These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / drivers / mtd / ubi / wl.c
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19  */
20
21 /*
22  * UBI wear-leveling sub-system.
23  *
24  * This sub-system is responsible for wear-leveling. It works in terms of
25  * physical eraseblocks and erase counters and knows nothing about logical
26  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27  * eraseblocks are of two types - used and free. Used physical eraseblocks are
28  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
30  *
31  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32  * header. The rest of the physical eraseblock contains only %0xFF bytes.
33  *
34  * When physical eraseblocks are returned to the WL sub-system by means of the
35  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36  * done asynchronously in context of the per-UBI device background thread,
37  * which is also managed by the WL sub-system.
38  *
39  * The wear-leveling is ensured by means of moving the contents of used
40  * physical eraseblocks with low erase counter to free physical eraseblocks
41  * with high erase counter.
42  *
43  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
44  * bad.
45  *
46  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
47  * in a physical eraseblock, it has to be moved. Technically this is the same
48  * as moving it for wear-leveling reasons.
49  *
50  * As it was said, for the UBI sub-system all physical eraseblocks are either
51  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
52  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
53  * RB-trees, as well as (temporarily) in the @wl->pq queue.
54  *
55  * When the WL sub-system returns a physical eraseblock, the physical
56  * eraseblock is protected from being moved for some "time". For this reason,
57  * the physical eraseblock is not directly moved from the @wl->free tree to the
58  * @wl->used tree. There is a protection queue in between where this
59  * physical eraseblock is temporarily stored (@wl->pq).
60  *
61  * All this protection stuff is needed because:
62  *  o we don't want to move physical eraseblocks just after we have given them
63  *    to the user; instead, we first want to let users fill them up with data;
64  *
65  *  o there is a chance that the user will put the physical eraseblock very
66  *    soon, so it makes sense not to move it for some time, but wait.
67  *
68  * Physical eraseblocks stay protected only for limited time. But the "time" is
69  * measured in erase cycles in this case. This is implemented with help of the
70  * protection queue. Eraseblocks are put to the tail of this queue when they
71  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
72  * head of the queue on each erase operation (for any eraseblock). So the
73  * length of the queue defines how may (global) erase cycles PEBs are protected.
74  *
75  * To put it differently, each physical eraseblock has 2 main states: free and
76  * used. The former state corresponds to the @wl->free tree. The latter state
77  * is split up on several sub-states:
78  * o the WL movement is allowed (@wl->used tree);
79  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
80  *   erroneous - e.g., there was a read error;
81  * o the WL movement is temporarily prohibited (@wl->pq queue);
82  * o scrubbing is needed (@wl->scrub tree).
83  *
84  * Depending on the sub-state, wear-leveling entries of the used physical
85  * eraseblocks may be kept in one of those structures.
86  *
87  * Note, in this implementation, we keep a small in-RAM object for each physical
88  * eraseblock. This is surely not a scalable solution. But it appears to be good
89  * enough for moderately large flashes and it is simple. In future, one may
90  * re-work this sub-system and make it more scalable.
91  *
92  * At the moment this sub-system does not utilize the sequence number, which
93  * was introduced relatively recently. But it would be wise to do this because
94  * the sequence number of a logical eraseblock characterizes how old is it. For
95  * example, when we move a PEB with low erase counter, and we need to pick the
96  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
97  * pick target PEB with an average EC if our PEB is not very "old". This is a
98  * room for future re-works of the WL sub-system.
99  */
100
101 #include <linux/slab.h>
102 #include <linux/crc32.h>
103 #include <linux/freezer.h>
104 #include <linux/kthread.h>
105 #include "ubi.h"
106 #include "wl.h"
107
108 /* Number of physical eraseblocks reserved for wear-leveling purposes */
109 #define WL_RESERVED_PEBS 1
110
111 /*
112  * Maximum difference between two erase counters. If this threshold is
113  * exceeded, the WL sub-system starts moving data from used physical
114  * eraseblocks with low erase counter to free physical eraseblocks with high
115  * erase counter.
116  */
117 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
118
119 /*
120  * When a physical eraseblock is moved, the WL sub-system has to pick the target
121  * physical eraseblock to move to. The simplest way would be just to pick the
122  * one with the highest erase counter. But in certain workloads this could lead
123  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
124  * situation when the picked physical eraseblock is constantly erased after the
125  * data is written to it. So, we have a constant which limits the highest erase
126  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
127  * does not pick eraseblocks with erase counter greater than the lowest erase
128  * counter plus %WL_FREE_MAX_DIFF.
129  */
130 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
131
132 /*
133  * Maximum number of consecutive background thread failures which is enough to
134  * switch to read-only mode.
135  */
136 #define WL_MAX_FAILURES 32
137
138 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
139 static int self_check_in_wl_tree(const struct ubi_device *ubi,
140                                  struct ubi_wl_entry *e, struct rb_root *root);
141 static int self_check_in_pq(const struct ubi_device *ubi,
142                             struct ubi_wl_entry *e);
143
144 /**
145  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
146  * @e: the wear-leveling entry to add
147  * @root: the root of the tree
148  *
149  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
150  * the @ubi->used and @ubi->free RB-trees.
151  */
152 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
153 {
154         struct rb_node **p, *parent = NULL;
155
156         p = &root->rb_node;
157         while (*p) {
158                 struct ubi_wl_entry *e1;
159
160                 parent = *p;
161                 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
162
163                 if (e->ec < e1->ec)
164                         p = &(*p)->rb_left;
165                 else if (e->ec > e1->ec)
166                         p = &(*p)->rb_right;
167                 else {
168                         ubi_assert(e->pnum != e1->pnum);
169                         if (e->pnum < e1->pnum)
170                                 p = &(*p)->rb_left;
171                         else
172                                 p = &(*p)->rb_right;
173                 }
174         }
175
176         rb_link_node(&e->u.rb, parent, p);
177         rb_insert_color(&e->u.rb, root);
178 }
179
180 /**
181  * wl_tree_destroy - destroy a wear-leveling entry.
182  * @ubi: UBI device description object
183  * @e: the wear-leveling entry to add
184  *
185  * This function destroys a wear leveling entry and removes
186  * the reference from the lookup table.
187  */
188 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
189 {
190         ubi->lookuptbl[e->pnum] = NULL;
191         kmem_cache_free(ubi_wl_entry_slab, e);
192 }
193
194 /**
195  * do_work - do one pending work.
196  * @ubi: UBI device description object
197  *
198  * This function returns zero in case of success and a negative error code in
199  * case of failure.
200  */
201 static int do_work(struct ubi_device *ubi)
202 {
203         int err;
204         struct ubi_work *wrk;
205
206         cond_resched();
207
208         /*
209          * @ubi->work_sem is used to synchronize with the workers. Workers take
210          * it in read mode, so many of them may be doing works at a time. But
211          * the queue flush code has to be sure the whole queue of works is
212          * done, and it takes the mutex in write mode.
213          */
214         down_read(&ubi->work_sem);
215         spin_lock(&ubi->wl_lock);
216         if (list_empty(&ubi->works)) {
217                 spin_unlock(&ubi->wl_lock);
218                 up_read(&ubi->work_sem);
219                 return 0;
220         }
221
222         wrk = list_entry(ubi->works.next, struct ubi_work, list);
223         list_del(&wrk->list);
224         ubi->works_count -= 1;
225         ubi_assert(ubi->works_count >= 0);
226         spin_unlock(&ubi->wl_lock);
227
228         /*
229          * Call the worker function. Do not touch the work structure
230          * after this call as it will have been freed or reused by that
231          * time by the worker function.
232          */
233         err = wrk->func(ubi, wrk, 0);
234         if (err)
235                 ubi_err(ubi, "work failed with error code %d", err);
236         up_read(&ubi->work_sem);
237
238         return err;
239 }
240
241 /**
242  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
243  * @e: the wear-leveling entry to check
244  * @root: the root of the tree
245  *
246  * This function returns non-zero if @e is in the @root RB-tree and zero if it
247  * is not.
248  */
249 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
250 {
251         struct rb_node *p;
252
253         p = root->rb_node;
254         while (p) {
255                 struct ubi_wl_entry *e1;
256
257                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
258
259                 if (e->pnum == e1->pnum) {
260                         ubi_assert(e == e1);
261                         return 1;
262                 }
263
264                 if (e->ec < e1->ec)
265                         p = p->rb_left;
266                 else if (e->ec > e1->ec)
267                         p = p->rb_right;
268                 else {
269                         ubi_assert(e->pnum != e1->pnum);
270                         if (e->pnum < e1->pnum)
271                                 p = p->rb_left;
272                         else
273                                 p = p->rb_right;
274                 }
275         }
276
277         return 0;
278 }
279
280 /**
281  * prot_queue_add - add physical eraseblock to the protection queue.
282  * @ubi: UBI device description object
283  * @e: the physical eraseblock to add
284  *
285  * This function adds @e to the tail of the protection queue @ubi->pq, where
286  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
287  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
288  * be locked.
289  */
290 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
291 {
292         int pq_tail = ubi->pq_head - 1;
293
294         if (pq_tail < 0)
295                 pq_tail = UBI_PROT_QUEUE_LEN - 1;
296         ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
297         list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
298         dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
299 }
300
301 /**
302  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
303  * @ubi: UBI device description object
304  * @root: the RB-tree where to look for
305  * @diff: maximum possible difference from the smallest erase counter
306  *
307  * This function looks for a wear leveling entry with erase counter closest to
308  * min + @diff, where min is the smallest erase counter.
309  */
310 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
311                                           struct rb_root *root, int diff)
312 {
313         struct rb_node *p;
314         struct ubi_wl_entry *e, *prev_e = NULL;
315         int max;
316
317         e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
318         max = e->ec + diff;
319
320         p = root->rb_node;
321         while (p) {
322                 struct ubi_wl_entry *e1;
323
324                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
325                 if (e1->ec >= max)
326                         p = p->rb_left;
327                 else {
328                         p = p->rb_right;
329                         prev_e = e;
330                         e = e1;
331                 }
332         }
333
334         /* If no fastmap has been written and this WL entry can be used
335          * as anchor PEB, hold it back and return the second best WL entry
336          * such that fastmap can use the anchor PEB later. */
337         if (prev_e && !ubi->fm_disabled &&
338             !ubi->fm && e->pnum < UBI_FM_MAX_START)
339                 return prev_e;
340
341         return e;
342 }
343
344 /**
345  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
346  * @ubi: UBI device description object
347  * @root: the RB-tree where to look for
348  *
349  * This function looks for a wear leveling entry with medium erase counter,
350  * but not greater or equivalent than the lowest erase counter plus
351  * %WL_FREE_MAX_DIFF/2.
352  */
353 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
354                                                struct rb_root *root)
355 {
356         struct ubi_wl_entry *e, *first, *last;
357
358         first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
359         last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
360
361         if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
362                 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
363
364                 /* If no fastmap has been written and this WL entry can be used
365                  * as anchor PEB, hold it back and return the second best
366                  * WL entry such that fastmap can use the anchor PEB later. */
367                 e = may_reserve_for_fm(ubi, e, root);
368         } else
369                 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
370
371         return e;
372 }
373
374 /**
375  * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
376  * refill_wl_user_pool().
377  * @ubi: UBI device description object
378  *
379  * This function returns a a wear leveling entry in case of success and
380  * NULL in case of failure.
381  */
382 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
383 {
384         struct ubi_wl_entry *e;
385
386         e = find_mean_wl_entry(ubi, &ubi->free);
387         if (!e) {
388                 ubi_err(ubi, "no free eraseblocks");
389                 return NULL;
390         }
391
392         self_check_in_wl_tree(ubi, e, &ubi->free);
393
394         /*
395          * Move the physical eraseblock to the protection queue where it will
396          * be protected from being moved for some time.
397          */
398         rb_erase(&e->u.rb, &ubi->free);
399         ubi->free_count--;
400         dbg_wl("PEB %d EC %d", e->pnum, e->ec);
401
402         return e;
403 }
404
405 /**
406  * prot_queue_del - remove a physical eraseblock from the protection queue.
407  * @ubi: UBI device description object
408  * @pnum: the physical eraseblock to remove
409  *
410  * This function deletes PEB @pnum from the protection queue and returns zero
411  * in case of success and %-ENODEV if the PEB was not found.
412  */
413 static int prot_queue_del(struct ubi_device *ubi, int pnum)
414 {
415         struct ubi_wl_entry *e;
416
417         e = ubi->lookuptbl[pnum];
418         if (!e)
419                 return -ENODEV;
420
421         if (self_check_in_pq(ubi, e))
422                 return -ENODEV;
423
424         list_del(&e->u.list);
425         dbg_wl("deleted PEB %d from the protection queue", e->pnum);
426         return 0;
427 }
428
429 /**
430  * sync_erase - synchronously erase a physical eraseblock.
431  * @ubi: UBI device description object
432  * @e: the the physical eraseblock to erase
433  * @torture: if the physical eraseblock has to be tortured
434  *
435  * This function returns zero in case of success and a negative error code in
436  * case of failure.
437  */
438 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
439                       int torture)
440 {
441         int err;
442         struct ubi_ec_hdr *ec_hdr;
443         unsigned long long ec = e->ec;
444
445         dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
446
447         err = self_check_ec(ubi, e->pnum, e->ec);
448         if (err)
449                 return -EINVAL;
450
451         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
452         if (!ec_hdr)
453                 return -ENOMEM;
454
455         err = ubi_io_sync_erase(ubi, e->pnum, torture);
456         if (err < 0)
457                 goto out_free;
458
459         ec += err;
460         if (ec > UBI_MAX_ERASECOUNTER) {
461                 /*
462                  * Erase counter overflow. Upgrade UBI and use 64-bit
463                  * erase counters internally.
464                  */
465                 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
466                         e->pnum, ec);
467                 err = -EINVAL;
468                 goto out_free;
469         }
470
471         dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
472
473         ec_hdr->ec = cpu_to_be64(ec);
474
475         err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
476         if (err)
477                 goto out_free;
478
479         e->ec = ec;
480         spin_lock(&ubi->wl_lock);
481         if (e->ec > ubi->max_ec)
482                 ubi->max_ec = e->ec;
483         spin_unlock(&ubi->wl_lock);
484
485 out_free:
486         kfree(ec_hdr);
487         return err;
488 }
489
490 /**
491  * serve_prot_queue - check if it is time to stop protecting PEBs.
492  * @ubi: UBI device description object
493  *
494  * This function is called after each erase operation and removes PEBs from the
495  * tail of the protection queue. These PEBs have been protected for long enough
496  * and should be moved to the used tree.
497  */
498 static void serve_prot_queue(struct ubi_device *ubi)
499 {
500         struct ubi_wl_entry *e, *tmp;
501         int count;
502
503         /*
504          * There may be several protected physical eraseblock to remove,
505          * process them all.
506          */
507 repeat:
508         count = 0;
509         spin_lock(&ubi->wl_lock);
510         list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
511                 dbg_wl("PEB %d EC %d protection over, move to used tree",
512                         e->pnum, e->ec);
513
514                 list_del(&e->u.list);
515                 wl_tree_add(e, &ubi->used);
516                 if (count++ > 32) {
517                         /*
518                          * Let's be nice and avoid holding the spinlock for
519                          * too long.
520                          */
521                         spin_unlock(&ubi->wl_lock);
522                         cond_resched();
523                         goto repeat;
524                 }
525         }
526
527         ubi->pq_head += 1;
528         if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
529                 ubi->pq_head = 0;
530         ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
531         spin_unlock(&ubi->wl_lock);
532 }
533
534 /**
535  * __schedule_ubi_work - schedule a work.
536  * @ubi: UBI device description object
537  * @wrk: the work to schedule
538  *
539  * This function adds a work defined by @wrk to the tail of the pending works
540  * list. Can only be used if ubi->work_sem is already held in read mode!
541  */
542 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
543 {
544         spin_lock(&ubi->wl_lock);
545         list_add_tail(&wrk->list, &ubi->works);
546         ubi_assert(ubi->works_count >= 0);
547         ubi->works_count += 1;
548         if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
549                 wake_up_process(ubi->bgt_thread);
550         spin_unlock(&ubi->wl_lock);
551 }
552
553 /**
554  * schedule_ubi_work - schedule a work.
555  * @ubi: UBI device description object
556  * @wrk: the work to schedule
557  *
558  * This function adds a work defined by @wrk to the tail of the pending works
559  * list.
560  */
561 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
562 {
563         down_read(&ubi->work_sem);
564         __schedule_ubi_work(ubi, wrk);
565         up_read(&ubi->work_sem);
566 }
567
568 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
569                         int shutdown);
570
571 /**
572  * schedule_erase - schedule an erase work.
573  * @ubi: UBI device description object
574  * @e: the WL entry of the physical eraseblock to erase
575  * @vol_id: the volume ID that last used this PEB
576  * @lnum: the last used logical eraseblock number for the PEB
577  * @torture: if the physical eraseblock has to be tortured
578  *
579  * This function returns zero in case of success and a %-ENOMEM in case of
580  * failure.
581  */
582 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
583                           int vol_id, int lnum, int torture)
584 {
585         struct ubi_work *wl_wrk;
586
587         ubi_assert(e);
588
589         dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
590                e->pnum, e->ec, torture);
591
592         wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
593         if (!wl_wrk)
594                 return -ENOMEM;
595
596         wl_wrk->func = &erase_worker;
597         wl_wrk->e = e;
598         wl_wrk->vol_id = vol_id;
599         wl_wrk->lnum = lnum;
600         wl_wrk->torture = torture;
601
602         schedule_ubi_work(ubi, wl_wrk);
603         return 0;
604 }
605
606 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
607 /**
608  * do_sync_erase - run the erase worker synchronously.
609  * @ubi: UBI device description object
610  * @e: the WL entry of the physical eraseblock to erase
611  * @vol_id: the volume ID that last used this PEB
612  * @lnum: the last used logical eraseblock number for the PEB
613  * @torture: if the physical eraseblock has to be tortured
614  *
615  */
616 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
617                          int vol_id, int lnum, int torture)
618 {
619         struct ubi_work wl_wrk;
620
621         dbg_wl("sync erase of PEB %i", e->pnum);
622
623         wl_wrk.e = e;
624         wl_wrk.vol_id = vol_id;
625         wl_wrk.lnum = lnum;
626         wl_wrk.torture = torture;
627
628         return __erase_worker(ubi, &wl_wrk);
629 }
630
631 /**
632  * wear_leveling_worker - wear-leveling worker function.
633  * @ubi: UBI device description object
634  * @wrk: the work object
635  * @shutdown: non-zero if the worker has to free memory and exit
636  * because the WL-subsystem is shutting down
637  *
638  * This function copies a more worn out physical eraseblock to a less worn out
639  * one. Returns zero in case of success and a negative error code in case of
640  * failure.
641  */
642 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
643                                 int shutdown)
644 {
645         int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
646         int vol_id = -1, lnum = -1;
647 #ifdef CONFIG_MTD_UBI_FASTMAP
648         int anchor = wrk->anchor;
649 #endif
650         struct ubi_wl_entry *e1, *e2;
651         struct ubi_vid_hdr *vid_hdr;
652
653         kfree(wrk);
654         if (shutdown)
655                 return 0;
656
657         vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
658         if (!vid_hdr)
659                 return -ENOMEM;
660
661         mutex_lock(&ubi->move_mutex);
662         spin_lock(&ubi->wl_lock);
663         ubi_assert(!ubi->move_from && !ubi->move_to);
664         ubi_assert(!ubi->move_to_put);
665
666         if (!ubi->free.rb_node ||
667             (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
668                 /*
669                  * No free physical eraseblocks? Well, they must be waiting in
670                  * the queue to be erased. Cancel movement - it will be
671                  * triggered again when a free physical eraseblock appears.
672                  *
673                  * No used physical eraseblocks? They must be temporarily
674                  * protected from being moved. They will be moved to the
675                  * @ubi->used tree later and the wear-leveling will be
676                  * triggered again.
677                  */
678                 dbg_wl("cancel WL, a list is empty: free %d, used %d",
679                        !ubi->free.rb_node, !ubi->used.rb_node);
680                 goto out_cancel;
681         }
682
683 #ifdef CONFIG_MTD_UBI_FASTMAP
684         /* Check whether we need to produce an anchor PEB */
685         if (!anchor)
686                 anchor = !anchor_pebs_avalible(&ubi->free);
687
688         if (anchor) {
689                 e1 = find_anchor_wl_entry(&ubi->used);
690                 if (!e1)
691                         goto out_cancel;
692                 e2 = get_peb_for_wl(ubi);
693                 if (!e2)
694                         goto out_cancel;
695
696                 self_check_in_wl_tree(ubi, e1, &ubi->used);
697                 rb_erase(&e1->u.rb, &ubi->used);
698                 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
699         } else if (!ubi->scrub.rb_node) {
700 #else
701         if (!ubi->scrub.rb_node) {
702 #endif
703                 /*
704                  * Now pick the least worn-out used physical eraseblock and a
705                  * highly worn-out free physical eraseblock. If the erase
706                  * counters differ much enough, start wear-leveling.
707                  */
708                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
709                 e2 = get_peb_for_wl(ubi);
710                 if (!e2)
711                         goto out_cancel;
712
713                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
714                         dbg_wl("no WL needed: min used EC %d, max free EC %d",
715                                e1->ec, e2->ec);
716
717                         /* Give the unused PEB back */
718                         wl_tree_add(e2, &ubi->free);
719                         ubi->free_count++;
720                         goto out_cancel;
721                 }
722                 self_check_in_wl_tree(ubi, e1, &ubi->used);
723                 rb_erase(&e1->u.rb, &ubi->used);
724                 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
725                        e1->pnum, e1->ec, e2->pnum, e2->ec);
726         } else {
727                 /* Perform scrubbing */
728                 scrubbing = 1;
729                 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
730                 e2 = get_peb_for_wl(ubi);
731                 if (!e2)
732                         goto out_cancel;
733
734                 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
735                 rb_erase(&e1->u.rb, &ubi->scrub);
736                 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
737         }
738
739         ubi->move_from = e1;
740         ubi->move_to = e2;
741         spin_unlock(&ubi->wl_lock);
742
743         /*
744          * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
745          * We so far do not know which logical eraseblock our physical
746          * eraseblock (@e1) belongs to. We have to read the volume identifier
747          * header first.
748          *
749          * Note, we are protected from this PEB being unmapped and erased. The
750          * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
751          * which is being moved was unmapped.
752          */
753
754         err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
755         if (err && err != UBI_IO_BITFLIPS) {
756                 if (err == UBI_IO_FF) {
757                         /*
758                          * We are trying to move PEB without a VID header. UBI
759                          * always write VID headers shortly after the PEB was
760                          * given, so we have a situation when it has not yet
761                          * had a chance to write it, because it was preempted.
762                          * So add this PEB to the protection queue so far,
763                          * because presumably more data will be written there
764                          * (including the missing VID header), and then we'll
765                          * move it.
766                          */
767                         dbg_wl("PEB %d has no VID header", e1->pnum);
768                         protect = 1;
769                         goto out_not_moved;
770                 } else if (err == UBI_IO_FF_BITFLIPS) {
771                         /*
772                          * The same situation as %UBI_IO_FF, but bit-flips were
773                          * detected. It is better to schedule this PEB for
774                          * scrubbing.
775                          */
776                         dbg_wl("PEB %d has no VID header but has bit-flips",
777                                e1->pnum);
778                         scrubbing = 1;
779                         goto out_not_moved;
780                 }
781
782                 ubi_err(ubi, "error %d while reading VID header from PEB %d",
783                         err, e1->pnum);
784                 goto out_error;
785         }
786
787         vol_id = be32_to_cpu(vid_hdr->vol_id);
788         lnum = be32_to_cpu(vid_hdr->lnum);
789
790         err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
791         if (err) {
792                 if (err == MOVE_CANCEL_RACE) {
793                         /*
794                          * The LEB has not been moved because the volume is
795                          * being deleted or the PEB has been put meanwhile. We
796                          * should prevent this PEB from being selected for
797                          * wear-leveling movement again, so put it to the
798                          * protection queue.
799                          */
800                         protect = 1;
801                         goto out_not_moved;
802                 }
803                 if (err == MOVE_RETRY) {
804                         scrubbing = 1;
805                         goto out_not_moved;
806                 }
807                 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
808                     err == MOVE_TARGET_RD_ERR) {
809                         /*
810                          * Target PEB had bit-flips or write error - torture it.
811                          */
812                         torture = 1;
813                         goto out_not_moved;
814                 }
815
816                 if (err == MOVE_SOURCE_RD_ERR) {
817                         /*
818                          * An error happened while reading the source PEB. Do
819                          * not switch to R/O mode in this case, and give the
820                          * upper layers a possibility to recover from this,
821                          * e.g. by unmapping corresponding LEB. Instead, just
822                          * put this PEB to the @ubi->erroneous list to prevent
823                          * UBI from trying to move it over and over again.
824                          */
825                         if (ubi->erroneous_peb_count > ubi->max_erroneous) {
826                                 ubi_err(ubi, "too many erroneous eraseblocks (%d)",
827                                         ubi->erroneous_peb_count);
828                                 goto out_error;
829                         }
830                         erroneous = 1;
831                         goto out_not_moved;
832                 }
833
834                 if (err < 0)
835                         goto out_error;
836
837                 ubi_assert(0);
838         }
839
840         /* The PEB has been successfully moved */
841         if (scrubbing)
842                 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
843                         e1->pnum, vol_id, lnum, e2->pnum);
844         ubi_free_vid_hdr(ubi, vid_hdr);
845
846         spin_lock(&ubi->wl_lock);
847         if (!ubi->move_to_put) {
848                 wl_tree_add(e2, &ubi->used);
849                 e2 = NULL;
850         }
851         ubi->move_from = ubi->move_to = NULL;
852         ubi->move_to_put = ubi->wl_scheduled = 0;
853         spin_unlock(&ubi->wl_lock);
854
855         err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
856         if (err) {
857                 if (e2)
858                         wl_entry_destroy(ubi, e2);
859                 goto out_ro;
860         }
861
862         if (e2) {
863                 /*
864                  * Well, the target PEB was put meanwhile, schedule it for
865                  * erasure.
866                  */
867                 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
868                        e2->pnum, vol_id, lnum);
869                 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
870                 if (err)
871                         goto out_ro;
872         }
873
874         dbg_wl("done");
875         mutex_unlock(&ubi->move_mutex);
876         return 0;
877
878         /*
879          * For some reasons the LEB was not moved, might be an error, might be
880          * something else. @e1 was not changed, so return it back. @e2 might
881          * have been changed, schedule it for erasure.
882          */
883 out_not_moved:
884         if (vol_id != -1)
885                 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
886                        e1->pnum, vol_id, lnum, e2->pnum, err);
887         else
888                 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
889                        e1->pnum, e2->pnum, err);
890         spin_lock(&ubi->wl_lock);
891         if (protect)
892                 prot_queue_add(ubi, e1);
893         else if (erroneous) {
894                 wl_tree_add(e1, &ubi->erroneous);
895                 ubi->erroneous_peb_count += 1;
896         } else if (scrubbing)
897                 wl_tree_add(e1, &ubi->scrub);
898         else
899                 wl_tree_add(e1, &ubi->used);
900         ubi_assert(!ubi->move_to_put);
901         ubi->move_from = ubi->move_to = NULL;
902         ubi->wl_scheduled = 0;
903         spin_unlock(&ubi->wl_lock);
904
905         ubi_free_vid_hdr(ubi, vid_hdr);
906         err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
907         if (err)
908                 goto out_ro;
909
910         mutex_unlock(&ubi->move_mutex);
911         return 0;
912
913 out_error:
914         if (vol_id != -1)
915                 ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
916                         err, e1->pnum, e2->pnum);
917         else
918                 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
919                         err, e1->pnum, vol_id, lnum, e2->pnum);
920         spin_lock(&ubi->wl_lock);
921         ubi->move_from = ubi->move_to = NULL;
922         ubi->move_to_put = ubi->wl_scheduled = 0;
923         spin_unlock(&ubi->wl_lock);
924
925         ubi_free_vid_hdr(ubi, vid_hdr);
926         wl_entry_destroy(ubi, e1);
927         wl_entry_destroy(ubi, e2);
928
929 out_ro:
930         ubi_ro_mode(ubi);
931         mutex_unlock(&ubi->move_mutex);
932         ubi_assert(err != 0);
933         return err < 0 ? err : -EIO;
934
935 out_cancel:
936         ubi->wl_scheduled = 0;
937         spin_unlock(&ubi->wl_lock);
938         mutex_unlock(&ubi->move_mutex);
939         ubi_free_vid_hdr(ubi, vid_hdr);
940         return 0;
941 }
942
943 /**
944  * ensure_wear_leveling - schedule wear-leveling if it is needed.
945  * @ubi: UBI device description object
946  * @nested: set to non-zero if this function is called from UBI worker
947  *
948  * This function checks if it is time to start wear-leveling and schedules it
949  * if yes. This function returns zero in case of success and a negative error
950  * code in case of failure.
951  */
952 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
953 {
954         int err = 0;
955         struct ubi_wl_entry *e1;
956         struct ubi_wl_entry *e2;
957         struct ubi_work *wrk;
958
959         spin_lock(&ubi->wl_lock);
960         if (ubi->wl_scheduled)
961                 /* Wear-leveling is already in the work queue */
962                 goto out_unlock;
963
964         /*
965          * If the ubi->scrub tree is not empty, scrubbing is needed, and the
966          * the WL worker has to be scheduled anyway.
967          */
968         if (!ubi->scrub.rb_node) {
969                 if (!ubi->used.rb_node || !ubi->free.rb_node)
970                         /* No physical eraseblocks - no deal */
971                         goto out_unlock;
972
973                 /*
974                  * We schedule wear-leveling only if the difference between the
975                  * lowest erase counter of used physical eraseblocks and a high
976                  * erase counter of free physical eraseblocks is greater than
977                  * %UBI_WL_THRESHOLD.
978                  */
979                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
980                 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
981
982                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
983                         goto out_unlock;
984                 dbg_wl("schedule wear-leveling");
985         } else
986                 dbg_wl("schedule scrubbing");
987
988         ubi->wl_scheduled = 1;
989         spin_unlock(&ubi->wl_lock);
990
991         wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
992         if (!wrk) {
993                 err = -ENOMEM;
994                 goto out_cancel;
995         }
996
997         wrk->anchor = 0;
998         wrk->func = &wear_leveling_worker;
999         if (nested)
1000                 __schedule_ubi_work(ubi, wrk);
1001         else
1002                 schedule_ubi_work(ubi, wrk);
1003         return err;
1004
1005 out_cancel:
1006         spin_lock(&ubi->wl_lock);
1007         ubi->wl_scheduled = 0;
1008 out_unlock:
1009         spin_unlock(&ubi->wl_lock);
1010         return err;
1011 }
1012
1013 /**
1014  * __erase_worker - physical eraseblock erase worker function.
1015  * @ubi: UBI device description object
1016  * @wl_wrk: the work object
1017  * @shutdown: non-zero if the worker has to free memory and exit
1018  * because the WL sub-system is shutting down
1019  *
1020  * This function erases a physical eraseblock and perform torture testing if
1021  * needed. It also takes care about marking the physical eraseblock bad if
1022  * needed. Returns zero in case of success and a negative error code in case of
1023  * failure.
1024  */
1025 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
1026 {
1027         struct ubi_wl_entry *e = wl_wrk->e;
1028         int pnum = e->pnum;
1029         int vol_id = wl_wrk->vol_id;
1030         int lnum = wl_wrk->lnum;
1031         int err, available_consumed = 0;
1032
1033         dbg_wl("erase PEB %d EC %d LEB %d:%d",
1034                pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1035
1036         err = sync_erase(ubi, e, wl_wrk->torture);
1037         if (!err) {
1038                 spin_lock(&ubi->wl_lock);
1039                 wl_tree_add(e, &ubi->free);
1040                 ubi->free_count++;
1041                 spin_unlock(&ubi->wl_lock);
1042
1043                 /*
1044                  * One more erase operation has happened, take care about
1045                  * protected physical eraseblocks.
1046                  */
1047                 serve_prot_queue(ubi);
1048
1049                 /* And take care about wear-leveling */
1050                 err = ensure_wear_leveling(ubi, 1);
1051                 return err;
1052         }
1053
1054         ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1055
1056         if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1057             err == -EBUSY) {
1058                 int err1;
1059
1060                 /* Re-schedule the LEB for erasure */
1061                 err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1062                 if (err1) {
1063                         wl_entry_destroy(ubi, e);
1064                         err = err1;
1065                         goto out_ro;
1066                 }
1067                 return err;
1068         }
1069
1070         wl_entry_destroy(ubi, e);
1071         if (err != -EIO)
1072                 /*
1073                  * If this is not %-EIO, we have no idea what to do. Scheduling
1074                  * this physical eraseblock for erasure again would cause
1075                  * errors again and again. Well, lets switch to R/O mode.
1076                  */
1077                 goto out_ro;
1078
1079         /* It is %-EIO, the PEB went bad */
1080
1081         if (!ubi->bad_allowed) {
1082                 ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1083                 goto out_ro;
1084         }
1085
1086         spin_lock(&ubi->volumes_lock);
1087         if (ubi->beb_rsvd_pebs == 0) {
1088                 if (ubi->avail_pebs == 0) {
1089                         spin_unlock(&ubi->volumes_lock);
1090                         ubi_err(ubi, "no reserved/available physical eraseblocks");
1091                         goto out_ro;
1092                 }
1093                 ubi->avail_pebs -= 1;
1094                 available_consumed = 1;
1095         }
1096         spin_unlock(&ubi->volumes_lock);
1097
1098         ubi_msg(ubi, "mark PEB %d as bad", pnum);
1099         err = ubi_io_mark_bad(ubi, pnum);
1100         if (err)
1101                 goto out_ro;
1102
1103         spin_lock(&ubi->volumes_lock);
1104         if (ubi->beb_rsvd_pebs > 0) {
1105                 if (available_consumed) {
1106                         /*
1107                          * The amount of reserved PEBs increased since we last
1108                          * checked.
1109                          */
1110                         ubi->avail_pebs += 1;
1111                         available_consumed = 0;
1112                 }
1113                 ubi->beb_rsvd_pebs -= 1;
1114         }
1115         ubi->bad_peb_count += 1;
1116         ubi->good_peb_count -= 1;
1117         ubi_calculate_reserved(ubi);
1118         if (available_consumed)
1119                 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1120         else if (ubi->beb_rsvd_pebs)
1121                 ubi_msg(ubi, "%d PEBs left in the reserve",
1122                         ubi->beb_rsvd_pebs);
1123         else
1124                 ubi_warn(ubi, "last PEB from the reserve was used");
1125         spin_unlock(&ubi->volumes_lock);
1126
1127         return err;
1128
1129 out_ro:
1130         if (available_consumed) {
1131                 spin_lock(&ubi->volumes_lock);
1132                 ubi->avail_pebs += 1;
1133                 spin_unlock(&ubi->volumes_lock);
1134         }
1135         ubi_ro_mode(ubi);
1136         return err;
1137 }
1138
1139 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1140                           int shutdown)
1141 {
1142         int ret;
1143
1144         if (shutdown) {
1145                 struct ubi_wl_entry *e = wl_wrk->e;
1146
1147                 dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1148                 kfree(wl_wrk);
1149                 wl_entry_destroy(ubi, e);
1150                 return 0;
1151         }
1152
1153         ret = __erase_worker(ubi, wl_wrk);
1154         kfree(wl_wrk);
1155         return ret;
1156 }
1157
1158 /**
1159  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1160  * @ubi: UBI device description object
1161  * @vol_id: the volume ID that last used this PEB
1162  * @lnum: the last used logical eraseblock number for the PEB
1163  * @pnum: physical eraseblock to return
1164  * @torture: if this physical eraseblock has to be tortured
1165  *
1166  * This function is called to return physical eraseblock @pnum to the pool of
1167  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1168  * occurred to this @pnum and it has to be tested. This function returns zero
1169  * in case of success, and a negative error code in case of failure.
1170  */
1171 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1172                    int pnum, int torture)
1173 {
1174         int err;
1175         struct ubi_wl_entry *e;
1176
1177         dbg_wl("PEB %d", pnum);
1178         ubi_assert(pnum >= 0);
1179         ubi_assert(pnum < ubi->peb_count);
1180
1181         down_read(&ubi->fm_protect);
1182
1183 retry:
1184         spin_lock(&ubi->wl_lock);
1185         e = ubi->lookuptbl[pnum];
1186         if (e == ubi->move_from) {
1187                 /*
1188                  * User is putting the physical eraseblock which was selected to
1189                  * be moved. It will be scheduled for erasure in the
1190                  * wear-leveling worker.
1191                  */
1192                 dbg_wl("PEB %d is being moved, wait", pnum);
1193                 spin_unlock(&ubi->wl_lock);
1194
1195                 /* Wait for the WL worker by taking the @ubi->move_mutex */
1196                 mutex_lock(&ubi->move_mutex);
1197                 mutex_unlock(&ubi->move_mutex);
1198                 goto retry;
1199         } else if (e == ubi->move_to) {
1200                 /*
1201                  * User is putting the physical eraseblock which was selected
1202                  * as the target the data is moved to. It may happen if the EBA
1203                  * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1204                  * but the WL sub-system has not put the PEB to the "used" tree
1205                  * yet, but it is about to do this. So we just set a flag which
1206                  * will tell the WL worker that the PEB is not needed anymore
1207                  * and should be scheduled for erasure.
1208                  */
1209                 dbg_wl("PEB %d is the target of data moving", pnum);
1210                 ubi_assert(!ubi->move_to_put);
1211                 ubi->move_to_put = 1;
1212                 spin_unlock(&ubi->wl_lock);
1213                 up_read(&ubi->fm_protect);
1214                 return 0;
1215         } else {
1216                 if (in_wl_tree(e, &ubi->used)) {
1217                         self_check_in_wl_tree(ubi, e, &ubi->used);
1218                         rb_erase(&e->u.rb, &ubi->used);
1219                 } else if (in_wl_tree(e, &ubi->scrub)) {
1220                         self_check_in_wl_tree(ubi, e, &ubi->scrub);
1221                         rb_erase(&e->u.rb, &ubi->scrub);
1222                 } else if (in_wl_tree(e, &ubi->erroneous)) {
1223                         self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1224                         rb_erase(&e->u.rb, &ubi->erroneous);
1225                         ubi->erroneous_peb_count -= 1;
1226                         ubi_assert(ubi->erroneous_peb_count >= 0);
1227                         /* Erroneous PEBs should be tortured */
1228                         torture = 1;
1229                 } else {
1230                         err = prot_queue_del(ubi, e->pnum);
1231                         if (err) {
1232                                 ubi_err(ubi, "PEB %d not found", pnum);
1233                                 ubi_ro_mode(ubi);
1234                                 spin_unlock(&ubi->wl_lock);
1235                                 up_read(&ubi->fm_protect);
1236                                 return err;
1237                         }
1238                 }
1239         }
1240         spin_unlock(&ubi->wl_lock);
1241
1242         err = schedule_erase(ubi, e, vol_id, lnum, torture);
1243         if (err) {
1244                 spin_lock(&ubi->wl_lock);
1245                 wl_tree_add(e, &ubi->used);
1246                 spin_unlock(&ubi->wl_lock);
1247         }
1248
1249         up_read(&ubi->fm_protect);
1250         return err;
1251 }
1252
1253 /**
1254  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1255  * @ubi: UBI device description object
1256  * @pnum: the physical eraseblock to schedule
1257  *
1258  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1259  * needs scrubbing. This function schedules a physical eraseblock for
1260  * scrubbing which is done in background. This function returns zero in case of
1261  * success and a negative error code in case of failure.
1262  */
1263 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1264 {
1265         struct ubi_wl_entry *e;
1266
1267         ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1268
1269 retry:
1270         spin_lock(&ubi->wl_lock);
1271         e = ubi->lookuptbl[pnum];
1272         if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1273                                    in_wl_tree(e, &ubi->erroneous)) {
1274                 spin_unlock(&ubi->wl_lock);
1275                 return 0;
1276         }
1277
1278         if (e == ubi->move_to) {
1279                 /*
1280                  * This physical eraseblock was used to move data to. The data
1281                  * was moved but the PEB was not yet inserted to the proper
1282                  * tree. We should just wait a little and let the WL worker
1283                  * proceed.
1284                  */
1285                 spin_unlock(&ubi->wl_lock);
1286                 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1287                 yield();
1288                 goto retry;
1289         }
1290
1291         if (in_wl_tree(e, &ubi->used)) {
1292                 self_check_in_wl_tree(ubi, e, &ubi->used);
1293                 rb_erase(&e->u.rb, &ubi->used);
1294         } else {
1295                 int err;
1296
1297                 err = prot_queue_del(ubi, e->pnum);
1298                 if (err) {
1299                         ubi_err(ubi, "PEB %d not found", pnum);
1300                         ubi_ro_mode(ubi);
1301                         spin_unlock(&ubi->wl_lock);
1302                         return err;
1303                 }
1304         }
1305
1306         wl_tree_add(e, &ubi->scrub);
1307         spin_unlock(&ubi->wl_lock);
1308
1309         /*
1310          * Technically scrubbing is the same as wear-leveling, so it is done
1311          * by the WL worker.
1312          */
1313         return ensure_wear_leveling(ubi, 0);
1314 }
1315
1316 /**
1317  * ubi_wl_flush - flush all pending works.
1318  * @ubi: UBI device description object
1319  * @vol_id: the volume id to flush for
1320  * @lnum: the logical eraseblock number to flush for
1321  *
1322  * This function executes all pending works for a particular volume id /
1323  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1324  * acts as a wildcard for all of the corresponding volume numbers or logical
1325  * eraseblock numbers. It returns zero in case of success and a negative error
1326  * code in case of failure.
1327  */
1328 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1329 {
1330         int err = 0;
1331         int found = 1;
1332
1333         /*
1334          * Erase while the pending works queue is not empty, but not more than
1335          * the number of currently pending works.
1336          */
1337         dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1338                vol_id, lnum, ubi->works_count);
1339
1340         while (found) {
1341                 struct ubi_work *wrk, *tmp;
1342                 found = 0;
1343
1344                 down_read(&ubi->work_sem);
1345                 spin_lock(&ubi->wl_lock);
1346                 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1347                         if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1348                             (lnum == UBI_ALL || wrk->lnum == lnum)) {
1349                                 list_del(&wrk->list);
1350                                 ubi->works_count -= 1;
1351                                 ubi_assert(ubi->works_count >= 0);
1352                                 spin_unlock(&ubi->wl_lock);
1353
1354                                 err = wrk->func(ubi, wrk, 0);
1355                                 if (err) {
1356                                         up_read(&ubi->work_sem);
1357                                         return err;
1358                                 }
1359
1360                                 spin_lock(&ubi->wl_lock);
1361                                 found = 1;
1362                                 break;
1363                         }
1364                 }
1365                 spin_unlock(&ubi->wl_lock);
1366                 up_read(&ubi->work_sem);
1367         }
1368
1369         /*
1370          * Make sure all the works which have been done in parallel are
1371          * finished.
1372          */
1373         down_write(&ubi->work_sem);
1374         up_write(&ubi->work_sem);
1375
1376         return err;
1377 }
1378
1379 /**
1380  * tree_destroy - destroy an RB-tree.
1381  * @ubi: UBI device description object
1382  * @root: the root of the tree to destroy
1383  */
1384 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1385 {
1386         struct rb_node *rb;
1387         struct ubi_wl_entry *e;
1388
1389         rb = root->rb_node;
1390         while (rb) {
1391                 if (rb->rb_left)
1392                         rb = rb->rb_left;
1393                 else if (rb->rb_right)
1394                         rb = rb->rb_right;
1395                 else {
1396                         e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1397
1398                         rb = rb_parent(rb);
1399                         if (rb) {
1400                                 if (rb->rb_left == &e->u.rb)
1401                                         rb->rb_left = NULL;
1402                                 else
1403                                         rb->rb_right = NULL;
1404                         }
1405
1406                         wl_entry_destroy(ubi, e);
1407                 }
1408         }
1409 }
1410
1411 /**
1412  * ubi_thread - UBI background thread.
1413  * @u: the UBI device description object pointer
1414  */
1415 int ubi_thread(void *u)
1416 {
1417         int failures = 0;
1418         struct ubi_device *ubi = u;
1419
1420         ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1421                 ubi->bgt_name, task_pid_nr(current));
1422
1423         set_freezable();
1424         for (;;) {
1425                 int err;
1426
1427                 if (kthread_should_stop())
1428                         break;
1429
1430                 if (try_to_freeze())
1431                         continue;
1432
1433                 spin_lock(&ubi->wl_lock);
1434                 if (list_empty(&ubi->works) || ubi->ro_mode ||
1435                     !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1436                         set_current_state(TASK_INTERRUPTIBLE);
1437                         spin_unlock(&ubi->wl_lock);
1438                         schedule();
1439                         continue;
1440                 }
1441                 spin_unlock(&ubi->wl_lock);
1442
1443                 err = do_work(ubi);
1444                 if (err) {
1445                         ubi_err(ubi, "%s: work failed with error code %d",
1446                                 ubi->bgt_name, err);
1447                         if (failures++ > WL_MAX_FAILURES) {
1448                                 /*
1449                                  * Too many failures, disable the thread and
1450                                  * switch to read-only mode.
1451                                  */
1452                                 ubi_msg(ubi, "%s: %d consecutive failures",
1453                                         ubi->bgt_name, WL_MAX_FAILURES);
1454                                 ubi_ro_mode(ubi);
1455                                 ubi->thread_enabled = 0;
1456                                 continue;
1457                         }
1458                 } else
1459                         failures = 0;
1460
1461                 cond_resched();
1462         }
1463
1464         dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1465         return 0;
1466 }
1467
1468 /**
1469  * shutdown_work - shutdown all pending works.
1470  * @ubi: UBI device description object
1471  */
1472 static void shutdown_work(struct ubi_device *ubi)
1473 {
1474 #ifdef CONFIG_MTD_UBI_FASTMAP
1475         flush_work(&ubi->fm_work);
1476 #endif
1477         while (!list_empty(&ubi->works)) {
1478                 struct ubi_work *wrk;
1479
1480                 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1481                 list_del(&wrk->list);
1482                 wrk->func(ubi, wrk, 1);
1483                 ubi->works_count -= 1;
1484                 ubi_assert(ubi->works_count >= 0);
1485         }
1486 }
1487
1488 /**
1489  * ubi_wl_init - initialize the WL sub-system using attaching information.
1490  * @ubi: UBI device description object
1491  * @ai: attaching information
1492  *
1493  * This function returns zero in case of success, and a negative error code in
1494  * case of failure.
1495  */
1496 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1497 {
1498         int err, i, reserved_pebs, found_pebs = 0;
1499         struct rb_node *rb1, *rb2;
1500         struct ubi_ainf_volume *av;
1501         struct ubi_ainf_peb *aeb, *tmp;
1502         struct ubi_wl_entry *e;
1503
1504         ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1505         spin_lock_init(&ubi->wl_lock);
1506         mutex_init(&ubi->move_mutex);
1507         init_rwsem(&ubi->work_sem);
1508         ubi->max_ec = ai->max_ec;
1509         INIT_LIST_HEAD(&ubi->works);
1510
1511         sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1512
1513         err = -ENOMEM;
1514         ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1515         if (!ubi->lookuptbl)
1516                 return err;
1517
1518         for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1519                 INIT_LIST_HEAD(&ubi->pq[i]);
1520         ubi->pq_head = 0;
1521
1522         list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1523                 cond_resched();
1524
1525                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1526                 if (!e)
1527                         goto out_free;
1528
1529                 e->pnum = aeb->pnum;
1530                 e->ec = aeb->ec;
1531                 ubi->lookuptbl[e->pnum] = e;
1532                 if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1533                         wl_entry_destroy(ubi, e);
1534                         goto out_free;
1535                 }
1536
1537                 found_pebs++;
1538         }
1539
1540         ubi->free_count = 0;
1541         list_for_each_entry(aeb, &ai->free, u.list) {
1542                 cond_resched();
1543
1544                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1545                 if (!e)
1546                         goto out_free;
1547
1548                 e->pnum = aeb->pnum;
1549                 e->ec = aeb->ec;
1550                 ubi_assert(e->ec >= 0);
1551
1552                 wl_tree_add(e, &ubi->free);
1553                 ubi->free_count++;
1554
1555                 ubi->lookuptbl[e->pnum] = e;
1556
1557                 found_pebs++;
1558         }
1559
1560         ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1561                 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1562                         cond_resched();
1563
1564                         e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1565                         if (!e)
1566                                 goto out_free;
1567
1568                         e->pnum = aeb->pnum;
1569                         e->ec = aeb->ec;
1570                         ubi->lookuptbl[e->pnum] = e;
1571
1572                         if (!aeb->scrub) {
1573                                 dbg_wl("add PEB %d EC %d to the used tree",
1574                                        e->pnum, e->ec);
1575                                 wl_tree_add(e, &ubi->used);
1576                         } else {
1577                                 dbg_wl("add PEB %d EC %d to the scrub tree",
1578                                        e->pnum, e->ec);
1579                                 wl_tree_add(e, &ubi->scrub);
1580                         }
1581
1582                         found_pebs++;
1583                 }
1584         }
1585
1586         dbg_wl("found %i PEBs", found_pebs);
1587
1588         if (ubi->fm) {
1589                 ubi_assert(ubi->good_peb_count ==
1590                            found_pebs + ubi->fm->used_blocks);
1591
1592                 for (i = 0; i < ubi->fm->used_blocks; i++) {
1593                         e = ubi->fm->e[i];
1594                         ubi->lookuptbl[e->pnum] = e;
1595                 }
1596         }
1597         else
1598                 ubi_assert(ubi->good_peb_count == found_pebs);
1599
1600         reserved_pebs = WL_RESERVED_PEBS;
1601         ubi_fastmap_init(ubi, &reserved_pebs);
1602
1603         if (ubi->avail_pebs < reserved_pebs) {
1604                 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1605                         ubi->avail_pebs, reserved_pebs);
1606                 if (ubi->corr_peb_count)
1607                         ubi_err(ubi, "%d PEBs are corrupted and not used",
1608                                 ubi->corr_peb_count);
1609                 err = -ENOSPC;
1610                 goto out_free;
1611         }
1612         ubi->avail_pebs -= reserved_pebs;
1613         ubi->rsvd_pebs += reserved_pebs;
1614
1615         /* Schedule wear-leveling if needed */
1616         err = ensure_wear_leveling(ubi, 0);
1617         if (err)
1618                 goto out_free;
1619
1620         return 0;
1621
1622 out_free:
1623         shutdown_work(ubi);
1624         tree_destroy(ubi, &ubi->used);
1625         tree_destroy(ubi, &ubi->free);
1626         tree_destroy(ubi, &ubi->scrub);
1627         kfree(ubi->lookuptbl);
1628         return err;
1629 }
1630
1631 /**
1632  * protection_queue_destroy - destroy the protection queue.
1633  * @ubi: UBI device description object
1634  */
1635 static void protection_queue_destroy(struct ubi_device *ubi)
1636 {
1637         int i;
1638         struct ubi_wl_entry *e, *tmp;
1639
1640         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1641                 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1642                         list_del(&e->u.list);
1643                         wl_entry_destroy(ubi, e);
1644                 }
1645         }
1646 }
1647
1648 /**
1649  * ubi_wl_close - close the wear-leveling sub-system.
1650  * @ubi: UBI device description object
1651  */
1652 void ubi_wl_close(struct ubi_device *ubi)
1653 {
1654         dbg_wl("close the WL sub-system");
1655         ubi_fastmap_close(ubi);
1656         shutdown_work(ubi);
1657         protection_queue_destroy(ubi);
1658         tree_destroy(ubi, &ubi->used);
1659         tree_destroy(ubi, &ubi->erroneous);
1660         tree_destroy(ubi, &ubi->free);
1661         tree_destroy(ubi, &ubi->scrub);
1662         kfree(ubi->lookuptbl);
1663 }
1664
1665 /**
1666  * self_check_ec - make sure that the erase counter of a PEB is correct.
1667  * @ubi: UBI device description object
1668  * @pnum: the physical eraseblock number to check
1669  * @ec: the erase counter to check
1670  *
1671  * This function returns zero if the erase counter of physical eraseblock @pnum
1672  * is equivalent to @ec, and a negative error code if not or if an error
1673  * occurred.
1674  */
1675 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1676 {
1677         int err;
1678         long long read_ec;
1679         struct ubi_ec_hdr *ec_hdr;
1680
1681         if (!ubi_dbg_chk_gen(ubi))
1682                 return 0;
1683
1684         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1685         if (!ec_hdr)
1686                 return -ENOMEM;
1687
1688         err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1689         if (err && err != UBI_IO_BITFLIPS) {
1690                 /* The header does not have to exist */
1691                 err = 0;
1692                 goto out_free;
1693         }
1694
1695         read_ec = be64_to_cpu(ec_hdr->ec);
1696         if (ec != read_ec && read_ec - ec > 1) {
1697                 ubi_err(ubi, "self-check failed for PEB %d", pnum);
1698                 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
1699                 dump_stack();
1700                 err = 1;
1701         } else
1702                 err = 0;
1703
1704 out_free:
1705         kfree(ec_hdr);
1706         return err;
1707 }
1708
1709 /**
1710  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1711  * @ubi: UBI device description object
1712  * @e: the wear-leveling entry to check
1713  * @root: the root of the tree
1714  *
1715  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1716  * is not.
1717  */
1718 static int self_check_in_wl_tree(const struct ubi_device *ubi,
1719                                  struct ubi_wl_entry *e, struct rb_root *root)
1720 {
1721         if (!ubi_dbg_chk_gen(ubi))
1722                 return 0;
1723
1724         if (in_wl_tree(e, root))
1725                 return 0;
1726
1727         ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
1728                 e->pnum, e->ec, root);
1729         dump_stack();
1730         return -EINVAL;
1731 }
1732
1733 /**
1734  * self_check_in_pq - check if wear-leveling entry is in the protection
1735  *                        queue.
1736  * @ubi: UBI device description object
1737  * @e: the wear-leveling entry to check
1738  *
1739  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
1740  */
1741 static int self_check_in_pq(const struct ubi_device *ubi,
1742                             struct ubi_wl_entry *e)
1743 {
1744         struct ubi_wl_entry *p;
1745         int i;
1746
1747         if (!ubi_dbg_chk_gen(ubi))
1748                 return 0;
1749
1750         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1751                 list_for_each_entry(p, &ubi->pq[i], u.list)
1752                         if (p == e)
1753                                 return 0;
1754
1755         ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
1756                 e->pnum, e->ec);
1757         dump_stack();
1758         return -EINVAL;
1759 }
1760 #ifndef CONFIG_MTD_UBI_FASTMAP
1761 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
1762 {
1763         struct ubi_wl_entry *e;
1764
1765         e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1766         self_check_in_wl_tree(ubi, e, &ubi->free);
1767         ubi->free_count--;
1768         ubi_assert(ubi->free_count >= 0);
1769         rb_erase(&e->u.rb, &ubi->free);
1770
1771         return e;
1772 }
1773
1774 /**
1775  * produce_free_peb - produce a free physical eraseblock.
1776  * @ubi: UBI device description object
1777  *
1778  * This function tries to make a free PEB by means of synchronous execution of
1779  * pending works. This may be needed if, for example the background thread is
1780  * disabled. Returns zero in case of success and a negative error code in case
1781  * of failure.
1782  */
1783 static int produce_free_peb(struct ubi_device *ubi)
1784 {
1785         int err;
1786
1787         while (!ubi->free.rb_node && ubi->works_count) {
1788                 spin_unlock(&ubi->wl_lock);
1789
1790                 dbg_wl("do one work synchronously");
1791                 err = do_work(ubi);
1792
1793                 spin_lock(&ubi->wl_lock);
1794                 if (err)
1795                         return err;
1796         }
1797
1798         return 0;
1799 }
1800
1801 /**
1802  * ubi_wl_get_peb - get a physical eraseblock.
1803  * @ubi: UBI device description object
1804  *
1805  * This function returns a physical eraseblock in case of success and a
1806  * negative error code in case of failure.
1807  * Returns with ubi->fm_eba_sem held in read mode!
1808  */
1809 int ubi_wl_get_peb(struct ubi_device *ubi)
1810 {
1811         int err;
1812         struct ubi_wl_entry *e;
1813
1814 retry:
1815         down_read(&ubi->fm_eba_sem);
1816         spin_lock(&ubi->wl_lock);
1817         if (!ubi->free.rb_node) {
1818                 if (ubi->works_count == 0) {
1819                         ubi_err(ubi, "no free eraseblocks");
1820                         ubi_assert(list_empty(&ubi->works));
1821                         spin_unlock(&ubi->wl_lock);
1822                         return -ENOSPC;
1823                 }
1824
1825                 err = produce_free_peb(ubi);
1826                 if (err < 0) {
1827                         spin_unlock(&ubi->wl_lock);
1828                         return err;
1829                 }
1830                 spin_unlock(&ubi->wl_lock);
1831                 up_read(&ubi->fm_eba_sem);
1832                 goto retry;
1833
1834         }
1835         e = wl_get_wle(ubi);
1836         prot_queue_add(ubi, e);
1837         spin_unlock(&ubi->wl_lock);
1838
1839         err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
1840                                     ubi->peb_size - ubi->vid_hdr_aloffset);
1841         if (err) {
1842                 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
1843                 return err;
1844         }
1845
1846         return e->pnum;
1847 }
1848 #else
1849 #include "fastmap-wl.c"
1850 #endif