Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / mtd / nand / mxc_nand.c
1 /*
2  * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3  * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
17  * MA 02110-1301, USA.
18  */
19
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/nand.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30 #include <linux/clk.h>
31 #include <linux/err.h>
32 #include <linux/io.h>
33 #include <linux/irq.h>
34 #include <linux/completion.h>
35 #include <linux/of.h>
36 #include <linux/of_device.h>
37 #include <linux/of_mtd.h>
38
39 #include <asm/mach/flash.h>
40 #include <linux/platform_data/mtd-mxc_nand.h>
41
42 #define DRIVER_NAME "mxc_nand"
43
44 /* Addresses for NFC registers */
45 #define NFC_V1_V2_BUF_SIZE              (host->regs + 0x00)
46 #define NFC_V1_V2_BUF_ADDR              (host->regs + 0x04)
47 #define NFC_V1_V2_FLASH_ADDR            (host->regs + 0x06)
48 #define NFC_V1_V2_FLASH_CMD             (host->regs + 0x08)
49 #define NFC_V1_V2_CONFIG                (host->regs + 0x0a)
50 #define NFC_V1_V2_ECC_STATUS_RESULT     (host->regs + 0x0c)
51 #define NFC_V1_V2_RSLTMAIN_AREA         (host->regs + 0x0e)
52 #define NFC_V1_V2_RSLTSPARE_AREA        (host->regs + 0x10)
53 #define NFC_V1_V2_WRPROT                (host->regs + 0x12)
54 #define NFC_V1_UNLOCKSTART_BLKADDR      (host->regs + 0x14)
55 #define NFC_V1_UNLOCKEND_BLKADDR        (host->regs + 0x16)
56 #define NFC_V21_UNLOCKSTART_BLKADDR0    (host->regs + 0x20)
57 #define NFC_V21_UNLOCKSTART_BLKADDR1    (host->regs + 0x24)
58 #define NFC_V21_UNLOCKSTART_BLKADDR2    (host->regs + 0x28)
59 #define NFC_V21_UNLOCKSTART_BLKADDR3    (host->regs + 0x2c)
60 #define NFC_V21_UNLOCKEND_BLKADDR0      (host->regs + 0x22)
61 #define NFC_V21_UNLOCKEND_BLKADDR1      (host->regs + 0x26)
62 #define NFC_V21_UNLOCKEND_BLKADDR2      (host->regs + 0x2a)
63 #define NFC_V21_UNLOCKEND_BLKADDR3      (host->regs + 0x2e)
64 #define NFC_V1_V2_NF_WRPRST             (host->regs + 0x18)
65 #define NFC_V1_V2_CONFIG1               (host->regs + 0x1a)
66 #define NFC_V1_V2_CONFIG2               (host->regs + 0x1c)
67
68 #define NFC_V2_CONFIG1_ECC_MODE_4       (1 << 0)
69 #define NFC_V1_V2_CONFIG1_SP_EN         (1 << 2)
70 #define NFC_V1_V2_CONFIG1_ECC_EN        (1 << 3)
71 #define NFC_V1_V2_CONFIG1_INT_MSK       (1 << 4)
72 #define NFC_V1_V2_CONFIG1_BIG           (1 << 5)
73 #define NFC_V1_V2_CONFIG1_RST           (1 << 6)
74 #define NFC_V1_V2_CONFIG1_CE            (1 << 7)
75 #define NFC_V2_CONFIG1_ONE_CYCLE        (1 << 8)
76 #define NFC_V2_CONFIG1_PPB(x)           (((x) & 0x3) << 9)
77 #define NFC_V2_CONFIG1_FP_INT           (1 << 11)
78
79 #define NFC_V1_V2_CONFIG2_INT           (1 << 15)
80
81 /*
82  * Operation modes for the NFC. Valid for v1, v2 and v3
83  * type controllers.
84  */
85 #define NFC_CMD                         (1 << 0)
86 #define NFC_ADDR                        (1 << 1)
87 #define NFC_INPUT                       (1 << 2)
88 #define NFC_OUTPUT                      (1 << 3)
89 #define NFC_ID                          (1 << 4)
90 #define NFC_STATUS                      (1 << 5)
91
92 #define NFC_V3_FLASH_CMD                (host->regs_axi + 0x00)
93 #define NFC_V3_FLASH_ADDR0              (host->regs_axi + 0x04)
94
95 #define NFC_V3_CONFIG1                  (host->regs_axi + 0x34)
96 #define NFC_V3_CONFIG1_SP_EN            (1 << 0)
97 #define NFC_V3_CONFIG1_RBA(x)           (((x) & 0x7 ) << 4)
98
99 #define NFC_V3_ECC_STATUS_RESULT        (host->regs_axi + 0x38)
100
101 #define NFC_V3_LAUNCH                   (host->regs_axi + 0x40)
102
103 #define NFC_V3_WRPROT                   (host->regs_ip + 0x0)
104 #define NFC_V3_WRPROT_LOCK_TIGHT        (1 << 0)
105 #define NFC_V3_WRPROT_LOCK              (1 << 1)
106 #define NFC_V3_WRPROT_UNLOCK            (1 << 2)
107 #define NFC_V3_WRPROT_BLS_UNLOCK        (2 << 6)
108
109 #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0   (host->regs_ip + 0x04)
110
111 #define NFC_V3_CONFIG2                  (host->regs_ip + 0x24)
112 #define NFC_V3_CONFIG2_PS_512                   (0 << 0)
113 #define NFC_V3_CONFIG2_PS_2048                  (1 << 0)
114 #define NFC_V3_CONFIG2_PS_4096                  (2 << 0)
115 #define NFC_V3_CONFIG2_ONE_CYCLE                (1 << 2)
116 #define NFC_V3_CONFIG2_ECC_EN                   (1 << 3)
117 #define NFC_V3_CONFIG2_2CMD_PHASES              (1 << 4)
118 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0          (1 << 5)
119 #define NFC_V3_CONFIG2_ECC_MODE_8               (1 << 6)
120 #define NFC_V3_CONFIG2_PPB(x, shift)            (((x) & 0x3) << shift)
121 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x)       (((x) & 0x3) << 12)
122 #define NFC_V3_CONFIG2_INT_MSK                  (1 << 15)
123 #define NFC_V3_CONFIG2_ST_CMD(x)                (((x) & 0xff) << 24)
124 #define NFC_V3_CONFIG2_SPAS(x)                  (((x) & 0xff) << 16)
125
126 #define NFC_V3_CONFIG3                          (host->regs_ip + 0x28)
127 #define NFC_V3_CONFIG3_ADD_OP(x)                (((x) & 0x3) << 0)
128 #define NFC_V3_CONFIG3_FW8                      (1 << 3)
129 #define NFC_V3_CONFIG3_SBB(x)                   (((x) & 0x7) << 8)
130 #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x)        (((x) & 0x7) << 12)
131 #define NFC_V3_CONFIG3_RBB_MODE                 (1 << 15)
132 #define NFC_V3_CONFIG3_NO_SDMA                  (1 << 20)
133
134 #define NFC_V3_IPC                      (host->regs_ip + 0x2C)
135 #define NFC_V3_IPC_CREQ                 (1 << 0)
136 #define NFC_V3_IPC_INT                  (1 << 31)
137
138 #define NFC_V3_DELAY_LINE               (host->regs_ip + 0x34)
139
140 struct mxc_nand_host;
141
142 struct mxc_nand_devtype_data {
143         void (*preset)(struct mtd_info *);
144         void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
145         void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
146         void (*send_page)(struct mtd_info *, unsigned int);
147         void (*send_read_id)(struct mxc_nand_host *);
148         uint16_t (*get_dev_status)(struct mxc_nand_host *);
149         int (*check_int)(struct mxc_nand_host *);
150         void (*irq_control)(struct mxc_nand_host *, int);
151         u32 (*get_ecc_status)(struct mxc_nand_host *);
152         struct nand_ecclayout *ecclayout_512, *ecclayout_2k, *ecclayout_4k;
153         void (*select_chip)(struct mtd_info *mtd, int chip);
154         int (*correct_data)(struct mtd_info *mtd, u_char *dat,
155                         u_char *read_ecc, u_char *calc_ecc);
156
157         /*
158          * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
159          * (CONFIG1:INT_MSK is set). To handle this the driver uses
160          * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
161          */
162         int irqpending_quirk;
163         int needs_ip;
164
165         size_t regs_offset;
166         size_t spare0_offset;
167         size_t axi_offset;
168
169         int spare_len;
170         int eccbytes;
171         int eccsize;
172         int ppb_shift;
173 };
174
175 struct mxc_nand_host {
176         struct mtd_info         mtd;
177         struct nand_chip        nand;
178         struct device           *dev;
179
180         void __iomem            *spare0;
181         void __iomem            *main_area0;
182
183         void __iomem            *base;
184         void __iomem            *regs;
185         void __iomem            *regs_axi;
186         void __iomem            *regs_ip;
187         int                     status_request;
188         struct clk              *clk;
189         int                     clk_act;
190         int                     irq;
191         int                     eccsize;
192         int                     active_cs;
193
194         struct completion       op_completion;
195
196         uint8_t                 *data_buf;
197         unsigned int            buf_start;
198
199         const struct mxc_nand_devtype_data *devtype_data;
200         struct mxc_nand_platform_data pdata;
201 };
202
203 /* OOB placement block for use with hardware ecc generation */
204 static struct nand_ecclayout nandv1_hw_eccoob_smallpage = {
205         .eccbytes = 5,
206         .eccpos = {6, 7, 8, 9, 10},
207         .oobfree = {{0, 5}, {12, 4}, }
208 };
209
210 static struct nand_ecclayout nandv1_hw_eccoob_largepage = {
211         .eccbytes = 20,
212         .eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
213                    38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
214         .oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
215 };
216
217 /* OOB description for 512 byte pages with 16 byte OOB */
218 static struct nand_ecclayout nandv2_hw_eccoob_smallpage = {
219         .eccbytes = 1 * 9,
220         .eccpos = {
221                  7,  8,  9, 10, 11, 12, 13, 14, 15
222         },
223         .oobfree = {
224                 {.offset = 0, .length = 5}
225         }
226 };
227
228 /* OOB description for 2048 byte pages with 64 byte OOB */
229 static struct nand_ecclayout nandv2_hw_eccoob_largepage = {
230         .eccbytes = 4 * 9,
231         .eccpos = {
232                  7,  8,  9, 10, 11, 12, 13, 14, 15,
233                 23, 24, 25, 26, 27, 28, 29, 30, 31,
234                 39, 40, 41, 42, 43, 44, 45, 46, 47,
235                 55, 56, 57, 58, 59, 60, 61, 62, 63
236         },
237         .oobfree = {
238                 {.offset = 2, .length = 4},
239                 {.offset = 16, .length = 7},
240                 {.offset = 32, .length = 7},
241                 {.offset = 48, .length = 7}
242         }
243 };
244
245 /* OOB description for 4096 byte pages with 128 byte OOB */
246 static struct nand_ecclayout nandv2_hw_eccoob_4k = {
247         .eccbytes = 8 * 9,
248         .eccpos = {
249                 7,  8,  9, 10, 11, 12, 13, 14, 15,
250                 23, 24, 25, 26, 27, 28, 29, 30, 31,
251                 39, 40, 41, 42, 43, 44, 45, 46, 47,
252                 55, 56, 57, 58, 59, 60, 61, 62, 63,
253                 71, 72, 73, 74, 75, 76, 77, 78, 79,
254                 87, 88, 89, 90, 91, 92, 93, 94, 95,
255                 103, 104, 105, 106, 107, 108, 109, 110, 111,
256                 119, 120, 121, 122, 123, 124, 125, 126, 127,
257         },
258         .oobfree = {
259                 {.offset = 2, .length = 4},
260                 {.offset = 16, .length = 7},
261                 {.offset = 32, .length = 7},
262                 {.offset = 48, .length = 7},
263                 {.offset = 64, .length = 7},
264                 {.offset = 80, .length = 7},
265                 {.offset = 96, .length = 7},
266                 {.offset = 112, .length = 7},
267         }
268 };
269
270 static const char * const part_probes[] = {
271         "cmdlinepart", "RedBoot", "ofpart", NULL };
272
273 static void memcpy32_fromio(void *trg, const void __iomem  *src, size_t size)
274 {
275         int i;
276         u32 *t = trg;
277         const __iomem u32 *s = src;
278
279         for (i = 0; i < (size >> 2); i++)
280                 *t++ = __raw_readl(s++);
281 }
282
283 static inline void memcpy32_toio(void __iomem *trg, const void *src, int size)
284 {
285         /* __iowrite32_copy use 32bit size values so divide by 4 */
286         __iowrite32_copy(trg, src, size / 4);
287 }
288
289 static int check_int_v3(struct mxc_nand_host *host)
290 {
291         uint32_t tmp;
292
293         tmp = readl(NFC_V3_IPC);
294         if (!(tmp & NFC_V3_IPC_INT))
295                 return 0;
296
297         tmp &= ~NFC_V3_IPC_INT;
298         writel(tmp, NFC_V3_IPC);
299
300         return 1;
301 }
302
303 static int check_int_v1_v2(struct mxc_nand_host *host)
304 {
305         uint32_t tmp;
306
307         tmp = readw(NFC_V1_V2_CONFIG2);
308         if (!(tmp & NFC_V1_V2_CONFIG2_INT))
309                 return 0;
310
311         if (!host->devtype_data->irqpending_quirk)
312                 writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
313
314         return 1;
315 }
316
317 static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
318 {
319         uint16_t tmp;
320
321         tmp = readw(NFC_V1_V2_CONFIG1);
322
323         if (activate)
324                 tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
325         else
326                 tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
327
328         writew(tmp, NFC_V1_V2_CONFIG1);
329 }
330
331 static void irq_control_v3(struct mxc_nand_host *host, int activate)
332 {
333         uint32_t tmp;
334
335         tmp = readl(NFC_V3_CONFIG2);
336
337         if (activate)
338                 tmp &= ~NFC_V3_CONFIG2_INT_MSK;
339         else
340                 tmp |= NFC_V3_CONFIG2_INT_MSK;
341
342         writel(tmp, NFC_V3_CONFIG2);
343 }
344
345 static void irq_control(struct mxc_nand_host *host, int activate)
346 {
347         if (host->devtype_data->irqpending_quirk) {
348                 if (activate)
349                         enable_irq(host->irq);
350                 else
351                         disable_irq_nosync(host->irq);
352         } else {
353                 host->devtype_data->irq_control(host, activate);
354         }
355 }
356
357 static u32 get_ecc_status_v1(struct mxc_nand_host *host)
358 {
359         return readw(NFC_V1_V2_ECC_STATUS_RESULT);
360 }
361
362 static u32 get_ecc_status_v2(struct mxc_nand_host *host)
363 {
364         return readl(NFC_V1_V2_ECC_STATUS_RESULT);
365 }
366
367 static u32 get_ecc_status_v3(struct mxc_nand_host *host)
368 {
369         return readl(NFC_V3_ECC_STATUS_RESULT);
370 }
371
372 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
373 {
374         struct mxc_nand_host *host = dev_id;
375
376         if (!host->devtype_data->check_int(host))
377                 return IRQ_NONE;
378
379         irq_control(host, 0);
380
381         complete(&host->op_completion);
382
383         return IRQ_HANDLED;
384 }
385
386 /* This function polls the NANDFC to wait for the basic operation to
387  * complete by checking the INT bit of config2 register.
388  */
389 static int wait_op_done(struct mxc_nand_host *host, int useirq)
390 {
391         int ret = 0;
392
393         /*
394          * If operation is already complete, don't bother to setup an irq or a
395          * loop.
396          */
397         if (host->devtype_data->check_int(host))
398                 return 0;
399
400         if (useirq) {
401                 unsigned long timeout;
402
403                 reinit_completion(&host->op_completion);
404
405                 irq_control(host, 1);
406
407                 timeout = wait_for_completion_timeout(&host->op_completion, HZ);
408                 if (!timeout && !host->devtype_data->check_int(host)) {
409                         dev_dbg(host->dev, "timeout waiting for irq\n");
410                         ret = -ETIMEDOUT;
411                 }
412         } else {
413                 int max_retries = 8000;
414                 int done;
415
416                 do {
417                         udelay(1);
418
419                         done = host->devtype_data->check_int(host);
420                         if (done)
421                                 break;
422
423                 } while (--max_retries);
424
425                 if (!done) {
426                         dev_dbg(host->dev, "timeout polling for completion\n");
427                         ret = -ETIMEDOUT;
428                 }
429         }
430
431         WARN_ONCE(ret < 0, "timeout! useirq=%d\n", useirq);
432
433         return ret;
434 }
435
436 static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
437 {
438         /* fill command */
439         writel(cmd, NFC_V3_FLASH_CMD);
440
441         /* send out command */
442         writel(NFC_CMD, NFC_V3_LAUNCH);
443
444         /* Wait for operation to complete */
445         wait_op_done(host, useirq);
446 }
447
448 /* This function issues the specified command to the NAND device and
449  * waits for completion. */
450 static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
451 {
452         pr_debug("send_cmd(host, 0x%x, %d)\n", cmd, useirq);
453
454         writew(cmd, NFC_V1_V2_FLASH_CMD);
455         writew(NFC_CMD, NFC_V1_V2_CONFIG2);
456
457         if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
458                 int max_retries = 100;
459                 /* Reset completion is indicated by NFC_CONFIG2 */
460                 /* being set to 0 */
461                 while (max_retries-- > 0) {
462                         if (readw(NFC_V1_V2_CONFIG2) == 0) {
463                                 break;
464                         }
465                         udelay(1);
466                 }
467                 if (max_retries < 0)
468                         pr_debug("%s: RESET failed\n", __func__);
469         } else {
470                 /* Wait for operation to complete */
471                 wait_op_done(host, useirq);
472         }
473 }
474
475 static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
476 {
477         /* fill address */
478         writel(addr, NFC_V3_FLASH_ADDR0);
479
480         /* send out address */
481         writel(NFC_ADDR, NFC_V3_LAUNCH);
482
483         wait_op_done(host, 0);
484 }
485
486 /* This function sends an address (or partial address) to the
487  * NAND device. The address is used to select the source/destination for
488  * a NAND command. */
489 static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
490 {
491         pr_debug("send_addr(host, 0x%x %d)\n", addr, islast);
492
493         writew(addr, NFC_V1_V2_FLASH_ADDR);
494         writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
495
496         /* Wait for operation to complete */
497         wait_op_done(host, islast);
498 }
499
500 static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
501 {
502         struct nand_chip *nand_chip = mtd->priv;
503         struct mxc_nand_host *host = nand_chip->priv;
504         uint32_t tmp;
505
506         tmp = readl(NFC_V3_CONFIG1);
507         tmp &= ~(7 << 4);
508         writel(tmp, NFC_V3_CONFIG1);
509
510         /* transfer data from NFC ram to nand */
511         writel(ops, NFC_V3_LAUNCH);
512
513         wait_op_done(host, false);
514 }
515
516 static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
517 {
518         struct nand_chip *nand_chip = mtd->priv;
519         struct mxc_nand_host *host = nand_chip->priv;
520
521         /* NANDFC buffer 0 is used for page read/write */
522         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
523
524         writew(ops, NFC_V1_V2_CONFIG2);
525
526         /* Wait for operation to complete */
527         wait_op_done(host, true);
528 }
529
530 static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
531 {
532         struct nand_chip *nand_chip = mtd->priv;
533         struct mxc_nand_host *host = nand_chip->priv;
534         int bufs, i;
535
536         if (mtd->writesize > 512)
537                 bufs = 4;
538         else
539                 bufs = 1;
540
541         for (i = 0; i < bufs; i++) {
542
543                 /* NANDFC buffer 0 is used for page read/write */
544                 writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
545
546                 writew(ops, NFC_V1_V2_CONFIG2);
547
548                 /* Wait for operation to complete */
549                 wait_op_done(host, true);
550         }
551 }
552
553 static void send_read_id_v3(struct mxc_nand_host *host)
554 {
555         /* Read ID into main buffer */
556         writel(NFC_ID, NFC_V3_LAUNCH);
557
558         wait_op_done(host, true);
559
560         memcpy32_fromio(host->data_buf, host->main_area0, 16);
561 }
562
563 /* Request the NANDFC to perform a read of the NAND device ID. */
564 static void send_read_id_v1_v2(struct mxc_nand_host *host)
565 {
566         /* NANDFC buffer 0 is used for device ID output */
567         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
568
569         writew(NFC_ID, NFC_V1_V2_CONFIG2);
570
571         /* Wait for operation to complete */
572         wait_op_done(host, true);
573
574         memcpy32_fromio(host->data_buf, host->main_area0, 16);
575 }
576
577 static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
578 {
579         writew(NFC_STATUS, NFC_V3_LAUNCH);
580         wait_op_done(host, true);
581
582         return readl(NFC_V3_CONFIG1) >> 16;
583 }
584
585 /* This function requests the NANDFC to perform a read of the
586  * NAND device status and returns the current status. */
587 static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
588 {
589         void __iomem *main_buf = host->main_area0;
590         uint32_t store;
591         uint16_t ret;
592
593         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
594
595         /*
596          * The device status is stored in main_area0. To
597          * prevent corruption of the buffer save the value
598          * and restore it afterwards.
599          */
600         store = readl(main_buf);
601
602         writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
603         wait_op_done(host, true);
604
605         ret = readw(main_buf);
606
607         writel(store, main_buf);
608
609         return ret;
610 }
611
612 /* This functions is used by upper layer to checks if device is ready */
613 static int mxc_nand_dev_ready(struct mtd_info *mtd)
614 {
615         /*
616          * NFC handles R/B internally. Therefore, this function
617          * always returns status as ready.
618          */
619         return 1;
620 }
621
622 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
623 {
624         /*
625          * If HW ECC is enabled, we turn it on during init. There is
626          * no need to enable again here.
627          */
628 }
629
630 static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
631                                  u_char *read_ecc, u_char *calc_ecc)
632 {
633         struct nand_chip *nand_chip = mtd->priv;
634         struct mxc_nand_host *host = nand_chip->priv;
635
636         /*
637          * 1-Bit errors are automatically corrected in HW.  No need for
638          * additional correction.  2-Bit errors cannot be corrected by
639          * HW ECC, so we need to return failure
640          */
641         uint16_t ecc_status = get_ecc_status_v1(host);
642
643         if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
644                 pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
645                 return -1;
646         }
647
648         return 0;
649 }
650
651 static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
652                                  u_char *read_ecc, u_char *calc_ecc)
653 {
654         struct nand_chip *nand_chip = mtd->priv;
655         struct mxc_nand_host *host = nand_chip->priv;
656         u32 ecc_stat, err;
657         int no_subpages = 1;
658         int ret = 0;
659         u8 ecc_bit_mask, err_limit;
660
661         ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
662         err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
663
664         no_subpages = mtd->writesize >> 9;
665
666         ecc_stat = host->devtype_data->get_ecc_status(host);
667
668         do {
669                 err = ecc_stat & ecc_bit_mask;
670                 if (err > err_limit) {
671                         printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
672                         return -1;
673                 } else {
674                         ret += err;
675                 }
676                 ecc_stat >>= 4;
677         } while (--no_subpages);
678
679         pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
680
681         return ret;
682 }
683
684 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
685                                   u_char *ecc_code)
686 {
687         return 0;
688 }
689
690 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
691 {
692         struct nand_chip *nand_chip = mtd->priv;
693         struct mxc_nand_host *host = nand_chip->priv;
694         uint8_t ret;
695
696         /* Check for status request */
697         if (host->status_request)
698                 return host->devtype_data->get_dev_status(host) & 0xFF;
699
700         if (nand_chip->options & NAND_BUSWIDTH_16) {
701                 /* only take the lower byte of each word */
702                 ret = *(uint16_t *)(host->data_buf + host->buf_start);
703
704                 host->buf_start += 2;
705         } else {
706                 ret = *(uint8_t *)(host->data_buf + host->buf_start);
707                 host->buf_start++;
708         }
709
710         pr_debug("%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start);
711         return ret;
712 }
713
714 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
715 {
716         struct nand_chip *nand_chip = mtd->priv;
717         struct mxc_nand_host *host = nand_chip->priv;
718         uint16_t ret;
719
720         ret = *(uint16_t *)(host->data_buf + host->buf_start);
721         host->buf_start += 2;
722
723         return ret;
724 }
725
726 /* Write data of length len to buffer buf. The data to be
727  * written on NAND Flash is first copied to RAMbuffer. After the Data Input
728  * Operation by the NFC, the data is written to NAND Flash */
729 static void mxc_nand_write_buf(struct mtd_info *mtd,
730                                 const u_char *buf, int len)
731 {
732         struct nand_chip *nand_chip = mtd->priv;
733         struct mxc_nand_host *host = nand_chip->priv;
734         u16 col = host->buf_start;
735         int n = mtd->oobsize + mtd->writesize - col;
736
737         n = min(n, len);
738
739         memcpy(host->data_buf + col, buf, n);
740
741         host->buf_start += n;
742 }
743
744 /* Read the data buffer from the NAND Flash. To read the data from NAND
745  * Flash first the data output cycle is initiated by the NFC, which copies
746  * the data to RAMbuffer. This data of length len is then copied to buffer buf.
747  */
748 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
749 {
750         struct nand_chip *nand_chip = mtd->priv;
751         struct mxc_nand_host *host = nand_chip->priv;
752         u16 col = host->buf_start;
753         int n = mtd->oobsize + mtd->writesize - col;
754
755         n = min(n, len);
756
757         memcpy(buf, host->data_buf + col, n);
758
759         host->buf_start += n;
760 }
761
762 /* This function is used by upper layer for select and
763  * deselect of the NAND chip */
764 static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip)
765 {
766         struct nand_chip *nand_chip = mtd->priv;
767         struct mxc_nand_host *host = nand_chip->priv;
768
769         if (chip == -1) {
770                 /* Disable the NFC clock */
771                 if (host->clk_act) {
772                         clk_disable_unprepare(host->clk);
773                         host->clk_act = 0;
774                 }
775                 return;
776         }
777
778         if (!host->clk_act) {
779                 /* Enable the NFC clock */
780                 clk_prepare_enable(host->clk);
781                 host->clk_act = 1;
782         }
783 }
784
785 static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip)
786 {
787         struct nand_chip *nand_chip = mtd->priv;
788         struct mxc_nand_host *host = nand_chip->priv;
789
790         if (chip == -1) {
791                 /* Disable the NFC clock */
792                 if (host->clk_act) {
793                         clk_disable_unprepare(host->clk);
794                         host->clk_act = 0;
795                 }
796                 return;
797         }
798
799         if (!host->clk_act) {
800                 /* Enable the NFC clock */
801                 clk_prepare_enable(host->clk);
802                 host->clk_act = 1;
803         }
804
805         host->active_cs = chip;
806         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
807 }
808
809 /*
810  * Function to transfer data to/from spare area.
811  */
812 static void copy_spare(struct mtd_info *mtd, bool bfrom)
813 {
814         struct nand_chip *this = mtd->priv;
815         struct mxc_nand_host *host = this->priv;
816         u16 i, j;
817         u16 n = mtd->writesize >> 9;
818         u8 *d = host->data_buf + mtd->writesize;
819         u8 __iomem *s = host->spare0;
820         u16 t = host->devtype_data->spare_len;
821
822         j = (mtd->oobsize / n >> 1) << 1;
823
824         if (bfrom) {
825                 for (i = 0; i < n - 1; i++)
826                         memcpy32_fromio(d + i * j, s + i * t, j);
827
828                 /* the last section */
829                 memcpy32_fromio(d + i * j, s + i * t, mtd->oobsize - i * j);
830         } else {
831                 for (i = 0; i < n - 1; i++)
832                         memcpy32_toio(&s[i * t], &d[i * j], j);
833
834                 /* the last section */
835                 memcpy32_toio(&s[i * t], &d[i * j], mtd->oobsize - i * j);
836         }
837 }
838
839 /*
840  * MXC NANDFC can only perform full page+spare or spare-only read/write.  When
841  * the upper layers perform a read/write buf operation, the saved column address
842  * is used to index into the full page. So usually this function is called with
843  * column == 0 (unless no column cycle is needed indicated by column == -1)
844  */
845 static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
846 {
847         struct nand_chip *nand_chip = mtd->priv;
848         struct mxc_nand_host *host = nand_chip->priv;
849
850         /* Write out column address, if necessary */
851         if (column != -1) {
852                 host->devtype_data->send_addr(host, column & 0xff,
853                                               page_addr == -1);
854                 if (mtd->writesize > 512)
855                         /* another col addr cycle for 2k page */
856                         host->devtype_data->send_addr(host,
857                                                       (column >> 8) & 0xff,
858                                                       false);
859         }
860
861         /* Write out page address, if necessary */
862         if (page_addr != -1) {
863                 /* paddr_0 - p_addr_7 */
864                 host->devtype_data->send_addr(host, (page_addr & 0xff), false);
865
866                 if (mtd->writesize > 512) {
867                         if (mtd->size >= 0x10000000) {
868                                 /* paddr_8 - paddr_15 */
869                                 host->devtype_data->send_addr(host,
870                                                 (page_addr >> 8) & 0xff,
871                                                 false);
872                                 host->devtype_data->send_addr(host,
873                                                 (page_addr >> 16) & 0xff,
874                                                 true);
875                         } else
876                                 /* paddr_8 - paddr_15 */
877                                 host->devtype_data->send_addr(host,
878                                                 (page_addr >> 8) & 0xff, true);
879                 } else {
880                         /* One more address cycle for higher density devices */
881                         if (mtd->size >= 0x4000000) {
882                                 /* paddr_8 - paddr_15 */
883                                 host->devtype_data->send_addr(host,
884                                                 (page_addr >> 8) & 0xff,
885                                                 false);
886                                 host->devtype_data->send_addr(host,
887                                                 (page_addr >> 16) & 0xff,
888                                                 true);
889                         } else
890                                 /* paddr_8 - paddr_15 */
891                                 host->devtype_data->send_addr(host,
892                                                 (page_addr >> 8) & 0xff, true);
893                 }
894         }
895 }
896
897 /*
898  * v2 and v3 type controllers can do 4bit or 8bit ecc depending
899  * on how much oob the nand chip has. For 8bit ecc we need at least
900  * 26 bytes of oob data per 512 byte block.
901  */
902 static int get_eccsize(struct mtd_info *mtd)
903 {
904         int oobbytes_per_512 = 0;
905
906         oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
907
908         if (oobbytes_per_512 < 26)
909                 return 4;
910         else
911                 return 8;
912 }
913
914 static void preset_v1(struct mtd_info *mtd)
915 {
916         struct nand_chip *nand_chip = mtd->priv;
917         struct mxc_nand_host *host = nand_chip->priv;
918         uint16_t config1 = 0;
919
920         if (nand_chip->ecc.mode == NAND_ECC_HW && mtd->writesize)
921                 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
922
923         if (!host->devtype_data->irqpending_quirk)
924                 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
925
926         host->eccsize = 1;
927
928         writew(config1, NFC_V1_V2_CONFIG1);
929         /* preset operation */
930
931         /* Unlock the internal RAM Buffer */
932         writew(0x2, NFC_V1_V2_CONFIG);
933
934         /* Blocks to be unlocked */
935         writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
936         writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
937
938         /* Unlock Block Command for given address range */
939         writew(0x4, NFC_V1_V2_WRPROT);
940 }
941
942 static void preset_v2(struct mtd_info *mtd)
943 {
944         struct nand_chip *nand_chip = mtd->priv;
945         struct mxc_nand_host *host = nand_chip->priv;
946         uint16_t config1 = 0;
947
948         config1 |= NFC_V2_CONFIG1_FP_INT;
949
950         if (!host->devtype_data->irqpending_quirk)
951                 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
952
953         if (mtd->writesize) {
954                 uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
955
956                 if (nand_chip->ecc.mode == NAND_ECC_HW)
957                         config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
958
959                 host->eccsize = get_eccsize(mtd);
960                 if (host->eccsize == 4)
961                         config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
962
963                 config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
964         } else {
965                 host->eccsize = 1;
966         }
967
968         writew(config1, NFC_V1_V2_CONFIG1);
969         /* preset operation */
970
971         /* Unlock the internal RAM Buffer */
972         writew(0x2, NFC_V1_V2_CONFIG);
973
974         /* Blocks to be unlocked */
975         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
976         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
977         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
978         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
979         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
980         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
981         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
982         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
983
984         /* Unlock Block Command for given address range */
985         writew(0x4, NFC_V1_V2_WRPROT);
986 }
987
988 static void preset_v3(struct mtd_info *mtd)
989 {
990         struct nand_chip *chip = mtd->priv;
991         struct mxc_nand_host *host = chip->priv;
992         uint32_t config2, config3;
993         int i, addr_phases;
994
995         writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
996         writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
997
998         /* Unlock the internal RAM Buffer */
999         writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
1000                         NFC_V3_WRPROT);
1001
1002         /* Blocks to be unlocked */
1003         for (i = 0; i < NAND_MAX_CHIPS; i++)
1004                 writel(0x0 |    (0xffff << 16),
1005                                 NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
1006
1007         writel(0, NFC_V3_IPC);
1008
1009         config2 = NFC_V3_CONFIG2_ONE_CYCLE |
1010                 NFC_V3_CONFIG2_2CMD_PHASES |
1011                 NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
1012                 NFC_V3_CONFIG2_ST_CMD(0x70) |
1013                 NFC_V3_CONFIG2_INT_MSK |
1014                 NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
1015
1016         addr_phases = fls(chip->pagemask) >> 3;
1017
1018         if (mtd->writesize == 2048) {
1019                 config2 |= NFC_V3_CONFIG2_PS_2048;
1020                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1021         } else if (mtd->writesize == 4096) {
1022                 config2 |= NFC_V3_CONFIG2_PS_4096;
1023                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1024         } else {
1025                 config2 |= NFC_V3_CONFIG2_PS_512;
1026                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1027         }
1028
1029         if (mtd->writesize) {
1030                 if (chip->ecc.mode == NAND_ECC_HW)
1031                         config2 |= NFC_V3_CONFIG2_ECC_EN;
1032
1033                 config2 |= NFC_V3_CONFIG2_PPB(
1034                                 ffs(mtd->erasesize / mtd->writesize) - 6,
1035                                 host->devtype_data->ppb_shift);
1036                 host->eccsize = get_eccsize(mtd);
1037                 if (host->eccsize == 8)
1038                         config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1039         }
1040
1041         writel(config2, NFC_V3_CONFIG2);
1042
1043         config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1044                         NFC_V3_CONFIG3_NO_SDMA |
1045                         NFC_V3_CONFIG3_RBB_MODE |
1046                         NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1047                         NFC_V3_CONFIG3_ADD_OP(0);
1048
1049         if (!(chip->options & NAND_BUSWIDTH_16))
1050                 config3 |= NFC_V3_CONFIG3_FW8;
1051
1052         writel(config3, NFC_V3_CONFIG3);
1053
1054         writel(0, NFC_V3_DELAY_LINE);
1055 }
1056
1057 /* Used by the upper layer to write command to NAND Flash for
1058  * different operations to be carried out on NAND Flash */
1059 static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
1060                                 int column, int page_addr)
1061 {
1062         struct nand_chip *nand_chip = mtd->priv;
1063         struct mxc_nand_host *host = nand_chip->priv;
1064
1065         pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1066               command, column, page_addr);
1067
1068         /* Reset command state information */
1069         host->status_request = false;
1070
1071         /* Command pre-processing step */
1072         switch (command) {
1073         case NAND_CMD_RESET:
1074                 host->devtype_data->preset(mtd);
1075                 host->devtype_data->send_cmd(host, command, false);
1076                 break;
1077
1078         case NAND_CMD_STATUS:
1079                 host->buf_start = 0;
1080                 host->status_request = true;
1081
1082                 host->devtype_data->send_cmd(host, command, true);
1083                 WARN_ONCE(column != -1 || page_addr != -1,
1084                           "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1085                           command, column, page_addr);
1086                 mxc_do_addr_cycle(mtd, column, page_addr);
1087                 break;
1088
1089         case NAND_CMD_READ0:
1090         case NAND_CMD_READOOB:
1091                 if (command == NAND_CMD_READ0)
1092                         host->buf_start = column;
1093                 else
1094                         host->buf_start = column + mtd->writesize;
1095
1096                 command = NAND_CMD_READ0; /* only READ0 is valid */
1097
1098                 host->devtype_data->send_cmd(host, command, false);
1099                 WARN_ONCE(column < 0,
1100                           "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1101                           command, column, page_addr);
1102                 mxc_do_addr_cycle(mtd, 0, page_addr);
1103
1104                 if (mtd->writesize > 512)
1105                         host->devtype_data->send_cmd(host,
1106                                         NAND_CMD_READSTART, true);
1107
1108                 host->devtype_data->send_page(mtd, NFC_OUTPUT);
1109
1110                 memcpy32_fromio(host->data_buf, host->main_area0,
1111                                 mtd->writesize);
1112                 copy_spare(mtd, true);
1113                 break;
1114
1115         case NAND_CMD_SEQIN:
1116                 if (column >= mtd->writesize)
1117                         /* call ourself to read a page */
1118                         mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
1119
1120                 host->buf_start = column;
1121
1122                 host->devtype_data->send_cmd(host, command, false);
1123                 WARN_ONCE(column < -1,
1124                           "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1125                           command, column, page_addr);
1126                 mxc_do_addr_cycle(mtd, 0, page_addr);
1127                 break;
1128
1129         case NAND_CMD_PAGEPROG:
1130                 memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1131                 copy_spare(mtd, false);
1132                 host->devtype_data->send_page(mtd, NFC_INPUT);
1133                 host->devtype_data->send_cmd(host, command, true);
1134                 WARN_ONCE(column != -1 || page_addr != -1,
1135                           "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1136                           command, column, page_addr);
1137                 mxc_do_addr_cycle(mtd, column, page_addr);
1138                 break;
1139
1140         case NAND_CMD_READID:
1141                 host->devtype_data->send_cmd(host, command, true);
1142                 mxc_do_addr_cycle(mtd, column, page_addr);
1143                 host->devtype_data->send_read_id(host);
1144                 host->buf_start = 0;
1145                 break;
1146
1147         case NAND_CMD_ERASE1:
1148         case NAND_CMD_ERASE2:
1149                 host->devtype_data->send_cmd(host, command, false);
1150                 WARN_ONCE(column != -1,
1151                           "Unexpected column value (cmd=%u, col=%d)\n",
1152                           command, column);
1153                 mxc_do_addr_cycle(mtd, column, page_addr);
1154
1155                 break;
1156         case NAND_CMD_PARAM:
1157                 host->devtype_data->send_cmd(host, command, false);
1158                 mxc_do_addr_cycle(mtd, column, page_addr);
1159                 host->devtype_data->send_page(mtd, NFC_OUTPUT);
1160                 memcpy32_fromio(host->data_buf, host->main_area0, 512);
1161                 host->buf_start = 0;
1162                 break;
1163         default:
1164                 WARN_ONCE(1, "Unimplemented command (cmd=%u)\n",
1165                           command);
1166                 break;
1167         }
1168 }
1169
1170 /*
1171  * The generic flash bbt decriptors overlap with our ecc
1172  * hardware, so define some i.MX specific ones.
1173  */
1174 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1175 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1176
1177 static struct nand_bbt_descr bbt_main_descr = {
1178         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1179             | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1180         .offs = 0,
1181         .len = 4,
1182         .veroffs = 4,
1183         .maxblocks = 4,
1184         .pattern = bbt_pattern,
1185 };
1186
1187 static struct nand_bbt_descr bbt_mirror_descr = {
1188         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1189             | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1190         .offs = 0,
1191         .len = 4,
1192         .veroffs = 4,
1193         .maxblocks = 4,
1194         .pattern = mirror_pattern,
1195 };
1196
1197 /* v1 + irqpending_quirk: i.MX21 */
1198 static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1199         .preset = preset_v1,
1200         .send_cmd = send_cmd_v1_v2,
1201         .send_addr = send_addr_v1_v2,
1202         .send_page = send_page_v1,
1203         .send_read_id = send_read_id_v1_v2,
1204         .get_dev_status = get_dev_status_v1_v2,
1205         .check_int = check_int_v1_v2,
1206         .irq_control = irq_control_v1_v2,
1207         .get_ecc_status = get_ecc_status_v1,
1208         .ecclayout_512 = &nandv1_hw_eccoob_smallpage,
1209         .ecclayout_2k = &nandv1_hw_eccoob_largepage,
1210         .ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
1211         .select_chip = mxc_nand_select_chip_v1_v3,
1212         .correct_data = mxc_nand_correct_data_v1,
1213         .irqpending_quirk = 1,
1214         .needs_ip = 0,
1215         .regs_offset = 0xe00,
1216         .spare0_offset = 0x800,
1217         .spare_len = 16,
1218         .eccbytes = 3,
1219         .eccsize = 1,
1220 };
1221
1222 /* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1223 static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1224         .preset = preset_v1,
1225         .send_cmd = send_cmd_v1_v2,
1226         .send_addr = send_addr_v1_v2,
1227         .send_page = send_page_v1,
1228         .send_read_id = send_read_id_v1_v2,
1229         .get_dev_status = get_dev_status_v1_v2,
1230         .check_int = check_int_v1_v2,
1231         .irq_control = irq_control_v1_v2,
1232         .get_ecc_status = get_ecc_status_v1,
1233         .ecclayout_512 = &nandv1_hw_eccoob_smallpage,
1234         .ecclayout_2k = &nandv1_hw_eccoob_largepage,
1235         .ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
1236         .select_chip = mxc_nand_select_chip_v1_v3,
1237         .correct_data = mxc_nand_correct_data_v1,
1238         .irqpending_quirk = 0,
1239         .needs_ip = 0,
1240         .regs_offset = 0xe00,
1241         .spare0_offset = 0x800,
1242         .axi_offset = 0,
1243         .spare_len = 16,
1244         .eccbytes = 3,
1245         .eccsize = 1,
1246 };
1247
1248 /* v21: i.MX25, i.MX35 */
1249 static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1250         .preset = preset_v2,
1251         .send_cmd = send_cmd_v1_v2,
1252         .send_addr = send_addr_v1_v2,
1253         .send_page = send_page_v2,
1254         .send_read_id = send_read_id_v1_v2,
1255         .get_dev_status = get_dev_status_v1_v2,
1256         .check_int = check_int_v1_v2,
1257         .irq_control = irq_control_v1_v2,
1258         .get_ecc_status = get_ecc_status_v2,
1259         .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1260         .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1261         .ecclayout_4k = &nandv2_hw_eccoob_4k,
1262         .select_chip = mxc_nand_select_chip_v2,
1263         .correct_data = mxc_nand_correct_data_v2_v3,
1264         .irqpending_quirk = 0,
1265         .needs_ip = 0,
1266         .regs_offset = 0x1e00,
1267         .spare0_offset = 0x1000,
1268         .axi_offset = 0,
1269         .spare_len = 64,
1270         .eccbytes = 9,
1271         .eccsize = 0,
1272 };
1273
1274 /* v3.2a: i.MX51 */
1275 static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1276         .preset = preset_v3,
1277         .send_cmd = send_cmd_v3,
1278         .send_addr = send_addr_v3,
1279         .send_page = send_page_v3,
1280         .send_read_id = send_read_id_v3,
1281         .get_dev_status = get_dev_status_v3,
1282         .check_int = check_int_v3,
1283         .irq_control = irq_control_v3,
1284         .get_ecc_status = get_ecc_status_v3,
1285         .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1286         .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1287         .ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
1288         .select_chip = mxc_nand_select_chip_v1_v3,
1289         .correct_data = mxc_nand_correct_data_v2_v3,
1290         .irqpending_quirk = 0,
1291         .needs_ip = 1,
1292         .regs_offset = 0,
1293         .spare0_offset = 0x1000,
1294         .axi_offset = 0x1e00,
1295         .spare_len = 64,
1296         .eccbytes = 0,
1297         .eccsize = 0,
1298         .ppb_shift = 7,
1299 };
1300
1301 /* v3.2b: i.MX53 */
1302 static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
1303         .preset = preset_v3,
1304         .send_cmd = send_cmd_v3,
1305         .send_addr = send_addr_v3,
1306         .send_page = send_page_v3,
1307         .send_read_id = send_read_id_v3,
1308         .get_dev_status = get_dev_status_v3,
1309         .check_int = check_int_v3,
1310         .irq_control = irq_control_v3,
1311         .get_ecc_status = get_ecc_status_v3,
1312         .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1313         .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1314         .ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
1315         .select_chip = mxc_nand_select_chip_v1_v3,
1316         .correct_data = mxc_nand_correct_data_v2_v3,
1317         .irqpending_quirk = 0,
1318         .needs_ip = 1,
1319         .regs_offset = 0,
1320         .spare0_offset = 0x1000,
1321         .axi_offset = 0x1e00,
1322         .spare_len = 64,
1323         .eccbytes = 0,
1324         .eccsize = 0,
1325         .ppb_shift = 8,
1326 };
1327
1328 static inline int is_imx21_nfc(struct mxc_nand_host *host)
1329 {
1330         return host->devtype_data == &imx21_nand_devtype_data;
1331 }
1332
1333 static inline int is_imx27_nfc(struct mxc_nand_host *host)
1334 {
1335         return host->devtype_data == &imx27_nand_devtype_data;
1336 }
1337
1338 static inline int is_imx25_nfc(struct mxc_nand_host *host)
1339 {
1340         return host->devtype_data == &imx25_nand_devtype_data;
1341 }
1342
1343 static inline int is_imx51_nfc(struct mxc_nand_host *host)
1344 {
1345         return host->devtype_data == &imx51_nand_devtype_data;
1346 }
1347
1348 static inline int is_imx53_nfc(struct mxc_nand_host *host)
1349 {
1350         return host->devtype_data == &imx53_nand_devtype_data;
1351 }
1352
1353 static struct platform_device_id mxcnd_devtype[] = {
1354         {
1355                 .name = "imx21-nand",
1356                 .driver_data = (kernel_ulong_t) &imx21_nand_devtype_data,
1357         }, {
1358                 .name = "imx27-nand",
1359                 .driver_data = (kernel_ulong_t) &imx27_nand_devtype_data,
1360         }, {
1361                 .name = "imx25-nand",
1362                 .driver_data = (kernel_ulong_t) &imx25_nand_devtype_data,
1363         }, {
1364                 .name = "imx51-nand",
1365                 .driver_data = (kernel_ulong_t) &imx51_nand_devtype_data,
1366         }, {
1367                 .name = "imx53-nand",
1368                 .driver_data = (kernel_ulong_t) &imx53_nand_devtype_data,
1369         }, {
1370                 /* sentinel */
1371         }
1372 };
1373 MODULE_DEVICE_TABLE(platform, mxcnd_devtype);
1374
1375 #ifdef CONFIG_OF_MTD
1376 static const struct of_device_id mxcnd_dt_ids[] = {
1377         {
1378                 .compatible = "fsl,imx21-nand",
1379                 .data = &imx21_nand_devtype_data,
1380         }, {
1381                 .compatible = "fsl,imx27-nand",
1382                 .data = &imx27_nand_devtype_data,
1383         }, {
1384                 .compatible = "fsl,imx25-nand",
1385                 .data = &imx25_nand_devtype_data,
1386         }, {
1387                 .compatible = "fsl,imx51-nand",
1388                 .data = &imx51_nand_devtype_data,
1389         }, {
1390                 .compatible = "fsl,imx53-nand",
1391                 .data = &imx53_nand_devtype_data,
1392         },
1393         { /* sentinel */ }
1394 };
1395
1396 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1397 {
1398         struct device_node *np = host->dev->of_node;
1399         struct mxc_nand_platform_data *pdata = &host->pdata;
1400         const struct of_device_id *of_id =
1401                 of_match_device(mxcnd_dt_ids, host->dev);
1402         int buswidth;
1403
1404         if (!np)
1405                 return 1;
1406
1407         if (of_get_nand_ecc_mode(np) >= 0)
1408                 pdata->hw_ecc = 1;
1409
1410         pdata->flash_bbt = of_get_nand_on_flash_bbt(np);
1411
1412         buswidth = of_get_nand_bus_width(np);
1413         if (buswidth < 0)
1414                 return buswidth;
1415
1416         pdata->width = buswidth / 8;
1417
1418         host->devtype_data = of_id->data;
1419
1420         return 0;
1421 }
1422 #else
1423 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1424 {
1425         return 1;
1426 }
1427 #endif
1428
1429 static int mxcnd_probe(struct platform_device *pdev)
1430 {
1431         struct nand_chip *this;
1432         struct mtd_info *mtd;
1433         struct mxc_nand_host *host;
1434         struct resource *res;
1435         int err = 0;
1436
1437         /* Allocate memory for MTD device structure and private data */
1438         host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host),
1439                         GFP_KERNEL);
1440         if (!host)
1441                 return -ENOMEM;
1442
1443         /* allocate a temporary buffer for the nand_scan_ident() */
1444         host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL);
1445         if (!host->data_buf)
1446                 return -ENOMEM;
1447
1448         host->dev = &pdev->dev;
1449         /* structures must be linked */
1450         this = &host->nand;
1451         mtd = &host->mtd;
1452         mtd->priv = this;
1453         mtd->owner = THIS_MODULE;
1454         mtd->dev.parent = &pdev->dev;
1455         mtd->name = DRIVER_NAME;
1456
1457         /* 50 us command delay time */
1458         this->chip_delay = 5;
1459
1460         this->priv = host;
1461         this->dev_ready = mxc_nand_dev_ready;
1462         this->cmdfunc = mxc_nand_command;
1463         this->read_byte = mxc_nand_read_byte;
1464         this->read_word = mxc_nand_read_word;
1465         this->write_buf = mxc_nand_write_buf;
1466         this->read_buf = mxc_nand_read_buf;
1467
1468         host->clk = devm_clk_get(&pdev->dev, NULL);
1469         if (IS_ERR(host->clk))
1470                 return PTR_ERR(host->clk);
1471
1472         err = mxcnd_probe_dt(host);
1473         if (err > 0) {
1474                 struct mxc_nand_platform_data *pdata =
1475                                         dev_get_platdata(&pdev->dev);
1476                 if (pdata) {
1477                         host->pdata = *pdata;
1478                         host->devtype_data = (struct mxc_nand_devtype_data *)
1479                                                 pdev->id_entry->driver_data;
1480                 } else {
1481                         err = -ENODEV;
1482                 }
1483         }
1484         if (err < 0)
1485                 return err;
1486
1487         if (host->devtype_data->needs_ip) {
1488                 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1489                 host->regs_ip = devm_ioremap_resource(&pdev->dev, res);
1490                 if (IS_ERR(host->regs_ip))
1491                         return PTR_ERR(host->regs_ip);
1492
1493                 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1494         } else {
1495                 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1496         }
1497
1498         host->base = devm_ioremap_resource(&pdev->dev, res);
1499         if (IS_ERR(host->base))
1500                 return PTR_ERR(host->base);
1501
1502         host->main_area0 = host->base;
1503
1504         if (host->devtype_data->regs_offset)
1505                 host->regs = host->base + host->devtype_data->regs_offset;
1506         host->spare0 = host->base + host->devtype_data->spare0_offset;
1507         if (host->devtype_data->axi_offset)
1508                 host->regs_axi = host->base + host->devtype_data->axi_offset;
1509
1510         this->ecc.bytes = host->devtype_data->eccbytes;
1511         host->eccsize = host->devtype_data->eccsize;
1512
1513         this->select_chip = host->devtype_data->select_chip;
1514         this->ecc.size = 512;
1515         this->ecc.layout = host->devtype_data->ecclayout_512;
1516
1517         if (host->pdata.hw_ecc) {
1518                 this->ecc.calculate = mxc_nand_calculate_ecc;
1519                 this->ecc.hwctl = mxc_nand_enable_hwecc;
1520                 this->ecc.correct = host->devtype_data->correct_data;
1521                 this->ecc.mode = NAND_ECC_HW;
1522         } else {
1523                 this->ecc.mode = NAND_ECC_SOFT;
1524         }
1525
1526         /* NAND bus width determines access functions used by upper layer */
1527         if (host->pdata.width == 2)
1528                 this->options |= NAND_BUSWIDTH_16;
1529
1530         if (host->pdata.flash_bbt) {
1531                 this->bbt_td = &bbt_main_descr;
1532                 this->bbt_md = &bbt_mirror_descr;
1533                 /* update flash based bbt */
1534                 this->bbt_options |= NAND_BBT_USE_FLASH;
1535         }
1536
1537         init_completion(&host->op_completion);
1538
1539         host->irq = platform_get_irq(pdev, 0);
1540         if (host->irq < 0)
1541                 return host->irq;
1542
1543         /*
1544          * Use host->devtype_data->irq_control() here instead of irq_control()
1545          * because we must not disable_irq_nosync without having requested the
1546          * irq.
1547          */
1548         host->devtype_data->irq_control(host, 0);
1549
1550         err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
1551                         0, DRIVER_NAME, host);
1552         if (err)
1553                 return err;
1554
1555         err = clk_prepare_enable(host->clk);
1556         if (err)
1557                 return err;
1558         host->clk_act = 1;
1559
1560         /*
1561          * Now that we "own" the interrupt make sure the interrupt mask bit is
1562          * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1563          * on this machine.
1564          */
1565         if (host->devtype_data->irqpending_quirk) {
1566                 disable_irq_nosync(host->irq);
1567                 host->devtype_data->irq_control(host, 1);
1568         }
1569
1570         /* first scan to find the device and get the page size */
1571         if (nand_scan_ident(mtd, is_imx25_nfc(host) ? 4 : 1, NULL)) {
1572                 err = -ENXIO;
1573                 goto escan;
1574         }
1575
1576         /* allocate the right size buffer now */
1577         devm_kfree(&pdev->dev, (void *)host->data_buf);
1578         host->data_buf = devm_kzalloc(&pdev->dev, mtd->writesize + mtd->oobsize,
1579                                         GFP_KERNEL);
1580         if (!host->data_buf) {
1581                 err = -ENOMEM;
1582                 goto escan;
1583         }
1584
1585         /* Call preset again, with correct writesize this time */
1586         host->devtype_data->preset(mtd);
1587
1588         if (mtd->writesize == 2048)
1589                 this->ecc.layout = host->devtype_data->ecclayout_2k;
1590         else if (mtd->writesize == 4096)
1591                 this->ecc.layout = host->devtype_data->ecclayout_4k;
1592
1593         if (this->ecc.mode == NAND_ECC_HW) {
1594                 if (is_imx21_nfc(host) || is_imx27_nfc(host))
1595                         this->ecc.strength = 1;
1596                 else
1597                         this->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1598         }
1599
1600         /* second phase scan */
1601         if (nand_scan_tail(mtd)) {
1602                 err = -ENXIO;
1603                 goto escan;
1604         }
1605
1606         /* Register the partitions */
1607         mtd_device_parse_register(mtd, part_probes,
1608                         &(struct mtd_part_parser_data){
1609                                 .of_node = pdev->dev.of_node,
1610                         },
1611                         host->pdata.parts,
1612                         host->pdata.nr_parts);
1613
1614         platform_set_drvdata(pdev, host);
1615
1616         return 0;
1617
1618 escan:
1619         if (host->clk_act)
1620                 clk_disable_unprepare(host->clk);
1621
1622         return err;
1623 }
1624
1625 static int mxcnd_remove(struct platform_device *pdev)
1626 {
1627         struct mxc_nand_host *host = platform_get_drvdata(pdev);
1628
1629         nand_release(&host->mtd);
1630         if (host->clk_act)
1631                 clk_disable_unprepare(host->clk);
1632
1633         return 0;
1634 }
1635
1636 static struct platform_driver mxcnd_driver = {
1637         .driver = {
1638                    .name = DRIVER_NAME,
1639                    .of_match_table = of_match_ptr(mxcnd_dt_ids),
1640         },
1641         .id_table = mxcnd_devtype,
1642         .probe = mxcnd_probe,
1643         .remove = mxcnd_remove,
1644 };
1645 module_platform_driver(mxcnd_driver);
1646
1647 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1648 MODULE_DESCRIPTION("MXC NAND MTD driver");
1649 MODULE_LICENSE("GPL");