These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / drivers / mtd / nand / nandsim.c
1 /*
2  * NAND flash simulator.
3  *
4  * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
5  *
6  * Copyright (C) 2004 Nokia Corporation
7  *
8  * Note: NS means "NAND Simulator".
9  * Note: Input means input TO flash chip, output means output FROM chip.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the
13  * Free Software Foundation; either version 2, or (at your option) any later
14  * version.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19  * Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
24  */
25
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/vmalloc.h>
31 #include <linux/math64.h>
32 #include <linux/slab.h>
33 #include <linux/errno.h>
34 #include <linux/string.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/nand.h>
37 #include <linux/mtd/nand_bch.h>
38 #include <linux/mtd/partitions.h>
39 #include <linux/delay.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
42 #include <linux/sched.h>
43 #include <linux/fs.h>
44 #include <linux/pagemap.h>
45 #include <linux/seq_file.h>
46 #include <linux/debugfs.h>
47
48 /* Default simulator parameters values */
49 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE)  || \
50     !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
51     !defined(CONFIG_NANDSIM_THIRD_ID_BYTE)  || \
52     !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
53 #define CONFIG_NANDSIM_FIRST_ID_BYTE  0x98
54 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
55 #define CONFIG_NANDSIM_THIRD_ID_BYTE  0xFF /* No byte */
56 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
57 #endif
58
59 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
60 #define CONFIG_NANDSIM_ACCESS_DELAY 25
61 #endif
62 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
63 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
64 #endif
65 #ifndef CONFIG_NANDSIM_ERASE_DELAY
66 #define CONFIG_NANDSIM_ERASE_DELAY 2
67 #endif
68 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
69 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
70 #endif
71 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
72 #define CONFIG_NANDSIM_INPUT_CYCLE  50
73 #endif
74 #ifndef CONFIG_NANDSIM_BUS_WIDTH
75 #define CONFIG_NANDSIM_BUS_WIDTH  8
76 #endif
77 #ifndef CONFIG_NANDSIM_DO_DELAYS
78 #define CONFIG_NANDSIM_DO_DELAYS  0
79 #endif
80 #ifndef CONFIG_NANDSIM_LOG
81 #define CONFIG_NANDSIM_LOG        0
82 #endif
83 #ifndef CONFIG_NANDSIM_DBG
84 #define CONFIG_NANDSIM_DBG        0
85 #endif
86 #ifndef CONFIG_NANDSIM_MAX_PARTS
87 #define CONFIG_NANDSIM_MAX_PARTS  32
88 #endif
89
90 static uint access_delay   = CONFIG_NANDSIM_ACCESS_DELAY;
91 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
92 static uint erase_delay    = CONFIG_NANDSIM_ERASE_DELAY;
93 static uint output_cycle   = CONFIG_NANDSIM_OUTPUT_CYCLE;
94 static uint input_cycle    = CONFIG_NANDSIM_INPUT_CYCLE;
95 static uint bus_width      = CONFIG_NANDSIM_BUS_WIDTH;
96 static uint do_delays      = CONFIG_NANDSIM_DO_DELAYS;
97 static uint log            = CONFIG_NANDSIM_LOG;
98 static uint dbg            = CONFIG_NANDSIM_DBG;
99 static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS];
100 static unsigned int parts_num;
101 static char *badblocks = NULL;
102 static char *weakblocks = NULL;
103 static char *weakpages = NULL;
104 static unsigned int bitflips = 0;
105 static char *gravepages = NULL;
106 static unsigned int overridesize = 0;
107 static char *cache_file = NULL;
108 static unsigned int bbt;
109 static unsigned int bch;
110 static u_char id_bytes[8] = {
111         [0] = CONFIG_NANDSIM_FIRST_ID_BYTE,
112         [1] = CONFIG_NANDSIM_SECOND_ID_BYTE,
113         [2] = CONFIG_NANDSIM_THIRD_ID_BYTE,
114         [3] = CONFIG_NANDSIM_FOURTH_ID_BYTE,
115         [4 ... 7] = 0xFF,
116 };
117
118 module_param_array(id_bytes, byte, NULL, 0400);
119 module_param_named(first_id_byte, id_bytes[0], byte, 0400);
120 module_param_named(second_id_byte, id_bytes[1], byte, 0400);
121 module_param_named(third_id_byte, id_bytes[2], byte, 0400);
122 module_param_named(fourth_id_byte, id_bytes[3], byte, 0400);
123 module_param(access_delay,   uint, 0400);
124 module_param(programm_delay, uint, 0400);
125 module_param(erase_delay,    uint, 0400);
126 module_param(output_cycle,   uint, 0400);
127 module_param(input_cycle,    uint, 0400);
128 module_param(bus_width,      uint, 0400);
129 module_param(do_delays,      uint, 0400);
130 module_param(log,            uint, 0400);
131 module_param(dbg,            uint, 0400);
132 module_param_array(parts, ulong, &parts_num, 0400);
133 module_param(badblocks,      charp, 0400);
134 module_param(weakblocks,     charp, 0400);
135 module_param(weakpages,      charp, 0400);
136 module_param(bitflips,       uint, 0400);
137 module_param(gravepages,     charp, 0400);
138 module_param(overridesize,   uint, 0400);
139 module_param(cache_file,     charp, 0400);
140 module_param(bbt,            uint, 0400);
141 module_param(bch,            uint, 0400);
142
143 MODULE_PARM_DESC(id_bytes,       "The ID bytes returned by NAND Flash 'read ID' command");
144 MODULE_PARM_DESC(first_id_byte,  "The first byte returned by NAND Flash 'read ID' command (manufacturer ID) (obsolete)");
145 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID) (obsolete)");
146 MODULE_PARM_DESC(third_id_byte,  "The third byte returned by NAND Flash 'read ID' command (obsolete)");
147 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command (obsolete)");
148 MODULE_PARM_DESC(access_delay,   "Initial page access delay (microseconds)");
149 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
150 MODULE_PARM_DESC(erase_delay,    "Sector erase delay (milliseconds)");
151 MODULE_PARM_DESC(output_cycle,   "Word output (from flash) time (nanoseconds)");
152 MODULE_PARM_DESC(input_cycle,    "Word input (to flash) time (nanoseconds)");
153 MODULE_PARM_DESC(bus_width,      "Chip's bus width (8- or 16-bit)");
154 MODULE_PARM_DESC(do_delays,      "Simulate NAND delays using busy-waits if not zero");
155 MODULE_PARM_DESC(log,            "Perform logging if not zero");
156 MODULE_PARM_DESC(dbg,            "Output debug information if not zero");
157 MODULE_PARM_DESC(parts,          "Partition sizes (in erase blocks) separated by commas");
158 /* Page and erase block positions for the following parameters are independent of any partitions */
159 MODULE_PARM_DESC(badblocks,      "Erase blocks that are initially marked bad, separated by commas");
160 MODULE_PARM_DESC(weakblocks,     "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
161                                  " separated by commas e.g. 113:2 means eb 113"
162                                  " can be erased only twice before failing");
163 MODULE_PARM_DESC(weakpages,      "Weak pages [: maximum writes (defaults to 3)]"
164                                  " separated by commas e.g. 1401:2 means page 1401"
165                                  " can be written only twice before failing");
166 MODULE_PARM_DESC(bitflips,       "Maximum number of random bit flips per page (zero by default)");
167 MODULE_PARM_DESC(gravepages,     "Pages that lose data [: maximum reads (defaults to 3)]"
168                                  " separated by commas e.g. 1401:2 means page 1401"
169                                  " can be read only twice before failing");
170 MODULE_PARM_DESC(overridesize,   "Specifies the NAND Flash size overriding the ID bytes. "
171                                  "The size is specified in erase blocks and as the exponent of a power of two"
172                                  " e.g. 5 means a size of 32 erase blocks");
173 MODULE_PARM_DESC(cache_file,     "File to use to cache nand pages instead of memory");
174 MODULE_PARM_DESC(bbt,            "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
175 MODULE_PARM_DESC(bch,            "Enable BCH ecc and set how many bits should "
176                                  "be correctable in 512-byte blocks");
177
178 /* The largest possible page size */
179 #define NS_LARGEST_PAGE_SIZE    4096
180
181 /* The prefix for simulator output */
182 #define NS_OUTPUT_PREFIX "[nandsim]"
183
184 /* Simulator's output macros (logging, debugging, warning, error) */
185 #define NS_LOG(args...) \
186         do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
187 #define NS_DBG(args...) \
188         do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
189 #define NS_WARN(args...) \
190         do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
191 #define NS_ERR(args...) \
192         do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
193 #define NS_INFO(args...) \
194         do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
195
196 /* Busy-wait delay macros (microseconds, milliseconds) */
197 #define NS_UDELAY(us) \
198         do { if (do_delays) udelay(us); } while(0)
199 #define NS_MDELAY(us) \
200         do { if (do_delays) mdelay(us); } while(0)
201
202 /* Is the nandsim structure initialized ? */
203 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
204
205 /* Good operation completion status */
206 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
207
208 /* Operation failed completion status */
209 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
210
211 /* Calculate the page offset in flash RAM image by (row, column) address */
212 #define NS_RAW_OFFSET(ns) \
213         (((ns)->regs.row * (ns)->geom.pgszoob) + (ns)->regs.column)
214
215 /* Calculate the OOB offset in flash RAM image by (row, column) address */
216 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
217
218 /* After a command is input, the simulator goes to one of the following states */
219 #define STATE_CMD_READ0        0x00000001 /* read data from the beginning of page */
220 #define STATE_CMD_READ1        0x00000002 /* read data from the second half of page */
221 #define STATE_CMD_READSTART    0x00000003 /* read data second command (large page devices) */
222 #define STATE_CMD_PAGEPROG     0x00000004 /* start page program */
223 #define STATE_CMD_READOOB      0x00000005 /* read OOB area */
224 #define STATE_CMD_ERASE1       0x00000006 /* sector erase first command */
225 #define STATE_CMD_STATUS       0x00000007 /* read status */
226 #define STATE_CMD_SEQIN        0x00000009 /* sequential data input */
227 #define STATE_CMD_READID       0x0000000A /* read ID */
228 #define STATE_CMD_ERASE2       0x0000000B /* sector erase second command */
229 #define STATE_CMD_RESET        0x0000000C /* reset */
230 #define STATE_CMD_RNDOUT       0x0000000D /* random output command */
231 #define STATE_CMD_RNDOUTSTART  0x0000000E /* random output start command */
232 #define STATE_CMD_MASK         0x0000000F /* command states mask */
233
234 /* After an address is input, the simulator goes to one of these states */
235 #define STATE_ADDR_PAGE        0x00000010 /* full (row, column) address is accepted */
236 #define STATE_ADDR_SEC         0x00000020 /* sector address was accepted */
237 #define STATE_ADDR_COLUMN      0x00000030 /* column address was accepted */
238 #define STATE_ADDR_ZERO        0x00000040 /* one byte zero address was accepted */
239 #define STATE_ADDR_MASK        0x00000070 /* address states mask */
240
241 /* During data input/output the simulator is in these states */
242 #define STATE_DATAIN           0x00000100 /* waiting for data input */
243 #define STATE_DATAIN_MASK      0x00000100 /* data input states mask */
244
245 #define STATE_DATAOUT          0x00001000 /* waiting for page data output */
246 #define STATE_DATAOUT_ID       0x00002000 /* waiting for ID bytes output */
247 #define STATE_DATAOUT_STATUS   0x00003000 /* waiting for status output */
248 #define STATE_DATAOUT_MASK     0x00007000 /* data output states mask */
249
250 /* Previous operation is done, ready to accept new requests */
251 #define STATE_READY            0x00000000
252
253 /* This state is used to mark that the next state isn't known yet */
254 #define STATE_UNKNOWN          0x10000000
255
256 /* Simulator's actions bit masks */
257 #define ACTION_CPY       0x00100000 /* copy page/OOB to the internal buffer */
258 #define ACTION_PRGPAGE   0x00200000 /* program the internal buffer to flash */
259 #define ACTION_SECERASE  0x00300000 /* erase sector */
260 #define ACTION_ZEROOFF   0x00400000 /* don't add any offset to address */
261 #define ACTION_HALFOFF   0x00500000 /* add to address half of page */
262 #define ACTION_OOBOFF    0x00600000 /* add to address OOB offset */
263 #define ACTION_MASK      0x00700000 /* action mask */
264
265 #define NS_OPER_NUM      13 /* Number of operations supported by the simulator */
266 #define NS_OPER_STATES   6  /* Maximum number of states in operation */
267
268 #define OPT_ANY          0xFFFFFFFF /* any chip supports this operation */
269 #define OPT_PAGE512      0x00000002 /* 512-byte  page chips */
270 #define OPT_PAGE2048     0x00000008 /* 2048-byte page chips */
271 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
272 #define OPT_PAGE4096     0x00000080 /* 4096-byte page chips */
273 #define OPT_LARGEPAGE    (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
274 #define OPT_SMALLPAGE    (OPT_PAGE512) /* 512-byte page chips */
275
276 /* Remove action bits from state */
277 #define NS_STATE(x) ((x) & ~ACTION_MASK)
278
279 /*
280  * Maximum previous states which need to be saved. Currently saving is
281  * only needed for page program operation with preceded read command
282  * (which is only valid for 512-byte pages).
283  */
284 #define NS_MAX_PREVSTATES 1
285
286 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */
287 #define NS_MAX_HELD_PAGES 16
288
289 struct nandsim_debug_info {
290         struct dentry *dfs_root;
291         struct dentry *dfs_wear_report;
292 };
293
294 /*
295  * A union to represent flash memory contents and flash buffer.
296  */
297 union ns_mem {
298         u_char *byte;    /* for byte access */
299         uint16_t *word;  /* for 16-bit word access */
300 };
301
302 /*
303  * The structure which describes all the internal simulator data.
304  */
305 struct nandsim {
306         struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS];
307         unsigned int nbparts;
308
309         uint busw;              /* flash chip bus width (8 or 16) */
310         u_char ids[8];          /* chip's ID bytes */
311         uint32_t options;       /* chip's characteristic bits */
312         uint32_t state;         /* current chip state */
313         uint32_t nxstate;       /* next expected state */
314
315         uint32_t *op;           /* current operation, NULL operations isn't known yet  */
316         uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
317         uint16_t npstates;      /* number of previous states saved */
318         uint16_t stateidx;      /* current state index */
319
320         /* The simulated NAND flash pages array */
321         union ns_mem *pages;
322
323         /* Slab allocator for nand pages */
324         struct kmem_cache *nand_pages_slab;
325
326         /* Internal buffer of page + OOB size bytes */
327         union ns_mem buf;
328
329         /* NAND flash "geometry" */
330         struct {
331                 uint64_t totsz;     /* total flash size, bytes */
332                 uint32_t secsz;     /* flash sector (erase block) size, bytes */
333                 uint pgsz;          /* NAND flash page size, bytes */
334                 uint oobsz;         /* page OOB area size, bytes */
335                 uint64_t totszoob;  /* total flash size including OOB, bytes */
336                 uint pgszoob;       /* page size including OOB , bytes*/
337                 uint secszoob;      /* sector size including OOB, bytes */
338                 uint pgnum;         /* total number of pages */
339                 uint pgsec;         /* number of pages per sector */
340                 uint secshift;      /* bits number in sector size */
341                 uint pgshift;       /* bits number in page size */
342                 uint pgaddrbytes;   /* bytes per page address */
343                 uint secaddrbytes;  /* bytes per sector address */
344                 uint idbytes;       /* the number ID bytes that this chip outputs */
345         } geom;
346
347         /* NAND flash internal registers */
348         struct {
349                 unsigned command; /* the command register */
350                 u_char   status;  /* the status register */
351                 uint     row;     /* the page number */
352                 uint     column;  /* the offset within page */
353                 uint     count;   /* internal counter */
354                 uint     num;     /* number of bytes which must be processed */
355                 uint     off;     /* fixed page offset */
356         } regs;
357
358         /* NAND flash lines state */
359         struct {
360                 int ce;  /* chip Enable */
361                 int cle; /* command Latch Enable */
362                 int ale; /* address Latch Enable */
363                 int wp;  /* write Protect */
364         } lines;
365
366         /* Fields needed when using a cache file */
367         struct file *cfile; /* Open file */
368         unsigned long *pages_written; /* Which pages have been written */
369         void *file_buf;
370         struct page *held_pages[NS_MAX_HELD_PAGES];
371         int held_cnt;
372
373         struct nandsim_debug_info dbg;
374 };
375
376 /*
377  * Operations array. To perform any operation the simulator must pass
378  * through the correspondent states chain.
379  */
380 static struct nandsim_operations {
381         uint32_t reqopts;  /* options which are required to perform the operation */
382         uint32_t states[NS_OPER_STATES]; /* operation's states */
383 } ops[NS_OPER_NUM] = {
384         /* Read page + OOB from the beginning */
385         {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
386                         STATE_DATAOUT, STATE_READY}},
387         /* Read page + OOB from the second half */
388         {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
389                         STATE_DATAOUT, STATE_READY}},
390         /* Read OOB */
391         {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
392                         STATE_DATAOUT, STATE_READY}},
393         /* Program page starting from the beginning */
394         {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
395                         STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
396         /* Program page starting from the beginning */
397         {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
398                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
399         /* Program page starting from the second half */
400         {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
401                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
402         /* Program OOB */
403         {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
404                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
405         /* Erase sector */
406         {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
407         /* Read status */
408         {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
409         /* Read ID */
410         {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
411         /* Large page devices read page */
412         {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
413                                STATE_DATAOUT, STATE_READY}},
414         /* Large page devices random page read */
415         {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
416                                STATE_DATAOUT, STATE_READY}},
417 };
418
419 struct weak_block {
420         struct list_head list;
421         unsigned int erase_block_no;
422         unsigned int max_erases;
423         unsigned int erases_done;
424 };
425
426 static LIST_HEAD(weak_blocks);
427
428 struct weak_page {
429         struct list_head list;
430         unsigned int page_no;
431         unsigned int max_writes;
432         unsigned int writes_done;
433 };
434
435 static LIST_HEAD(weak_pages);
436
437 struct grave_page {
438         struct list_head list;
439         unsigned int page_no;
440         unsigned int max_reads;
441         unsigned int reads_done;
442 };
443
444 static LIST_HEAD(grave_pages);
445
446 static unsigned long *erase_block_wear = NULL;
447 static unsigned int wear_eb_count = 0;
448 static unsigned long total_wear = 0;
449
450 /* MTD structure for NAND controller */
451 static struct mtd_info *nsmtd;
452
453 static int nandsim_debugfs_show(struct seq_file *m, void *private)
454 {
455         unsigned long wmin = -1, wmax = 0, avg;
456         unsigned long deciles[10], decile_max[10], tot = 0;
457         unsigned int i;
458
459         /* Calc wear stats */
460         for (i = 0; i < wear_eb_count; ++i) {
461                 unsigned long wear = erase_block_wear[i];
462                 if (wear < wmin)
463                         wmin = wear;
464                 if (wear > wmax)
465                         wmax = wear;
466                 tot += wear;
467         }
468
469         for (i = 0; i < 9; ++i) {
470                 deciles[i] = 0;
471                 decile_max[i] = (wmax * (i + 1) + 5) / 10;
472         }
473         deciles[9] = 0;
474         decile_max[9] = wmax;
475         for (i = 0; i < wear_eb_count; ++i) {
476                 int d;
477                 unsigned long wear = erase_block_wear[i];
478                 for (d = 0; d < 10; ++d)
479                         if (wear <= decile_max[d]) {
480                                 deciles[d] += 1;
481                                 break;
482                         }
483         }
484         avg = tot / wear_eb_count;
485
486         /* Output wear report */
487         seq_printf(m, "Total numbers of erases:  %lu\n", tot);
488         seq_printf(m, "Number of erase blocks:   %u\n", wear_eb_count);
489         seq_printf(m, "Average number of erases: %lu\n", avg);
490         seq_printf(m, "Maximum number of erases: %lu\n", wmax);
491         seq_printf(m, "Minimum number of erases: %lu\n", wmin);
492         for (i = 0; i < 10; ++i) {
493                 unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
494                 if (from > decile_max[i])
495                         continue;
496                 seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n",
497                         from,
498                         decile_max[i],
499                         deciles[i]);
500         }
501
502         return 0;
503 }
504
505 static int nandsim_debugfs_open(struct inode *inode, struct file *file)
506 {
507         return single_open(file, nandsim_debugfs_show, inode->i_private);
508 }
509
510 static const struct file_operations dfs_fops = {
511         .open           = nandsim_debugfs_open,
512         .read           = seq_read,
513         .llseek         = seq_lseek,
514         .release        = single_release,
515 };
516
517 /**
518  * nandsim_debugfs_create - initialize debugfs
519  * @dev: nandsim device description object
520  *
521  * This function creates all debugfs files for UBI device @ubi. Returns zero in
522  * case of success and a negative error code in case of failure.
523  */
524 static int nandsim_debugfs_create(struct nandsim *dev)
525 {
526         struct nandsim_debug_info *dbg = &dev->dbg;
527         struct dentry *dent;
528         int err;
529
530         if (!IS_ENABLED(CONFIG_DEBUG_FS))
531                 return 0;
532
533         dent = debugfs_create_dir("nandsim", NULL);
534         if (IS_ERR_OR_NULL(dent)) {
535                 int err = dent ? -ENODEV : PTR_ERR(dent);
536
537                 NS_ERR("cannot create \"nandsim\" debugfs directory, err %d\n",
538                         err);
539                 return err;
540         }
541         dbg->dfs_root = dent;
542
543         dent = debugfs_create_file("wear_report", S_IRUSR,
544                                    dbg->dfs_root, dev, &dfs_fops);
545         if (IS_ERR_OR_NULL(dent))
546                 goto out_remove;
547         dbg->dfs_wear_report = dent;
548
549         return 0;
550
551 out_remove:
552         debugfs_remove_recursive(dbg->dfs_root);
553         err = dent ? PTR_ERR(dent) : -ENODEV;
554         return err;
555 }
556
557 /**
558  * nandsim_debugfs_remove - destroy all debugfs files
559  */
560 static void nandsim_debugfs_remove(struct nandsim *ns)
561 {
562         if (IS_ENABLED(CONFIG_DEBUG_FS))
563                 debugfs_remove_recursive(ns->dbg.dfs_root);
564 }
565
566 /*
567  * Allocate array of page pointers, create slab allocation for an array
568  * and initialize the array by NULL pointers.
569  *
570  * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
571  */
572 static int alloc_device(struct nandsim *ns)
573 {
574         struct file *cfile;
575         int i, err;
576
577         if (cache_file) {
578                 cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
579                 if (IS_ERR(cfile))
580                         return PTR_ERR(cfile);
581                 if (!(cfile->f_mode & FMODE_CAN_READ)) {
582                         NS_ERR("alloc_device: cache file not readable\n");
583                         err = -EINVAL;
584                         goto err_close;
585                 }
586                 if (!(cfile->f_mode & FMODE_CAN_WRITE)) {
587                         NS_ERR("alloc_device: cache file not writeable\n");
588                         err = -EINVAL;
589                         goto err_close;
590                 }
591                 ns->pages_written = vzalloc(BITS_TO_LONGS(ns->geom.pgnum) *
592                                             sizeof(unsigned long));
593                 if (!ns->pages_written) {
594                         NS_ERR("alloc_device: unable to allocate pages written array\n");
595                         err = -ENOMEM;
596                         goto err_close;
597                 }
598                 ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
599                 if (!ns->file_buf) {
600                         NS_ERR("alloc_device: unable to allocate file buf\n");
601                         err = -ENOMEM;
602                         goto err_free;
603                 }
604                 ns->cfile = cfile;
605                 return 0;
606         }
607
608         ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
609         if (!ns->pages) {
610                 NS_ERR("alloc_device: unable to allocate page array\n");
611                 return -ENOMEM;
612         }
613         for (i = 0; i < ns->geom.pgnum; i++) {
614                 ns->pages[i].byte = NULL;
615         }
616         ns->nand_pages_slab = kmem_cache_create("nandsim",
617                                                 ns->geom.pgszoob, 0, 0, NULL);
618         if (!ns->nand_pages_slab) {
619                 NS_ERR("cache_create: unable to create kmem_cache\n");
620                 return -ENOMEM;
621         }
622
623         return 0;
624
625 err_free:
626         vfree(ns->pages_written);
627 err_close:
628         filp_close(cfile, NULL);
629         return err;
630 }
631
632 /*
633  * Free any allocated pages, and free the array of page pointers.
634  */
635 static void free_device(struct nandsim *ns)
636 {
637         int i;
638
639         if (ns->cfile) {
640                 kfree(ns->file_buf);
641                 vfree(ns->pages_written);
642                 filp_close(ns->cfile, NULL);
643                 return;
644         }
645
646         if (ns->pages) {
647                 for (i = 0; i < ns->geom.pgnum; i++) {
648                         if (ns->pages[i].byte)
649                                 kmem_cache_free(ns->nand_pages_slab,
650                                                 ns->pages[i].byte);
651                 }
652                 kmem_cache_destroy(ns->nand_pages_slab);
653                 vfree(ns->pages);
654         }
655 }
656
657 static char *get_partition_name(int i)
658 {
659         return kasprintf(GFP_KERNEL, "NAND simulator partition %d", i);
660 }
661
662 /*
663  * Initialize the nandsim structure.
664  *
665  * RETURNS: 0 if success, -ERRNO if failure.
666  */
667 static int init_nandsim(struct mtd_info *mtd)
668 {
669         struct nand_chip *chip = mtd->priv;
670         struct nandsim   *ns   = chip->priv;
671         int i, ret = 0;
672         uint64_t remains;
673         uint64_t next_offset;
674
675         if (NS_IS_INITIALIZED(ns)) {
676                 NS_ERR("init_nandsim: nandsim is already initialized\n");
677                 return -EIO;
678         }
679
680         /* Force mtd to not do delays */
681         chip->chip_delay = 0;
682
683         /* Initialize the NAND flash parameters */
684         ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
685         ns->geom.totsz    = mtd->size;
686         ns->geom.pgsz     = mtd->writesize;
687         ns->geom.oobsz    = mtd->oobsize;
688         ns->geom.secsz    = mtd->erasesize;
689         ns->geom.pgszoob  = ns->geom.pgsz + ns->geom.oobsz;
690         ns->geom.pgnum    = div_u64(ns->geom.totsz, ns->geom.pgsz);
691         ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
692         ns->geom.secshift = ffs(ns->geom.secsz) - 1;
693         ns->geom.pgshift  = chip->page_shift;
694         ns->geom.pgsec    = ns->geom.secsz / ns->geom.pgsz;
695         ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
696         ns->options = 0;
697
698         if (ns->geom.pgsz == 512) {
699                 ns->options |= OPT_PAGE512;
700                 if (ns->busw == 8)
701                         ns->options |= OPT_PAGE512_8BIT;
702         } else if (ns->geom.pgsz == 2048) {
703                 ns->options |= OPT_PAGE2048;
704         } else if (ns->geom.pgsz == 4096) {
705                 ns->options |= OPT_PAGE4096;
706         } else {
707                 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
708                 return -EIO;
709         }
710
711         if (ns->options & OPT_SMALLPAGE) {
712                 if (ns->geom.totsz <= (32 << 20)) {
713                         ns->geom.pgaddrbytes  = 3;
714                         ns->geom.secaddrbytes = 2;
715                 } else {
716                         ns->geom.pgaddrbytes  = 4;
717                         ns->geom.secaddrbytes = 3;
718                 }
719         } else {
720                 if (ns->geom.totsz <= (128 << 20)) {
721                         ns->geom.pgaddrbytes  = 4;
722                         ns->geom.secaddrbytes = 2;
723                 } else {
724                         ns->geom.pgaddrbytes  = 5;
725                         ns->geom.secaddrbytes = 3;
726                 }
727         }
728
729         /* Fill the partition_info structure */
730         if (parts_num > ARRAY_SIZE(ns->partitions)) {
731                 NS_ERR("too many partitions.\n");
732                 return -EINVAL;
733         }
734         remains = ns->geom.totsz;
735         next_offset = 0;
736         for (i = 0; i < parts_num; ++i) {
737                 uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
738
739                 if (!part_sz || part_sz > remains) {
740                         NS_ERR("bad partition size.\n");
741                         return -EINVAL;
742                 }
743                 ns->partitions[i].name   = get_partition_name(i);
744                 if (!ns->partitions[i].name) {
745                         NS_ERR("unable to allocate memory.\n");
746                         return -ENOMEM;
747                 }
748                 ns->partitions[i].offset = next_offset;
749                 ns->partitions[i].size   = part_sz;
750                 next_offset += ns->partitions[i].size;
751                 remains -= ns->partitions[i].size;
752         }
753         ns->nbparts = parts_num;
754         if (remains) {
755                 if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
756                         NS_ERR("too many partitions.\n");
757                         return -EINVAL;
758                 }
759                 ns->partitions[i].name   = get_partition_name(i);
760                 if (!ns->partitions[i].name) {
761                         NS_ERR("unable to allocate memory.\n");
762                         return -ENOMEM;
763                 }
764                 ns->partitions[i].offset = next_offset;
765                 ns->partitions[i].size   = remains;
766                 ns->nbparts += 1;
767         }
768
769         if (ns->busw == 16)
770                 NS_WARN("16-bit flashes support wasn't tested\n");
771
772         printk("flash size: %llu MiB\n",
773                         (unsigned long long)ns->geom.totsz >> 20);
774         printk("page size: %u bytes\n",         ns->geom.pgsz);
775         printk("OOB area size: %u bytes\n",     ns->geom.oobsz);
776         printk("sector size: %u KiB\n",         ns->geom.secsz >> 10);
777         printk("pages number: %u\n",            ns->geom.pgnum);
778         printk("pages per sector: %u\n",        ns->geom.pgsec);
779         printk("bus width: %u\n",               ns->busw);
780         printk("bits in sector size: %u\n",     ns->geom.secshift);
781         printk("bits in page size: %u\n",       ns->geom.pgshift);
782         printk("bits in OOB size: %u\n",        ffs(ns->geom.oobsz) - 1);
783         printk("flash size with OOB: %llu KiB\n",
784                         (unsigned long long)ns->geom.totszoob >> 10);
785         printk("page address bytes: %u\n",      ns->geom.pgaddrbytes);
786         printk("sector address bytes: %u\n",    ns->geom.secaddrbytes);
787         printk("options: %#x\n",                ns->options);
788
789         if ((ret = alloc_device(ns)) != 0)
790                 return ret;
791
792         /* Allocate / initialize the internal buffer */
793         ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
794         if (!ns->buf.byte) {
795                 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
796                         ns->geom.pgszoob);
797                 return -ENOMEM;
798         }
799         memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
800
801         return 0;
802 }
803
804 /*
805  * Free the nandsim structure.
806  */
807 static void free_nandsim(struct nandsim *ns)
808 {
809         kfree(ns->buf.byte);
810         free_device(ns);
811
812         return;
813 }
814
815 static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
816 {
817         char *w;
818         int zero_ok;
819         unsigned int erase_block_no;
820         loff_t offset;
821
822         if (!badblocks)
823                 return 0;
824         w = badblocks;
825         do {
826                 zero_ok = (*w == '0' ? 1 : 0);
827                 erase_block_no = simple_strtoul(w, &w, 0);
828                 if (!zero_ok && !erase_block_no) {
829                         NS_ERR("invalid badblocks.\n");
830                         return -EINVAL;
831                 }
832                 offset = (loff_t)erase_block_no * ns->geom.secsz;
833                 if (mtd_block_markbad(mtd, offset)) {
834                         NS_ERR("invalid badblocks.\n");
835                         return -EINVAL;
836                 }
837                 if (*w == ',')
838                         w += 1;
839         } while (*w);
840         return 0;
841 }
842
843 static int parse_weakblocks(void)
844 {
845         char *w;
846         int zero_ok;
847         unsigned int erase_block_no;
848         unsigned int max_erases;
849         struct weak_block *wb;
850
851         if (!weakblocks)
852                 return 0;
853         w = weakblocks;
854         do {
855                 zero_ok = (*w == '0' ? 1 : 0);
856                 erase_block_no = simple_strtoul(w, &w, 0);
857                 if (!zero_ok && !erase_block_no) {
858                         NS_ERR("invalid weakblocks.\n");
859                         return -EINVAL;
860                 }
861                 max_erases = 3;
862                 if (*w == ':') {
863                         w += 1;
864                         max_erases = simple_strtoul(w, &w, 0);
865                 }
866                 if (*w == ',')
867                         w += 1;
868                 wb = kzalloc(sizeof(*wb), GFP_KERNEL);
869                 if (!wb) {
870                         NS_ERR("unable to allocate memory.\n");
871                         return -ENOMEM;
872                 }
873                 wb->erase_block_no = erase_block_no;
874                 wb->max_erases = max_erases;
875                 list_add(&wb->list, &weak_blocks);
876         } while (*w);
877         return 0;
878 }
879
880 static int erase_error(unsigned int erase_block_no)
881 {
882         struct weak_block *wb;
883
884         list_for_each_entry(wb, &weak_blocks, list)
885                 if (wb->erase_block_no == erase_block_no) {
886                         if (wb->erases_done >= wb->max_erases)
887                                 return 1;
888                         wb->erases_done += 1;
889                         return 0;
890                 }
891         return 0;
892 }
893
894 static int parse_weakpages(void)
895 {
896         char *w;
897         int zero_ok;
898         unsigned int page_no;
899         unsigned int max_writes;
900         struct weak_page *wp;
901
902         if (!weakpages)
903                 return 0;
904         w = weakpages;
905         do {
906                 zero_ok = (*w == '0' ? 1 : 0);
907                 page_no = simple_strtoul(w, &w, 0);
908                 if (!zero_ok && !page_no) {
909                         NS_ERR("invalid weakpagess.\n");
910                         return -EINVAL;
911                 }
912                 max_writes = 3;
913                 if (*w == ':') {
914                         w += 1;
915                         max_writes = simple_strtoul(w, &w, 0);
916                 }
917                 if (*w == ',')
918                         w += 1;
919                 wp = kzalloc(sizeof(*wp), GFP_KERNEL);
920                 if (!wp) {
921                         NS_ERR("unable to allocate memory.\n");
922                         return -ENOMEM;
923                 }
924                 wp->page_no = page_no;
925                 wp->max_writes = max_writes;
926                 list_add(&wp->list, &weak_pages);
927         } while (*w);
928         return 0;
929 }
930
931 static int write_error(unsigned int page_no)
932 {
933         struct weak_page *wp;
934
935         list_for_each_entry(wp, &weak_pages, list)
936                 if (wp->page_no == page_no) {
937                         if (wp->writes_done >= wp->max_writes)
938                                 return 1;
939                         wp->writes_done += 1;
940                         return 0;
941                 }
942         return 0;
943 }
944
945 static int parse_gravepages(void)
946 {
947         char *g;
948         int zero_ok;
949         unsigned int page_no;
950         unsigned int max_reads;
951         struct grave_page *gp;
952
953         if (!gravepages)
954                 return 0;
955         g = gravepages;
956         do {
957                 zero_ok = (*g == '0' ? 1 : 0);
958                 page_no = simple_strtoul(g, &g, 0);
959                 if (!zero_ok && !page_no) {
960                         NS_ERR("invalid gravepagess.\n");
961                         return -EINVAL;
962                 }
963                 max_reads = 3;
964                 if (*g == ':') {
965                         g += 1;
966                         max_reads = simple_strtoul(g, &g, 0);
967                 }
968                 if (*g == ',')
969                         g += 1;
970                 gp = kzalloc(sizeof(*gp), GFP_KERNEL);
971                 if (!gp) {
972                         NS_ERR("unable to allocate memory.\n");
973                         return -ENOMEM;
974                 }
975                 gp->page_no = page_no;
976                 gp->max_reads = max_reads;
977                 list_add(&gp->list, &grave_pages);
978         } while (*g);
979         return 0;
980 }
981
982 static int read_error(unsigned int page_no)
983 {
984         struct grave_page *gp;
985
986         list_for_each_entry(gp, &grave_pages, list)
987                 if (gp->page_no == page_no) {
988                         if (gp->reads_done >= gp->max_reads)
989                                 return 1;
990                         gp->reads_done += 1;
991                         return 0;
992                 }
993         return 0;
994 }
995
996 static void free_lists(void)
997 {
998         struct list_head *pos, *n;
999         list_for_each_safe(pos, n, &weak_blocks) {
1000                 list_del(pos);
1001                 kfree(list_entry(pos, struct weak_block, list));
1002         }
1003         list_for_each_safe(pos, n, &weak_pages) {
1004                 list_del(pos);
1005                 kfree(list_entry(pos, struct weak_page, list));
1006         }
1007         list_for_each_safe(pos, n, &grave_pages) {
1008                 list_del(pos);
1009                 kfree(list_entry(pos, struct grave_page, list));
1010         }
1011         kfree(erase_block_wear);
1012 }
1013
1014 static int setup_wear_reporting(struct mtd_info *mtd)
1015 {
1016         size_t mem;
1017
1018         wear_eb_count = div_u64(mtd->size, mtd->erasesize);
1019         mem = wear_eb_count * sizeof(unsigned long);
1020         if (mem / sizeof(unsigned long) != wear_eb_count) {
1021                 NS_ERR("Too many erase blocks for wear reporting\n");
1022                 return -ENOMEM;
1023         }
1024         erase_block_wear = kzalloc(mem, GFP_KERNEL);
1025         if (!erase_block_wear) {
1026                 NS_ERR("Too many erase blocks for wear reporting\n");
1027                 return -ENOMEM;
1028         }
1029         return 0;
1030 }
1031
1032 static void update_wear(unsigned int erase_block_no)
1033 {
1034         if (!erase_block_wear)
1035                 return;
1036         total_wear += 1;
1037         /*
1038          * TODO: Notify this through a debugfs entry,
1039          * instead of showing an error message.
1040          */
1041         if (total_wear == 0)
1042                 NS_ERR("Erase counter total overflow\n");
1043         erase_block_wear[erase_block_no] += 1;
1044         if (erase_block_wear[erase_block_no] == 0)
1045                 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
1046 }
1047
1048 /*
1049  * Returns the string representation of 'state' state.
1050  */
1051 static char *get_state_name(uint32_t state)
1052 {
1053         switch (NS_STATE(state)) {
1054                 case STATE_CMD_READ0:
1055                         return "STATE_CMD_READ0";
1056                 case STATE_CMD_READ1:
1057                         return "STATE_CMD_READ1";
1058                 case STATE_CMD_PAGEPROG:
1059                         return "STATE_CMD_PAGEPROG";
1060                 case STATE_CMD_READOOB:
1061                         return "STATE_CMD_READOOB";
1062                 case STATE_CMD_READSTART:
1063                         return "STATE_CMD_READSTART";
1064                 case STATE_CMD_ERASE1:
1065                         return "STATE_CMD_ERASE1";
1066                 case STATE_CMD_STATUS:
1067                         return "STATE_CMD_STATUS";
1068                 case STATE_CMD_SEQIN:
1069                         return "STATE_CMD_SEQIN";
1070                 case STATE_CMD_READID:
1071                         return "STATE_CMD_READID";
1072                 case STATE_CMD_ERASE2:
1073                         return "STATE_CMD_ERASE2";
1074                 case STATE_CMD_RESET:
1075                         return "STATE_CMD_RESET";
1076                 case STATE_CMD_RNDOUT:
1077                         return "STATE_CMD_RNDOUT";
1078                 case STATE_CMD_RNDOUTSTART:
1079                         return "STATE_CMD_RNDOUTSTART";
1080                 case STATE_ADDR_PAGE:
1081                         return "STATE_ADDR_PAGE";
1082                 case STATE_ADDR_SEC:
1083                         return "STATE_ADDR_SEC";
1084                 case STATE_ADDR_ZERO:
1085                         return "STATE_ADDR_ZERO";
1086                 case STATE_ADDR_COLUMN:
1087                         return "STATE_ADDR_COLUMN";
1088                 case STATE_DATAIN:
1089                         return "STATE_DATAIN";
1090                 case STATE_DATAOUT:
1091                         return "STATE_DATAOUT";
1092                 case STATE_DATAOUT_ID:
1093                         return "STATE_DATAOUT_ID";
1094                 case STATE_DATAOUT_STATUS:
1095                         return "STATE_DATAOUT_STATUS";
1096                 case STATE_READY:
1097                         return "STATE_READY";
1098                 case STATE_UNKNOWN:
1099                         return "STATE_UNKNOWN";
1100         }
1101
1102         NS_ERR("get_state_name: unknown state, BUG\n");
1103         return NULL;
1104 }
1105
1106 /*
1107  * Check if command is valid.
1108  *
1109  * RETURNS: 1 if wrong command, 0 if right.
1110  */
1111 static int check_command(int cmd)
1112 {
1113         switch (cmd) {
1114
1115         case NAND_CMD_READ0:
1116         case NAND_CMD_READ1:
1117         case NAND_CMD_READSTART:
1118         case NAND_CMD_PAGEPROG:
1119         case NAND_CMD_READOOB:
1120         case NAND_CMD_ERASE1:
1121         case NAND_CMD_STATUS:
1122         case NAND_CMD_SEQIN:
1123         case NAND_CMD_READID:
1124         case NAND_CMD_ERASE2:
1125         case NAND_CMD_RESET:
1126         case NAND_CMD_RNDOUT:
1127         case NAND_CMD_RNDOUTSTART:
1128                 return 0;
1129
1130         default:
1131                 return 1;
1132         }
1133 }
1134
1135 /*
1136  * Returns state after command is accepted by command number.
1137  */
1138 static uint32_t get_state_by_command(unsigned command)
1139 {
1140         switch (command) {
1141                 case NAND_CMD_READ0:
1142                         return STATE_CMD_READ0;
1143                 case NAND_CMD_READ1:
1144                         return STATE_CMD_READ1;
1145                 case NAND_CMD_PAGEPROG:
1146                         return STATE_CMD_PAGEPROG;
1147                 case NAND_CMD_READSTART:
1148                         return STATE_CMD_READSTART;
1149                 case NAND_CMD_READOOB:
1150                         return STATE_CMD_READOOB;
1151                 case NAND_CMD_ERASE1:
1152                         return STATE_CMD_ERASE1;
1153                 case NAND_CMD_STATUS:
1154                         return STATE_CMD_STATUS;
1155                 case NAND_CMD_SEQIN:
1156                         return STATE_CMD_SEQIN;
1157                 case NAND_CMD_READID:
1158                         return STATE_CMD_READID;
1159                 case NAND_CMD_ERASE2:
1160                         return STATE_CMD_ERASE2;
1161                 case NAND_CMD_RESET:
1162                         return STATE_CMD_RESET;
1163                 case NAND_CMD_RNDOUT:
1164                         return STATE_CMD_RNDOUT;
1165                 case NAND_CMD_RNDOUTSTART:
1166                         return STATE_CMD_RNDOUTSTART;
1167         }
1168
1169         NS_ERR("get_state_by_command: unknown command, BUG\n");
1170         return 0;
1171 }
1172
1173 /*
1174  * Move an address byte to the correspondent internal register.
1175  */
1176 static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1177 {
1178         uint byte = (uint)bt;
1179
1180         if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1181                 ns->regs.column |= (byte << 8 * ns->regs.count);
1182         else {
1183                 ns->regs.row |= (byte << 8 * (ns->regs.count -
1184                                                 ns->geom.pgaddrbytes +
1185                                                 ns->geom.secaddrbytes));
1186         }
1187
1188         return;
1189 }
1190
1191 /*
1192  * Switch to STATE_READY state.
1193  */
1194 static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1195 {
1196         NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1197
1198         ns->state       = STATE_READY;
1199         ns->nxstate     = STATE_UNKNOWN;
1200         ns->op          = NULL;
1201         ns->npstates    = 0;
1202         ns->stateidx    = 0;
1203         ns->regs.num    = 0;
1204         ns->regs.count  = 0;
1205         ns->regs.off    = 0;
1206         ns->regs.row    = 0;
1207         ns->regs.column = 0;
1208         ns->regs.status = status;
1209 }
1210
1211 /*
1212  * If the operation isn't known yet, try to find it in the global array
1213  * of supported operations.
1214  *
1215  * Operation can be unknown because of the following.
1216  *   1. New command was accepted and this is the first call to find the
1217  *      correspondent states chain. In this case ns->npstates = 0;
1218  *   2. There are several operations which begin with the same command(s)
1219  *      (for example program from the second half and read from the
1220  *      second half operations both begin with the READ1 command). In this
1221  *      case the ns->pstates[] array contains previous states.
1222  *
1223  * Thus, the function tries to find operation containing the following
1224  * states (if the 'flag' parameter is 0):
1225  *    ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1226  *
1227  * If (one and only one) matching operation is found, it is accepted (
1228  * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1229  * zeroed).
1230  *
1231  * If there are several matches, the current state is pushed to the
1232  * ns->pstates.
1233  *
1234  * The operation can be unknown only while commands are input to the chip.
1235  * As soon as address command is accepted, the operation must be known.
1236  * In such situation the function is called with 'flag' != 0, and the
1237  * operation is searched using the following pattern:
1238  *     ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1239  *
1240  * It is supposed that this pattern must either match one operation or
1241  * none. There can't be ambiguity in that case.
1242  *
1243  * If no matches found, the function does the following:
1244  *   1. if there are saved states present, try to ignore them and search
1245  *      again only using the last command. If nothing was found, switch
1246  *      to the STATE_READY state.
1247  *   2. if there are no saved states, switch to the STATE_READY state.
1248  *
1249  * RETURNS: -2 - no matched operations found.
1250  *          -1 - several matches.
1251  *           0 - operation is found.
1252  */
1253 static int find_operation(struct nandsim *ns, uint32_t flag)
1254 {
1255         int opsfound = 0;
1256         int i, j, idx = 0;
1257
1258         for (i = 0; i < NS_OPER_NUM; i++) {
1259
1260                 int found = 1;
1261
1262                 if (!(ns->options & ops[i].reqopts))
1263                         /* Ignore operations we can't perform */
1264                         continue;
1265
1266                 if (flag) {
1267                         if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1268                                 continue;
1269                 } else {
1270                         if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1271                                 continue;
1272                 }
1273
1274                 for (j = 0; j < ns->npstates; j++)
1275                         if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1276                                 && (ns->options & ops[idx].reqopts)) {
1277                                 found = 0;
1278                                 break;
1279                         }
1280
1281                 if (found) {
1282                         idx = i;
1283                         opsfound += 1;
1284                 }
1285         }
1286
1287         if (opsfound == 1) {
1288                 /* Exact match */
1289                 ns->op = &ops[idx].states[0];
1290                 if (flag) {
1291                         /*
1292                          * In this case the find_operation function was
1293                          * called when address has just began input. But it isn't
1294                          * yet fully input and the current state must
1295                          * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1296                          * state must be the next state (ns->nxstate).
1297                          */
1298                         ns->stateidx = ns->npstates - 1;
1299                 } else {
1300                         ns->stateidx = ns->npstates;
1301                 }
1302                 ns->npstates = 0;
1303                 ns->state = ns->op[ns->stateidx];
1304                 ns->nxstate = ns->op[ns->stateidx + 1];
1305                 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1306                                 idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1307                 return 0;
1308         }
1309
1310         if (opsfound == 0) {
1311                 /* Nothing was found. Try to ignore previous commands (if any) and search again */
1312                 if (ns->npstates != 0) {
1313                         NS_DBG("find_operation: no operation found, try again with state %s\n",
1314                                         get_state_name(ns->state));
1315                         ns->npstates = 0;
1316                         return find_operation(ns, 0);
1317
1318                 }
1319                 NS_DBG("find_operation: no operations found\n");
1320                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1321                 return -2;
1322         }
1323
1324         if (flag) {
1325                 /* This shouldn't happen */
1326                 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1327                 return -2;
1328         }
1329
1330         NS_DBG("find_operation: there is still ambiguity\n");
1331
1332         ns->pstates[ns->npstates++] = ns->state;
1333
1334         return -1;
1335 }
1336
1337 static void put_pages(struct nandsim *ns)
1338 {
1339         int i;
1340
1341         for (i = 0; i < ns->held_cnt; i++)
1342                 page_cache_release(ns->held_pages[i]);
1343 }
1344
1345 /* Get page cache pages in advance to provide NOFS memory allocation */
1346 static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
1347 {
1348         pgoff_t index, start_index, end_index;
1349         struct page *page;
1350         struct address_space *mapping = file->f_mapping;
1351
1352         start_index = pos >> PAGE_CACHE_SHIFT;
1353         end_index = (pos + count - 1) >> PAGE_CACHE_SHIFT;
1354         if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
1355                 return -EINVAL;
1356         ns->held_cnt = 0;
1357         for (index = start_index; index <= end_index; index++) {
1358                 page = find_get_page(mapping, index);
1359                 if (page == NULL) {
1360                         page = find_or_create_page(mapping, index, GFP_NOFS);
1361                         if (page == NULL) {
1362                                 write_inode_now(mapping->host, 1);
1363                                 page = find_or_create_page(mapping, index, GFP_NOFS);
1364                         }
1365                         if (page == NULL) {
1366                                 put_pages(ns);
1367                                 return -ENOMEM;
1368                         }
1369                         unlock_page(page);
1370                 }
1371                 ns->held_pages[ns->held_cnt++] = page;
1372         }
1373         return 0;
1374 }
1375
1376 static int set_memalloc(void)
1377 {
1378         if (current->flags & PF_MEMALLOC)
1379                 return 0;
1380         current->flags |= PF_MEMALLOC;
1381         return 1;
1382 }
1383
1384 static void clear_memalloc(int memalloc)
1385 {
1386         if (memalloc)
1387                 current->flags &= ~PF_MEMALLOC;
1388 }
1389
1390 static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
1391 {
1392         ssize_t tx;
1393         int err, memalloc;
1394
1395         err = get_pages(ns, file, count, pos);
1396         if (err)
1397                 return err;
1398         memalloc = set_memalloc();
1399         tx = kernel_read(file, pos, buf, count);
1400         clear_memalloc(memalloc);
1401         put_pages(ns);
1402         return tx;
1403 }
1404
1405 static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
1406 {
1407         ssize_t tx;
1408         int err, memalloc;
1409
1410         err = get_pages(ns, file, count, pos);
1411         if (err)
1412                 return err;
1413         memalloc = set_memalloc();
1414         tx = kernel_write(file, buf, count, pos);
1415         clear_memalloc(memalloc);
1416         put_pages(ns);
1417         return tx;
1418 }
1419
1420 /*
1421  * Returns a pointer to the current page.
1422  */
1423 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1424 {
1425         return &(ns->pages[ns->regs.row]);
1426 }
1427
1428 /*
1429  * Retuns a pointer to the current byte, within the current page.
1430  */
1431 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1432 {
1433         return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1434 }
1435
1436 static int do_read_error(struct nandsim *ns, int num)
1437 {
1438         unsigned int page_no = ns->regs.row;
1439
1440         if (read_error(page_no)) {
1441                 prandom_bytes(ns->buf.byte, num);
1442                 NS_WARN("simulating read error in page %u\n", page_no);
1443                 return 1;
1444         }
1445         return 0;
1446 }
1447
1448 static void do_bit_flips(struct nandsim *ns, int num)
1449 {
1450         if (bitflips && prandom_u32() < (1 << 22)) {
1451                 int flips = 1;
1452                 if (bitflips > 1)
1453                         flips = (prandom_u32() % (int) bitflips) + 1;
1454                 while (flips--) {
1455                         int pos = prandom_u32() % (num * 8);
1456                         ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1457                         NS_WARN("read_page: flipping bit %d in page %d "
1458                                 "reading from %d ecc: corrected=%u failed=%u\n",
1459                                 pos, ns->regs.row, ns->regs.column + ns->regs.off,
1460                                 nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1461                 }
1462         }
1463 }
1464
1465 /*
1466  * Fill the NAND buffer with data read from the specified page.
1467  */
1468 static void read_page(struct nandsim *ns, int num)
1469 {
1470         union ns_mem *mypage;
1471
1472         if (ns->cfile) {
1473                 if (!test_bit(ns->regs.row, ns->pages_written)) {
1474                         NS_DBG("read_page: page %d not written\n", ns->regs.row);
1475                         memset(ns->buf.byte, 0xFF, num);
1476                 } else {
1477                         loff_t pos;
1478                         ssize_t tx;
1479
1480                         NS_DBG("read_page: page %d written, reading from %d\n",
1481                                 ns->regs.row, ns->regs.column + ns->regs.off);
1482                         if (do_read_error(ns, num))
1483                                 return;
1484                         pos = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
1485                         tx = read_file(ns, ns->cfile, ns->buf.byte, num, pos);
1486                         if (tx != num) {
1487                                 NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1488                                 return;
1489                         }
1490                         do_bit_flips(ns, num);
1491                 }
1492                 return;
1493         }
1494
1495         mypage = NS_GET_PAGE(ns);
1496         if (mypage->byte == NULL) {
1497                 NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1498                 memset(ns->buf.byte, 0xFF, num);
1499         } else {
1500                 NS_DBG("read_page: page %d allocated, reading from %d\n",
1501                         ns->regs.row, ns->regs.column + ns->regs.off);
1502                 if (do_read_error(ns, num))
1503                         return;
1504                 memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1505                 do_bit_flips(ns, num);
1506         }
1507 }
1508
1509 /*
1510  * Erase all pages in the specified sector.
1511  */
1512 static void erase_sector(struct nandsim *ns)
1513 {
1514         union ns_mem *mypage;
1515         int i;
1516
1517         if (ns->cfile) {
1518                 for (i = 0; i < ns->geom.pgsec; i++)
1519                         if (__test_and_clear_bit(ns->regs.row + i,
1520                                                  ns->pages_written)) {
1521                                 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
1522                         }
1523                 return;
1524         }
1525
1526         mypage = NS_GET_PAGE(ns);
1527         for (i = 0; i < ns->geom.pgsec; i++) {
1528                 if (mypage->byte != NULL) {
1529                         NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1530                         kmem_cache_free(ns->nand_pages_slab, mypage->byte);
1531                         mypage->byte = NULL;
1532                 }
1533                 mypage++;
1534         }
1535 }
1536
1537 /*
1538  * Program the specified page with the contents from the NAND buffer.
1539  */
1540 static int prog_page(struct nandsim *ns, int num)
1541 {
1542         int i;
1543         union ns_mem *mypage;
1544         u_char *pg_off;
1545
1546         if (ns->cfile) {
1547                 loff_t off;
1548                 ssize_t tx;
1549                 int all;
1550
1551                 NS_DBG("prog_page: writing page %d\n", ns->regs.row);
1552                 pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
1553                 off = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
1554                 if (!test_bit(ns->regs.row, ns->pages_written)) {
1555                         all = 1;
1556                         memset(ns->file_buf, 0xff, ns->geom.pgszoob);
1557                 } else {
1558                         all = 0;
1559                         tx = read_file(ns, ns->cfile, pg_off, num, off);
1560                         if (tx != num) {
1561                                 NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1562                                 return -1;
1563                         }
1564                 }
1565                 for (i = 0; i < num; i++)
1566                         pg_off[i] &= ns->buf.byte[i];
1567                 if (all) {
1568                         loff_t pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
1569                         tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, pos);
1570                         if (tx != ns->geom.pgszoob) {
1571                                 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1572                                 return -1;
1573                         }
1574                         __set_bit(ns->regs.row, ns->pages_written);
1575                 } else {
1576                         tx = write_file(ns, ns->cfile, pg_off, num, off);
1577                         if (tx != num) {
1578                                 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1579                                 return -1;
1580                         }
1581                 }
1582                 return 0;
1583         }
1584
1585         mypage = NS_GET_PAGE(ns);
1586         if (mypage->byte == NULL) {
1587                 NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1588                 /*
1589                  * We allocate memory with GFP_NOFS because a flash FS may
1590                  * utilize this. If it is holding an FS lock, then gets here,
1591                  * then kernel memory alloc runs writeback which goes to the FS
1592                  * again and deadlocks. This was seen in practice.
1593                  */
1594                 mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
1595                 if (mypage->byte == NULL) {
1596                         NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1597                         return -1;
1598                 }
1599                 memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1600         }
1601
1602         pg_off = NS_PAGE_BYTE_OFF(ns);
1603         for (i = 0; i < num; i++)
1604                 pg_off[i] &= ns->buf.byte[i];
1605
1606         return 0;
1607 }
1608
1609 /*
1610  * If state has any action bit, perform this action.
1611  *
1612  * RETURNS: 0 if success, -1 if error.
1613  */
1614 static int do_state_action(struct nandsim *ns, uint32_t action)
1615 {
1616         int num;
1617         int busdiv = ns->busw == 8 ? 1 : 2;
1618         unsigned int erase_block_no, page_no;
1619
1620         action &= ACTION_MASK;
1621
1622         /* Check that page address input is correct */
1623         if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1624                 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1625                 return -1;
1626         }
1627
1628         switch (action) {
1629
1630         case ACTION_CPY:
1631                 /*
1632                  * Copy page data to the internal buffer.
1633                  */
1634
1635                 /* Column shouldn't be very large */
1636                 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1637                         NS_ERR("do_state_action: column number is too large\n");
1638                         break;
1639                 }
1640                 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1641                 read_page(ns, num);
1642
1643                 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1644                         num, NS_RAW_OFFSET(ns) + ns->regs.off);
1645
1646                 if (ns->regs.off == 0)
1647                         NS_LOG("read page %d\n", ns->regs.row);
1648                 else if (ns->regs.off < ns->geom.pgsz)
1649                         NS_LOG("read page %d (second half)\n", ns->regs.row);
1650                 else
1651                         NS_LOG("read OOB of page %d\n", ns->regs.row);
1652
1653                 NS_UDELAY(access_delay);
1654                 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1655
1656                 break;
1657
1658         case ACTION_SECERASE:
1659                 /*
1660                  * Erase sector.
1661                  */
1662
1663                 if (ns->lines.wp) {
1664                         NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1665                         return -1;
1666                 }
1667
1668                 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1669                         || (ns->regs.row & ~(ns->geom.secsz - 1))) {
1670                         NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1671                         return -1;
1672                 }
1673
1674                 ns->regs.row = (ns->regs.row <<
1675                                 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1676                 ns->regs.column = 0;
1677
1678                 erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1679
1680                 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1681                                 ns->regs.row, NS_RAW_OFFSET(ns));
1682                 NS_LOG("erase sector %u\n", erase_block_no);
1683
1684                 erase_sector(ns);
1685
1686                 NS_MDELAY(erase_delay);
1687
1688                 if (erase_block_wear)
1689                         update_wear(erase_block_no);
1690
1691                 if (erase_error(erase_block_no)) {
1692                         NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1693                         return -1;
1694                 }
1695
1696                 break;
1697
1698         case ACTION_PRGPAGE:
1699                 /*
1700                  * Program page - move internal buffer data to the page.
1701                  */
1702
1703                 if (ns->lines.wp) {
1704                         NS_WARN("do_state_action: device is write-protected, programm\n");
1705                         return -1;
1706                 }
1707
1708                 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1709                 if (num != ns->regs.count) {
1710                         NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1711                                         ns->regs.count, num);
1712                         return -1;
1713                 }
1714
1715                 if (prog_page(ns, num) == -1)
1716                         return -1;
1717
1718                 page_no = ns->regs.row;
1719
1720                 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1721                         num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1722                 NS_LOG("programm page %d\n", ns->regs.row);
1723
1724                 NS_UDELAY(programm_delay);
1725                 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1726
1727                 if (write_error(page_no)) {
1728                         NS_WARN("simulating write failure in page %u\n", page_no);
1729                         return -1;
1730                 }
1731
1732                 break;
1733
1734         case ACTION_ZEROOFF:
1735                 NS_DBG("do_state_action: set internal offset to 0\n");
1736                 ns->regs.off = 0;
1737                 break;
1738
1739         case ACTION_HALFOFF:
1740                 if (!(ns->options & OPT_PAGE512_8BIT)) {
1741                         NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1742                                 "byte page size 8x chips\n");
1743                         return -1;
1744                 }
1745                 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1746                 ns->regs.off = ns->geom.pgsz/2;
1747                 break;
1748
1749         case ACTION_OOBOFF:
1750                 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1751                 ns->regs.off = ns->geom.pgsz;
1752                 break;
1753
1754         default:
1755                 NS_DBG("do_state_action: BUG! unknown action\n");
1756         }
1757
1758         return 0;
1759 }
1760
1761 /*
1762  * Switch simulator's state.
1763  */
1764 static void switch_state(struct nandsim *ns)
1765 {
1766         if (ns->op) {
1767                 /*
1768                  * The current operation have already been identified.
1769                  * Just follow the states chain.
1770                  */
1771
1772                 ns->stateidx += 1;
1773                 ns->state = ns->nxstate;
1774                 ns->nxstate = ns->op[ns->stateidx + 1];
1775
1776                 NS_DBG("switch_state: operation is known, switch to the next state, "
1777                         "state: %s, nxstate: %s\n",
1778                         get_state_name(ns->state), get_state_name(ns->nxstate));
1779
1780                 /* See, whether we need to do some action */
1781                 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1782                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1783                         return;
1784                 }
1785
1786         } else {
1787                 /*
1788                  * We don't yet know which operation we perform.
1789                  * Try to identify it.
1790                  */
1791
1792                 /*
1793                  *  The only event causing the switch_state function to
1794                  *  be called with yet unknown operation is new command.
1795                  */
1796                 ns->state = get_state_by_command(ns->regs.command);
1797
1798                 NS_DBG("switch_state: operation is unknown, try to find it\n");
1799
1800                 if (find_operation(ns, 0) != 0)
1801                         return;
1802
1803                 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1804                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1805                         return;
1806                 }
1807         }
1808
1809         /* For 16x devices column means the page offset in words */
1810         if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1811                 NS_DBG("switch_state: double the column number for 16x device\n");
1812                 ns->regs.column <<= 1;
1813         }
1814
1815         if (NS_STATE(ns->nxstate) == STATE_READY) {
1816                 /*
1817                  * The current state is the last. Return to STATE_READY
1818                  */
1819
1820                 u_char status = NS_STATUS_OK(ns);
1821
1822                 /* In case of data states, see if all bytes were input/output */
1823                 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1824                         && ns->regs.count != ns->regs.num) {
1825                         NS_WARN("switch_state: not all bytes were processed, %d left\n",
1826                                         ns->regs.num - ns->regs.count);
1827                         status = NS_STATUS_FAILED(ns);
1828                 }
1829
1830                 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1831
1832                 switch_to_ready_state(ns, status);
1833
1834                 return;
1835         } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1836                 /*
1837                  * If the next state is data input/output, switch to it now
1838                  */
1839
1840                 ns->state      = ns->nxstate;
1841                 ns->nxstate    = ns->op[++ns->stateidx + 1];
1842                 ns->regs.num   = ns->regs.count = 0;
1843
1844                 NS_DBG("switch_state: the next state is data I/O, switch, "
1845                         "state: %s, nxstate: %s\n",
1846                         get_state_name(ns->state), get_state_name(ns->nxstate));
1847
1848                 /*
1849                  * Set the internal register to the count of bytes which
1850                  * are expected to be input or output
1851                  */
1852                 switch (NS_STATE(ns->state)) {
1853                         case STATE_DATAIN:
1854                         case STATE_DATAOUT:
1855                                 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1856                                 break;
1857
1858                         case STATE_DATAOUT_ID:
1859                                 ns->regs.num = ns->geom.idbytes;
1860                                 break;
1861
1862                         case STATE_DATAOUT_STATUS:
1863                                 ns->regs.count = ns->regs.num = 0;
1864                                 break;
1865
1866                         default:
1867                                 NS_ERR("switch_state: BUG! unknown data state\n");
1868                 }
1869
1870         } else if (ns->nxstate & STATE_ADDR_MASK) {
1871                 /*
1872                  * If the next state is address input, set the internal
1873                  * register to the number of expected address bytes
1874                  */
1875
1876                 ns->regs.count = 0;
1877
1878                 switch (NS_STATE(ns->nxstate)) {
1879                         case STATE_ADDR_PAGE:
1880                                 ns->regs.num = ns->geom.pgaddrbytes;
1881
1882                                 break;
1883                         case STATE_ADDR_SEC:
1884                                 ns->regs.num = ns->geom.secaddrbytes;
1885                                 break;
1886
1887                         case STATE_ADDR_ZERO:
1888                                 ns->regs.num = 1;
1889                                 break;
1890
1891                         case STATE_ADDR_COLUMN:
1892                                 /* Column address is always 2 bytes */
1893                                 ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1894                                 break;
1895
1896                         default:
1897                                 NS_ERR("switch_state: BUG! unknown address state\n");
1898                 }
1899         } else {
1900                 /*
1901                  * Just reset internal counters.
1902                  */
1903
1904                 ns->regs.num = 0;
1905                 ns->regs.count = 0;
1906         }
1907 }
1908
1909 static u_char ns_nand_read_byte(struct mtd_info *mtd)
1910 {
1911         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1912         u_char outb = 0x00;
1913
1914         /* Sanity and correctness checks */
1915         if (!ns->lines.ce) {
1916                 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1917                 return outb;
1918         }
1919         if (ns->lines.ale || ns->lines.cle) {
1920                 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1921                 return outb;
1922         }
1923         if (!(ns->state & STATE_DATAOUT_MASK)) {
1924                 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1925                         "return %#x\n", get_state_name(ns->state), (uint)outb);
1926                 return outb;
1927         }
1928
1929         /* Status register may be read as many times as it is wanted */
1930         if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1931                 NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1932                 return ns->regs.status;
1933         }
1934
1935         /* Check if there is any data in the internal buffer which may be read */
1936         if (ns->regs.count == ns->regs.num) {
1937                 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1938                 return outb;
1939         }
1940
1941         switch (NS_STATE(ns->state)) {
1942                 case STATE_DATAOUT:
1943                         if (ns->busw == 8) {
1944                                 outb = ns->buf.byte[ns->regs.count];
1945                                 ns->regs.count += 1;
1946                         } else {
1947                                 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1948                                 ns->regs.count += 2;
1949                         }
1950                         break;
1951                 case STATE_DATAOUT_ID:
1952                         NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1953                         outb = ns->ids[ns->regs.count];
1954                         ns->regs.count += 1;
1955                         break;
1956                 default:
1957                         BUG();
1958         }
1959
1960         if (ns->regs.count == ns->regs.num) {
1961                 NS_DBG("read_byte: all bytes were read\n");
1962
1963                 if (NS_STATE(ns->nxstate) == STATE_READY)
1964                         switch_state(ns);
1965         }
1966
1967         return outb;
1968 }
1969
1970 static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1971 {
1972         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1973
1974         /* Sanity and correctness checks */
1975         if (!ns->lines.ce) {
1976                 NS_ERR("write_byte: chip is disabled, ignore write\n");
1977                 return;
1978         }
1979         if (ns->lines.ale && ns->lines.cle) {
1980                 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1981                 return;
1982         }
1983
1984         if (ns->lines.cle == 1) {
1985                 /*
1986                  * The byte written is a command.
1987                  */
1988
1989                 if (byte == NAND_CMD_RESET) {
1990                         NS_LOG("reset chip\n");
1991                         switch_to_ready_state(ns, NS_STATUS_OK(ns));
1992                         return;
1993                 }
1994
1995                 /* Check that the command byte is correct */
1996                 if (check_command(byte)) {
1997                         NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1998                         return;
1999                 }
2000
2001                 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
2002                         || NS_STATE(ns->state) == STATE_DATAOUT) {
2003                         int row = ns->regs.row;
2004
2005                         switch_state(ns);
2006                         if (byte == NAND_CMD_RNDOUT)
2007                                 ns->regs.row = row;
2008                 }
2009
2010                 /* Check if chip is expecting command */
2011                 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
2012                         /* Do not warn if only 2 id bytes are read */
2013                         if (!(ns->regs.command == NAND_CMD_READID &&
2014                             NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
2015                                 /*
2016                                  * We are in situation when something else (not command)
2017                                  * was expected but command was input. In this case ignore
2018                                  * previous command(s)/state(s) and accept the last one.
2019                                  */
2020                                 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
2021                                         "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
2022                         }
2023                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2024                 }
2025
2026                 NS_DBG("command byte corresponding to %s state accepted\n",
2027                         get_state_name(get_state_by_command(byte)));
2028                 ns->regs.command = byte;
2029                 switch_state(ns);
2030
2031         } else if (ns->lines.ale == 1) {
2032                 /*
2033                  * The byte written is an address.
2034                  */
2035
2036                 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
2037
2038                         NS_DBG("write_byte: operation isn't known yet, identify it\n");
2039
2040                         if (find_operation(ns, 1) < 0)
2041                                 return;
2042
2043                         if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
2044                                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2045                                 return;
2046                         }
2047
2048                         ns->regs.count = 0;
2049                         switch (NS_STATE(ns->nxstate)) {
2050                                 case STATE_ADDR_PAGE:
2051                                         ns->regs.num = ns->geom.pgaddrbytes;
2052                                         break;
2053                                 case STATE_ADDR_SEC:
2054                                         ns->regs.num = ns->geom.secaddrbytes;
2055                                         break;
2056                                 case STATE_ADDR_ZERO:
2057                                         ns->regs.num = 1;
2058                                         break;
2059                                 default:
2060                                         BUG();
2061                         }
2062                 }
2063
2064                 /* Check that chip is expecting address */
2065                 if (!(ns->nxstate & STATE_ADDR_MASK)) {
2066                         NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2067                                 "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
2068                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2069                         return;
2070                 }
2071
2072                 /* Check if this is expected byte */
2073                 if (ns->regs.count == ns->regs.num) {
2074                         NS_ERR("write_byte: no more address bytes expected\n");
2075                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2076                         return;
2077                 }
2078
2079                 accept_addr_byte(ns, byte);
2080
2081                 ns->regs.count += 1;
2082
2083                 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2084                                 (uint)byte, ns->regs.count, ns->regs.num);
2085
2086                 if (ns->regs.count == ns->regs.num) {
2087                         NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
2088                         switch_state(ns);
2089                 }
2090
2091         } else {
2092                 /*
2093                  * The byte written is an input data.
2094                  */
2095
2096                 /* Check that chip is expecting data input */
2097                 if (!(ns->state & STATE_DATAIN_MASK)) {
2098                         NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2099                                 "switch to %s\n", (uint)byte,
2100                                 get_state_name(ns->state), get_state_name(STATE_READY));
2101                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2102                         return;
2103                 }
2104
2105                 /* Check if this is expected byte */
2106                 if (ns->regs.count == ns->regs.num) {
2107                         NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2108                                         ns->regs.num);
2109                         return;
2110                 }
2111
2112                 if (ns->busw == 8) {
2113                         ns->buf.byte[ns->regs.count] = byte;
2114                         ns->regs.count += 1;
2115                 } else {
2116                         ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
2117                         ns->regs.count += 2;
2118                 }
2119         }
2120
2121         return;
2122 }
2123
2124 static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
2125 {
2126         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2127
2128         ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
2129         ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
2130         ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
2131
2132         if (cmd != NAND_CMD_NONE)
2133                 ns_nand_write_byte(mtd, cmd);
2134 }
2135
2136 static int ns_device_ready(struct mtd_info *mtd)
2137 {
2138         NS_DBG("device_ready\n");
2139         return 1;
2140 }
2141
2142 static uint16_t ns_nand_read_word(struct mtd_info *mtd)
2143 {
2144         struct nand_chip *chip = (struct nand_chip *)mtd->priv;
2145
2146         NS_DBG("read_word\n");
2147
2148         return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
2149 }
2150
2151 static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
2152 {
2153         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2154
2155         /* Check that chip is expecting data input */
2156         if (!(ns->state & STATE_DATAIN_MASK)) {
2157                 NS_ERR("write_buf: data input isn't expected, state is %s, "
2158                         "switch to STATE_READY\n", get_state_name(ns->state));
2159                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2160                 return;
2161         }
2162
2163         /* Check if these are expected bytes */
2164         if (ns->regs.count + len > ns->regs.num) {
2165                 NS_ERR("write_buf: too many input bytes\n");
2166                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2167                 return;
2168         }
2169
2170         memcpy(ns->buf.byte + ns->regs.count, buf, len);
2171         ns->regs.count += len;
2172
2173         if (ns->regs.count == ns->regs.num) {
2174                 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
2175         }
2176 }
2177
2178 static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
2179 {
2180         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2181
2182         /* Sanity and correctness checks */
2183         if (!ns->lines.ce) {
2184                 NS_ERR("read_buf: chip is disabled\n");
2185                 return;
2186         }
2187         if (ns->lines.ale || ns->lines.cle) {
2188                 NS_ERR("read_buf: ALE or CLE pin is high\n");
2189                 return;
2190         }
2191         if (!(ns->state & STATE_DATAOUT_MASK)) {
2192                 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2193                         get_state_name(ns->state));
2194                 return;
2195         }
2196
2197         if (NS_STATE(ns->state) != STATE_DATAOUT) {
2198                 int i;
2199
2200                 for (i = 0; i < len; i++)
2201                         buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
2202
2203                 return;
2204         }
2205
2206         /* Check if these are expected bytes */
2207         if (ns->regs.count + len > ns->regs.num) {
2208                 NS_ERR("read_buf: too many bytes to read\n");
2209                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2210                 return;
2211         }
2212
2213         memcpy(buf, ns->buf.byte + ns->regs.count, len);
2214         ns->regs.count += len;
2215
2216         if (ns->regs.count == ns->regs.num) {
2217                 if (NS_STATE(ns->nxstate) == STATE_READY)
2218                         switch_state(ns);
2219         }
2220
2221         return;
2222 }
2223
2224 /*
2225  * Module initialization function
2226  */
2227 static int __init ns_init_module(void)
2228 {
2229         struct nand_chip *chip;
2230         struct nandsim *nand;
2231         int retval = -ENOMEM, i;
2232
2233         if (bus_width != 8 && bus_width != 16) {
2234                 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
2235                 return -EINVAL;
2236         }
2237
2238         /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
2239         nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
2240                                 + sizeof(struct nandsim), GFP_KERNEL);
2241         if (!nsmtd) {
2242                 NS_ERR("unable to allocate core structures.\n");
2243                 return -ENOMEM;
2244         }
2245         chip        = (struct nand_chip *)(nsmtd + 1);
2246         nsmtd->priv = (void *)chip;
2247         nand        = (struct nandsim *)(chip + 1);
2248         chip->priv  = (void *)nand;
2249
2250         /*
2251          * Register simulator's callbacks.
2252          */
2253         chip->cmd_ctrl   = ns_hwcontrol;
2254         chip->read_byte  = ns_nand_read_byte;
2255         chip->dev_ready  = ns_device_ready;
2256         chip->write_buf  = ns_nand_write_buf;
2257         chip->read_buf   = ns_nand_read_buf;
2258         chip->read_word  = ns_nand_read_word;
2259         chip->ecc.mode   = NAND_ECC_SOFT;
2260         /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2261         /* and 'badblocks' parameters to work */
2262         chip->options   |= NAND_SKIP_BBTSCAN;
2263
2264         switch (bbt) {
2265         case 2:
2266                  chip->bbt_options |= NAND_BBT_NO_OOB;
2267         case 1:
2268                  chip->bbt_options |= NAND_BBT_USE_FLASH;
2269         case 0:
2270                 break;
2271         default:
2272                 NS_ERR("bbt has to be 0..2\n");
2273                 retval = -EINVAL;
2274                 goto error;
2275         }
2276         /*
2277          * Perform minimum nandsim structure initialization to handle
2278          * the initial ID read command correctly
2279          */
2280         if (id_bytes[6] != 0xFF || id_bytes[7] != 0xFF)
2281                 nand->geom.idbytes = 8;
2282         else if (id_bytes[4] != 0xFF || id_bytes[5] != 0xFF)
2283                 nand->geom.idbytes = 6;
2284         else if (id_bytes[2] != 0xFF || id_bytes[3] != 0xFF)
2285                 nand->geom.idbytes = 4;
2286         else
2287                 nand->geom.idbytes = 2;
2288         nand->regs.status = NS_STATUS_OK(nand);
2289         nand->nxstate = STATE_UNKNOWN;
2290         nand->options |= OPT_PAGE512; /* temporary value */
2291         memcpy(nand->ids, id_bytes, sizeof(nand->ids));
2292         if (bus_width == 16) {
2293                 nand->busw = 16;
2294                 chip->options |= NAND_BUSWIDTH_16;
2295         }
2296
2297         nsmtd->owner = THIS_MODULE;
2298
2299         if ((retval = parse_weakblocks()) != 0)
2300                 goto error;
2301
2302         if ((retval = parse_weakpages()) != 0)
2303                 goto error;
2304
2305         if ((retval = parse_gravepages()) != 0)
2306                 goto error;
2307
2308         retval = nand_scan_ident(nsmtd, 1, NULL);
2309         if (retval) {
2310                 NS_ERR("cannot scan NAND Simulator device\n");
2311                 if (retval > 0)
2312                         retval = -ENXIO;
2313                 goto error;
2314         }
2315
2316         if (bch) {
2317                 unsigned int eccsteps, eccbytes;
2318                 if (!mtd_nand_has_bch()) {
2319                         NS_ERR("BCH ECC support is disabled\n");
2320                         retval = -EINVAL;
2321                         goto error;
2322                 }
2323                 /* use 512-byte ecc blocks */
2324                 eccsteps = nsmtd->writesize/512;
2325                 eccbytes = (bch*13+7)/8;
2326                 /* do not bother supporting small page devices */
2327                 if ((nsmtd->oobsize < 64) || !eccsteps) {
2328                         NS_ERR("bch not available on small page devices\n");
2329                         retval = -EINVAL;
2330                         goto error;
2331                 }
2332                 if ((eccbytes*eccsteps+2) > nsmtd->oobsize) {
2333                         NS_ERR("invalid bch value %u\n", bch);
2334                         retval = -EINVAL;
2335                         goto error;
2336                 }
2337                 chip->ecc.mode = NAND_ECC_SOFT_BCH;
2338                 chip->ecc.size = 512;
2339                 chip->ecc.strength = bch;
2340                 chip->ecc.bytes = eccbytes;
2341                 NS_INFO("using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size);
2342         }
2343
2344         retval = nand_scan_tail(nsmtd);
2345         if (retval) {
2346                 NS_ERR("can't register NAND Simulator\n");
2347                 if (retval > 0)
2348                         retval = -ENXIO;
2349                 goto error;
2350         }
2351
2352         if (overridesize) {
2353                 uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
2354                 if (new_size >> overridesize != nsmtd->erasesize) {
2355                         NS_ERR("overridesize is too big\n");
2356                         retval = -EINVAL;
2357                         goto err_exit;
2358                 }
2359                 /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2360                 nsmtd->size = new_size;
2361                 chip->chipsize = new_size;
2362                 chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2363                 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2364         }
2365
2366         if ((retval = setup_wear_reporting(nsmtd)) != 0)
2367                 goto err_exit;
2368
2369         if ((retval = nandsim_debugfs_create(nand)) != 0)
2370                 goto err_exit;
2371
2372         if ((retval = init_nandsim(nsmtd)) != 0)
2373                 goto err_exit;
2374
2375         if ((retval = chip->scan_bbt(nsmtd)) != 0)
2376                 goto err_exit;
2377
2378         if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2379                 goto err_exit;
2380
2381         /* Register NAND partitions */
2382         retval = mtd_device_register(nsmtd, &nand->partitions[0],
2383                                      nand->nbparts);
2384         if (retval != 0)
2385                 goto err_exit;
2386
2387         return 0;
2388
2389 err_exit:
2390         free_nandsim(nand);
2391         nand_release(nsmtd);
2392         for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2393                 kfree(nand->partitions[i].name);
2394 error:
2395         kfree(nsmtd);
2396         free_lists();
2397
2398         return retval;
2399 }
2400
2401 module_init(ns_init_module);
2402
2403 /*
2404  * Module clean-up function
2405  */
2406 static void __exit ns_cleanup_module(void)
2407 {
2408         struct nandsim *ns = ((struct nand_chip *)nsmtd->priv)->priv;
2409         int i;
2410
2411         nandsim_debugfs_remove(ns);
2412         free_nandsim(ns);    /* Free nandsim private resources */
2413         nand_release(nsmtd); /* Unregister driver */
2414         for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2415                 kfree(ns->partitions[i].name);
2416         kfree(nsmtd);        /* Free other structures */
2417         free_lists();
2418 }
2419
2420 module_exit(ns_cleanup_module);
2421
2422 MODULE_LICENSE ("GPL");
2423 MODULE_AUTHOR ("Artem B. Bityuckiy");
2424 MODULE_DESCRIPTION ("The NAND flash simulator");