Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / net / ethernet / apple / macmace.c
1 /*
2  *      Driver for the Macintosh 68K onboard MACE controller with PSC
3  *      driven DMA. The MACE driver code is derived from mace.c. The
4  *      Mac68k theory of operation is courtesy of the MacBSD wizards.
5  *
6  *      This program is free software; you can redistribute it and/or
7  *      modify it under the terms of the GNU General Public License
8  *      as published by the Free Software Foundation; either version
9  *      2 of the License, or (at your option) any later version.
10  *
11  *      Copyright (C) 1996 Paul Mackerras.
12  *      Copyright (C) 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
13  *
14  *      Modified heavily by Joshua M. Thompson based on Dave Huang's NetBSD driver
15  *
16  *      Copyright (C) 2007 Finn Thain
17  *
18  *      Converted to DMA API, converted to unified driver model,
19  *      sync'd some routines with mace.c and fixed various bugs.
20  */
21
22
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/crc32.h>
30 #include <linux/bitrev.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/platform_device.h>
33 #include <linux/gfp.h>
34 #include <linux/interrupt.h>
35 #include <asm/io.h>
36 #include <asm/macints.h>
37 #include <asm/mac_psc.h>
38 #include <asm/page.h>
39 #include "mace.h"
40
41 static char mac_mace_string[] = "macmace";
42
43 #define N_TX_BUFF_ORDER 0
44 #define N_TX_RING       (1 << N_TX_BUFF_ORDER)
45 #define N_RX_BUFF_ORDER 3
46 #define N_RX_RING       (1 << N_RX_BUFF_ORDER)
47
48 #define TX_TIMEOUT      HZ
49
50 #define MACE_BUFF_SIZE  0x800
51
52 /* Chip rev needs workaround on HW & multicast addr change */
53 #define BROKEN_ADDRCHG_REV      0x0941
54
55 /* The MACE is simply wired down on a Mac68K box */
56
57 #define MACE_BASE       (void *)(0x50F1C000)
58 #define MACE_PROM       (void *)(0x50F08001)
59
60 struct mace_data {
61         volatile struct mace *mace;
62         unsigned char *tx_ring;
63         dma_addr_t tx_ring_phys;
64         unsigned char *rx_ring;
65         dma_addr_t rx_ring_phys;
66         int dma_intr;
67         int rx_slot, rx_tail;
68         int tx_slot, tx_sloti, tx_count;
69         int chipid;
70         struct device *device;
71 };
72
73 struct mace_frame {
74         u8      rcvcnt;
75         u8      pad1;
76         u8      rcvsts;
77         u8      pad2;
78         u8      rntpc;
79         u8      pad3;
80         u8      rcvcc;
81         u8      pad4;
82         u32     pad5;
83         u32     pad6;
84         u8      data[1];
85         /* And frame continues.. */
86 };
87
88 #define PRIV_BYTES      sizeof(struct mace_data)
89
90 static int mace_open(struct net_device *dev);
91 static int mace_close(struct net_device *dev);
92 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev);
93 static void mace_set_multicast(struct net_device *dev);
94 static int mace_set_address(struct net_device *dev, void *addr);
95 static void mace_reset(struct net_device *dev);
96 static irqreturn_t mace_interrupt(int irq, void *dev_id);
97 static irqreturn_t mace_dma_intr(int irq, void *dev_id);
98 static void mace_tx_timeout(struct net_device *dev);
99 static void __mace_set_address(struct net_device *dev, void *addr);
100
101 /*
102  * Load a receive DMA channel with a base address and ring length
103  */
104
105 static void mace_load_rxdma_base(struct net_device *dev, int set)
106 {
107         struct mace_data *mp = netdev_priv(dev);
108
109         psc_write_word(PSC_ENETRD_CMD + set, 0x0100);
110         psc_write_long(PSC_ENETRD_ADDR + set, (u32) mp->rx_ring_phys);
111         psc_write_long(PSC_ENETRD_LEN + set, N_RX_RING);
112         psc_write_word(PSC_ENETRD_CMD + set, 0x9800);
113         mp->rx_tail = 0;
114 }
115
116 /*
117  * Reset the receive DMA subsystem
118  */
119
120 static void mace_rxdma_reset(struct net_device *dev)
121 {
122         struct mace_data *mp = netdev_priv(dev);
123         volatile struct mace *mace = mp->mace;
124         u8 maccc = mace->maccc;
125
126         mace->maccc = maccc & ~ENRCV;
127
128         psc_write_word(PSC_ENETRD_CTL, 0x8800);
129         mace_load_rxdma_base(dev, 0x00);
130         psc_write_word(PSC_ENETRD_CTL, 0x0400);
131
132         psc_write_word(PSC_ENETRD_CTL, 0x8800);
133         mace_load_rxdma_base(dev, 0x10);
134         psc_write_word(PSC_ENETRD_CTL, 0x0400);
135
136         mace->maccc = maccc;
137         mp->rx_slot = 0;
138
139         psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x9800);
140         psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x9800);
141 }
142
143 /*
144  * Reset the transmit DMA subsystem
145  */
146
147 static void mace_txdma_reset(struct net_device *dev)
148 {
149         struct mace_data *mp = netdev_priv(dev);
150         volatile struct mace *mace = mp->mace;
151         u8 maccc;
152
153         psc_write_word(PSC_ENETWR_CTL, 0x8800);
154
155         maccc = mace->maccc;
156         mace->maccc = maccc & ~ENXMT;
157
158         mp->tx_slot = mp->tx_sloti = 0;
159         mp->tx_count = N_TX_RING;
160
161         psc_write_word(PSC_ENETWR_CTL, 0x0400);
162         mace->maccc = maccc;
163 }
164
165 /*
166  * Disable DMA
167  */
168
169 static void mace_dma_off(struct net_device *dev)
170 {
171         psc_write_word(PSC_ENETRD_CTL, 0x8800);
172         psc_write_word(PSC_ENETRD_CTL, 0x1000);
173         psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x1100);
174         psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x1100);
175
176         psc_write_word(PSC_ENETWR_CTL, 0x8800);
177         psc_write_word(PSC_ENETWR_CTL, 0x1000);
178         psc_write_word(PSC_ENETWR_CMD + PSC_SET0, 0x1100);
179         psc_write_word(PSC_ENETWR_CMD + PSC_SET1, 0x1100);
180 }
181
182 static const struct net_device_ops mace_netdev_ops = {
183         .ndo_open               = mace_open,
184         .ndo_stop               = mace_close,
185         .ndo_start_xmit         = mace_xmit_start,
186         .ndo_tx_timeout         = mace_tx_timeout,
187         .ndo_set_rx_mode        = mace_set_multicast,
188         .ndo_set_mac_address    = mace_set_address,
189         .ndo_change_mtu         = eth_change_mtu,
190         .ndo_validate_addr      = eth_validate_addr,
191 };
192
193 /*
194  * Not really much of a probe. The hardware table tells us if this
195  * model of Macintrash has a MACE (AV macintoshes)
196  */
197
198 static int mace_probe(struct platform_device *pdev)
199 {
200         int j;
201         struct mace_data *mp;
202         unsigned char *addr;
203         struct net_device *dev;
204         unsigned char checksum = 0;
205         int err;
206
207         dev = alloc_etherdev(PRIV_BYTES);
208         if (!dev)
209                 return -ENOMEM;
210
211         mp = netdev_priv(dev);
212
213         mp->device = &pdev->dev;
214         platform_set_drvdata(pdev, dev);
215         SET_NETDEV_DEV(dev, &pdev->dev);
216
217         dev->base_addr = (u32)MACE_BASE;
218         mp->mace = MACE_BASE;
219
220         dev->irq = IRQ_MAC_MACE;
221         mp->dma_intr = IRQ_MAC_MACE_DMA;
222
223         mp->chipid = mp->mace->chipid_hi << 8 | mp->mace->chipid_lo;
224
225         /*
226          * The PROM contains 8 bytes which total 0xFF when XOR'd
227          * together. Due to the usual peculiar apple brain damage
228          * the bytes are spaced out in a strange boundary and the
229          * bits are reversed.
230          */
231
232         addr = MACE_PROM;
233
234         for (j = 0; j < 6; ++j) {
235                 u8 v = bitrev8(addr[j<<4]);
236                 checksum ^= v;
237                 dev->dev_addr[j] = v;
238         }
239         for (; j < 8; ++j) {
240                 checksum ^= bitrev8(addr[j<<4]);
241         }
242
243         if (checksum != 0xFF) {
244                 free_netdev(dev);
245                 return -ENODEV;
246         }
247
248         dev->netdev_ops         = &mace_netdev_ops;
249         dev->watchdog_timeo     = TX_TIMEOUT;
250
251         printk(KERN_INFO "%s: 68K MACE, hardware address %pM\n",
252                dev->name, dev->dev_addr);
253
254         err = register_netdev(dev);
255         if (!err)
256                 return 0;
257
258         free_netdev(dev);
259         return err;
260 }
261
262 /*
263  * Reset the chip.
264  */
265
266 static void mace_reset(struct net_device *dev)
267 {
268         struct mace_data *mp = netdev_priv(dev);
269         volatile struct mace *mb = mp->mace;
270         int i;
271
272         /* soft-reset the chip */
273         i = 200;
274         while (--i) {
275                 mb->biucc = SWRST;
276                 if (mb->biucc & SWRST) {
277                         udelay(10);
278                         continue;
279                 }
280                 break;
281         }
282         if (!i) {
283                 printk(KERN_ERR "macmace: cannot reset chip!\n");
284                 return;
285         }
286
287         mb->maccc = 0;  /* turn off tx, rx */
288         mb->imr = 0xFF; /* disable all intrs for now */
289         i = mb->ir;
290
291         mb->biucc = XMTSP_64;
292         mb->utr = RTRD;
293         mb->fifocc = XMTFW_8 | RCVFW_64 | XMTFWU | RCVFWU;
294
295         mb->xmtfc = AUTO_PAD_XMIT; /* auto-pad short frames */
296         mb->rcvfc = 0;
297
298         /* load up the hardware address */
299         __mace_set_address(dev, dev->dev_addr);
300
301         /* clear the multicast filter */
302         if (mp->chipid == BROKEN_ADDRCHG_REV)
303                 mb->iac = LOGADDR;
304         else {
305                 mb->iac = ADDRCHG | LOGADDR;
306                 while ((mb->iac & ADDRCHG) != 0)
307                         ;
308         }
309         for (i = 0; i < 8; ++i)
310                 mb->ladrf = 0;
311
312         /* done changing address */
313         if (mp->chipid != BROKEN_ADDRCHG_REV)
314                 mb->iac = 0;
315
316         mb->plscc = PORTSEL_AUI;
317 }
318
319 /*
320  * Load the address on a mace controller.
321  */
322
323 static void __mace_set_address(struct net_device *dev, void *addr)
324 {
325         struct mace_data *mp = netdev_priv(dev);
326         volatile struct mace *mb = mp->mace;
327         unsigned char *p = addr;
328         int i;
329
330         /* load up the hardware address */
331         if (mp->chipid == BROKEN_ADDRCHG_REV)
332                 mb->iac = PHYADDR;
333         else {
334                 mb->iac = ADDRCHG | PHYADDR;
335                 while ((mb->iac & ADDRCHG) != 0)
336                         ;
337         }
338         for (i = 0; i < 6; ++i)
339                 mb->padr = dev->dev_addr[i] = p[i];
340         if (mp->chipid != BROKEN_ADDRCHG_REV)
341                 mb->iac = 0;
342 }
343
344 static int mace_set_address(struct net_device *dev, void *addr)
345 {
346         struct mace_data *mp = netdev_priv(dev);
347         volatile struct mace *mb = mp->mace;
348         unsigned long flags;
349         u8 maccc;
350
351         local_irq_save(flags);
352
353         maccc = mb->maccc;
354
355         __mace_set_address(dev, addr);
356
357         mb->maccc = maccc;
358
359         local_irq_restore(flags);
360
361         return 0;
362 }
363
364 /*
365  * Open the Macintosh MACE. Most of this is playing with the DMA
366  * engine. The ethernet chip is quite friendly.
367  */
368
369 static int mace_open(struct net_device *dev)
370 {
371         struct mace_data *mp = netdev_priv(dev);
372         volatile struct mace *mb = mp->mace;
373
374         /* reset the chip */
375         mace_reset(dev);
376
377         if (request_irq(dev->irq, mace_interrupt, 0, dev->name, dev)) {
378                 printk(KERN_ERR "%s: can't get irq %d\n", dev->name, dev->irq);
379                 return -EAGAIN;
380         }
381         if (request_irq(mp->dma_intr, mace_dma_intr, 0, dev->name, dev)) {
382                 printk(KERN_ERR "%s: can't get irq %d\n", dev->name, mp->dma_intr);
383                 free_irq(dev->irq, dev);
384                 return -EAGAIN;
385         }
386
387         /* Allocate the DMA ring buffers */
388
389         mp->tx_ring = dma_alloc_coherent(mp->device,
390                                          N_TX_RING * MACE_BUFF_SIZE,
391                                          &mp->tx_ring_phys, GFP_KERNEL);
392         if (mp->tx_ring == NULL)
393                 goto out1;
394
395         mp->rx_ring = dma_alloc_coherent(mp->device,
396                                          N_RX_RING * MACE_BUFF_SIZE,
397                                          &mp->rx_ring_phys, GFP_KERNEL);
398         if (mp->rx_ring == NULL)
399                 goto out2;
400
401         mace_dma_off(dev);
402
403         /* Not sure what these do */
404
405         psc_write_word(PSC_ENETWR_CTL, 0x9000);
406         psc_write_word(PSC_ENETRD_CTL, 0x9000);
407         psc_write_word(PSC_ENETWR_CTL, 0x0400);
408         psc_write_word(PSC_ENETRD_CTL, 0x0400);
409
410         mace_rxdma_reset(dev);
411         mace_txdma_reset(dev);
412
413         /* turn it on! */
414         mb->maccc = ENXMT | ENRCV;
415         /* enable all interrupts except receive interrupts */
416         mb->imr = RCVINT;
417         return 0;
418
419 out2:
420         dma_free_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE,
421                           mp->tx_ring, mp->tx_ring_phys);
422 out1:
423         free_irq(dev->irq, dev);
424         free_irq(mp->dma_intr, dev);
425         return -ENOMEM;
426 }
427
428 /*
429  * Shut down the mace and its interrupt channel
430  */
431
432 static int mace_close(struct net_device *dev)
433 {
434         struct mace_data *mp = netdev_priv(dev);
435         volatile struct mace *mb = mp->mace;
436
437         mb->maccc = 0;          /* disable rx and tx     */
438         mb->imr = 0xFF;         /* disable all irqs      */
439         mace_dma_off(dev);      /* disable rx and tx dma */
440
441         return 0;
442 }
443
444 /*
445  * Transmit a frame
446  */
447
448 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev)
449 {
450         struct mace_data *mp = netdev_priv(dev);
451         unsigned long flags;
452
453         /* Stop the queue since there's only the one buffer */
454
455         local_irq_save(flags);
456         netif_stop_queue(dev);
457         if (!mp->tx_count) {
458                 printk(KERN_ERR "macmace: tx queue running but no free buffers.\n");
459                 local_irq_restore(flags);
460                 return NETDEV_TX_BUSY;
461         }
462         mp->tx_count--;
463         local_irq_restore(flags);
464
465         dev->stats.tx_packets++;
466         dev->stats.tx_bytes += skb->len;
467
468         /* We need to copy into our xmit buffer to take care of alignment and caching issues */
469         skb_copy_from_linear_data(skb, mp->tx_ring, skb->len);
470
471         /* load the Tx DMA and fire it off */
472
473         psc_write_long(PSC_ENETWR_ADDR + mp->tx_slot, (u32)  mp->tx_ring_phys);
474         psc_write_long(PSC_ENETWR_LEN + mp->tx_slot, skb->len);
475         psc_write_word(PSC_ENETWR_CMD + mp->tx_slot, 0x9800);
476
477         mp->tx_slot ^= 0x10;
478
479         dev_kfree_skb(skb);
480
481         return NETDEV_TX_OK;
482 }
483
484 static void mace_set_multicast(struct net_device *dev)
485 {
486         struct mace_data *mp = netdev_priv(dev);
487         volatile struct mace *mb = mp->mace;
488         int i;
489         u32 crc;
490         u8 maccc;
491         unsigned long flags;
492
493         local_irq_save(flags);
494         maccc = mb->maccc;
495         mb->maccc &= ~PROM;
496
497         if (dev->flags & IFF_PROMISC) {
498                 mb->maccc |= PROM;
499         } else {
500                 unsigned char multicast_filter[8];
501                 struct netdev_hw_addr *ha;
502
503                 if (dev->flags & IFF_ALLMULTI) {
504                         for (i = 0; i < 8; i++) {
505                                 multicast_filter[i] = 0xFF;
506                         }
507                 } else {
508                         for (i = 0; i < 8; i++)
509                                 multicast_filter[i] = 0;
510                         netdev_for_each_mc_addr(ha, dev) {
511                                 crc = ether_crc_le(6, ha->addr);
512                                 /* bit number in multicast_filter */
513                                 i = crc >> 26;
514                                 multicast_filter[i >> 3] |= 1 << (i & 7);
515                         }
516                 }
517
518                 if (mp->chipid == BROKEN_ADDRCHG_REV)
519                         mb->iac = LOGADDR;
520                 else {
521                         mb->iac = ADDRCHG | LOGADDR;
522                         while ((mb->iac & ADDRCHG) != 0)
523                                 ;
524                 }
525                 for (i = 0; i < 8; ++i)
526                         mb->ladrf = multicast_filter[i];
527                 if (mp->chipid != BROKEN_ADDRCHG_REV)
528                         mb->iac = 0;
529         }
530
531         mb->maccc = maccc;
532         local_irq_restore(flags);
533 }
534
535 static void mace_handle_misc_intrs(struct net_device *dev, int intr)
536 {
537         struct mace_data *mp = netdev_priv(dev);
538         volatile struct mace *mb = mp->mace;
539         static int mace_babbles, mace_jabbers;
540
541         if (intr & MPCO)
542                 dev->stats.rx_missed_errors += 256;
543         dev->stats.rx_missed_errors += mb->mpc;   /* reading clears it */
544         if (intr & RNTPCO)
545                 dev->stats.rx_length_errors += 256;
546         dev->stats.rx_length_errors += mb->rntpc; /* reading clears it */
547         if (intr & CERR)
548                 ++dev->stats.tx_heartbeat_errors;
549         if (intr & BABBLE)
550                 if (mace_babbles++ < 4)
551                         printk(KERN_DEBUG "macmace: babbling transmitter\n");
552         if (intr & JABBER)
553                 if (mace_jabbers++ < 4)
554                         printk(KERN_DEBUG "macmace: jabbering transceiver\n");
555 }
556
557 static irqreturn_t mace_interrupt(int irq, void *dev_id)
558 {
559         struct net_device *dev = (struct net_device *) dev_id;
560         struct mace_data *mp = netdev_priv(dev);
561         volatile struct mace *mb = mp->mace;
562         int intr, fs;
563         unsigned long flags;
564
565         /* don't want the dma interrupt handler to fire */
566         local_irq_save(flags);
567
568         intr = mb->ir; /* read interrupt register */
569         mace_handle_misc_intrs(dev, intr);
570
571         if (intr & XMTINT) {
572                 fs = mb->xmtfs;
573                 if ((fs & XMTSV) == 0) {
574                         printk(KERN_ERR "macmace: xmtfs not valid! (fs=%x)\n", fs);
575                         mace_reset(dev);
576                         /*
577                          * XXX mace likes to hang the machine after a xmtfs error.
578                          * This is hard to reproduce, resetting *may* help
579                          */
580                 }
581                 /* dma should have finished */
582                 if (!mp->tx_count) {
583                         printk(KERN_DEBUG "macmace: tx ring ran out? (fs=%x)\n", fs);
584                 }
585                 /* Update stats */
586                 if (fs & (UFLO|LCOL|LCAR|RTRY)) {
587                         ++dev->stats.tx_errors;
588                         if (fs & LCAR)
589                                 ++dev->stats.tx_carrier_errors;
590                         else if (fs & (UFLO|LCOL|RTRY)) {
591                                 ++dev->stats.tx_aborted_errors;
592                                 if (mb->xmtfs & UFLO) {
593                                         printk(KERN_ERR "%s: DMA underrun.\n", dev->name);
594                                         dev->stats.tx_fifo_errors++;
595                                         mace_txdma_reset(dev);
596                                 }
597                         }
598                 }
599         }
600
601         if (mp->tx_count)
602                 netif_wake_queue(dev);
603
604         local_irq_restore(flags);
605
606         return IRQ_HANDLED;
607 }
608
609 static void mace_tx_timeout(struct net_device *dev)
610 {
611         struct mace_data *mp = netdev_priv(dev);
612         volatile struct mace *mb = mp->mace;
613         unsigned long flags;
614
615         local_irq_save(flags);
616
617         /* turn off both tx and rx and reset the chip */
618         mb->maccc = 0;
619         printk(KERN_ERR "macmace: transmit timeout - resetting\n");
620         mace_txdma_reset(dev);
621         mace_reset(dev);
622
623         /* restart rx dma */
624         mace_rxdma_reset(dev);
625
626         mp->tx_count = N_TX_RING;
627         netif_wake_queue(dev);
628
629         /* turn it on! */
630         mb->maccc = ENXMT | ENRCV;
631         /* enable all interrupts except receive interrupts */
632         mb->imr = RCVINT;
633
634         local_irq_restore(flags);
635 }
636
637 /*
638  * Handle a newly arrived frame
639  */
640
641 static void mace_dma_rx_frame(struct net_device *dev, struct mace_frame *mf)
642 {
643         struct sk_buff *skb;
644         unsigned int frame_status = mf->rcvsts;
645
646         if (frame_status & (RS_OFLO | RS_CLSN | RS_FRAMERR | RS_FCSERR)) {
647                 dev->stats.rx_errors++;
648                 if (frame_status & RS_OFLO) {
649                         printk(KERN_DEBUG "%s: fifo overflow.\n", dev->name);
650                         dev->stats.rx_fifo_errors++;
651                 }
652                 if (frame_status & RS_CLSN)
653                         dev->stats.collisions++;
654                 if (frame_status & RS_FRAMERR)
655                         dev->stats.rx_frame_errors++;
656                 if (frame_status & RS_FCSERR)
657                         dev->stats.rx_crc_errors++;
658         } else {
659                 unsigned int frame_length = mf->rcvcnt + ((frame_status & 0x0F) << 8 );
660
661                 skb = netdev_alloc_skb(dev, frame_length + 2);
662                 if (!skb) {
663                         dev->stats.rx_dropped++;
664                         return;
665                 }
666                 skb_reserve(skb, 2);
667                 memcpy(skb_put(skb, frame_length), mf->data, frame_length);
668
669                 skb->protocol = eth_type_trans(skb, dev);
670                 netif_rx(skb);
671                 dev->stats.rx_packets++;
672                 dev->stats.rx_bytes += frame_length;
673         }
674 }
675
676 /*
677  * The PSC has passed us a DMA interrupt event.
678  */
679
680 static irqreturn_t mace_dma_intr(int irq, void *dev_id)
681 {
682         struct net_device *dev = (struct net_device *) dev_id;
683         struct mace_data *mp = netdev_priv(dev);
684         int left, head;
685         u16 status;
686         u32 baka;
687
688         /* Not sure what this does */
689
690         while ((baka = psc_read_long(PSC_MYSTERY)) != psc_read_long(PSC_MYSTERY));
691         if (!(baka & 0x60000000)) return IRQ_NONE;
692
693         /*
694          * Process the read queue
695          */
696
697         status = psc_read_word(PSC_ENETRD_CTL);
698
699         if (status & 0x2000) {
700                 mace_rxdma_reset(dev);
701         } else if (status & 0x0100) {
702                 psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x1100);
703
704                 left = psc_read_long(PSC_ENETRD_LEN + mp->rx_slot);
705                 head = N_RX_RING - left;
706
707                 /* Loop through the ring buffer and process new packages */
708
709                 while (mp->rx_tail < head) {
710                         mace_dma_rx_frame(dev, (struct mace_frame*) (mp->rx_ring
711                                 + (mp->rx_tail * MACE_BUFF_SIZE)));
712                         mp->rx_tail++;
713                 }
714
715                 /* If we're out of buffers in this ring then switch to */
716                 /* the other set, otherwise just reactivate this one.  */
717
718                 if (!left) {
719                         mace_load_rxdma_base(dev, mp->rx_slot);
720                         mp->rx_slot ^= 0x10;
721                 } else {
722                         psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x9800);
723                 }
724         }
725
726         /*
727          * Process the write queue
728          */
729
730         status = psc_read_word(PSC_ENETWR_CTL);
731
732         if (status & 0x2000) {
733                 mace_txdma_reset(dev);
734         } else if (status & 0x0100) {
735                 psc_write_word(PSC_ENETWR_CMD + mp->tx_sloti, 0x0100);
736                 mp->tx_sloti ^= 0x10;
737                 mp->tx_count++;
738         }
739         return IRQ_HANDLED;
740 }
741
742 MODULE_LICENSE("GPL");
743 MODULE_DESCRIPTION("Macintosh MACE ethernet driver");
744 MODULE_ALIAS("platform:macmace");
745
746 static int mac_mace_device_remove(struct platform_device *pdev)
747 {
748         struct net_device *dev = platform_get_drvdata(pdev);
749         struct mace_data *mp = netdev_priv(dev);
750
751         unregister_netdev(dev);
752
753         free_irq(dev->irq, dev);
754         free_irq(IRQ_MAC_MACE_DMA, dev);
755
756         dma_free_coherent(mp->device, N_RX_RING * MACE_BUFF_SIZE,
757                           mp->rx_ring, mp->rx_ring_phys);
758         dma_free_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE,
759                           mp->tx_ring, mp->tx_ring_phys);
760
761         free_netdev(dev);
762
763         return 0;
764 }
765
766 static struct platform_driver mac_mace_driver = {
767         .probe  = mace_probe,
768         .remove = mac_mace_device_remove,
769         .driver = {
770                 .name   = mac_mace_string,
771         },
772 };
773
774 static int __init mac_mace_init_module(void)
775 {
776         if (!MACH_IS_MAC)
777                 return -ENODEV;
778
779         return platform_driver_register(&mac_mace_driver);
780 }
781
782 static void __exit mac_mace_cleanup_module(void)
783 {
784         platform_driver_unregister(&mac_mace_driver);
785 }
786
787 module_init(mac_mace_init_module);
788 module_exit(mac_mace_cleanup_module);