These changes are a raw update to a vanilla kernel 4.1.10, with the
[kvmfornfv.git] / kernel / drivers / net / ethernet / brocade / bna / bnad.c
1 /*
2  * Linux network driver for QLogic BR-series Converged Network Adapter.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License (GPL) Version 2 as
6  * published by the Free Software Foundation
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 /*
14  * Copyright (c) 2005-2014 Brocade Communications Systems, Inc.
15  * Copyright (c) 2014-2015 QLogic Corporation
16  * All rights reserved
17  * www.qlogic.com
18  */
19 #include <linux/bitops.h>
20 #include <linux/netdevice.h>
21 #include <linux/skbuff.h>
22 #include <linux/etherdevice.h>
23 #include <linux/in.h>
24 #include <linux/ethtool.h>
25 #include <linux/if_vlan.h>
26 #include <linux/if_ether.h>
27 #include <linux/ip.h>
28 #include <linux/prefetch.h>
29 #include <linux/module.h>
30
31 #include "bnad.h"
32 #include "bna.h"
33 #include "cna.h"
34
35 static DEFINE_MUTEX(bnad_fwimg_mutex);
36
37 /*
38  * Module params
39  */
40 static uint bnad_msix_disable;
41 module_param(bnad_msix_disable, uint, 0444);
42 MODULE_PARM_DESC(bnad_msix_disable, "Disable MSIX mode");
43
44 static uint bnad_ioc_auto_recover = 1;
45 module_param(bnad_ioc_auto_recover, uint, 0444);
46 MODULE_PARM_DESC(bnad_ioc_auto_recover, "Enable / Disable auto recovery");
47
48 static uint bna_debugfs_enable = 1;
49 module_param(bna_debugfs_enable, uint, S_IRUGO | S_IWUSR);
50 MODULE_PARM_DESC(bna_debugfs_enable, "Enables debugfs feature, default=1,"
51                  " Range[false:0|true:1]");
52
53 /*
54  * Global variables
55  */
56 static u32 bnad_rxqs_per_cq = 2;
57 static u32 bna_id;
58 static struct mutex bnad_list_mutex;
59 static LIST_HEAD(bnad_list);
60 static const u8 bnad_bcast_addr[] =  {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
61
62 /*
63  * Local MACROS
64  */
65 #define BNAD_GET_MBOX_IRQ(_bnad)                                \
66         (((_bnad)->cfg_flags & BNAD_CF_MSIX) ?                  \
67          ((_bnad)->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector) : \
68          ((_bnad)->pcidev->irq))
69
70 #define BNAD_FILL_UNMAPQ_MEM_REQ(_res_info, _num, _size)        \
71 do {                                                            \
72         (_res_info)->res_type = BNA_RES_T_MEM;                  \
73         (_res_info)->res_u.mem_info.mem_type = BNA_MEM_T_KVA;   \
74         (_res_info)->res_u.mem_info.num = (_num);               \
75         (_res_info)->res_u.mem_info.len = (_size);              \
76 } while (0)
77
78 static void
79 bnad_add_to_list(struct bnad *bnad)
80 {
81         mutex_lock(&bnad_list_mutex);
82         list_add_tail(&bnad->list_entry, &bnad_list);
83         bnad->id = bna_id++;
84         mutex_unlock(&bnad_list_mutex);
85 }
86
87 static void
88 bnad_remove_from_list(struct bnad *bnad)
89 {
90         mutex_lock(&bnad_list_mutex);
91         list_del(&bnad->list_entry);
92         mutex_unlock(&bnad_list_mutex);
93 }
94
95 /*
96  * Reinitialize completions in CQ, once Rx is taken down
97  */
98 static void
99 bnad_cq_cleanup(struct bnad *bnad, struct bna_ccb *ccb)
100 {
101         struct bna_cq_entry *cmpl;
102         int i;
103
104         for (i = 0; i < ccb->q_depth; i++) {
105                 cmpl = &((struct bna_cq_entry *)ccb->sw_q)[i];
106                 cmpl->valid = 0;
107         }
108 }
109
110 /* Tx Datapath functions */
111
112
113 /* Caller should ensure that the entry at unmap_q[index] is valid */
114 static u32
115 bnad_tx_buff_unmap(struct bnad *bnad,
116                               struct bnad_tx_unmap *unmap_q,
117                               u32 q_depth, u32 index)
118 {
119         struct bnad_tx_unmap *unmap;
120         struct sk_buff *skb;
121         int vector, nvecs;
122
123         unmap = &unmap_q[index];
124         nvecs = unmap->nvecs;
125
126         skb = unmap->skb;
127         unmap->skb = NULL;
128         unmap->nvecs = 0;
129         dma_unmap_single(&bnad->pcidev->dev,
130                 dma_unmap_addr(&unmap->vectors[0], dma_addr),
131                 skb_headlen(skb), DMA_TO_DEVICE);
132         dma_unmap_addr_set(&unmap->vectors[0], dma_addr, 0);
133         nvecs--;
134
135         vector = 0;
136         while (nvecs) {
137                 vector++;
138                 if (vector == BFI_TX_MAX_VECTORS_PER_WI) {
139                         vector = 0;
140                         BNA_QE_INDX_INC(index, q_depth);
141                         unmap = &unmap_q[index];
142                 }
143
144                 dma_unmap_page(&bnad->pcidev->dev,
145                         dma_unmap_addr(&unmap->vectors[vector], dma_addr),
146                         dma_unmap_len(&unmap->vectors[vector], dma_len),
147                         DMA_TO_DEVICE);
148                 dma_unmap_addr_set(&unmap->vectors[vector], dma_addr, 0);
149                 nvecs--;
150         }
151
152         BNA_QE_INDX_INC(index, q_depth);
153
154         return index;
155 }
156
157 /*
158  * Frees all pending Tx Bufs
159  * At this point no activity is expected on the Q,
160  * so DMA unmap & freeing is fine.
161  */
162 static void
163 bnad_txq_cleanup(struct bnad *bnad, struct bna_tcb *tcb)
164 {
165         struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
166         struct sk_buff *skb;
167         int i;
168
169         for (i = 0; i < tcb->q_depth; i++) {
170                 skb = unmap_q[i].skb;
171                 if (!skb)
172                         continue;
173                 bnad_tx_buff_unmap(bnad, unmap_q, tcb->q_depth, i);
174
175                 dev_kfree_skb_any(skb);
176         }
177 }
178
179 /*
180  * bnad_txcmpl_process : Frees the Tx bufs on Tx completion
181  * Can be called in a) Interrupt context
182  *                  b) Sending context
183  */
184 static u32
185 bnad_txcmpl_process(struct bnad *bnad, struct bna_tcb *tcb)
186 {
187         u32 sent_packets = 0, sent_bytes = 0;
188         u32 wis, unmap_wis, hw_cons, cons, q_depth;
189         struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
190         struct bnad_tx_unmap *unmap;
191         struct sk_buff *skb;
192
193         /* Just return if TX is stopped */
194         if (!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
195                 return 0;
196
197         hw_cons = *(tcb->hw_consumer_index);
198         cons = tcb->consumer_index;
199         q_depth = tcb->q_depth;
200
201         wis = BNA_Q_INDEX_CHANGE(cons, hw_cons, q_depth);
202         BUG_ON(!(wis <= BNA_QE_IN_USE_CNT(tcb, tcb->q_depth)));
203
204         while (wis) {
205                 unmap = &unmap_q[cons];
206
207                 skb = unmap->skb;
208
209                 sent_packets++;
210                 sent_bytes += skb->len;
211
212                 unmap_wis = BNA_TXQ_WI_NEEDED(unmap->nvecs);
213                 wis -= unmap_wis;
214
215                 cons = bnad_tx_buff_unmap(bnad, unmap_q, q_depth, cons);
216                 dev_kfree_skb_any(skb);
217         }
218
219         /* Update consumer pointers. */
220         tcb->consumer_index = hw_cons;
221
222         tcb->txq->tx_packets += sent_packets;
223         tcb->txq->tx_bytes += sent_bytes;
224
225         return sent_packets;
226 }
227
228 static u32
229 bnad_tx_complete(struct bnad *bnad, struct bna_tcb *tcb)
230 {
231         struct net_device *netdev = bnad->netdev;
232         u32 sent = 0;
233
234         if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
235                 return 0;
236
237         sent = bnad_txcmpl_process(bnad, tcb);
238         if (sent) {
239                 if (netif_queue_stopped(netdev) &&
240                     netif_carrier_ok(netdev) &&
241                     BNA_QE_FREE_CNT(tcb, tcb->q_depth) >=
242                                     BNAD_NETIF_WAKE_THRESHOLD) {
243                         if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) {
244                                 netif_wake_queue(netdev);
245                                 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
246                         }
247                 }
248         }
249
250         if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
251                 bna_ib_ack(tcb->i_dbell, sent);
252
253         smp_mb__before_atomic();
254         clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
255
256         return sent;
257 }
258
259 /* MSIX Tx Completion Handler */
260 static irqreturn_t
261 bnad_msix_tx(int irq, void *data)
262 {
263         struct bna_tcb *tcb = (struct bna_tcb *)data;
264         struct bnad *bnad = tcb->bnad;
265
266         bnad_tx_complete(bnad, tcb);
267
268         return IRQ_HANDLED;
269 }
270
271 static inline void
272 bnad_rxq_alloc_uninit(struct bnad *bnad, struct bna_rcb *rcb)
273 {
274         struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
275
276         unmap_q->reuse_pi = -1;
277         unmap_q->alloc_order = -1;
278         unmap_q->map_size = 0;
279         unmap_q->type = BNAD_RXBUF_NONE;
280 }
281
282 /* Default is page-based allocation. Multi-buffer support - TBD */
283 static int
284 bnad_rxq_alloc_init(struct bnad *bnad, struct bna_rcb *rcb)
285 {
286         struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
287         int order;
288
289         bnad_rxq_alloc_uninit(bnad, rcb);
290
291         order = get_order(rcb->rxq->buffer_size);
292
293         unmap_q->type = BNAD_RXBUF_PAGE;
294
295         if (bna_is_small_rxq(rcb->id)) {
296                 unmap_q->alloc_order = 0;
297                 unmap_q->map_size = rcb->rxq->buffer_size;
298         } else {
299                 if (rcb->rxq->multi_buffer) {
300                         unmap_q->alloc_order = 0;
301                         unmap_q->map_size = rcb->rxq->buffer_size;
302                         unmap_q->type = BNAD_RXBUF_MULTI_BUFF;
303                 } else {
304                         unmap_q->alloc_order = order;
305                         unmap_q->map_size =
306                                 (rcb->rxq->buffer_size > 2048) ?
307                                 PAGE_SIZE << order : 2048;
308                 }
309         }
310
311         BUG_ON(((PAGE_SIZE << order) % unmap_q->map_size));
312
313         return 0;
314 }
315
316 static inline void
317 bnad_rxq_cleanup_page(struct bnad *bnad, struct bnad_rx_unmap *unmap)
318 {
319         if (!unmap->page)
320                 return;
321
322         dma_unmap_page(&bnad->pcidev->dev,
323                         dma_unmap_addr(&unmap->vector, dma_addr),
324                         unmap->vector.len, DMA_FROM_DEVICE);
325         put_page(unmap->page);
326         unmap->page = NULL;
327         dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
328         unmap->vector.len = 0;
329 }
330
331 static inline void
332 bnad_rxq_cleanup_skb(struct bnad *bnad, struct bnad_rx_unmap *unmap)
333 {
334         if (!unmap->skb)
335                 return;
336
337         dma_unmap_single(&bnad->pcidev->dev,
338                         dma_unmap_addr(&unmap->vector, dma_addr),
339                         unmap->vector.len, DMA_FROM_DEVICE);
340         dev_kfree_skb_any(unmap->skb);
341         unmap->skb = NULL;
342         dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
343         unmap->vector.len = 0;
344 }
345
346 static void
347 bnad_rxq_cleanup(struct bnad *bnad, struct bna_rcb *rcb)
348 {
349         struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
350         int i;
351
352         for (i = 0; i < rcb->q_depth; i++) {
353                 struct bnad_rx_unmap *unmap = &unmap_q->unmap[i];
354
355                 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
356                         bnad_rxq_cleanup_skb(bnad, unmap);
357                 else
358                         bnad_rxq_cleanup_page(bnad, unmap);
359         }
360         bnad_rxq_alloc_uninit(bnad, rcb);
361 }
362
363 static u32
364 bnad_rxq_refill_page(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
365 {
366         u32 alloced, prod, q_depth;
367         struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
368         struct bnad_rx_unmap *unmap, *prev;
369         struct bna_rxq_entry *rxent;
370         struct page *page;
371         u32 page_offset, alloc_size;
372         dma_addr_t dma_addr;
373
374         prod = rcb->producer_index;
375         q_depth = rcb->q_depth;
376
377         alloc_size = PAGE_SIZE << unmap_q->alloc_order;
378         alloced = 0;
379
380         while (nalloc--) {
381                 unmap = &unmap_q->unmap[prod];
382
383                 if (unmap_q->reuse_pi < 0) {
384                         page = alloc_pages(GFP_ATOMIC | __GFP_COMP,
385                                         unmap_q->alloc_order);
386                         page_offset = 0;
387                 } else {
388                         prev = &unmap_q->unmap[unmap_q->reuse_pi];
389                         page = prev->page;
390                         page_offset = prev->page_offset + unmap_q->map_size;
391                         get_page(page);
392                 }
393
394                 if (unlikely(!page)) {
395                         BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
396                         rcb->rxq->rxbuf_alloc_failed++;
397                         goto finishing;
398                 }
399
400                 dma_addr = dma_map_page(&bnad->pcidev->dev, page, page_offset,
401                                 unmap_q->map_size, DMA_FROM_DEVICE);
402
403                 unmap->page = page;
404                 unmap->page_offset = page_offset;
405                 dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
406                 unmap->vector.len = unmap_q->map_size;
407                 page_offset += unmap_q->map_size;
408
409                 if (page_offset < alloc_size)
410                         unmap_q->reuse_pi = prod;
411                 else
412                         unmap_q->reuse_pi = -1;
413
414                 rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
415                 BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
416                 BNA_QE_INDX_INC(prod, q_depth);
417                 alloced++;
418         }
419
420 finishing:
421         if (likely(alloced)) {
422                 rcb->producer_index = prod;
423                 smp_mb();
424                 if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
425                         bna_rxq_prod_indx_doorbell(rcb);
426         }
427
428         return alloced;
429 }
430
431 static u32
432 bnad_rxq_refill_skb(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
433 {
434         u32 alloced, prod, q_depth, buff_sz;
435         struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
436         struct bnad_rx_unmap *unmap;
437         struct bna_rxq_entry *rxent;
438         struct sk_buff *skb;
439         dma_addr_t dma_addr;
440
441         buff_sz = rcb->rxq->buffer_size;
442         prod = rcb->producer_index;
443         q_depth = rcb->q_depth;
444
445         alloced = 0;
446         while (nalloc--) {
447                 unmap = &unmap_q->unmap[prod];
448
449                 skb = netdev_alloc_skb_ip_align(bnad->netdev, buff_sz);
450
451                 if (unlikely(!skb)) {
452                         BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
453                         rcb->rxq->rxbuf_alloc_failed++;
454                         goto finishing;
455                 }
456                 dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
457                                           buff_sz, DMA_FROM_DEVICE);
458
459                 unmap->skb = skb;
460                 dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
461                 unmap->vector.len = buff_sz;
462
463                 rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
464                 BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
465                 BNA_QE_INDX_INC(prod, q_depth);
466                 alloced++;
467         }
468
469 finishing:
470         if (likely(alloced)) {
471                 rcb->producer_index = prod;
472                 smp_mb();
473                 if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
474                         bna_rxq_prod_indx_doorbell(rcb);
475         }
476
477         return alloced;
478 }
479
480 static inline void
481 bnad_rxq_post(struct bnad *bnad, struct bna_rcb *rcb)
482 {
483         struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
484         u32 to_alloc;
485
486         to_alloc = BNA_QE_FREE_CNT(rcb, rcb->q_depth);
487         if (!(to_alloc >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT))
488                 return;
489
490         if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
491                 bnad_rxq_refill_skb(bnad, rcb, to_alloc);
492         else
493                 bnad_rxq_refill_page(bnad, rcb, to_alloc);
494 }
495
496 #define flags_cksum_prot_mask (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
497                                         BNA_CQ_EF_IPV6 | \
498                                         BNA_CQ_EF_TCP | BNA_CQ_EF_UDP | \
499                                         BNA_CQ_EF_L4_CKSUM_OK)
500
501 #define flags_tcp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
502                                 BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
503 #define flags_tcp6 (BNA_CQ_EF_IPV6 | \
504                                 BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
505 #define flags_udp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
506                                 BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
507 #define flags_udp6 (BNA_CQ_EF_IPV6 | \
508                                 BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
509
510 static void
511 bnad_cq_drop_packet(struct bnad *bnad, struct bna_rcb *rcb,
512                     u32 sop_ci, u32 nvecs)
513 {
514         struct bnad_rx_unmap_q *unmap_q;
515         struct bnad_rx_unmap *unmap;
516         u32 ci, vec;
517
518         unmap_q = rcb->unmap_q;
519         for (vec = 0, ci = sop_ci; vec < nvecs; vec++) {
520                 unmap = &unmap_q->unmap[ci];
521                 BNA_QE_INDX_INC(ci, rcb->q_depth);
522
523                 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
524                         bnad_rxq_cleanup_skb(bnad, unmap);
525                 else
526                         bnad_rxq_cleanup_page(bnad, unmap);
527         }
528 }
529
530 static void
531 bnad_cq_setup_skb_frags(struct bna_rcb *rcb, struct sk_buff *skb,
532                         u32 sop_ci, u32 nvecs, u32 last_fraglen)
533 {
534         struct bnad *bnad;
535         u32 ci, vec, len, totlen = 0;
536         struct bnad_rx_unmap_q *unmap_q;
537         struct bnad_rx_unmap *unmap;
538
539         unmap_q = rcb->unmap_q;
540         bnad = rcb->bnad;
541
542         /* prefetch header */
543         prefetch(page_address(unmap_q->unmap[sop_ci].page) +
544                         unmap_q->unmap[sop_ci].page_offset);
545
546         for (vec = 1, ci = sop_ci; vec <= nvecs; vec++) {
547                 unmap = &unmap_q->unmap[ci];
548                 BNA_QE_INDX_INC(ci, rcb->q_depth);
549
550                 dma_unmap_page(&bnad->pcidev->dev,
551                                 dma_unmap_addr(&unmap->vector, dma_addr),
552                                 unmap->vector.len, DMA_FROM_DEVICE);
553
554                 len = (vec == nvecs) ?
555                         last_fraglen : unmap->vector.len;
556                 skb->truesize += unmap->vector.len;
557                 totlen += len;
558
559                 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
560                                 unmap->page, unmap->page_offset, len);
561
562                 unmap->page = NULL;
563                 unmap->vector.len = 0;
564         }
565
566         skb->len += totlen;
567         skb->data_len += totlen;
568 }
569
570 static inline void
571 bnad_cq_setup_skb(struct bnad *bnad, struct sk_buff *skb,
572                   struct bnad_rx_unmap *unmap, u32 len)
573 {
574         prefetch(skb->data);
575
576         dma_unmap_single(&bnad->pcidev->dev,
577                         dma_unmap_addr(&unmap->vector, dma_addr),
578                         unmap->vector.len, DMA_FROM_DEVICE);
579
580         skb_put(skb, len);
581         skb->protocol = eth_type_trans(skb, bnad->netdev);
582
583         unmap->skb = NULL;
584         unmap->vector.len = 0;
585 }
586
587 static u32
588 bnad_cq_process(struct bnad *bnad, struct bna_ccb *ccb, int budget)
589 {
590         struct bna_cq_entry *cq, *cmpl, *next_cmpl;
591         struct bna_rcb *rcb = NULL;
592         struct bnad_rx_unmap_q *unmap_q;
593         struct bnad_rx_unmap *unmap = NULL;
594         struct sk_buff *skb = NULL;
595         struct bna_pkt_rate *pkt_rt = &ccb->pkt_rate;
596         struct bnad_rx_ctrl *rx_ctrl = ccb->ctrl;
597         u32 packets = 0, len = 0, totlen = 0;
598         u32 pi, vec, sop_ci = 0, nvecs = 0;
599         u32 flags, masked_flags;
600
601         prefetch(bnad->netdev);
602
603         cq = ccb->sw_q;
604
605         while (packets < budget) {
606                 cmpl = &cq[ccb->producer_index];
607                 if (!cmpl->valid)
608                         break;
609                 /* The 'valid' field is set by the adapter, only after writing
610                  * the other fields of completion entry. Hence, do not load
611                  * other fields of completion entry *before* the 'valid' is
612                  * loaded. Adding the rmb() here prevents the compiler and/or
613                  * CPU from reordering the reads which would potentially result
614                  * in reading stale values in completion entry.
615                  */
616                 rmb();
617
618                 BNA_UPDATE_PKT_CNT(pkt_rt, ntohs(cmpl->length));
619
620                 if (bna_is_small_rxq(cmpl->rxq_id))
621                         rcb = ccb->rcb[1];
622                 else
623                         rcb = ccb->rcb[0];
624
625                 unmap_q = rcb->unmap_q;
626
627                 /* start of packet ci */
628                 sop_ci = rcb->consumer_index;
629
630                 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type)) {
631                         unmap = &unmap_q->unmap[sop_ci];
632                         skb = unmap->skb;
633                 } else {
634                         skb = napi_get_frags(&rx_ctrl->napi);
635                         if (unlikely(!skb))
636                                 break;
637                 }
638                 prefetch(skb);
639
640                 flags = ntohl(cmpl->flags);
641                 len = ntohs(cmpl->length);
642                 totlen = len;
643                 nvecs = 1;
644
645                 /* Check all the completions for this frame.
646                  * busy-wait doesn't help much, break here.
647                  */
648                 if (BNAD_RXBUF_IS_MULTI_BUFF(unmap_q->type) &&
649                     (flags & BNA_CQ_EF_EOP) == 0) {
650                         pi = ccb->producer_index;
651                         do {
652                                 BNA_QE_INDX_INC(pi, ccb->q_depth);
653                                 next_cmpl = &cq[pi];
654
655                                 if (!next_cmpl->valid)
656                                         break;
657                                 /* The 'valid' field is set by the adapter, only
658                                  * after writing the other fields of completion
659                                  * entry. Hence, do not load other fields of
660                                  * completion entry *before* the 'valid' is
661                                  * loaded. Adding the rmb() here prevents the
662                                  * compiler and/or CPU from reordering the reads
663                                  * which would potentially result in reading
664                                  * stale values in completion entry.
665                                  */
666                                 rmb();
667
668                                 len = ntohs(next_cmpl->length);
669                                 flags = ntohl(next_cmpl->flags);
670
671                                 nvecs++;
672                                 totlen += len;
673                         } while ((flags & BNA_CQ_EF_EOP) == 0);
674
675                         if (!next_cmpl->valid)
676                                 break;
677                 }
678                 packets++;
679
680                 /* TODO: BNA_CQ_EF_LOCAL ? */
681                 if (unlikely(flags & (BNA_CQ_EF_MAC_ERROR |
682                                                 BNA_CQ_EF_FCS_ERROR |
683                                                 BNA_CQ_EF_TOO_LONG))) {
684                         bnad_cq_drop_packet(bnad, rcb, sop_ci, nvecs);
685                         rcb->rxq->rx_packets_with_error++;
686
687                         goto next;
688                 }
689
690                 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
691                         bnad_cq_setup_skb(bnad, skb, unmap, len);
692                 else
693                         bnad_cq_setup_skb_frags(rcb, skb, sop_ci, nvecs, len);
694
695                 rcb->rxq->rx_packets++;
696                 rcb->rxq->rx_bytes += totlen;
697                 ccb->bytes_per_intr += totlen;
698
699                 masked_flags = flags & flags_cksum_prot_mask;
700
701                 if (likely
702                     ((bnad->netdev->features & NETIF_F_RXCSUM) &&
703                      ((masked_flags == flags_tcp4) ||
704                       (masked_flags == flags_udp4) ||
705                       (masked_flags == flags_tcp6) ||
706                       (masked_flags == flags_udp6))))
707                         skb->ip_summed = CHECKSUM_UNNECESSARY;
708                 else
709                         skb_checksum_none_assert(skb);
710
711                 if ((flags & BNA_CQ_EF_VLAN) &&
712                     (bnad->netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
713                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cmpl->vlan_tag));
714
715                 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
716                         netif_receive_skb(skb);
717                 else
718                         napi_gro_frags(&rx_ctrl->napi);
719
720 next:
721                 BNA_QE_INDX_ADD(rcb->consumer_index, nvecs, rcb->q_depth);
722                 for (vec = 0; vec < nvecs; vec++) {
723                         cmpl = &cq[ccb->producer_index];
724                         cmpl->valid = 0;
725                         BNA_QE_INDX_INC(ccb->producer_index, ccb->q_depth);
726                 }
727                 cmpl = &cq[ccb->producer_index];
728         }
729
730         napi_gro_flush(&rx_ctrl->napi, false);
731         if (likely(test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)))
732                 bna_ib_ack_disable_irq(ccb->i_dbell, packets);
733
734         bnad_rxq_post(bnad, ccb->rcb[0]);
735         if (ccb->rcb[1])
736                 bnad_rxq_post(bnad, ccb->rcb[1]);
737
738         return packets;
739 }
740
741 static void
742 bnad_netif_rx_schedule_poll(struct bnad *bnad, struct bna_ccb *ccb)
743 {
744         struct bnad_rx_ctrl *rx_ctrl = (struct bnad_rx_ctrl *)(ccb->ctrl);
745         struct napi_struct *napi = &rx_ctrl->napi;
746
747         if (likely(napi_schedule_prep(napi))) {
748                 __napi_schedule(napi);
749                 rx_ctrl->rx_schedule++;
750         }
751 }
752
753 /* MSIX Rx Path Handler */
754 static irqreturn_t
755 bnad_msix_rx(int irq, void *data)
756 {
757         struct bna_ccb *ccb = (struct bna_ccb *)data;
758
759         if (ccb) {
760                 ((struct bnad_rx_ctrl *)(ccb->ctrl))->rx_intr_ctr++;
761                 bnad_netif_rx_schedule_poll(ccb->bnad, ccb);
762         }
763
764         return IRQ_HANDLED;
765 }
766
767 /* Interrupt handlers */
768
769 /* Mbox Interrupt Handlers */
770 static irqreturn_t
771 bnad_msix_mbox_handler(int irq, void *data)
772 {
773         u32 intr_status;
774         unsigned long flags;
775         struct bnad *bnad = (struct bnad *)data;
776
777         spin_lock_irqsave(&bnad->bna_lock, flags);
778         if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
779                 spin_unlock_irqrestore(&bnad->bna_lock, flags);
780                 return IRQ_HANDLED;
781         }
782
783         bna_intr_status_get(&bnad->bna, intr_status);
784
785         if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
786                 bna_mbox_handler(&bnad->bna, intr_status);
787
788         spin_unlock_irqrestore(&bnad->bna_lock, flags);
789
790         return IRQ_HANDLED;
791 }
792
793 static irqreturn_t
794 bnad_isr(int irq, void *data)
795 {
796         int i, j;
797         u32 intr_status;
798         unsigned long flags;
799         struct bnad *bnad = (struct bnad *)data;
800         struct bnad_rx_info *rx_info;
801         struct bnad_rx_ctrl *rx_ctrl;
802         struct bna_tcb *tcb = NULL;
803
804         spin_lock_irqsave(&bnad->bna_lock, flags);
805         if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
806                 spin_unlock_irqrestore(&bnad->bna_lock, flags);
807                 return IRQ_NONE;
808         }
809
810         bna_intr_status_get(&bnad->bna, intr_status);
811
812         if (unlikely(!intr_status)) {
813                 spin_unlock_irqrestore(&bnad->bna_lock, flags);
814                 return IRQ_NONE;
815         }
816
817         if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
818                 bna_mbox_handler(&bnad->bna, intr_status);
819
820         spin_unlock_irqrestore(&bnad->bna_lock, flags);
821
822         if (!BNA_IS_INTX_DATA_INTR(intr_status))
823                 return IRQ_HANDLED;
824
825         /* Process data interrupts */
826         /* Tx processing */
827         for (i = 0; i < bnad->num_tx; i++) {
828                 for (j = 0; j < bnad->num_txq_per_tx; j++) {
829                         tcb = bnad->tx_info[i].tcb[j];
830                         if (tcb && test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
831                                 bnad_tx_complete(bnad, bnad->tx_info[i].tcb[j]);
832                 }
833         }
834         /* Rx processing */
835         for (i = 0; i < bnad->num_rx; i++) {
836                 rx_info = &bnad->rx_info[i];
837                 if (!rx_info->rx)
838                         continue;
839                 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
840                         rx_ctrl = &rx_info->rx_ctrl[j];
841                         if (rx_ctrl->ccb)
842                                 bnad_netif_rx_schedule_poll(bnad,
843                                                             rx_ctrl->ccb);
844                 }
845         }
846         return IRQ_HANDLED;
847 }
848
849 /*
850  * Called in interrupt / callback context
851  * with bna_lock held, so cfg_flags access is OK
852  */
853 static void
854 bnad_enable_mbox_irq(struct bnad *bnad)
855 {
856         clear_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
857
858         BNAD_UPDATE_CTR(bnad, mbox_intr_enabled);
859 }
860
861 /*
862  * Called with bnad->bna_lock held b'cos of
863  * bnad->cfg_flags access.
864  */
865 static void
866 bnad_disable_mbox_irq(struct bnad *bnad)
867 {
868         set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
869
870         BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
871 }
872
873 static void
874 bnad_set_netdev_perm_addr(struct bnad *bnad)
875 {
876         struct net_device *netdev = bnad->netdev;
877
878         memcpy(netdev->perm_addr, &bnad->perm_addr, netdev->addr_len);
879         if (is_zero_ether_addr(netdev->dev_addr))
880                 memcpy(netdev->dev_addr, &bnad->perm_addr, netdev->addr_len);
881 }
882
883 /* Control Path Handlers */
884
885 /* Callbacks */
886 void
887 bnad_cb_mbox_intr_enable(struct bnad *bnad)
888 {
889         bnad_enable_mbox_irq(bnad);
890 }
891
892 void
893 bnad_cb_mbox_intr_disable(struct bnad *bnad)
894 {
895         bnad_disable_mbox_irq(bnad);
896 }
897
898 void
899 bnad_cb_ioceth_ready(struct bnad *bnad)
900 {
901         bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
902         complete(&bnad->bnad_completions.ioc_comp);
903 }
904
905 void
906 bnad_cb_ioceth_failed(struct bnad *bnad)
907 {
908         bnad->bnad_completions.ioc_comp_status = BNA_CB_FAIL;
909         complete(&bnad->bnad_completions.ioc_comp);
910 }
911
912 void
913 bnad_cb_ioceth_disabled(struct bnad *bnad)
914 {
915         bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
916         complete(&bnad->bnad_completions.ioc_comp);
917 }
918
919 static void
920 bnad_cb_enet_disabled(void *arg)
921 {
922         struct bnad *bnad = (struct bnad *)arg;
923
924         netif_carrier_off(bnad->netdev);
925         complete(&bnad->bnad_completions.enet_comp);
926 }
927
928 void
929 bnad_cb_ethport_link_status(struct bnad *bnad,
930                         enum bna_link_status link_status)
931 {
932         bool link_up = false;
933
934         link_up = (link_status == BNA_LINK_UP) || (link_status == BNA_CEE_UP);
935
936         if (link_status == BNA_CEE_UP) {
937                 if (!test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
938                         BNAD_UPDATE_CTR(bnad, cee_toggle);
939                 set_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
940         } else {
941                 if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
942                         BNAD_UPDATE_CTR(bnad, cee_toggle);
943                 clear_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
944         }
945
946         if (link_up) {
947                 if (!netif_carrier_ok(bnad->netdev)) {
948                         uint tx_id, tcb_id;
949                         printk(KERN_WARNING "bna: %s link up\n",
950                                 bnad->netdev->name);
951                         netif_carrier_on(bnad->netdev);
952                         BNAD_UPDATE_CTR(bnad, link_toggle);
953                         for (tx_id = 0; tx_id < bnad->num_tx; tx_id++) {
954                                 for (tcb_id = 0; tcb_id < bnad->num_txq_per_tx;
955                                       tcb_id++) {
956                                         struct bna_tcb *tcb =
957                                         bnad->tx_info[tx_id].tcb[tcb_id];
958                                         u32 txq_id;
959                                         if (!tcb)
960                                                 continue;
961
962                                         txq_id = tcb->id;
963
964                                         if (test_bit(BNAD_TXQ_TX_STARTED,
965                                                      &tcb->flags)) {
966                                                 /*
967                                                  * Force an immediate
968                                                  * Transmit Schedule */
969                                                 printk(KERN_INFO "bna: %s %d "
970                                                       "TXQ_STARTED\n",
971                                                        bnad->netdev->name,
972                                                        txq_id);
973                                                 netif_wake_subqueue(
974                                                                 bnad->netdev,
975                                                                 txq_id);
976                                                 BNAD_UPDATE_CTR(bnad,
977                                                         netif_queue_wakeup);
978                                         } else {
979                                                 netif_stop_subqueue(
980                                                                 bnad->netdev,
981                                                                 txq_id);
982                                                 BNAD_UPDATE_CTR(bnad,
983                                                         netif_queue_stop);
984                                         }
985                                 }
986                         }
987                 }
988         } else {
989                 if (netif_carrier_ok(bnad->netdev)) {
990                         printk(KERN_WARNING "bna: %s link down\n",
991                                 bnad->netdev->name);
992                         netif_carrier_off(bnad->netdev);
993                         BNAD_UPDATE_CTR(bnad, link_toggle);
994                 }
995         }
996 }
997
998 static void
999 bnad_cb_tx_disabled(void *arg, struct bna_tx *tx)
1000 {
1001         struct bnad *bnad = (struct bnad *)arg;
1002
1003         complete(&bnad->bnad_completions.tx_comp);
1004 }
1005
1006 static void
1007 bnad_cb_tcb_setup(struct bnad *bnad, struct bna_tcb *tcb)
1008 {
1009         struct bnad_tx_info *tx_info =
1010                         (struct bnad_tx_info *)tcb->txq->tx->priv;
1011
1012         tcb->priv = tcb;
1013         tx_info->tcb[tcb->id] = tcb;
1014 }
1015
1016 static void
1017 bnad_cb_tcb_destroy(struct bnad *bnad, struct bna_tcb *tcb)
1018 {
1019         struct bnad_tx_info *tx_info =
1020                         (struct bnad_tx_info *)tcb->txq->tx->priv;
1021
1022         tx_info->tcb[tcb->id] = NULL;
1023         tcb->priv = NULL;
1024 }
1025
1026 static void
1027 bnad_cb_ccb_setup(struct bnad *bnad, struct bna_ccb *ccb)
1028 {
1029         struct bnad_rx_info *rx_info =
1030                         (struct bnad_rx_info *)ccb->cq->rx->priv;
1031
1032         rx_info->rx_ctrl[ccb->id].ccb = ccb;
1033         ccb->ctrl = &rx_info->rx_ctrl[ccb->id];
1034 }
1035
1036 static void
1037 bnad_cb_ccb_destroy(struct bnad *bnad, struct bna_ccb *ccb)
1038 {
1039         struct bnad_rx_info *rx_info =
1040                         (struct bnad_rx_info *)ccb->cq->rx->priv;
1041
1042         rx_info->rx_ctrl[ccb->id].ccb = NULL;
1043 }
1044
1045 static void
1046 bnad_cb_tx_stall(struct bnad *bnad, struct bna_tx *tx)
1047 {
1048         struct bnad_tx_info *tx_info =
1049                         (struct bnad_tx_info *)tx->priv;
1050         struct bna_tcb *tcb;
1051         u32 txq_id;
1052         int i;
1053
1054         for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1055                 tcb = tx_info->tcb[i];
1056                 if (!tcb)
1057                         continue;
1058                 txq_id = tcb->id;
1059                 clear_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
1060                 netif_stop_subqueue(bnad->netdev, txq_id);
1061                 printk(KERN_INFO "bna: %s %d TXQ_STOPPED\n",
1062                         bnad->netdev->name, txq_id);
1063         }
1064 }
1065
1066 static void
1067 bnad_cb_tx_resume(struct bnad *bnad, struct bna_tx *tx)
1068 {
1069         struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
1070         struct bna_tcb *tcb;
1071         u32 txq_id;
1072         int i;
1073
1074         for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1075                 tcb = tx_info->tcb[i];
1076                 if (!tcb)
1077                         continue;
1078                 txq_id = tcb->id;
1079
1080                 BUG_ON(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags));
1081                 set_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
1082                 BUG_ON(*(tcb->hw_consumer_index) != 0);
1083
1084                 if (netif_carrier_ok(bnad->netdev)) {
1085                         printk(KERN_INFO "bna: %s %d TXQ_STARTED\n",
1086                                 bnad->netdev->name, txq_id);
1087                         netif_wake_subqueue(bnad->netdev, txq_id);
1088                         BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
1089                 }
1090         }
1091
1092         /*
1093          * Workaround for first ioceth enable failure & we
1094          * get a 0 MAC address. We try to get the MAC address
1095          * again here.
1096          */
1097         if (is_zero_ether_addr(&bnad->perm_addr.mac[0])) {
1098                 bna_enet_perm_mac_get(&bnad->bna.enet, &bnad->perm_addr);
1099                 bnad_set_netdev_perm_addr(bnad);
1100         }
1101 }
1102
1103 /*
1104  * Free all TxQs buffers and then notify TX_E_CLEANUP_DONE to Tx fsm.
1105  */
1106 static void
1107 bnad_tx_cleanup(struct delayed_work *work)
1108 {
1109         struct bnad_tx_info *tx_info =
1110                 container_of(work, struct bnad_tx_info, tx_cleanup_work);
1111         struct bnad *bnad = NULL;
1112         struct bna_tcb *tcb;
1113         unsigned long flags;
1114         u32 i, pending = 0;
1115
1116         for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1117                 tcb = tx_info->tcb[i];
1118                 if (!tcb)
1119                         continue;
1120
1121                 bnad = tcb->bnad;
1122
1123                 if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
1124                         pending++;
1125                         continue;
1126                 }
1127
1128                 bnad_txq_cleanup(bnad, tcb);
1129
1130                 smp_mb__before_atomic();
1131                 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
1132         }
1133
1134         if (pending) {
1135                 queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work,
1136                         msecs_to_jiffies(1));
1137                 return;
1138         }
1139
1140         spin_lock_irqsave(&bnad->bna_lock, flags);
1141         bna_tx_cleanup_complete(tx_info->tx);
1142         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1143 }
1144
1145 static void
1146 bnad_cb_tx_cleanup(struct bnad *bnad, struct bna_tx *tx)
1147 {
1148         struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
1149         struct bna_tcb *tcb;
1150         int i;
1151
1152         for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1153                 tcb = tx_info->tcb[i];
1154                 if (!tcb)
1155                         continue;
1156         }
1157
1158         queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work, 0);
1159 }
1160
1161 static void
1162 bnad_cb_rx_stall(struct bnad *bnad, struct bna_rx *rx)
1163 {
1164         struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1165         struct bna_ccb *ccb;
1166         struct bnad_rx_ctrl *rx_ctrl;
1167         int i;
1168
1169         for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1170                 rx_ctrl = &rx_info->rx_ctrl[i];
1171                 ccb = rx_ctrl->ccb;
1172                 if (!ccb)
1173                         continue;
1174
1175                 clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[0]->flags);
1176
1177                 if (ccb->rcb[1])
1178                         clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[1]->flags);
1179         }
1180 }
1181
1182 /*
1183  * Free all RxQs buffers and then notify RX_E_CLEANUP_DONE to Rx fsm.
1184  */
1185 static void
1186 bnad_rx_cleanup(void *work)
1187 {
1188         struct bnad_rx_info *rx_info =
1189                 container_of(work, struct bnad_rx_info, rx_cleanup_work);
1190         struct bnad_rx_ctrl *rx_ctrl;
1191         struct bnad *bnad = NULL;
1192         unsigned long flags;
1193         u32 i;
1194
1195         for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1196                 rx_ctrl = &rx_info->rx_ctrl[i];
1197
1198                 if (!rx_ctrl->ccb)
1199                         continue;
1200
1201                 bnad = rx_ctrl->ccb->bnad;
1202
1203                 /*
1204                  * Wait till the poll handler has exited
1205                  * and nothing can be scheduled anymore
1206                  */
1207                 napi_disable(&rx_ctrl->napi);
1208
1209                 bnad_cq_cleanup(bnad, rx_ctrl->ccb);
1210                 bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[0]);
1211                 if (rx_ctrl->ccb->rcb[1])
1212                         bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[1]);
1213         }
1214
1215         spin_lock_irqsave(&bnad->bna_lock, flags);
1216         bna_rx_cleanup_complete(rx_info->rx);
1217         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1218 }
1219
1220 static void
1221 bnad_cb_rx_cleanup(struct bnad *bnad, struct bna_rx *rx)
1222 {
1223         struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1224         struct bna_ccb *ccb;
1225         struct bnad_rx_ctrl *rx_ctrl;
1226         int i;
1227
1228         for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1229                 rx_ctrl = &rx_info->rx_ctrl[i];
1230                 ccb = rx_ctrl->ccb;
1231                 if (!ccb)
1232                         continue;
1233
1234                 clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags);
1235
1236                 if (ccb->rcb[1])
1237                         clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[1]->flags);
1238         }
1239
1240         queue_work(bnad->work_q, &rx_info->rx_cleanup_work);
1241 }
1242
1243 static void
1244 bnad_cb_rx_post(struct bnad *bnad, struct bna_rx *rx)
1245 {
1246         struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1247         struct bna_ccb *ccb;
1248         struct bna_rcb *rcb;
1249         struct bnad_rx_ctrl *rx_ctrl;
1250         int i, j;
1251
1252         for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1253                 rx_ctrl = &rx_info->rx_ctrl[i];
1254                 ccb = rx_ctrl->ccb;
1255                 if (!ccb)
1256                         continue;
1257
1258                 napi_enable(&rx_ctrl->napi);
1259
1260                 for (j = 0; j < BNAD_MAX_RXQ_PER_RXP; j++) {
1261                         rcb = ccb->rcb[j];
1262                         if (!rcb)
1263                                 continue;
1264
1265                         bnad_rxq_alloc_init(bnad, rcb);
1266                         set_bit(BNAD_RXQ_STARTED, &rcb->flags);
1267                         set_bit(BNAD_RXQ_POST_OK, &rcb->flags);
1268                         bnad_rxq_post(bnad, rcb);
1269                 }
1270         }
1271 }
1272
1273 static void
1274 bnad_cb_rx_disabled(void *arg, struct bna_rx *rx)
1275 {
1276         struct bnad *bnad = (struct bnad *)arg;
1277
1278         complete(&bnad->bnad_completions.rx_comp);
1279 }
1280
1281 static void
1282 bnad_cb_rx_mcast_add(struct bnad *bnad, struct bna_rx *rx)
1283 {
1284         bnad->bnad_completions.mcast_comp_status = BNA_CB_SUCCESS;
1285         complete(&bnad->bnad_completions.mcast_comp);
1286 }
1287
1288 void
1289 bnad_cb_stats_get(struct bnad *bnad, enum bna_cb_status status,
1290                        struct bna_stats *stats)
1291 {
1292         if (status == BNA_CB_SUCCESS)
1293                 BNAD_UPDATE_CTR(bnad, hw_stats_updates);
1294
1295         if (!netif_running(bnad->netdev) ||
1296                 !test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1297                 return;
1298
1299         mod_timer(&bnad->stats_timer,
1300                   jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1301 }
1302
1303 static void
1304 bnad_cb_enet_mtu_set(struct bnad *bnad)
1305 {
1306         bnad->bnad_completions.mtu_comp_status = BNA_CB_SUCCESS;
1307         complete(&bnad->bnad_completions.mtu_comp);
1308 }
1309
1310 void
1311 bnad_cb_completion(void *arg, enum bfa_status status)
1312 {
1313         struct bnad_iocmd_comp *iocmd_comp =
1314                         (struct bnad_iocmd_comp *)arg;
1315
1316         iocmd_comp->comp_status = (u32) status;
1317         complete(&iocmd_comp->comp);
1318 }
1319
1320 /* Resource allocation, free functions */
1321
1322 static void
1323 bnad_mem_free(struct bnad *bnad,
1324               struct bna_mem_info *mem_info)
1325 {
1326         int i;
1327         dma_addr_t dma_pa;
1328
1329         if (mem_info->mdl == NULL)
1330                 return;
1331
1332         for (i = 0; i < mem_info->num; i++) {
1333                 if (mem_info->mdl[i].kva != NULL) {
1334                         if (mem_info->mem_type == BNA_MEM_T_DMA) {
1335                                 BNA_GET_DMA_ADDR(&(mem_info->mdl[i].dma),
1336                                                 dma_pa);
1337                                 dma_free_coherent(&bnad->pcidev->dev,
1338                                                   mem_info->mdl[i].len,
1339                                                   mem_info->mdl[i].kva, dma_pa);
1340                         } else
1341                                 kfree(mem_info->mdl[i].kva);
1342                 }
1343         }
1344         kfree(mem_info->mdl);
1345         mem_info->mdl = NULL;
1346 }
1347
1348 static int
1349 bnad_mem_alloc(struct bnad *bnad,
1350                struct bna_mem_info *mem_info)
1351 {
1352         int i;
1353         dma_addr_t dma_pa;
1354
1355         if ((mem_info->num == 0) || (mem_info->len == 0)) {
1356                 mem_info->mdl = NULL;
1357                 return 0;
1358         }
1359
1360         mem_info->mdl = kcalloc(mem_info->num, sizeof(struct bna_mem_descr),
1361                                 GFP_KERNEL);
1362         if (mem_info->mdl == NULL)
1363                 return -ENOMEM;
1364
1365         if (mem_info->mem_type == BNA_MEM_T_DMA) {
1366                 for (i = 0; i < mem_info->num; i++) {
1367                         mem_info->mdl[i].len = mem_info->len;
1368                         mem_info->mdl[i].kva =
1369                                 dma_alloc_coherent(&bnad->pcidev->dev,
1370                                                    mem_info->len, &dma_pa,
1371                                                    GFP_KERNEL);
1372                         if (mem_info->mdl[i].kva == NULL)
1373                                 goto err_return;
1374
1375                         BNA_SET_DMA_ADDR(dma_pa,
1376                                          &(mem_info->mdl[i].dma));
1377                 }
1378         } else {
1379                 for (i = 0; i < mem_info->num; i++) {
1380                         mem_info->mdl[i].len = mem_info->len;
1381                         mem_info->mdl[i].kva = kzalloc(mem_info->len,
1382                                                         GFP_KERNEL);
1383                         if (mem_info->mdl[i].kva == NULL)
1384                                 goto err_return;
1385                 }
1386         }
1387
1388         return 0;
1389
1390 err_return:
1391         bnad_mem_free(bnad, mem_info);
1392         return -ENOMEM;
1393 }
1394
1395 /* Free IRQ for Mailbox */
1396 static void
1397 bnad_mbox_irq_free(struct bnad *bnad)
1398 {
1399         int irq;
1400         unsigned long flags;
1401
1402         spin_lock_irqsave(&bnad->bna_lock, flags);
1403         bnad_disable_mbox_irq(bnad);
1404         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1405
1406         irq = BNAD_GET_MBOX_IRQ(bnad);
1407         free_irq(irq, bnad);
1408 }
1409
1410 /*
1411  * Allocates IRQ for Mailbox, but keep it disabled
1412  * This will be enabled once we get the mbox enable callback
1413  * from bna
1414  */
1415 static int
1416 bnad_mbox_irq_alloc(struct bnad *bnad)
1417 {
1418         int             err = 0;
1419         unsigned long   irq_flags, flags;
1420         u32     irq;
1421         irq_handler_t   irq_handler;
1422
1423         spin_lock_irqsave(&bnad->bna_lock, flags);
1424         if (bnad->cfg_flags & BNAD_CF_MSIX) {
1425                 irq_handler = (irq_handler_t)bnad_msix_mbox_handler;
1426                 irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
1427                 irq_flags = 0;
1428         } else {
1429                 irq_handler = (irq_handler_t)bnad_isr;
1430                 irq = bnad->pcidev->irq;
1431                 irq_flags = IRQF_SHARED;
1432         }
1433
1434         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1435         sprintf(bnad->mbox_irq_name, "%s", BNAD_NAME);
1436
1437         /*
1438          * Set the Mbox IRQ disable flag, so that the IRQ handler
1439          * called from request_irq() for SHARED IRQs do not execute
1440          */
1441         set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
1442
1443         BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
1444
1445         err = request_irq(irq, irq_handler, irq_flags,
1446                           bnad->mbox_irq_name, bnad);
1447
1448         return err;
1449 }
1450
1451 static void
1452 bnad_txrx_irq_free(struct bnad *bnad, struct bna_intr_info *intr_info)
1453 {
1454         kfree(intr_info->idl);
1455         intr_info->idl = NULL;
1456 }
1457
1458 /* Allocates Interrupt Descriptor List for MSIX/INT-X vectors */
1459 static int
1460 bnad_txrx_irq_alloc(struct bnad *bnad, enum bnad_intr_source src,
1461                     u32 txrx_id, struct bna_intr_info *intr_info)
1462 {
1463         int i, vector_start = 0;
1464         u32 cfg_flags;
1465         unsigned long flags;
1466
1467         spin_lock_irqsave(&bnad->bna_lock, flags);
1468         cfg_flags = bnad->cfg_flags;
1469         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1470
1471         if (cfg_flags & BNAD_CF_MSIX) {
1472                 intr_info->intr_type = BNA_INTR_T_MSIX;
1473                 intr_info->idl = kcalloc(intr_info->num,
1474                                         sizeof(struct bna_intr_descr),
1475                                         GFP_KERNEL);
1476                 if (!intr_info->idl)
1477                         return -ENOMEM;
1478
1479                 switch (src) {
1480                 case BNAD_INTR_TX:
1481                         vector_start = BNAD_MAILBOX_MSIX_VECTORS + txrx_id;
1482                         break;
1483
1484                 case BNAD_INTR_RX:
1485                         vector_start = BNAD_MAILBOX_MSIX_VECTORS +
1486                                         (bnad->num_tx * bnad->num_txq_per_tx) +
1487                                         txrx_id;
1488                         break;
1489
1490                 default:
1491                         BUG();
1492                 }
1493
1494                 for (i = 0; i < intr_info->num; i++)
1495                         intr_info->idl[i].vector = vector_start + i;
1496         } else {
1497                 intr_info->intr_type = BNA_INTR_T_INTX;
1498                 intr_info->num = 1;
1499                 intr_info->idl = kcalloc(intr_info->num,
1500                                         sizeof(struct bna_intr_descr),
1501                                         GFP_KERNEL);
1502                 if (!intr_info->idl)
1503                         return -ENOMEM;
1504
1505                 switch (src) {
1506                 case BNAD_INTR_TX:
1507                         intr_info->idl[0].vector = BNAD_INTX_TX_IB_BITMASK;
1508                         break;
1509
1510                 case BNAD_INTR_RX:
1511                         intr_info->idl[0].vector = BNAD_INTX_RX_IB_BITMASK;
1512                         break;
1513                 }
1514         }
1515         return 0;
1516 }
1517
1518 /* NOTE: Should be called for MSIX only
1519  * Unregisters Tx MSIX vector(s) from the kernel
1520  */
1521 static void
1522 bnad_tx_msix_unregister(struct bnad *bnad, struct bnad_tx_info *tx_info,
1523                         int num_txqs)
1524 {
1525         int i;
1526         int vector_num;
1527
1528         for (i = 0; i < num_txqs; i++) {
1529                 if (tx_info->tcb[i] == NULL)
1530                         continue;
1531
1532                 vector_num = tx_info->tcb[i]->intr_vector;
1533                 free_irq(bnad->msix_table[vector_num].vector, tx_info->tcb[i]);
1534         }
1535 }
1536
1537 /* NOTE: Should be called for MSIX only
1538  * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1539  */
1540 static int
1541 bnad_tx_msix_register(struct bnad *bnad, struct bnad_tx_info *tx_info,
1542                         u32 tx_id, int num_txqs)
1543 {
1544         int i;
1545         int err;
1546         int vector_num;
1547
1548         for (i = 0; i < num_txqs; i++) {
1549                 vector_num = tx_info->tcb[i]->intr_vector;
1550                 sprintf(tx_info->tcb[i]->name, "%s TXQ %d", bnad->netdev->name,
1551                                 tx_id + tx_info->tcb[i]->id);
1552                 err = request_irq(bnad->msix_table[vector_num].vector,
1553                                   (irq_handler_t)bnad_msix_tx, 0,
1554                                   tx_info->tcb[i]->name,
1555                                   tx_info->tcb[i]);
1556                 if (err)
1557                         goto err_return;
1558         }
1559
1560         return 0;
1561
1562 err_return:
1563         if (i > 0)
1564                 bnad_tx_msix_unregister(bnad, tx_info, (i - 1));
1565         return -1;
1566 }
1567
1568 /* NOTE: Should be called for MSIX only
1569  * Unregisters Rx MSIX vector(s) from the kernel
1570  */
1571 static void
1572 bnad_rx_msix_unregister(struct bnad *bnad, struct bnad_rx_info *rx_info,
1573                         int num_rxps)
1574 {
1575         int i;
1576         int vector_num;
1577
1578         for (i = 0; i < num_rxps; i++) {
1579                 if (rx_info->rx_ctrl[i].ccb == NULL)
1580                         continue;
1581
1582                 vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1583                 free_irq(bnad->msix_table[vector_num].vector,
1584                          rx_info->rx_ctrl[i].ccb);
1585         }
1586 }
1587
1588 /* NOTE: Should be called for MSIX only
1589  * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1590  */
1591 static int
1592 bnad_rx_msix_register(struct bnad *bnad, struct bnad_rx_info *rx_info,
1593                         u32 rx_id, int num_rxps)
1594 {
1595         int i;
1596         int err;
1597         int vector_num;
1598
1599         for (i = 0; i < num_rxps; i++) {
1600                 vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1601                 sprintf(rx_info->rx_ctrl[i].ccb->name, "%s CQ %d",
1602                         bnad->netdev->name,
1603                         rx_id + rx_info->rx_ctrl[i].ccb->id);
1604                 err = request_irq(bnad->msix_table[vector_num].vector,
1605                                   (irq_handler_t)bnad_msix_rx, 0,
1606                                   rx_info->rx_ctrl[i].ccb->name,
1607                                   rx_info->rx_ctrl[i].ccb);
1608                 if (err)
1609                         goto err_return;
1610         }
1611
1612         return 0;
1613
1614 err_return:
1615         if (i > 0)
1616                 bnad_rx_msix_unregister(bnad, rx_info, (i - 1));
1617         return -1;
1618 }
1619
1620 /* Free Tx object Resources */
1621 static void
1622 bnad_tx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1623 {
1624         int i;
1625
1626         for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1627                 if (res_info[i].res_type == BNA_RES_T_MEM)
1628                         bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1629                 else if (res_info[i].res_type == BNA_RES_T_INTR)
1630                         bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1631         }
1632 }
1633
1634 /* Allocates memory and interrupt resources for Tx object */
1635 static int
1636 bnad_tx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1637                   u32 tx_id)
1638 {
1639         int i, err = 0;
1640
1641         for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1642                 if (res_info[i].res_type == BNA_RES_T_MEM)
1643                         err = bnad_mem_alloc(bnad,
1644                                         &res_info[i].res_u.mem_info);
1645                 else if (res_info[i].res_type == BNA_RES_T_INTR)
1646                         err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_TX, tx_id,
1647                                         &res_info[i].res_u.intr_info);
1648                 if (err)
1649                         goto err_return;
1650         }
1651         return 0;
1652
1653 err_return:
1654         bnad_tx_res_free(bnad, res_info);
1655         return err;
1656 }
1657
1658 /* Free Rx object Resources */
1659 static void
1660 bnad_rx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1661 {
1662         int i;
1663
1664         for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1665                 if (res_info[i].res_type == BNA_RES_T_MEM)
1666                         bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1667                 else if (res_info[i].res_type == BNA_RES_T_INTR)
1668                         bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1669         }
1670 }
1671
1672 /* Allocates memory and interrupt resources for Rx object */
1673 static int
1674 bnad_rx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1675                   uint rx_id)
1676 {
1677         int i, err = 0;
1678
1679         /* All memory needs to be allocated before setup_ccbs */
1680         for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1681                 if (res_info[i].res_type == BNA_RES_T_MEM)
1682                         err = bnad_mem_alloc(bnad,
1683                                         &res_info[i].res_u.mem_info);
1684                 else if (res_info[i].res_type == BNA_RES_T_INTR)
1685                         err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_RX, rx_id,
1686                                         &res_info[i].res_u.intr_info);
1687                 if (err)
1688                         goto err_return;
1689         }
1690         return 0;
1691
1692 err_return:
1693         bnad_rx_res_free(bnad, res_info);
1694         return err;
1695 }
1696
1697 /* Timer callbacks */
1698 /* a) IOC timer */
1699 static void
1700 bnad_ioc_timeout(unsigned long data)
1701 {
1702         struct bnad *bnad = (struct bnad *)data;
1703         unsigned long flags;
1704
1705         spin_lock_irqsave(&bnad->bna_lock, flags);
1706         bfa_nw_ioc_timeout((void *) &bnad->bna.ioceth.ioc);
1707         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1708 }
1709
1710 static void
1711 bnad_ioc_hb_check(unsigned long data)
1712 {
1713         struct bnad *bnad = (struct bnad *)data;
1714         unsigned long flags;
1715
1716         spin_lock_irqsave(&bnad->bna_lock, flags);
1717         bfa_nw_ioc_hb_check((void *) &bnad->bna.ioceth.ioc);
1718         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1719 }
1720
1721 static void
1722 bnad_iocpf_timeout(unsigned long data)
1723 {
1724         struct bnad *bnad = (struct bnad *)data;
1725         unsigned long flags;
1726
1727         spin_lock_irqsave(&bnad->bna_lock, flags);
1728         bfa_nw_iocpf_timeout((void *) &bnad->bna.ioceth.ioc);
1729         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1730 }
1731
1732 static void
1733 bnad_iocpf_sem_timeout(unsigned long data)
1734 {
1735         struct bnad *bnad = (struct bnad *)data;
1736         unsigned long flags;
1737
1738         spin_lock_irqsave(&bnad->bna_lock, flags);
1739         bfa_nw_iocpf_sem_timeout((void *) &bnad->bna.ioceth.ioc);
1740         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1741 }
1742
1743 /*
1744  * All timer routines use bnad->bna_lock to protect against
1745  * the following race, which may occur in case of no locking:
1746  *      Time    CPU m   CPU n
1747  *      0       1 = test_bit
1748  *      1                       clear_bit
1749  *      2                       del_timer_sync
1750  *      3       mod_timer
1751  */
1752
1753 /* b) Dynamic Interrupt Moderation Timer */
1754 static void
1755 bnad_dim_timeout(unsigned long data)
1756 {
1757         struct bnad *bnad = (struct bnad *)data;
1758         struct bnad_rx_info *rx_info;
1759         struct bnad_rx_ctrl *rx_ctrl;
1760         int i, j;
1761         unsigned long flags;
1762
1763         if (!netif_carrier_ok(bnad->netdev))
1764                 return;
1765
1766         spin_lock_irqsave(&bnad->bna_lock, flags);
1767         for (i = 0; i < bnad->num_rx; i++) {
1768                 rx_info = &bnad->rx_info[i];
1769                 if (!rx_info->rx)
1770                         continue;
1771                 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
1772                         rx_ctrl = &rx_info->rx_ctrl[j];
1773                         if (!rx_ctrl->ccb)
1774                                 continue;
1775                         bna_rx_dim_update(rx_ctrl->ccb);
1776                 }
1777         }
1778
1779         /* Check for BNAD_CF_DIM_ENABLED, does not eleminate a race */
1780         if (test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags))
1781                 mod_timer(&bnad->dim_timer,
1782                           jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1783         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1784 }
1785
1786 /* c)  Statistics Timer */
1787 static void
1788 bnad_stats_timeout(unsigned long data)
1789 {
1790         struct bnad *bnad = (struct bnad *)data;
1791         unsigned long flags;
1792
1793         if (!netif_running(bnad->netdev) ||
1794                 !test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1795                 return;
1796
1797         spin_lock_irqsave(&bnad->bna_lock, flags);
1798         bna_hw_stats_get(&bnad->bna);
1799         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1800 }
1801
1802 /*
1803  * Set up timer for DIM
1804  * Called with bnad->bna_lock held
1805  */
1806 void
1807 bnad_dim_timer_start(struct bnad *bnad)
1808 {
1809         if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
1810             !test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
1811                 setup_timer(&bnad->dim_timer, bnad_dim_timeout,
1812                             (unsigned long)bnad);
1813                 set_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1814                 mod_timer(&bnad->dim_timer,
1815                           jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1816         }
1817 }
1818
1819 /*
1820  * Set up timer for statistics
1821  * Called with mutex_lock(&bnad->conf_mutex) held
1822  */
1823 static void
1824 bnad_stats_timer_start(struct bnad *bnad)
1825 {
1826         unsigned long flags;
1827
1828         spin_lock_irqsave(&bnad->bna_lock, flags);
1829         if (!test_and_set_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) {
1830                 setup_timer(&bnad->stats_timer, bnad_stats_timeout,
1831                             (unsigned long)bnad);
1832                 mod_timer(&bnad->stats_timer,
1833                           jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1834         }
1835         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1836 }
1837
1838 /*
1839  * Stops the stats timer
1840  * Called with mutex_lock(&bnad->conf_mutex) held
1841  */
1842 static void
1843 bnad_stats_timer_stop(struct bnad *bnad)
1844 {
1845         int to_del = 0;
1846         unsigned long flags;
1847
1848         spin_lock_irqsave(&bnad->bna_lock, flags);
1849         if (test_and_clear_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1850                 to_del = 1;
1851         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1852         if (to_del)
1853                 del_timer_sync(&bnad->stats_timer);
1854 }
1855
1856 /* Utilities */
1857
1858 static void
1859 bnad_netdev_mc_list_get(struct net_device *netdev, u8 *mc_list)
1860 {
1861         int i = 1; /* Index 0 has broadcast address */
1862         struct netdev_hw_addr *mc_addr;
1863
1864         netdev_for_each_mc_addr(mc_addr, netdev) {
1865                 memcpy(&mc_list[i * ETH_ALEN], &mc_addr->addr[0],
1866                                                         ETH_ALEN);
1867                 i++;
1868         }
1869 }
1870
1871 static int
1872 bnad_napi_poll_rx(struct napi_struct *napi, int budget)
1873 {
1874         struct bnad_rx_ctrl *rx_ctrl =
1875                 container_of(napi, struct bnad_rx_ctrl, napi);
1876         struct bnad *bnad = rx_ctrl->bnad;
1877         int rcvd = 0;
1878
1879         rx_ctrl->rx_poll_ctr++;
1880
1881         if (!netif_carrier_ok(bnad->netdev))
1882                 goto poll_exit;
1883
1884         rcvd = bnad_cq_process(bnad, rx_ctrl->ccb, budget);
1885         if (rcvd >= budget)
1886                 return rcvd;
1887
1888 poll_exit:
1889         napi_complete(napi);
1890
1891         rx_ctrl->rx_complete++;
1892
1893         if (rx_ctrl->ccb)
1894                 bnad_enable_rx_irq_unsafe(rx_ctrl->ccb);
1895
1896         return rcvd;
1897 }
1898
1899 #define BNAD_NAPI_POLL_QUOTA            64
1900 static void
1901 bnad_napi_add(struct bnad *bnad, u32 rx_id)
1902 {
1903         struct bnad_rx_ctrl *rx_ctrl;
1904         int i;
1905
1906         /* Initialize & enable NAPI */
1907         for (i = 0; i < bnad->num_rxp_per_rx; i++) {
1908                 rx_ctrl = &bnad->rx_info[rx_id].rx_ctrl[i];
1909                 netif_napi_add(bnad->netdev, &rx_ctrl->napi,
1910                                bnad_napi_poll_rx, BNAD_NAPI_POLL_QUOTA);
1911         }
1912 }
1913
1914 static void
1915 bnad_napi_delete(struct bnad *bnad, u32 rx_id)
1916 {
1917         int i;
1918
1919         /* First disable and then clean up */
1920         for (i = 0; i < bnad->num_rxp_per_rx; i++)
1921                 netif_napi_del(&bnad->rx_info[rx_id].rx_ctrl[i].napi);
1922 }
1923
1924 /* Should be held with conf_lock held */
1925 void
1926 bnad_destroy_tx(struct bnad *bnad, u32 tx_id)
1927 {
1928         struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1929         struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1930         unsigned long flags;
1931
1932         if (!tx_info->tx)
1933                 return;
1934
1935         init_completion(&bnad->bnad_completions.tx_comp);
1936         spin_lock_irqsave(&bnad->bna_lock, flags);
1937         bna_tx_disable(tx_info->tx, BNA_HARD_CLEANUP, bnad_cb_tx_disabled);
1938         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1939         wait_for_completion(&bnad->bnad_completions.tx_comp);
1940
1941         if (tx_info->tcb[0]->intr_type == BNA_INTR_T_MSIX)
1942                 bnad_tx_msix_unregister(bnad, tx_info,
1943                         bnad->num_txq_per_tx);
1944
1945         spin_lock_irqsave(&bnad->bna_lock, flags);
1946         bna_tx_destroy(tx_info->tx);
1947         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1948
1949         tx_info->tx = NULL;
1950         tx_info->tx_id = 0;
1951
1952         bnad_tx_res_free(bnad, res_info);
1953 }
1954
1955 /* Should be held with conf_lock held */
1956 int
1957 bnad_setup_tx(struct bnad *bnad, u32 tx_id)
1958 {
1959         int err;
1960         struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1961         struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1962         struct bna_intr_info *intr_info =
1963                         &res_info[BNA_TX_RES_INTR_T_TXCMPL].res_u.intr_info;
1964         struct bna_tx_config *tx_config = &bnad->tx_config[tx_id];
1965         static const struct bna_tx_event_cbfn tx_cbfn = {
1966                 .tcb_setup_cbfn = bnad_cb_tcb_setup,
1967                 .tcb_destroy_cbfn = bnad_cb_tcb_destroy,
1968                 .tx_stall_cbfn = bnad_cb_tx_stall,
1969                 .tx_resume_cbfn = bnad_cb_tx_resume,
1970                 .tx_cleanup_cbfn = bnad_cb_tx_cleanup,
1971         };
1972
1973         struct bna_tx *tx;
1974         unsigned long flags;
1975
1976         tx_info->tx_id = tx_id;
1977
1978         /* Initialize the Tx object configuration */
1979         tx_config->num_txq = bnad->num_txq_per_tx;
1980         tx_config->txq_depth = bnad->txq_depth;
1981         tx_config->tx_type = BNA_TX_T_REGULAR;
1982         tx_config->coalescing_timeo = bnad->tx_coalescing_timeo;
1983
1984         /* Get BNA's resource requirement for one tx object */
1985         spin_lock_irqsave(&bnad->bna_lock, flags);
1986         bna_tx_res_req(bnad->num_txq_per_tx,
1987                 bnad->txq_depth, res_info);
1988         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1989
1990         /* Fill Unmap Q memory requirements */
1991         BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_TX_RES_MEM_T_UNMAPQ],
1992                         bnad->num_txq_per_tx, (sizeof(struct bnad_tx_unmap) *
1993                         bnad->txq_depth));
1994
1995         /* Allocate resources */
1996         err = bnad_tx_res_alloc(bnad, res_info, tx_id);
1997         if (err)
1998                 return err;
1999
2000         /* Ask BNA to create one Tx object, supplying required resources */
2001         spin_lock_irqsave(&bnad->bna_lock, flags);
2002         tx = bna_tx_create(&bnad->bna, bnad, tx_config, &tx_cbfn, res_info,
2003                         tx_info);
2004         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2005         if (!tx) {
2006                 err = -ENOMEM;
2007                 goto err_return;
2008         }
2009         tx_info->tx = tx;
2010
2011         INIT_DELAYED_WORK(&tx_info->tx_cleanup_work,
2012                         (work_func_t)bnad_tx_cleanup);
2013
2014         /* Register ISR for the Tx object */
2015         if (intr_info->intr_type == BNA_INTR_T_MSIX) {
2016                 err = bnad_tx_msix_register(bnad, tx_info,
2017                         tx_id, bnad->num_txq_per_tx);
2018                 if (err)
2019                         goto cleanup_tx;
2020         }
2021
2022         spin_lock_irqsave(&bnad->bna_lock, flags);
2023         bna_tx_enable(tx);
2024         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2025
2026         return 0;
2027
2028 cleanup_tx:
2029         spin_lock_irqsave(&bnad->bna_lock, flags);
2030         bna_tx_destroy(tx_info->tx);
2031         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2032         tx_info->tx = NULL;
2033         tx_info->tx_id = 0;
2034 err_return:
2035         bnad_tx_res_free(bnad, res_info);
2036         return err;
2037 }
2038
2039 /* Setup the rx config for bna_rx_create */
2040 /* bnad decides the configuration */
2041 static void
2042 bnad_init_rx_config(struct bnad *bnad, struct bna_rx_config *rx_config)
2043 {
2044         memset(rx_config, 0, sizeof(*rx_config));
2045         rx_config->rx_type = BNA_RX_T_REGULAR;
2046         rx_config->num_paths = bnad->num_rxp_per_rx;
2047         rx_config->coalescing_timeo = bnad->rx_coalescing_timeo;
2048
2049         if (bnad->num_rxp_per_rx > 1) {
2050                 rx_config->rss_status = BNA_STATUS_T_ENABLED;
2051                 rx_config->rss_config.hash_type =
2052                                 (BFI_ENET_RSS_IPV6 |
2053                                  BFI_ENET_RSS_IPV6_TCP |
2054                                  BFI_ENET_RSS_IPV4 |
2055                                  BFI_ENET_RSS_IPV4_TCP);
2056                 rx_config->rss_config.hash_mask =
2057                                 bnad->num_rxp_per_rx - 1;
2058                 netdev_rss_key_fill(rx_config->rss_config.toeplitz_hash_key,
2059                         sizeof(rx_config->rss_config.toeplitz_hash_key));
2060         } else {
2061                 rx_config->rss_status = BNA_STATUS_T_DISABLED;
2062                 memset(&rx_config->rss_config, 0,
2063                        sizeof(rx_config->rss_config));
2064         }
2065
2066         rx_config->frame_size = BNAD_FRAME_SIZE(bnad->netdev->mtu);
2067         rx_config->q0_multi_buf = BNA_STATUS_T_DISABLED;
2068
2069         /* BNA_RXP_SINGLE - one data-buffer queue
2070          * BNA_RXP_SLR - one small-buffer and one large-buffer queues
2071          * BNA_RXP_HDS - one header-buffer and one data-buffer queues
2072          */
2073         /* TODO: configurable param for queue type */
2074         rx_config->rxp_type = BNA_RXP_SLR;
2075
2076         if (BNAD_PCI_DEV_IS_CAT2(bnad) &&
2077             rx_config->frame_size > 4096) {
2078                 /* though size_routing_enable is set in SLR,
2079                  * small packets may get routed to same rxq.
2080                  * set buf_size to 2048 instead of PAGE_SIZE.
2081                  */
2082                 rx_config->q0_buf_size = 2048;
2083                 /* this should be in multiples of 2 */
2084                 rx_config->q0_num_vecs = 4;
2085                 rx_config->q0_depth = bnad->rxq_depth * rx_config->q0_num_vecs;
2086                 rx_config->q0_multi_buf = BNA_STATUS_T_ENABLED;
2087         } else {
2088                 rx_config->q0_buf_size = rx_config->frame_size;
2089                 rx_config->q0_num_vecs = 1;
2090                 rx_config->q0_depth = bnad->rxq_depth;
2091         }
2092
2093         /* initialize for q1 for BNA_RXP_SLR/BNA_RXP_HDS */
2094         if (rx_config->rxp_type == BNA_RXP_SLR) {
2095                 rx_config->q1_depth = bnad->rxq_depth;
2096                 rx_config->q1_buf_size = BFI_SMALL_RXBUF_SIZE;
2097         }
2098
2099         rx_config->vlan_strip_status =
2100                 (bnad->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) ?
2101                 BNA_STATUS_T_ENABLED : BNA_STATUS_T_DISABLED;
2102 }
2103
2104 static void
2105 bnad_rx_ctrl_init(struct bnad *bnad, u32 rx_id)
2106 {
2107         struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2108         int i;
2109
2110         for (i = 0; i < bnad->num_rxp_per_rx; i++)
2111                 rx_info->rx_ctrl[i].bnad = bnad;
2112 }
2113
2114 /* Called with mutex_lock(&bnad->conf_mutex) held */
2115 static u32
2116 bnad_reinit_rx(struct bnad *bnad)
2117 {
2118         struct net_device *netdev = bnad->netdev;
2119         u32 err = 0, current_err = 0;
2120         u32 rx_id = 0, count = 0;
2121         unsigned long flags;
2122
2123         /* destroy and create new rx objects */
2124         for (rx_id = 0; rx_id < bnad->num_rx; rx_id++) {
2125                 if (!bnad->rx_info[rx_id].rx)
2126                         continue;
2127                 bnad_destroy_rx(bnad, rx_id);
2128         }
2129
2130         spin_lock_irqsave(&bnad->bna_lock, flags);
2131         bna_enet_mtu_set(&bnad->bna.enet,
2132                          BNAD_FRAME_SIZE(bnad->netdev->mtu), NULL);
2133         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2134
2135         for (rx_id = 0; rx_id < bnad->num_rx; rx_id++) {
2136                 count++;
2137                 current_err = bnad_setup_rx(bnad, rx_id);
2138                 if (current_err && !err) {
2139                         err = current_err;
2140                         pr_err("RXQ:%u setup failed\n", rx_id);
2141                 }
2142         }
2143
2144         /* restore rx configuration */
2145         if (bnad->rx_info[0].rx && !err) {
2146                 bnad_restore_vlans(bnad, 0);
2147                 bnad_enable_default_bcast(bnad);
2148                 spin_lock_irqsave(&bnad->bna_lock, flags);
2149                 bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2150                 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2151                 bnad_set_rx_mode(netdev);
2152         }
2153
2154         return count;
2155 }
2156
2157 /* Called with bnad_conf_lock() held */
2158 void
2159 bnad_destroy_rx(struct bnad *bnad, u32 rx_id)
2160 {
2161         struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2162         struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
2163         struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
2164         unsigned long flags;
2165         int to_del = 0;
2166
2167         if (!rx_info->rx)
2168                 return;
2169
2170         if (0 == rx_id) {
2171                 spin_lock_irqsave(&bnad->bna_lock, flags);
2172                 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
2173                     test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
2174                         clear_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
2175                         to_del = 1;
2176                 }
2177                 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2178                 if (to_del)
2179                         del_timer_sync(&bnad->dim_timer);
2180         }
2181
2182         init_completion(&bnad->bnad_completions.rx_comp);
2183         spin_lock_irqsave(&bnad->bna_lock, flags);
2184         bna_rx_disable(rx_info->rx, BNA_HARD_CLEANUP, bnad_cb_rx_disabled);
2185         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2186         wait_for_completion(&bnad->bnad_completions.rx_comp);
2187
2188         if (rx_info->rx_ctrl[0].ccb->intr_type == BNA_INTR_T_MSIX)
2189                 bnad_rx_msix_unregister(bnad, rx_info, rx_config->num_paths);
2190
2191         bnad_napi_delete(bnad, rx_id);
2192
2193         spin_lock_irqsave(&bnad->bna_lock, flags);
2194         bna_rx_destroy(rx_info->rx);
2195
2196         rx_info->rx = NULL;
2197         rx_info->rx_id = 0;
2198         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2199
2200         bnad_rx_res_free(bnad, res_info);
2201 }
2202
2203 /* Called with mutex_lock(&bnad->conf_mutex) held */
2204 int
2205 bnad_setup_rx(struct bnad *bnad, u32 rx_id)
2206 {
2207         int err;
2208         struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2209         struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
2210         struct bna_intr_info *intr_info =
2211                         &res_info[BNA_RX_RES_T_INTR].res_u.intr_info;
2212         struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
2213         static const struct bna_rx_event_cbfn rx_cbfn = {
2214                 .rcb_setup_cbfn = NULL,
2215                 .rcb_destroy_cbfn = NULL,
2216                 .ccb_setup_cbfn = bnad_cb_ccb_setup,
2217                 .ccb_destroy_cbfn = bnad_cb_ccb_destroy,
2218                 .rx_stall_cbfn = bnad_cb_rx_stall,
2219                 .rx_cleanup_cbfn = bnad_cb_rx_cleanup,
2220                 .rx_post_cbfn = bnad_cb_rx_post,
2221         };
2222         struct bna_rx *rx;
2223         unsigned long flags;
2224
2225         rx_info->rx_id = rx_id;
2226
2227         /* Initialize the Rx object configuration */
2228         bnad_init_rx_config(bnad, rx_config);
2229
2230         /* Get BNA's resource requirement for one Rx object */
2231         spin_lock_irqsave(&bnad->bna_lock, flags);
2232         bna_rx_res_req(rx_config, res_info);
2233         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2234
2235         /* Fill Unmap Q memory requirements */
2236         BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPDQ],
2237                                  rx_config->num_paths,
2238                         (rx_config->q0_depth *
2239                          sizeof(struct bnad_rx_unmap)) +
2240                          sizeof(struct bnad_rx_unmap_q));
2241
2242         if (rx_config->rxp_type != BNA_RXP_SINGLE) {
2243                 BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPHQ],
2244                                          rx_config->num_paths,
2245                                 (rx_config->q1_depth *
2246                                  sizeof(struct bnad_rx_unmap) +
2247                                  sizeof(struct bnad_rx_unmap_q)));
2248         }
2249         /* Allocate resource */
2250         err = bnad_rx_res_alloc(bnad, res_info, rx_id);
2251         if (err)
2252                 return err;
2253
2254         bnad_rx_ctrl_init(bnad, rx_id);
2255
2256         /* Ask BNA to create one Rx object, supplying required resources */
2257         spin_lock_irqsave(&bnad->bna_lock, flags);
2258         rx = bna_rx_create(&bnad->bna, bnad, rx_config, &rx_cbfn, res_info,
2259                         rx_info);
2260         if (!rx) {
2261                 err = -ENOMEM;
2262                 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2263                 goto err_return;
2264         }
2265         rx_info->rx = rx;
2266         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2267
2268         INIT_WORK(&rx_info->rx_cleanup_work,
2269                         (work_func_t)(bnad_rx_cleanup));
2270
2271         /*
2272          * Init NAPI, so that state is set to NAPI_STATE_SCHED,
2273          * so that IRQ handler cannot schedule NAPI at this point.
2274          */
2275         bnad_napi_add(bnad, rx_id);
2276
2277         /* Register ISR for the Rx object */
2278         if (intr_info->intr_type == BNA_INTR_T_MSIX) {
2279                 err = bnad_rx_msix_register(bnad, rx_info, rx_id,
2280                                                 rx_config->num_paths);
2281                 if (err)
2282                         goto err_return;
2283         }
2284
2285         spin_lock_irqsave(&bnad->bna_lock, flags);
2286         if (0 == rx_id) {
2287                 /* Set up Dynamic Interrupt Moderation Vector */
2288                 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED)
2289                         bna_rx_dim_reconfig(&bnad->bna, bna_napi_dim_vector);
2290
2291                 /* Enable VLAN filtering only on the default Rx */
2292                 bna_rx_vlanfilter_enable(rx);
2293
2294                 /* Start the DIM timer */
2295                 bnad_dim_timer_start(bnad);
2296         }
2297
2298         bna_rx_enable(rx);
2299         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2300
2301         return 0;
2302
2303 err_return:
2304         bnad_destroy_rx(bnad, rx_id);
2305         return err;
2306 }
2307
2308 /* Called with conf_lock & bnad->bna_lock held */
2309 void
2310 bnad_tx_coalescing_timeo_set(struct bnad *bnad)
2311 {
2312         struct bnad_tx_info *tx_info;
2313
2314         tx_info = &bnad->tx_info[0];
2315         if (!tx_info->tx)
2316                 return;
2317
2318         bna_tx_coalescing_timeo_set(tx_info->tx, bnad->tx_coalescing_timeo);
2319 }
2320
2321 /* Called with conf_lock & bnad->bna_lock held */
2322 void
2323 bnad_rx_coalescing_timeo_set(struct bnad *bnad)
2324 {
2325         struct bnad_rx_info *rx_info;
2326         int     i;
2327
2328         for (i = 0; i < bnad->num_rx; i++) {
2329                 rx_info = &bnad->rx_info[i];
2330                 if (!rx_info->rx)
2331                         continue;
2332                 bna_rx_coalescing_timeo_set(rx_info->rx,
2333                                 bnad->rx_coalescing_timeo);
2334         }
2335 }
2336
2337 /*
2338  * Called with bnad->bna_lock held
2339  */
2340 int
2341 bnad_mac_addr_set_locked(struct bnad *bnad, u8 *mac_addr)
2342 {
2343         int ret;
2344
2345         if (!is_valid_ether_addr(mac_addr))
2346                 return -EADDRNOTAVAIL;
2347
2348         /* If datapath is down, pretend everything went through */
2349         if (!bnad->rx_info[0].rx)
2350                 return 0;
2351
2352         ret = bna_rx_ucast_set(bnad->rx_info[0].rx, mac_addr, NULL);
2353         if (ret != BNA_CB_SUCCESS)
2354                 return -EADDRNOTAVAIL;
2355
2356         return 0;
2357 }
2358
2359 /* Should be called with conf_lock held */
2360 int
2361 bnad_enable_default_bcast(struct bnad *bnad)
2362 {
2363         struct bnad_rx_info *rx_info = &bnad->rx_info[0];
2364         int ret;
2365         unsigned long flags;
2366
2367         init_completion(&bnad->bnad_completions.mcast_comp);
2368
2369         spin_lock_irqsave(&bnad->bna_lock, flags);
2370         ret = bna_rx_mcast_add(rx_info->rx, (u8 *)bnad_bcast_addr,
2371                                 bnad_cb_rx_mcast_add);
2372         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2373
2374         if (ret == BNA_CB_SUCCESS)
2375                 wait_for_completion(&bnad->bnad_completions.mcast_comp);
2376         else
2377                 return -ENODEV;
2378
2379         if (bnad->bnad_completions.mcast_comp_status != BNA_CB_SUCCESS)
2380                 return -ENODEV;
2381
2382         return 0;
2383 }
2384
2385 /* Called with mutex_lock(&bnad->conf_mutex) held */
2386 void
2387 bnad_restore_vlans(struct bnad *bnad, u32 rx_id)
2388 {
2389         u16 vid;
2390         unsigned long flags;
2391
2392         for_each_set_bit(vid, bnad->active_vlans, VLAN_N_VID) {
2393                 spin_lock_irqsave(&bnad->bna_lock, flags);
2394                 bna_rx_vlan_add(bnad->rx_info[rx_id].rx, vid);
2395                 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2396         }
2397 }
2398
2399 /* Statistics utilities */
2400 void
2401 bnad_netdev_qstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2402 {
2403         int i, j;
2404
2405         for (i = 0; i < bnad->num_rx; i++) {
2406                 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
2407                         if (bnad->rx_info[i].rx_ctrl[j].ccb) {
2408                                 stats->rx_packets += bnad->rx_info[i].
2409                                 rx_ctrl[j].ccb->rcb[0]->rxq->rx_packets;
2410                                 stats->rx_bytes += bnad->rx_info[i].
2411                                         rx_ctrl[j].ccb->rcb[0]->rxq->rx_bytes;
2412                                 if (bnad->rx_info[i].rx_ctrl[j].ccb->rcb[1] &&
2413                                         bnad->rx_info[i].rx_ctrl[j].ccb->
2414                                         rcb[1]->rxq) {
2415                                         stats->rx_packets +=
2416                                                 bnad->rx_info[i].rx_ctrl[j].
2417                                                 ccb->rcb[1]->rxq->rx_packets;
2418                                         stats->rx_bytes +=
2419                                                 bnad->rx_info[i].rx_ctrl[j].
2420                                                 ccb->rcb[1]->rxq->rx_bytes;
2421                                 }
2422                         }
2423                 }
2424         }
2425         for (i = 0; i < bnad->num_tx; i++) {
2426                 for (j = 0; j < bnad->num_txq_per_tx; j++) {
2427                         if (bnad->tx_info[i].tcb[j]) {
2428                                 stats->tx_packets +=
2429                                 bnad->tx_info[i].tcb[j]->txq->tx_packets;
2430                                 stats->tx_bytes +=
2431                                         bnad->tx_info[i].tcb[j]->txq->tx_bytes;
2432                         }
2433                 }
2434         }
2435 }
2436
2437 /*
2438  * Must be called with the bna_lock held.
2439  */
2440 void
2441 bnad_netdev_hwstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2442 {
2443         struct bfi_enet_stats_mac *mac_stats;
2444         u32 bmap;
2445         int i;
2446
2447         mac_stats = &bnad->stats.bna_stats->hw_stats.mac_stats;
2448         stats->rx_errors =
2449                 mac_stats->rx_fcs_error + mac_stats->rx_alignment_error +
2450                 mac_stats->rx_frame_length_error + mac_stats->rx_code_error +
2451                 mac_stats->rx_undersize;
2452         stats->tx_errors = mac_stats->tx_fcs_error +
2453                                         mac_stats->tx_undersize;
2454         stats->rx_dropped = mac_stats->rx_drop;
2455         stats->tx_dropped = mac_stats->tx_drop;
2456         stats->multicast = mac_stats->rx_multicast;
2457         stats->collisions = mac_stats->tx_total_collision;
2458
2459         stats->rx_length_errors = mac_stats->rx_frame_length_error;
2460
2461         /* receive ring buffer overflow  ?? */
2462
2463         stats->rx_crc_errors = mac_stats->rx_fcs_error;
2464         stats->rx_frame_errors = mac_stats->rx_alignment_error;
2465         /* recv'r fifo overrun */
2466         bmap = bna_rx_rid_mask(&bnad->bna);
2467         for (i = 0; bmap; i++) {
2468                 if (bmap & 1) {
2469                         stats->rx_fifo_errors +=
2470                                 bnad->stats.bna_stats->
2471                                         hw_stats.rxf_stats[i].frame_drops;
2472                         break;
2473                 }
2474                 bmap >>= 1;
2475         }
2476 }
2477
2478 static void
2479 bnad_mbox_irq_sync(struct bnad *bnad)
2480 {
2481         u32 irq;
2482         unsigned long flags;
2483
2484         spin_lock_irqsave(&bnad->bna_lock, flags);
2485         if (bnad->cfg_flags & BNAD_CF_MSIX)
2486                 irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
2487         else
2488                 irq = bnad->pcidev->irq;
2489         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2490
2491         synchronize_irq(irq);
2492 }
2493
2494 /* Utility used by bnad_start_xmit, for doing TSO */
2495 static int
2496 bnad_tso_prepare(struct bnad *bnad, struct sk_buff *skb)
2497 {
2498         int err;
2499
2500         err = skb_cow_head(skb, 0);
2501         if (err < 0) {
2502                 BNAD_UPDATE_CTR(bnad, tso_err);
2503                 return err;
2504         }
2505
2506         /*
2507          * For TSO, the TCP checksum field is seeded with pseudo-header sum
2508          * excluding the length field.
2509          */
2510         if (vlan_get_protocol(skb) == htons(ETH_P_IP)) {
2511                 struct iphdr *iph = ip_hdr(skb);
2512
2513                 /* Do we really need these? */
2514                 iph->tot_len = 0;
2515                 iph->check = 0;
2516
2517                 tcp_hdr(skb)->check =
2518                         ~csum_tcpudp_magic(iph->saddr, iph->daddr, 0,
2519                                            IPPROTO_TCP, 0);
2520                 BNAD_UPDATE_CTR(bnad, tso4);
2521         } else {
2522                 struct ipv6hdr *ipv6h = ipv6_hdr(skb);
2523
2524                 ipv6h->payload_len = 0;
2525                 tcp_hdr(skb)->check =
2526                         ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, 0,
2527                                          IPPROTO_TCP, 0);
2528                 BNAD_UPDATE_CTR(bnad, tso6);
2529         }
2530
2531         return 0;
2532 }
2533
2534 /*
2535  * Initialize Q numbers depending on Rx Paths
2536  * Called with bnad->bna_lock held, because of cfg_flags
2537  * access.
2538  */
2539 static void
2540 bnad_q_num_init(struct bnad *bnad)
2541 {
2542         int rxps;
2543
2544         rxps = min((uint)num_online_cpus(),
2545                         (uint)(BNAD_MAX_RX * BNAD_MAX_RXP_PER_RX));
2546
2547         if (!(bnad->cfg_flags & BNAD_CF_MSIX))
2548                 rxps = 1;       /* INTx */
2549
2550         bnad->num_rx = 1;
2551         bnad->num_tx = 1;
2552         bnad->num_rxp_per_rx = rxps;
2553         bnad->num_txq_per_tx = BNAD_TXQ_NUM;
2554 }
2555
2556 /*
2557  * Adjusts the Q numbers, given a number of msix vectors
2558  * Give preference to RSS as opposed to Tx priority Queues,
2559  * in such a case, just use 1 Tx Q
2560  * Called with bnad->bna_lock held b'cos of cfg_flags access
2561  */
2562 static void
2563 bnad_q_num_adjust(struct bnad *bnad, int msix_vectors, int temp)
2564 {
2565         bnad->num_txq_per_tx = 1;
2566         if ((msix_vectors >= (bnad->num_tx * bnad->num_txq_per_tx)  +
2567              bnad_rxqs_per_cq + BNAD_MAILBOX_MSIX_VECTORS) &&
2568             (bnad->cfg_flags & BNAD_CF_MSIX)) {
2569                 bnad->num_rxp_per_rx = msix_vectors -
2570                         (bnad->num_tx * bnad->num_txq_per_tx) -
2571                         BNAD_MAILBOX_MSIX_VECTORS;
2572         } else
2573                 bnad->num_rxp_per_rx = 1;
2574 }
2575
2576 /* Enable / disable ioceth */
2577 static int
2578 bnad_ioceth_disable(struct bnad *bnad)
2579 {
2580         unsigned long flags;
2581         int err = 0;
2582
2583         spin_lock_irqsave(&bnad->bna_lock, flags);
2584         init_completion(&bnad->bnad_completions.ioc_comp);
2585         bna_ioceth_disable(&bnad->bna.ioceth, BNA_HARD_CLEANUP);
2586         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2587
2588         wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2589                 msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2590
2591         err = bnad->bnad_completions.ioc_comp_status;
2592         return err;
2593 }
2594
2595 static int
2596 bnad_ioceth_enable(struct bnad *bnad)
2597 {
2598         int err = 0;
2599         unsigned long flags;
2600
2601         spin_lock_irqsave(&bnad->bna_lock, flags);
2602         init_completion(&bnad->bnad_completions.ioc_comp);
2603         bnad->bnad_completions.ioc_comp_status = BNA_CB_WAITING;
2604         bna_ioceth_enable(&bnad->bna.ioceth);
2605         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2606
2607         wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2608                 msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2609
2610         err = bnad->bnad_completions.ioc_comp_status;
2611
2612         return err;
2613 }
2614
2615 /* Free BNA resources */
2616 static void
2617 bnad_res_free(struct bnad *bnad, struct bna_res_info *res_info,
2618                 u32 res_val_max)
2619 {
2620         int i;
2621
2622         for (i = 0; i < res_val_max; i++)
2623                 bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
2624 }
2625
2626 /* Allocates memory and interrupt resources for BNA */
2627 static int
2628 bnad_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
2629                 u32 res_val_max)
2630 {
2631         int i, err;
2632
2633         for (i = 0; i < res_val_max; i++) {
2634                 err = bnad_mem_alloc(bnad, &res_info[i].res_u.mem_info);
2635                 if (err)
2636                         goto err_return;
2637         }
2638         return 0;
2639
2640 err_return:
2641         bnad_res_free(bnad, res_info, res_val_max);
2642         return err;
2643 }
2644
2645 /* Interrupt enable / disable */
2646 static void
2647 bnad_enable_msix(struct bnad *bnad)
2648 {
2649         int i, ret;
2650         unsigned long flags;
2651
2652         spin_lock_irqsave(&bnad->bna_lock, flags);
2653         if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
2654                 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2655                 return;
2656         }
2657         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2658
2659         if (bnad->msix_table)
2660                 return;
2661
2662         bnad->msix_table =
2663                 kcalloc(bnad->msix_num, sizeof(struct msix_entry), GFP_KERNEL);
2664
2665         if (!bnad->msix_table)
2666                 goto intx_mode;
2667
2668         for (i = 0; i < bnad->msix_num; i++)
2669                 bnad->msix_table[i].entry = i;
2670
2671         ret = pci_enable_msix_range(bnad->pcidev, bnad->msix_table,
2672                                     1, bnad->msix_num);
2673         if (ret < 0) {
2674                 goto intx_mode;
2675         } else if (ret < bnad->msix_num) {
2676                 pr_warn("BNA: %d MSI-X vectors allocated < %d requested\n",
2677                         ret, bnad->msix_num);
2678
2679                 spin_lock_irqsave(&bnad->bna_lock, flags);
2680                 /* ret = #of vectors that we got */
2681                 bnad_q_num_adjust(bnad, (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2,
2682                         (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2);
2683                 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2684
2685                 bnad->msix_num = BNAD_NUM_TXQ + BNAD_NUM_RXP +
2686                          BNAD_MAILBOX_MSIX_VECTORS;
2687
2688                 if (bnad->msix_num > ret) {
2689                         pci_disable_msix(bnad->pcidev);
2690                         goto intx_mode;
2691                 }
2692         }
2693
2694         pci_intx(bnad->pcidev, 0);
2695
2696         return;
2697
2698 intx_mode:
2699         pr_warn("BNA: MSI-X enable failed - operating in INTx mode\n");
2700
2701         kfree(bnad->msix_table);
2702         bnad->msix_table = NULL;
2703         bnad->msix_num = 0;
2704         spin_lock_irqsave(&bnad->bna_lock, flags);
2705         bnad->cfg_flags &= ~BNAD_CF_MSIX;
2706         bnad_q_num_init(bnad);
2707         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2708 }
2709
2710 static void
2711 bnad_disable_msix(struct bnad *bnad)
2712 {
2713         u32 cfg_flags;
2714         unsigned long flags;
2715
2716         spin_lock_irqsave(&bnad->bna_lock, flags);
2717         cfg_flags = bnad->cfg_flags;
2718         if (bnad->cfg_flags & BNAD_CF_MSIX)
2719                 bnad->cfg_flags &= ~BNAD_CF_MSIX;
2720         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2721
2722         if (cfg_flags & BNAD_CF_MSIX) {
2723                 pci_disable_msix(bnad->pcidev);
2724                 kfree(bnad->msix_table);
2725                 bnad->msix_table = NULL;
2726         }
2727 }
2728
2729 /* Netdev entry points */
2730 static int
2731 bnad_open(struct net_device *netdev)
2732 {
2733         int err;
2734         struct bnad *bnad = netdev_priv(netdev);
2735         struct bna_pause_config pause_config;
2736         unsigned long flags;
2737
2738         mutex_lock(&bnad->conf_mutex);
2739
2740         /* Tx */
2741         err = bnad_setup_tx(bnad, 0);
2742         if (err)
2743                 goto err_return;
2744
2745         /* Rx */
2746         err = bnad_setup_rx(bnad, 0);
2747         if (err)
2748                 goto cleanup_tx;
2749
2750         /* Port */
2751         pause_config.tx_pause = 0;
2752         pause_config.rx_pause = 0;
2753
2754         spin_lock_irqsave(&bnad->bna_lock, flags);
2755         bna_enet_mtu_set(&bnad->bna.enet,
2756                          BNAD_FRAME_SIZE(bnad->netdev->mtu), NULL);
2757         bna_enet_pause_config(&bnad->bna.enet, &pause_config, NULL);
2758         bna_enet_enable(&bnad->bna.enet);
2759         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2760
2761         /* Enable broadcast */
2762         bnad_enable_default_bcast(bnad);
2763
2764         /* Restore VLANs, if any */
2765         bnad_restore_vlans(bnad, 0);
2766
2767         /* Set the UCAST address */
2768         spin_lock_irqsave(&bnad->bna_lock, flags);
2769         bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2770         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2771
2772         /* Start the stats timer */
2773         bnad_stats_timer_start(bnad);
2774
2775         mutex_unlock(&bnad->conf_mutex);
2776
2777         return 0;
2778
2779 cleanup_tx:
2780         bnad_destroy_tx(bnad, 0);
2781
2782 err_return:
2783         mutex_unlock(&bnad->conf_mutex);
2784         return err;
2785 }
2786
2787 static int
2788 bnad_stop(struct net_device *netdev)
2789 {
2790         struct bnad *bnad = netdev_priv(netdev);
2791         unsigned long flags;
2792
2793         mutex_lock(&bnad->conf_mutex);
2794
2795         /* Stop the stats timer */
2796         bnad_stats_timer_stop(bnad);
2797
2798         init_completion(&bnad->bnad_completions.enet_comp);
2799
2800         spin_lock_irqsave(&bnad->bna_lock, flags);
2801         bna_enet_disable(&bnad->bna.enet, BNA_HARD_CLEANUP,
2802                         bnad_cb_enet_disabled);
2803         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2804
2805         wait_for_completion(&bnad->bnad_completions.enet_comp);
2806
2807         bnad_destroy_tx(bnad, 0);
2808         bnad_destroy_rx(bnad, 0);
2809
2810         /* Synchronize mailbox IRQ */
2811         bnad_mbox_irq_sync(bnad);
2812
2813         mutex_unlock(&bnad->conf_mutex);
2814
2815         return 0;
2816 }
2817
2818 /* TX */
2819 /* Returns 0 for success */
2820 static int
2821 bnad_txq_wi_prepare(struct bnad *bnad, struct bna_tcb *tcb,
2822                     struct sk_buff *skb, struct bna_txq_entry *txqent)
2823 {
2824         u16 flags = 0;
2825         u32 gso_size;
2826         u16 vlan_tag = 0;
2827
2828         if (skb_vlan_tag_present(skb)) {
2829                 vlan_tag = (u16)skb_vlan_tag_get(skb);
2830                 flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2831         }
2832         if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags)) {
2833                 vlan_tag = ((tcb->priority & 0x7) << VLAN_PRIO_SHIFT)
2834                                 | (vlan_tag & 0x1fff);
2835                 flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2836         }
2837         txqent->hdr.wi.vlan_tag = htons(vlan_tag);
2838
2839         if (skb_is_gso(skb)) {
2840                 gso_size = skb_shinfo(skb)->gso_size;
2841                 if (unlikely(gso_size > bnad->netdev->mtu)) {
2842                         BNAD_UPDATE_CTR(bnad, tx_skb_mss_too_long);
2843                         return -EINVAL;
2844                 }
2845                 if (unlikely((gso_size + skb_transport_offset(skb) +
2846                               tcp_hdrlen(skb)) >= skb->len)) {
2847                         txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND);
2848                         txqent->hdr.wi.lso_mss = 0;
2849                         BNAD_UPDATE_CTR(bnad, tx_skb_tso_too_short);
2850                 } else {
2851                         txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND_LSO);
2852                         txqent->hdr.wi.lso_mss = htons(gso_size);
2853                 }
2854
2855                 if (bnad_tso_prepare(bnad, skb)) {
2856                         BNAD_UPDATE_CTR(bnad, tx_skb_tso_prepare);
2857                         return -EINVAL;
2858                 }
2859
2860                 flags |= (BNA_TXQ_WI_CF_IP_CKSUM | BNA_TXQ_WI_CF_TCP_CKSUM);
2861                 txqent->hdr.wi.l4_hdr_size_n_offset =
2862                         htons(BNA_TXQ_WI_L4_HDR_N_OFFSET(
2863                         tcp_hdrlen(skb) >> 2, skb_transport_offset(skb)));
2864         } else  {
2865                 txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND);
2866                 txqent->hdr.wi.lso_mss = 0;
2867
2868                 if (unlikely(skb->len > (bnad->netdev->mtu + VLAN_ETH_HLEN))) {
2869                         BNAD_UPDATE_CTR(bnad, tx_skb_non_tso_too_long);
2870                         return -EINVAL;
2871                 }
2872
2873                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2874                         __be16 net_proto = vlan_get_protocol(skb);
2875                         u8 proto = 0;
2876
2877                         if (net_proto == htons(ETH_P_IP))
2878                                 proto = ip_hdr(skb)->protocol;
2879 #ifdef NETIF_F_IPV6_CSUM
2880                         else if (net_proto == htons(ETH_P_IPV6)) {
2881                                 /* nexthdr may not be TCP immediately. */
2882                                 proto = ipv6_hdr(skb)->nexthdr;
2883                         }
2884 #endif
2885                         if (proto == IPPROTO_TCP) {
2886                                 flags |= BNA_TXQ_WI_CF_TCP_CKSUM;
2887                                 txqent->hdr.wi.l4_hdr_size_n_offset =
2888                                         htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2889                                               (0, skb_transport_offset(skb)));
2890
2891                                 BNAD_UPDATE_CTR(bnad, tcpcsum_offload);
2892
2893                                 if (unlikely(skb_headlen(skb) <
2894                                             skb_transport_offset(skb) +
2895                                     tcp_hdrlen(skb))) {
2896                                         BNAD_UPDATE_CTR(bnad, tx_skb_tcp_hdr);
2897                                         return -EINVAL;
2898                                 }
2899                         } else if (proto == IPPROTO_UDP) {
2900                                 flags |= BNA_TXQ_WI_CF_UDP_CKSUM;
2901                                 txqent->hdr.wi.l4_hdr_size_n_offset =
2902                                         htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2903                                               (0, skb_transport_offset(skb)));
2904
2905                                 BNAD_UPDATE_CTR(bnad, udpcsum_offload);
2906                                 if (unlikely(skb_headlen(skb) <
2907                                             skb_transport_offset(skb) +
2908                                     sizeof(struct udphdr))) {
2909                                         BNAD_UPDATE_CTR(bnad, tx_skb_udp_hdr);
2910                                         return -EINVAL;
2911                                 }
2912                         } else {
2913
2914                                 BNAD_UPDATE_CTR(bnad, tx_skb_csum_err);
2915                                 return -EINVAL;
2916                         }
2917                 } else
2918                         txqent->hdr.wi.l4_hdr_size_n_offset = 0;
2919         }
2920
2921         txqent->hdr.wi.flags = htons(flags);
2922         txqent->hdr.wi.frame_length = htonl(skb->len);
2923
2924         return 0;
2925 }
2926
2927 /*
2928  * bnad_start_xmit : Netdev entry point for Transmit
2929  *                   Called under lock held by net_device
2930  */
2931 static netdev_tx_t
2932 bnad_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2933 {
2934         struct bnad *bnad = netdev_priv(netdev);
2935         u32 txq_id = 0;
2936         struct bna_tcb *tcb = NULL;
2937         struct bnad_tx_unmap *unmap_q, *unmap, *head_unmap;
2938         u32             prod, q_depth, vect_id;
2939         u32             wis, vectors, len;
2940         int             i;
2941         dma_addr_t              dma_addr;
2942         struct bna_txq_entry *txqent;
2943
2944         len = skb_headlen(skb);
2945
2946         /* Sanity checks for the skb */
2947
2948         if (unlikely(skb->len <= ETH_HLEN)) {
2949                 dev_kfree_skb_any(skb);
2950                 BNAD_UPDATE_CTR(bnad, tx_skb_too_short);
2951                 return NETDEV_TX_OK;
2952         }
2953         if (unlikely(len > BFI_TX_MAX_DATA_PER_VECTOR)) {
2954                 dev_kfree_skb_any(skb);
2955                 BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2956                 return NETDEV_TX_OK;
2957         }
2958         if (unlikely(len == 0)) {
2959                 dev_kfree_skb_any(skb);
2960                 BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2961                 return NETDEV_TX_OK;
2962         }
2963
2964         tcb = bnad->tx_info[0].tcb[txq_id];
2965
2966         /*
2967          * Takes care of the Tx that is scheduled between clearing the flag
2968          * and the netif_tx_stop_all_queues() call.
2969          */
2970         if (unlikely(!tcb || !test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) {
2971                 dev_kfree_skb_any(skb);
2972                 BNAD_UPDATE_CTR(bnad, tx_skb_stopping);
2973                 return NETDEV_TX_OK;
2974         }
2975
2976         q_depth = tcb->q_depth;
2977         prod = tcb->producer_index;
2978         unmap_q = tcb->unmap_q;
2979
2980         vectors = 1 + skb_shinfo(skb)->nr_frags;
2981         wis = BNA_TXQ_WI_NEEDED(vectors);       /* 4 vectors per work item */
2982
2983         if (unlikely(vectors > BFI_TX_MAX_VECTORS_PER_PKT)) {
2984                 dev_kfree_skb_any(skb);
2985                 BNAD_UPDATE_CTR(bnad, tx_skb_max_vectors);
2986                 return NETDEV_TX_OK;
2987         }
2988
2989         /* Check for available TxQ resources */
2990         if (unlikely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
2991                 if ((*tcb->hw_consumer_index != tcb->consumer_index) &&
2992                     !test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
2993                         u32 sent;
2994                         sent = bnad_txcmpl_process(bnad, tcb);
2995                         if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
2996                                 bna_ib_ack(tcb->i_dbell, sent);
2997                         smp_mb__before_atomic();
2998                         clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
2999                 } else {
3000                         netif_stop_queue(netdev);
3001                         BNAD_UPDATE_CTR(bnad, netif_queue_stop);
3002                 }
3003
3004                 smp_mb();
3005                 /*
3006                  * Check again to deal with race condition between
3007                  * netif_stop_queue here, and netif_wake_queue in
3008                  * interrupt handler which is not inside netif tx lock.
3009                  */
3010                 if (likely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
3011                         BNAD_UPDATE_CTR(bnad, netif_queue_stop);
3012                         return NETDEV_TX_BUSY;
3013                 } else {
3014                         netif_wake_queue(netdev);
3015                         BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
3016                 }
3017         }
3018
3019         txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
3020         head_unmap = &unmap_q[prod];
3021
3022         /* Program the opcode, flags, frame_len, num_vectors in WI */
3023         if (bnad_txq_wi_prepare(bnad, tcb, skb, txqent)) {
3024                 dev_kfree_skb_any(skb);
3025                 return NETDEV_TX_OK;
3026         }
3027         txqent->hdr.wi.reserved = 0;
3028         txqent->hdr.wi.num_vectors = vectors;
3029
3030         head_unmap->skb = skb;
3031         head_unmap->nvecs = 0;
3032
3033         /* Program the vectors */
3034         unmap = head_unmap;
3035         dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
3036                                   len, DMA_TO_DEVICE);
3037         BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[0].host_addr);
3038         txqent->vector[0].length = htons(len);
3039         dma_unmap_addr_set(&unmap->vectors[0], dma_addr, dma_addr);
3040         head_unmap->nvecs++;
3041
3042         for (i = 0, vect_id = 0; i < vectors - 1; i++) {
3043                 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i];
3044                 u32             size = skb_frag_size(frag);
3045
3046                 if (unlikely(size == 0)) {
3047                         /* Undo the changes starting at tcb->producer_index */
3048                         bnad_tx_buff_unmap(bnad, unmap_q, q_depth,
3049                                 tcb->producer_index);
3050                         dev_kfree_skb_any(skb);
3051                         BNAD_UPDATE_CTR(bnad, tx_skb_frag_zero);
3052                         return NETDEV_TX_OK;
3053                 }
3054
3055                 len += size;
3056
3057                 vect_id++;
3058                 if (vect_id == BFI_TX_MAX_VECTORS_PER_WI) {
3059                         vect_id = 0;
3060                         BNA_QE_INDX_INC(prod, q_depth);
3061                         txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
3062                         txqent->hdr.wi_ext.opcode = htons(BNA_TXQ_WI_EXTENSION);
3063                         unmap = &unmap_q[prod];
3064                 }
3065
3066                 dma_addr = skb_frag_dma_map(&bnad->pcidev->dev, frag,
3067                                             0, size, DMA_TO_DEVICE);
3068                 dma_unmap_len_set(&unmap->vectors[vect_id], dma_len, size);
3069                 BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[vect_id].host_addr);
3070                 txqent->vector[vect_id].length = htons(size);
3071                 dma_unmap_addr_set(&unmap->vectors[vect_id], dma_addr,
3072                                    dma_addr);
3073                 head_unmap->nvecs++;
3074         }
3075
3076         if (unlikely(len != skb->len)) {
3077                 /* Undo the changes starting at tcb->producer_index */
3078                 bnad_tx_buff_unmap(bnad, unmap_q, q_depth, tcb->producer_index);
3079                 dev_kfree_skb_any(skb);
3080                 BNAD_UPDATE_CTR(bnad, tx_skb_len_mismatch);
3081                 return NETDEV_TX_OK;
3082         }
3083
3084         BNA_QE_INDX_INC(prod, q_depth);
3085         tcb->producer_index = prod;
3086
3087         smp_mb();
3088
3089         if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
3090                 return NETDEV_TX_OK;
3091
3092         skb_tx_timestamp(skb);
3093
3094         bna_txq_prod_indx_doorbell(tcb);
3095         smp_mb();
3096
3097         return NETDEV_TX_OK;
3098 }
3099
3100 /*
3101  * Used spin_lock to synchronize reading of stats structures, which
3102  * is written by BNA under the same lock.
3103  */
3104 static struct rtnl_link_stats64 *
3105 bnad_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
3106 {
3107         struct bnad *bnad = netdev_priv(netdev);
3108         unsigned long flags;
3109
3110         spin_lock_irqsave(&bnad->bna_lock, flags);
3111
3112         bnad_netdev_qstats_fill(bnad, stats);
3113         bnad_netdev_hwstats_fill(bnad, stats);
3114
3115         spin_unlock_irqrestore(&bnad->bna_lock, flags);
3116
3117         return stats;
3118 }
3119
3120 static void
3121 bnad_set_rx_ucast_fltr(struct bnad *bnad)
3122 {
3123         struct net_device *netdev = bnad->netdev;
3124         int uc_count = netdev_uc_count(netdev);
3125         enum bna_cb_status ret;
3126         u8 *mac_list;
3127         struct netdev_hw_addr *ha;
3128         int entry;
3129
3130         if (netdev_uc_empty(bnad->netdev)) {
3131                 bna_rx_ucast_listset(bnad->rx_info[0].rx, 0, NULL, NULL);
3132                 return;
3133         }
3134
3135         if (uc_count > bna_attr(&bnad->bna)->num_ucmac)
3136                 goto mode_default;
3137
3138         mac_list = kzalloc(uc_count * ETH_ALEN, GFP_ATOMIC);
3139         if (mac_list == NULL)
3140                 goto mode_default;
3141
3142         entry = 0;
3143         netdev_for_each_uc_addr(ha, netdev) {
3144                 memcpy(&mac_list[entry * ETH_ALEN],
3145                        &ha->addr[0], ETH_ALEN);
3146                 entry++;
3147         }
3148
3149         ret = bna_rx_ucast_listset(bnad->rx_info[0].rx, entry,
3150                         mac_list, NULL);
3151         kfree(mac_list);
3152
3153         if (ret != BNA_CB_SUCCESS)
3154                 goto mode_default;
3155
3156         return;
3157
3158         /* ucast packets not in UCAM are routed to default function */
3159 mode_default:
3160         bnad->cfg_flags |= BNAD_CF_DEFAULT;
3161         bna_rx_ucast_listset(bnad->rx_info[0].rx, 0, NULL, NULL);
3162 }
3163
3164 static void
3165 bnad_set_rx_mcast_fltr(struct bnad *bnad)
3166 {
3167         struct net_device *netdev = bnad->netdev;
3168         int mc_count = netdev_mc_count(netdev);
3169         enum bna_cb_status ret;
3170         u8 *mac_list;
3171
3172         if (netdev->flags & IFF_ALLMULTI)
3173                 goto mode_allmulti;
3174
3175         if (netdev_mc_empty(netdev))
3176                 return;
3177
3178         if (mc_count > bna_attr(&bnad->bna)->num_mcmac)
3179                 goto mode_allmulti;
3180
3181         mac_list = kzalloc((mc_count + 1) * ETH_ALEN, GFP_ATOMIC);
3182
3183         if (mac_list == NULL)
3184                 goto mode_allmulti;
3185
3186         memcpy(&mac_list[0], &bnad_bcast_addr[0], ETH_ALEN);
3187
3188         /* copy rest of the MCAST addresses */
3189         bnad_netdev_mc_list_get(netdev, mac_list);
3190         ret = bna_rx_mcast_listset(bnad->rx_info[0].rx, mc_count + 1,
3191                         mac_list, NULL);
3192         kfree(mac_list);
3193
3194         if (ret != BNA_CB_SUCCESS)
3195                 goto mode_allmulti;
3196
3197         return;
3198
3199 mode_allmulti:
3200         bnad->cfg_flags |= BNAD_CF_ALLMULTI;
3201         bna_rx_mcast_delall(bnad->rx_info[0].rx, NULL);
3202 }
3203
3204 void
3205 bnad_set_rx_mode(struct net_device *netdev)
3206 {
3207         struct bnad *bnad = netdev_priv(netdev);
3208         enum bna_rxmode new_mode, mode_mask;
3209         unsigned long flags;
3210
3211         spin_lock_irqsave(&bnad->bna_lock, flags);
3212
3213         if (bnad->rx_info[0].rx == NULL) {
3214                 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3215                 return;
3216         }
3217
3218         /* clear bnad flags to update it with new settings */
3219         bnad->cfg_flags &= ~(BNAD_CF_PROMISC | BNAD_CF_DEFAULT |
3220                         BNAD_CF_ALLMULTI);
3221
3222         new_mode = 0;
3223         if (netdev->flags & IFF_PROMISC) {
3224                 new_mode |= BNAD_RXMODE_PROMISC_DEFAULT;
3225                 bnad->cfg_flags |= BNAD_CF_PROMISC;
3226         } else {
3227                 bnad_set_rx_mcast_fltr(bnad);
3228
3229                 if (bnad->cfg_flags & BNAD_CF_ALLMULTI)
3230                         new_mode |= BNA_RXMODE_ALLMULTI;
3231
3232                 bnad_set_rx_ucast_fltr(bnad);
3233
3234                 if (bnad->cfg_flags & BNAD_CF_DEFAULT)
3235                         new_mode |= BNA_RXMODE_DEFAULT;
3236         }
3237
3238         mode_mask = BNA_RXMODE_PROMISC | BNA_RXMODE_DEFAULT |
3239                         BNA_RXMODE_ALLMULTI;
3240         bna_rx_mode_set(bnad->rx_info[0].rx, new_mode, mode_mask, NULL);
3241
3242         spin_unlock_irqrestore(&bnad->bna_lock, flags);
3243 }
3244
3245 /*
3246  * bna_lock is used to sync writes to netdev->addr
3247  * conf_lock cannot be used since this call may be made
3248  * in a non-blocking context.
3249  */
3250 static int
3251 bnad_set_mac_address(struct net_device *netdev, void *mac_addr)
3252 {
3253         int err;
3254         struct bnad *bnad = netdev_priv(netdev);
3255         struct sockaddr *sa = (struct sockaddr *)mac_addr;
3256         unsigned long flags;
3257
3258         spin_lock_irqsave(&bnad->bna_lock, flags);
3259
3260         err = bnad_mac_addr_set_locked(bnad, sa->sa_data);
3261
3262         if (!err)
3263                 memcpy(netdev->dev_addr, sa->sa_data, netdev->addr_len);
3264
3265         spin_unlock_irqrestore(&bnad->bna_lock, flags);
3266
3267         return err;
3268 }
3269
3270 static int
3271 bnad_mtu_set(struct bnad *bnad, int frame_size)
3272 {
3273         unsigned long flags;
3274
3275         init_completion(&bnad->bnad_completions.mtu_comp);
3276
3277         spin_lock_irqsave(&bnad->bna_lock, flags);
3278         bna_enet_mtu_set(&bnad->bna.enet, frame_size, bnad_cb_enet_mtu_set);
3279         spin_unlock_irqrestore(&bnad->bna_lock, flags);
3280
3281         wait_for_completion(&bnad->bnad_completions.mtu_comp);
3282
3283         return bnad->bnad_completions.mtu_comp_status;
3284 }
3285
3286 static int
3287 bnad_change_mtu(struct net_device *netdev, int new_mtu)
3288 {
3289         int err, mtu;
3290         struct bnad *bnad = netdev_priv(netdev);
3291         u32 rx_count = 0, frame, new_frame;
3292
3293         if (new_mtu + ETH_HLEN < ETH_ZLEN || new_mtu > BNAD_JUMBO_MTU)
3294                 return -EINVAL;
3295
3296         mutex_lock(&bnad->conf_mutex);
3297
3298         mtu = netdev->mtu;
3299         netdev->mtu = new_mtu;
3300
3301         frame = BNAD_FRAME_SIZE(mtu);
3302         new_frame = BNAD_FRAME_SIZE(new_mtu);
3303
3304         /* check if multi-buffer needs to be enabled */
3305         if (BNAD_PCI_DEV_IS_CAT2(bnad) &&
3306             netif_running(bnad->netdev)) {
3307                 /* only when transition is over 4K */
3308                 if ((frame <= 4096 && new_frame > 4096) ||
3309                     (frame > 4096 && new_frame <= 4096))
3310                         rx_count = bnad_reinit_rx(bnad);
3311         }
3312
3313         /* rx_count > 0 - new rx created
3314          *      - Linux set err = 0 and return
3315          */
3316         err = bnad_mtu_set(bnad, new_frame);
3317         if (err)
3318                 err = -EBUSY;
3319
3320         mutex_unlock(&bnad->conf_mutex);
3321         return err;
3322 }
3323
3324 static int
3325 bnad_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3326 {
3327         struct bnad *bnad = netdev_priv(netdev);
3328         unsigned long flags;
3329
3330         if (!bnad->rx_info[0].rx)
3331                 return 0;
3332
3333         mutex_lock(&bnad->conf_mutex);
3334
3335         spin_lock_irqsave(&bnad->bna_lock, flags);
3336         bna_rx_vlan_add(bnad->rx_info[0].rx, vid);
3337         set_bit(vid, bnad->active_vlans);
3338         spin_unlock_irqrestore(&bnad->bna_lock, flags);
3339
3340         mutex_unlock(&bnad->conf_mutex);
3341
3342         return 0;
3343 }
3344
3345 static int
3346 bnad_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3347 {
3348         struct bnad *bnad = netdev_priv(netdev);
3349         unsigned long flags;
3350
3351         if (!bnad->rx_info[0].rx)
3352                 return 0;
3353
3354         mutex_lock(&bnad->conf_mutex);
3355
3356         spin_lock_irqsave(&bnad->bna_lock, flags);
3357         clear_bit(vid, bnad->active_vlans);
3358         bna_rx_vlan_del(bnad->rx_info[0].rx, vid);
3359         spin_unlock_irqrestore(&bnad->bna_lock, flags);
3360
3361         mutex_unlock(&bnad->conf_mutex);
3362
3363         return 0;
3364 }
3365
3366 static int bnad_set_features(struct net_device *dev, netdev_features_t features)
3367 {
3368         struct bnad *bnad = netdev_priv(dev);
3369         netdev_features_t changed = features ^ dev->features;
3370
3371         if ((changed & NETIF_F_HW_VLAN_CTAG_RX) && netif_running(dev)) {
3372                 unsigned long flags;
3373
3374                 spin_lock_irqsave(&bnad->bna_lock, flags);
3375
3376                 if (features & NETIF_F_HW_VLAN_CTAG_RX)
3377                         bna_rx_vlan_strip_enable(bnad->rx_info[0].rx);
3378                 else
3379                         bna_rx_vlan_strip_disable(bnad->rx_info[0].rx);
3380
3381                 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3382         }
3383
3384         return 0;
3385 }
3386
3387 #ifdef CONFIG_NET_POLL_CONTROLLER
3388 static void
3389 bnad_netpoll(struct net_device *netdev)
3390 {
3391         struct bnad *bnad = netdev_priv(netdev);
3392         struct bnad_rx_info *rx_info;
3393         struct bnad_rx_ctrl *rx_ctrl;
3394         u32 curr_mask;
3395         int i, j;
3396
3397         if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
3398                 bna_intx_disable(&bnad->bna, curr_mask);
3399                 bnad_isr(bnad->pcidev->irq, netdev);
3400                 bna_intx_enable(&bnad->bna, curr_mask);
3401         } else {
3402                 /*
3403                  * Tx processing may happen in sending context, so no need
3404                  * to explicitly process completions here
3405                  */
3406
3407                 /* Rx processing */
3408                 for (i = 0; i < bnad->num_rx; i++) {
3409                         rx_info = &bnad->rx_info[i];
3410                         if (!rx_info->rx)
3411                                 continue;
3412                         for (j = 0; j < bnad->num_rxp_per_rx; j++) {
3413                                 rx_ctrl = &rx_info->rx_ctrl[j];
3414                                 if (rx_ctrl->ccb)
3415                                         bnad_netif_rx_schedule_poll(bnad,
3416                                                             rx_ctrl->ccb);
3417                         }
3418                 }
3419         }
3420 }
3421 #endif
3422
3423 static const struct net_device_ops bnad_netdev_ops = {
3424         .ndo_open               = bnad_open,
3425         .ndo_stop               = bnad_stop,
3426         .ndo_start_xmit         = bnad_start_xmit,
3427         .ndo_get_stats64                = bnad_get_stats64,
3428         .ndo_set_rx_mode        = bnad_set_rx_mode,
3429         .ndo_validate_addr      = eth_validate_addr,
3430         .ndo_set_mac_address    = bnad_set_mac_address,
3431         .ndo_change_mtu         = bnad_change_mtu,
3432         .ndo_vlan_rx_add_vid    = bnad_vlan_rx_add_vid,
3433         .ndo_vlan_rx_kill_vid   = bnad_vlan_rx_kill_vid,
3434         .ndo_set_features       = bnad_set_features,
3435 #ifdef CONFIG_NET_POLL_CONTROLLER
3436         .ndo_poll_controller    = bnad_netpoll
3437 #endif
3438 };
3439
3440 static void
3441 bnad_netdev_init(struct bnad *bnad, bool using_dac)
3442 {
3443         struct net_device *netdev = bnad->netdev;
3444
3445         netdev->hw_features = NETIF_F_SG | NETIF_F_RXCSUM |
3446                 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3447                 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_VLAN_CTAG_TX |
3448                 NETIF_F_HW_VLAN_CTAG_RX;
3449
3450         netdev->vlan_features = NETIF_F_SG | NETIF_F_HIGHDMA |
3451                 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3452                 NETIF_F_TSO | NETIF_F_TSO6;
3453
3454         netdev->features |= netdev->hw_features | NETIF_F_HW_VLAN_CTAG_FILTER;
3455
3456         if (using_dac)
3457                 netdev->features |= NETIF_F_HIGHDMA;
3458
3459         netdev->mem_start = bnad->mmio_start;
3460         netdev->mem_end = bnad->mmio_start + bnad->mmio_len - 1;
3461
3462         netdev->netdev_ops = &bnad_netdev_ops;
3463         bnad_set_ethtool_ops(netdev);
3464 }
3465
3466 /*
3467  * 1. Initialize the bnad structure
3468  * 2. Setup netdev pointer in pci_dev
3469  * 3. Initialize no. of TxQ & CQs & MSIX vectors
3470  * 4. Initialize work queue.
3471  */
3472 static int
3473 bnad_init(struct bnad *bnad,
3474           struct pci_dev *pdev, struct net_device *netdev)
3475 {
3476         unsigned long flags;
3477
3478         SET_NETDEV_DEV(netdev, &pdev->dev);
3479         pci_set_drvdata(pdev, netdev);
3480
3481         bnad->netdev = netdev;
3482         bnad->pcidev = pdev;
3483         bnad->mmio_start = pci_resource_start(pdev, 0);
3484         bnad->mmio_len = pci_resource_len(pdev, 0);
3485         bnad->bar0 = ioremap_nocache(bnad->mmio_start, bnad->mmio_len);
3486         if (!bnad->bar0) {
3487                 dev_err(&pdev->dev, "ioremap for bar0 failed\n");
3488                 return -ENOMEM;
3489         }
3490         pr_info("bar0 mapped to %p, len %llu\n", bnad->bar0,
3491                (unsigned long long) bnad->mmio_len);
3492
3493         spin_lock_irqsave(&bnad->bna_lock, flags);
3494         if (!bnad_msix_disable)
3495                 bnad->cfg_flags = BNAD_CF_MSIX;
3496
3497         bnad->cfg_flags |= BNAD_CF_DIM_ENABLED;
3498
3499         bnad_q_num_init(bnad);
3500         spin_unlock_irqrestore(&bnad->bna_lock, flags);
3501
3502         bnad->msix_num = (bnad->num_tx * bnad->num_txq_per_tx) +
3503                 (bnad->num_rx * bnad->num_rxp_per_rx) +
3504                          BNAD_MAILBOX_MSIX_VECTORS;
3505
3506         bnad->txq_depth = BNAD_TXQ_DEPTH;
3507         bnad->rxq_depth = BNAD_RXQ_DEPTH;
3508
3509         bnad->tx_coalescing_timeo = BFI_TX_COALESCING_TIMEO;
3510         bnad->rx_coalescing_timeo = BFI_RX_COALESCING_TIMEO;
3511
3512         sprintf(bnad->wq_name, "%s_wq_%d", BNAD_NAME, bnad->id);
3513         bnad->work_q = create_singlethread_workqueue(bnad->wq_name);
3514         if (!bnad->work_q) {
3515                 iounmap(bnad->bar0);
3516                 return -ENOMEM;
3517         }
3518
3519         return 0;
3520 }
3521
3522 /*
3523  * Must be called after bnad_pci_uninit()
3524  * so that iounmap() and pci_set_drvdata(NULL)
3525  * happens only after PCI uninitialization.
3526  */
3527 static void
3528 bnad_uninit(struct bnad *bnad)
3529 {
3530         if (bnad->work_q) {
3531                 flush_workqueue(bnad->work_q);
3532                 destroy_workqueue(bnad->work_q);
3533                 bnad->work_q = NULL;
3534         }
3535
3536         if (bnad->bar0)
3537                 iounmap(bnad->bar0);
3538 }
3539
3540 /*
3541  * Initialize locks
3542         a) Per ioceth mutes used for serializing configuration
3543            changes from OS interface
3544         b) spin lock used to protect bna state machine
3545  */
3546 static void
3547 bnad_lock_init(struct bnad *bnad)
3548 {
3549         spin_lock_init(&bnad->bna_lock);
3550         mutex_init(&bnad->conf_mutex);
3551         mutex_init(&bnad_list_mutex);
3552 }
3553
3554 static void
3555 bnad_lock_uninit(struct bnad *bnad)
3556 {
3557         mutex_destroy(&bnad->conf_mutex);
3558         mutex_destroy(&bnad_list_mutex);
3559 }
3560
3561 /* PCI Initialization */
3562 static int
3563 bnad_pci_init(struct bnad *bnad,
3564               struct pci_dev *pdev, bool *using_dac)
3565 {
3566         int err;
3567
3568         err = pci_enable_device(pdev);
3569         if (err)
3570                 return err;
3571         err = pci_request_regions(pdev, BNAD_NAME);
3572         if (err)
3573                 goto disable_device;
3574         if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
3575                 *using_dac = true;
3576         } else {
3577                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3578                 if (err)
3579                         goto release_regions;
3580                 *using_dac = false;
3581         }
3582         pci_set_master(pdev);
3583         return 0;
3584
3585 release_regions:
3586         pci_release_regions(pdev);
3587 disable_device:
3588         pci_disable_device(pdev);
3589
3590         return err;
3591 }
3592
3593 static void
3594 bnad_pci_uninit(struct pci_dev *pdev)
3595 {
3596         pci_release_regions(pdev);
3597         pci_disable_device(pdev);
3598 }
3599
3600 static int
3601 bnad_pci_probe(struct pci_dev *pdev,
3602                 const struct pci_device_id *pcidev_id)
3603 {
3604         bool    using_dac;
3605         int     err;
3606         struct bnad *bnad;
3607         struct bna *bna;
3608         struct net_device *netdev;
3609         struct bfa_pcidev pcidev_info;
3610         unsigned long flags;
3611
3612         pr_info("bnad_pci_probe : (0x%p, 0x%p) PCI Func : (%d)\n",
3613                pdev, pcidev_id, PCI_FUNC(pdev->devfn));
3614
3615         mutex_lock(&bnad_fwimg_mutex);
3616         if (!cna_get_firmware_buf(pdev)) {
3617                 mutex_unlock(&bnad_fwimg_mutex);
3618                 pr_warn("Failed to load Firmware Image!\n");
3619                 return -ENODEV;
3620         }
3621         mutex_unlock(&bnad_fwimg_mutex);
3622
3623         /*
3624          * Allocates sizeof(struct net_device + struct bnad)
3625          * bnad = netdev->priv
3626          */
3627         netdev = alloc_etherdev(sizeof(struct bnad));
3628         if (!netdev) {
3629                 err = -ENOMEM;
3630                 return err;
3631         }
3632         bnad = netdev_priv(netdev);
3633         bnad_lock_init(bnad);
3634         bnad_add_to_list(bnad);
3635
3636         mutex_lock(&bnad->conf_mutex);
3637         /*
3638          * PCI initialization
3639          *      Output : using_dac = 1 for 64 bit DMA
3640          *                         = 0 for 32 bit DMA
3641          */
3642         using_dac = false;
3643         err = bnad_pci_init(bnad, pdev, &using_dac);
3644         if (err)
3645                 goto unlock_mutex;
3646
3647         /*
3648          * Initialize bnad structure
3649          * Setup relation between pci_dev & netdev
3650          */
3651         err = bnad_init(bnad, pdev, netdev);
3652         if (err)
3653                 goto pci_uninit;
3654
3655         /* Initialize netdev structure, set up ethtool ops */
3656         bnad_netdev_init(bnad, using_dac);
3657
3658         /* Set link to down state */
3659         netif_carrier_off(netdev);
3660
3661         /* Setup the debugfs node for this bfad */
3662         if (bna_debugfs_enable)
3663                 bnad_debugfs_init(bnad);
3664
3665         /* Get resource requirement form bna */
3666         spin_lock_irqsave(&bnad->bna_lock, flags);
3667         bna_res_req(&bnad->res_info[0]);
3668         spin_unlock_irqrestore(&bnad->bna_lock, flags);
3669
3670         /* Allocate resources from bna */
3671         err = bnad_res_alloc(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3672         if (err)
3673                 goto drv_uninit;
3674
3675         bna = &bnad->bna;
3676
3677         /* Setup pcidev_info for bna_init() */
3678         pcidev_info.pci_slot = PCI_SLOT(bnad->pcidev->devfn);
3679         pcidev_info.pci_func = PCI_FUNC(bnad->pcidev->devfn);
3680         pcidev_info.device_id = bnad->pcidev->device;
3681         pcidev_info.pci_bar_kva = bnad->bar0;
3682
3683         spin_lock_irqsave(&bnad->bna_lock, flags);
3684         bna_init(bna, bnad, &pcidev_info, &bnad->res_info[0]);
3685         spin_unlock_irqrestore(&bnad->bna_lock, flags);
3686
3687         bnad->stats.bna_stats = &bna->stats;
3688
3689         bnad_enable_msix(bnad);
3690         err = bnad_mbox_irq_alloc(bnad);
3691         if (err)
3692                 goto res_free;
3693
3694         /* Set up timers */
3695         setup_timer(&bnad->bna.ioceth.ioc.ioc_timer, bnad_ioc_timeout,
3696                                 ((unsigned long)bnad));
3697         setup_timer(&bnad->bna.ioceth.ioc.hb_timer, bnad_ioc_hb_check,
3698                                 ((unsigned long)bnad));
3699         setup_timer(&bnad->bna.ioceth.ioc.iocpf_timer, bnad_iocpf_timeout,
3700                                 ((unsigned long)bnad));
3701         setup_timer(&bnad->bna.ioceth.ioc.sem_timer, bnad_iocpf_sem_timeout,
3702                                 ((unsigned long)bnad));
3703
3704         /*
3705          * Start the chip
3706          * If the call back comes with error, we bail out.
3707          * This is a catastrophic error.
3708          */
3709         err = bnad_ioceth_enable(bnad);
3710         if (err) {
3711                 pr_err("BNA: Initialization failed err=%d\n",
3712                        err);
3713                 goto probe_success;
3714         }
3715
3716         spin_lock_irqsave(&bnad->bna_lock, flags);
3717         if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3718                 bna_num_rxp_set(bna, BNAD_NUM_RXP + 1)) {
3719                 bnad_q_num_adjust(bnad, bna_attr(bna)->num_txq - 1,
3720                         bna_attr(bna)->num_rxp - 1);
3721                 if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3722                         bna_num_rxp_set(bna, BNAD_NUM_RXP + 1))
3723                         err = -EIO;
3724         }
3725         spin_unlock_irqrestore(&bnad->bna_lock, flags);
3726         if (err)
3727                 goto disable_ioceth;
3728
3729         spin_lock_irqsave(&bnad->bna_lock, flags);
3730         bna_mod_res_req(&bnad->bna, &bnad->mod_res_info[0]);
3731         spin_unlock_irqrestore(&bnad->bna_lock, flags);
3732
3733         err = bnad_res_alloc(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3734         if (err) {
3735                 err = -EIO;
3736                 goto disable_ioceth;
3737         }
3738
3739         spin_lock_irqsave(&bnad->bna_lock, flags);
3740         bna_mod_init(&bnad->bna, &bnad->mod_res_info[0]);
3741         spin_unlock_irqrestore(&bnad->bna_lock, flags);
3742
3743         /* Get the burnt-in mac */
3744         spin_lock_irqsave(&bnad->bna_lock, flags);
3745         bna_enet_perm_mac_get(&bna->enet, &bnad->perm_addr);
3746         bnad_set_netdev_perm_addr(bnad);
3747         spin_unlock_irqrestore(&bnad->bna_lock, flags);
3748
3749         mutex_unlock(&bnad->conf_mutex);
3750
3751         /* Finally, reguister with net_device layer */
3752         err = register_netdev(netdev);
3753         if (err) {
3754                 pr_err("BNA : Registering with netdev failed\n");
3755                 goto probe_uninit;
3756         }
3757         set_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags);
3758
3759         return 0;
3760
3761 probe_success:
3762         mutex_unlock(&bnad->conf_mutex);
3763         return 0;
3764
3765 probe_uninit:
3766         mutex_lock(&bnad->conf_mutex);
3767         bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3768 disable_ioceth:
3769         bnad_ioceth_disable(bnad);
3770         del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3771         del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3772         del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3773         spin_lock_irqsave(&bnad->bna_lock, flags);
3774         bna_uninit(bna);
3775         spin_unlock_irqrestore(&bnad->bna_lock, flags);
3776         bnad_mbox_irq_free(bnad);
3777         bnad_disable_msix(bnad);
3778 res_free:
3779         bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3780 drv_uninit:
3781         /* Remove the debugfs node for this bnad */
3782         kfree(bnad->regdata);
3783         bnad_debugfs_uninit(bnad);
3784         bnad_uninit(bnad);
3785 pci_uninit:
3786         bnad_pci_uninit(pdev);
3787 unlock_mutex:
3788         mutex_unlock(&bnad->conf_mutex);
3789         bnad_remove_from_list(bnad);
3790         bnad_lock_uninit(bnad);
3791         free_netdev(netdev);
3792         return err;
3793 }
3794
3795 static void
3796 bnad_pci_remove(struct pci_dev *pdev)
3797 {
3798         struct net_device *netdev = pci_get_drvdata(pdev);
3799         struct bnad *bnad;
3800         struct bna *bna;
3801         unsigned long flags;
3802
3803         if (!netdev)
3804                 return;
3805
3806         pr_info("%s bnad_pci_remove\n", netdev->name);
3807         bnad = netdev_priv(netdev);
3808         bna = &bnad->bna;
3809
3810         if (test_and_clear_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags))
3811                 unregister_netdev(netdev);
3812
3813         mutex_lock(&bnad->conf_mutex);
3814         bnad_ioceth_disable(bnad);
3815         del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3816         del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3817         del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3818         spin_lock_irqsave(&bnad->bna_lock, flags);
3819         bna_uninit(bna);
3820         spin_unlock_irqrestore(&bnad->bna_lock, flags);
3821
3822         bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3823         bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3824         bnad_mbox_irq_free(bnad);
3825         bnad_disable_msix(bnad);
3826         bnad_pci_uninit(pdev);
3827         mutex_unlock(&bnad->conf_mutex);
3828         bnad_remove_from_list(bnad);
3829         bnad_lock_uninit(bnad);
3830         /* Remove the debugfs node for this bnad */
3831         kfree(bnad->regdata);
3832         bnad_debugfs_uninit(bnad);
3833         bnad_uninit(bnad);
3834         free_netdev(netdev);
3835 }
3836
3837 static const struct pci_device_id bnad_pci_id_table[] = {
3838         {
3839                 PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3840                         PCI_DEVICE_ID_BROCADE_CT),
3841                 .class = PCI_CLASS_NETWORK_ETHERNET << 8,
3842                 .class_mask =  0xffff00
3843         },
3844         {
3845                 PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3846                         BFA_PCI_DEVICE_ID_CT2),
3847                 .class = PCI_CLASS_NETWORK_ETHERNET << 8,
3848                 .class_mask =  0xffff00
3849         },
3850         {0,  },
3851 };
3852
3853 MODULE_DEVICE_TABLE(pci, bnad_pci_id_table);
3854
3855 static struct pci_driver bnad_pci_driver = {
3856         .name = BNAD_NAME,
3857         .id_table = bnad_pci_id_table,
3858         .probe = bnad_pci_probe,
3859         .remove = bnad_pci_remove,
3860 };
3861
3862 static int __init
3863 bnad_module_init(void)
3864 {
3865         int err;
3866
3867         pr_info("QLogic BR-series 10G Ethernet driver - version: %s\n",
3868                         BNAD_VERSION);
3869
3870         bfa_nw_ioc_auto_recover(bnad_ioc_auto_recover);
3871
3872         err = pci_register_driver(&bnad_pci_driver);
3873         if (err < 0) {
3874                 pr_err("bna : PCI registration failed in module init "
3875                        "(%d)\n", err);
3876                 return err;
3877         }
3878
3879         return 0;
3880 }
3881
3882 static void __exit
3883 bnad_module_exit(void)
3884 {
3885         pci_unregister_driver(&bnad_pci_driver);
3886         release_firmware(bfi_fw);
3887 }
3888
3889 module_init(bnad_module_init);
3890 module_exit(bnad_module_exit);
3891
3892 MODULE_AUTHOR("Brocade");
3893 MODULE_LICENSE("GPL");
3894 MODULE_DESCRIPTION("QLogic BR-series 10G PCIe Ethernet driver");
3895 MODULE_VERSION(BNAD_VERSION);
3896 MODULE_FIRMWARE(CNA_FW_FILE_CT);
3897 MODULE_FIRMWARE(CNA_FW_FILE_CT2);