Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / mtd / tests / mtd_nandecctest.c
1 #define pr_fmt(fmt)     KBUILD_MODNAME ": " fmt
2
3 #include <linux/kernel.h>
4 #include <linux/module.h>
5 #include <linux/list.h>
6 #include <linux/random.h>
7 #include <linux/string.h>
8 #include <linux/bitops.h>
9 #include <linux/slab.h>
10 #include <linux/mtd/nand_ecc.h>
11
12 #include "mtd_test.h"
13
14 /*
15  * Test the implementation for software ECC
16  *
17  * No actual MTD device is needed, So we don't need to warry about losing
18  * important data by human error.
19  *
20  * This covers possible patterns of corruption which can be reliably corrected
21  * or detected.
22  */
23
24 #if IS_ENABLED(CONFIG_MTD_NAND)
25
26 struct nand_ecc_test {
27         const char *name;
28         void (*prepare)(void *, void *, void *, void *, const size_t);
29         int (*verify)(void *, void *, void *, const size_t);
30 };
31
32 /*
33  * The reason for this __change_bit_le() instead of __change_bit() is to inject
34  * bit error properly within the region which is not a multiple of
35  * sizeof(unsigned long) on big-endian systems
36  */
37 #ifdef __LITTLE_ENDIAN
38 #define __change_bit_le(nr, addr) __change_bit(nr, addr)
39 #elif defined(__BIG_ENDIAN)
40 #define __change_bit_le(nr, addr) \
41                 __change_bit((nr) ^ ((BITS_PER_LONG - 1) & ~0x7), addr)
42 #else
43 #error "Unknown byte order"
44 #endif
45
46 static void single_bit_error_data(void *error_data, void *correct_data,
47                                 size_t size)
48 {
49         unsigned int offset = prandom_u32() % (size * BITS_PER_BYTE);
50
51         memcpy(error_data, correct_data, size);
52         __change_bit_le(offset, error_data);
53 }
54
55 static void double_bit_error_data(void *error_data, void *correct_data,
56                                 size_t size)
57 {
58         unsigned int offset[2];
59
60         offset[0] = prandom_u32() % (size * BITS_PER_BYTE);
61         do {
62                 offset[1] = prandom_u32() % (size * BITS_PER_BYTE);
63         } while (offset[0] == offset[1]);
64
65         memcpy(error_data, correct_data, size);
66
67         __change_bit_le(offset[0], error_data);
68         __change_bit_le(offset[1], error_data);
69 }
70
71 static unsigned int random_ecc_bit(size_t size)
72 {
73         unsigned int offset = prandom_u32() % (3 * BITS_PER_BYTE);
74
75         if (size == 256) {
76                 /*
77                  * Don't inject a bit error into the insignificant bits (16th
78                  * and 17th bit) in ECC code for 256 byte data block
79                  */
80                 while (offset == 16 || offset == 17)
81                         offset = prandom_u32() % (3 * BITS_PER_BYTE);
82         }
83
84         return offset;
85 }
86
87 static void single_bit_error_ecc(void *error_ecc, void *correct_ecc,
88                                 size_t size)
89 {
90         unsigned int offset = random_ecc_bit(size);
91
92         memcpy(error_ecc, correct_ecc, 3);
93         __change_bit_le(offset, error_ecc);
94 }
95
96 static void double_bit_error_ecc(void *error_ecc, void *correct_ecc,
97                                 size_t size)
98 {
99         unsigned int offset[2];
100
101         offset[0] = random_ecc_bit(size);
102         do {
103                 offset[1] = random_ecc_bit(size);
104         } while (offset[0] == offset[1]);
105
106         memcpy(error_ecc, correct_ecc, 3);
107         __change_bit_le(offset[0], error_ecc);
108         __change_bit_le(offset[1], error_ecc);
109 }
110
111 static void no_bit_error(void *error_data, void *error_ecc,
112                 void *correct_data, void *correct_ecc, const size_t size)
113 {
114         memcpy(error_data, correct_data, size);
115         memcpy(error_ecc, correct_ecc, 3);
116 }
117
118 static int no_bit_error_verify(void *error_data, void *error_ecc,
119                                 void *correct_data, const size_t size)
120 {
121         unsigned char calc_ecc[3];
122         int ret;
123
124         __nand_calculate_ecc(error_data, size, calc_ecc);
125         ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size);
126         if (ret == 0 && !memcmp(correct_data, error_data, size))
127                 return 0;
128
129         return -EINVAL;
130 }
131
132 static void single_bit_error_in_data(void *error_data, void *error_ecc,
133                 void *correct_data, void *correct_ecc, const size_t size)
134 {
135         single_bit_error_data(error_data, correct_data, size);
136         memcpy(error_ecc, correct_ecc, 3);
137 }
138
139 static void single_bit_error_in_ecc(void *error_data, void *error_ecc,
140                 void *correct_data, void *correct_ecc, const size_t size)
141 {
142         memcpy(error_data, correct_data, size);
143         single_bit_error_ecc(error_ecc, correct_ecc, size);
144 }
145
146 static int single_bit_error_correct(void *error_data, void *error_ecc,
147                                 void *correct_data, const size_t size)
148 {
149         unsigned char calc_ecc[3];
150         int ret;
151
152         __nand_calculate_ecc(error_data, size, calc_ecc);
153         ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size);
154         if (ret == 1 && !memcmp(correct_data, error_data, size))
155                 return 0;
156
157         return -EINVAL;
158 }
159
160 static void double_bit_error_in_data(void *error_data, void *error_ecc,
161                 void *correct_data, void *correct_ecc, const size_t size)
162 {
163         double_bit_error_data(error_data, correct_data, size);
164         memcpy(error_ecc, correct_ecc, 3);
165 }
166
167 static void single_bit_error_in_data_and_ecc(void *error_data, void *error_ecc,
168                 void *correct_data, void *correct_ecc, const size_t size)
169 {
170         single_bit_error_data(error_data, correct_data, size);
171         single_bit_error_ecc(error_ecc, correct_ecc, size);
172 }
173
174 static void double_bit_error_in_ecc(void *error_data, void *error_ecc,
175                 void *correct_data, void *correct_ecc, const size_t size)
176 {
177         memcpy(error_data, correct_data, size);
178         double_bit_error_ecc(error_ecc, correct_ecc, size);
179 }
180
181 static int double_bit_error_detect(void *error_data, void *error_ecc,
182                                 void *correct_data, const size_t size)
183 {
184         unsigned char calc_ecc[3];
185         int ret;
186
187         __nand_calculate_ecc(error_data, size, calc_ecc);
188         ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size);
189
190         return (ret == -1) ? 0 : -EINVAL;
191 }
192
193 static const struct nand_ecc_test nand_ecc_test[] = {
194         {
195                 .name = "no-bit-error",
196                 .prepare = no_bit_error,
197                 .verify = no_bit_error_verify,
198         },
199         {
200                 .name = "single-bit-error-in-data-correct",
201                 .prepare = single_bit_error_in_data,
202                 .verify = single_bit_error_correct,
203         },
204         {
205                 .name = "single-bit-error-in-ecc-correct",
206                 .prepare = single_bit_error_in_ecc,
207                 .verify = single_bit_error_correct,
208         },
209         {
210                 .name = "double-bit-error-in-data-detect",
211                 .prepare = double_bit_error_in_data,
212                 .verify = double_bit_error_detect,
213         },
214         {
215                 .name = "single-bit-error-in-data-and-ecc-detect",
216                 .prepare = single_bit_error_in_data_and_ecc,
217                 .verify = double_bit_error_detect,
218         },
219         {
220                 .name = "double-bit-error-in-ecc-detect",
221                 .prepare = double_bit_error_in_ecc,
222                 .verify = double_bit_error_detect,
223         },
224 };
225
226 static void dump_data_ecc(void *error_data, void *error_ecc, void *correct_data,
227                         void *correct_ecc, const size_t size)
228 {
229         pr_info("hexdump of error data:\n");
230         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
231                         error_data, size, false);
232         print_hex_dump(KERN_INFO, "hexdump of error ecc: ",
233                         DUMP_PREFIX_NONE, 16, 1, error_ecc, 3, false);
234
235         pr_info("hexdump of correct data:\n");
236         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
237                         correct_data, size, false);
238         print_hex_dump(KERN_INFO, "hexdump of correct ecc: ",
239                         DUMP_PREFIX_NONE, 16, 1, correct_ecc, 3, false);
240 }
241
242 static int nand_ecc_test_run(const size_t size)
243 {
244         int i;
245         int err = 0;
246         void *error_data;
247         void *error_ecc;
248         void *correct_data;
249         void *correct_ecc;
250
251         error_data = kmalloc(size, GFP_KERNEL);
252         error_ecc = kmalloc(3, GFP_KERNEL);
253         correct_data = kmalloc(size, GFP_KERNEL);
254         correct_ecc = kmalloc(3, GFP_KERNEL);
255
256         if (!error_data || !error_ecc || !correct_data || !correct_ecc) {
257                 err = -ENOMEM;
258                 goto error;
259         }
260
261         prandom_bytes(correct_data, size);
262         __nand_calculate_ecc(correct_data, size, correct_ecc);
263
264         for (i = 0; i < ARRAY_SIZE(nand_ecc_test); i++) {
265                 nand_ecc_test[i].prepare(error_data, error_ecc,
266                                 correct_data, correct_ecc, size);
267                 err = nand_ecc_test[i].verify(error_data, error_ecc,
268                                                 correct_data, size);
269
270                 if (err) {
271                         pr_err("not ok - %s-%zd\n",
272                                 nand_ecc_test[i].name, size);
273                         dump_data_ecc(error_data, error_ecc,
274                                 correct_data, correct_ecc, size);
275                         break;
276                 }
277                 pr_info("ok - %s-%zd\n",
278                         nand_ecc_test[i].name, size);
279
280                 err = mtdtest_relax();
281                 if (err)
282                         break;
283         }
284 error:
285         kfree(error_data);
286         kfree(error_ecc);
287         kfree(correct_data);
288         kfree(correct_ecc);
289
290         return err;
291 }
292
293 #else
294
295 static int nand_ecc_test_run(const size_t size)
296 {
297         return 0;
298 }
299
300 #endif
301
302 static int __init ecc_test_init(void)
303 {
304         int err;
305
306         err = nand_ecc_test_run(256);
307         if (err)
308                 return err;
309
310         return nand_ecc_test_run(512);
311 }
312
313 static void __exit ecc_test_exit(void)
314 {
315 }
316
317 module_init(ecc_test_init);
318 module_exit(ecc_test_exit);
319
320 MODULE_DESCRIPTION("NAND ECC function test module");
321 MODULE_AUTHOR("Akinobu Mita");
322 MODULE_LICENSE("GPL");