These changes are the raw update to linux-4.4.6-rt14. Kernel sources
[kvmfornfv.git] / kernel / drivers / mtd / nand / lpc32xx_slc.c
1 /*
2  * NXP LPC32XX NAND SLC driver
3  *
4  * Authors:
5  *    Kevin Wells <kevin.wells@nxp.com>
6  *    Roland Stigge <stigge@antcom.de>
7  *
8  * Copyright © 2011 NXP Semiconductors
9  * Copyright © 2012 Roland Stigge
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  */
21
22 #include <linux/slab.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/mtd/mtd.h>
26 #include <linux/mtd/nand.h>
27 #include <linux/mtd/partitions.h>
28 #include <linux/clk.h>
29 #include <linux/err.h>
30 #include <linux/delay.h>
31 #include <linux/io.h>
32 #include <linux/mm.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/dmaengine.h>
35 #include <linux/mtd/nand_ecc.h>
36 #include <linux/gpio.h>
37 #include <linux/of.h>
38 #include <linux/of_mtd.h>
39 #include <linux/of_gpio.h>
40 #include <linux/mtd/lpc32xx_slc.h>
41
42 #define LPC32XX_MODNAME         "lpc32xx-nand"
43
44 /**********************************************************************
45 * SLC NAND controller register offsets
46 **********************************************************************/
47
48 #define SLC_DATA(x)             (x + 0x000)
49 #define SLC_ADDR(x)             (x + 0x004)
50 #define SLC_CMD(x)              (x + 0x008)
51 #define SLC_STOP(x)             (x + 0x00C)
52 #define SLC_CTRL(x)             (x + 0x010)
53 #define SLC_CFG(x)              (x + 0x014)
54 #define SLC_STAT(x)             (x + 0x018)
55 #define SLC_INT_STAT(x)         (x + 0x01C)
56 #define SLC_IEN(x)              (x + 0x020)
57 #define SLC_ISR(x)              (x + 0x024)
58 #define SLC_ICR(x)              (x + 0x028)
59 #define SLC_TAC(x)              (x + 0x02C)
60 #define SLC_TC(x)               (x + 0x030)
61 #define SLC_ECC(x)              (x + 0x034)
62 #define SLC_DMA_DATA(x)         (x + 0x038)
63
64 /**********************************************************************
65 * slc_ctrl register definitions
66 **********************************************************************/
67 #define SLCCTRL_SW_RESET        (1 << 2) /* Reset the NAND controller bit */
68 #define SLCCTRL_ECC_CLEAR       (1 << 1) /* Reset ECC bit */
69 #define SLCCTRL_DMA_START       (1 << 0) /* Start DMA channel bit */
70
71 /**********************************************************************
72 * slc_cfg register definitions
73 **********************************************************************/
74 #define SLCCFG_CE_LOW           (1 << 5) /* Force CE low bit */
75 #define SLCCFG_DMA_ECC          (1 << 4) /* Enable DMA ECC bit */
76 #define SLCCFG_ECC_EN           (1 << 3) /* ECC enable bit */
77 #define SLCCFG_DMA_BURST        (1 << 2) /* DMA burst bit */
78 #define SLCCFG_DMA_DIR          (1 << 1) /* DMA write(0)/read(1) bit */
79 #define SLCCFG_WIDTH            (1 << 0) /* External device width, 0=8bit */
80
81 /**********************************************************************
82 * slc_stat register definitions
83 **********************************************************************/
84 #define SLCSTAT_DMA_FIFO        (1 << 2) /* DMA FIFO has data bit */
85 #define SLCSTAT_SLC_FIFO        (1 << 1) /* SLC FIFO has data bit */
86 #define SLCSTAT_NAND_READY      (1 << 0) /* NAND device is ready bit */
87
88 /**********************************************************************
89 * slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions
90 **********************************************************************/
91 #define SLCSTAT_INT_TC          (1 << 1) /* Transfer count bit */
92 #define SLCSTAT_INT_RDY_EN      (1 << 0) /* Ready interrupt bit */
93
94 /**********************************************************************
95 * slc_tac register definitions
96 **********************************************************************/
97 /* Computation of clock cycles on basis of controller and device clock rates */
98 #define SLCTAC_CLOCKS(c, n, s)  (min_t(u32, DIV_ROUND_UP(c, n) - 1, 0xF) << s)
99
100 /* Clock setting for RDY write sample wait time in 2*n clocks */
101 #define SLCTAC_WDR(n)           (((n) & 0xF) << 28)
102 /* Write pulse width in clock cycles, 1 to 16 clocks */
103 #define SLCTAC_WWIDTH(c, n)     (SLCTAC_CLOCKS(c, n, 24))
104 /* Write hold time of control and data signals, 1 to 16 clocks */
105 #define SLCTAC_WHOLD(c, n)      (SLCTAC_CLOCKS(c, n, 20))
106 /* Write setup time of control and data signals, 1 to 16 clocks */
107 #define SLCTAC_WSETUP(c, n)     (SLCTAC_CLOCKS(c, n, 16))
108 /* Clock setting for RDY read sample wait time in 2*n clocks */
109 #define SLCTAC_RDR(n)           (((n) & 0xF) << 12)
110 /* Read pulse width in clock cycles, 1 to 16 clocks */
111 #define SLCTAC_RWIDTH(c, n)     (SLCTAC_CLOCKS(c, n, 8))
112 /* Read hold time of control and data signals, 1 to 16 clocks */
113 #define SLCTAC_RHOLD(c, n)      (SLCTAC_CLOCKS(c, n, 4))
114 /* Read setup time of control and data signals, 1 to 16 clocks */
115 #define SLCTAC_RSETUP(c, n)     (SLCTAC_CLOCKS(c, n, 0))
116
117 /**********************************************************************
118 * slc_ecc register definitions
119 **********************************************************************/
120 /* ECC line party fetch macro */
121 #define SLCECC_TO_LINEPAR(n)    (((n) >> 6) & 0x7FFF)
122 #define SLCECC_TO_COLPAR(n)     ((n) & 0x3F)
123
124 /*
125  * DMA requires storage space for the DMA local buffer and the hardware ECC
126  * storage area. The DMA local buffer is only used if DMA mapping fails
127  * during runtime.
128  */
129 #define LPC32XX_DMA_DATA_SIZE           4096
130 #define LPC32XX_ECC_SAVE_SIZE           ((4096 / 256) * 4)
131
132 /* Number of bytes used for ECC stored in NAND per 256 bytes */
133 #define LPC32XX_SLC_DEV_ECC_BYTES       3
134
135 /*
136  * If the NAND base clock frequency can't be fetched, this frequency will be
137  * used instead as the base. This rate is used to setup the timing registers
138  * used for NAND accesses.
139  */
140 #define LPC32XX_DEF_BUS_RATE            133250000
141
142 /* Milliseconds for DMA FIFO timeout (unlikely anyway) */
143 #define LPC32XX_DMA_TIMEOUT             100
144
145 /*
146  * NAND ECC Layout for small page NAND devices
147  * Note: For large and huge page devices, the default layouts are used
148  */
149 static struct nand_ecclayout lpc32xx_nand_oob_16 = {
150         .eccbytes = 6,
151         .eccpos = {10, 11, 12, 13, 14, 15},
152         .oobfree = {
153                 { .offset = 0, .length = 4 },
154                 { .offset = 6, .length = 4 },
155         },
156 };
157
158 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
159 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
160
161 /*
162  * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6
163  * Note: Large page devices used the default layout
164  */
165 static struct nand_bbt_descr bbt_smallpage_main_descr = {
166         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
167                 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
168         .offs = 0,
169         .len = 4,
170         .veroffs = 6,
171         .maxblocks = 4,
172         .pattern = bbt_pattern
173 };
174
175 static struct nand_bbt_descr bbt_smallpage_mirror_descr = {
176         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
177                 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
178         .offs = 0,
179         .len = 4,
180         .veroffs = 6,
181         .maxblocks = 4,
182         .pattern = mirror_pattern
183 };
184
185 /*
186  * NAND platform configuration structure
187  */
188 struct lpc32xx_nand_cfg_slc {
189         uint32_t wdr_clks;
190         uint32_t wwidth;
191         uint32_t whold;
192         uint32_t wsetup;
193         uint32_t rdr_clks;
194         uint32_t rwidth;
195         uint32_t rhold;
196         uint32_t rsetup;
197         bool use_bbt;
198         int wp_gpio;
199         struct mtd_partition *parts;
200         unsigned num_parts;
201 };
202
203 struct lpc32xx_nand_host {
204         struct nand_chip        nand_chip;
205         struct lpc32xx_slc_platform_data *pdata;
206         struct clk              *clk;
207         struct mtd_info         mtd;
208         void __iomem            *io_base;
209         struct lpc32xx_nand_cfg_slc *ncfg;
210
211         struct completion       comp;
212         struct dma_chan         *dma_chan;
213         uint32_t                dma_buf_len;
214         struct dma_slave_config dma_slave_config;
215         struct scatterlist      sgl;
216
217         /*
218          * DMA and CPU addresses of ECC work area and data buffer
219          */
220         uint32_t                *ecc_buf;
221         uint8_t                 *data_buf;
222         dma_addr_t              io_base_dma;
223 };
224
225 static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
226 {
227         uint32_t clkrate, tmp;
228
229         /* Reset SLC controller */
230         writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base));
231         udelay(1000);
232
233         /* Basic setup */
234         writel(0, SLC_CFG(host->io_base));
235         writel(0, SLC_IEN(host->io_base));
236         writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN),
237                 SLC_ICR(host->io_base));
238
239         /* Get base clock for SLC block */
240         clkrate = clk_get_rate(host->clk);
241         if (clkrate == 0)
242                 clkrate = LPC32XX_DEF_BUS_RATE;
243
244         /* Compute clock setup values */
245         tmp = SLCTAC_WDR(host->ncfg->wdr_clks) |
246                 SLCTAC_WWIDTH(clkrate, host->ncfg->wwidth) |
247                 SLCTAC_WHOLD(clkrate, host->ncfg->whold) |
248                 SLCTAC_WSETUP(clkrate, host->ncfg->wsetup) |
249                 SLCTAC_RDR(host->ncfg->rdr_clks) |
250                 SLCTAC_RWIDTH(clkrate, host->ncfg->rwidth) |
251                 SLCTAC_RHOLD(clkrate, host->ncfg->rhold) |
252                 SLCTAC_RSETUP(clkrate, host->ncfg->rsetup);
253         writel(tmp, SLC_TAC(host->io_base));
254 }
255
256 /*
257  * Hardware specific access to control lines
258  */
259 static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
260         unsigned int ctrl)
261 {
262         uint32_t tmp;
263         struct nand_chip *chip = mtd->priv;
264         struct lpc32xx_nand_host *host = chip->priv;
265
266         /* Does CE state need to be changed? */
267         tmp = readl(SLC_CFG(host->io_base));
268         if (ctrl & NAND_NCE)
269                 tmp |= SLCCFG_CE_LOW;
270         else
271                 tmp &= ~SLCCFG_CE_LOW;
272         writel(tmp, SLC_CFG(host->io_base));
273
274         if (cmd != NAND_CMD_NONE) {
275                 if (ctrl & NAND_CLE)
276                         writel(cmd, SLC_CMD(host->io_base));
277                 else
278                         writel(cmd, SLC_ADDR(host->io_base));
279         }
280 }
281
282 /*
283  * Read the Device Ready pin
284  */
285 static int lpc32xx_nand_device_ready(struct mtd_info *mtd)
286 {
287         struct nand_chip *chip = mtd->priv;
288         struct lpc32xx_nand_host *host = chip->priv;
289         int rdy = 0;
290
291         if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0)
292                 rdy = 1;
293
294         return rdy;
295 }
296
297 /*
298  * Enable NAND write protect
299  */
300 static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
301 {
302         if (gpio_is_valid(host->ncfg->wp_gpio))
303                 gpio_set_value(host->ncfg->wp_gpio, 0);
304 }
305
306 /*
307  * Disable NAND write protect
308  */
309 static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
310 {
311         if (gpio_is_valid(host->ncfg->wp_gpio))
312                 gpio_set_value(host->ncfg->wp_gpio, 1);
313 }
314
315 /*
316  * Prepares SLC for transfers with H/W ECC enabled
317  */
318 static void lpc32xx_nand_ecc_enable(struct mtd_info *mtd, int mode)
319 {
320         /* Hardware ECC is enabled automatically in hardware as needed */
321 }
322
323 /*
324  * Calculates the ECC for the data
325  */
326 static int lpc32xx_nand_ecc_calculate(struct mtd_info *mtd,
327                                       const unsigned char *buf,
328                                       unsigned char *code)
329 {
330         /*
331          * ECC is calculated automatically in hardware during syndrome read
332          * and write operations, so it doesn't need to be calculated here.
333          */
334         return 0;
335 }
336
337 /*
338  * Read a single byte from NAND device
339  */
340 static uint8_t lpc32xx_nand_read_byte(struct mtd_info *mtd)
341 {
342         struct nand_chip *chip = mtd->priv;
343         struct lpc32xx_nand_host *host = chip->priv;
344
345         return (uint8_t)readl(SLC_DATA(host->io_base));
346 }
347
348 /*
349  * Simple device read without ECC
350  */
351 static void lpc32xx_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
352 {
353         struct nand_chip *chip = mtd->priv;
354         struct lpc32xx_nand_host *host = chip->priv;
355
356         /* Direct device read with no ECC */
357         while (len-- > 0)
358                 *buf++ = (uint8_t)readl(SLC_DATA(host->io_base));
359 }
360
361 /*
362  * Simple device write without ECC
363  */
364 static void lpc32xx_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
365 {
366         struct nand_chip *chip = mtd->priv;
367         struct lpc32xx_nand_host *host = chip->priv;
368
369         /* Direct device write with no ECC */
370         while (len-- > 0)
371                 writel((uint32_t)*buf++, SLC_DATA(host->io_base));
372 }
373
374 /*
375  * Read the OOB data from the device without ECC using FIFO method
376  */
377 static int lpc32xx_nand_read_oob_syndrome(struct mtd_info *mtd,
378                                           struct nand_chip *chip, int page)
379 {
380         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
381         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
382
383         return 0;
384 }
385
386 /*
387  * Write the OOB data to the device without ECC using FIFO method
388  */
389 static int lpc32xx_nand_write_oob_syndrome(struct mtd_info *mtd,
390         struct nand_chip *chip, int page)
391 {
392         int status;
393
394         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
395         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
396
397         /* Send command to program the OOB data */
398         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
399
400         status = chip->waitfunc(mtd, chip);
401
402         return status & NAND_STATUS_FAIL ? -EIO : 0;
403 }
404
405 /*
406  * Fills in the ECC fields in the OOB buffer with the hardware generated ECC
407  */
408 static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count)
409 {
410         int i;
411
412         for (i = 0; i < (count * 3); i += 3) {
413                 uint32_t ce = ecc[i / 3];
414                 ce = ~(ce << 2) & 0xFFFFFF;
415                 spare[i + 2] = (uint8_t)(ce & 0xFF);
416                 ce >>= 8;
417                 spare[i + 1] = (uint8_t)(ce & 0xFF);
418                 ce >>= 8;
419                 spare[i] = (uint8_t)(ce & 0xFF);
420         }
421 }
422
423 static void lpc32xx_dma_complete_func(void *completion)
424 {
425         complete(completion);
426 }
427
428 static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma,
429                             void *mem, int len, enum dma_transfer_direction dir)
430 {
431         struct nand_chip *chip = mtd->priv;
432         struct lpc32xx_nand_host *host = chip->priv;
433         struct dma_async_tx_descriptor *desc;
434         int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
435         int res;
436
437         host->dma_slave_config.direction = dir;
438         host->dma_slave_config.src_addr = dma;
439         host->dma_slave_config.dst_addr = dma;
440         host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
441         host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
442         host->dma_slave_config.src_maxburst = 4;
443         host->dma_slave_config.dst_maxburst = 4;
444         /* DMA controller does flow control: */
445         host->dma_slave_config.device_fc = false;
446         if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
447                 dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
448                 return -ENXIO;
449         }
450
451         sg_init_one(&host->sgl, mem, len);
452
453         res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
454                          DMA_BIDIRECTIONAL);
455         if (res != 1) {
456                 dev_err(mtd->dev.parent, "Failed to map sg list\n");
457                 return -ENXIO;
458         }
459         desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
460                                        flags);
461         if (!desc) {
462                 dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
463                 goto out1;
464         }
465
466         init_completion(&host->comp);
467         desc->callback = lpc32xx_dma_complete_func;
468         desc->callback_param = &host->comp;
469
470         dmaengine_submit(desc);
471         dma_async_issue_pending(host->dma_chan);
472
473         wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000));
474
475         dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
476                      DMA_BIDIRECTIONAL);
477
478         return 0;
479 out1:
480         dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
481                      DMA_BIDIRECTIONAL);
482         return -ENXIO;
483 }
484
485 /*
486  * DMA read/write transfers with ECC support
487  */
488 static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages,
489                         int read)
490 {
491         struct nand_chip *chip = mtd->priv;
492         struct lpc32xx_nand_host *host = chip->priv;
493         int i, status = 0;
494         unsigned long timeout;
495         int res;
496         enum dma_transfer_direction dir =
497                 read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
498         uint8_t *dma_buf;
499         bool dma_mapped;
500
501         if ((void *)buf <= high_memory) {
502                 dma_buf = buf;
503                 dma_mapped = true;
504         } else {
505                 dma_buf = host->data_buf;
506                 dma_mapped = false;
507                 if (!read)
508                         memcpy(host->data_buf, buf, mtd->writesize);
509         }
510
511         if (read) {
512                 writel(readl(SLC_CFG(host->io_base)) |
513                        SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
514                        SLCCFG_DMA_BURST, SLC_CFG(host->io_base));
515         } else {
516                 writel((readl(SLC_CFG(host->io_base)) |
517                         SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) &
518                        ~SLCCFG_DMA_DIR,
519                         SLC_CFG(host->io_base));
520         }
521
522         /* Clear initial ECC */
523         writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base));
524
525         /* Transfer size is data area only */
526         writel(mtd->writesize, SLC_TC(host->io_base));
527
528         /* Start transfer in the NAND controller */
529         writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START,
530                SLC_CTRL(host->io_base));
531
532         for (i = 0; i < chip->ecc.steps; i++) {
533                 /* Data */
534                 res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma),
535                                        dma_buf + i * chip->ecc.size,
536                                        mtd->writesize / chip->ecc.steps, dir);
537                 if (res)
538                         return res;
539
540                 /* Always _read_ ECC */
541                 if (i == chip->ecc.steps - 1)
542                         break;
543                 if (!read) /* ECC availability delayed on write */
544                         udelay(10);
545                 res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma),
546                                        &host->ecc_buf[i], 4, DMA_DEV_TO_MEM);
547                 if (res)
548                         return res;
549         }
550
551         /*
552          * According to NXP, the DMA can be finished here, but the NAND
553          * controller may still have buffered data. After porting to using the
554          * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty)
555          * appears to be always true, according to tests. Keeping the check for
556          * safety reasons for now.
557          */
558         if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) {
559                 dev_warn(mtd->dev.parent, "FIFO not empty!\n");
560                 timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT);
561                 while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) &&
562                        time_before(jiffies, timeout))
563                         cpu_relax();
564                 if (!time_before(jiffies, timeout)) {
565                         dev_err(mtd->dev.parent, "FIFO held data too long\n");
566                         status = -EIO;
567                 }
568         }
569
570         /* Read last calculated ECC value */
571         if (!read)
572                 udelay(10);
573         host->ecc_buf[chip->ecc.steps - 1] =
574                 readl(SLC_ECC(host->io_base));
575
576         /* Flush DMA */
577         dmaengine_terminate_all(host->dma_chan);
578
579         if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO ||
580             readl(SLC_TC(host->io_base))) {
581                 /* Something is left in the FIFO, something is wrong */
582                 dev_err(mtd->dev.parent, "DMA FIFO failure\n");
583                 status = -EIO;
584         }
585
586         /* Stop DMA & HW ECC */
587         writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START,
588                SLC_CTRL(host->io_base));
589         writel(readl(SLC_CFG(host->io_base)) &
590                ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
591                  SLCCFG_DMA_BURST), SLC_CFG(host->io_base));
592
593         if (!dma_mapped && read)
594                 memcpy(buf, host->data_buf, mtd->writesize);
595
596         return status;
597 }
598
599 /*
600  * Read the data and OOB data from the device, use ECC correction with the
601  * data, disable ECC for the OOB data
602  */
603 static int lpc32xx_nand_read_page_syndrome(struct mtd_info *mtd,
604                                            struct nand_chip *chip, uint8_t *buf,
605                                            int oob_required, int page)
606 {
607         struct lpc32xx_nand_host *host = chip->priv;
608         int stat, i, status;
609         uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE];
610
611         /* Issue read command */
612         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
613
614         /* Read data and oob, calculate ECC */
615         status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1);
616
617         /* Get OOB data */
618         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
619
620         /* Convert to stored ECC format */
621         lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps);
622
623         /* Pointer to ECC data retrieved from NAND spare area */
624         oobecc = chip->oob_poi + chip->ecc.layout->eccpos[0];
625
626         for (i = 0; i < chip->ecc.steps; i++) {
627                 stat = chip->ecc.correct(mtd, buf, oobecc,
628                                          &tmpecc[i * chip->ecc.bytes]);
629                 if (stat < 0)
630                         mtd->ecc_stats.failed++;
631                 else
632                         mtd->ecc_stats.corrected += stat;
633
634                 buf += chip->ecc.size;
635                 oobecc += chip->ecc.bytes;
636         }
637
638         return status;
639 }
640
641 /*
642  * Read the data and OOB data from the device, no ECC correction with the
643  * data or OOB data
644  */
645 static int lpc32xx_nand_read_page_raw_syndrome(struct mtd_info *mtd,
646                                                struct nand_chip *chip,
647                                                uint8_t *buf, int oob_required,
648                                                int page)
649 {
650         /* Issue read command */
651         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
652
653         /* Raw reads can just use the FIFO interface */
654         chip->read_buf(mtd, buf, chip->ecc.size * chip->ecc.steps);
655         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
656
657         return 0;
658 }
659
660 /*
661  * Write the data and OOB data to the device, use ECC with the data,
662  * disable ECC for the OOB data
663  */
664 static int lpc32xx_nand_write_page_syndrome(struct mtd_info *mtd,
665                                             struct nand_chip *chip,
666                                             const uint8_t *buf,
667                                             int oob_required, int page)
668 {
669         struct lpc32xx_nand_host *host = chip->priv;
670         uint8_t *pb = chip->oob_poi + chip->ecc.layout->eccpos[0];
671         int error;
672
673         /* Write data, calculate ECC on outbound data */
674         error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0);
675         if (error)
676                 return error;
677
678         /*
679          * The calculated ECC needs some manual work done to it before
680          * committing it to NAND. Process the calculated ECC and place
681          * the resultant values directly into the OOB buffer. */
682         lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps);
683
684         /* Write ECC data to device */
685         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
686         return 0;
687 }
688
689 /*
690  * Write the data and OOB data to the device, no ECC correction with the
691  * data or OOB data
692  */
693 static int lpc32xx_nand_write_page_raw_syndrome(struct mtd_info *mtd,
694                                                 struct nand_chip *chip,
695                                                 const uint8_t *buf,
696                                                 int oob_required, int page)
697 {
698         /* Raw writes can just use the FIFO interface */
699         chip->write_buf(mtd, buf, chip->ecc.size * chip->ecc.steps);
700         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
701         return 0;
702 }
703
704 static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host)
705 {
706         struct mtd_info *mtd = &host->mtd;
707         dma_cap_mask_t mask;
708
709         if (!host->pdata || !host->pdata->dma_filter) {
710                 dev_err(mtd->dev.parent, "no DMA platform data\n");
711                 return -ENOENT;
712         }
713
714         dma_cap_zero(mask);
715         dma_cap_set(DMA_SLAVE, mask);
716         host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
717                                              "nand-slc");
718         if (!host->dma_chan) {
719                 dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
720                 return -EBUSY;
721         }
722
723         return 0;
724 }
725
726 static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev)
727 {
728         struct lpc32xx_nand_cfg_slc *ncfg;
729         struct device_node *np = dev->of_node;
730
731         ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
732         if (!ncfg)
733                 return NULL;
734
735         of_property_read_u32(np, "nxp,wdr-clks", &ncfg->wdr_clks);
736         of_property_read_u32(np, "nxp,wwidth", &ncfg->wwidth);
737         of_property_read_u32(np, "nxp,whold", &ncfg->whold);
738         of_property_read_u32(np, "nxp,wsetup", &ncfg->wsetup);
739         of_property_read_u32(np, "nxp,rdr-clks", &ncfg->rdr_clks);
740         of_property_read_u32(np, "nxp,rwidth", &ncfg->rwidth);
741         of_property_read_u32(np, "nxp,rhold", &ncfg->rhold);
742         of_property_read_u32(np, "nxp,rsetup", &ncfg->rsetup);
743
744         if (!ncfg->wdr_clks || !ncfg->wwidth || !ncfg->whold ||
745             !ncfg->wsetup || !ncfg->rdr_clks || !ncfg->rwidth ||
746             !ncfg->rhold || !ncfg->rsetup) {
747                 dev_err(dev, "chip parameters not specified correctly\n");
748                 return NULL;
749         }
750
751         ncfg->use_bbt = of_get_nand_on_flash_bbt(np);
752         ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
753
754         return ncfg;
755 }
756
757 /*
758  * Probe for NAND controller
759  */
760 static int lpc32xx_nand_probe(struct platform_device *pdev)
761 {
762         struct lpc32xx_nand_host *host;
763         struct mtd_info *mtd;
764         struct nand_chip *chip;
765         struct resource *rc;
766         struct mtd_part_parser_data ppdata = {};
767         int res;
768
769         rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
770         if (rc == NULL) {
771                 dev_err(&pdev->dev, "No memory resource found for device\n");
772                 return -EBUSY;
773         }
774
775         /* Allocate memory for the device structure (and zero it) */
776         host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
777         if (!host)
778                 return -ENOMEM;
779         host->io_base_dma = rc->start;
780
781         host->io_base = devm_ioremap_resource(&pdev->dev, rc);
782         if (IS_ERR(host->io_base))
783                 return PTR_ERR(host->io_base);
784
785         if (pdev->dev.of_node)
786                 host->ncfg = lpc32xx_parse_dt(&pdev->dev);
787         if (!host->ncfg) {
788                 dev_err(&pdev->dev,
789                         "Missing or bad NAND config from device tree\n");
790                 return -ENOENT;
791         }
792         if (host->ncfg->wp_gpio == -EPROBE_DEFER)
793                 return -EPROBE_DEFER;
794         if (gpio_is_valid(host->ncfg->wp_gpio) && devm_gpio_request(&pdev->dev,
795                         host->ncfg->wp_gpio, "NAND WP")) {
796                 dev_err(&pdev->dev, "GPIO not available\n");
797                 return -EBUSY;
798         }
799         lpc32xx_wp_disable(host);
800
801         host->pdata = dev_get_platdata(&pdev->dev);
802
803         mtd = &host->mtd;
804         chip = &host->nand_chip;
805         chip->priv = host;
806         mtd->priv = chip;
807         mtd->owner = THIS_MODULE;
808         mtd->dev.parent = &pdev->dev;
809
810         /* Get NAND clock */
811         host->clk = devm_clk_get(&pdev->dev, NULL);
812         if (IS_ERR(host->clk)) {
813                 dev_err(&pdev->dev, "Clock failure\n");
814                 res = -ENOENT;
815                 goto err_exit1;
816         }
817         clk_prepare_enable(host->clk);
818
819         /* Set NAND IO addresses and command/ready functions */
820         chip->IO_ADDR_R = SLC_DATA(host->io_base);
821         chip->IO_ADDR_W = SLC_DATA(host->io_base);
822         chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl;
823         chip->dev_ready = lpc32xx_nand_device_ready;
824         chip->chip_delay = 20; /* 20us command delay time */
825
826         /* Init NAND controller */
827         lpc32xx_nand_setup(host);
828
829         platform_set_drvdata(pdev, host);
830
831         /* NAND callbacks for LPC32xx SLC hardware */
832         chip->ecc.mode = NAND_ECC_HW_SYNDROME;
833         chip->read_byte = lpc32xx_nand_read_byte;
834         chip->read_buf = lpc32xx_nand_read_buf;
835         chip->write_buf = lpc32xx_nand_write_buf;
836         chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome;
837         chip->ecc.read_page = lpc32xx_nand_read_page_syndrome;
838         chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome;
839         chip->ecc.write_page = lpc32xx_nand_write_page_syndrome;
840         chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome;
841         chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome;
842         chip->ecc.calculate = lpc32xx_nand_ecc_calculate;
843         chip->ecc.correct = nand_correct_data;
844         chip->ecc.strength = 1;
845         chip->ecc.hwctl = lpc32xx_nand_ecc_enable;
846
847         /*
848          * Allocate a large enough buffer for a single huge page plus
849          * extra space for the spare area and ECC storage area
850          */
851         host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE;
852         host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len,
853                                       GFP_KERNEL);
854         if (host->data_buf == NULL) {
855                 res = -ENOMEM;
856                 goto err_exit2;
857         }
858
859         res = lpc32xx_nand_dma_setup(host);
860         if (res) {
861                 res = -EIO;
862                 goto err_exit2;
863         }
864
865         /* Find NAND device */
866         if (nand_scan_ident(mtd, 1, NULL)) {
867                 res = -ENXIO;
868                 goto err_exit3;
869         }
870
871         /* OOB and ECC CPU and DMA work areas */
872         host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE);
873
874         /*
875          * Small page FLASH has a unique OOB layout, but large and huge
876          * page FLASH use the standard layout. Small page FLASH uses a
877          * custom BBT marker layout.
878          */
879         if (mtd->writesize <= 512)
880                 chip->ecc.layout = &lpc32xx_nand_oob_16;
881
882         /* These sizes remain the same regardless of page size */
883         chip->ecc.size = 256;
884         chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES;
885         chip->ecc.prepad = chip->ecc.postpad = 0;
886
887         /* Avoid extra scan if using BBT, setup BBT support */
888         if (host->ncfg->use_bbt) {
889                 chip->bbt_options |= NAND_BBT_USE_FLASH;
890
891                 /*
892                  * Use a custom BBT marker setup for small page FLASH that
893                  * won't interfere with the ECC layout. Large and huge page
894                  * FLASH use the standard layout.
895                  */
896                 if (mtd->writesize <= 512) {
897                         chip->bbt_td = &bbt_smallpage_main_descr;
898                         chip->bbt_md = &bbt_smallpage_mirror_descr;
899                 }
900         }
901
902         /*
903          * Fills out all the uninitialized function pointers with the defaults
904          */
905         if (nand_scan_tail(mtd)) {
906                 res = -ENXIO;
907                 goto err_exit3;
908         }
909
910         mtd->name = "nxp_lpc3220_slc";
911         ppdata.of_node = pdev->dev.of_node;
912         res = mtd_device_parse_register(mtd, NULL, &ppdata, host->ncfg->parts,
913                                         host->ncfg->num_parts);
914         if (!res)
915                 return res;
916
917         nand_release(mtd);
918
919 err_exit3:
920         dma_release_channel(host->dma_chan);
921 err_exit2:
922         clk_disable_unprepare(host->clk);
923 err_exit1:
924         lpc32xx_wp_enable(host);
925
926         return res;
927 }
928
929 /*
930  * Remove NAND device.
931  */
932 static int lpc32xx_nand_remove(struct platform_device *pdev)
933 {
934         uint32_t tmp;
935         struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
936         struct mtd_info *mtd = &host->mtd;
937
938         nand_release(mtd);
939         dma_release_channel(host->dma_chan);
940
941         /* Force CE high */
942         tmp = readl(SLC_CTRL(host->io_base));
943         tmp &= ~SLCCFG_CE_LOW;
944         writel(tmp, SLC_CTRL(host->io_base));
945
946         clk_disable_unprepare(host->clk);
947         lpc32xx_wp_enable(host);
948
949         return 0;
950 }
951
952 #ifdef CONFIG_PM
953 static int lpc32xx_nand_resume(struct platform_device *pdev)
954 {
955         struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
956
957         /* Re-enable NAND clock */
958         clk_prepare_enable(host->clk);
959
960         /* Fresh init of NAND controller */
961         lpc32xx_nand_setup(host);
962
963         /* Disable write protect */
964         lpc32xx_wp_disable(host);
965
966         return 0;
967 }
968
969 static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
970 {
971         uint32_t tmp;
972         struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
973
974         /* Force CE high */
975         tmp = readl(SLC_CTRL(host->io_base));
976         tmp &= ~SLCCFG_CE_LOW;
977         writel(tmp, SLC_CTRL(host->io_base));
978
979         /* Enable write protect for safety */
980         lpc32xx_wp_enable(host);
981
982         /* Disable clock */
983         clk_disable_unprepare(host->clk);
984
985         return 0;
986 }
987
988 #else
989 #define lpc32xx_nand_resume NULL
990 #define lpc32xx_nand_suspend NULL
991 #endif
992
993 static const struct of_device_id lpc32xx_nand_match[] = {
994         { .compatible = "nxp,lpc3220-slc" },
995         { /* sentinel */ },
996 };
997 MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
998
999 static struct platform_driver lpc32xx_nand_driver = {
1000         .probe          = lpc32xx_nand_probe,
1001         .remove         = lpc32xx_nand_remove,
1002         .resume         = lpc32xx_nand_resume,
1003         .suspend        = lpc32xx_nand_suspend,
1004         .driver         = {
1005                 .name   = LPC32XX_MODNAME,
1006                 .of_match_table = lpc32xx_nand_match,
1007         },
1008 };
1009
1010 module_platform_driver(lpc32xx_nand_driver);
1011
1012 MODULE_LICENSE("GPL");
1013 MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
1014 MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
1015 MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller");