEVICE);
843                 skb_reserve(skb, sge->rx_pkt_pad);
844
845                 ce->skb = skb;
846                 dma_unmap_addr_set(ce, dma_addr, mapping);
847                 dma_unmap_len_set(ce, dma_len, dma_len);
848                 e->addr_lo = (u32)mapping;
849                 e->addr_hi = (u64)mapping >> 32;
850                 e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
851                 wmb();
852                 e->gen2 = V_CMD_GEN2(q->genbit);
853
854                 e++;
855                 ce++;
856                 if (++q->pidx == q->size) {
857                         q->pidx = 0;
858                         q->genbit ^= 1;
859                         ce = q->centries;
860                         e = q->entries;
861                 }
862                 q->credits++;
863         }
864 }
865
866 /*
867  * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
868  * of both rings, we go into 'few interrupt mode' in order to give the system
869  * time to free up resources.
870  */
871 static void freelQs_empty(struct sge *sge)
872 {
873         struct adapter *adapter = sge->adapter;
874         u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
875         u32 irqholdoff_reg;
876
877         refill_free_list(sge, &sge->freelQ[0]);
878         refill_free_list(sge, &sge->freelQ[1]);
879
880         if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
881             sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
882                 irq_reg |= F_FL_EXHAUSTED;
883                 irqholdoff_reg = sge->fixed_intrtimer;
884         } else {
885                 /* Clear the F_FL_EXHAUSTED interrupts for now */
886                 irq_reg &= ~F_FL_EXHAUSTED;
887                 irqholdoff_reg = sge->intrtimer_nres;
888         }
889         writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
890         writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
891
892         /* We reenable the Qs to force a freelist GTS interrupt later */
893         doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
894 }
895
896 #define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
897 #define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
898 #define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
899                         F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
900
901 /*
902  * Disable SGE Interrupts
903  */
904 void t1_sge_intr_disable(struct sge *sge)
905 {
906         u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
907
908         writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
909         writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
910 }
911
912 /*
913  * Enable SGE interrupts.
914  */
915 void t1_sge_intr_enable(struct sge *sge)
916 {
917         u32 en = SGE_INT_ENABLE;
918         u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
919
920         if (sge->adapter->port[0].dev->hw_features & NETIF_F_TSO)
921                 en &= ~F_PACKET_TOO_BIG;
922         writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
923         writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
924 }
925
926 /*
927  * Clear SGE interrupts.
928  */
929 void t1_sge_intr_clear(struct sge *sge)
930 {
931         writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
932         writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
933 }
934
935 /*
936  * SGE 'Error' interrupt handler
937  */
938 int t1_sge_intr_error_handler(struct sge *sge)
939 {
940         struct adapter *adapter = sge->adapter;
941         u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
942
943         if (adapter->port[0].dev->hw_features & NETIF_F_TSO)
944                 cause &= ~F_PACKET_TOO_BIG;
945         if (cause & F_RESPQ_EXHAUSTED)
946                 sge->stats.respQ_empty++;
947         if (cause & F_RESPQ_OVERFLOW) {
948                 sge->stats.respQ_overflow++;
949                 pr_alert("%s: SGE response queue overflow\n",
950                          adapter->name);
951         }
952         if (cause & F_FL_EXHAUSTED) {
953                 sge->stats.freelistQ_empty++;
954                 freelQs_empty(sge);
955         }
956         if (cause & F_PACKET_TOO_BIG) {
957                 sge->stats.pkt_too_big++;
958                 pr_alert("%s: SGE max packet size exceeded\n",
959                          adapter->name);
960         }
961         if (cause & F_PACKET_MISMATCH) {
962                 sge->stats.pkt_mismatch++;
963                 pr_alert("%s: SGE packet mismatch\n", adapter->name);
964         }
965         if (cause & SGE_INT_FATAL)
966                 t1_fatal_err(adapter);
967
968         writel(cause, adapter->regs + A_SG_INT_CAUSE);
969         return 0;
970 }
971
972 const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge)
973 {
974         return &sge->stats;
975 }
976
977 void t1_sge_get_port_stats(const struct sge *sge, int port,
978                            struct sge_port_stats *ss)
979 {
980         int cpu;
981
982         memset(ss, 0, sizeof(*ss));
983         for_each_possible_cpu(cpu) {
984                 struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu);
985
986                 ss->rx_cso_good += st->rx_cso_good;
987                 ss->tx_cso += st->tx_cso;
988                 ss->tx_tso += st->tx_tso;
989                 ss->tx_need_hdrroom += st->tx_need_hdrroom;
990                 ss->vlan_xtract += st->vlan_xtract;
991                 ss->vlan_insert += st->vlan_insert;
992         }
993 }
994
995 /**
996  *      recycle_fl_buf - recycle a free list buffer
997  *      @fl: the free list
998  *      @idx: index of buffer to recycle
999  *
1000  *      Recycles the specified buffer on the given free list by adding it at
1001  *      the next available slot on the list.
1002  */
1003 static void recycle_fl_buf(struct freelQ *fl, int idx)
1004 {
1005         struct freelQ_e *from = &fl->entries[idx];
1006         struct freelQ_e *to = &fl->entries[fl->pidx];
1007
1008         fl->centries[fl->pidx] = fl->centries[idx];
1009         to->addr_lo = from->addr_lo;
1010         to->addr_hi = from->addr_hi;
1011         to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
1012         wmb();
1013         to->gen2 = V_CMD_GEN2(fl->genbit);
1014         fl->credits++;
1015
1016         if (++fl->pidx == fl->size) {
1017                 fl->pidx = 0;
1018                 fl->genbit ^= 1;
1019         }
1020 }
1021
1022 static int copybreak __read_mostly = 256;
1023 module_param(copybreak, int, 0);
1024 MODULE_PARM_DESC(copybreak, "Receive copy threshold");
1025
1026 /**
1027  *      get_packet - return the next ingress packet buffer
1028  *      @adapter: the adapter that received the packet
1029  *      @fl: the SGE free list holding the packet
1030  *      @len: the actual packet length, excluding any SGE padding
1031  *
1032  *      Get the next packet from a free list and complete setup of the
1033  *      sk_buff.  If the packet is small we make a copy and recycle the
1034  *      original buffer, otherwise we use the original buffer itself.  If a
1035  *      positive drop threshold is supplied packets are dropped and their
1036  *      buffers recycled if (a) the number of remaining buffers is under the
1037  *      threshold and the packet is too big to copy, or (b) the packet should
1038  *      be copied but there is no memory for the copy.
1039  */
1040 static inline struct sk_buff *get_packet(struct adapter *adapter,
1041                                          struct freelQ *fl, unsigned int len)
1042 {
1043         const struct freelQ_ce *ce = &fl->centries[fl->cidx];
1044         struct pci_dev *pdev = adapter->pdev;
1045         struct sk_buff *skb;
1046
1047         if (len < copybreak) {
1048                 skb = napi_alloc_skb(&adapter->napi, len);
1049                 if (!skb)
1050                         goto use_orig_buf;
1051
1052                 skb_put(skb, len);
1053                 pci_dma_sync_single_for_cpu(pdev,
1054                                             dma_unmap_addr(ce, dma_addr),
1055                                             dma_unmap_len(ce, dma_len),
1056                                             PCI_DMA_FROMDEVICE);
1057                 skb_copy_from_linear_data(ce->skb, skb->data, len);
1058                 pci_dma_sync_single_for_device(pdev,
1059                                                dma_unmap_addr(ce, dma_addr),
1060                                                dma_unmap_len(ce, dma_len),
1061                                                PCI_DMA_FROMDEVICE);
1062                 recycle_fl_buf(fl, fl->cidx);
1063                 return skb;
1064         }
1065
1066 use_orig_buf:
1067         if (fl->credits < 2) {
1068                 recycle_fl_buf(fl, fl->cidx);
1069                 return NULL;
1070         }
1071
1072         pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
1073                          dma_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1074         skb = ce->skb;
1075         prefetch(skb->data);
1076
1077         skb_put(skb, len);
1078         return skb;
1079 }
1080
1081 /**
1082  *      unexpected_offload - handle an unexpected offload packet
1083  *      @adapter: the adapter
1084  *      @fl: the free list that received the packet
1085  *
1086  *      Called when we receive an unexpected offload packet (e.g., the TOE
1087  *      function is disabled or the card is a NIC).  Prints a message and
1088  *      recycles the buffer.
1089  */
1090 static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
1091 {
1092         struct freelQ_ce *ce = &fl->centries[fl->cidx];
1093         struct sk_buff *skb = ce->skb;
1094
1095         pci_dma_sync_single_for_cpu(adapter->pdev, dma_unmap_addr(ce, dma_addr),
1096                             dma_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1097         pr_err("%s: unexpected offload packet, cmd %u\n",
1098                adapter->name, *skb->data);
1099         recycle_fl_buf(fl, fl->cidx);
1100 }
1101
1102 /*
1103  * T1/T2 SGE limits the maximum DMA size per TX descriptor to
1104  * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
1105  * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
1106  * Note that the *_large_page_tx_descs stuff will be optimized out when
1107  * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
1108  *
1109  * compute_large_page_descs() computes how many additional descriptors are
1110  * required to break down the stack's request.
1111  */
1112 static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb)
1113 {
1114         unsigned int count = 0;
1115
1116         if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1117                 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
1118                 unsigned int i, len = skb_headlen(skb);
1119                 while (len > SGE_TX_DESC_MAX_PLEN) {
1120                         count++;
1121                         len -= SGE_TX_DESC_MAX_PLEN;
1122                 }
1123                 for (i = 0; nfrags--; i++) {
1124                         const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1125                         len = skb_frag_size(frag);
1126                         while (len > SGE_TX_DESC_MAX_PLEN) {
1127                                 count++;
1128                                 len -= SGE_TX_DESC_MAX_PLEN;
1129                         }
1130                 }
1131         }
1132         return count;
1133 }
1134
1135 /*
1136  * Write a cmdQ entry.
1137  *
1138  * Since this function writes the 'flags' field, it must not be used to
1139  * write the first cmdQ entry.
1140  */
1141 static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping,
1142                                  unsigned int len, unsigned int gen,
1143                                  unsigned int eop)
1144 {
1145         BUG_ON(len > SGE_TX_DESC_MAX_PLEN);
1146
1147         e->addr_lo = (u32)mapping;
1148         e->addr_hi = (u64)mapping >> 32;
1149         e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen);
1150         e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen);
1151 }
1152
1153 /*
1154  * See comment for previous function.
1155  *
1156  * write_tx_descs_large_page() writes additional SGE tx descriptors if
1157  * *desc_len exceeds HW's capability.
1158  */
1159 static inline unsigned int write_large_page_tx_descs(unsigned int pidx,
1160                                                      struct cmdQ_e **e,
1161                                                      struct cmdQ_ce **ce,
1162                                                      unsigned int *gen,
1163                                                      dma_addr_t *desc_mapping,
1164                                                      unsigned int *desc_len,
1165                                                      unsigned int nfrags,
1166                                                      struct cmdQ *q)
1167 {
1168         if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1169                 struct cmdQ_e *e1 = *e;
1170                 struct cmdQ_ce *ce1 = *ce;
1171
1172                 while (*desc_len > SGE_TX_DESC_MAX_PLEN) {
1173                         *desc_len -= SGE_TX_DESC_MAX_PLEN;
1174                         write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN,
1175                                       *gen, nfrags == 0 && *desc_len == 0);
1176                         ce1->skb = NULL;
1177                         dma_unmap_len_set(ce1, dma_len, 0);
1178                         *desc_mapping += SGE_TX_DESC_MAX_PLEN;
1179                         if (*desc_len) {
1180                                 ce1++;
1181                                 e1++;
1182                                 if (++pidx == q->size) {
1183                                         pidx = 0;
1184                                         *gen ^= 1;
1185                                         ce1 = q->centries;
1186                                         e1 = q->entries;
1187                                 }
1188                         }
1189                 }
1190                 *e = e1;
1191                 *ce = ce1;
1192         }
1193         return pidx;
1194 }
1195
1196 /*
1197  * Write the command descriptors to transmit the given skb starting at
1198  * descriptor pidx with the given generation.
1199  */
1200 static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
1201                                   unsigned int pidx, unsigned int gen,
1202                                   struct cmdQ *q)
1203 {
1204         dma_addr_t mapping, desc_mapping;
1205         struct cmdQ_e *e, *e1;
1206         struct cmdQ_ce *ce;
1207         unsigned int i, flags, first_desc_len, desc_len,
1208             nfrags = skb_shinfo(skb)->nr_frags;
1209
1210         e = e1 = &q->entries[pidx];
1211         ce = &q->centries[pidx];
1212
1213         mapping = pci_map_single(adapter->pdev, skb->data,
1214                                  skb_headlen(skb), PCI_DMA_TODEVICE);
1215
1216         desc_mapping = mapping;
1217         desc_len = skb_headlen(skb);
1218
1219         flags = F_CMD_DATAVALID | F_CMD_SOP |
1220             V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) |
1221             V_CMD_GEN2(gen);
1222         first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ?
1223             desc_len : SGE_TX_DESC_MAX_PLEN;
1224         e->addr_lo = (u32)desc_mapping;
1225         e->addr_hi = (u64)desc_mapping >> 32;
1226         e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen);
1227         ce->skb = NULL;
1228         dma_unmap_len_set(ce, dma_len, 0);
1229
1230         if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN &&
1231             desc_len > SGE_TX_DESC_MAX_PLEN) {
1232                 desc_mapping += first_desc_len;
1233                 desc_len -= first_desc_len;
1234                 e1++;
1235                 ce++;
1236                 if (++pidx == q->size) {
1237                         pidx = 0;
1238                         gen ^= 1;
1239                         e1 = q->entries;
1240                         ce = q->centries;
1241                 }
1242                 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1243                                                  &desc_mapping, &desc_len,
1244                                                  nfrags, q);
1245
1246                 if (likely(desc_len))
1247                         write_tx_desc(e1, desc_mapping, desc_len, gen,
1248                                       nfrags == 0);
1249         }
1250
1251         ce->skb = NULL;
1252         dma_unmap_addr_set(ce, dma_addr, mapping);
1253         dma_unmap_len_set(ce, dma_len, skb_headlen(skb));
1254
1255         for (i = 0; nfrags--; i++) {
1256                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1257                 e1++;
1258                 ce++;
1259                 if (++pidx == q->size) {
1260                         pidx = 0;
1261                         gen ^= 1;
1262                         e1 = q->entries;
1263                         ce = q->centries;
1264                 }
1265
1266                 mapping = skb_frag_dma_map(&adapter->pdev->dev, frag, 0,
1267                                            skb_frag_size(frag), DMA_TO_DEVICE);
1268                 desc_mapping = mapping;
1269                 desc_len = skb_frag_size(frag);
1270
1271                 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1272                                                  &desc_mapping, &desc_len,
1273                                                  nfrags, q);
1274                 if (likely(desc_len))
1275                         write_tx_desc(e1, desc_mapping, desc_len, gen,
1276                                       nfrags == 0);
1277                 ce->skb = NULL;
1278                 dma_unmap_addr_set(ce, dma_addr, mapping);
1279                 dma_unmap_len_set(ce, dma_len, skb_frag_size(frag));
1280         }
1281         ce->skb = skb;
1282         wmb();
1283         e->flags = flags;
1284 }
1285
1286 /*
1287  * Clean up completed Tx buffers.
1288  */
1289 static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
1290 {
1291         unsigned int reclaim = q->processed - q->cleaned;
1292
1293         if (reclaim) {
1294                 pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
1295                          q->processed, q->cleaned);
1296                 free_cmdQ_buffers(sge, q, reclaim);
1297                 q->cleaned += reclaim;
1298         }
1299 }
1300
1301 /*
1302  * Called from tasklet. Checks the scheduler for any
1303  * pending skbs that can be sent.
1304  */
1305 static void restart_sched(unsigned long arg)
1306 {
1307         struct sge *sge = (struct sge *) arg;
1308         struct adapter *adapter = sge->adapter;
1309         struct cmdQ *q = &sge->cmdQ[0];
1310         struct sk_buff *skb;
1311         unsigned int credits, queued_skb = 0;
1312
1313         spin_lock(&q->lock);
1314         reclaim_completed_tx(sge, q);
1315
1316         credits = q->size - q->in_use;
1317         pr_debug("restart_sched credits=%d\n", credits);
1318         while ((skb = sched_skb(sge, NULL, credits)) != NULL) {
1319                 unsigned int genbit, pidx, count;
1320                 count = 1 + skb_shinfo(skb)->nr_frags;
1321                 count += compute_large_page_tx_descs(skb);
1322                 q->in_use += count;
1323                 genbit = q->genbit;
1324                 pidx = q->pidx;
1325                 q->pidx += count;
1326                 if (q->pidx >= q->size) {
1327                         q->pidx -= q->size;
1328                         q->genbit ^= 1;
1329                 }
1330                 write_tx_descs(adapter, skb, pidx, genbit, q);
1331                 credits = q->size - q->in_use;
1332                 queued_skb = 1;
1333         }
1334
1335         if (queued_skb) {
1336                 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1337                 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1338                         set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1339                         writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1340                 }
1341         }
1342         spin_unlock(&q->lock);
1343 }
1344
1345 /**
1346  *      sge_rx - process an ingress ethernet packet
1347  *      @sge: the sge structure
1348  *      @fl: the free list that contains the packet buffer
1349  *      @len: the packet length
1350  *
1351  *      Process an ingress ethernet pakcet and deliver it to the stack.
1352  */
1353 static void sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
1354 {
1355         struct sk_buff *skb;
1356         const struct cpl_rx_pkt *p;
1357         struct adapter *adapter = sge->adapter;
1358         struct sge_port_stats *st;
1359         struct net_device *dev;
1360
1361         skb = get_packet(adapter, fl, len - sge->rx_pkt_pad);
1362         if (unlikely(!skb)) {
1363                 sge->stats.rx_drops++;
1364                 return;
1365         }
1366
1367         p = (const struct cpl_rx_pkt *) skb->data;
1368         if (p->iff >= adapter->params.nports) {
1369                 kfree_skb(skb);
1370                 return;
1371         }
1372         __skb_pull(skb, sizeof(*p));
1373
1374         st = this_cpu_ptr(sge->port_stats[p->iff]);
1375         dev = adapter->port[p->iff].dev;
1376
1377         skb->protocol = eth_type_trans(skb, dev);
1378         if ((dev->features & NETIF_F_RXCSUM) && p->csum == 0xffff &&
1379             skb->protocol == htons(ETH_P_IP) &&
1380             (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
1381                 ++st->rx_cso_good;
1382                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1383         } else
1384                 skb_checksum_none_assert(skb);
1385
1386         if (p->vlan_valid) {
1387                 st->vlan_xtract++;
1388                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(p->vlan));
1389         }
1390         netif_receive_skb(skb);
1391 }
1392
1393 /*
1394  * Returns true if a command queue has enough available descriptors that
1395  * we can resume Tx operation after temporarily disabling its packet queue.
1396  */
1397 static inline int enough_free_Tx_descs(const struct cmdQ *q)
1398 {
1399         unsigned int r = q->processed - q->cleaned;
1400
1401         return q->in_use - r < (q->size >> 1);
1402 }
1403
1404 /*
1405  * Called when sufficient space has become available in the SGE command queues
1406  * after the Tx packet schedulers have been suspended to restart the Tx path.
1407  */
1408 static void restart_tx_queues(struct sge *sge)
1409 {
1410         struct adapter *adap = sge->adapter;
1411         int i;
1412
1413         if (!enough_free_Tx_descs(&sge->cmdQ[0]))
1414                 return;
1415
1416         for_each_port(adap, i) {
1417                 struct net_device *nd = adap->port[i].dev;
1418
1419                 if (test_and_clear_bit(nd->if_port, &sge->stopped_tx_queues) &&
1420                     netif_running(nd)) {
1421                         sge->stats.cmdQ_restarted[2]++;
1422                         netif_wake_queue(nd);
1423                 }
1424         }
1425 }
1426
1427 /*
1428  * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
1429  * information.
1430  */
1431 static unsigned int update_tx_info(struct adapter *adapter,
1432                                           unsigned int flags,
1433                                           unsigned int pr0)
1434 {
1435         struct sge *sge = adapter->sge;
1436         struct cmdQ *cmdq = &sge->cmdQ[0];
1437
1438         cmdq->processed += pr0;
1439         if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) {
1440                 freelQs_empty(sge);
1441                 flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE);
1442         }
1443         if (flags & F_CMDQ0_ENABLE) {
1444                 clear_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1445
1446                 if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
1447                     !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) {
1448                         set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1449                         writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1450                 }
1451                 if (sge->tx_sched)
1452                         tasklet_hi_schedule(&sge->tx_sched->sched_tsk);
1453
1454                 flags &= ~F_CMDQ0_ENABLE;
1455         }
1456
1457         if (unlikely(sge->stopped_tx_queues != 0))
1458                 restart_tx_queues(sge);
1459
1460         return flags;
1461 }
1462
1463 /*
1464  * Process SGE responses, up to the supplied budget.  Returns the number of
1465  * responses processed.  A negative budget is effectively unlimited.
1466  */
1467 static int process_responses(struct adapter *adapter, int budget)
1468 {
1469         struct sge *sge = adapter->sge;
1470         struct respQ *q = &sge->respQ;
1471         struct respQ_e *e = &q->entries[q->cidx];
1472         int done = 0;
1473         unsigned int flags = 0;
1474         unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1475
1476         while (done < budget && e->GenerationBit == q->genbit) {
1477                 flags |= e->Qsleeping;
1478
1479                 cmdq_processed[0] += e->Cmdq0CreditReturn;
1480                 cmdq_processed[1] += e->Cmdq1CreditReturn;
1481
1482                 /* We batch updates to the TX side to avoid cacheline
1483                  * ping-pong of TX state information on MP where the sender
1484                  * might run on a different CPU than this function...
1485                  */
1486                 if (unlikely((flags & F_CMDQ0_ENABLE) || cmdq_processed[0] > 64)) {
1487                         flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1488                         cmdq_processed[0] = 0;
1489                 }
1490
1491                 if (unlikely(cmdq_processed[1] > 16)) {
1492                         sge->cmdQ[1].processed += cmdq_processed[1];
1493                         cmdq_processed[1] = 0;
1494                 }
1495
1496                 if (likely(e->DataValid)) {
1497                         struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1498
1499                         BUG_ON(!e->Sop || !e->Eop);
1500                         if (unlikely(e->Offload))
1501                                 unexpected_offload(adapter, fl);
1502                         else
1503                                 sge_rx(sge, fl, e->BufferLength);
1504
1505                         ++done;
1506
1507                         /*
1508                          * Note: this depends on each packet consuming a
1509                          * single free-list buffer; cf. the BUG above.
1510                          */
1511                         if (++fl->cidx == fl->size)
1512                                 fl->cidx = 0;
1513                         prefetch(fl->centries[fl->cidx].skb);
1514
1515                         if (unlikely(--fl->credits <
1516                                      fl->size - SGE_FREEL_REFILL_THRESH))
1517                                 refill_free_list(sge, fl);
1518                 } else
1519                         sge->stats.pure_rsps++;
1520
1521                 e++;
1522                 if (unlikely(++q->cidx == q->size)) {
1523                         q->cidx = 0;
1524                         q->genbit ^= 1;
1525                         e = q->entries;
1526                 }
1527                 prefetch(e);
1528
1529                 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1530                         writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1531                         q->credits = 0;
1532                 }
1533         }
1534
1535         flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1536         sge->cmdQ[1].processed += cmdq_processed[1];
1537
1538         return done;
1539 }
1540
1541 static inline int responses_pending(const struct adapter *adapter)
1542 {
1543         const struct respQ *Q = &adapter->sge->respQ;
1544         const struct respQ_e *e = &Q->entries[Q->cidx];
1545
1546         return e->GenerationBit == Q->genbit;
1547 }
1548
1549 /*
1550  * A simpler version of process_responses() that handles only pure (i.e.,
1551  * non data-carrying) responses.  Such respones are too light-weight to justify
1552  * calling a softirq when using NAPI, so we handle them specially in hard
1553  * interrupt context.  The function is called with a pointer to a response,
1554  * which the caller must ensure is a valid pure response.  Returns 1 if it
1555  * encounters a valid data-carrying response, 0 otherwise.
1556  */
1557 static int process_pure_responses(struct adapter *adapter)
1558 {
1559         struct sge *sge = adapter->sge;
1560         struct respQ *q = &sge->respQ;
1561         struct respQ_e *e = &q->entries[q->cidx];
1562         const struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1563         unsigned int flags = 0;
1564         unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1565
1566         prefetch(fl->centries[fl->cidx].skb);
1567         if (e->DataValid)
1568                 return 1;
1569
1570         do {
1571                 flags |= e->Qsleeping;
1572
1573                 cmdq_processed[0] += e->Cmdq0CreditReturn;
1574                 cmdq_processed[1] += e->Cmdq1CreditReturn;
1575
1576                 e++;
1577                 if (unlikely(++q->cidx == q->size)) {
1578                         q->cidx = 0;
1579                         q->genbit ^= 1;
1580                         e = q->entries;
1581                 }
1582                 prefetch(e);
1583
1584                 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1585                         writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1586                         q->credits = 0;
1587                 }
1588                 sge->stats.pure_rsps++;
1589         } while (e->GenerationBit == q->genbit && !e->DataValid);
1590
1591         flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1592         sge->cmdQ[1].processed += cmdq_processed[1];
1593
1594         return e->GenerationBit == q->genbit;
1595 }
1596
1597 /*
1598  * Handler for new data events when using NAPI.  This does not need any locking
1599  * or protection from interrupts as data interrupts are off at this point and
1600  * other adapter interrupts do not interfere.
1601  */
1602 int t1_poll(struct napi_struct *napi, int budget)
1603 {
1604         struct adapter *adapter = container_of(napi, struct adapter, napi);
1605         int work_done = process_responses(adapter, budget);
1606
1607         if (likely(work_done < budget)) {
1608                 napi_complete(napi);
1609                 writel(adapter->sge->respQ.cidx,
1610                        adapter->regs + A_SG_SLEEPING);
1611         }
1612         return work_done;
1613 }
1614
1615 irqreturn_t t1_interrupt(int irq, void *data)
1616 {
1617         struct adapter *adapter = data;
1618         struct sge *sge = adapter->sge;
1619         int handled;
1620
1621         if (likely(responses_pending(adapter))) {
1622                 writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
1623
1624                 if (napi_schedule_prep(&adapter->napi)) {
1625                         if (process_pure_responses(adapter))
1626                                 __napi_schedule(&adapter->napi);
1627                         else {
1628                                 /* no data, no NAPI needed */
1629                                 writel(sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
1630                                 /* undo schedule_prep */
1631                                 napi_enable(&adapter->napi);
1632                         }
1633                 }
1634                 return IRQ_HANDLED;
1635         }
1636
1637         spin_lock(&adapter->async_lock);
1638         handled = t1_slow_intr_handler(adapter);
1639         spin_unlock(&adapter->async_lock);
1640
1641         if (!handled)
1642                 sge->stats.unhandled_irqs++;
1643
1644         return IRQ_RETVAL(handled != 0);
1645 }
1646
1647 /*
1648  * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
1649  *
1650  * The code figures out how many entries the sk_buff will require in the
1651  * cmdQ and updates the cmdQ data structure with the state once the enqueue
1652  * has complete. Then, it doesn't access the global structure anymore, but
1653  * uses the corresponding fields on the stack. In conjunction with a spinlock
1654  * around that code, we can make the function reentrant without holding the
1655  * lock when we actually enqueue (which might be expensive, especially on
1656  * architectures with IO MMUs).
1657  *
1658  * This runs with softirqs disabled.
1659  */
1660 static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
1661                      unsigned int qid, struct net_device *dev)
1662 {
1663         struct sge *sge = adapter->sge;
1664         struct cmdQ *q = &sge->cmdQ[qid];
1665         unsigned int credits, pidx, genbit, count, use_sched_skb = 0;
1666
1667         spin_lock(&q->lock);
1668
1669         reclaim_completed_tx(sge, q);
1670
1671         pidx = q->pidx;
1672         credits = q->size - q->in_use;
1673         count = 1 + skb_shinfo(skb)->nr_frags;
1674         count += compute_large_page_tx_descs(skb);
1675
1676         /* Ethernet packet */
1677         if (unlikely(credits < count)) {
1678                 if (!netif_queue_stopped(dev)) {
1679                         netif_stop_queue(dev);
1680                         set_bit(dev->if_port, &sge->stopped_tx_queues);
1681                         sge->stats.cmdQ_full[2]++;
1682                         pr_err("%s: Tx ring full while queue awake!\n",
1683                                adapter->name);
1684                 }
1685                 spin_unlock(&q->lock);
1686                 return NETDEV_TX_BUSY;
1687         }
1688
1689         if (unlikely(credits - count < q->stop_thres)) {
1690                 netif_stop_queue(dev);
1691                 set_bit(dev->if_port, &sge->stopped_tx_queues);
1692                 sge->stats.cmdQ_full[2]++;
1693         }
1694
1695         /* T204 cmdQ0 skbs that are destined for a certain port have to go
1696          * through the scheduler.
1697          */
1698         if (sge->tx_sched && !qid && skb->dev) {
1699 use_sched:
1700                 use_sched_skb = 1;
1701                 /* Note that the scheduler might return a different skb than
1702                  * the one passed in.
1703                  */
1704                 skb = sched_skb(sge, skb, credits);
1705                 if (!skb) {
1706                         spin_unlock(&q->lock);
1707                         return NETDEV_TX_OK;
1708                 }
1709                 pidx = q->pidx;
1710                 count = 1 + skb_shinfo(skb)->nr_frags;
1711                 count += compute_large_page_tx_descs(skb);
1712         }
1713
1714         q->in_use += count;
1715         genbit = q->genbit;
1716         pidx = q->pidx;
1717         q->pidx += count;
1718         if (q->pidx >= q->size) {
1719                 q->pidx -= q->size;
1720                 q->genbit ^= 1;
1721         }
1722         spin_unlock(&q->lock);
1723
1724         write_tx_descs(adapter, skb, pidx, genbit, q);
1725
1726         /*
1727          * We always ring the doorbell for cmdQ1.  For cmdQ0, we only ring
1728          * the doorbell if the Q is asleep. There is a natural race, where
1729          * the hardware is going to sleep just after we checked, however,
1730          * then the interrupt handler will detect the outstanding TX packet
1731          * and ring the doorbell for us.
1732          */
1733         if (qid)
1734                 doorbell_pio(adapter, F_CMDQ1_ENABLE);
1735         else {
1736                 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1737                 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1738                         set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1739                         writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1740                 }
1741         }
1742
1743         if (use_sched_skb) {
1744                 if (spin_trylock(&q->lock)) {
1745                         credits = q->size - q->in_use;
1746                         skb = NULL;
1747                         goto use_sched;
1748                 }
1749         }
1750         return NETDEV_TX_OK;
1751 }
1752
1753 #define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
1754
1755 /*
1756  *      eth_hdr_len - return the length of an Ethernet header
1757  *      @data: pointer to the start of the Ethernet header
1758  *
1759  *      Returns the length of an Ethernet header, including optional VLAN tag.
1760  */
1761 static inline int eth_hdr_len(const void *data)
1762 {
1763         const struct ethhdr *e = data;
1764
1765         return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
1766 }
1767
1768 /*
1769  * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
1770  */
1771 netdev_tx_t t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
1772 {
1773         struct adapter *adapter = dev->ml_priv;
1774         struct sge *sge = adapter->sge;
1775         struct sge_port_stats *st = this_cpu_ptr(sge->port_stats[dev->if_port]);
1776         struct cpl_tx_pkt *cpl;
1777         struct sk_buff *orig_skb = skb;
1778         int ret;
1779
1780         if (skb->protocol == htons(ETH_P_CPL5))
1781                 goto send;
1782
1783         /*
1784          * We are using a non-standard hard_header_len.
1785          * Allocate more header room in the rare cases it is not big enough.
1786          */
1787         if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
1788                 skb = skb_realloc_headroom(skb, sizeof(struct cpl_tx_pkt_lso));
1789                 ++st->tx_need_hdrroom;
1790                 dev_kfree_skb_any(orig_skb);
1791                 if (!skb)
1792                         return NETDEV_TX_OK;
1793         }
1794
1795         if (skb_shinfo(skb)->gso_size) {
1796                 int eth_type;
1797                 struct cpl_tx_pkt_lso *hdr;
1798
1799                 ++st->tx_tso;
1800
1801                 eth_type = skb_network_offset(skb) == ETH_HLEN ?
1802                         CPL_ETH_II : CPL_ETH_II_VLAN;
1803
1804                 hdr = (struct cpl_tx_pkt_lso *)skb_push(skb, sizeof(*hdr));
1805                 hdr->opcode = CPL_TX_PKT_LSO;
1806                 hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
1807                 hdr->ip_hdr_words = ip_hdr(skb)->ihl;
1808                 hdr->tcp_hdr_words = tcp_hdr(skb)->doff;
1809                 hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
1810                                                           skb_shinfo(skb)->gso_size));
1811                 hdr->len = htonl(skb->len - sizeof(*hdr));
1812                 cpl = (struct cpl_tx_pkt *)hdr;
1813         } else {
1814                 /*
1815                  * Packets shorter than ETH_HLEN can break the MAC, drop them
1816                  * early.  Also, we may get oversized packets because some
1817                  * parts of the kernel don't handle our unusual hard_header_len
1818                  * right, drop those too.
1819                  */
1820                 if (unlikely(skb->len < ETH_HLEN ||
1821                              skb->len > dev->mtu + eth_hdr_len(skb->data))) {
1822                         netdev_dbg(dev, "packet size %d hdr %d mtu%d\n",
1823                                    skb->len, eth_hdr_len(skb->data), dev->mtu);
1824                         dev_kfree_skb_any(skb);
1825                         return NETDEV_TX_OK;
1826                 }
1827
1828                 if (skb->ip_summed == CHECKSUM_PARTIAL &&
1829                     ip_hdr(skb)->protocol == IPPROTO_UDP) {
1830                         if (unlikely(skb_checksum_help(skb))) {
1831                                 netdev_dbg(dev, "unable to do udp checksum\n");
1832                                 dev_kfree_skb_any(skb);
1833                                 return NETDEV_TX_OK;
1834                         }
1835                 }
1836
1837                 /* Hmmm, assuming to catch the gratious arp... and we'll use
1838                  * it to flush out stuck espi packets...
1839                  */
1840                 if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) {
1841                         if (skb->protocol == htons(ETH_P_ARP) &&
1842                             arp_hdr(skb)->ar_op == htons(ARPOP_REQUEST)) {
1843                                 adapter->sge->espibug_skb[dev->if_port] = skb;
1844                                 /* We want to re-use this skb later. We
1845                                  * simply bump the reference count and it
1846                                  * will not be freed...
1847                                  */
1848                                 skb = skb_get(skb);
1849                         }
1850                 }
1851
1852                 cpl = (struct cpl_tx_pkt *)__skb_push(skb, sizeof(*cpl));
1853                 cpl->opcode = CPL_TX_PKT;
1854                 cpl->ip_csum_dis = 1;    /* SW calculates IP csum */
1855                 cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1;
1856                 /* the length field isn't used so don't bother setting it */
1857
1858                 st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL);
1859         }
1860         cpl->iff = dev->if_port;
1861
1862         if (skb_vlan_tag_present(skb)) {
1863                 cpl->vlan_valid = 1;
1864                 cpl->vlan = htons(skb_vlan_tag_get(skb));
1865                 st->vlan_insert++;
1866         } else
1867                 cpl->vlan_valid = 0;
1868
1869 send:
1870         ret = t1_sge_tx(skb, adapter, 0, dev);
1871
1872         /* If transmit busy, and we reallocated skb's due to headroom limit,
1873          * then silently discard to avoid leak.
1874          */
1875         if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) {
1876                 dev_kfree_skb_any(skb);
1877                 ret = NETDEV_TX_OK;
1878         }
1879         return ret;
1880 }
1881
1882 /*
1883  * Callback for the Tx buffer reclaim timer.  Runs with softirqs disabled.
1884  */
1885 static void sge_tx_reclaim_cb(unsigned long data)
1886 {
1887         int i;
1888         struct sge *sge = (struct sge *)data;
1889
1890         for (i = 0; i < SGE_CMDQ_N; ++i) {
1891                 struct cmdQ *q = &sge->cmdQ[i];
1892
1893                 if (!spin_trylock(&q->lock))
1894                         continue;
1895
1896                 reclaim_completed_tx(sge, q);
1897                 if (i == 0 && q->in_use) {    /* flush pending credits */
1898                         writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
1899                 }
1900                 spin_unlock(&q->lock);
1901         }
1902         mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1903 }
1904
1905 /*
1906  * Propagate changes of the SGE coalescing parameters to the HW.
1907  */
1908 int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
1909 {
1910         sge->fixed_intrtimer = p->rx_coalesce_usecs *
1911                 core_ticks_per_usec(sge->adapter);
1912         writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
1913         return 0;
1914 }
1915
1916 /*
1917  * Allocates both RX and TX resources and configures the SGE. However,
1918  * the hardware is not enabled yet.
1919  */
1920 int t1_sge_configure(struct sge *sge, struct sge_params *p)
1921 {
1922         if (alloc_rx_resources(sge, p))
1923                 return -ENOMEM;
1924         if (alloc_tx_resources(sge, p)) {
1925                 free_rx_resources(sge);
1926                 return -ENOMEM;
1927         }
1928         configure_sge(sge, p);
1929
1930         /*
1931          * Now that we have sized the free lists calculate the payload
1932          * capacity of the large buffers.  Other parts of the driver use
1933          * this to set the max offload coalescing size so that RX packets
1934          * do not overflow our large buffers.
1935          */
1936         p->large_buf_capacity = jumbo_payload_capacity(sge);
1937         return 0;
1938 }
1939
1940 /*
1941  * Disables the DMA engine.
1942  */
1943 void t1_sge_stop(struct sge *sge)
1944 {
1945         int i;
1946         writel(0, sge->adapter->regs + A_SG_CONTROL);
1947         readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
1948
1949         if (is_T2(sge->adapter))
1950                 del_timer_sync(&sge->espibug_timer);
1951
1952         del_timer_sync(&sge->tx_reclaim_timer);
1953         if (sge->tx_sched)
1954                 tx_sched_stop(sge);
1955
1956         for (i = 0; i < MAX_NPORTS; i++)
1957                 kfree_skb(sge->espibug_skb[i]);
1958 }
1959
1960 /*
1961  * Enables the DMA engine.
1962  */
1963 void t1_sge_start(struct sge *sge)
1964 {
1965         refill_free_list(sge, &sge->freelQ[0]);
1966         refill_free_list(sge, &sge->freelQ[1]);
1967
1968         writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
1969         doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
1970         readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
1971
1972         mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1973
1974         if (is_T2(sge->adapter))
1975                 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
1976 }
1977
1978 /*
1979  * Callback for the T2 ESPI 'stuck packet feature' workaorund
1980  */
1981 static void espibug_workaround_t204(unsigned long data)
1982 {
1983         struct adapter *adapter = (struct adapter *)data;
1984         struct sge *sge = adapter->sge;
1985         unsigned int nports = adapter->params.nports;
1986         u32 seop[MAX_NPORTS];
1987
1988         if (adapter->open_device_map & PORT_MASK) {
1989                 int i;
1990
1991                 if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0)
1992                         return;
1993
1994                 for (i = 0; i < nports; i++) {
1995                         struct sk_buff *skb = sge->espibug_skb[i];
1996
1997                         if (!netif_running(adapter->port[i].dev) ||
1998                             netif_queue_stopped(adapter->port[i].dev) ||
1999                             !seop[i] || ((seop[i] & 0xfff) != 0) || !skb)
2000                                 continue;
2001
2002                         if (!skb->cb[0]) {
2003                                 skb_copy_to_linear_data_offset(skb,
2004                                                     sizeof(struct cpl_tx_pkt),
2005                                                                ch_mac_addr,
2006                                                                ETH_ALEN);
2007                                 skb_copy_to_linear_data_offset(skb,
2008                                                                skb->len - 10,
2009                                                                ch_mac_addr,
2010                                                                ETH_ALEN);
2011                                 skb->cb[0] = 0xff;
2012                         }
2013
2014                         /* bump the reference count to avoid freeing of
2015                          * the skb once the DMA has completed.
2016                          */
2017                         skb = skb_get(skb);
2018                         t1_sge_tx(skb, adapter, 0, adapter->port[i].dev);
2019                 }
2020         }
2021         mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2022 }
2023
2024 static void espibug_workaround(unsigned long data)
2025 {
2026         struct adapter *adapter = (struct adapter *)data;
2027         struct sge *sge = adapter->sge;
2028
2029         if (netif_running(adapter->port[0].dev)) {
2030                 struct sk_buff *skb = sge->espibug_skb[0];
2031                 u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
2032
2033                 if ((seop & 0xfff0fff) == 0xfff && skb) {
2034                         if (!skb->cb[0]) {
2035                                 skb_copy_to_linear_data_offset(skb,
2036                                                      sizeof(struct cpl_tx_pkt),
2037                                                                ch_mac_addr,
2038                                                                ETH_ALEN);
2039                                 skb_copy_to_linear_data_offset(skb,
2040                                                                skb->len - 10,
2041                                                                ch_mac_addr,
2042                                                                ETH_ALEN);
2043                                 skb->cb[0] = 0xff;
2044                         }
2045
2046                         /* bump the reference count to avoid freeing of the
2047                          * skb once the DMA has completed.
2048                          */
2049                         skb = skb_get(skb);
2050                         t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
2051                 }
2052         }
2053         mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2054 }
2055
2056 /*
2057  * Creates a t1_sge structure and returns suggested resource parameters.
2058  */
2059 struct sge *t1_sge_create(struct adapter *adapter, struct sge_params *p)
2060 {
2061         struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL);
2062         int i;
2063
2064         if (!sge)
2065                 return NULL;
2066
2067         sge->adapter = adapter;
2068         sge->netdev = adapter->port[0].dev;
2069         sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
2070         sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
2071
2072         for_each_port(adapter, i) {
2073                 sge->port_stats[i] = alloc_percpu(struct sge_port_stats);
2074                 if (!sge->port_stats[i])
2075                         goto nomem_port;
2076         }
2077
2078         init_timer(&sge->tx_reclaim_timer);
2079         sge->tx_reclaim_timer.data = (unsigned long)sge;
2080         sge->tx_reclaim_timer.function = sge_tx_reclaim_cb;
2081
2082         if (is_T2(sge->adapter)) {
2083                 init_timer(&sge->espibug_timer);
2084
2085                 if (adapter->params.nports > 1) {
2086                         tx_sched_init(sge);
2087                         sge->espibug_timer.function = espibug_workaround_t204;
2088                 } else
2089                         sge->espibug_timer.function = espibug_workaround;
2090                 sge->espibug_timer.data = (unsigned long)sge->adapter;
2091
2092                 sge->espibug_timeout = 1;
2093                 /* for T204, every 10ms */
2094                 if (adapter->params.nports > 1)
2095                         sge->espibug_timeout = HZ/100;
2096         }
2097
2098
2099         p->cmdQ_size[0] = SGE_CMDQ0_E_N;
2100         p->cmdQ_size[1] = SGE_CMDQ1_E_N;
2101         p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
2102         p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
2103         if (sge->tx_sched) {
2104                 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204)
2105                         p->rx_coalesce_usecs = 15;
2106                 else
2107                         p->rx_coalesce_usecs = 50;
2108         } else
2109                 p->rx_coalesce_usecs = 50;
2110
2111         p->coalesce_enable = 0;
2112         p->sample_interval_usecs = 0;
2113
2114         return sge;
2115 nomem_port:
2116         while (i >= 0) {
2117                 free_percpu(sge->port_stats[i]);
2118                 --i;
2119         }
2120         kfree(sge);
2121         return NULL;
2122
2123 }