Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / mtd / nand / sunxi_nand.c
1 /*
2  * Copyright (C) 2013 Boris BREZILLON <b.brezillon.dev@gmail.com>
3  *
4  * Derived from:
5  *      https://github.com/yuq/sunxi-nfc-mtd
6  *      Copyright (C) 2013 Qiang Yu <yuq825@gmail.com>
7  *
8  *      https://github.com/hno/Allwinner-Info
9  *      Copyright (C) 2013 Henrik Nordström <Henrik Nordström>
10  *
11  *      Copyright (C) 2013 Dmitriy B. <rzk333@gmail.com>
12  *      Copyright (C) 2013 Sergey Lapin <slapin@ossfans.org>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License as published by
16  * the Free Software Foundation; either version 2 of the License, or
17  * (at your option) any later version.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  */
24
25 #include <linux/dma-mapping.h>
26 #include <linux/slab.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/platform_device.h>
30 #include <linux/of.h>
31 #include <linux/of_device.h>
32 #include <linux/of_gpio.h>
33 #include <linux/of_mtd.h>
34 #include <linux/mtd/mtd.h>
35 #include <linux/mtd/nand.h>
36 #include <linux/mtd/partitions.h>
37 #include <linux/clk.h>
38 #include <linux/delay.h>
39 #include <linux/dmaengine.h>
40 #include <linux/gpio.h>
41 #include <linux/interrupt.h>
42 #include <linux/io.h>
43
44 #define NFC_REG_CTL             0x0000
45 #define NFC_REG_ST              0x0004
46 #define NFC_REG_INT             0x0008
47 #define NFC_REG_TIMING_CTL      0x000C
48 #define NFC_REG_TIMING_CFG      0x0010
49 #define NFC_REG_ADDR_LOW        0x0014
50 #define NFC_REG_ADDR_HIGH       0x0018
51 #define NFC_REG_SECTOR_NUM      0x001C
52 #define NFC_REG_CNT             0x0020
53 #define NFC_REG_CMD             0x0024
54 #define NFC_REG_RCMD_SET        0x0028
55 #define NFC_REG_WCMD_SET        0x002C
56 #define NFC_REG_IO_DATA         0x0030
57 #define NFC_REG_ECC_CTL         0x0034
58 #define NFC_REG_ECC_ST          0x0038
59 #define NFC_REG_DEBUG           0x003C
60 #define NFC_REG_ECC_CNT0        0x0040
61 #define NFC_REG_ECC_CNT1        0x0044
62 #define NFC_REG_ECC_CNT2        0x0048
63 #define NFC_REG_ECC_CNT3        0x004c
64 #define NFC_REG_USER_DATA_BASE  0x0050
65 #define NFC_REG_SPARE_AREA      0x00A0
66 #define NFC_RAM0_BASE           0x0400
67 #define NFC_RAM1_BASE           0x0800
68
69 /* define bit use in NFC_CTL */
70 #define NFC_EN                  BIT(0)
71 #define NFC_RESET               BIT(1)
72 #define NFC_BUS_WIDYH           BIT(2)
73 #define NFC_RB_SEL              BIT(3)
74 #define NFC_CE_SEL              GENMASK(26, 24)
75 #define NFC_CE_CTL              BIT(6)
76 #define NFC_CE_CTL1             BIT(7)
77 #define NFC_PAGE_SIZE           GENMASK(11, 8)
78 #define NFC_SAM                 BIT(12)
79 #define NFC_RAM_METHOD          BIT(14)
80 #define NFC_DEBUG_CTL           BIT(31)
81
82 /* define bit use in NFC_ST */
83 #define NFC_RB_B2R              BIT(0)
84 #define NFC_CMD_INT_FLAG        BIT(1)
85 #define NFC_DMA_INT_FLAG        BIT(2)
86 #define NFC_CMD_FIFO_STATUS     BIT(3)
87 #define NFC_STA                 BIT(4)
88 #define NFC_NATCH_INT_FLAG      BIT(5)
89 #define NFC_RB_STATE0           BIT(8)
90 #define NFC_RB_STATE1           BIT(9)
91 #define NFC_RB_STATE2           BIT(10)
92 #define NFC_RB_STATE3           BIT(11)
93
94 /* define bit use in NFC_INT */
95 #define NFC_B2R_INT_ENABLE      BIT(0)
96 #define NFC_CMD_INT_ENABLE      BIT(1)
97 #define NFC_DMA_INT_ENABLE      BIT(2)
98 #define NFC_INT_MASK            (NFC_B2R_INT_ENABLE | \
99                                  NFC_CMD_INT_ENABLE | \
100                                  NFC_DMA_INT_ENABLE)
101
102 /* define bit use in NFC_CMD */
103 #define NFC_CMD_LOW_BYTE        GENMASK(7, 0)
104 #define NFC_CMD_HIGH_BYTE       GENMASK(15, 8)
105 #define NFC_ADR_NUM             GENMASK(18, 16)
106 #define NFC_SEND_ADR            BIT(19)
107 #define NFC_ACCESS_DIR          BIT(20)
108 #define NFC_DATA_TRANS          BIT(21)
109 #define NFC_SEND_CMD1           BIT(22)
110 #define NFC_WAIT_FLAG           BIT(23)
111 #define NFC_SEND_CMD2           BIT(24)
112 #define NFC_SEQ                 BIT(25)
113 #define NFC_DATA_SWAP_METHOD    BIT(26)
114 #define NFC_ROW_AUTO_INC        BIT(27)
115 #define NFC_SEND_CMD3           BIT(28)
116 #define NFC_SEND_CMD4           BIT(29)
117 #define NFC_CMD_TYPE            GENMASK(31, 30)
118
119 /* define bit use in NFC_RCMD_SET */
120 #define NFC_READ_CMD            GENMASK(7, 0)
121 #define NFC_RANDOM_READ_CMD0    GENMASK(15, 8)
122 #define NFC_RANDOM_READ_CMD1    GENMASK(23, 16)
123
124 /* define bit use in NFC_WCMD_SET */
125 #define NFC_PROGRAM_CMD         GENMASK(7, 0)
126 #define NFC_RANDOM_WRITE_CMD    GENMASK(15, 8)
127 #define NFC_READ_CMD0           GENMASK(23, 16)
128 #define NFC_READ_CMD1           GENMASK(31, 24)
129
130 /* define bit use in NFC_ECC_CTL */
131 #define NFC_ECC_EN              BIT(0)
132 #define NFC_ECC_PIPELINE        BIT(3)
133 #define NFC_ECC_EXCEPTION       BIT(4)
134 #define NFC_ECC_BLOCK_SIZE      BIT(5)
135 #define NFC_RANDOM_EN           BIT(9)
136 #define NFC_RANDOM_DIRECTION    BIT(10)
137 #define NFC_ECC_MODE_SHIFT      12
138 #define NFC_ECC_MODE            GENMASK(15, 12)
139 #define NFC_RANDOM_SEED         GENMASK(30, 16)
140
141 #define NFC_DEFAULT_TIMEOUT_MS  1000
142
143 #define NFC_SRAM_SIZE           1024
144
145 #define NFC_MAX_CS              7
146
147 /*
148  * Ready/Busy detection type: describes the Ready/Busy detection modes
149  *
150  * @RB_NONE:    no external detection available, rely on STATUS command
151  *              and software timeouts
152  * @RB_NATIVE:  use sunxi NAND controller Ready/Busy support. The Ready/Busy
153  *              pin of the NAND flash chip must be connected to one of the
154  *              native NAND R/B pins (those which can be muxed to the NAND
155  *              Controller)
156  * @RB_GPIO:    use a simple GPIO to handle Ready/Busy status. The Ready/Busy
157  *              pin of the NAND flash chip must be connected to a GPIO capable
158  *              pin.
159  */
160 enum sunxi_nand_rb_type {
161         RB_NONE,
162         RB_NATIVE,
163         RB_GPIO,
164 };
165
166 /*
167  * Ready/Busy structure: stores information related to Ready/Busy detection
168  *
169  * @type:       the Ready/Busy detection mode
170  * @info:       information related to the R/B detection mode. Either a gpio
171  *              id or a native R/B id (those supported by the NAND controller).
172  */
173 struct sunxi_nand_rb {
174         enum sunxi_nand_rb_type type;
175         union {
176                 int gpio;
177                 int nativeid;
178         } info;
179 };
180
181 /*
182  * Chip Select structure: stores information related to NAND Chip Select
183  *
184  * @cs:         the NAND CS id used to communicate with a NAND Chip
185  * @rb:         the Ready/Busy description
186  */
187 struct sunxi_nand_chip_sel {
188         u8 cs;
189         struct sunxi_nand_rb rb;
190 };
191
192 /*
193  * sunxi HW ECC infos: stores information related to HW ECC support
194  *
195  * @mode:       the sunxi ECC mode field deduced from ECC requirements
196  * @layout:     the OOB layout depending on the ECC requirements and the
197  *              selected ECC mode
198  */
199 struct sunxi_nand_hw_ecc {
200         int mode;
201         struct nand_ecclayout layout;
202 };
203
204 /*
205  * NAND chip structure: stores NAND chip device related information
206  *
207  * @node:               used to store NAND chips into a list
208  * @nand:               base NAND chip structure
209  * @mtd:                base MTD structure
210  * @clk_rate:           clk_rate required for this NAND chip
211  * @selected:           current active CS
212  * @nsels:              number of CS lines required by the NAND chip
213  * @sels:               array of CS lines descriptions
214  */
215 struct sunxi_nand_chip {
216         struct list_head node;
217         struct nand_chip nand;
218         struct mtd_info mtd;
219         unsigned long clk_rate;
220         int selected;
221         int nsels;
222         struct sunxi_nand_chip_sel sels[0];
223 };
224
225 static inline struct sunxi_nand_chip *to_sunxi_nand(struct nand_chip *nand)
226 {
227         return container_of(nand, struct sunxi_nand_chip, nand);
228 }
229
230 /*
231  * NAND Controller structure: stores sunxi NAND controller information
232  *
233  * @controller:         base controller structure
234  * @dev:                parent device (used to print error messages)
235  * @regs:               NAND controller registers
236  * @ahb_clk:            NAND Controller AHB clock
237  * @mod_clk:            NAND Controller mod clock
238  * @assigned_cs:        bitmask describing already assigned CS lines
239  * @clk_rate:           NAND controller current clock rate
240  * @chips:              a list containing all the NAND chips attached to
241  *                      this NAND controller
242  * @complete:           a completion object used to wait for NAND
243  *                      controller events
244  */
245 struct sunxi_nfc {
246         struct nand_hw_control controller;
247         struct device *dev;
248         void __iomem *regs;
249         struct clk *ahb_clk;
250         struct clk *mod_clk;
251         unsigned long assigned_cs;
252         unsigned long clk_rate;
253         struct list_head chips;
254         struct completion complete;
255 };
256
257 static inline struct sunxi_nfc *to_sunxi_nfc(struct nand_hw_control *ctrl)
258 {
259         return container_of(ctrl, struct sunxi_nfc, controller);
260 }
261
262 static irqreturn_t sunxi_nfc_interrupt(int irq, void *dev_id)
263 {
264         struct sunxi_nfc *nfc = dev_id;
265         u32 st = readl(nfc->regs + NFC_REG_ST);
266         u32 ien = readl(nfc->regs + NFC_REG_INT);
267
268         if (!(ien & st))
269                 return IRQ_NONE;
270
271         if ((ien & st) == ien)
272                 complete(&nfc->complete);
273
274         writel(st & NFC_INT_MASK, nfc->regs + NFC_REG_ST);
275         writel(~st & ien & NFC_INT_MASK, nfc->regs + NFC_REG_INT);
276
277         return IRQ_HANDLED;
278 }
279
280 static int sunxi_nfc_wait_int(struct sunxi_nfc *nfc, u32 flags,
281                               unsigned int timeout_ms)
282 {
283         init_completion(&nfc->complete);
284
285         writel(flags, nfc->regs + NFC_REG_INT);
286
287         if (!timeout_ms)
288                 timeout_ms = NFC_DEFAULT_TIMEOUT_MS;
289
290         if (!wait_for_completion_timeout(&nfc->complete,
291                                          msecs_to_jiffies(timeout_ms))) {
292                 dev_err(nfc->dev, "wait interrupt timedout\n");
293                 return -ETIMEDOUT;
294         }
295
296         return 0;
297 }
298
299 static int sunxi_nfc_wait_cmd_fifo_empty(struct sunxi_nfc *nfc)
300 {
301         unsigned long timeout = jiffies +
302                                 msecs_to_jiffies(NFC_DEFAULT_TIMEOUT_MS);
303
304         do {
305                 if (!(readl(nfc->regs + NFC_REG_ST) & NFC_CMD_FIFO_STATUS))
306                         return 0;
307         } while (time_before(jiffies, timeout));
308
309         dev_err(nfc->dev, "wait for empty cmd FIFO timedout\n");
310         return -ETIMEDOUT;
311 }
312
313 static int sunxi_nfc_rst(struct sunxi_nfc *nfc)
314 {
315         unsigned long timeout = jiffies +
316                                 msecs_to_jiffies(NFC_DEFAULT_TIMEOUT_MS);
317
318         writel(0, nfc->regs + NFC_REG_ECC_CTL);
319         writel(NFC_RESET, nfc->regs + NFC_REG_CTL);
320
321         do {
322                 if (!(readl(nfc->regs + NFC_REG_CTL) & NFC_RESET))
323                         return 0;
324         } while (time_before(jiffies, timeout));
325
326         dev_err(nfc->dev, "wait for NAND controller reset timedout\n");
327         return -ETIMEDOUT;
328 }
329
330 static int sunxi_nfc_dev_ready(struct mtd_info *mtd)
331 {
332         struct nand_chip *nand = mtd->priv;
333         struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
334         struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
335         struct sunxi_nand_rb *rb;
336         unsigned long timeo = (sunxi_nand->nand.state == FL_ERASING ? 400 : 20);
337         int ret;
338
339         if (sunxi_nand->selected < 0)
340                 return 0;
341
342         rb = &sunxi_nand->sels[sunxi_nand->selected].rb;
343
344         switch (rb->type) {
345         case RB_NATIVE:
346                 ret = !!(readl(nfc->regs + NFC_REG_ST) &
347                          (NFC_RB_STATE0 << rb->info.nativeid));
348                 if (ret)
349                         break;
350
351                 sunxi_nfc_wait_int(nfc, NFC_RB_B2R, timeo);
352                 ret = !!(readl(nfc->regs + NFC_REG_ST) &
353                          (NFC_RB_STATE0 << rb->info.nativeid));
354                 break;
355         case RB_GPIO:
356                 ret = gpio_get_value(rb->info.gpio);
357                 break;
358         case RB_NONE:
359         default:
360                 ret = 0;
361                 dev_err(nfc->dev, "cannot check R/B NAND status!\n");
362                 break;
363         }
364
365         return ret;
366 }
367
368 static void sunxi_nfc_select_chip(struct mtd_info *mtd, int chip)
369 {
370         struct nand_chip *nand = mtd->priv;
371         struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
372         struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
373         struct sunxi_nand_chip_sel *sel;
374         u32 ctl;
375
376         if (chip > 0 && chip >= sunxi_nand->nsels)
377                 return;
378
379         if (chip == sunxi_nand->selected)
380                 return;
381
382         ctl = readl(nfc->regs + NFC_REG_CTL) &
383               ~(NFC_CE_SEL | NFC_RB_SEL | NFC_EN);
384
385         if (chip >= 0) {
386                 sel = &sunxi_nand->sels[chip];
387
388                 ctl |= (sel->cs << 24) | NFC_EN |
389                        (((nand->page_shift - 10) & 0xf) << 8);
390                 if (sel->rb.type == RB_NONE) {
391                         nand->dev_ready = NULL;
392                 } else {
393                         nand->dev_ready = sunxi_nfc_dev_ready;
394                         if (sel->rb.type == RB_NATIVE)
395                                 ctl |= (sel->rb.info.nativeid << 3);
396                 }
397
398                 writel(mtd->writesize, nfc->regs + NFC_REG_SPARE_AREA);
399
400                 if (nfc->clk_rate != sunxi_nand->clk_rate) {
401                         clk_set_rate(nfc->mod_clk, sunxi_nand->clk_rate);
402                         nfc->clk_rate = sunxi_nand->clk_rate;
403                 }
404         }
405
406         writel(ctl, nfc->regs + NFC_REG_CTL);
407
408         sunxi_nand->selected = chip;
409 }
410
411 static void sunxi_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
412 {
413         struct nand_chip *nand = mtd->priv;
414         struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
415         struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
416         int ret;
417         int cnt;
418         int offs = 0;
419         u32 tmp;
420
421         while (len > offs) {
422                 cnt = min(len - offs, NFC_SRAM_SIZE);
423
424                 ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
425                 if (ret)
426                         break;
427
428                 writel(cnt, nfc->regs + NFC_REG_CNT);
429                 tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD;
430                 writel(tmp, nfc->regs + NFC_REG_CMD);
431
432                 ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
433                 if (ret)
434                         break;
435
436                 if (buf)
437                         memcpy_fromio(buf + offs, nfc->regs + NFC_RAM0_BASE,
438                                       cnt);
439                 offs += cnt;
440         }
441 }
442
443 static void sunxi_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
444                                 int len)
445 {
446         struct nand_chip *nand = mtd->priv;
447         struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
448         struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
449         int ret;
450         int cnt;
451         int offs = 0;
452         u32 tmp;
453
454         while (len > offs) {
455                 cnt = min(len - offs, NFC_SRAM_SIZE);
456
457                 ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
458                 if (ret)
459                         break;
460
461                 writel(cnt, nfc->regs + NFC_REG_CNT);
462                 memcpy_toio(nfc->regs + NFC_RAM0_BASE, buf + offs, cnt);
463                 tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD |
464                       NFC_ACCESS_DIR;
465                 writel(tmp, nfc->regs + NFC_REG_CMD);
466
467                 ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
468                 if (ret)
469                         break;
470
471                 offs += cnt;
472         }
473 }
474
475 static uint8_t sunxi_nfc_read_byte(struct mtd_info *mtd)
476 {
477         uint8_t ret;
478
479         sunxi_nfc_read_buf(mtd, &ret, 1);
480
481         return ret;
482 }
483
484 static void sunxi_nfc_cmd_ctrl(struct mtd_info *mtd, int dat,
485                                unsigned int ctrl)
486 {
487         struct nand_chip *nand = mtd->priv;
488         struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
489         struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
490         int ret;
491         u32 tmp;
492
493         ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
494         if (ret)
495                 return;
496
497         if (ctrl & NAND_CTRL_CHANGE) {
498                 tmp = readl(nfc->regs + NFC_REG_CTL);
499                 if (ctrl & NAND_NCE)
500                         tmp |= NFC_CE_CTL;
501                 else
502                         tmp &= ~NFC_CE_CTL;
503                 writel(tmp, nfc->regs + NFC_REG_CTL);
504         }
505
506         if (dat == NAND_CMD_NONE)
507                 return;
508
509         if (ctrl & NAND_CLE) {
510                 writel(NFC_SEND_CMD1 | dat, nfc->regs + NFC_REG_CMD);
511         } else {
512                 writel(dat, nfc->regs + NFC_REG_ADDR_LOW);
513                 writel(NFC_SEND_ADR, nfc->regs + NFC_REG_CMD);
514         }
515
516         sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
517 }
518
519 static int sunxi_nfc_hw_ecc_read_page(struct mtd_info *mtd,
520                                       struct nand_chip *chip, uint8_t *buf,
521                                       int oob_required, int page)
522 {
523         struct sunxi_nfc *nfc = to_sunxi_nfc(chip->controller);
524         struct nand_ecc_ctrl *ecc = &chip->ecc;
525         struct nand_ecclayout *layout = ecc->layout;
526         struct sunxi_nand_hw_ecc *data = ecc->priv;
527         unsigned int max_bitflips = 0;
528         int offset;
529         int ret;
530         u32 tmp;
531         int i;
532         int cnt;
533
534         tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
535         tmp &= ~(NFC_ECC_MODE | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE);
536         tmp |= NFC_ECC_EN | (data->mode << NFC_ECC_MODE_SHIFT) |
537                NFC_ECC_EXCEPTION;
538
539         writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
540
541         for (i = 0; i < ecc->steps; i++) {
542                 if (i)
543                         chip->cmdfunc(mtd, NAND_CMD_RNDOUT, i * ecc->size, -1);
544
545                 offset = mtd->writesize + layout->eccpos[i * ecc->bytes] - 4;
546
547                 chip->read_buf(mtd, NULL, ecc->size);
548
549                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1);
550
551                 ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
552                 if (ret)
553                         return ret;
554
555                 tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | (1 << 30);
556                 writel(tmp, nfc->regs + NFC_REG_CMD);
557
558                 ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
559                 if (ret)
560                         return ret;
561
562                 memcpy_fromio(buf + (i * ecc->size),
563                               nfc->regs + NFC_RAM0_BASE, ecc->size);
564
565                 if (readl(nfc->regs + NFC_REG_ECC_ST) & 0x1) {
566                         mtd->ecc_stats.failed++;
567                 } else {
568                         tmp = readl(nfc->regs + NFC_REG_ECC_CNT0) & 0xff;
569                         mtd->ecc_stats.corrected += tmp;
570                         max_bitflips = max_t(unsigned int, max_bitflips, tmp);
571                 }
572
573                 if (oob_required) {
574                         chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1);
575
576                         ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
577                         if (ret)
578                                 return ret;
579
580                         offset -= mtd->writesize;
581                         chip->read_buf(mtd, chip->oob_poi + offset,
582                                       ecc->bytes + 4);
583                 }
584         }
585
586         if (oob_required) {
587                 cnt = ecc->layout->oobfree[ecc->steps].length;
588                 if (cnt > 0) {
589                         offset = mtd->writesize +
590                                  ecc->layout->oobfree[ecc->steps].offset;
591                         chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1);
592                         offset -= mtd->writesize;
593                         chip->read_buf(mtd, chip->oob_poi + offset, cnt);
594                 }
595         }
596
597         tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
598         tmp &= ~NFC_ECC_EN;
599
600         writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
601
602         return max_bitflips;
603 }
604
605 static int sunxi_nfc_hw_ecc_write_page(struct mtd_info *mtd,
606                                        struct nand_chip *chip,
607                                        const uint8_t *buf, int oob_required)
608 {
609         struct sunxi_nfc *nfc = to_sunxi_nfc(chip->controller);
610         struct nand_ecc_ctrl *ecc = &chip->ecc;
611         struct nand_ecclayout *layout = ecc->layout;
612         struct sunxi_nand_hw_ecc *data = ecc->priv;
613         int offset;
614         int ret;
615         u32 tmp;
616         int i;
617         int cnt;
618
619         tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
620         tmp &= ~(NFC_ECC_MODE | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE);
621         tmp |= NFC_ECC_EN | (data->mode << NFC_ECC_MODE_SHIFT) |
622                NFC_ECC_EXCEPTION;
623
624         writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
625
626         for (i = 0; i < ecc->steps; i++) {
627                 if (i)
628                         chip->cmdfunc(mtd, NAND_CMD_RNDIN, i * ecc->size, -1);
629
630                 chip->write_buf(mtd, buf + (i * ecc->size), ecc->size);
631
632                 offset = layout->eccpos[i * ecc->bytes] - 4 + mtd->writesize;
633
634                 /* Fill OOB data in */
635                 if (oob_required) {
636                         tmp = 0xffffffff;
637                         memcpy_toio(nfc->regs + NFC_REG_USER_DATA_BASE, &tmp,
638                                     4);
639                 } else {
640                         memcpy_toio(nfc->regs + NFC_REG_USER_DATA_BASE,
641                                     chip->oob_poi + offset - mtd->writesize,
642                                     4);
643                 }
644
645                 chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset, -1);
646
647                 ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
648                 if (ret)
649                         return ret;
650
651                 tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ACCESS_DIR |
652                       (1 << 30);
653                 writel(tmp, nfc->regs + NFC_REG_CMD);
654                 ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
655                 if (ret)
656                         return ret;
657         }
658
659         if (oob_required) {
660                 cnt = ecc->layout->oobfree[i].length;
661                 if (cnt > 0) {
662                         offset = mtd->writesize +
663                                  ecc->layout->oobfree[i].offset;
664                         chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset, -1);
665                         offset -= mtd->writesize;
666                         chip->write_buf(mtd, chip->oob_poi + offset, cnt);
667                 }
668         }
669
670         tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
671         tmp &= ~NFC_ECC_EN;
672
673         writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
674
675         return 0;
676 }
677
678 static int sunxi_nfc_hw_syndrome_ecc_read_page(struct mtd_info *mtd,
679                                                struct nand_chip *chip,
680                                                uint8_t *buf, int oob_required,
681                                                int page)
682 {
683         struct sunxi_nfc *nfc = to_sunxi_nfc(chip->controller);
684         struct nand_ecc_ctrl *ecc = &chip->ecc;
685         struct sunxi_nand_hw_ecc *data = ecc->priv;
686         unsigned int max_bitflips = 0;
687         uint8_t *oob = chip->oob_poi;
688         int offset = 0;
689         int ret;
690         int cnt;
691         u32 tmp;
692         int i;
693
694         tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
695         tmp &= ~(NFC_ECC_MODE | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE);
696         tmp |= NFC_ECC_EN | (data->mode << NFC_ECC_MODE_SHIFT) |
697                NFC_ECC_EXCEPTION;
698
699         writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
700
701         for (i = 0; i < ecc->steps; i++) {
702                 chip->read_buf(mtd, NULL, ecc->size);
703
704                 tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | (1 << 30);
705                 writel(tmp, nfc->regs + NFC_REG_CMD);
706
707                 ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
708                 if (ret)
709                         return ret;
710
711                 memcpy_fromio(buf, nfc->regs + NFC_RAM0_BASE, ecc->size);
712                 buf += ecc->size;
713                 offset += ecc->size;
714
715                 if (readl(nfc->regs + NFC_REG_ECC_ST) & 0x1) {
716                         mtd->ecc_stats.failed++;
717                 } else {
718                         tmp = readl(nfc->regs + NFC_REG_ECC_CNT0) & 0xff;
719                         mtd->ecc_stats.corrected += tmp;
720                         max_bitflips = max_t(unsigned int, max_bitflips, tmp);
721                 }
722
723                 if (oob_required) {
724                         chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1);
725                         chip->read_buf(mtd, oob, ecc->bytes + ecc->prepad);
726                         oob += ecc->bytes + ecc->prepad;
727                 }
728
729                 offset += ecc->bytes + ecc->prepad;
730         }
731
732         if (oob_required) {
733                 cnt = mtd->oobsize - (oob - chip->oob_poi);
734                 if (cnt > 0) {
735                         chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1);
736                         chip->read_buf(mtd, oob, cnt);
737                 }
738         }
739
740         writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_ECC_EN,
741                nfc->regs + NFC_REG_ECC_CTL);
742
743         return max_bitflips;
744 }
745
746 static int sunxi_nfc_hw_syndrome_ecc_write_page(struct mtd_info *mtd,
747                                                 struct nand_chip *chip,
748                                                 const uint8_t *buf,
749                                                 int oob_required)
750 {
751         struct sunxi_nfc *nfc = to_sunxi_nfc(chip->controller);
752         struct nand_ecc_ctrl *ecc = &chip->ecc;
753         struct sunxi_nand_hw_ecc *data = ecc->priv;
754         uint8_t *oob = chip->oob_poi;
755         int offset = 0;
756         int ret;
757         int cnt;
758         u32 tmp;
759         int i;
760
761         tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
762         tmp &= ~(NFC_ECC_MODE | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE);
763         tmp |= NFC_ECC_EN | (data->mode << NFC_ECC_MODE_SHIFT) |
764                NFC_ECC_EXCEPTION;
765
766         writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
767
768         for (i = 0; i < ecc->steps; i++) {
769                 chip->write_buf(mtd, buf + (i * ecc->size), ecc->size);
770                 offset += ecc->size;
771
772                 /* Fill OOB data in */
773                 if (oob_required) {
774                         tmp = 0xffffffff;
775                         memcpy_toio(nfc->regs + NFC_REG_USER_DATA_BASE, &tmp,
776                                     4);
777                 } else {
778                         memcpy_toio(nfc->regs + NFC_REG_USER_DATA_BASE, oob,
779                                     4);
780                 }
781
782                 tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ACCESS_DIR |
783                       (1 << 30);
784                 writel(tmp, nfc->regs + NFC_REG_CMD);
785
786                 ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
787                 if (ret)
788                         return ret;
789
790                 offset += ecc->bytes + ecc->prepad;
791                 oob += ecc->bytes + ecc->prepad;
792         }
793
794         if (oob_required) {
795                 cnt = mtd->oobsize - (oob - chip->oob_poi);
796                 if (cnt > 0) {
797                         chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset, -1);
798                         chip->write_buf(mtd, oob, cnt);
799                 }
800         }
801
802         tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
803         tmp &= ~NFC_ECC_EN;
804
805         writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
806
807         return 0;
808 }
809
810 static int sunxi_nand_chip_set_timings(struct sunxi_nand_chip *chip,
811                                        const struct nand_sdr_timings *timings)
812 {
813         u32 min_clk_period = 0;
814
815         /* T1 <=> tCLS */
816         if (timings->tCLS_min > min_clk_period)
817                 min_clk_period = timings->tCLS_min;
818
819         /* T2 <=> tCLH */
820         if (timings->tCLH_min > min_clk_period)
821                 min_clk_period = timings->tCLH_min;
822
823         /* T3 <=> tCS */
824         if (timings->tCS_min > min_clk_period)
825                 min_clk_period = timings->tCS_min;
826
827         /* T4 <=> tCH */
828         if (timings->tCH_min > min_clk_period)
829                 min_clk_period = timings->tCH_min;
830
831         /* T5 <=> tWP */
832         if (timings->tWP_min > min_clk_period)
833                 min_clk_period = timings->tWP_min;
834
835         /* T6 <=> tWH */
836         if (timings->tWH_min > min_clk_period)
837                 min_clk_period = timings->tWH_min;
838
839         /* T7 <=> tALS */
840         if (timings->tALS_min > min_clk_period)
841                 min_clk_period = timings->tALS_min;
842
843         /* T8 <=> tDS */
844         if (timings->tDS_min > min_clk_period)
845                 min_clk_period = timings->tDS_min;
846
847         /* T9 <=> tDH */
848         if (timings->tDH_min > min_clk_period)
849                 min_clk_period = timings->tDH_min;
850
851         /* T10 <=> tRR */
852         if (timings->tRR_min > (min_clk_period * 3))
853                 min_clk_period = DIV_ROUND_UP(timings->tRR_min, 3);
854
855         /* T11 <=> tALH */
856         if (timings->tALH_min > min_clk_period)
857                 min_clk_period = timings->tALH_min;
858
859         /* T12 <=> tRP */
860         if (timings->tRP_min > min_clk_period)
861                 min_clk_period = timings->tRP_min;
862
863         /* T13 <=> tREH */
864         if (timings->tREH_min > min_clk_period)
865                 min_clk_period = timings->tREH_min;
866
867         /* T14 <=> tRC */
868         if (timings->tRC_min > (min_clk_period * 2))
869                 min_clk_period = DIV_ROUND_UP(timings->tRC_min, 2);
870
871         /* T15 <=> tWC */
872         if (timings->tWC_min > (min_clk_period * 2))
873                 min_clk_period = DIV_ROUND_UP(timings->tWC_min, 2);
874
875
876         /* Convert min_clk_period from picoseconds to nanoseconds */
877         min_clk_period = DIV_ROUND_UP(min_clk_period, 1000);
878
879         /*
880          * Convert min_clk_period into a clk frequency, then get the
881          * appropriate rate for the NAND controller IP given this formula
882          * (specified in the datasheet):
883          * nand clk_rate = 2 * min_clk_rate
884          */
885         chip->clk_rate = (2 * NSEC_PER_SEC) / min_clk_period;
886
887         /* TODO: configure T16-T19 */
888
889         return 0;
890 }
891
892 static int sunxi_nand_chip_init_timings(struct sunxi_nand_chip *chip,
893                                         struct device_node *np)
894 {
895         const struct nand_sdr_timings *timings;
896         int ret;
897         int mode;
898
899         mode = onfi_get_async_timing_mode(&chip->nand);
900         if (mode == ONFI_TIMING_MODE_UNKNOWN) {
901                 mode = chip->nand.onfi_timing_mode_default;
902         } else {
903                 uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {};
904
905                 mode = fls(mode) - 1;
906                 if (mode < 0)
907                         mode = 0;
908
909                 feature[0] = mode;
910                 ret = chip->nand.onfi_set_features(&chip->mtd, &chip->nand,
911                                                 ONFI_FEATURE_ADDR_TIMING_MODE,
912                                                 feature);
913                 if (ret)
914                         return ret;
915         }
916
917         timings = onfi_async_timing_mode_to_sdr_timings(mode);
918         if (IS_ERR(timings))
919                 return PTR_ERR(timings);
920
921         return sunxi_nand_chip_set_timings(chip, timings);
922 }
923
924 static int sunxi_nand_hw_common_ecc_ctrl_init(struct mtd_info *mtd,
925                                               struct nand_ecc_ctrl *ecc,
926                                               struct device_node *np)
927 {
928         static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 };
929         struct nand_chip *nand = mtd->priv;
930         struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
931         struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
932         struct sunxi_nand_hw_ecc *data;
933         struct nand_ecclayout *layout;
934         int nsectors;
935         int ret;
936         int i;
937
938         data = kzalloc(sizeof(*data), GFP_KERNEL);
939         if (!data)
940                 return -ENOMEM;
941
942         /* Add ECC info retrieval from DT */
943         for (i = 0; i < ARRAY_SIZE(strengths); i++) {
944                 if (ecc->strength <= strengths[i])
945                         break;
946         }
947
948         if (i >= ARRAY_SIZE(strengths)) {
949                 dev_err(nfc->dev, "unsupported strength\n");
950                 ret = -ENOTSUPP;
951                 goto err;
952         }
953
954         data->mode = i;
955
956         /* HW ECC always request ECC bytes for 1024 bytes blocks */
957         ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8);
958
959         /* HW ECC always work with even numbers of ECC bytes */
960         ecc->bytes = ALIGN(ecc->bytes, 2);
961
962         layout = &data->layout;
963         nsectors = mtd->writesize / ecc->size;
964
965         if (mtd->oobsize < ((ecc->bytes + 4) * nsectors)) {
966                 ret = -EINVAL;
967                 goto err;
968         }
969
970         layout->eccbytes = (ecc->bytes * nsectors);
971
972         ecc->layout = layout;
973         ecc->priv = data;
974
975         return 0;
976
977 err:
978         kfree(data);
979
980         return ret;
981 }
982
983 static void sunxi_nand_hw_common_ecc_ctrl_cleanup(struct nand_ecc_ctrl *ecc)
984 {
985         kfree(ecc->priv);
986 }
987
988 static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
989                                        struct nand_ecc_ctrl *ecc,
990                                        struct device_node *np)
991 {
992         struct nand_ecclayout *layout;
993         int nsectors;
994         int i, j;
995         int ret;
996
997         ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np);
998         if (ret)
999                 return ret;
1000
1001         ecc->read_page = sunxi_nfc_hw_ecc_read_page;
1002         ecc->write_page = sunxi_nfc_hw_ecc_write_page;
1003         layout = ecc->layout;
1004         nsectors = mtd->writesize / ecc->size;
1005
1006         for (i = 0; i < nsectors; i++) {
1007                 if (i) {
1008                         layout->oobfree[i].offset =
1009                                 layout->oobfree[i - 1].offset +
1010                                 layout->oobfree[i - 1].length +
1011                                 ecc->bytes;
1012                         layout->oobfree[i].length = 4;
1013                 } else {
1014                         /*
1015                          * The first 2 bytes are used for BB markers, hence we
1016                          * only have 2 bytes available in the first user data
1017                          * section.
1018                          */
1019                         layout->oobfree[i].length = 2;
1020                         layout->oobfree[i].offset = 2;
1021                 }
1022
1023                 for (j = 0; j < ecc->bytes; j++)
1024                         layout->eccpos[(ecc->bytes * i) + j] =
1025                                         layout->oobfree[i].offset +
1026                                         layout->oobfree[i].length + j;
1027         }
1028
1029         if (mtd->oobsize > (ecc->bytes + 4) * nsectors) {
1030                 layout->oobfree[nsectors].offset =
1031                                 layout->oobfree[nsectors - 1].offset +
1032                                 layout->oobfree[nsectors - 1].length +
1033                                 ecc->bytes;
1034                 layout->oobfree[nsectors].length = mtd->oobsize -
1035                                 ((ecc->bytes + 4) * nsectors);
1036         }
1037
1038         return 0;
1039 }
1040
1041 static int sunxi_nand_hw_syndrome_ecc_ctrl_init(struct mtd_info *mtd,
1042                                                 struct nand_ecc_ctrl *ecc,
1043                                                 struct device_node *np)
1044 {
1045         struct nand_ecclayout *layout;
1046         int nsectors;
1047         int i;
1048         int ret;
1049
1050         ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np);
1051         if (ret)
1052                 return ret;
1053
1054         ecc->prepad = 4;
1055         ecc->read_page = sunxi_nfc_hw_syndrome_ecc_read_page;
1056         ecc->write_page = sunxi_nfc_hw_syndrome_ecc_write_page;
1057
1058         layout = ecc->layout;
1059         nsectors = mtd->writesize / ecc->size;
1060
1061         for (i = 0; i < (ecc->bytes * nsectors); i++)
1062                 layout->eccpos[i] = i;
1063
1064         layout->oobfree[0].length = mtd->oobsize - i;
1065         layout->oobfree[0].offset = i;
1066
1067         return 0;
1068 }
1069
1070 static void sunxi_nand_ecc_cleanup(struct nand_ecc_ctrl *ecc)
1071 {
1072         switch (ecc->mode) {
1073         case NAND_ECC_HW:
1074         case NAND_ECC_HW_SYNDROME:
1075                 sunxi_nand_hw_common_ecc_ctrl_cleanup(ecc);
1076                 break;
1077         case NAND_ECC_NONE:
1078                 kfree(ecc->layout);
1079         default:
1080                 break;
1081         }
1082 }
1083
1084 static int sunxi_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc,
1085                                struct device_node *np)
1086 {
1087         struct nand_chip *nand = mtd->priv;
1088         int strength;
1089         int blk_size;
1090         int ret;
1091
1092         blk_size = of_get_nand_ecc_step_size(np);
1093         strength = of_get_nand_ecc_strength(np);
1094         if (blk_size > 0 && strength > 0) {
1095                 ecc->size = blk_size;
1096                 ecc->strength = strength;
1097         } else {
1098                 ecc->size = nand->ecc_step_ds;
1099                 ecc->strength = nand->ecc_strength_ds;
1100         }
1101
1102         if (!ecc->size || !ecc->strength)
1103                 return -EINVAL;
1104
1105         ecc->mode = NAND_ECC_HW;
1106
1107         ret = of_get_nand_ecc_mode(np);
1108         if (ret >= 0)
1109                 ecc->mode = ret;
1110
1111         switch (ecc->mode) {
1112         case NAND_ECC_SOFT_BCH:
1113                 break;
1114         case NAND_ECC_HW:
1115                 ret = sunxi_nand_hw_ecc_ctrl_init(mtd, ecc, np);
1116                 if (ret)
1117                         return ret;
1118                 break;
1119         case NAND_ECC_HW_SYNDROME:
1120                 ret = sunxi_nand_hw_syndrome_ecc_ctrl_init(mtd, ecc, np);
1121                 if (ret)
1122                         return ret;
1123                 break;
1124         case NAND_ECC_NONE:
1125                 ecc->layout = kzalloc(sizeof(*ecc->layout), GFP_KERNEL);
1126                 if (!ecc->layout)
1127                         return -ENOMEM;
1128                 ecc->layout->oobfree[0].length = mtd->oobsize;
1129         case NAND_ECC_SOFT:
1130                 break;
1131         default:
1132                 return -EINVAL;
1133         }
1134
1135         return 0;
1136 }
1137
1138 static int sunxi_nand_chip_init(struct device *dev, struct sunxi_nfc *nfc,
1139                                 struct device_node *np)
1140 {
1141         const struct nand_sdr_timings *timings;
1142         struct sunxi_nand_chip *chip;
1143         struct mtd_part_parser_data ppdata;
1144         struct mtd_info *mtd;
1145         struct nand_chip *nand;
1146         int nsels;
1147         int ret;
1148         int i;
1149         u32 tmp;
1150
1151         if (!of_get_property(np, "reg", &nsels))
1152                 return -EINVAL;
1153
1154         nsels /= sizeof(u32);
1155         if (!nsels) {
1156                 dev_err(dev, "invalid reg property size\n");
1157                 return -EINVAL;
1158         }
1159
1160         chip = devm_kzalloc(dev,
1161                             sizeof(*chip) +
1162                             (nsels * sizeof(struct sunxi_nand_chip_sel)),
1163                             GFP_KERNEL);
1164         if (!chip) {
1165                 dev_err(dev, "could not allocate chip\n");
1166                 return -ENOMEM;
1167         }
1168
1169         chip->nsels = nsels;
1170         chip->selected = -1;
1171
1172         for (i = 0; i < nsels; i++) {
1173                 ret = of_property_read_u32_index(np, "reg", i, &tmp);
1174                 if (ret) {
1175                         dev_err(dev, "could not retrieve reg property: %d\n",
1176                                 ret);
1177                         return ret;
1178                 }
1179
1180                 if (tmp > NFC_MAX_CS) {
1181                         dev_err(dev,
1182                                 "invalid reg value: %u (max CS = 7)\n",
1183                                 tmp);
1184                         return -EINVAL;
1185                 }
1186
1187                 if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
1188                         dev_err(dev, "CS %d already assigned\n", tmp);
1189                         return -EINVAL;
1190                 }
1191
1192                 chip->sels[i].cs = tmp;
1193
1194                 if (!of_property_read_u32_index(np, "allwinner,rb", i, &tmp) &&
1195                     tmp < 2) {
1196                         chip->sels[i].rb.type = RB_NATIVE;
1197                         chip->sels[i].rb.info.nativeid = tmp;
1198                 } else {
1199                         ret = of_get_named_gpio(np, "rb-gpios", i);
1200                         if (ret >= 0) {
1201                                 tmp = ret;
1202                                 chip->sels[i].rb.type = RB_GPIO;
1203                                 chip->sels[i].rb.info.gpio = tmp;
1204                                 ret = devm_gpio_request(dev, tmp, "nand-rb");
1205                                 if (ret)
1206                                         return ret;
1207
1208                                 ret = gpio_direction_input(tmp);
1209                                 if (ret)
1210                                         return ret;
1211                         } else {
1212                                 chip->sels[i].rb.type = RB_NONE;
1213                         }
1214                 }
1215         }
1216
1217         timings = onfi_async_timing_mode_to_sdr_timings(0);
1218         if (IS_ERR(timings)) {
1219                 ret = PTR_ERR(timings);
1220                 dev_err(dev,
1221                         "could not retrieve timings for ONFI mode 0: %d\n",
1222                         ret);
1223                 return ret;
1224         }
1225
1226         ret = sunxi_nand_chip_set_timings(chip, timings);
1227         if (ret) {
1228                 dev_err(dev, "could not configure chip timings: %d\n", ret);
1229                 return ret;
1230         }
1231
1232         nand = &chip->nand;
1233         /* Default tR value specified in the ONFI spec (chapter 4.15.1) */
1234         nand->chip_delay = 200;
1235         nand->controller = &nfc->controller;
1236         nand->select_chip = sunxi_nfc_select_chip;
1237         nand->cmd_ctrl = sunxi_nfc_cmd_ctrl;
1238         nand->read_buf = sunxi_nfc_read_buf;
1239         nand->write_buf = sunxi_nfc_write_buf;
1240         nand->read_byte = sunxi_nfc_read_byte;
1241
1242         if (of_get_nand_on_flash_bbt(np))
1243                 nand->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
1244
1245         mtd = &chip->mtd;
1246         mtd->dev.parent = dev;
1247         mtd->priv = nand;
1248         mtd->owner = THIS_MODULE;
1249
1250         ret = nand_scan_ident(mtd, nsels, NULL);
1251         if (ret)
1252                 return ret;
1253
1254         ret = sunxi_nand_chip_init_timings(chip, np);
1255         if (ret) {
1256                 dev_err(dev, "could not configure chip timings: %d\n", ret);
1257                 return ret;
1258         }
1259
1260         ret = sunxi_nand_ecc_init(mtd, &nand->ecc, np);
1261         if (ret) {
1262                 dev_err(dev, "ECC init failed: %d\n", ret);
1263                 return ret;
1264         }
1265
1266         ret = nand_scan_tail(mtd);
1267         if (ret) {
1268                 dev_err(dev, "nand_scan_tail failed: %d\n", ret);
1269                 return ret;
1270         }
1271
1272         ppdata.of_node = np;
1273         ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
1274         if (ret) {
1275                 dev_err(dev, "failed to register mtd device: %d\n", ret);
1276                 nand_release(mtd);
1277                 return ret;
1278         }
1279
1280         list_add_tail(&chip->node, &nfc->chips);
1281
1282         return 0;
1283 }
1284
1285 static int sunxi_nand_chips_init(struct device *dev, struct sunxi_nfc *nfc)
1286 {
1287         struct device_node *np = dev->of_node;
1288         struct device_node *nand_np;
1289         int nchips = of_get_child_count(np);
1290         int ret;
1291
1292         if (nchips > 8) {
1293                 dev_err(dev, "too many NAND chips: %d (max = 8)\n", nchips);
1294                 return -EINVAL;
1295         }
1296
1297         for_each_child_of_node(np, nand_np) {
1298                 ret = sunxi_nand_chip_init(dev, nfc, nand_np);
1299                 if (ret)
1300                         return ret;
1301         }
1302
1303         return 0;
1304 }
1305
1306 static void sunxi_nand_chips_cleanup(struct sunxi_nfc *nfc)
1307 {
1308         struct sunxi_nand_chip *chip;
1309
1310         while (!list_empty(&nfc->chips)) {
1311                 chip = list_first_entry(&nfc->chips, struct sunxi_nand_chip,
1312                                         node);
1313                 nand_release(&chip->mtd);
1314                 sunxi_nand_ecc_cleanup(&chip->nand.ecc);
1315         }
1316 }
1317
1318 static int sunxi_nfc_probe(struct platform_device *pdev)
1319 {
1320         struct device *dev = &pdev->dev;
1321         struct resource *r;
1322         struct sunxi_nfc *nfc;
1323         int irq;
1324         int ret;
1325
1326         nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
1327         if (!nfc)
1328                 return -ENOMEM;
1329
1330         nfc->dev = dev;
1331         spin_lock_init(&nfc->controller.lock);
1332         init_waitqueue_head(&nfc->controller.wq);
1333         INIT_LIST_HEAD(&nfc->chips);
1334
1335         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1336         nfc->regs = devm_ioremap_resource(dev, r);
1337         if (IS_ERR(nfc->regs))
1338                 return PTR_ERR(nfc->regs);
1339
1340         irq = platform_get_irq(pdev, 0);
1341         if (irq < 0) {
1342                 dev_err(dev, "failed to retrieve irq\n");
1343                 return irq;
1344         }
1345
1346         nfc->ahb_clk = devm_clk_get(dev, "ahb");
1347         if (IS_ERR(nfc->ahb_clk)) {
1348                 dev_err(dev, "failed to retrieve ahb clk\n");
1349                 return PTR_ERR(nfc->ahb_clk);
1350         }
1351
1352         ret = clk_prepare_enable(nfc->ahb_clk);
1353         if (ret)
1354                 return ret;
1355
1356         nfc->mod_clk = devm_clk_get(dev, "mod");
1357         if (IS_ERR(nfc->mod_clk)) {
1358                 dev_err(dev, "failed to retrieve mod clk\n");
1359                 ret = PTR_ERR(nfc->mod_clk);
1360                 goto out_ahb_clk_unprepare;
1361         }
1362
1363         ret = clk_prepare_enable(nfc->mod_clk);
1364         if (ret)
1365                 goto out_ahb_clk_unprepare;
1366
1367         ret = sunxi_nfc_rst(nfc);
1368         if (ret)
1369                 goto out_mod_clk_unprepare;
1370
1371         writel(0, nfc->regs + NFC_REG_INT);
1372         ret = devm_request_irq(dev, irq, sunxi_nfc_interrupt,
1373                                0, "sunxi-nand", nfc);
1374         if (ret)
1375                 goto out_mod_clk_unprepare;
1376
1377         platform_set_drvdata(pdev, nfc);
1378
1379         /*
1380          * TODO: replace these magic values with proper flags as soon as we
1381          * know what they are encoding.
1382          */
1383         writel(0x100, nfc->regs + NFC_REG_TIMING_CTL);
1384         writel(0x7ff, nfc->regs + NFC_REG_TIMING_CFG);
1385
1386         ret = sunxi_nand_chips_init(dev, nfc);
1387         if (ret) {
1388                 dev_err(dev, "failed to init nand chips\n");
1389                 goto out_mod_clk_unprepare;
1390         }
1391
1392         return 0;
1393
1394 out_mod_clk_unprepare:
1395         clk_disable_unprepare(nfc->mod_clk);
1396 out_ahb_clk_unprepare:
1397         clk_disable_unprepare(nfc->ahb_clk);
1398
1399         return ret;
1400 }
1401
1402 static int sunxi_nfc_remove(struct platform_device *pdev)
1403 {
1404         struct sunxi_nfc *nfc = platform_get_drvdata(pdev);
1405
1406         sunxi_nand_chips_cleanup(nfc);
1407
1408         return 0;
1409 }
1410
1411 static const struct of_device_id sunxi_nfc_ids[] = {
1412         { .compatible = "allwinner,sun4i-a10-nand" },
1413         { /* sentinel */ }
1414 };
1415 MODULE_DEVICE_TABLE(of, sunxi_nfc_ids);
1416
1417 static struct platform_driver sunxi_nfc_driver = {
1418         .driver = {
1419                 .name = "sunxi_nand",
1420                 .of_match_table = sunxi_nfc_ids,
1421         },
1422         .probe = sunxi_nfc_probe,
1423         .remove = sunxi_nfc_remove,
1424 };
1425 module_platform_driver(sunxi_nfc_driver);
1426
1427 MODULE_LICENSE("GPL v2");
1428 MODULE_AUTHOR("Boris BREZILLON");
1429 MODULE_DESCRIPTION("Allwinner NAND Flash Controller driver");
1430 MODULE_ALIAS("platform:sunxi_nand");