Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / mtd / onenand / onenand_base.c
1 /*
2  *  linux/drivers/mtd/onenand/onenand_base.c
3  *
4  *  Copyright © 2005-2009 Samsung Electronics
5  *  Copyright © 2007 Nokia Corporation
6  *
7  *  Kyungmin Park <kyungmin.park@samsung.com>
8  *
9  *  Credits:
10  *      Adrian Hunter <ext-adrian.hunter@nokia.com>:
11  *      auto-placement support, read-while load support, various fixes
12  *
13  *      Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
14  *      Flex-OneNAND support
15  *      Amul Kumar Saha <amul.saha at samsung.com>
16  *      OTP support
17  *
18  * This program is free software; you can redistribute it and/or modify
19  * it under the terms of the GNU General Public License version 2 as
20  * published by the Free Software Foundation.
21  */
22
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/slab.h>
27 #include <linux/sched.h>
28 #include <linux/delay.h>
29 #include <linux/interrupt.h>
30 #include <linux/jiffies.h>
31 #include <linux/mtd/mtd.h>
32 #include <linux/mtd/onenand.h>
33 #include <linux/mtd/partitions.h>
34
35 #include <asm/io.h>
36
37 /*
38  * Multiblock erase if number of blocks to erase is 2 or more.
39  * Maximum number of blocks for simultaneous erase is 64.
40  */
41 #define MB_ERASE_MIN_BLK_COUNT 2
42 #define MB_ERASE_MAX_BLK_COUNT 64
43
44 /* Default Flex-OneNAND boundary and lock respectively */
45 static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
46
47 module_param_array(flex_bdry, int, NULL, 0400);
48 MODULE_PARM_DESC(flex_bdry,     "SLC Boundary information for Flex-OneNAND"
49                                 "Syntax:flex_bdry=DIE_BDRY,LOCK,..."
50                                 "DIE_BDRY: SLC boundary of the die"
51                                 "LOCK: Locking information for SLC boundary"
52                                 "    : 0->Set boundary in unlocked status"
53                                 "    : 1->Set boundary in locked status");
54
55 /* Default OneNAND/Flex-OneNAND OTP options*/
56 static int otp;
57
58 module_param(otp, int, 0400);
59 MODULE_PARM_DESC(otp,   "Corresponding behaviour of OneNAND in OTP"
60                         "Syntax : otp=LOCK_TYPE"
61                         "LOCK_TYPE : Keys issued, for specific OTP Lock type"
62                         "          : 0 -> Default (No Blocks Locked)"
63                         "          : 1 -> OTP Block lock"
64                         "          : 2 -> 1st Block lock"
65                         "          : 3 -> BOTH OTP Block and 1st Block lock");
66
67 /*
68  * flexonenand_oob_128 - oob info for Flex-Onenand with 4KB page
69  * For now, we expose only 64 out of 80 ecc bytes
70  */
71 static struct nand_ecclayout flexonenand_oob_128 = {
72         .eccbytes       = 64,
73         .eccpos         = {
74                 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
75                 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
76                 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
77                 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
78                 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
79                 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
80                 102, 103, 104, 105
81                 },
82         .oobfree        = {
83                 {2, 4}, {18, 4}, {34, 4}, {50, 4},
84                 {66, 4}, {82, 4}, {98, 4}, {114, 4}
85         }
86 };
87
88 /*
89  * onenand_oob_128 - oob info for OneNAND with 4KB page
90  *
91  * Based on specification:
92  * 4Gb M-die OneNAND Flash (KFM4G16Q4M, KFN8G16Q4M). Rev. 1.3, Apr. 2010
93  *
94  * For eccpos we expose only 64 bytes out of 72 (see struct nand_ecclayout)
95  *
96  * oobfree uses the spare area fields marked as
97  * "Managed by internal ECC logic for Logical Sector Number area"
98  */
99 static struct nand_ecclayout onenand_oob_128 = {
100         .eccbytes       = 64,
101         .eccpos         = {
102                 7, 8, 9, 10, 11, 12, 13, 14, 15,
103                 23, 24, 25, 26, 27, 28, 29, 30, 31,
104                 39, 40, 41, 42, 43, 44, 45, 46, 47,
105                 55, 56, 57, 58, 59, 60, 61, 62, 63,
106                 71, 72, 73, 74, 75, 76, 77, 78, 79,
107                 87, 88, 89, 90, 91, 92, 93, 94, 95,
108                 103, 104, 105, 106, 107, 108, 109, 110, 111,
109                 119
110         },
111         .oobfree        = {
112                 {2, 3}, {18, 3}, {34, 3}, {50, 3},
113                 {66, 3}, {82, 3}, {98, 3}, {114, 3}
114         }
115 };
116
117 /**
118  * onenand_oob_64 - oob info for large (2KB) page
119  */
120 static struct nand_ecclayout onenand_oob_64 = {
121         .eccbytes       = 20,
122         .eccpos         = {
123                 8, 9, 10, 11, 12,
124                 24, 25, 26, 27, 28,
125                 40, 41, 42, 43, 44,
126                 56, 57, 58, 59, 60,
127                 },
128         .oobfree        = {
129                 {2, 3}, {14, 2}, {18, 3}, {30, 2},
130                 {34, 3}, {46, 2}, {50, 3}, {62, 2}
131         }
132 };
133
134 /**
135  * onenand_oob_32 - oob info for middle (1KB) page
136  */
137 static struct nand_ecclayout onenand_oob_32 = {
138         .eccbytes       = 10,
139         .eccpos         = {
140                 8, 9, 10, 11, 12,
141                 24, 25, 26, 27, 28,
142                 },
143         .oobfree        = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
144 };
145
146 static const unsigned char ffchars[] = {
147         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
148         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
149         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
150         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
151         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
152         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
153         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
154         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
155         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
156         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
157         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
158         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
159         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
160         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
161         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
162         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
163 };
164
165 /**
166  * onenand_readw - [OneNAND Interface] Read OneNAND register
167  * @param addr          address to read
168  *
169  * Read OneNAND register
170  */
171 static unsigned short onenand_readw(void __iomem *addr)
172 {
173         return readw(addr);
174 }
175
176 /**
177  * onenand_writew - [OneNAND Interface] Write OneNAND register with value
178  * @param value         value to write
179  * @param addr          address to write
180  *
181  * Write OneNAND register with value
182  */
183 static void onenand_writew(unsigned short value, void __iomem *addr)
184 {
185         writew(value, addr);
186 }
187
188 /**
189  * onenand_block_address - [DEFAULT] Get block address
190  * @param this          onenand chip data structure
191  * @param block         the block
192  * @return              translated block address if DDP, otherwise same
193  *
194  * Setup Start Address 1 Register (F100h)
195  */
196 static int onenand_block_address(struct onenand_chip *this, int block)
197 {
198         /* Device Flash Core select, NAND Flash Block Address */
199         if (block & this->density_mask)
200                 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
201
202         return block;
203 }
204
205 /**
206  * onenand_bufferram_address - [DEFAULT] Get bufferram address
207  * @param this          onenand chip data structure
208  * @param block         the block
209  * @return              set DBS value if DDP, otherwise 0
210  *
211  * Setup Start Address 2 Register (F101h) for DDP
212  */
213 static int onenand_bufferram_address(struct onenand_chip *this, int block)
214 {
215         /* Device BufferRAM Select */
216         if (block & this->density_mask)
217                 return ONENAND_DDP_CHIP1;
218
219         return ONENAND_DDP_CHIP0;
220 }
221
222 /**
223  * onenand_page_address - [DEFAULT] Get page address
224  * @param page          the page address
225  * @param sector        the sector address
226  * @return              combined page and sector address
227  *
228  * Setup Start Address 8 Register (F107h)
229  */
230 static int onenand_page_address(int page, int sector)
231 {
232         /* Flash Page Address, Flash Sector Address */
233         int fpa, fsa;
234
235         fpa = page & ONENAND_FPA_MASK;
236         fsa = sector & ONENAND_FSA_MASK;
237
238         return ((fpa << ONENAND_FPA_SHIFT) | fsa);
239 }
240
241 /**
242  * onenand_buffer_address - [DEFAULT] Get buffer address
243  * @param dataram1      DataRAM index
244  * @param sectors       the sector address
245  * @param count         the number of sectors
246  * @return              the start buffer value
247  *
248  * Setup Start Buffer Register (F200h)
249  */
250 static int onenand_buffer_address(int dataram1, int sectors, int count)
251 {
252         int bsa, bsc;
253
254         /* BufferRAM Sector Address */
255         bsa = sectors & ONENAND_BSA_MASK;
256
257         if (dataram1)
258                 bsa |= ONENAND_BSA_DATARAM1;    /* DataRAM1 */
259         else
260                 bsa |= ONENAND_BSA_DATARAM0;    /* DataRAM0 */
261
262         /* BufferRAM Sector Count */
263         bsc = count & ONENAND_BSC_MASK;
264
265         return ((bsa << ONENAND_BSA_SHIFT) | bsc);
266 }
267
268 /**
269  * flexonenand_block- For given address return block number
270  * @param this         - OneNAND device structure
271  * @param addr          - Address for which block number is needed
272  */
273 static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
274 {
275         unsigned boundary, blk, die = 0;
276
277         if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
278                 die = 1;
279                 addr -= this->diesize[0];
280         }
281
282         boundary = this->boundary[die];
283
284         blk = addr >> (this->erase_shift - 1);
285         if (blk > boundary)
286                 blk = (blk + boundary + 1) >> 1;
287
288         blk += die ? this->density_mask : 0;
289         return blk;
290 }
291
292 inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
293 {
294         if (!FLEXONENAND(this))
295                 return addr >> this->erase_shift;
296         return flexonenand_block(this, addr);
297 }
298
299 /**
300  * flexonenand_addr - Return address of the block
301  * @this:               OneNAND device structure
302  * @block:              Block number on Flex-OneNAND
303  *
304  * Return address of the block
305  */
306 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
307 {
308         loff_t ofs = 0;
309         int die = 0, boundary;
310
311         if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
312                 block -= this->density_mask;
313                 die = 1;
314                 ofs = this->diesize[0];
315         }
316
317         boundary = this->boundary[die];
318         ofs += (loff_t)block << (this->erase_shift - 1);
319         if (block > (boundary + 1))
320                 ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
321         return ofs;
322 }
323
324 loff_t onenand_addr(struct onenand_chip *this, int block)
325 {
326         if (!FLEXONENAND(this))
327                 return (loff_t)block << this->erase_shift;
328         return flexonenand_addr(this, block);
329 }
330 EXPORT_SYMBOL(onenand_addr);
331
332 /**
333  * onenand_get_density - [DEFAULT] Get OneNAND density
334  * @param dev_id        OneNAND device ID
335  *
336  * Get OneNAND density from device ID
337  */
338 static inline int onenand_get_density(int dev_id)
339 {
340         int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
341         return (density & ONENAND_DEVICE_DENSITY_MASK);
342 }
343
344 /**
345  * flexonenand_region - [Flex-OneNAND] Return erase region of addr
346  * @param mtd           MTD device structure
347  * @param addr          address whose erase region needs to be identified
348  */
349 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
350 {
351         int i;
352
353         for (i = 0; i < mtd->numeraseregions; i++)
354                 if (addr < mtd->eraseregions[i].offset)
355                         break;
356         return i - 1;
357 }
358 EXPORT_SYMBOL(flexonenand_region);
359
360 /**
361  * onenand_command - [DEFAULT] Send command to OneNAND device
362  * @param mtd           MTD device structure
363  * @param cmd           the command to be sent
364  * @param addr          offset to read from or write to
365  * @param len           number of bytes to read or write
366  *
367  * Send command to OneNAND device. This function is used for middle/large page
368  * devices (1KB/2KB Bytes per page)
369  */
370 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
371 {
372         struct onenand_chip *this = mtd->priv;
373         int value, block, page;
374
375         /* Address translation */
376         switch (cmd) {
377         case ONENAND_CMD_UNLOCK:
378         case ONENAND_CMD_LOCK:
379         case ONENAND_CMD_LOCK_TIGHT:
380         case ONENAND_CMD_UNLOCK_ALL:
381                 block = -1;
382                 page = -1;
383                 break;
384
385         case FLEXONENAND_CMD_PI_ACCESS:
386                 /* addr contains die index */
387                 block = addr * this->density_mask;
388                 page = -1;
389                 break;
390
391         case ONENAND_CMD_ERASE:
392         case ONENAND_CMD_MULTIBLOCK_ERASE:
393         case ONENAND_CMD_ERASE_VERIFY:
394         case ONENAND_CMD_BUFFERRAM:
395         case ONENAND_CMD_OTP_ACCESS:
396                 block = onenand_block(this, addr);
397                 page = -1;
398                 break;
399
400         case FLEXONENAND_CMD_READ_PI:
401                 cmd = ONENAND_CMD_READ;
402                 block = addr * this->density_mask;
403                 page = 0;
404                 break;
405
406         default:
407                 block = onenand_block(this, addr);
408                 if (FLEXONENAND(this))
409                         page = (int) (addr - onenand_addr(this, block))>>\
410                                 this->page_shift;
411                 else
412                         page = (int) (addr >> this->page_shift);
413                 if (ONENAND_IS_2PLANE(this)) {
414                         /* Make the even block number */
415                         block &= ~1;
416                         /* Is it the odd plane? */
417                         if (addr & this->writesize)
418                                 block++;
419                         page >>= 1;
420                 }
421                 page &= this->page_mask;
422                 break;
423         }
424
425         /* NOTE: The setting order of the registers is very important! */
426         if (cmd == ONENAND_CMD_BUFFERRAM) {
427                 /* Select DataRAM for DDP */
428                 value = onenand_bufferram_address(this, block);
429                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
430
431                 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this))
432                         /* It is always BufferRAM0 */
433                         ONENAND_SET_BUFFERRAM0(this);
434                 else
435                         /* Switch to the next data buffer */
436                         ONENAND_SET_NEXT_BUFFERRAM(this);
437
438                 return 0;
439         }
440
441         if (block != -1) {
442                 /* Write 'DFS, FBA' of Flash */
443                 value = onenand_block_address(this, block);
444                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
445
446                 /* Select DataRAM for DDP */
447                 value = onenand_bufferram_address(this, block);
448                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
449         }
450
451         if (page != -1) {
452                 /* Now we use page size operation */
453                 int sectors = 0, count = 0;
454                 int dataram;
455
456                 switch (cmd) {
457                 case FLEXONENAND_CMD_RECOVER_LSB:
458                 case ONENAND_CMD_READ:
459                 case ONENAND_CMD_READOOB:
460                         if (ONENAND_IS_4KB_PAGE(this))
461                                 /* It is always BufferRAM0 */
462                                 dataram = ONENAND_SET_BUFFERRAM0(this);
463                         else
464                                 dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
465                         break;
466
467                 default:
468                         if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
469                                 cmd = ONENAND_CMD_2X_PROG;
470                         dataram = ONENAND_CURRENT_BUFFERRAM(this);
471                         break;
472                 }
473
474                 /* Write 'FPA, FSA' of Flash */
475                 value = onenand_page_address(page, sectors);
476                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
477
478                 /* Write 'BSA, BSC' of DataRAM */
479                 value = onenand_buffer_address(dataram, sectors, count);
480                 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
481         }
482
483         /* Interrupt clear */
484         this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
485
486         /* Write command */
487         this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
488
489         return 0;
490 }
491
492 /**
493  * onenand_read_ecc - return ecc status
494  * @param this          onenand chip structure
495  */
496 static inline int onenand_read_ecc(struct onenand_chip *this)
497 {
498         int ecc, i, result = 0;
499
500         if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this))
501                 return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
502
503         for (i = 0; i < 4; i++) {
504                 ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i*2);
505                 if (likely(!ecc))
506                         continue;
507                 if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
508                         return ONENAND_ECC_2BIT_ALL;
509                 else
510                         result = ONENAND_ECC_1BIT_ALL;
511         }
512
513         return result;
514 }
515
516 /**
517  * onenand_wait - [DEFAULT] wait until the command is done
518  * @param mtd           MTD device structure
519  * @param state         state to select the max. timeout value
520  *
521  * Wait for command done. This applies to all OneNAND command
522  * Read can take up to 30us, erase up to 2ms and program up to 350us
523  * according to general OneNAND specs
524  */
525 static int onenand_wait(struct mtd_info *mtd, int state)
526 {
527         struct onenand_chip * this = mtd->priv;
528         unsigned long timeout;
529         unsigned int flags = ONENAND_INT_MASTER;
530         unsigned int interrupt = 0;
531         unsigned int ctrl;
532
533         /* The 20 msec is enough */
534         timeout = jiffies + msecs_to_jiffies(20);
535         while (time_before(jiffies, timeout)) {
536                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
537
538                 if (interrupt & flags)
539                         break;
540
541                 if (state != FL_READING && state != FL_PREPARING_ERASE)
542                         cond_resched();
543         }
544         /* To get correct interrupt status in timeout case */
545         interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
546
547         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
548
549         /*
550          * In the Spec. it checks the controller status first
551          * However if you get the correct information in case of
552          * power off recovery (POR) test, it should read ECC status first
553          */
554         if (interrupt & ONENAND_INT_READ) {
555                 int ecc = onenand_read_ecc(this);
556                 if (ecc) {
557                         if (ecc & ONENAND_ECC_2BIT_ALL) {
558                                 printk(KERN_ERR "%s: ECC error = 0x%04x\n",
559                                         __func__, ecc);
560                                 mtd->ecc_stats.failed++;
561                                 return -EBADMSG;
562                         } else if (ecc & ONENAND_ECC_1BIT_ALL) {
563                                 printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n",
564                                         __func__, ecc);
565                                 mtd->ecc_stats.corrected++;
566                         }
567                 }
568         } else if (state == FL_READING) {
569                 printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
570                         __func__, ctrl, interrupt);
571                 return -EIO;
572         }
573
574         if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) {
575                 printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
576                        __func__, ctrl, interrupt);
577                 return -EIO;
578         }
579
580         if (!(interrupt & ONENAND_INT_MASTER)) {
581                 printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n",
582                        __func__, ctrl, interrupt);
583                 return -EIO;
584         }
585
586         /* If there's controller error, it's a real error */
587         if (ctrl & ONENAND_CTRL_ERROR) {
588                 printk(KERN_ERR "%s: controller error = 0x%04x\n",
589                         __func__, ctrl);
590                 if (ctrl & ONENAND_CTRL_LOCK)
591                         printk(KERN_ERR "%s: it's locked error.\n", __func__);
592                 return -EIO;
593         }
594
595         return 0;
596 }
597
598 /*
599  * onenand_interrupt - [DEFAULT] onenand interrupt handler
600  * @param irq           onenand interrupt number
601  * @param dev_id        interrupt data
602  *
603  * complete the work
604  */
605 static irqreturn_t onenand_interrupt(int irq, void *data)
606 {
607         struct onenand_chip *this = data;
608
609         /* To handle shared interrupt */
610         if (!this->complete.done)
611                 complete(&this->complete);
612
613         return IRQ_HANDLED;
614 }
615
616 /*
617  * onenand_interrupt_wait - [DEFAULT] wait until the command is done
618  * @param mtd           MTD device structure
619  * @param state         state to select the max. timeout value
620  *
621  * Wait for command done.
622  */
623 static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
624 {
625         struct onenand_chip *this = mtd->priv;
626
627         wait_for_completion(&this->complete);
628
629         return onenand_wait(mtd, state);
630 }
631
632 /*
633  * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
634  * @param mtd           MTD device structure
635  * @param state         state to select the max. timeout value
636  *
637  * Try interrupt based wait (It is used one-time)
638  */
639 static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
640 {
641         struct onenand_chip *this = mtd->priv;
642         unsigned long remain, timeout;
643
644         /* We use interrupt wait first */
645         this->wait = onenand_interrupt_wait;
646
647         timeout = msecs_to_jiffies(100);
648         remain = wait_for_completion_timeout(&this->complete, timeout);
649         if (!remain) {
650                 printk(KERN_INFO "OneNAND: There's no interrupt. "
651                                 "We use the normal wait\n");
652
653                 /* Release the irq */
654                 free_irq(this->irq, this);
655
656                 this->wait = onenand_wait;
657         }
658
659         return onenand_wait(mtd, state);
660 }
661
662 /*
663  * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
664  * @param mtd           MTD device structure
665  *
666  * There's two method to wait onenand work
667  * 1. polling - read interrupt status register
668  * 2. interrupt - use the kernel interrupt method
669  */
670 static void onenand_setup_wait(struct mtd_info *mtd)
671 {
672         struct onenand_chip *this = mtd->priv;
673         int syscfg;
674
675         init_completion(&this->complete);
676
677         if (this->irq <= 0) {
678                 this->wait = onenand_wait;
679                 return;
680         }
681
682         if (request_irq(this->irq, &onenand_interrupt,
683                                 IRQF_SHARED, "onenand", this)) {
684                 /* If we can't get irq, use the normal wait */
685                 this->wait = onenand_wait;
686                 return;
687         }
688
689         /* Enable interrupt */
690         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
691         syscfg |= ONENAND_SYS_CFG1_IOBE;
692         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
693
694         this->wait = onenand_try_interrupt_wait;
695 }
696
697 /**
698  * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
699  * @param mtd           MTD data structure
700  * @param area          BufferRAM area
701  * @return              offset given area
702  *
703  * Return BufferRAM offset given area
704  */
705 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
706 {
707         struct onenand_chip *this = mtd->priv;
708
709         if (ONENAND_CURRENT_BUFFERRAM(this)) {
710                 /* Note: the 'this->writesize' is a real page size */
711                 if (area == ONENAND_DATARAM)
712                         return this->writesize;
713                 if (area == ONENAND_SPARERAM)
714                         return mtd->oobsize;
715         }
716
717         return 0;
718 }
719
720 /**
721  * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
722  * @param mtd           MTD data structure
723  * @param area          BufferRAM area
724  * @param buffer        the databuffer to put/get data
725  * @param offset        offset to read from or write to
726  * @param count         number of bytes to read/write
727  *
728  * Read the BufferRAM area
729  */
730 static int onenand_read_bufferram(struct mtd_info *mtd, int area,
731                 unsigned char *buffer, int offset, size_t count)
732 {
733         struct onenand_chip *this = mtd->priv;
734         void __iomem *bufferram;
735
736         bufferram = this->base + area;
737
738         bufferram += onenand_bufferram_offset(mtd, area);
739
740         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
741                 unsigned short word;
742
743                 /* Align with word(16-bit) size */
744                 count--;
745
746                 /* Read word and save byte */
747                 word = this->read_word(bufferram + offset + count);
748                 buffer[count] = (word & 0xff);
749         }
750
751         memcpy(buffer, bufferram + offset, count);
752
753         return 0;
754 }
755
756 /**
757  * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
758  * @param mtd           MTD data structure
759  * @param area          BufferRAM area
760  * @param buffer        the databuffer to put/get data
761  * @param offset        offset to read from or write to
762  * @param count         number of bytes to read/write
763  *
764  * Read the BufferRAM area with Sync. Burst Mode
765  */
766 static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
767                 unsigned char *buffer, int offset, size_t count)
768 {
769         struct onenand_chip *this = mtd->priv;
770         void __iomem *bufferram;
771
772         bufferram = this->base + area;
773
774         bufferram += onenand_bufferram_offset(mtd, area);
775
776         this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
777
778         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
779                 unsigned short word;
780
781                 /* Align with word(16-bit) size */
782                 count--;
783
784                 /* Read word and save byte */
785                 word = this->read_word(bufferram + offset + count);
786                 buffer[count] = (word & 0xff);
787         }
788
789         memcpy(buffer, bufferram + offset, count);
790
791         this->mmcontrol(mtd, 0);
792
793         return 0;
794 }
795
796 /**
797  * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
798  * @param mtd           MTD data structure
799  * @param area          BufferRAM area
800  * @param buffer        the databuffer to put/get data
801  * @param offset        offset to read from or write to
802  * @param count         number of bytes to read/write
803  *
804  * Write the BufferRAM area
805  */
806 static int onenand_write_bufferram(struct mtd_info *mtd, int area,
807                 const unsigned char *buffer, int offset, size_t count)
808 {
809         struct onenand_chip *this = mtd->priv;
810         void __iomem *bufferram;
811
812         bufferram = this->base + area;
813
814         bufferram += onenand_bufferram_offset(mtd, area);
815
816         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
817                 unsigned short word;
818                 int byte_offset;
819
820                 /* Align with word(16-bit) size */
821                 count--;
822
823                 /* Calculate byte access offset */
824                 byte_offset = offset + count;
825
826                 /* Read word and save byte */
827                 word = this->read_word(bufferram + byte_offset);
828                 word = (word & ~0xff) | buffer[count];
829                 this->write_word(word, bufferram + byte_offset);
830         }
831
832         memcpy(bufferram + offset, buffer, count);
833
834         return 0;
835 }
836
837 /**
838  * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
839  * @param mtd           MTD data structure
840  * @param addr          address to check
841  * @return              blockpage address
842  *
843  * Get blockpage address at 2x program mode
844  */
845 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
846 {
847         struct onenand_chip *this = mtd->priv;
848         int blockpage, block, page;
849
850         /* Calculate the even block number */
851         block = (int) (addr >> this->erase_shift) & ~1;
852         /* Is it the odd plane? */
853         if (addr & this->writesize)
854                 block++;
855         page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
856         blockpage = (block << 7) | page;
857
858         return blockpage;
859 }
860
861 /**
862  * onenand_check_bufferram - [GENERIC] Check BufferRAM information
863  * @param mtd           MTD data structure
864  * @param addr          address to check
865  * @return              1 if there are valid data, otherwise 0
866  *
867  * Check bufferram if there is data we required
868  */
869 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
870 {
871         struct onenand_chip *this = mtd->priv;
872         int blockpage, found = 0;
873         unsigned int i;
874
875         if (ONENAND_IS_2PLANE(this))
876                 blockpage = onenand_get_2x_blockpage(mtd, addr);
877         else
878                 blockpage = (int) (addr >> this->page_shift);
879
880         /* Is there valid data? */
881         i = ONENAND_CURRENT_BUFFERRAM(this);
882         if (this->bufferram[i].blockpage == blockpage)
883                 found = 1;
884         else {
885                 /* Check another BufferRAM */
886                 i = ONENAND_NEXT_BUFFERRAM(this);
887                 if (this->bufferram[i].blockpage == blockpage) {
888                         ONENAND_SET_NEXT_BUFFERRAM(this);
889                         found = 1;
890                 }
891         }
892
893         if (found && ONENAND_IS_DDP(this)) {
894                 /* Select DataRAM for DDP */
895                 int block = onenand_block(this, addr);
896                 int value = onenand_bufferram_address(this, block);
897                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
898         }
899
900         return found;
901 }
902
903 /**
904  * onenand_update_bufferram - [GENERIC] Update BufferRAM information
905  * @param mtd           MTD data structure
906  * @param addr          address to update
907  * @param valid         valid flag
908  *
909  * Update BufferRAM information
910  */
911 static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
912                 int valid)
913 {
914         struct onenand_chip *this = mtd->priv;
915         int blockpage;
916         unsigned int i;
917
918         if (ONENAND_IS_2PLANE(this))
919                 blockpage = onenand_get_2x_blockpage(mtd, addr);
920         else
921                 blockpage = (int) (addr >> this->page_shift);
922
923         /* Invalidate another BufferRAM */
924         i = ONENAND_NEXT_BUFFERRAM(this);
925         if (this->bufferram[i].blockpage == blockpage)
926                 this->bufferram[i].blockpage = -1;
927
928         /* Update BufferRAM */
929         i = ONENAND_CURRENT_BUFFERRAM(this);
930         if (valid)
931                 this->bufferram[i].blockpage = blockpage;
932         else
933                 this->bufferram[i].blockpage = -1;
934 }
935
936 /**
937  * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
938  * @param mtd           MTD data structure
939  * @param addr          start address to invalidate
940  * @param len           length to invalidate
941  *
942  * Invalidate BufferRAM information
943  */
944 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
945                 unsigned int len)
946 {
947         struct onenand_chip *this = mtd->priv;
948         int i;
949         loff_t end_addr = addr + len;
950
951         /* Invalidate BufferRAM */
952         for (i = 0; i < MAX_BUFFERRAM; i++) {
953                 loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
954                 if (buf_addr >= addr && buf_addr < end_addr)
955                         this->bufferram[i].blockpage = -1;
956         }
957 }
958
959 /**
960  * onenand_get_device - [GENERIC] Get chip for selected access
961  * @param mtd           MTD device structure
962  * @param new_state     the state which is requested
963  *
964  * Get the device and lock it for exclusive access
965  */
966 static int onenand_get_device(struct mtd_info *mtd, int new_state)
967 {
968         struct onenand_chip *this = mtd->priv;
969         DECLARE_WAITQUEUE(wait, current);
970
971         /*
972          * Grab the lock and see if the device is available
973          */
974         while (1) {
975                 spin_lock(&this->chip_lock);
976                 if (this->state == FL_READY) {
977                         this->state = new_state;
978                         spin_unlock(&this->chip_lock);
979                         if (new_state != FL_PM_SUSPENDED && this->enable)
980                                 this->enable(mtd);
981                         break;
982                 }
983                 if (new_state == FL_PM_SUSPENDED) {
984                         spin_unlock(&this->chip_lock);
985                         return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
986                 }
987                 set_current_state(TASK_UNINTERRUPTIBLE);
988                 add_wait_queue(&this->wq, &wait);
989                 spin_unlock(&this->chip_lock);
990                 schedule();
991                 remove_wait_queue(&this->wq, &wait);
992         }
993
994         return 0;
995 }
996
997 /**
998  * onenand_release_device - [GENERIC] release chip
999  * @param mtd           MTD device structure
1000  *
1001  * Deselect, release chip lock and wake up anyone waiting on the device
1002  */
1003 static void onenand_release_device(struct mtd_info *mtd)
1004 {
1005         struct onenand_chip *this = mtd->priv;
1006
1007         if (this->state != FL_PM_SUSPENDED && this->disable)
1008                 this->disable(mtd);
1009         /* Release the chip */
1010         spin_lock(&this->chip_lock);
1011         this->state = FL_READY;
1012         wake_up(&this->wq);
1013         spin_unlock(&this->chip_lock);
1014 }
1015
1016 /**
1017  * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
1018  * @param mtd           MTD device structure
1019  * @param buf           destination address
1020  * @param column        oob offset to read from
1021  * @param thislen       oob length to read
1022  */
1023 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
1024                                 int thislen)
1025 {
1026         struct onenand_chip *this = mtd->priv;
1027         struct nand_oobfree *free;
1028         int readcol = column;
1029         int readend = column + thislen;
1030         int lastgap = 0;
1031         unsigned int i;
1032         uint8_t *oob_buf = this->oob_buf;
1033
1034         free = this->ecclayout->oobfree;
1035         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1036                 if (readcol >= lastgap)
1037                         readcol += free->offset - lastgap;
1038                 if (readend >= lastgap)
1039                         readend += free->offset - lastgap;
1040                 lastgap = free->offset + free->length;
1041         }
1042         this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1043         free = this->ecclayout->oobfree;
1044         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1045                 int free_end = free->offset + free->length;
1046                 if (free->offset < readend && free_end > readcol) {
1047                         int st = max_t(int,free->offset,readcol);
1048                         int ed = min_t(int,free_end,readend);
1049                         int n = ed - st;
1050                         memcpy(buf, oob_buf + st, n);
1051                         buf += n;
1052                 } else if (column == 0)
1053                         break;
1054         }
1055         return 0;
1056 }
1057
1058 /**
1059  * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
1060  * @param mtd           MTD device structure
1061  * @param addr          address to recover
1062  * @param status        return value from onenand_wait / onenand_bbt_wait
1063  *
1064  * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
1065  * lower page address and MSB page has higher page address in paired pages.
1066  * If power off occurs during MSB page program, the paired LSB page data can
1067  * become corrupt. LSB page recovery read is a way to read LSB page though page
1068  * data are corrupted. When uncorrectable error occurs as a result of LSB page
1069  * read after power up, issue LSB page recovery read.
1070  */
1071 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
1072 {
1073         struct onenand_chip *this = mtd->priv;
1074         int i;
1075
1076         /* Recovery is only for Flex-OneNAND */
1077         if (!FLEXONENAND(this))
1078                 return status;
1079
1080         /* check if we failed due to uncorrectable error */
1081         if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR)
1082                 return status;
1083
1084         /* check if address lies in MLC region */
1085         i = flexonenand_region(mtd, addr);
1086         if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
1087                 return status;
1088
1089         /* We are attempting to reread, so decrement stats.failed
1090          * which was incremented by onenand_wait due to read failure
1091          */
1092         printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n",
1093                 __func__);
1094         mtd->ecc_stats.failed--;
1095
1096         /* Issue the LSB page recovery command */
1097         this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
1098         return this->wait(mtd, FL_READING);
1099 }
1100
1101 /**
1102  * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
1103  * @param mtd           MTD device structure
1104  * @param from          offset to read from
1105  * @param ops:          oob operation description structure
1106  *
1107  * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
1108  * So, read-while-load is not present.
1109  */
1110 static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1111                                 struct mtd_oob_ops *ops)
1112 {
1113         struct onenand_chip *this = mtd->priv;
1114         struct mtd_ecc_stats stats;
1115         size_t len = ops->len;
1116         size_t ooblen = ops->ooblen;
1117         u_char *buf = ops->datbuf;
1118         u_char *oobbuf = ops->oobbuf;
1119         int read = 0, column, thislen;
1120         int oobread = 0, oobcolumn, thisooblen, oobsize;
1121         int ret = 0;
1122         int writesize = this->writesize;
1123
1124         pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1125                         (int)len);
1126
1127         if (ops->mode == MTD_OPS_AUTO_OOB)
1128                 oobsize = this->ecclayout->oobavail;
1129         else
1130                 oobsize = mtd->oobsize;
1131
1132         oobcolumn = from & (mtd->oobsize - 1);
1133
1134         /* Do not allow reads past end of device */
1135         if (from + len > mtd->size) {
1136                 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1137                         __func__);
1138                 ops->retlen = 0;
1139                 ops->oobretlen = 0;
1140                 return -EINVAL;
1141         }
1142
1143         stats = mtd->ecc_stats;
1144
1145         while (read < len) {
1146                 cond_resched();
1147
1148                 thislen = min_t(int, writesize, len - read);
1149
1150                 column = from & (writesize - 1);
1151                 if (column + thislen > writesize)
1152                         thislen = writesize - column;
1153
1154                 if (!onenand_check_bufferram(mtd, from)) {
1155                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
1156
1157                         ret = this->wait(mtd, FL_READING);
1158                         if (unlikely(ret))
1159                                 ret = onenand_recover_lsb(mtd, from, ret);
1160                         onenand_update_bufferram(mtd, from, !ret);
1161                         if (mtd_is_eccerr(ret))
1162                                 ret = 0;
1163                         if (ret)
1164                                 break;
1165                 }
1166
1167                 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1168                 if (oobbuf) {
1169                         thisooblen = oobsize - oobcolumn;
1170                         thisooblen = min_t(int, thisooblen, ooblen - oobread);
1171
1172                         if (ops->mode == MTD_OPS_AUTO_OOB)
1173                                 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1174                         else
1175                                 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1176                         oobread += thisooblen;
1177                         oobbuf += thisooblen;
1178                         oobcolumn = 0;
1179                 }
1180
1181                 read += thislen;
1182                 if (read == len)
1183                         break;
1184
1185                 from += thislen;
1186                 buf += thislen;
1187         }
1188
1189         /*
1190          * Return success, if no ECC failures, else -EBADMSG
1191          * fs driver will take care of that, because
1192          * retlen == desired len and result == -EBADMSG
1193          */
1194         ops->retlen = read;
1195         ops->oobretlen = oobread;
1196
1197         if (ret)
1198                 return ret;
1199
1200         if (mtd->ecc_stats.failed - stats.failed)
1201                 return -EBADMSG;
1202
1203         /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1204         return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
1205 }
1206
1207 /**
1208  * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
1209  * @param mtd           MTD device structure
1210  * @param from          offset to read from
1211  * @param ops:          oob operation description structure
1212  *
1213  * OneNAND read main and/or out-of-band data
1214  */
1215 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1216                                 struct mtd_oob_ops *ops)
1217 {
1218         struct onenand_chip *this = mtd->priv;
1219         struct mtd_ecc_stats stats;
1220         size_t len = ops->len;
1221         size_t ooblen = ops->ooblen;
1222         u_char *buf = ops->datbuf;
1223         u_char *oobbuf = ops->oobbuf;
1224         int read = 0, column, thislen;
1225         int oobread = 0, oobcolumn, thisooblen, oobsize;
1226         int ret = 0, boundary = 0;
1227         int writesize = this->writesize;
1228
1229         pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1230                         (int)len);
1231
1232         if (ops->mode == MTD_OPS_AUTO_OOB)
1233                 oobsize = this->ecclayout->oobavail;
1234         else
1235                 oobsize = mtd->oobsize;
1236
1237         oobcolumn = from & (mtd->oobsize - 1);
1238
1239         /* Do not allow reads past end of device */
1240         if ((from + len) > mtd->size) {
1241                 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1242                         __func__);
1243                 ops->retlen = 0;
1244                 ops->oobretlen = 0;
1245                 return -EINVAL;
1246         }
1247
1248         stats = mtd->ecc_stats;
1249
1250         /* Read-while-load method */
1251
1252         /* Do first load to bufferRAM */
1253         if (read < len) {
1254                 if (!onenand_check_bufferram(mtd, from)) {
1255                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
1256                         ret = this->wait(mtd, FL_READING);
1257                         onenand_update_bufferram(mtd, from, !ret);
1258                         if (mtd_is_eccerr(ret))
1259                                 ret = 0;
1260                 }
1261         }
1262
1263         thislen = min_t(int, writesize, len - read);
1264         column = from & (writesize - 1);
1265         if (column + thislen > writesize)
1266                 thislen = writesize - column;
1267
1268         while (!ret) {
1269                 /* If there is more to load then start next load */
1270                 from += thislen;
1271                 if (read + thislen < len) {
1272                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
1273                         /*
1274                          * Chip boundary handling in DDP
1275                          * Now we issued chip 1 read and pointed chip 1
1276                          * bufferram so we have to point chip 0 bufferram.
1277                          */
1278                         if (ONENAND_IS_DDP(this) &&
1279                             unlikely(from == (this->chipsize >> 1))) {
1280                                 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
1281                                 boundary = 1;
1282                         } else
1283                                 boundary = 0;
1284                         ONENAND_SET_PREV_BUFFERRAM(this);
1285                 }
1286                 /* While load is going, read from last bufferRAM */
1287                 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1288
1289                 /* Read oob area if needed */
1290                 if (oobbuf) {
1291                         thisooblen = oobsize - oobcolumn;
1292                         thisooblen = min_t(int, thisooblen, ooblen - oobread);
1293
1294                         if (ops->mode == MTD_OPS_AUTO_OOB)
1295                                 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1296                         else
1297                                 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1298                         oobread += thisooblen;
1299                         oobbuf += thisooblen;
1300                         oobcolumn = 0;
1301                 }
1302
1303                 /* See if we are done */
1304                 read += thislen;
1305                 if (read == len)
1306                         break;
1307                 /* Set up for next read from bufferRAM */
1308                 if (unlikely(boundary))
1309                         this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
1310                 ONENAND_SET_NEXT_BUFFERRAM(this);
1311                 buf += thislen;
1312                 thislen = min_t(int, writesize, len - read);
1313                 column = 0;
1314                 cond_resched();
1315                 /* Now wait for load */
1316                 ret = this->wait(mtd, FL_READING);
1317                 onenand_update_bufferram(mtd, from, !ret);
1318                 if (mtd_is_eccerr(ret))
1319                         ret = 0;
1320         }
1321
1322         /*
1323          * Return success, if no ECC failures, else -EBADMSG
1324          * fs driver will take care of that, because
1325          * retlen == desired len and result == -EBADMSG
1326          */
1327         ops->retlen = read;
1328         ops->oobretlen = oobread;
1329
1330         if (ret)
1331                 return ret;
1332
1333         if (mtd->ecc_stats.failed - stats.failed)
1334                 return -EBADMSG;
1335
1336         /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1337         return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
1338 }
1339
1340 /**
1341  * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
1342  * @param mtd           MTD device structure
1343  * @param from          offset to read from
1344  * @param ops:          oob operation description structure
1345  *
1346  * OneNAND read out-of-band data from the spare area
1347  */
1348 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
1349                         struct mtd_oob_ops *ops)
1350 {
1351         struct onenand_chip *this = mtd->priv;
1352         struct mtd_ecc_stats stats;
1353         int read = 0, thislen, column, oobsize;
1354         size_t len = ops->ooblen;
1355         unsigned int mode = ops->mode;
1356         u_char *buf = ops->oobbuf;
1357         int ret = 0, readcmd;
1358
1359         from += ops->ooboffs;
1360
1361         pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1362                         (int)len);
1363
1364         /* Initialize return length value */
1365         ops->oobretlen = 0;
1366
1367         if (mode == MTD_OPS_AUTO_OOB)
1368                 oobsize = this->ecclayout->oobavail;
1369         else
1370                 oobsize = mtd->oobsize;
1371
1372         column = from & (mtd->oobsize - 1);
1373
1374         if (unlikely(column >= oobsize)) {
1375                 printk(KERN_ERR "%s: Attempted to start read outside oob\n",
1376                         __func__);
1377                 return -EINVAL;
1378         }
1379
1380         /* Do not allow reads past end of device */
1381         if (unlikely(from >= mtd->size ||
1382                      column + len > ((mtd->size >> this->page_shift) -
1383                                      (from >> this->page_shift)) * oobsize)) {
1384                 printk(KERN_ERR "%s: Attempted to read beyond end of device\n",
1385                         __func__);
1386                 return -EINVAL;
1387         }
1388
1389         stats = mtd->ecc_stats;
1390
1391         readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1392
1393         while (read < len) {
1394                 cond_resched();
1395
1396                 thislen = oobsize - column;
1397                 thislen = min_t(int, thislen, len);
1398
1399                 this->command(mtd, readcmd, from, mtd->oobsize);
1400
1401                 onenand_update_bufferram(mtd, from, 0);
1402
1403                 ret = this->wait(mtd, FL_READING);
1404                 if (unlikely(ret))
1405                         ret = onenand_recover_lsb(mtd, from, ret);
1406
1407                 if (ret && !mtd_is_eccerr(ret)) {
1408                         printk(KERN_ERR "%s: read failed = 0x%x\n",
1409                                 __func__, ret);
1410                         break;
1411                 }
1412
1413                 if (mode == MTD_OPS_AUTO_OOB)
1414                         onenand_transfer_auto_oob(mtd, buf, column, thislen);
1415                 else
1416                         this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1417
1418                 read += thislen;
1419
1420                 if (read == len)
1421                         break;
1422
1423                 buf += thislen;
1424
1425                 /* Read more? */
1426                 if (read < len) {
1427                         /* Page size */
1428                         from += mtd->writesize;
1429                         column = 0;
1430                 }
1431         }
1432
1433         ops->oobretlen = read;
1434
1435         if (ret)
1436                 return ret;
1437
1438         if (mtd->ecc_stats.failed - stats.failed)
1439                 return -EBADMSG;
1440
1441         return 0;
1442 }
1443
1444 /**
1445  * onenand_read - [MTD Interface] Read data from flash
1446  * @param mtd           MTD device structure
1447  * @param from          offset to read from
1448  * @param len           number of bytes to read
1449  * @param retlen        pointer to variable to store the number of read bytes
1450  * @param buf           the databuffer to put data
1451  *
1452  * Read with ecc
1453 */
1454 static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1455         size_t *retlen, u_char *buf)
1456 {
1457         struct onenand_chip *this = mtd->priv;
1458         struct mtd_oob_ops ops = {
1459                 .len    = len,
1460                 .ooblen = 0,
1461                 .datbuf = buf,
1462                 .oobbuf = NULL,
1463         };
1464         int ret;
1465
1466         onenand_get_device(mtd, FL_READING);
1467         ret = ONENAND_IS_4KB_PAGE(this) ?
1468                 onenand_mlc_read_ops_nolock(mtd, from, &ops) :
1469                 onenand_read_ops_nolock(mtd, from, &ops);
1470         onenand_release_device(mtd);
1471
1472         *retlen = ops.retlen;
1473         return ret;
1474 }
1475
1476 /**
1477  * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1478  * @param mtd:          MTD device structure
1479  * @param from:         offset to read from
1480  * @param ops:          oob operation description structure
1481
1482  * Read main and/or out-of-band
1483  */
1484 static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1485                             struct mtd_oob_ops *ops)
1486 {
1487         struct onenand_chip *this = mtd->priv;
1488         int ret;
1489
1490         switch (ops->mode) {
1491         case MTD_OPS_PLACE_OOB:
1492         case MTD_OPS_AUTO_OOB:
1493                 break;
1494         case MTD_OPS_RAW:
1495                 /* Not implemented yet */
1496         default:
1497                 return -EINVAL;
1498         }
1499
1500         onenand_get_device(mtd, FL_READING);
1501         if (ops->datbuf)
1502                 ret = ONENAND_IS_4KB_PAGE(this) ?
1503                         onenand_mlc_read_ops_nolock(mtd, from, ops) :
1504                         onenand_read_ops_nolock(mtd, from, ops);
1505         else
1506                 ret = onenand_read_oob_nolock(mtd, from, ops);
1507         onenand_release_device(mtd);
1508
1509         return ret;
1510 }
1511
1512 /**
1513  * onenand_bbt_wait - [DEFAULT] wait until the command is done
1514  * @param mtd           MTD device structure
1515  * @param state         state to select the max. timeout value
1516  *
1517  * Wait for command done.
1518  */
1519 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1520 {
1521         struct onenand_chip *this = mtd->priv;
1522         unsigned long timeout;
1523         unsigned int interrupt, ctrl, ecc, addr1, addr8;
1524
1525         /* The 20 msec is enough */
1526         timeout = jiffies + msecs_to_jiffies(20);
1527         while (time_before(jiffies, timeout)) {
1528                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1529                 if (interrupt & ONENAND_INT_MASTER)
1530                         break;
1531         }
1532         /* To get correct interrupt status in timeout case */
1533         interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1534         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1535         addr1 = this->read_word(this->base + ONENAND_REG_START_ADDRESS1);
1536         addr8 = this->read_word(this->base + ONENAND_REG_START_ADDRESS8);
1537
1538         if (interrupt & ONENAND_INT_READ) {
1539                 ecc = onenand_read_ecc(this);
1540                 if (ecc & ONENAND_ECC_2BIT_ALL) {
1541                         printk(KERN_DEBUG "%s: ecc 0x%04x ctrl 0x%04x "
1542                                "intr 0x%04x addr1 %#x addr8 %#x\n",
1543                                __func__, ecc, ctrl, interrupt, addr1, addr8);
1544                         return ONENAND_BBT_READ_ECC_ERROR;
1545                 }
1546         } else {
1547                 printk(KERN_ERR "%s: read timeout! ctrl 0x%04x "
1548                        "intr 0x%04x addr1 %#x addr8 %#x\n",
1549                        __func__, ctrl, interrupt, addr1, addr8);
1550                 return ONENAND_BBT_READ_FATAL_ERROR;
1551         }
1552
1553         /* Initial bad block case: 0x2400 or 0x0400 */
1554         if (ctrl & ONENAND_CTRL_ERROR) {
1555                 printk(KERN_DEBUG "%s: ctrl 0x%04x intr 0x%04x addr1 %#x "
1556                        "addr8 %#x\n", __func__, ctrl, interrupt, addr1, addr8);
1557                 return ONENAND_BBT_READ_ERROR;
1558         }
1559
1560         return 0;
1561 }
1562
1563 /**
1564  * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1565  * @param mtd           MTD device structure
1566  * @param from          offset to read from
1567  * @param ops           oob operation description structure
1568  *
1569  * OneNAND read out-of-band data from the spare area for bbt scan
1570  */
1571 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from, 
1572                             struct mtd_oob_ops *ops)
1573 {
1574         struct onenand_chip *this = mtd->priv;
1575         int read = 0, thislen, column;
1576         int ret = 0, readcmd;
1577         size_t len = ops->ooblen;
1578         u_char *buf = ops->oobbuf;
1579
1580         pr_debug("%s: from = 0x%08x, len = %zi\n", __func__, (unsigned int)from,
1581                         len);
1582
1583         /* Initialize return value */
1584         ops->oobretlen = 0;
1585
1586         /* Do not allow reads past end of device */
1587         if (unlikely((from + len) > mtd->size)) {
1588                 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1589                         __func__);
1590                 return ONENAND_BBT_READ_FATAL_ERROR;
1591         }
1592
1593         /* Grab the lock and see if the device is available */
1594         onenand_get_device(mtd, FL_READING);
1595
1596         column = from & (mtd->oobsize - 1);
1597
1598         readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1599
1600         while (read < len) {
1601                 cond_resched();
1602
1603                 thislen = mtd->oobsize - column;
1604                 thislen = min_t(int, thislen, len);
1605
1606                 this->command(mtd, readcmd, from, mtd->oobsize);
1607
1608                 onenand_update_bufferram(mtd, from, 0);
1609
1610                 ret = this->bbt_wait(mtd, FL_READING);
1611                 if (unlikely(ret))
1612                         ret = onenand_recover_lsb(mtd, from, ret);
1613
1614                 if (ret)
1615                         break;
1616
1617                 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1618                 read += thislen;
1619                 if (read == len)
1620                         break;
1621
1622                 buf += thislen;
1623
1624                 /* Read more? */
1625                 if (read < len) {
1626                         /* Update Page size */
1627                         from += this->writesize;
1628                         column = 0;
1629                 }
1630         }
1631
1632         /* Deselect and wake up anyone waiting on the device */
1633         onenand_release_device(mtd);
1634
1635         ops->oobretlen = read;
1636         return ret;
1637 }
1638
1639 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1640 /**
1641  * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1642  * @param mtd           MTD device structure
1643  * @param buf           the databuffer to verify
1644  * @param to            offset to read from
1645  */
1646 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1647 {
1648         struct onenand_chip *this = mtd->priv;
1649         u_char *oob_buf = this->oob_buf;
1650         int status, i, readcmd;
1651
1652         readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1653
1654         this->command(mtd, readcmd, to, mtd->oobsize);
1655         onenand_update_bufferram(mtd, to, 0);
1656         status = this->wait(mtd, FL_READING);
1657         if (status)
1658                 return status;
1659
1660         this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1661         for (i = 0; i < mtd->oobsize; i++)
1662                 if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1663                         return -EBADMSG;
1664
1665         return 0;
1666 }
1667
1668 /**
1669  * onenand_verify - [GENERIC] verify the chip contents after a write
1670  * @param mtd          MTD device structure
1671  * @param buf          the databuffer to verify
1672  * @param addr         offset to read from
1673  * @param len          number of bytes to read and compare
1674  */
1675 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1676 {
1677         struct onenand_chip *this = mtd->priv;
1678         int ret = 0;
1679         int thislen, column;
1680
1681         column = addr & (this->writesize - 1);
1682
1683         while (len != 0) {
1684                 thislen = min_t(int, this->writesize - column, len);
1685
1686                 this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1687
1688                 onenand_update_bufferram(mtd, addr, 0);
1689
1690                 ret = this->wait(mtd, FL_READING);
1691                 if (ret)
1692                         return ret;
1693
1694                 onenand_update_bufferram(mtd, addr, 1);
1695
1696                 this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize);
1697
1698                 if (memcmp(buf, this->verify_buf + column, thislen))
1699                         return -EBADMSG;
1700
1701                 len -= thislen;
1702                 buf += thislen;
1703                 addr += thislen;
1704                 column = 0;
1705         }
1706
1707         return 0;
1708 }
1709 #else
1710 #define onenand_verify(...)             (0)
1711 #define onenand_verify_oob(...)         (0)
1712 #endif
1713
1714 #define NOTALIGNED(x)   ((x & (this->subpagesize - 1)) != 0)
1715
1716 static void onenand_panic_wait(struct mtd_info *mtd)
1717 {
1718         struct onenand_chip *this = mtd->priv;
1719         unsigned int interrupt;
1720         int i;
1721         
1722         for (i = 0; i < 2000; i++) {
1723                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1724                 if (interrupt & ONENAND_INT_MASTER)
1725                         break;
1726                 udelay(10);
1727         }
1728 }
1729
1730 /**
1731  * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1732  * @param mtd           MTD device structure
1733  * @param to            offset to write to
1734  * @param len           number of bytes to write
1735  * @param retlen        pointer to variable to store the number of written bytes
1736  * @param buf           the data to write
1737  *
1738  * Write with ECC
1739  */
1740 static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1741                          size_t *retlen, const u_char *buf)
1742 {
1743         struct onenand_chip *this = mtd->priv;
1744         int column, subpage;
1745         int written = 0;
1746
1747         if (this->state == FL_PM_SUSPENDED)
1748                 return -EBUSY;
1749
1750         /* Wait for any existing operation to clear */
1751         onenand_panic_wait(mtd);
1752
1753         pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1754                         (int)len);
1755
1756         /* Reject writes, which are not page aligned */
1757         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1758                 printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1759                         __func__);
1760                 return -EINVAL;
1761         }
1762
1763         column = to & (mtd->writesize - 1);
1764
1765         /* Loop until all data write */
1766         while (written < len) {
1767                 int thislen = min_t(int, mtd->writesize - column, len - written);
1768                 u_char *wbuf = (u_char *) buf;
1769
1770                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1771
1772                 /* Partial page write */
1773                 subpage = thislen < mtd->writesize;
1774                 if (subpage) {
1775                         memset(this->page_buf, 0xff, mtd->writesize);
1776                         memcpy(this->page_buf + column, buf, thislen);
1777                         wbuf = this->page_buf;
1778                 }
1779
1780                 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1781                 this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1782
1783                 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1784
1785                 onenand_panic_wait(mtd);
1786
1787                 /* In partial page write we don't update bufferram */
1788                 onenand_update_bufferram(mtd, to, !subpage);
1789                 if (ONENAND_IS_2PLANE(this)) {
1790                         ONENAND_SET_BUFFERRAM1(this);
1791                         onenand_update_bufferram(mtd, to + this->writesize, !subpage);
1792                 }
1793
1794                 written += thislen;
1795
1796                 if (written == len)
1797                         break;
1798
1799                 column = 0;
1800                 to += thislen;
1801                 buf += thislen;
1802         }
1803
1804         *retlen = written;
1805         return 0;
1806 }
1807
1808 /**
1809  * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
1810  * @param mtd           MTD device structure
1811  * @param oob_buf       oob buffer
1812  * @param buf           source address
1813  * @param column        oob offset to write to
1814  * @param thislen       oob length to write
1815  */
1816 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1817                                   const u_char *buf, int column, int thislen)
1818 {
1819         struct onenand_chip *this = mtd->priv;
1820         struct nand_oobfree *free;
1821         int writecol = column;
1822         int writeend = column + thislen;
1823         int lastgap = 0;
1824         unsigned int i;
1825
1826         free = this->ecclayout->oobfree;
1827         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1828                 if (writecol >= lastgap)
1829                         writecol += free->offset - lastgap;
1830                 if (writeend >= lastgap)
1831                         writeend += free->offset - lastgap;
1832                 lastgap = free->offset + free->length;
1833         }
1834         free = this->ecclayout->oobfree;
1835         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1836                 int free_end = free->offset + free->length;
1837                 if (free->offset < writeend && free_end > writecol) {
1838                         int st = max_t(int,free->offset,writecol);
1839                         int ed = min_t(int,free_end,writeend);
1840                         int n = ed - st;
1841                         memcpy(oob_buf + st, buf, n);
1842                         buf += n;
1843                 } else if (column == 0)
1844                         break;
1845         }
1846         return 0;
1847 }
1848
1849 /**
1850  * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1851  * @param mtd           MTD device structure
1852  * @param to            offset to write to
1853  * @param ops           oob operation description structure
1854  *
1855  * Write main and/or oob with ECC
1856  */
1857 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1858                                 struct mtd_oob_ops *ops)
1859 {
1860         struct onenand_chip *this = mtd->priv;
1861         int written = 0, column, thislen = 0, subpage = 0;
1862         int prev = 0, prevlen = 0, prev_subpage = 0, first = 1;
1863         int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1864         size_t len = ops->len;
1865         size_t ooblen = ops->ooblen;
1866         const u_char *buf = ops->datbuf;
1867         const u_char *oob = ops->oobbuf;
1868         u_char *oobbuf;
1869         int ret = 0, cmd;
1870
1871         pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1872                         (int)len);
1873
1874         /* Initialize retlen, in case of early exit */
1875         ops->retlen = 0;
1876         ops->oobretlen = 0;
1877
1878         /* Reject writes, which are not page aligned */
1879         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1880                 printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1881                         __func__);
1882                 return -EINVAL;
1883         }
1884
1885         /* Check zero length */
1886         if (!len)
1887                 return 0;
1888
1889         if (ops->mode == MTD_OPS_AUTO_OOB)
1890                 oobsize = this->ecclayout->oobavail;
1891         else
1892                 oobsize = mtd->oobsize;
1893
1894         oobcolumn = to & (mtd->oobsize - 1);
1895
1896         column = to & (mtd->writesize - 1);
1897
1898         /* Loop until all data write */
1899         while (1) {
1900                 if (written < len) {
1901                         u_char *wbuf = (u_char *) buf;
1902
1903                         thislen = min_t(int, mtd->writesize - column, len - written);
1904                         thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1905
1906                         cond_resched();
1907
1908                         this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1909
1910                         /* Partial page write */
1911                         subpage = thislen < mtd->writesize;
1912                         if (subpage) {
1913                                 memset(this->page_buf, 0xff, mtd->writesize);
1914                                 memcpy(this->page_buf + column, buf, thislen);
1915                                 wbuf = this->page_buf;
1916                         }
1917
1918                         this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1919
1920                         if (oob) {
1921                                 oobbuf = this->oob_buf;
1922
1923                                 /* We send data to spare ram with oobsize
1924                                  * to prevent byte access */
1925                                 memset(oobbuf, 0xff, mtd->oobsize);
1926                                 if (ops->mode == MTD_OPS_AUTO_OOB)
1927                                         onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1928                                 else
1929                                         memcpy(oobbuf + oobcolumn, oob, thisooblen);
1930
1931                                 oobwritten += thisooblen;
1932                                 oob += thisooblen;
1933                                 oobcolumn = 0;
1934                         } else
1935                                 oobbuf = (u_char *) ffchars;
1936
1937                         this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1938                 } else
1939                         ONENAND_SET_NEXT_BUFFERRAM(this);
1940
1941                 /*
1942                  * 2 PLANE, MLC, and Flex-OneNAND do not support
1943                  * write-while-program feature.
1944                  */
1945                 if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first) {
1946                         ONENAND_SET_PREV_BUFFERRAM(this);
1947
1948                         ret = this->wait(mtd, FL_WRITING);
1949
1950                         /* In partial page write we don't update bufferram */
1951                         onenand_update_bufferram(mtd, prev, !ret && !prev_subpage);
1952                         if (ret) {
1953                                 written -= prevlen;
1954                                 printk(KERN_ERR "%s: write failed %d\n",
1955                                         __func__, ret);
1956                                 break;
1957                         }
1958
1959                         if (written == len) {
1960                                 /* Only check verify write turn on */
1961                                 ret = onenand_verify(mtd, buf - len, to - len, len);
1962                                 if (ret)
1963                                         printk(KERN_ERR "%s: verify failed %d\n",
1964                                                 __func__, ret);
1965                                 break;
1966                         }
1967
1968                         ONENAND_SET_NEXT_BUFFERRAM(this);
1969                 }
1970
1971                 this->ongoing = 0;
1972                 cmd = ONENAND_CMD_PROG;
1973
1974                 /* Exclude 1st OTP and OTP blocks for cache program feature */
1975                 if (ONENAND_IS_CACHE_PROGRAM(this) &&
1976                     likely(onenand_block(this, to) != 0) &&
1977                     ONENAND_IS_4KB_PAGE(this) &&
1978                     ((written + thislen) < len)) {
1979                         cmd = ONENAND_CMD_2X_CACHE_PROG;
1980                         this->ongoing = 1;
1981                 }
1982
1983                 this->command(mtd, cmd, to, mtd->writesize);
1984
1985                 /*
1986                  * 2 PLANE, MLC, and Flex-OneNAND wait here
1987                  */
1988                 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) {
1989                         ret = this->wait(mtd, FL_WRITING);
1990
1991                         /* In partial page write we don't update bufferram */
1992                         onenand_update_bufferram(mtd, to, !ret && !subpage);
1993                         if (ret) {
1994                                 printk(KERN_ERR "%s: write failed %d\n",
1995                                         __func__, ret);
1996                                 break;
1997                         }
1998
1999                         /* Only check verify write turn on */
2000                         ret = onenand_verify(mtd, buf, to, thislen);
2001                         if (ret) {
2002                                 printk(KERN_ERR "%s: verify failed %d\n",
2003                                         __func__, ret);
2004                                 break;
2005                         }
2006
2007                         written += thislen;
2008
2009                         if (written == len)
2010                                 break;
2011
2012                 } else
2013                         written += thislen;
2014
2015                 column = 0;
2016                 prev_subpage = subpage;
2017                 prev = to;
2018                 prevlen = thislen;
2019                 to += thislen;
2020                 buf += thislen;
2021                 first = 0;
2022         }
2023
2024         /* In error case, clear all bufferrams */
2025         if (written != len)
2026                 onenand_invalidate_bufferram(mtd, 0, -1);
2027
2028         ops->retlen = written;
2029         ops->oobretlen = oobwritten;
2030
2031         return ret;
2032 }
2033
2034
2035 /**
2036  * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
2037  * @param mtd           MTD device structure
2038  * @param to            offset to write to
2039  * @param len           number of bytes to write
2040  * @param retlen        pointer to variable to store the number of written bytes
2041  * @param buf           the data to write
2042  * @param mode          operation mode
2043  *
2044  * OneNAND write out-of-band
2045  */
2046 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2047                                     struct mtd_oob_ops *ops)
2048 {
2049         struct onenand_chip *this = mtd->priv;
2050         int column, ret = 0, oobsize;
2051         int written = 0, oobcmd;
2052         u_char *oobbuf;
2053         size_t len = ops->ooblen;
2054         const u_char *buf = ops->oobbuf;
2055         unsigned int mode = ops->mode;
2056
2057         to += ops->ooboffs;
2058
2059         pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
2060                         (int)len);
2061
2062         /* Initialize retlen, in case of early exit */
2063         ops->oobretlen = 0;
2064
2065         if (mode == MTD_OPS_AUTO_OOB)
2066                 oobsize = this->ecclayout->oobavail;
2067         else
2068                 oobsize = mtd->oobsize;
2069
2070         column = to & (mtd->oobsize - 1);
2071
2072         if (unlikely(column >= oobsize)) {
2073                 printk(KERN_ERR "%s: Attempted to start write outside oob\n",
2074                         __func__);
2075                 return -EINVAL;
2076         }
2077
2078         /* For compatibility with NAND: Do not allow write past end of page */
2079         if (unlikely(column + len > oobsize)) {
2080                 printk(KERN_ERR "%s: Attempt to write past end of page\n",
2081                         __func__);
2082                 return -EINVAL;
2083         }
2084
2085         /* Do not allow reads past end of device */
2086         if (unlikely(to >= mtd->size ||
2087                      column + len > ((mtd->size >> this->page_shift) -
2088                                      (to >> this->page_shift)) * oobsize)) {
2089                 printk(KERN_ERR "%s: Attempted to write past end of device\n",
2090                        __func__);
2091                 return -EINVAL;
2092         }
2093
2094         oobbuf = this->oob_buf;
2095
2096         oobcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
2097
2098         /* Loop until all data write */
2099         while (written < len) {
2100                 int thislen = min_t(int, oobsize, len - written);
2101
2102                 cond_resched();
2103
2104                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
2105
2106                 /* We send data to spare ram with oobsize
2107                  * to prevent byte access */
2108                 memset(oobbuf, 0xff, mtd->oobsize);
2109                 if (mode == MTD_OPS_AUTO_OOB)
2110                         onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
2111                 else
2112                         memcpy(oobbuf + column, buf, thislen);
2113                 this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
2114
2115                 if (ONENAND_IS_4KB_PAGE(this)) {
2116                         /* Set main area of DataRAM to 0xff*/
2117                         memset(this->page_buf, 0xff, mtd->writesize);
2118                         this->write_bufferram(mtd, ONENAND_DATARAM,
2119                                          this->page_buf, 0, mtd->writesize);
2120                 }
2121
2122                 this->command(mtd, oobcmd, to, mtd->oobsize);
2123
2124                 onenand_update_bufferram(mtd, to, 0);
2125                 if (ONENAND_IS_2PLANE(this)) {
2126                         ONENAND_SET_BUFFERRAM1(this);
2127                         onenand_update_bufferram(mtd, to + this->writesize, 0);
2128                 }
2129
2130                 ret = this->wait(mtd, FL_WRITING);
2131                 if (ret) {
2132                         printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2133                         break;
2134                 }
2135
2136                 ret = onenand_verify_oob(mtd, oobbuf, to);
2137                 if (ret) {
2138                         printk(KERN_ERR "%s: verify failed %d\n",
2139                                 __func__, ret);
2140                         break;
2141                 }
2142
2143                 written += thislen;
2144                 if (written == len)
2145                         break;
2146
2147                 to += mtd->writesize;
2148                 buf += thislen;
2149                 column = 0;
2150         }
2151
2152         ops->oobretlen = written;
2153
2154         return ret;
2155 }
2156
2157 /**
2158  * onenand_write - [MTD Interface] write buffer to FLASH
2159  * @param mtd           MTD device structure
2160  * @param to            offset to write to
2161  * @param len           number of bytes to write
2162  * @param retlen        pointer to variable to store the number of written bytes
2163  * @param buf           the data to write
2164  *
2165  * Write with ECC
2166  */
2167 static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
2168         size_t *retlen, const u_char *buf)
2169 {
2170         struct mtd_oob_ops ops = {
2171                 .len    = len,
2172                 .ooblen = 0,
2173                 .datbuf = (u_char *) buf,
2174                 .oobbuf = NULL,
2175         };
2176         int ret;
2177
2178         onenand_get_device(mtd, FL_WRITING);
2179         ret = onenand_write_ops_nolock(mtd, to, &ops);
2180         onenand_release_device(mtd);
2181
2182         *retlen = ops.retlen;
2183         return ret;
2184 }
2185
2186 /**
2187  * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2188  * @param mtd:          MTD device structure
2189  * @param to:           offset to write
2190  * @param ops:          oob operation description structure
2191  */
2192 static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
2193                              struct mtd_oob_ops *ops)
2194 {
2195         int ret;
2196
2197         switch (ops->mode) {
2198         case MTD_OPS_PLACE_OOB:
2199         case MTD_OPS_AUTO_OOB:
2200                 break;
2201         case MTD_OPS_RAW:
2202                 /* Not implemented yet */
2203         default:
2204                 return -EINVAL;
2205         }
2206
2207         onenand_get_device(mtd, FL_WRITING);
2208         if (ops->datbuf)
2209                 ret = onenand_write_ops_nolock(mtd, to, ops);
2210         else
2211                 ret = onenand_write_oob_nolock(mtd, to, ops);
2212         onenand_release_device(mtd);
2213
2214         return ret;
2215 }
2216
2217 /**
2218  * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
2219  * @param mtd           MTD device structure
2220  * @param ofs           offset from device start
2221  * @param allowbbt      1, if its allowed to access the bbt area
2222  *
2223  * Check, if the block is bad. Either by reading the bad block table or
2224  * calling of the scan function.
2225  */
2226 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
2227 {
2228         struct onenand_chip *this = mtd->priv;
2229         struct bbm_info *bbm = this->bbm;
2230
2231         /* Return info from the table */
2232         return bbm->isbad_bbt(mtd, ofs, allowbbt);
2233 }
2234
2235
2236 static int onenand_multiblock_erase_verify(struct mtd_info *mtd,
2237                                            struct erase_info *instr)
2238 {
2239         struct onenand_chip *this = mtd->priv;
2240         loff_t addr = instr->addr;
2241         int len = instr->len;
2242         unsigned int block_size = (1 << this->erase_shift);
2243         int ret = 0;
2244
2245         while (len) {
2246                 this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size);
2247                 ret = this->wait(mtd, FL_VERIFYING_ERASE);
2248                 if (ret) {
2249                         printk(KERN_ERR "%s: Failed verify, block %d\n",
2250                                __func__, onenand_block(this, addr));
2251                         instr->state = MTD_ERASE_FAILED;
2252                         instr->fail_addr = addr;
2253                         return -1;
2254                 }
2255                 len -= block_size;
2256                 addr += block_size;
2257         }
2258         return 0;
2259 }
2260
2261 /**
2262  * onenand_multiblock_erase - [INTERN] erase block(s) using multiblock erase
2263  * @param mtd           MTD device structure
2264  * @param instr         erase instruction
2265  * @param region        erase region
2266  *
2267  * Erase one or more blocks up to 64 block at a time
2268  */
2269 static int onenand_multiblock_erase(struct mtd_info *mtd,
2270                                     struct erase_info *instr,
2271                                     unsigned int block_size)
2272 {
2273         struct onenand_chip *this = mtd->priv;
2274         loff_t addr = instr->addr;
2275         int len = instr->len;
2276         int eb_count = 0;
2277         int ret = 0;
2278         int bdry_block = 0;
2279
2280         instr->state = MTD_ERASING;
2281
2282         if (ONENAND_IS_DDP(this)) {
2283                 loff_t bdry_addr = this->chipsize >> 1;
2284                 if (addr < bdry_addr && (addr + len) > bdry_addr)
2285                         bdry_block = bdry_addr >> this->erase_shift;
2286         }
2287
2288         /* Pre-check bbs */
2289         while (len) {
2290                 /* Check if we have a bad block, we do not erase bad blocks */
2291                 if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2292                         printk(KERN_WARNING "%s: attempt to erase a bad block "
2293                                "at addr 0x%012llx\n",
2294                                __func__, (unsigned long long) addr);
2295                         instr->state = MTD_ERASE_FAILED;
2296                         return -EIO;
2297                 }
2298                 len -= block_size;
2299                 addr += block_size;
2300         }
2301
2302         len = instr->len;
2303         addr = instr->addr;
2304
2305         /* loop over 64 eb batches */
2306         while (len) {
2307                 struct erase_info verify_instr = *instr;
2308                 int max_eb_count = MB_ERASE_MAX_BLK_COUNT;
2309
2310                 verify_instr.addr = addr;
2311                 verify_instr.len = 0;
2312
2313                 /* do not cross chip boundary */
2314                 if (bdry_block) {
2315                         int this_block = (addr >> this->erase_shift);
2316
2317                         if (this_block < bdry_block) {
2318                                 max_eb_count = min(max_eb_count,
2319                                                    (bdry_block - this_block));
2320                         }
2321                 }
2322
2323                 eb_count = 0;
2324
2325                 while (len > block_size && eb_count < (max_eb_count - 1)) {
2326                         this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE,
2327                                       addr, block_size);
2328                         onenand_invalidate_bufferram(mtd, addr, block_size);
2329
2330                         ret = this->wait(mtd, FL_PREPARING_ERASE);
2331                         if (ret) {
2332                                 printk(KERN_ERR "%s: Failed multiblock erase, "
2333                                        "block %d\n", __func__,
2334                                        onenand_block(this, addr));
2335                                 instr->state = MTD_ERASE_FAILED;
2336                                 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2337                                 return -EIO;
2338                         }
2339
2340                         len -= block_size;
2341                         addr += block_size;
2342                         eb_count++;
2343                 }
2344
2345                 /* last block of 64-eb series */
2346                 cond_resched();
2347                 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2348                 onenand_invalidate_bufferram(mtd, addr, block_size);
2349
2350                 ret = this->wait(mtd, FL_ERASING);
2351                 /* Check if it is write protected */
2352                 if (ret) {
2353                         printk(KERN_ERR "%s: Failed erase, block %d\n",
2354                                __func__, onenand_block(this, addr));
2355                         instr->state = MTD_ERASE_FAILED;
2356                         instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2357                         return -EIO;
2358                 }
2359
2360                 len -= block_size;
2361                 addr += block_size;
2362                 eb_count++;
2363
2364                 /* verify */
2365                 verify_instr.len = eb_count * block_size;
2366                 if (onenand_multiblock_erase_verify(mtd, &verify_instr)) {
2367                         instr->state = verify_instr.state;
2368                         instr->fail_addr = verify_instr.fail_addr;
2369                         return -EIO;
2370                 }
2371
2372         }
2373         return 0;
2374 }
2375
2376
2377 /**
2378  * onenand_block_by_block_erase - [INTERN] erase block(s) using regular erase
2379  * @param mtd           MTD device structure
2380  * @param instr         erase instruction
2381  * @param region        erase region
2382  * @param block_size    erase block size
2383  *
2384  * Erase one or more blocks one block at a time
2385  */
2386 static int onenand_block_by_block_erase(struct mtd_info *mtd,
2387                                         struct erase_info *instr,
2388                                         struct mtd_erase_region_info *region,
2389                                         unsigned int block_size)
2390 {
2391         struct onenand_chip *this = mtd->priv;
2392         loff_t addr = instr->addr;
2393         int len = instr->len;
2394         loff_t region_end = 0;
2395         int ret = 0;
2396
2397         if (region) {
2398                 /* region is set for Flex-OneNAND */
2399                 region_end = region->offset + region->erasesize * region->numblocks;
2400         }
2401
2402         instr->state = MTD_ERASING;
2403
2404         /* Loop through the blocks */
2405         while (len) {
2406                 cond_resched();
2407
2408                 /* Check if we have a bad block, we do not erase bad blocks */
2409                 if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2410                         printk(KERN_WARNING "%s: attempt to erase a bad block "
2411                                         "at addr 0x%012llx\n",
2412                                         __func__, (unsigned long long) addr);
2413                         instr->state = MTD_ERASE_FAILED;
2414                         return -EIO;
2415                 }
2416
2417                 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2418
2419                 onenand_invalidate_bufferram(mtd, addr, block_size);
2420
2421                 ret = this->wait(mtd, FL_ERASING);
2422                 /* Check, if it is write protected */
2423                 if (ret) {
2424                         printk(KERN_ERR "%s: Failed erase, block %d\n",
2425                                 __func__, onenand_block(this, addr));
2426                         instr->state = MTD_ERASE_FAILED;
2427                         instr->fail_addr = addr;
2428                         return -EIO;
2429                 }
2430
2431                 len -= block_size;
2432                 addr += block_size;
2433
2434                 if (region && addr == region_end) {
2435                         if (!len)
2436                                 break;
2437                         region++;
2438
2439                         block_size = region->erasesize;
2440                         region_end = region->offset + region->erasesize * region->numblocks;
2441
2442                         if (len & (block_size - 1)) {
2443                                 /* FIXME: This should be handled at MTD partitioning level. */
2444                                 printk(KERN_ERR "%s: Unaligned address\n",
2445                                         __func__);
2446                                 return -EIO;
2447                         }
2448                 }
2449         }
2450         return 0;
2451 }
2452
2453 /**
2454  * onenand_erase - [MTD Interface] erase block(s)
2455  * @param mtd           MTD device structure
2456  * @param instr         erase instruction
2457  *
2458  * Erase one or more blocks
2459  */
2460 static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
2461 {
2462         struct onenand_chip *this = mtd->priv;
2463         unsigned int block_size;
2464         loff_t addr = instr->addr;
2465         loff_t len = instr->len;
2466         int ret = 0;
2467         struct mtd_erase_region_info *region = NULL;
2468         loff_t region_offset = 0;
2469
2470         pr_debug("%s: start=0x%012llx, len=%llu\n", __func__,
2471                         (unsigned long long)instr->addr,
2472                         (unsigned long long)instr->len);
2473
2474         if (FLEXONENAND(this)) {
2475                 /* Find the eraseregion of this address */
2476                 int i = flexonenand_region(mtd, addr);
2477
2478                 region = &mtd->eraseregions[i];
2479                 block_size = region->erasesize;
2480
2481                 /* Start address within region must align on block boundary.
2482                  * Erase region's start offset is always block start address.
2483                  */
2484                 region_offset = region->offset;
2485         } else
2486                 block_size = 1 << this->erase_shift;
2487
2488         /* Start address must align on block boundary */
2489         if (unlikely((addr - region_offset) & (block_size - 1))) {
2490                 printk(KERN_ERR "%s: Unaligned address\n", __func__);
2491                 return -EINVAL;
2492         }
2493
2494         /* Length must align on block boundary */
2495         if (unlikely(len & (block_size - 1))) {
2496                 printk(KERN_ERR "%s: Length not block aligned\n", __func__);
2497                 return -EINVAL;
2498         }
2499
2500         /* Grab the lock and see if the device is available */
2501         onenand_get_device(mtd, FL_ERASING);
2502
2503         if (ONENAND_IS_4KB_PAGE(this) || region ||
2504             instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) {
2505                 /* region is set for Flex-OneNAND (no mb erase) */
2506                 ret = onenand_block_by_block_erase(mtd, instr,
2507                                                    region, block_size);
2508         } else {
2509                 ret = onenand_multiblock_erase(mtd, instr, block_size);
2510         }
2511
2512         /* Deselect and wake up anyone waiting on the device */
2513         onenand_release_device(mtd);
2514
2515         /* Do call back function */
2516         if (!ret) {
2517                 instr->state = MTD_ERASE_DONE;
2518                 mtd_erase_callback(instr);
2519         }
2520
2521         return ret;
2522 }
2523
2524 /**
2525  * onenand_sync - [MTD Interface] sync
2526  * @param mtd           MTD device structure
2527  *
2528  * Sync is actually a wait for chip ready function
2529  */
2530 static void onenand_sync(struct mtd_info *mtd)
2531 {
2532         pr_debug("%s: called\n", __func__);
2533
2534         /* Grab the lock and see if the device is available */
2535         onenand_get_device(mtd, FL_SYNCING);
2536
2537         /* Release it and go back */
2538         onenand_release_device(mtd);
2539 }
2540
2541 /**
2542  * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2543  * @param mtd           MTD device structure
2544  * @param ofs           offset relative to mtd start
2545  *
2546  * Check whether the block is bad
2547  */
2548 static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
2549 {
2550         int ret;
2551
2552         onenand_get_device(mtd, FL_READING);
2553         ret = onenand_block_isbad_nolock(mtd, ofs, 0);
2554         onenand_release_device(mtd);
2555         return ret;
2556 }
2557
2558 /**
2559  * onenand_default_block_markbad - [DEFAULT] mark a block bad
2560  * @param mtd           MTD device structure
2561  * @param ofs           offset from device start
2562  *
2563  * This is the default implementation, which can be overridden by
2564  * a hardware specific driver.
2565  */
2566 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
2567 {
2568         struct onenand_chip *this = mtd->priv;
2569         struct bbm_info *bbm = this->bbm;
2570         u_char buf[2] = {0, 0};
2571         struct mtd_oob_ops ops = {
2572                 .mode = MTD_OPS_PLACE_OOB,
2573                 .ooblen = 2,
2574                 .oobbuf = buf,
2575                 .ooboffs = 0,
2576         };
2577         int block;
2578
2579         /* Get block number */
2580         block = onenand_block(this, ofs);
2581         if (bbm->bbt)
2582                 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
2583
2584         /* We write two bytes, so we don't have to mess with 16-bit access */
2585         ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
2586         /* FIXME : What to do when marking SLC block in partition
2587          *         with MLC erasesize? For now, it is not advisable to
2588          *         create partitions containing both SLC and MLC regions.
2589          */
2590         return onenand_write_oob_nolock(mtd, ofs, &ops);
2591 }
2592
2593 /**
2594  * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2595  * @param mtd           MTD device structure
2596  * @param ofs           offset relative to mtd start
2597  *
2598  * Mark the block as bad
2599  */
2600 static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2601 {
2602         int ret;
2603
2604         ret = onenand_block_isbad(mtd, ofs);
2605         if (ret) {
2606                 /* If it was bad already, return success and do nothing */
2607                 if (ret > 0)
2608                         return 0;
2609                 return ret;
2610         }
2611
2612         onenand_get_device(mtd, FL_WRITING);
2613         ret = mtd_block_markbad(mtd, ofs);
2614         onenand_release_device(mtd);
2615         return ret;
2616 }
2617
2618 /**
2619  * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
2620  * @param mtd           MTD device structure
2621  * @param ofs           offset relative to mtd start
2622  * @param len           number of bytes to lock or unlock
2623  * @param cmd           lock or unlock command
2624  *
2625  * Lock or unlock one or more blocks
2626  */
2627 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
2628 {
2629         struct onenand_chip *this = mtd->priv;
2630         int start, end, block, value, status;
2631         int wp_status_mask;
2632
2633         start = onenand_block(this, ofs);
2634         end = onenand_block(this, ofs + len) - 1;
2635
2636         if (cmd == ONENAND_CMD_LOCK)
2637                 wp_status_mask = ONENAND_WP_LS;
2638         else
2639                 wp_status_mask = ONENAND_WP_US;
2640
2641         /* Continuous lock scheme */
2642         if (this->options & ONENAND_HAS_CONT_LOCK) {
2643                 /* Set start block address */
2644                 this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2645                 /* Set end block address */
2646                 this->write_word(end, this->base +  ONENAND_REG_END_BLOCK_ADDRESS);
2647                 /* Write lock command */
2648                 this->command(mtd, cmd, 0, 0);
2649
2650                 /* There's no return value */
2651                 this->wait(mtd, FL_LOCKING);
2652
2653                 /* Sanity check */
2654                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2655                     & ONENAND_CTRL_ONGO)
2656                         continue;
2657
2658                 /* Check lock status */
2659                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2660                 if (!(status & wp_status_mask))
2661                         printk(KERN_ERR "%s: wp status = 0x%x\n",
2662                                 __func__, status);
2663
2664                 return 0;
2665         }
2666
2667         /* Block lock scheme */
2668         for (block = start; block < end + 1; block++) {
2669                 /* Set block address */
2670                 value = onenand_block_address(this, block);
2671                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2672                 /* Select DataRAM for DDP */
2673                 value = onenand_bufferram_address(this, block);
2674                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2675                 /* Set start block address */
2676                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2677                 /* Write lock command */
2678                 this->command(mtd, cmd, 0, 0);
2679
2680                 /* There's no return value */
2681                 this->wait(mtd, FL_LOCKING);
2682
2683                 /* Sanity check */
2684                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2685                     & ONENAND_CTRL_ONGO)
2686                         continue;
2687
2688                 /* Check lock status */
2689                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2690                 if (!(status & wp_status_mask))
2691                         printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2692                                 __func__, block, status);
2693         }
2694
2695         return 0;
2696 }
2697
2698 /**
2699  * onenand_lock - [MTD Interface] Lock block(s)
2700  * @param mtd           MTD device structure
2701  * @param ofs           offset relative to mtd start
2702  * @param len           number of bytes to unlock
2703  *
2704  * Lock one or more blocks
2705  */
2706 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2707 {
2708         int ret;
2709
2710         onenand_get_device(mtd, FL_LOCKING);
2711         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2712         onenand_release_device(mtd);
2713         return ret;
2714 }
2715
2716 /**
2717  * onenand_unlock - [MTD Interface] Unlock block(s)
2718  * @param mtd           MTD device structure
2719  * @param ofs           offset relative to mtd start
2720  * @param len           number of bytes to unlock
2721  *
2722  * Unlock one or more blocks
2723  */
2724 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2725 {
2726         int ret;
2727
2728         onenand_get_device(mtd, FL_LOCKING);
2729         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2730         onenand_release_device(mtd);
2731         return ret;
2732 }
2733
2734 /**
2735  * onenand_check_lock_status - [OneNAND Interface] Check lock status
2736  * @param this          onenand chip data structure
2737  *
2738  * Check lock status
2739  */
2740 static int onenand_check_lock_status(struct onenand_chip *this)
2741 {
2742         unsigned int value, block, status;
2743         unsigned int end;
2744
2745         end = this->chipsize >> this->erase_shift;
2746         for (block = 0; block < end; block++) {
2747                 /* Set block address */
2748                 value = onenand_block_address(this, block);
2749                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2750                 /* Select DataRAM for DDP */
2751                 value = onenand_bufferram_address(this, block);
2752                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2753                 /* Set start block address */
2754                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2755
2756                 /* Check lock status */
2757                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2758                 if (!(status & ONENAND_WP_US)) {
2759                         printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2760                                 __func__, block, status);
2761                         return 0;
2762                 }
2763         }
2764
2765         return 1;
2766 }
2767
2768 /**
2769  * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2770  * @param mtd           MTD device structure
2771  *
2772  * Unlock all blocks
2773  */
2774 static void onenand_unlock_all(struct mtd_info *mtd)
2775 {
2776         struct onenand_chip *this = mtd->priv;
2777         loff_t ofs = 0;
2778         loff_t len = mtd->size;
2779
2780         if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2781                 /* Set start block address */
2782                 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2783                 /* Write unlock command */
2784                 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2785
2786                 /* There's no return value */
2787                 this->wait(mtd, FL_LOCKING);
2788
2789                 /* Sanity check */
2790                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2791                     & ONENAND_CTRL_ONGO)
2792                         continue;
2793
2794                 /* Don't check lock status */
2795                 if (this->options & ONENAND_SKIP_UNLOCK_CHECK)
2796                         return;
2797
2798                 /* Check lock status */
2799                 if (onenand_check_lock_status(this))
2800                         return;
2801
2802                 /* Workaround for all block unlock in DDP */
2803                 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2804                         /* All blocks on another chip */
2805                         ofs = this->chipsize >> 1;
2806                         len = this->chipsize >> 1;
2807                 }
2808         }
2809
2810         onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2811 }
2812
2813 #ifdef CONFIG_MTD_ONENAND_OTP
2814
2815 /**
2816  * onenand_otp_command - Send OTP specific command to OneNAND device
2817  * @param mtd    MTD device structure
2818  * @param cmd    the command to be sent
2819  * @param addr   offset to read from or write to
2820  * @param len    number of bytes to read or write
2821  */
2822 static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr,
2823                                 size_t len)
2824 {
2825         struct onenand_chip *this = mtd->priv;
2826         int value, block, page;
2827
2828         /* Address translation */
2829         switch (cmd) {
2830         case ONENAND_CMD_OTP_ACCESS:
2831                 block = (int) (addr >> this->erase_shift);
2832                 page = -1;
2833                 break;
2834
2835         default:
2836                 block = (int) (addr >> this->erase_shift);
2837                 page = (int) (addr >> this->page_shift);
2838
2839                 if (ONENAND_IS_2PLANE(this)) {
2840                         /* Make the even block number */
2841                         block &= ~1;
2842                         /* Is it the odd plane? */
2843                         if (addr & this->writesize)
2844                                 block++;
2845                         page >>= 1;
2846                 }
2847                 page &= this->page_mask;
2848                 break;
2849         }
2850
2851         if (block != -1) {
2852                 /* Write 'DFS, FBA' of Flash */
2853                 value = onenand_block_address(this, block);
2854                 this->write_word(value, this->base +
2855                                 ONENAND_REG_START_ADDRESS1);
2856         }
2857
2858         if (page != -1) {
2859                 /* Now we use page size operation */
2860                 int sectors = 4, count = 4;
2861                 int dataram;
2862
2863                 switch (cmd) {
2864                 default:
2865                         if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
2866                                 cmd = ONENAND_CMD_2X_PROG;
2867                         dataram = ONENAND_CURRENT_BUFFERRAM(this);
2868                         break;
2869                 }
2870
2871                 /* Write 'FPA, FSA' of Flash */
2872                 value = onenand_page_address(page, sectors);
2873                 this->write_word(value, this->base +
2874                                 ONENAND_REG_START_ADDRESS8);
2875
2876                 /* Write 'BSA, BSC' of DataRAM */
2877                 value = onenand_buffer_address(dataram, sectors, count);
2878                 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
2879         }
2880
2881         /* Interrupt clear */
2882         this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
2883
2884         /* Write command */
2885         this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
2886
2887         return 0;
2888 }
2889
2890 /**
2891  * onenand_otp_write_oob_nolock - [INTERN] OneNAND write out-of-band, specific to OTP
2892  * @param mtd           MTD device structure
2893  * @param to            offset to write to
2894  * @param len           number of bytes to write
2895  * @param retlen        pointer to variable to store the number of written bytes
2896  * @param buf           the data to write
2897  *
2898  * OneNAND write out-of-band only for OTP
2899  */
2900 static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2901                                     struct mtd_oob_ops *ops)
2902 {
2903         struct onenand_chip *this = mtd->priv;
2904         int column, ret = 0, oobsize;
2905         int written = 0;
2906         u_char *oobbuf;
2907         size_t len = ops->ooblen;
2908         const u_char *buf = ops->oobbuf;
2909         int block, value, status;
2910
2911         to += ops->ooboffs;
2912
2913         /* Initialize retlen, in case of early exit */
2914         ops->oobretlen = 0;
2915
2916         oobsize = mtd->oobsize;
2917
2918         column = to & (mtd->oobsize - 1);
2919
2920         oobbuf = this->oob_buf;
2921
2922         /* Loop until all data write */
2923         while (written < len) {
2924                 int thislen = min_t(int, oobsize, len - written);
2925
2926                 cond_resched();
2927
2928                 block = (int) (to >> this->erase_shift);
2929                 /*
2930                  * Write 'DFS, FBA' of Flash
2931                  * Add: F100h DQ=DFS, FBA
2932                  */
2933
2934                 value = onenand_block_address(this, block);
2935                 this->write_word(value, this->base +
2936                                 ONENAND_REG_START_ADDRESS1);
2937
2938                 /*
2939                  * Select DataRAM for DDP
2940                  * Add: F101h DQ=DBS
2941                  */
2942
2943                 value = onenand_bufferram_address(this, block);
2944                 this->write_word(value, this->base +
2945                                 ONENAND_REG_START_ADDRESS2);
2946                 ONENAND_SET_NEXT_BUFFERRAM(this);
2947
2948                 /*
2949                  * Enter OTP access mode
2950                  */
2951                 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2952                 this->wait(mtd, FL_OTPING);
2953
2954                 /* We send data to spare ram with oobsize
2955                  * to prevent byte access */
2956                 memcpy(oobbuf + column, buf, thislen);
2957
2958                 /*
2959                  * Write Data into DataRAM
2960                  * Add: 8th Word
2961                  * in sector0/spare/page0
2962                  * DQ=XXFCh
2963                  */
2964                 this->write_bufferram(mtd, ONENAND_SPARERAM,
2965                                         oobbuf, 0, mtd->oobsize);
2966
2967                 onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
2968                 onenand_update_bufferram(mtd, to, 0);
2969                 if (ONENAND_IS_2PLANE(this)) {
2970                         ONENAND_SET_BUFFERRAM1(this);
2971                         onenand_update_bufferram(mtd, to + this->writesize, 0);
2972                 }
2973
2974                 ret = this->wait(mtd, FL_WRITING);
2975                 if (ret) {
2976                         printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2977                         break;
2978                 }
2979
2980                 /* Exit OTP access mode */
2981                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2982                 this->wait(mtd, FL_RESETING);
2983
2984                 status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
2985                 status &= 0x60;
2986
2987                 if (status == 0x60) {
2988                         printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2989                         printk(KERN_DEBUG "1st Block\tLOCKED\n");
2990                         printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2991                 } else if (status == 0x20) {
2992                         printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2993                         printk(KERN_DEBUG "1st Block\tLOCKED\n");
2994                         printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n");
2995                 } else if (status == 0x40) {
2996                         printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2997                         printk(KERN_DEBUG "1st Block\tUN-LOCKED\n");
2998                         printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2999                 } else {
3000                         printk(KERN_DEBUG "Reboot to check\n");
3001                 }
3002
3003                 written += thislen;
3004                 if (written == len)
3005                         break;
3006
3007                 to += mtd->writesize;
3008                 buf += thislen;
3009                 column = 0;
3010         }
3011
3012         ops->oobretlen = written;
3013
3014         return ret;
3015 }
3016
3017 /* Internal OTP operation */
3018 typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
3019                 size_t *retlen, u_char *buf);
3020
3021 /**
3022  * do_otp_read - [DEFAULT] Read OTP block area
3023  * @param mtd           MTD device structure
3024  * @param from          The offset to read
3025  * @param len           number of bytes to read
3026  * @param retlen        pointer to variable to store the number of readbytes
3027  * @param buf           the databuffer to put/get data
3028  *
3029  * Read OTP block area.
3030  */
3031 static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
3032                 size_t *retlen, u_char *buf)
3033 {
3034         struct onenand_chip *this = mtd->priv;
3035         struct mtd_oob_ops ops = {
3036                 .len    = len,
3037                 .ooblen = 0,
3038                 .datbuf = buf,
3039                 .oobbuf = NULL,
3040         };
3041         int ret;
3042
3043         /* Enter OTP access mode */
3044         this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3045         this->wait(mtd, FL_OTPING);
3046
3047         ret = ONENAND_IS_4KB_PAGE(this) ?
3048                 onenand_mlc_read_ops_nolock(mtd, from, &ops) :
3049                 onenand_read_ops_nolock(mtd, from, &ops);
3050
3051         /* Exit OTP access mode */
3052         this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3053         this->wait(mtd, FL_RESETING);
3054
3055         return ret;
3056 }
3057
3058 /**
3059  * do_otp_write - [DEFAULT] Write OTP block area
3060  * @param mtd           MTD device structure
3061  * @param to            The offset to write
3062  * @param len           number of bytes to write
3063  * @param retlen        pointer to variable to store the number of write bytes
3064  * @param buf           the databuffer to put/get data
3065  *
3066  * Write OTP block area.
3067  */
3068 static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
3069                 size_t *retlen, u_char *buf)
3070 {
3071         struct onenand_chip *this = mtd->priv;
3072         unsigned char *pbuf = buf;
3073         int ret;
3074         struct mtd_oob_ops ops;
3075
3076         /* Force buffer page aligned */
3077         if (len < mtd->writesize) {
3078                 memcpy(this->page_buf, buf, len);
3079                 memset(this->page_buf + len, 0xff, mtd->writesize - len);
3080                 pbuf = this->page_buf;
3081                 len = mtd->writesize;
3082         }
3083
3084         /* Enter OTP access mode */
3085         this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3086         this->wait(mtd, FL_OTPING);
3087
3088         ops.len = len;
3089         ops.ooblen = 0;
3090         ops.datbuf = pbuf;
3091         ops.oobbuf = NULL;
3092         ret = onenand_write_ops_nolock(mtd, to, &ops);
3093         *retlen = ops.retlen;
3094
3095         /* Exit OTP access mode */
3096         this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3097         this->wait(mtd, FL_RESETING);
3098
3099         return ret;
3100 }
3101
3102 /**
3103  * do_otp_lock - [DEFAULT] Lock OTP block area
3104  * @param mtd           MTD device structure
3105  * @param from          The offset to lock
3106  * @param len           number of bytes to lock
3107  * @param retlen        pointer to variable to store the number of lock bytes
3108  * @param buf           the databuffer to put/get data
3109  *
3110  * Lock OTP block area.
3111  */
3112 static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
3113                 size_t *retlen, u_char *buf)
3114 {
3115         struct onenand_chip *this = mtd->priv;
3116         struct mtd_oob_ops ops;
3117         int ret;
3118
3119         if (FLEXONENAND(this)) {
3120
3121                 /* Enter OTP access mode */
3122                 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3123                 this->wait(mtd, FL_OTPING);
3124                 /*
3125                  * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3126                  * main area of page 49.
3127                  */
3128                 ops.len = mtd->writesize;
3129                 ops.ooblen = 0;
3130                 ops.datbuf = buf;
3131                 ops.oobbuf = NULL;
3132                 ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops);
3133                 *retlen = ops.retlen;
3134
3135                 /* Exit OTP access mode */
3136                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3137                 this->wait(mtd, FL_RESETING);
3138         } else {
3139                 ops.mode = MTD_OPS_PLACE_OOB;
3140                 ops.ooblen = len;
3141                 ops.oobbuf = buf;
3142                 ops.ooboffs = 0;
3143                 ret = onenand_otp_write_oob_nolock(mtd, from, &ops);
3144                 *retlen = ops.oobretlen;
3145         }
3146
3147         return ret;
3148 }
3149
3150 /**
3151  * onenand_otp_walk - [DEFAULT] Handle OTP operation
3152  * @param mtd           MTD device structure
3153  * @param from          The offset to read/write
3154  * @param len           number of bytes to read/write
3155  * @param retlen        pointer to variable to store the number of read bytes
3156  * @param buf           the databuffer to put/get data
3157  * @param action        do given action
3158  * @param mode          specify user and factory
3159  *
3160  * Handle OTP operation.
3161  */
3162 static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
3163                         size_t *retlen, u_char *buf,
3164                         otp_op_t action, int mode)
3165 {
3166         struct onenand_chip *this = mtd->priv;
3167         int otp_pages;
3168         int density;
3169         int ret = 0;
3170
3171         *retlen = 0;
3172
3173         density = onenand_get_density(this->device_id);
3174         if (density < ONENAND_DEVICE_DENSITY_512Mb)
3175                 otp_pages = 20;
3176         else
3177                 otp_pages = 50;
3178
3179         if (mode == MTD_OTP_FACTORY) {
3180                 from += mtd->writesize * otp_pages;
3181                 otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages;
3182         }
3183
3184         /* Check User/Factory boundary */
3185         if (mode == MTD_OTP_USER) {
3186                 if (mtd->writesize * otp_pages < from + len)
3187                         return 0;
3188         } else {
3189                 if (mtd->writesize * otp_pages <  len)
3190                         return 0;
3191         }
3192
3193         onenand_get_device(mtd, FL_OTPING);
3194         while (len > 0 && otp_pages > 0) {
3195                 if (!action) {  /* OTP Info functions */
3196                         struct otp_info *otpinfo;
3197
3198                         len -= sizeof(struct otp_info);
3199                         if (len <= 0) {
3200                                 ret = -ENOSPC;
3201                                 break;
3202                         }
3203
3204                         otpinfo = (struct otp_info *) buf;
3205                         otpinfo->start = from;
3206                         otpinfo->length = mtd->writesize;
3207                         otpinfo->locked = 0;
3208
3209                         from += mtd->writesize;
3210                         buf += sizeof(struct otp_info);
3211                         *retlen += sizeof(struct otp_info);
3212                 } else {
3213                         size_t tmp_retlen;
3214
3215                         ret = action(mtd, from, len, &tmp_retlen, buf);
3216
3217                         buf += tmp_retlen;
3218                         len -= tmp_retlen;
3219                         *retlen += tmp_retlen;
3220
3221                         if (ret)
3222                                 break;
3223                 }
3224                 otp_pages--;
3225         }
3226         onenand_release_device(mtd);
3227
3228         return ret;
3229 }
3230
3231 /**
3232  * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
3233  * @param mtd           MTD device structure
3234  * @param len           number of bytes to read
3235  * @param retlen        pointer to variable to store the number of read bytes
3236  * @param buf           the databuffer to put/get data
3237  *
3238  * Read factory OTP info.
3239  */
3240 static int onenand_get_fact_prot_info(struct mtd_info *mtd, size_t len,
3241                                       size_t *retlen, struct otp_info *buf)
3242 {
3243         return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
3244                                 MTD_OTP_FACTORY);
3245 }
3246
3247 /**
3248  * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
3249  * @param mtd           MTD device structure
3250  * @param from          The offset to read
3251  * @param len           number of bytes to read
3252  * @param retlen        pointer to variable to store the number of read bytes
3253  * @param buf           the databuffer to put/get data
3254  *
3255  * Read factory OTP area.
3256  */
3257 static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
3258                         size_t len, size_t *retlen, u_char *buf)
3259 {
3260         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
3261 }
3262
3263 /**
3264  * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
3265  * @param mtd           MTD device structure
3266  * @param retlen        pointer to variable to store the number of read bytes
3267  * @param len           number of bytes to read
3268  * @param buf           the databuffer to put/get data
3269  *
3270  * Read user OTP info.
3271  */
3272 static int onenand_get_user_prot_info(struct mtd_info *mtd, size_t len,
3273                                       size_t *retlen, struct otp_info *buf)
3274 {
3275         return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
3276                                 MTD_OTP_USER);
3277 }
3278
3279 /**
3280  * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
3281  * @param mtd           MTD device structure
3282  * @param from          The offset to read
3283  * @param len           number of bytes to read
3284  * @param retlen        pointer to variable to store the number of read bytes
3285  * @param buf           the databuffer to put/get data
3286  *
3287  * Read user OTP area.
3288  */
3289 static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
3290                         size_t len, size_t *retlen, u_char *buf)
3291 {
3292         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
3293 }
3294
3295 /**
3296  * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
3297  * @param mtd           MTD device structure
3298  * @param from          The offset to write
3299  * @param len           number of bytes to write
3300  * @param retlen        pointer to variable to store the number of write bytes
3301  * @param buf           the databuffer to put/get data
3302  *
3303  * Write user OTP area.
3304  */
3305 static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
3306                         size_t len, size_t *retlen, u_char *buf)
3307 {
3308         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
3309 }
3310
3311 /**
3312  * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
3313  * @param mtd           MTD device structure
3314  * @param from          The offset to lock
3315  * @param len           number of bytes to unlock
3316  *
3317  * Write lock mark on spare area in page 0 in OTP block
3318  */
3319 static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
3320                         size_t len)
3321 {
3322         struct onenand_chip *this = mtd->priv;
3323         u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
3324         size_t retlen;
3325         int ret;
3326         unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET;
3327
3328         memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
3329                                                  : mtd->oobsize);
3330         /*
3331          * Write lock mark to 8th word of sector0 of page0 of the spare0.
3332          * We write 16 bytes spare area instead of 2 bytes.
3333          * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3334          * main area of page 49.
3335          */
3336
3337         from = 0;
3338         len = FLEXONENAND(this) ? mtd->writesize : 16;
3339
3340         /*
3341          * Note: OTP lock operation
3342          *       OTP block : 0xXXFC                     XX 1111 1100
3343          *       1st block : 0xXXF3 (If chip support)   XX 1111 0011
3344          *       Both      : 0xXXF0 (If chip support)   XX 1111 0000
3345          */
3346         if (FLEXONENAND(this))
3347                 otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET;
3348
3349         /* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
3350         if (otp == 1)
3351                 buf[otp_lock_offset] = 0xFC;
3352         else if (otp == 2)
3353                 buf[otp_lock_offset] = 0xF3;
3354         else if (otp == 3)
3355                 buf[otp_lock_offset] = 0xF0;
3356         else if (otp != 0)
3357                 printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n");
3358
3359         ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER);
3360
3361         return ret ? : retlen;
3362 }
3363
3364 #endif  /* CONFIG_MTD_ONENAND_OTP */
3365
3366 /**
3367  * onenand_check_features - Check and set OneNAND features
3368  * @param mtd           MTD data structure
3369  *
3370  * Check and set OneNAND features
3371  * - lock scheme
3372  * - two plane
3373  */
3374 static void onenand_check_features(struct mtd_info *mtd)
3375 {
3376         struct onenand_chip *this = mtd->priv;
3377         unsigned int density, process, numbufs;
3378
3379         /* Lock scheme depends on density and process */
3380         density = onenand_get_density(this->device_id);
3381         process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
3382         numbufs = this->read_word(this->base + ONENAND_REG_NUM_BUFFERS) >> 8;
3383
3384         /* Lock scheme */
3385         switch (density) {
3386         case ONENAND_DEVICE_DENSITY_4Gb:
3387                 if (ONENAND_IS_DDP(this))
3388                         this->options |= ONENAND_HAS_2PLANE;
3389                 else if (numbufs == 1) {
3390                         this->options |= ONENAND_HAS_4KB_PAGE;
3391                         this->options |= ONENAND_HAS_CACHE_PROGRAM;
3392                         /*
3393                          * There are two different 4KiB pagesize chips
3394                          * and no way to detect it by H/W config values.
3395                          *
3396                          * To detect the correct NOP for each chips,
3397                          * It should check the version ID as workaround.
3398                          *
3399                          * Now it has as following
3400                          * KFM4G16Q4M has NOP 4 with version ID 0x0131
3401                          * KFM4G16Q5M has NOP 1 with versoin ID 0x013e
3402                          */
3403                         if ((this->version_id & 0xf) == 0xe)
3404                                 this->options |= ONENAND_HAS_NOP_1;
3405                 }
3406
3407         case ONENAND_DEVICE_DENSITY_2Gb:
3408                 /* 2Gb DDP does not have 2 plane */
3409                 if (!ONENAND_IS_DDP(this))
3410                         this->options |= ONENAND_HAS_2PLANE;
3411                 this->options |= ONENAND_HAS_UNLOCK_ALL;
3412
3413         case ONENAND_DEVICE_DENSITY_1Gb:
3414                 /* A-Die has all block unlock */
3415                 if (process)
3416                         this->options |= ONENAND_HAS_UNLOCK_ALL;
3417                 break;
3418
3419         default:
3420                 /* Some OneNAND has continuous lock scheme */
3421                 if (!process)
3422                         this->options |= ONENAND_HAS_CONT_LOCK;
3423                 break;
3424         }
3425
3426         /* The MLC has 4KiB pagesize. */
3427         if (ONENAND_IS_MLC(this))
3428                 this->options |= ONENAND_HAS_4KB_PAGE;
3429
3430         if (ONENAND_IS_4KB_PAGE(this))
3431                 this->options &= ~ONENAND_HAS_2PLANE;
3432
3433         if (FLEXONENAND(this)) {
3434                 this->options &= ~ONENAND_HAS_CONT_LOCK;
3435                 this->options |= ONENAND_HAS_UNLOCK_ALL;
3436         }
3437
3438         if (this->options & ONENAND_HAS_CONT_LOCK)
3439                 printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
3440         if (this->options & ONENAND_HAS_UNLOCK_ALL)
3441                 printk(KERN_DEBUG "Chip support all block unlock\n");
3442         if (this->options & ONENAND_HAS_2PLANE)
3443                 printk(KERN_DEBUG "Chip has 2 plane\n");
3444         if (this->options & ONENAND_HAS_4KB_PAGE)
3445                 printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
3446         if (this->options & ONENAND_HAS_CACHE_PROGRAM)
3447                 printk(KERN_DEBUG "Chip has cache program feature\n");
3448 }
3449
3450 /**
3451  * onenand_print_device_info - Print device & version ID
3452  * @param device        device ID
3453  * @param version       version ID
3454  *
3455  * Print device & version ID
3456  */
3457 static void onenand_print_device_info(int device, int version)
3458 {
3459         int vcc, demuxed, ddp, density, flexonenand;
3460
3461         vcc = device & ONENAND_DEVICE_VCC_MASK;
3462         demuxed = device & ONENAND_DEVICE_IS_DEMUX;
3463         ddp = device & ONENAND_DEVICE_IS_DDP;
3464         density = onenand_get_density(device);
3465         flexonenand = device & DEVICE_IS_FLEXONENAND;
3466         printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
3467                 demuxed ? "" : "Muxed ",
3468                 flexonenand ? "Flex-" : "",
3469                 ddp ? "(DDP)" : "",
3470                 (16 << density),
3471                 vcc ? "2.65/3.3" : "1.8",
3472                 device);
3473         printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
3474 }
3475
3476 static const struct onenand_manufacturers onenand_manuf_ids[] = {
3477         {ONENAND_MFR_SAMSUNG, "Samsung"},
3478         {ONENAND_MFR_NUMONYX, "Numonyx"},
3479 };
3480
3481 /**
3482  * onenand_check_maf - Check manufacturer ID
3483  * @param manuf         manufacturer ID
3484  *
3485  * Check manufacturer ID
3486  */
3487 static int onenand_check_maf(int manuf)
3488 {
3489         int size = ARRAY_SIZE(onenand_manuf_ids);
3490         char *name;
3491         int i;
3492
3493         for (i = 0; i < size; i++)
3494                 if (manuf == onenand_manuf_ids[i].id)
3495                         break;
3496
3497         if (i < size)
3498                 name = onenand_manuf_ids[i].name;
3499         else
3500                 name = "Unknown";
3501
3502         printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
3503
3504         return (i == size);
3505 }
3506
3507 /**
3508 * flexonenand_get_boundary      - Reads the SLC boundary
3509 * @param onenand_info           - onenand info structure
3510 **/
3511 static int flexonenand_get_boundary(struct mtd_info *mtd)
3512 {
3513         struct onenand_chip *this = mtd->priv;
3514         unsigned die, bdry;
3515         int syscfg, locked;
3516
3517         /* Disable ECC */
3518         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3519         this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
3520
3521         for (die = 0; die < this->dies; die++) {
3522                 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3523                 this->wait(mtd, FL_SYNCING);
3524
3525                 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3526                 this->wait(mtd, FL_READING);
3527
3528                 bdry = this->read_word(this->base + ONENAND_DATARAM);
3529                 if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
3530                         locked = 0;
3531                 else
3532                         locked = 1;
3533                 this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
3534
3535                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3536                 this->wait(mtd, FL_RESETING);
3537
3538                 printk(KERN_INFO "Die %d boundary: %d%s\n", die,
3539                        this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
3540         }
3541
3542         /* Enable ECC */
3543         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3544         return 0;
3545 }
3546
3547 /**
3548  * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
3549  *                        boundary[], diesize[], mtd->size, mtd->erasesize
3550  * @param mtd           - MTD device structure
3551  */
3552 static void flexonenand_get_size(struct mtd_info *mtd)
3553 {
3554         struct onenand_chip *this = mtd->priv;
3555         int die, i, eraseshift, density;
3556         int blksperdie, maxbdry;
3557         loff_t ofs;
3558
3559         density = onenand_get_density(this->device_id);
3560         blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
3561         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3562         maxbdry = blksperdie - 1;
3563         eraseshift = this->erase_shift - 1;
3564
3565         mtd->numeraseregions = this->dies << 1;
3566
3567         /* This fills up the device boundary */
3568         flexonenand_get_boundary(mtd);
3569         die = ofs = 0;
3570         i = -1;
3571         for (; die < this->dies; die++) {
3572                 if (!die || this->boundary[die-1] != maxbdry) {
3573                         i++;
3574                         mtd->eraseregions[i].offset = ofs;
3575                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
3576                         mtd->eraseregions[i].numblocks =
3577                                                         this->boundary[die] + 1;
3578                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
3579                         eraseshift++;
3580                 } else {
3581                         mtd->numeraseregions -= 1;
3582                         mtd->eraseregions[i].numblocks +=
3583                                                         this->boundary[die] + 1;
3584                         ofs += (this->boundary[die] + 1) << (eraseshift - 1);
3585                 }
3586                 if (this->boundary[die] != maxbdry) {
3587                         i++;
3588                         mtd->eraseregions[i].offset = ofs;
3589                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
3590                         mtd->eraseregions[i].numblocks = maxbdry ^
3591                                                          this->boundary[die];
3592                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
3593                         eraseshift--;
3594                 } else
3595                         mtd->numeraseregions -= 1;
3596         }
3597
3598         /* Expose MLC erase size except when all blocks are SLC */
3599         mtd->erasesize = 1 << this->erase_shift;
3600         if (mtd->numeraseregions == 1)
3601                 mtd->erasesize >>= 1;
3602
3603         printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
3604         for (i = 0; i < mtd->numeraseregions; i++)
3605                 printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
3606                         " numblocks: %04u]\n",
3607                         (unsigned int) mtd->eraseregions[i].offset,
3608                         mtd->eraseregions[i].erasesize,
3609                         mtd->eraseregions[i].numblocks);
3610
3611         for (die = 0, mtd->size = 0; die < this->dies; die++) {
3612                 this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
3613                 this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
3614                                                  << (this->erase_shift - 1);
3615                 mtd->size += this->diesize[die];
3616         }
3617 }
3618
3619 /**
3620  * flexonenand_check_blocks_erased - Check if blocks are erased
3621  * @param mtd_info      - mtd info structure
3622  * @param start         - first erase block to check
3623  * @param end           - last erase block to check
3624  *
3625  * Converting an unerased block from MLC to SLC
3626  * causes byte values to change. Since both data and its ECC
3627  * have changed, reads on the block give uncorrectable error.
3628  * This might lead to the block being detected as bad.
3629  *
3630  * Avoid this by ensuring that the block to be converted is
3631  * erased.
3632  */
3633 static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
3634 {
3635         struct onenand_chip *this = mtd->priv;
3636         int i, ret;
3637         int block;
3638         struct mtd_oob_ops ops = {
3639                 .mode = MTD_OPS_PLACE_OOB,
3640                 .ooboffs = 0,
3641                 .ooblen = mtd->oobsize,
3642                 .datbuf = NULL,
3643                 .oobbuf = this->oob_buf,
3644         };
3645         loff_t addr;
3646
3647         printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
3648
3649         for (block = start; block <= end; block++) {
3650                 addr = flexonenand_addr(this, block);
3651                 if (onenand_block_isbad_nolock(mtd, addr, 0))
3652                         continue;
3653
3654                 /*
3655                  * Since main area write results in ECC write to spare,
3656                  * it is sufficient to check only ECC bytes for change.
3657                  */
3658                 ret = onenand_read_oob_nolock(mtd, addr, &ops);
3659                 if (ret)
3660                         return ret;
3661
3662                 for (i = 0; i < mtd->oobsize; i++)
3663                         if (this->oob_buf[i] != 0xff)
3664                                 break;
3665
3666                 if (i != mtd->oobsize) {
3667                         printk(KERN_WARNING "%s: Block %d not erased.\n",
3668                                 __func__, block);
3669                         return 1;
3670                 }
3671         }
3672
3673         return 0;
3674 }
3675
3676 /**
3677  * flexonenand_set_boundary     - Writes the SLC boundary
3678  * @param mtd                   - mtd info structure
3679  */
3680 static int flexonenand_set_boundary(struct mtd_info *mtd, int die,
3681                                     int boundary, int lock)
3682 {
3683         struct onenand_chip *this = mtd->priv;
3684         int ret, density, blksperdie, old, new, thisboundary;
3685         loff_t addr;
3686
3687         /* Change only once for SDP Flex-OneNAND */
3688         if (die && (!ONENAND_IS_DDP(this)))
3689                 return 0;
3690
3691         /* boundary value of -1 indicates no required change */
3692         if (boundary < 0 || boundary == this->boundary[die])
3693                 return 0;
3694
3695         density = onenand_get_density(this->device_id);
3696         blksperdie = ((16 << density) << 20) >> this->erase_shift;
3697         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3698
3699         if (boundary >= blksperdie) {
3700                 printk(KERN_ERR "%s: Invalid boundary value. "
3701                                 "Boundary not changed.\n", __func__);
3702                 return -EINVAL;
3703         }
3704
3705         /* Check if converting blocks are erased */
3706         old = this->boundary[die] + (die * this->density_mask);
3707         new = boundary + (die * this->density_mask);
3708         ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
3709         if (ret) {
3710                 printk(KERN_ERR "%s: Please erase blocks "
3711                                 "before boundary change\n", __func__);
3712                 return ret;
3713         }
3714
3715         this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3716         this->wait(mtd, FL_SYNCING);
3717
3718         /* Check is boundary is locked */
3719         this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3720         this->wait(mtd, FL_READING);
3721
3722         thisboundary = this->read_word(this->base + ONENAND_DATARAM);
3723         if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
3724                 printk(KERN_ERR "%s: boundary locked\n", __func__);
3725                 ret = 1;
3726                 goto out;
3727         }
3728
3729         printk(KERN_INFO "Changing die %d boundary: %d%s\n",
3730                         die, boundary, lock ? "(Locked)" : "(Unlocked)");
3731
3732         addr = die ? this->diesize[0] : 0;
3733
3734         boundary &= FLEXONENAND_PI_MASK;
3735         boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
3736
3737         this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
3738         ret = this->wait(mtd, FL_ERASING);
3739         if (ret) {
3740                 printk(KERN_ERR "%s: Failed PI erase for Die %d\n",
3741                        __func__, die);
3742                 goto out;
3743         }
3744
3745         this->write_word(boundary, this->base + ONENAND_DATARAM);
3746         this->command(mtd, ONENAND_CMD_PROG, addr, 0);
3747         ret = this->wait(mtd, FL_WRITING);
3748         if (ret) {
3749                 printk(KERN_ERR "%s: Failed PI write for Die %d\n",
3750                         __func__, die);
3751                 goto out;
3752         }
3753
3754         this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
3755         ret = this->wait(mtd, FL_WRITING);
3756 out:
3757         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
3758         this->wait(mtd, FL_RESETING);
3759         if (!ret)
3760                 /* Recalculate device size on boundary change*/
3761                 flexonenand_get_size(mtd);
3762
3763         return ret;
3764 }
3765
3766 /**
3767  * onenand_chip_probe - [OneNAND Interface] The generic chip probe
3768  * @param mtd           MTD device structure
3769  *
3770  * OneNAND detection method:
3771  *   Compare the values from command with ones from register
3772  */
3773 static int onenand_chip_probe(struct mtd_info *mtd)
3774 {
3775         struct onenand_chip *this = mtd->priv;
3776         int bram_maf_id, bram_dev_id, maf_id, dev_id;
3777         int syscfg;
3778
3779         /* Save system configuration 1 */
3780         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3781         /* Clear Sync. Burst Read mode to read BootRAM */
3782         this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1);
3783
3784         /* Send the command for reading device ID from BootRAM */
3785         this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
3786
3787         /* Read manufacturer and device IDs from BootRAM */
3788         bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
3789         bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
3790
3791         /* Reset OneNAND to read default register values */
3792         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
3793         /* Wait reset */
3794         this->wait(mtd, FL_RESETING);
3795
3796         /* Restore system configuration 1 */
3797         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3798
3799         /* Check manufacturer ID */
3800         if (onenand_check_maf(bram_maf_id))
3801                 return -ENXIO;
3802
3803         /* Read manufacturer and device IDs from Register */
3804         maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3805         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3806
3807         /* Check OneNAND device */
3808         if (maf_id != bram_maf_id || dev_id != bram_dev_id)
3809                 return -ENXIO;
3810
3811         return 0;
3812 }
3813
3814 /**
3815  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
3816  * @param mtd           MTD device structure
3817  */
3818 static int onenand_probe(struct mtd_info *mtd)
3819 {
3820         struct onenand_chip *this = mtd->priv;
3821         int dev_id, ver_id;
3822         int density;
3823         int ret;
3824
3825         ret = this->chip_probe(mtd);
3826         if (ret)
3827                 return ret;
3828
3829         /* Device and version IDs from Register */
3830         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3831         ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
3832         this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
3833
3834         /* Flash device information */
3835         onenand_print_device_info(dev_id, ver_id);
3836         this->device_id = dev_id;
3837         this->version_id = ver_id;
3838
3839         /* Check OneNAND features */
3840         onenand_check_features(mtd);
3841
3842         density = onenand_get_density(dev_id);
3843         if (FLEXONENAND(this)) {
3844                 this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
3845                 /* Maximum possible erase regions */
3846                 mtd->numeraseregions = this->dies << 1;
3847                 mtd->eraseregions = kzalloc(sizeof(struct mtd_erase_region_info)
3848                                         * (this->dies << 1), GFP_KERNEL);
3849                 if (!mtd->eraseregions)
3850                         return -ENOMEM;
3851         }
3852
3853         /*
3854          * For Flex-OneNAND, chipsize represents maximum possible device size.
3855          * mtd->size represents the actual device size.
3856          */
3857         this->chipsize = (16 << density) << 20;
3858
3859         /* OneNAND page size & block size */
3860         /* The data buffer size is equal to page size */
3861         mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
3862         /* We use the full BufferRAM */
3863         if (ONENAND_IS_4KB_PAGE(this))
3864                 mtd->writesize <<= 1;
3865
3866         mtd->oobsize = mtd->writesize >> 5;
3867         /* Pages per a block are always 64 in OneNAND */
3868         mtd->erasesize = mtd->writesize << 6;
3869         /*
3870          * Flex-OneNAND SLC area has 64 pages per block.
3871          * Flex-OneNAND MLC area has 128 pages per block.
3872          * Expose MLC erase size to find erase_shift and page_mask.
3873          */
3874         if (FLEXONENAND(this))
3875                 mtd->erasesize <<= 1;
3876
3877         this->erase_shift = ffs(mtd->erasesize) - 1;
3878         this->page_shift = ffs(mtd->writesize) - 1;
3879         this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
3880         /* Set density mask. it is used for DDP */
3881         if (ONENAND_IS_DDP(this))
3882                 this->density_mask = this->chipsize >> (this->erase_shift + 1);
3883         /* It's real page size */
3884         this->writesize = mtd->writesize;
3885
3886         /* REVISIT: Multichip handling */
3887
3888         if (FLEXONENAND(this))
3889                 flexonenand_get_size(mtd);
3890         else
3891                 mtd->size = this->chipsize;
3892
3893         /*
3894          * We emulate the 4KiB page and 256KiB erase block size
3895          * But oobsize is still 64 bytes.
3896          * It is only valid if you turn on 2X program support,
3897          * Otherwise it will be ignored by compiler.
3898          */
3899         if (ONENAND_IS_2PLANE(this)) {
3900                 mtd->writesize <<= 1;
3901                 mtd->erasesize <<= 1;
3902         }
3903
3904         return 0;
3905 }
3906
3907 /**
3908  * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
3909  * @param mtd           MTD device structure
3910  */
3911 static int onenand_suspend(struct mtd_info *mtd)
3912 {
3913         return onenand_get_device(mtd, FL_PM_SUSPENDED);
3914 }
3915
3916 /**
3917  * onenand_resume - [MTD Interface] Resume the OneNAND flash
3918  * @param mtd           MTD device structure
3919  */
3920 static void onenand_resume(struct mtd_info *mtd)
3921 {
3922         struct onenand_chip *this = mtd->priv;
3923
3924         if (this->state == FL_PM_SUSPENDED)
3925                 onenand_release_device(mtd);
3926         else
3927                 printk(KERN_ERR "%s: resume() called for the chip which is not "
3928                                 "in suspended state\n", __func__);
3929 }
3930
3931 /**
3932  * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
3933  * @param mtd           MTD device structure
3934  * @param maxchips      Number of chips to scan for
3935  *
3936  * This fills out all the not initialized function pointers
3937  * with the defaults.
3938  * The flash ID is read and the mtd/chip structures are
3939  * filled with the appropriate values.
3940  */
3941 int onenand_scan(struct mtd_info *mtd, int maxchips)
3942 {
3943         int i, ret;
3944         struct onenand_chip *this = mtd->priv;
3945
3946         if (!this->read_word)
3947                 this->read_word = onenand_readw;
3948         if (!this->write_word)
3949                 this->write_word = onenand_writew;
3950
3951         if (!this->command)
3952                 this->command = onenand_command;
3953         if (!this->wait)
3954                 onenand_setup_wait(mtd);
3955         if (!this->bbt_wait)
3956                 this->bbt_wait = onenand_bbt_wait;
3957         if (!this->unlock_all)
3958                 this->unlock_all = onenand_unlock_all;
3959
3960         if (!this->chip_probe)
3961                 this->chip_probe = onenand_chip_probe;
3962
3963         if (!this->read_bufferram)
3964                 this->read_bufferram = onenand_read_bufferram;
3965         if (!this->write_bufferram)
3966                 this->write_bufferram = onenand_write_bufferram;
3967
3968         if (!this->block_markbad)
3969                 this->block_markbad = onenand_default_block_markbad;
3970         if (!this->scan_bbt)
3971                 this->scan_bbt = onenand_default_bbt;
3972
3973         if (onenand_probe(mtd))
3974                 return -ENXIO;
3975
3976         /* Set Sync. Burst Read after probing */
3977         if (this->mmcontrol) {
3978                 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
3979                 this->read_bufferram = onenand_sync_read_bufferram;
3980         }
3981
3982         /* Allocate buffers, if necessary */
3983         if (!this->page_buf) {
3984                 this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3985                 if (!this->page_buf)
3986                         return -ENOMEM;
3987 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3988                 this->verify_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3989                 if (!this->verify_buf) {
3990                         kfree(this->page_buf);
3991                         return -ENOMEM;
3992                 }
3993 #endif
3994                 this->options |= ONENAND_PAGEBUF_ALLOC;
3995         }
3996         if (!this->oob_buf) {
3997                 this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
3998                 if (!this->oob_buf) {
3999                         if (this->options & ONENAND_PAGEBUF_ALLOC) {
4000                                 this->options &= ~ONENAND_PAGEBUF_ALLOC;
4001                                 kfree(this->page_buf);
4002                         }
4003                         return -ENOMEM;
4004                 }
4005                 this->options |= ONENAND_OOBBUF_ALLOC;
4006         }
4007
4008         this->state = FL_READY;
4009         init_waitqueue_head(&this->wq);
4010         spin_lock_init(&this->chip_lock);
4011
4012         /*
4013          * Allow subpage writes up to oobsize.
4014          */
4015         switch (mtd->oobsize) {
4016         case 128:
4017                 if (FLEXONENAND(this)) {
4018                         this->ecclayout = &flexonenand_oob_128;
4019                         mtd->subpage_sft = 0;
4020                 } else {
4021                         this->ecclayout = &onenand_oob_128;
4022                         mtd->subpage_sft = 2;
4023                 }
4024                 if (ONENAND_IS_NOP_1(this))
4025                         mtd->subpage_sft = 0;
4026                 break;
4027         case 64:
4028                 this->ecclayout = &onenand_oob_64;
4029                 mtd->subpage_sft = 2;
4030                 break;
4031
4032         case 32:
4033                 this->ecclayout = &onenand_oob_32;
4034                 mtd->subpage_sft = 1;
4035                 break;
4036
4037         default:
4038                 printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n",
4039                         __func__, mtd->oobsize);
4040                 mtd->subpage_sft = 0;
4041                 /* To prevent kernel oops */
4042                 this->ecclayout = &onenand_oob_32;
4043                 break;
4044         }
4045
4046         this->subpagesize = mtd->writesize >> mtd->subpage_sft;
4047
4048         /*
4049          * The number of bytes available for a client to place data into
4050          * the out of band area
4051          */
4052         this->ecclayout->oobavail = 0;
4053         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
4054             this->ecclayout->oobfree[i].length; i++)
4055                 this->ecclayout->oobavail +=
4056                         this->ecclayout->oobfree[i].length;
4057         mtd->oobavail = this->ecclayout->oobavail;
4058
4059         mtd->ecclayout = this->ecclayout;
4060         mtd->ecc_strength = 1;
4061
4062         /* Fill in remaining MTD driver data */
4063         mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH;
4064         mtd->flags = MTD_CAP_NANDFLASH;
4065         mtd->_erase = onenand_erase;
4066         mtd->_point = NULL;
4067         mtd->_unpoint = NULL;
4068         mtd->_read = onenand_read;
4069         mtd->_write = onenand_write;
4070         mtd->_read_oob = onenand_read_oob;
4071         mtd->_write_oob = onenand_write_oob;
4072         mtd->_panic_write = onenand_panic_write;
4073 #ifdef CONFIG_MTD_ONENAND_OTP
4074         mtd->_get_fact_prot_info = onenand_get_fact_prot_info;
4075         mtd->_read_fact_prot_reg = onenand_read_fact_prot_reg;
4076         mtd->_get_user_prot_info = onenand_get_user_prot_info;
4077         mtd->_read_user_prot_reg = onenand_read_user_prot_reg;
4078         mtd->_write_user_prot_reg = onenand_write_user_prot_reg;
4079         mtd->_lock_user_prot_reg = onenand_lock_user_prot_reg;
4080 #endif
4081         mtd->_sync = onenand_sync;
4082         mtd->_lock = onenand_lock;
4083         mtd->_unlock = onenand_unlock;
4084         mtd->_suspend = onenand_suspend;
4085         mtd->_resume = onenand_resume;
4086         mtd->_block_isbad = onenand_block_isbad;
4087         mtd->_block_markbad = onenand_block_markbad;
4088         mtd->owner = THIS_MODULE;
4089         mtd->writebufsize = mtd->writesize;
4090
4091         /* Unlock whole block */
4092         if (!(this->options & ONENAND_SKIP_INITIAL_UNLOCKING))
4093                 this->unlock_all(mtd);
4094
4095         ret = this->scan_bbt(mtd);
4096         if ((!FLEXONENAND(this)) || ret)
4097                 return ret;
4098
4099         /* Change Flex-OneNAND boundaries if required */
4100         for (i = 0; i < MAX_DIES; i++)
4101                 flexonenand_set_boundary(mtd, i, flex_bdry[2 * i],
4102                                                  flex_bdry[(2 * i) + 1]);
4103
4104         return 0;
4105 }
4106
4107 /**
4108  * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
4109  * @param mtd           MTD device structure
4110  */
4111 void onenand_release(struct mtd_info *mtd)
4112 {
4113         struct onenand_chip *this = mtd->priv;
4114
4115         /* Deregister partitions */
4116         mtd_device_unregister(mtd);
4117
4118         /* Free bad block table memory, if allocated */
4119         if (this->bbm) {
4120                 struct bbm_info *bbm = this->bbm;
4121                 kfree(bbm->bbt);
4122                 kfree(this->bbm);
4123         }
4124         /* Buffers allocated by onenand_scan */
4125         if (this->options & ONENAND_PAGEBUF_ALLOC) {
4126                 kfree(this->page_buf);
4127 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
4128                 kfree(this->verify_buf);
4129 #endif
4130         }
4131         if (this->options & ONENAND_OOBBUF_ALLOC)
4132                 kfree(this->oob_buf);
4133         kfree(mtd->eraseregions);
4134 }
4135
4136 EXPORT_SYMBOL_GPL(onenand_scan);
4137 EXPORT_SYMBOL_GPL(onenand_release);
4138
4139 MODULE_LICENSE("GPL");
4140 MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
4141 MODULE_DESCRIPTION("Generic OneNAND flash driver code");