Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / mtd / nand / s3c2410.c
1 /* linux/drivers/mtd/nand/s3c2410.c
2  *
3  * Copyright © 2004-2008 Simtec Electronics
4  *      http://armlinux.simtec.co.uk/
5  *      Ben Dooks <ben@simtec.co.uk>
6  *
7  * Samsung S3C2410/S3C2440/S3C2412 NAND driver
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22 */
23
24 #define pr_fmt(fmt) "nand-s3c2410: " fmt
25
26 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
27 #define DEBUG
28 #endif
29
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/kernel.h>
33 #include <linux/string.h>
34 #include <linux/io.h>
35 #include <linux/ioport.h>
36 #include <linux/platform_device.h>
37 #include <linux/delay.h>
38 #include <linux/err.h>
39 #include <linux/slab.h>
40 #include <linux/clk.h>
41 #include <linux/cpufreq.h>
42
43 #include <linux/mtd/mtd.h>
44 #include <linux/mtd/nand.h>
45 #include <linux/mtd/nand_ecc.h>
46 #include <linux/mtd/partitions.h>
47
48 #include <linux/platform_data/mtd-nand-s3c2410.h>
49
50 #define S3C2410_NFREG(x) (x)
51
52 #define S3C2410_NFCONF          S3C2410_NFREG(0x00)
53 #define S3C2410_NFCMD           S3C2410_NFREG(0x04)
54 #define S3C2410_NFADDR          S3C2410_NFREG(0x08)
55 #define S3C2410_NFDATA          S3C2410_NFREG(0x0C)
56 #define S3C2410_NFSTAT          S3C2410_NFREG(0x10)
57 #define S3C2410_NFECC           S3C2410_NFREG(0x14)
58 #define S3C2440_NFCONT          S3C2410_NFREG(0x04)
59 #define S3C2440_NFCMD           S3C2410_NFREG(0x08)
60 #define S3C2440_NFADDR          S3C2410_NFREG(0x0C)
61 #define S3C2440_NFDATA          S3C2410_NFREG(0x10)
62 #define S3C2440_NFSTAT          S3C2410_NFREG(0x20)
63 #define S3C2440_NFMECC0         S3C2410_NFREG(0x2C)
64 #define S3C2412_NFSTAT          S3C2410_NFREG(0x28)
65 #define S3C2412_NFMECC0         S3C2410_NFREG(0x34)
66 #define S3C2410_NFCONF_EN               (1<<15)
67 #define S3C2410_NFCONF_INITECC          (1<<12)
68 #define S3C2410_NFCONF_nFCE             (1<<11)
69 #define S3C2410_NFCONF_TACLS(x)         ((x)<<8)
70 #define S3C2410_NFCONF_TWRPH0(x)        ((x)<<4)
71 #define S3C2410_NFCONF_TWRPH1(x)        ((x)<<0)
72 #define S3C2410_NFSTAT_BUSY             (1<<0)
73 #define S3C2440_NFCONF_TACLS(x)         ((x)<<12)
74 #define S3C2440_NFCONF_TWRPH0(x)        ((x)<<8)
75 #define S3C2440_NFCONF_TWRPH1(x)        ((x)<<4)
76 #define S3C2440_NFCONT_INITECC          (1<<4)
77 #define S3C2440_NFCONT_nFCE             (1<<1)
78 #define S3C2440_NFCONT_ENABLE           (1<<0)
79 #define S3C2440_NFSTAT_READY            (1<<0)
80 #define S3C2412_NFCONF_NANDBOOT         (1<<31)
81 #define S3C2412_NFCONT_INIT_MAIN_ECC    (1<<5)
82 #define S3C2412_NFCONT_nFCE0            (1<<1)
83 #define S3C2412_NFSTAT_READY            (1<<0)
84
85 /* new oob placement block for use with hardware ecc generation
86  */
87
88 static struct nand_ecclayout nand_hw_eccoob = {
89         .eccbytes = 3,
90         .eccpos = {0, 1, 2},
91         .oobfree = {{8, 8}}
92 };
93
94 /* controller and mtd information */
95
96 struct s3c2410_nand_info;
97
98 /**
99  * struct s3c2410_nand_mtd - driver MTD structure
100  * @mtd: The MTD instance to pass to the MTD layer.
101  * @chip: The NAND chip information.
102  * @set: The platform information supplied for this set of NAND chips.
103  * @info: Link back to the hardware information.
104  * @scan_res: The result from calling nand_scan_ident().
105 */
106 struct s3c2410_nand_mtd {
107         struct mtd_info                 mtd;
108         struct nand_chip                chip;
109         struct s3c2410_nand_set         *set;
110         struct s3c2410_nand_info        *info;
111         int                             scan_res;
112 };
113
114 enum s3c_cpu_type {
115         TYPE_S3C2410,
116         TYPE_S3C2412,
117         TYPE_S3C2440,
118 };
119
120 enum s3c_nand_clk_state {
121         CLOCK_DISABLE   = 0,
122         CLOCK_ENABLE,
123         CLOCK_SUSPEND,
124 };
125
126 /* overview of the s3c2410 nand state */
127
128 /**
129  * struct s3c2410_nand_info - NAND controller state.
130  * @mtds: An array of MTD instances on this controoler.
131  * @platform: The platform data for this board.
132  * @device: The platform device we bound to.
133  * @clk: The clock resource for this controller.
134  * @regs: The area mapped for the hardware registers.
135  * @sel_reg: Pointer to the register controlling the NAND selection.
136  * @sel_bit: The bit in @sel_reg to select the NAND chip.
137  * @mtd_count: The number of MTDs created from this controller.
138  * @save_sel: The contents of @sel_reg to be saved over suspend.
139  * @clk_rate: The clock rate from @clk.
140  * @clk_state: The current clock state.
141  * @cpu_type: The exact type of this controller.
142  */
143 struct s3c2410_nand_info {
144         /* mtd info */
145         struct nand_hw_control          controller;
146         struct s3c2410_nand_mtd         *mtds;
147         struct s3c2410_platform_nand    *platform;
148
149         /* device info */
150         struct device                   *device;
151         struct clk                      *clk;
152         void __iomem                    *regs;
153         void __iomem                    *sel_reg;
154         int                             sel_bit;
155         int                             mtd_count;
156         unsigned long                   save_sel;
157         unsigned long                   clk_rate;
158         enum s3c_nand_clk_state         clk_state;
159
160         enum s3c_cpu_type               cpu_type;
161
162 #ifdef CONFIG_CPU_FREQ
163         struct notifier_block   freq_transition;
164 #endif
165 };
166
167 /* conversion functions */
168
169 static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
170 {
171         return container_of(mtd, struct s3c2410_nand_mtd, mtd);
172 }
173
174 static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
175 {
176         return s3c2410_nand_mtd_toours(mtd)->info;
177 }
178
179 static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
180 {
181         return platform_get_drvdata(dev);
182 }
183
184 static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
185 {
186         return dev_get_platdata(&dev->dev);
187 }
188
189 static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
190 {
191 #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
192         return 1;
193 #else
194         return 0;
195 #endif
196 }
197
198 /**
199  * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
200  * @info: The controller instance.
201  * @new_state: State to which clock should be set.
202  */
203 static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
204                 enum s3c_nand_clk_state new_state)
205 {
206         if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
207                 return;
208
209         if (info->clk_state == CLOCK_ENABLE) {
210                 if (new_state != CLOCK_ENABLE)
211                         clk_disable_unprepare(info->clk);
212         } else {
213                 if (new_state == CLOCK_ENABLE)
214                         clk_prepare_enable(info->clk);
215         }
216
217         info->clk_state = new_state;
218 }
219
220 /* timing calculations */
221
222 #define NS_IN_KHZ 1000000
223
224 /**
225  * s3c_nand_calc_rate - calculate timing data.
226  * @wanted: The cycle time in nanoseconds.
227  * @clk: The clock rate in kHz.
228  * @max: The maximum divider value.
229  *
230  * Calculate the timing value from the given parameters.
231  */
232 static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
233 {
234         int result;
235
236         result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
237
238         pr_debug("result %d from %ld, %d\n", result, clk, wanted);
239
240         if (result > max) {
241                 pr_err("%d ns is too big for current clock rate %ld\n",
242                         wanted, clk);
243                 return -1;
244         }
245
246         if (result < 1)
247                 result = 1;
248
249         return result;
250 }
251
252 #define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
253
254 /* controller setup */
255
256 /**
257  * s3c2410_nand_setrate - setup controller timing information.
258  * @info: The controller instance.
259  *
260  * Given the information supplied by the platform, calculate and set
261  * the necessary timing registers in the hardware to generate the
262  * necessary timing cycles to the hardware.
263  */
264 static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
265 {
266         struct s3c2410_platform_nand *plat = info->platform;
267         int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
268         int tacls, twrph0, twrph1;
269         unsigned long clkrate = clk_get_rate(info->clk);
270         unsigned long uninitialized_var(set), cfg, uninitialized_var(mask);
271         unsigned long flags;
272
273         /* calculate the timing information for the controller */
274
275         info->clk_rate = clkrate;
276         clkrate /= 1000;        /* turn clock into kHz for ease of use */
277
278         if (plat != NULL) {
279                 tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
280                 twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
281                 twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
282         } else {
283                 /* default timings */
284                 tacls = tacls_max;
285                 twrph0 = 8;
286                 twrph1 = 8;
287         }
288
289         if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
290                 dev_err(info->device, "cannot get suitable timings\n");
291                 return -EINVAL;
292         }
293
294         dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
295                 tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate),
296                                                 twrph1, to_ns(twrph1, clkrate));
297
298         switch (info->cpu_type) {
299         case TYPE_S3C2410:
300                 mask = (S3C2410_NFCONF_TACLS(3) |
301                         S3C2410_NFCONF_TWRPH0(7) |
302                         S3C2410_NFCONF_TWRPH1(7));
303                 set = S3C2410_NFCONF_EN;
304                 set |= S3C2410_NFCONF_TACLS(tacls - 1);
305                 set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
306                 set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
307                 break;
308
309         case TYPE_S3C2440:
310         case TYPE_S3C2412:
311                 mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
312                         S3C2440_NFCONF_TWRPH0(7) |
313                         S3C2440_NFCONF_TWRPH1(7));
314
315                 set = S3C2440_NFCONF_TACLS(tacls - 1);
316                 set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
317                 set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
318                 break;
319
320         default:
321                 BUG();
322         }
323
324         local_irq_save(flags);
325
326         cfg = readl(info->regs + S3C2410_NFCONF);
327         cfg &= ~mask;
328         cfg |= set;
329         writel(cfg, info->regs + S3C2410_NFCONF);
330
331         local_irq_restore(flags);
332
333         dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
334
335         return 0;
336 }
337
338 /**
339  * s3c2410_nand_inithw - basic hardware initialisation
340  * @info: The hardware state.
341  *
342  * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
343  * to setup the hardware access speeds and set the controller to be enabled.
344 */
345 static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
346 {
347         int ret;
348
349         ret = s3c2410_nand_setrate(info);
350         if (ret < 0)
351                 return ret;
352
353         switch (info->cpu_type) {
354         case TYPE_S3C2410:
355         default:
356                 break;
357
358         case TYPE_S3C2440:
359         case TYPE_S3C2412:
360                 /* enable the controller and de-assert nFCE */
361
362                 writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
363         }
364
365         return 0;
366 }
367
368 /**
369  * s3c2410_nand_select_chip - select the given nand chip
370  * @mtd: The MTD instance for this chip.
371  * @chip: The chip number.
372  *
373  * This is called by the MTD layer to either select a given chip for the
374  * @mtd instance, or to indicate that the access has finished and the
375  * chip can be de-selected.
376  *
377  * The routine ensures that the nFCE line is correctly setup, and any
378  * platform specific selection code is called to route nFCE to the specific
379  * chip.
380  */
381 static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
382 {
383         struct s3c2410_nand_info *info;
384         struct s3c2410_nand_mtd *nmtd;
385         struct nand_chip *this = mtd->priv;
386         unsigned long cur;
387
388         nmtd = this->priv;
389         info = nmtd->info;
390
391         if (chip != -1)
392                 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
393
394         cur = readl(info->sel_reg);
395
396         if (chip == -1) {
397                 cur |= info->sel_bit;
398         } else {
399                 if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
400                         dev_err(info->device, "invalid chip %d\n", chip);
401                         return;
402                 }
403
404                 if (info->platform != NULL) {
405                         if (info->platform->select_chip != NULL)
406                                 (info->platform->select_chip) (nmtd->set, chip);
407                 }
408
409                 cur &= ~info->sel_bit;
410         }
411
412         writel(cur, info->sel_reg);
413
414         if (chip == -1)
415                 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
416 }
417
418 /* s3c2410_nand_hwcontrol
419  *
420  * Issue command and address cycles to the chip
421 */
422
423 static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,
424                                    unsigned int ctrl)
425 {
426         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
427
428         if (cmd == NAND_CMD_NONE)
429                 return;
430
431         if (ctrl & NAND_CLE)
432                 writeb(cmd, info->regs + S3C2410_NFCMD);
433         else
434                 writeb(cmd, info->regs + S3C2410_NFADDR);
435 }
436
437 /* command and control functions */
438
439 static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd,
440                                    unsigned int ctrl)
441 {
442         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
443
444         if (cmd == NAND_CMD_NONE)
445                 return;
446
447         if (ctrl & NAND_CLE)
448                 writeb(cmd, info->regs + S3C2440_NFCMD);
449         else
450                 writeb(cmd, info->regs + S3C2440_NFADDR);
451 }
452
453 /* s3c2410_nand_devready()
454  *
455  * returns 0 if the nand is busy, 1 if it is ready
456 */
457
458 static int s3c2410_nand_devready(struct mtd_info *mtd)
459 {
460         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
461         return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
462 }
463
464 static int s3c2440_nand_devready(struct mtd_info *mtd)
465 {
466         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
467         return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
468 }
469
470 static int s3c2412_nand_devready(struct mtd_info *mtd)
471 {
472         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
473         return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
474 }
475
476 /* ECC handling functions */
477
478 #ifdef CONFIG_MTD_NAND_S3C2410_HWECC
479 static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
480                                      u_char *read_ecc, u_char *calc_ecc)
481 {
482         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
483         unsigned int diff0, diff1, diff2;
484         unsigned int bit, byte;
485
486         pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
487
488         diff0 = read_ecc[0] ^ calc_ecc[0];
489         diff1 = read_ecc[1] ^ calc_ecc[1];
490         diff2 = read_ecc[2] ^ calc_ecc[2];
491
492         pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
493                  __func__, 3, read_ecc, 3, calc_ecc,
494                  diff0, diff1, diff2);
495
496         if (diff0 == 0 && diff1 == 0 && diff2 == 0)
497                 return 0;               /* ECC is ok */
498
499         /* sometimes people do not think about using the ECC, so check
500          * to see if we have an 0xff,0xff,0xff read ECC and then ignore
501          * the error, on the assumption that this is an un-eccd page.
502          */
503         if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
504             && info->platform->ignore_unset_ecc)
505                 return 0;
506
507         /* Can we correct this ECC (ie, one row and column change).
508          * Note, this is similar to the 256 error code on smartmedia */
509
510         if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
511             ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
512             ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
513                 /* calculate the bit position of the error */
514
515                 bit  = ((diff2 >> 3) & 1) |
516                        ((diff2 >> 4) & 2) |
517                        ((diff2 >> 5) & 4);
518
519                 /* calculate the byte position of the error */
520
521                 byte = ((diff2 << 7) & 0x100) |
522                        ((diff1 << 0) & 0x80)  |
523                        ((diff1 << 1) & 0x40)  |
524                        ((diff1 << 2) & 0x20)  |
525                        ((diff1 << 3) & 0x10)  |
526                        ((diff0 >> 4) & 0x08)  |
527                        ((diff0 >> 3) & 0x04)  |
528                        ((diff0 >> 2) & 0x02)  |
529                        ((diff0 >> 1) & 0x01);
530
531                 dev_dbg(info->device, "correcting error bit %d, byte %d\n",
532                         bit, byte);
533
534                 dat[byte] ^= (1 << bit);
535                 return 1;
536         }
537
538         /* if there is only one bit difference in the ECC, then
539          * one of only a row or column parity has changed, which
540          * means the error is most probably in the ECC itself */
541
542         diff0 |= (diff1 << 8);
543         diff0 |= (diff2 << 16);
544
545         if ((diff0 & ~(1<<fls(diff0))) == 0)
546                 return 1;
547
548         return -1;
549 }
550
551 /* ECC functions
552  *
553  * These allow the s3c2410 and s3c2440 to use the controller's ECC
554  * generator block to ECC the data as it passes through]
555 */
556
557 static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
558 {
559         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
560         unsigned long ctrl;
561
562         ctrl = readl(info->regs + S3C2410_NFCONF);
563         ctrl |= S3C2410_NFCONF_INITECC;
564         writel(ctrl, info->regs + S3C2410_NFCONF);
565 }
566
567 static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode)
568 {
569         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
570         unsigned long ctrl;
571
572         ctrl = readl(info->regs + S3C2440_NFCONT);
573         writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC,
574                info->regs + S3C2440_NFCONT);
575 }
576
577 static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
578 {
579         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
580         unsigned long ctrl;
581
582         ctrl = readl(info->regs + S3C2440_NFCONT);
583         writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
584 }
585
586 static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
587                                       u_char *ecc_code)
588 {
589         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
590
591         ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
592         ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
593         ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
594
595         pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
596
597         return 0;
598 }
599
600 static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
601                                       u_char *ecc_code)
602 {
603         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
604         unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
605
606         ecc_code[0] = ecc;
607         ecc_code[1] = ecc >> 8;
608         ecc_code[2] = ecc >> 16;
609
610         pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
611
612         return 0;
613 }
614
615 static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
616                                       u_char *ecc_code)
617 {
618         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
619         unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
620
621         ecc_code[0] = ecc;
622         ecc_code[1] = ecc >> 8;
623         ecc_code[2] = ecc >> 16;
624
625         pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
626
627         return 0;
628 }
629 #endif
630
631 /* over-ride the standard functions for a little more speed. We can
632  * use read/write block to move the data buffers to/from the controller
633 */
634
635 static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
636 {
637         struct nand_chip *this = mtd->priv;
638         readsb(this->IO_ADDR_R, buf, len);
639 }
640
641 static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
642 {
643         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
644
645         readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
646
647         /* cleanup if we've got less than a word to do */
648         if (len & 3) {
649                 buf += len & ~3;
650
651                 for (; len & 3; len--)
652                         *buf++ = readb(info->regs + S3C2440_NFDATA);
653         }
654 }
655
656 static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
657                                    int len)
658 {
659         struct nand_chip *this = mtd->priv;
660         writesb(this->IO_ADDR_W, buf, len);
661 }
662
663 static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
664                                    int len)
665 {
666         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
667
668         writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
669
670         /* cleanup any fractional write */
671         if (len & 3) {
672                 buf += len & ~3;
673
674                 for (; len & 3; len--, buf++)
675                         writeb(*buf, info->regs + S3C2440_NFDATA);
676         }
677 }
678
679 /* cpufreq driver support */
680
681 #ifdef CONFIG_CPU_FREQ
682
683 static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
684                                           unsigned long val, void *data)
685 {
686         struct s3c2410_nand_info *info;
687         unsigned long newclk;
688
689         info = container_of(nb, struct s3c2410_nand_info, freq_transition);
690         newclk = clk_get_rate(info->clk);
691
692         if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
693             (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
694                 s3c2410_nand_setrate(info);
695         }
696
697         return 0;
698 }
699
700 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
701 {
702         info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
703
704         return cpufreq_register_notifier(&info->freq_transition,
705                                          CPUFREQ_TRANSITION_NOTIFIER);
706 }
707
708 static inline void
709 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
710 {
711         cpufreq_unregister_notifier(&info->freq_transition,
712                                     CPUFREQ_TRANSITION_NOTIFIER);
713 }
714
715 #else
716 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
717 {
718         return 0;
719 }
720
721 static inline void
722 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
723 {
724 }
725 #endif
726
727 /* device management functions */
728
729 static int s3c24xx_nand_remove(struct platform_device *pdev)
730 {
731         struct s3c2410_nand_info *info = to_nand_info(pdev);
732
733         if (info == NULL)
734                 return 0;
735
736         s3c2410_nand_cpufreq_deregister(info);
737
738         /* Release all our mtds  and their partitions, then go through
739          * freeing the resources used
740          */
741
742         if (info->mtds != NULL) {
743                 struct s3c2410_nand_mtd *ptr = info->mtds;
744                 int mtdno;
745
746                 for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
747                         pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
748                         nand_release(&ptr->mtd);
749                 }
750         }
751
752         /* free the common resources */
753
754         if (!IS_ERR(info->clk))
755                 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
756
757         return 0;
758 }
759
760 static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
761                                       struct s3c2410_nand_mtd *mtd,
762                                       struct s3c2410_nand_set *set)
763 {
764         if (set) {
765                 mtd->mtd.name = set->name;
766
767                 return mtd_device_parse_register(&mtd->mtd, NULL, NULL,
768                                          set->partitions, set->nr_partitions);
769         }
770
771         return -ENODEV;
772 }
773
774 /**
775  * s3c2410_nand_init_chip - initialise a single instance of an chip
776  * @info: The base NAND controller the chip is on.
777  * @nmtd: The new controller MTD instance to fill in.
778  * @set: The information passed from the board specific platform data.
779  *
780  * Initialise the given @nmtd from the information in @info and @set. This
781  * readies the structure for use with the MTD layer functions by ensuring
782  * all pointers are setup and the necessary control routines selected.
783  */
784 static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
785                                    struct s3c2410_nand_mtd *nmtd,
786                                    struct s3c2410_nand_set *set)
787 {
788         struct nand_chip *chip = &nmtd->chip;
789         void __iomem *regs = info->regs;
790
791         chip->write_buf    = s3c2410_nand_write_buf;
792         chip->read_buf     = s3c2410_nand_read_buf;
793         chip->select_chip  = s3c2410_nand_select_chip;
794         chip->chip_delay   = 50;
795         chip->priv         = nmtd;
796         chip->options      = set->options;
797         chip->controller   = &info->controller;
798
799         switch (info->cpu_type) {
800         case TYPE_S3C2410:
801                 chip->IO_ADDR_W = regs + S3C2410_NFDATA;
802                 info->sel_reg   = regs + S3C2410_NFCONF;
803                 info->sel_bit   = S3C2410_NFCONF_nFCE;
804                 chip->cmd_ctrl  = s3c2410_nand_hwcontrol;
805                 chip->dev_ready = s3c2410_nand_devready;
806                 break;
807
808         case TYPE_S3C2440:
809                 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
810                 info->sel_reg   = regs + S3C2440_NFCONT;
811                 info->sel_bit   = S3C2440_NFCONT_nFCE;
812                 chip->cmd_ctrl  = s3c2440_nand_hwcontrol;
813                 chip->dev_ready = s3c2440_nand_devready;
814                 chip->read_buf  = s3c2440_nand_read_buf;
815                 chip->write_buf = s3c2440_nand_write_buf;
816                 break;
817
818         case TYPE_S3C2412:
819                 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
820                 info->sel_reg   = regs + S3C2440_NFCONT;
821                 info->sel_bit   = S3C2412_NFCONT_nFCE0;
822                 chip->cmd_ctrl  = s3c2440_nand_hwcontrol;
823                 chip->dev_ready = s3c2412_nand_devready;
824
825                 if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
826                         dev_info(info->device, "System booted from NAND\n");
827
828                 break;
829         }
830
831         chip->IO_ADDR_R = chip->IO_ADDR_W;
832
833         nmtd->info         = info;
834         nmtd->mtd.priv     = chip;
835         nmtd->mtd.owner    = THIS_MODULE;
836         nmtd->set          = set;
837
838 #ifdef CONFIG_MTD_NAND_S3C2410_HWECC
839         chip->ecc.calculate = s3c2410_nand_calculate_ecc;
840         chip->ecc.correct   = s3c2410_nand_correct_data;
841         chip->ecc.mode      = NAND_ECC_HW;
842         chip->ecc.strength  = 1;
843
844         switch (info->cpu_type) {
845         case TYPE_S3C2410:
846                 chip->ecc.hwctl     = s3c2410_nand_enable_hwecc;
847                 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
848                 break;
849
850         case TYPE_S3C2412:
851                 chip->ecc.hwctl     = s3c2412_nand_enable_hwecc;
852                 chip->ecc.calculate = s3c2412_nand_calculate_ecc;
853                 break;
854
855         case TYPE_S3C2440:
856                 chip->ecc.hwctl     = s3c2440_nand_enable_hwecc;
857                 chip->ecc.calculate = s3c2440_nand_calculate_ecc;
858                 break;
859         }
860 #else
861         chip->ecc.mode      = NAND_ECC_SOFT;
862 #endif
863
864         if (set->ecc_layout != NULL)
865                 chip->ecc.layout = set->ecc_layout;
866
867         if (set->disable_ecc)
868                 chip->ecc.mode  = NAND_ECC_NONE;
869
870         switch (chip->ecc.mode) {
871         case NAND_ECC_NONE:
872                 dev_info(info->device, "NAND ECC disabled\n");
873                 break;
874         case NAND_ECC_SOFT:
875                 dev_info(info->device, "NAND soft ECC\n");
876                 break;
877         case NAND_ECC_HW:
878                 dev_info(info->device, "NAND hardware ECC\n");
879                 break;
880         default:
881                 dev_info(info->device, "NAND ECC UNKNOWN\n");
882                 break;
883         }
884
885         /* If you use u-boot BBT creation code, specifying this flag will
886          * let the kernel fish out the BBT from the NAND, and also skip the
887          * full NAND scan that can take 1/2s or so. Little things... */
888         if (set->flash_bbt) {
889                 chip->bbt_options |= NAND_BBT_USE_FLASH;
890                 chip->options |= NAND_SKIP_BBTSCAN;
891         }
892 }
893
894 /**
895  * s3c2410_nand_update_chip - post probe update
896  * @info: The controller instance.
897  * @nmtd: The driver version of the MTD instance.
898  *
899  * This routine is called after the chip probe has successfully completed
900  * and the relevant per-chip information updated. This call ensure that
901  * we update the internal state accordingly.
902  *
903  * The internal state is currently limited to the ECC state information.
904 */
905 static void s3c2410_nand_update_chip(struct s3c2410_nand_info *info,
906                                      struct s3c2410_nand_mtd *nmtd)
907 {
908         struct nand_chip *chip = &nmtd->chip;
909
910         dev_dbg(info->device, "chip %p => page shift %d\n",
911                 chip, chip->page_shift);
912
913         if (chip->ecc.mode != NAND_ECC_HW)
914                 return;
915
916                 /* change the behaviour depending on whether we are using
917                  * the large or small page nand device */
918
919         if (chip->page_shift > 10) {
920                 chip->ecc.size      = 256;
921                 chip->ecc.bytes     = 3;
922         } else {
923                 chip->ecc.size      = 512;
924                 chip->ecc.bytes     = 3;
925                 chip->ecc.layout    = &nand_hw_eccoob;
926         }
927 }
928
929 /* s3c24xx_nand_probe
930  *
931  * called by device layer when it finds a device matching
932  * one our driver can handled. This code checks to see if
933  * it can allocate all necessary resources then calls the
934  * nand layer to look for devices
935 */
936 static int s3c24xx_nand_probe(struct platform_device *pdev)
937 {
938         struct s3c2410_platform_nand *plat = to_nand_plat(pdev);
939         enum s3c_cpu_type cpu_type;
940         struct s3c2410_nand_info *info;
941         struct s3c2410_nand_mtd *nmtd;
942         struct s3c2410_nand_set *sets;
943         struct resource *res;
944         int err = 0;
945         int size;
946         int nr_sets;
947         int setno;
948
949         cpu_type = platform_get_device_id(pdev)->driver_data;
950
951         info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
952         if (info == NULL) {
953                 err = -ENOMEM;
954                 goto exit_error;
955         }
956
957         platform_set_drvdata(pdev, info);
958
959         spin_lock_init(&info->controller.lock);
960         init_waitqueue_head(&info->controller.wq);
961
962         /* get the clock source and enable it */
963
964         info->clk = devm_clk_get(&pdev->dev, "nand");
965         if (IS_ERR(info->clk)) {
966                 dev_err(&pdev->dev, "failed to get clock\n");
967                 err = -ENOENT;
968                 goto exit_error;
969         }
970
971         s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
972
973         /* allocate and map the resource */
974
975         /* currently we assume we have the one resource */
976         res = pdev->resource;
977         size = resource_size(res);
978
979         info->device    = &pdev->dev;
980         info->platform  = plat;
981         info->cpu_type  = cpu_type;
982
983         info->regs = devm_ioremap_resource(&pdev->dev, res);
984         if (IS_ERR(info->regs)) {
985                 err = PTR_ERR(info->regs);
986                 goto exit_error;
987         }
988
989         dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
990
991         /* initialise the hardware */
992
993         err = s3c2410_nand_inithw(info);
994         if (err != 0)
995                 goto exit_error;
996
997         sets = (plat != NULL) ? plat->sets : NULL;
998         nr_sets = (plat != NULL) ? plat->nr_sets : 1;
999
1000         info->mtd_count = nr_sets;
1001
1002         /* allocate our information */
1003
1004         size = nr_sets * sizeof(*info->mtds);
1005         info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1006         if (info->mtds == NULL) {
1007                 err = -ENOMEM;
1008                 goto exit_error;
1009         }
1010
1011         /* initialise all possible chips */
1012
1013         nmtd = info->mtds;
1014
1015         for (setno = 0; setno < nr_sets; setno++, nmtd++) {
1016                 pr_debug("initialising set %d (%p, info %p)\n",
1017                          setno, nmtd, info);
1018
1019                 s3c2410_nand_init_chip(info, nmtd, sets);
1020
1021                 nmtd->scan_res = nand_scan_ident(&nmtd->mtd,
1022                                                  (sets) ? sets->nr_chips : 1,
1023                                                  NULL);
1024
1025                 if (nmtd->scan_res == 0) {
1026                         s3c2410_nand_update_chip(info, nmtd);
1027                         nand_scan_tail(&nmtd->mtd);
1028                         s3c2410_nand_add_partition(info, nmtd, sets);
1029                 }
1030
1031                 if (sets != NULL)
1032                         sets++;
1033         }
1034
1035         err = s3c2410_nand_cpufreq_register(info);
1036         if (err < 0) {
1037                 dev_err(&pdev->dev, "failed to init cpufreq support\n");
1038                 goto exit_error;
1039         }
1040
1041         if (allow_clk_suspend(info)) {
1042                 dev_info(&pdev->dev, "clock idle support enabled\n");
1043                 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1044         }
1045
1046         return 0;
1047
1048  exit_error:
1049         s3c24xx_nand_remove(pdev);
1050
1051         if (err == 0)
1052                 err = -EINVAL;
1053         return err;
1054 }
1055
1056 /* PM Support */
1057 #ifdef CONFIG_PM
1058
1059 static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
1060 {
1061         struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1062
1063         if (info) {
1064                 info->save_sel = readl(info->sel_reg);
1065
1066                 /* For the moment, we must ensure nFCE is high during
1067                  * the time we are suspended. This really should be
1068                  * handled by suspending the MTDs we are using, but
1069                  * that is currently not the case. */
1070
1071                 writel(info->save_sel | info->sel_bit, info->sel_reg);
1072
1073                 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
1074         }
1075
1076         return 0;
1077 }
1078
1079 static int s3c24xx_nand_resume(struct platform_device *dev)
1080 {
1081         struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1082         unsigned long sel;
1083
1084         if (info) {
1085                 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1086                 s3c2410_nand_inithw(info);
1087
1088                 /* Restore the state of the nFCE line. */
1089
1090                 sel = readl(info->sel_reg);
1091                 sel &= ~info->sel_bit;
1092                 sel |= info->save_sel & info->sel_bit;
1093                 writel(sel, info->sel_reg);
1094
1095                 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1096         }
1097
1098         return 0;
1099 }
1100
1101 #else
1102 #define s3c24xx_nand_suspend NULL
1103 #define s3c24xx_nand_resume NULL
1104 #endif
1105
1106 /* driver device registration */
1107
1108 static struct platform_device_id s3c24xx_driver_ids[] = {
1109         {
1110                 .name           = "s3c2410-nand",
1111                 .driver_data    = TYPE_S3C2410,
1112         }, {
1113                 .name           = "s3c2440-nand",
1114                 .driver_data    = TYPE_S3C2440,
1115         }, {
1116                 .name           = "s3c2412-nand",
1117                 .driver_data    = TYPE_S3C2412,
1118         }, {
1119                 .name           = "s3c6400-nand",
1120                 .driver_data    = TYPE_S3C2412, /* compatible with 2412 */
1121         },
1122         { }
1123 };
1124
1125 MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
1126
1127 static struct platform_driver s3c24xx_nand_driver = {
1128         .probe          = s3c24xx_nand_probe,
1129         .remove         = s3c24xx_nand_remove,
1130         .suspend        = s3c24xx_nand_suspend,
1131         .resume         = s3c24xx_nand_resume,
1132         .id_table       = s3c24xx_driver_ids,
1133         .driver         = {
1134                 .name   = "s3c24xx-nand",
1135         },
1136 };
1137
1138 module_platform_driver(s3c24xx_nand_driver);
1139
1140 MODULE_LICENSE("GPL");
1141 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1142 MODULE_DESCRIPTION("S3C24XX MTD NAND driver");