Add the rt linux 4.1.3-rt3 as base
[kvmfornfv.git] / kernel / drivers / mtd / nand / docg4.c
1 /*
2  *  Copyright © 2012 Mike Dunn <mikedunn@newsguy.com>
3  *
4  * mtd nand driver for M-Systems DiskOnChip G4
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * Tested on the Palm Treo 680.  The G4 is also present on Toshiba Portege, Asus
12  * P526, some HTC smartphones (Wizard, Prophet, ...), O2 XDA Zinc, maybe others.
13  * Should work on these as well.  Let me know!
14  *
15  * TODO:
16  *
17  *  Mechanism for management of password-protected areas
18  *
19  *  Hamming ecc when reading oob only
20  *
21  *  According to the M-Sys documentation, this device is also available in a
22  *  "dual-die" configuration having a 256MB capacity, but no mechanism for
23  *  detecting this variant is documented.  Currently this driver assumes 128MB
24  *  capacity.
25  *
26  *  Support for multiple cascaded devices ("floors").  Not sure which gadgets
27  *  contain multiple G4s in a cascaded configuration, if any.
28  *
29  */
30
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/string.h>
35 #include <linux/sched.h>
36 #include <linux/delay.h>
37 #include <linux/module.h>
38 #include <linux/export.h>
39 #include <linux/platform_device.h>
40 #include <linux/io.h>
41 #include <linux/bitops.h>
42 #include <linux/mtd/partitions.h>
43 #include <linux/mtd/mtd.h>
44 #include <linux/mtd/nand.h>
45 #include <linux/bch.h>
46 #include <linux/bitrev.h>
47 #include <linux/jiffies.h>
48
49 /*
50  * In "reliable mode" consecutive 2k pages are used in parallel (in some
51  * fashion) to store the same data.  The data can be read back from the
52  * even-numbered pages in the normal manner; odd-numbered pages will appear to
53  * contain junk.  Systems that boot from the docg4 typically write the secondary
54  * program loader (SPL) code in this mode.  The SPL is loaded by the initial
55  * program loader (IPL, stored in the docg4's 2k NOR-like region that is mapped
56  * to the reset vector address).  This module parameter enables you to use this
57  * driver to write the SPL.  When in this mode, no more than 2k of data can be
58  * written at a time, because the addresses do not increment in the normal
59  * manner, and the starting offset must be within an even-numbered 2k region;
60  * i.e., invalid starting offsets are 0x800, 0xa00, 0xc00, 0xe00, 0x1800,
61  * 0x1a00, ...  Reliable mode is a special case and should not be used unless
62  * you know what you're doing.
63  */
64 static bool reliable_mode;
65 module_param(reliable_mode, bool, 0);
66 MODULE_PARM_DESC(reliable_mode, "pages are programmed in reliable mode");
67
68 /*
69  * You'll want to ignore badblocks if you're reading a partition that contains
70  * data written by the TrueFFS library (i.e., by PalmOS, Windows, etc), since
71  * it does not use mtd nand's method for marking bad blocks (using oob area).
72  * This will also skip the check of the "page written" flag.
73  */
74 static bool ignore_badblocks;
75 module_param(ignore_badblocks, bool, 0);
76 MODULE_PARM_DESC(ignore_badblocks, "no badblock checking performed");
77
78 struct docg4_priv {
79         struct mtd_info *mtd;
80         struct device *dev;
81         void __iomem *virtadr;
82         int status;
83         struct {
84                 unsigned int command;
85                 int column;
86                 int page;
87         } last_command;
88         uint8_t oob_buf[16];
89         uint8_t ecc_buf[7];
90         int oob_page;
91         struct bch_control *bch;
92 };
93
94 /*
95  * Defines prefixed with DOCG4 are unique to the diskonchip G4.  All others are
96  * shared with other diskonchip devices (P3, G3 at least).
97  *
98  * Functions with names prefixed with docg4_ are mtd / nand interface functions
99  * (though they may also be called internally).  All others are internal.
100  */
101
102 #define DOC_IOSPACE_DATA                0x0800
103
104 /* register offsets */
105 #define DOC_CHIPID                      0x1000
106 #define DOC_DEVICESELECT                0x100a
107 #define DOC_ASICMODE                    0x100c
108 #define DOC_DATAEND                     0x101e
109 #define DOC_NOP                         0x103e
110
111 #define DOC_FLASHSEQUENCE               0x1032
112 #define DOC_FLASHCOMMAND                0x1034
113 #define DOC_FLASHADDRESS                0x1036
114 #define DOC_FLASHCONTROL                0x1038
115 #define DOC_ECCCONF0                    0x1040
116 #define DOC_ECCCONF1                    0x1042
117 #define DOC_HAMMINGPARITY               0x1046
118 #define DOC_BCH_SYNDROM(idx)            (0x1048 + idx)
119
120 #define DOC_ASICMODECONFIRM             0x1072
121 #define DOC_CHIPID_INV                  0x1074
122 #define DOC_POWERMODE                   0x107c
123
124 #define DOCG4_MYSTERY_REG               0x1050
125
126 /* apparently used only to write oob bytes 6 and 7 */
127 #define DOCG4_OOB_6_7                   0x1052
128
129 /* DOC_FLASHSEQUENCE register commands */
130 #define DOC_SEQ_RESET                   0x00
131 #define DOCG4_SEQ_PAGE_READ             0x03
132 #define DOCG4_SEQ_FLUSH                 0x29
133 #define DOCG4_SEQ_PAGEWRITE             0x16
134 #define DOCG4_SEQ_PAGEPROG              0x1e
135 #define DOCG4_SEQ_BLOCKERASE            0x24
136 #define DOCG4_SEQ_SETMODE               0x45
137
138 /* DOC_FLASHCOMMAND register commands */
139 #define DOCG4_CMD_PAGE_READ             0x00
140 #define DOC_CMD_ERASECYCLE2             0xd0
141 #define DOCG4_CMD_FLUSH                 0x70
142 #define DOCG4_CMD_READ2                 0x30
143 #define DOC_CMD_PROG_BLOCK_ADDR         0x60
144 #define DOCG4_CMD_PAGEWRITE             0x80
145 #define DOC_CMD_PROG_CYCLE2             0x10
146 #define DOCG4_CMD_FAST_MODE             0xa3 /* functionality guessed */
147 #define DOC_CMD_RELIABLE_MODE           0x22
148 #define DOC_CMD_RESET                   0xff
149
150 /* DOC_POWERMODE register bits */
151 #define DOC_POWERDOWN_READY             0x80
152
153 /* DOC_FLASHCONTROL register bits */
154 #define DOC_CTRL_CE                     0x10
155 #define DOC_CTRL_UNKNOWN                0x40
156 #define DOC_CTRL_FLASHREADY             0x01
157
158 /* DOC_ECCCONF0 register bits */
159 #define DOC_ECCCONF0_READ_MODE          0x8000
160 #define DOC_ECCCONF0_UNKNOWN            0x2000
161 #define DOC_ECCCONF0_ECC_ENABLE         0x1000
162 #define DOC_ECCCONF0_DATA_BYTES_MASK    0x07ff
163
164 /* DOC_ECCCONF1 register bits */
165 #define DOC_ECCCONF1_BCH_SYNDROM_ERR    0x80
166 #define DOC_ECCCONF1_ECC_ENABLE         0x07
167 #define DOC_ECCCONF1_PAGE_IS_WRITTEN    0x20
168
169 /* DOC_ASICMODE register bits */
170 #define DOC_ASICMODE_RESET              0x00
171 #define DOC_ASICMODE_NORMAL             0x01
172 #define DOC_ASICMODE_POWERDOWN          0x02
173 #define DOC_ASICMODE_MDWREN             0x04
174 #define DOC_ASICMODE_BDETCT_RESET       0x08
175 #define DOC_ASICMODE_RSTIN_RESET        0x10
176 #define DOC_ASICMODE_RAM_WE             0x20
177
178 /* good status values read after read/write/erase operations */
179 #define DOCG4_PROGSTATUS_GOOD          0x51
180 #define DOCG4_PROGSTATUS_GOOD_2        0xe0
181
182 /*
183  * On read operations (page and oob-only), the first byte read from I/O reg is a
184  * status.  On error, it reads 0x73; otherwise, it reads either 0x71 (first read
185  * after reset only) or 0x51, so bit 1 is presumed to be an error indicator.
186  */
187 #define DOCG4_READ_ERROR           0x02 /* bit 1 indicates read error */
188
189 /* anatomy of the device */
190 #define DOCG4_CHIP_SIZE        0x8000000
191 #define DOCG4_PAGE_SIZE        0x200
192 #define DOCG4_PAGES_PER_BLOCK  0x200
193 #define DOCG4_BLOCK_SIZE       (DOCG4_PAGES_PER_BLOCK * DOCG4_PAGE_SIZE)
194 #define DOCG4_NUMBLOCKS        (DOCG4_CHIP_SIZE / DOCG4_BLOCK_SIZE)
195 #define DOCG4_OOB_SIZE         0x10
196 #define DOCG4_CHIP_SHIFT       27    /* log_2(DOCG4_CHIP_SIZE) */
197 #define DOCG4_PAGE_SHIFT       9     /* log_2(DOCG4_PAGE_SIZE) */
198 #define DOCG4_ERASE_SHIFT      18    /* log_2(DOCG4_BLOCK_SIZE) */
199
200 /* all but the last byte is included in ecc calculation */
201 #define DOCG4_BCH_SIZE         (DOCG4_PAGE_SIZE + DOCG4_OOB_SIZE - 1)
202
203 #define DOCG4_USERDATA_LEN     520 /* 512 byte page plus 8 oob avail to user */
204
205 /* expected values from the ID registers */
206 #define DOCG4_IDREG1_VALUE     0x0400
207 #define DOCG4_IDREG2_VALUE     0xfbff
208
209 /* primitive polynomial used to build the Galois field used by hw ecc gen */
210 #define DOCG4_PRIMITIVE_POLY   0x4443
211
212 #define DOCG4_M                14  /* Galois field is of order 2^14 */
213 #define DOCG4_T                4   /* BCH alg corrects up to 4 bit errors */
214
215 #define DOCG4_FACTORY_BBT_PAGE 16 /* page where read-only factory bbt lives */
216 #define DOCG4_REDUNDANT_BBT_PAGE 24 /* page where redundant factory bbt lives */
217
218 /*
219  * Bytes 0, 1 are used as badblock marker.
220  * Bytes 2 - 6 are available to the user.
221  * Byte 7 is hamming ecc for first 7 oob bytes only.
222  * Bytes 8 - 14 are hw-generated ecc covering entire page + oob bytes 0 - 14.
223  * Byte 15 (the last) is used by the driver as a "page written" flag.
224  */
225 static struct nand_ecclayout docg4_oobinfo = {
226         .eccbytes = 9,
227         .eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15},
228         .oobavail = 5,
229         .oobfree = { {.offset = 2, .length = 5} }
230 };
231
232 /*
233  * The device has a nop register which M-Sys claims is for the purpose of
234  * inserting precise delays.  But beware; at least some operations fail if the
235  * nop writes are replaced with a generic delay!
236  */
237 static inline void write_nop(void __iomem *docptr)
238 {
239         writew(0, docptr + DOC_NOP);
240 }
241
242 static void docg4_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
243 {
244         int i;
245         struct nand_chip *nand = mtd->priv;
246         uint16_t *p = (uint16_t *) buf;
247         len >>= 1;
248
249         for (i = 0; i < len; i++)
250                 p[i] = readw(nand->IO_ADDR_R);
251 }
252
253 static void docg4_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
254 {
255         int i;
256         struct nand_chip *nand = mtd->priv;
257         uint16_t *p = (uint16_t *) buf;
258         len >>= 1;
259
260         for (i = 0; i < len; i++)
261                 writew(p[i], nand->IO_ADDR_W);
262 }
263
264 static int poll_status(struct docg4_priv *doc)
265 {
266         /*
267          * Busy-wait for the FLASHREADY bit to be set in the FLASHCONTROL
268          * register.  Operations known to take a long time (e.g., block erase)
269          * should sleep for a while before calling this.
270          */
271
272         uint16_t flash_status;
273         unsigned long timeo;
274         void __iomem *docptr = doc->virtadr;
275
276         dev_dbg(doc->dev, "%s...\n", __func__);
277
278         /* hardware quirk requires reading twice initially */
279         flash_status = readw(docptr + DOC_FLASHCONTROL);
280
281         timeo = jiffies + msecs_to_jiffies(200); /* generous timeout */
282         do {
283                 cpu_relax();
284                 flash_status = readb(docptr + DOC_FLASHCONTROL);
285         } while (!(flash_status & DOC_CTRL_FLASHREADY) &&
286                  time_before(jiffies, timeo));
287
288         if (unlikely(!(flash_status & DOC_CTRL_FLASHREADY))) {
289                 dev_err(doc->dev, "%s: timed out!\n", __func__);
290                 return NAND_STATUS_FAIL;
291         }
292
293         return 0;
294 }
295
296
297 static int docg4_wait(struct mtd_info *mtd, struct nand_chip *nand)
298 {
299
300         struct docg4_priv *doc = nand->priv;
301         int status = NAND_STATUS_WP;       /* inverse logic?? */
302         dev_dbg(doc->dev, "%s...\n", __func__);
303
304         /* report any previously unreported error */
305         if (doc->status) {
306                 status |= doc->status;
307                 doc->status = 0;
308                 return status;
309         }
310
311         status |= poll_status(doc);
312         return status;
313 }
314
315 static void docg4_select_chip(struct mtd_info *mtd, int chip)
316 {
317         /*
318          * Select among multiple cascaded chips ("floors").  Multiple floors are
319          * not yet supported, so the only valid non-negative value is 0.
320          */
321         struct nand_chip *nand = mtd->priv;
322         struct docg4_priv *doc = nand->priv;
323         void __iomem *docptr = doc->virtadr;
324
325         dev_dbg(doc->dev, "%s: chip %d\n", __func__, chip);
326
327         if (chip < 0)
328                 return;         /* deselected */
329
330         if (chip > 0)
331                 dev_warn(doc->dev, "multiple floors currently unsupported\n");
332
333         writew(0, docptr + DOC_DEVICESELECT);
334 }
335
336 static void reset(struct mtd_info *mtd)
337 {
338         /* full device reset */
339
340         struct nand_chip *nand = mtd->priv;
341         struct docg4_priv *doc = nand->priv;
342         void __iomem *docptr = doc->virtadr;
343
344         writew(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN,
345                docptr + DOC_ASICMODE);
346         writew(~(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN),
347                docptr + DOC_ASICMODECONFIRM);
348         write_nop(docptr);
349
350         writew(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN,
351                docptr + DOC_ASICMODE);
352         writew(~(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN),
353                docptr + DOC_ASICMODECONFIRM);
354
355         writew(DOC_ECCCONF1_ECC_ENABLE, docptr + DOC_ECCCONF1);
356
357         poll_status(doc);
358 }
359
360 static void read_hw_ecc(void __iomem *docptr, uint8_t *ecc_buf)
361 {
362         /* read the 7 hw-generated ecc bytes */
363
364         int i;
365         for (i = 0; i < 7; i++) { /* hw quirk; read twice */
366                 ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i));
367                 ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i));
368         }
369 }
370
371 static int correct_data(struct mtd_info *mtd, uint8_t *buf, int page)
372 {
373         /*
374          * Called after a page read when hardware reports bitflips.
375          * Up to four bitflips can be corrected.
376          */
377
378         struct nand_chip *nand = mtd->priv;
379         struct docg4_priv *doc = nand->priv;
380         void __iomem *docptr = doc->virtadr;
381         int i, numerrs, errpos[4];
382         const uint8_t blank_read_hwecc[8] = {
383                 0xcf, 0x72, 0xfc, 0x1b, 0xa9, 0xc7, 0xb9, 0 };
384
385         read_hw_ecc(docptr, doc->ecc_buf); /* read 7 hw-generated ecc bytes */
386
387         /* check if read error is due to a blank page */
388         if (!memcmp(doc->ecc_buf, blank_read_hwecc, 7))
389                 return 0;       /* yes */
390
391         /* skip additional check of "written flag" if ignore_badblocks */
392         if (ignore_badblocks == false) {
393
394                 /*
395                  * If the hw ecc bytes are not those of a blank page, there's
396                  * still a chance that the page is blank, but was read with
397                  * errors.  Check the "written flag" in last oob byte, which
398                  * is set to zero when a page is written.  If more than half
399                  * the bits are set, assume a blank page.  Unfortunately, the
400                  * bit flips(s) are not reported in stats.
401                  */
402
403                 if (nand->oob_poi[15]) {
404                         int bit, numsetbits = 0;
405                         unsigned long written_flag = nand->oob_poi[15];
406                         for_each_set_bit(bit, &written_flag, 8)
407                                 numsetbits++;
408                         if (numsetbits > 4) { /* assume blank */
409                                 dev_warn(doc->dev,
410                                          "error(s) in blank page "
411                                          "at offset %08x\n",
412                                          page * DOCG4_PAGE_SIZE);
413                                 return 0;
414                         }
415                 }
416         }
417
418         /*
419          * The hardware ecc unit produces oob_ecc ^ calc_ecc.  The kernel's bch
420          * algorithm is used to decode this.  However the hw operates on page
421          * data in a bit order that is the reverse of that of the bch alg,
422          * requiring that the bits be reversed on the result.  Thanks to Ivan
423          * Djelic for his analysis!
424          */
425         for (i = 0; i < 7; i++)
426                 doc->ecc_buf[i] = bitrev8(doc->ecc_buf[i]);
427
428         numerrs = decode_bch(doc->bch, NULL, DOCG4_USERDATA_LEN, NULL,
429                              doc->ecc_buf, NULL, errpos);
430
431         if (numerrs == -EBADMSG) {
432                 dev_warn(doc->dev, "uncorrectable errors at offset %08x\n",
433                          page * DOCG4_PAGE_SIZE);
434                 return -EBADMSG;
435         }
436
437         BUG_ON(numerrs < 0);    /* -EINVAL, or anything other than -EBADMSG */
438
439         /* undo last step in BCH alg (modulo mirroring not needed) */
440         for (i = 0; i < numerrs; i++)
441                 errpos[i] = (errpos[i] & ~7)|(7-(errpos[i] & 7));
442
443         /* fix the errors */
444         for (i = 0; i < numerrs; i++) {
445
446                 /* ignore if error within oob ecc bytes */
447                 if (errpos[i] > DOCG4_USERDATA_LEN * 8)
448                         continue;
449
450                 /* if error within oob area preceeding ecc bytes... */
451                 if (errpos[i] > DOCG4_PAGE_SIZE * 8)
452                         change_bit(errpos[i] - DOCG4_PAGE_SIZE * 8,
453                                    (unsigned long *)nand->oob_poi);
454
455                 else    /* error in page data */
456                         change_bit(errpos[i], (unsigned long *)buf);
457         }
458
459         dev_notice(doc->dev, "%d error(s) corrected at offset %08x\n",
460                    numerrs, page * DOCG4_PAGE_SIZE);
461
462         return numerrs;
463 }
464
465 static uint8_t docg4_read_byte(struct mtd_info *mtd)
466 {
467         struct nand_chip *nand = mtd->priv;
468         struct docg4_priv *doc = nand->priv;
469
470         dev_dbg(doc->dev, "%s\n", __func__);
471
472         if (doc->last_command.command == NAND_CMD_STATUS) {
473                 int status;
474
475                 /*
476                  * Previous nand command was status request, so nand
477                  * infrastructure code expects to read the status here.  If an
478                  * error occurred in a previous operation, report it.
479                  */
480                 doc->last_command.command = 0;
481
482                 if (doc->status) {
483                         status = doc->status;
484                         doc->status = 0;
485                 }
486
487                 /* why is NAND_STATUS_WP inverse logic?? */
488                 else
489                         status = NAND_STATUS_WP | NAND_STATUS_READY;
490
491                 return status;
492         }
493
494         dev_warn(doc->dev, "unexpected call to read_byte()\n");
495
496         return 0;
497 }
498
499 static void write_addr(struct docg4_priv *doc, uint32_t docg4_addr)
500 {
501         /* write the four address bytes packed in docg4_addr to the device */
502
503         void __iomem *docptr = doc->virtadr;
504         writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
505         docg4_addr >>= 8;
506         writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
507         docg4_addr >>= 8;
508         writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
509         docg4_addr >>= 8;
510         writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
511 }
512
513 static int read_progstatus(struct docg4_priv *doc)
514 {
515         /*
516          * This apparently checks the status of programming.  Done after an
517          * erasure, and after page data is written.  On error, the status is
518          * saved, to be later retrieved by the nand infrastructure code.
519          */
520         void __iomem *docptr = doc->virtadr;
521
522         /* status is read from the I/O reg */
523         uint16_t status1 = readw(docptr + DOC_IOSPACE_DATA);
524         uint16_t status2 = readw(docptr + DOC_IOSPACE_DATA);
525         uint16_t status3 = readw(docptr + DOCG4_MYSTERY_REG);
526
527         dev_dbg(doc->dev, "docg4: %s: %02x %02x %02x\n",
528               __func__, status1, status2, status3);
529
530         if (status1 != DOCG4_PROGSTATUS_GOOD
531             || status2 != DOCG4_PROGSTATUS_GOOD_2
532             || status3 != DOCG4_PROGSTATUS_GOOD_2) {
533                 doc->status = NAND_STATUS_FAIL;
534                 dev_warn(doc->dev, "read_progstatus failed: "
535                          "%02x, %02x, %02x\n", status1, status2, status3);
536                 return -EIO;
537         }
538         return 0;
539 }
540
541 static int pageprog(struct mtd_info *mtd)
542 {
543         /*
544          * Final step in writing a page.  Writes the contents of its
545          * internal buffer out to the flash array, or some such.
546          */
547
548         struct nand_chip *nand = mtd->priv;
549         struct docg4_priv *doc = nand->priv;
550         void __iomem *docptr = doc->virtadr;
551         int retval = 0;
552
553         dev_dbg(doc->dev, "docg4: %s\n", __func__);
554
555         writew(DOCG4_SEQ_PAGEPROG, docptr + DOC_FLASHSEQUENCE);
556         writew(DOC_CMD_PROG_CYCLE2, docptr + DOC_FLASHCOMMAND);
557         write_nop(docptr);
558         write_nop(docptr);
559
560         /* Just busy-wait; usleep_range() slows things down noticeably. */
561         poll_status(doc);
562
563         writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE);
564         writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND);
565         writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0);
566         write_nop(docptr);
567         write_nop(docptr);
568         write_nop(docptr);
569         write_nop(docptr);
570         write_nop(docptr);
571
572         retval = read_progstatus(doc);
573         writew(0, docptr + DOC_DATAEND);
574         write_nop(docptr);
575         poll_status(doc);
576         write_nop(docptr);
577
578         return retval;
579 }
580
581 static void sequence_reset(struct mtd_info *mtd)
582 {
583         /* common starting sequence for all operations */
584
585         struct nand_chip *nand = mtd->priv;
586         struct docg4_priv *doc = nand->priv;
587         void __iomem *docptr = doc->virtadr;
588
589         writew(DOC_CTRL_UNKNOWN | DOC_CTRL_CE, docptr + DOC_FLASHCONTROL);
590         writew(DOC_SEQ_RESET, docptr + DOC_FLASHSEQUENCE);
591         writew(DOC_CMD_RESET, docptr + DOC_FLASHCOMMAND);
592         write_nop(docptr);
593         write_nop(docptr);
594         poll_status(doc);
595         write_nop(docptr);
596 }
597
598 static void read_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr)
599 {
600         /* first step in reading a page */
601
602         struct nand_chip *nand = mtd->priv;
603         struct docg4_priv *doc = nand->priv;
604         void __iomem *docptr = doc->virtadr;
605
606         dev_dbg(doc->dev,
607               "docg4: %s: g4 page %08x\n", __func__, docg4_addr);
608
609         sequence_reset(mtd);
610
611         writew(DOCG4_SEQ_PAGE_READ, docptr + DOC_FLASHSEQUENCE);
612         writew(DOCG4_CMD_PAGE_READ, docptr + DOC_FLASHCOMMAND);
613         write_nop(docptr);
614
615         write_addr(doc, docg4_addr);
616
617         write_nop(docptr);
618         writew(DOCG4_CMD_READ2, docptr + DOC_FLASHCOMMAND);
619         write_nop(docptr);
620         write_nop(docptr);
621
622         poll_status(doc);
623 }
624
625 static void write_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr)
626 {
627         /* first step in writing a page */
628
629         struct nand_chip *nand = mtd->priv;
630         struct docg4_priv *doc = nand->priv;
631         void __iomem *docptr = doc->virtadr;
632
633         dev_dbg(doc->dev,
634               "docg4: %s: g4 addr: %x\n", __func__, docg4_addr);
635         sequence_reset(mtd);
636
637         if (unlikely(reliable_mode)) {
638                 writew(DOCG4_SEQ_SETMODE, docptr + DOC_FLASHSEQUENCE);
639                 writew(DOCG4_CMD_FAST_MODE, docptr + DOC_FLASHCOMMAND);
640                 writew(DOC_CMD_RELIABLE_MODE, docptr + DOC_FLASHCOMMAND);
641                 write_nop(docptr);
642         }
643
644         writew(DOCG4_SEQ_PAGEWRITE, docptr + DOC_FLASHSEQUENCE);
645         writew(DOCG4_CMD_PAGEWRITE, docptr + DOC_FLASHCOMMAND);
646         write_nop(docptr);
647         write_addr(doc, docg4_addr);
648         write_nop(docptr);
649         write_nop(docptr);
650         poll_status(doc);
651 }
652
653 static uint32_t mtd_to_docg4_address(int page, int column)
654 {
655         /*
656          * Convert mtd address to format used by the device, 32 bit packed.
657          *
658          * Some notes on G4 addressing... The M-Sys documentation on this device
659          * claims that pages are 2K in length, and indeed, the format of the
660          * address used by the device reflects that.  But within each page are
661          * four 512 byte "sub-pages", each with its own oob data that is
662          * read/written immediately after the 512 bytes of page data.  This oob
663          * data contains the ecc bytes for the preceeding 512 bytes.
664          *
665          * Rather than tell the mtd nand infrastructure that page size is 2k,
666          * with four sub-pages each, we engage in a little subterfuge and tell
667          * the infrastructure code that pages are 512 bytes in size.  This is
668          * done because during the course of reverse-engineering the device, I
669          * never observed an instance where an entire 2K "page" was read or
670          * written as a unit.  Each "sub-page" is always addressed individually,
671          * its data read/written, and ecc handled before the next "sub-page" is
672          * addressed.
673          *
674          * This requires us to convert addresses passed by the mtd nand
675          * infrastructure code to those used by the device.
676          *
677          * The address that is written to the device consists of four bytes: the
678          * first two are the 2k page number, and the second is the index into
679          * the page.  The index is in terms of 16-bit half-words and includes
680          * the preceeding oob data, so e.g., the index into the second
681          * "sub-page" is 0x108, and the full device address of the start of mtd
682          * page 0x201 is 0x00800108.
683          */
684         int g4_page = page / 4;                       /* device's 2K page */
685         int g4_index = (page % 4) * 0x108 + column/2; /* offset into page */
686         return (g4_page << 16) | g4_index;            /* pack */
687 }
688
689 static void docg4_command(struct mtd_info *mtd, unsigned command, int column,
690                           int page_addr)
691 {
692         /* handle standard nand commands */
693
694         struct nand_chip *nand = mtd->priv;
695         struct docg4_priv *doc = nand->priv;
696         uint32_t g4_addr = mtd_to_docg4_address(page_addr, column);
697
698         dev_dbg(doc->dev, "%s %x, page_addr=%x, column=%x\n",
699               __func__, command, page_addr, column);
700
701         /*
702          * Save the command and its arguments.  This enables emulation of
703          * standard flash devices, and also some optimizations.
704          */
705         doc->last_command.command = command;
706         doc->last_command.column = column;
707         doc->last_command.page = page_addr;
708
709         switch (command) {
710
711         case NAND_CMD_RESET:
712                 reset(mtd);
713                 break;
714
715         case NAND_CMD_READ0:
716                 read_page_prologue(mtd, g4_addr);
717                 break;
718
719         case NAND_CMD_STATUS:
720                 /* next call to read_byte() will expect a status */
721                 break;
722
723         case NAND_CMD_SEQIN:
724                 if (unlikely(reliable_mode)) {
725                         uint16_t g4_page = g4_addr >> 16;
726
727                         /* writes to odd-numbered 2k pages are invalid */
728                         if (g4_page & 0x01)
729                                 dev_warn(doc->dev,
730                                          "invalid reliable mode address\n");
731                 }
732
733                 write_page_prologue(mtd, g4_addr);
734
735                 /* hack for deferred write of oob bytes */
736                 if (doc->oob_page == page_addr)
737                         memcpy(nand->oob_poi, doc->oob_buf, 16);
738                 break;
739
740         case NAND_CMD_PAGEPROG:
741                 pageprog(mtd);
742                 break;
743
744         /* we don't expect these, based on review of nand_base.c */
745         case NAND_CMD_READOOB:
746         case NAND_CMD_READID:
747         case NAND_CMD_ERASE1:
748         case NAND_CMD_ERASE2:
749                 dev_warn(doc->dev, "docg4_command: "
750                          "unexpected nand command 0x%x\n", command);
751                 break;
752
753         }
754 }
755
756 static int read_page(struct mtd_info *mtd, struct nand_chip *nand,
757                      uint8_t *buf, int page, bool use_ecc)
758 {
759         struct docg4_priv *doc = nand->priv;
760         void __iomem *docptr = doc->virtadr;
761         uint16_t status, edc_err, *buf16;
762         int bits_corrected = 0;
763
764         dev_dbg(doc->dev, "%s: page %08x\n", __func__, page);
765
766         writew(DOC_ECCCONF0_READ_MODE |
767                DOC_ECCCONF0_ECC_ENABLE |
768                DOC_ECCCONF0_UNKNOWN |
769                DOCG4_BCH_SIZE,
770                docptr + DOC_ECCCONF0);
771         write_nop(docptr);
772         write_nop(docptr);
773         write_nop(docptr);
774         write_nop(docptr);
775         write_nop(docptr);
776
777         /* the 1st byte from the I/O reg is a status; the rest is page data */
778         status = readw(docptr + DOC_IOSPACE_DATA);
779         if (status & DOCG4_READ_ERROR) {
780                 dev_err(doc->dev,
781                         "docg4_read_page: bad status: 0x%02x\n", status);
782                 writew(0, docptr + DOC_DATAEND);
783                 return -EIO;
784         }
785
786         dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status);
787
788         docg4_read_buf(mtd, buf, DOCG4_PAGE_SIZE); /* read the page data */
789
790         /* this device always reads oob after page data */
791         /* first 14 oob bytes read from I/O reg */
792         docg4_read_buf(mtd, nand->oob_poi, 14);
793
794         /* last 2 read from another reg */
795         buf16 = (uint16_t *)(nand->oob_poi + 14);
796         *buf16 = readw(docptr + DOCG4_MYSTERY_REG);
797
798         write_nop(docptr);
799
800         if (likely(use_ecc == true)) {
801
802                 /* read the register that tells us if bitflip(s) detected  */
803                 edc_err = readw(docptr + DOC_ECCCONF1);
804                 edc_err = readw(docptr + DOC_ECCCONF1);
805                 dev_dbg(doc->dev, "%s: edc_err = 0x%02x\n", __func__, edc_err);
806
807                 /* If bitflips are reported, attempt to correct with ecc */
808                 if (edc_err & DOC_ECCCONF1_BCH_SYNDROM_ERR) {
809                         bits_corrected = correct_data(mtd, buf, page);
810                         if (bits_corrected == -EBADMSG)
811                                 mtd->ecc_stats.failed++;
812                         else
813                                 mtd->ecc_stats.corrected += bits_corrected;
814                 }
815         }
816
817         writew(0, docptr + DOC_DATAEND);
818         if (bits_corrected == -EBADMSG)   /* uncorrectable errors */
819                 return 0;
820         return bits_corrected;
821 }
822
823
824 static int docg4_read_page_raw(struct mtd_info *mtd, struct nand_chip *nand,
825                                uint8_t *buf, int oob_required, int page)
826 {
827         return read_page(mtd, nand, buf, page, false);
828 }
829
830 static int docg4_read_page(struct mtd_info *mtd, struct nand_chip *nand,
831                            uint8_t *buf, int oob_required, int page)
832 {
833         return read_page(mtd, nand, buf, page, true);
834 }
835
836 static int docg4_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
837                           int page)
838 {
839         struct docg4_priv *doc = nand->priv;
840         void __iomem *docptr = doc->virtadr;
841         uint16_t status;
842
843         dev_dbg(doc->dev, "%s: page %x\n", __func__, page);
844
845         docg4_command(mtd, NAND_CMD_READ0, nand->ecc.size, page);
846
847         writew(DOC_ECCCONF0_READ_MODE | DOCG4_OOB_SIZE, docptr + DOC_ECCCONF0);
848         write_nop(docptr);
849         write_nop(docptr);
850         write_nop(docptr);
851         write_nop(docptr);
852         write_nop(docptr);
853
854         /* the 1st byte from the I/O reg is a status; the rest is oob data */
855         status = readw(docptr + DOC_IOSPACE_DATA);
856         if (status & DOCG4_READ_ERROR) {
857                 dev_warn(doc->dev,
858                          "docg4_read_oob failed: status = 0x%02x\n", status);
859                 return -EIO;
860         }
861
862         dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status);
863
864         docg4_read_buf(mtd, nand->oob_poi, 16);
865
866         write_nop(docptr);
867         write_nop(docptr);
868         write_nop(docptr);
869         writew(0, docptr + DOC_DATAEND);
870         write_nop(docptr);
871
872         return 0;
873 }
874
875 static int docg4_erase_block(struct mtd_info *mtd, int page)
876 {
877         struct nand_chip *nand = mtd->priv;
878         struct docg4_priv *doc = nand->priv;
879         void __iomem *docptr = doc->virtadr;
880         uint16_t g4_page;
881
882         dev_dbg(doc->dev, "%s: page %04x\n", __func__, page);
883
884         sequence_reset(mtd);
885
886         writew(DOCG4_SEQ_BLOCKERASE, docptr + DOC_FLASHSEQUENCE);
887         writew(DOC_CMD_PROG_BLOCK_ADDR, docptr + DOC_FLASHCOMMAND);
888         write_nop(docptr);
889
890         /* only 2 bytes of address are written to specify erase block */
891         g4_page = (uint16_t)(page / 4);  /* to g4's 2k page addressing */
892         writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS);
893         g4_page >>= 8;
894         writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS);
895         write_nop(docptr);
896
897         /* start the erasure */
898         writew(DOC_CMD_ERASECYCLE2, docptr + DOC_FLASHCOMMAND);
899         write_nop(docptr);
900         write_nop(docptr);
901
902         usleep_range(500, 1000); /* erasure is long; take a snooze */
903         poll_status(doc);
904         writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE);
905         writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND);
906         writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0);
907         write_nop(docptr);
908         write_nop(docptr);
909         write_nop(docptr);
910         write_nop(docptr);
911         write_nop(docptr);
912
913         read_progstatus(doc);
914
915         writew(0, docptr + DOC_DATAEND);
916         write_nop(docptr);
917         poll_status(doc);
918         write_nop(docptr);
919
920         return nand->waitfunc(mtd, nand);
921 }
922
923 static int write_page(struct mtd_info *mtd, struct nand_chip *nand,
924                        const uint8_t *buf, bool use_ecc)
925 {
926         struct docg4_priv *doc = nand->priv;
927         void __iomem *docptr = doc->virtadr;
928         uint8_t ecc_buf[8];
929
930         dev_dbg(doc->dev, "%s...\n", __func__);
931
932         writew(DOC_ECCCONF0_ECC_ENABLE |
933                DOC_ECCCONF0_UNKNOWN |
934                DOCG4_BCH_SIZE,
935                docptr + DOC_ECCCONF0);
936         write_nop(docptr);
937
938         /* write the page data */
939         docg4_write_buf16(mtd, buf, DOCG4_PAGE_SIZE);
940
941         /* oob bytes 0 through 5 are written to I/O reg */
942         docg4_write_buf16(mtd, nand->oob_poi, 6);
943
944         /* oob byte 6 written to a separate reg */
945         writew(nand->oob_poi[6], docptr + DOCG4_OOB_6_7);
946
947         write_nop(docptr);
948         write_nop(docptr);
949
950         /* write hw-generated ecc bytes to oob */
951         if (likely(use_ecc == true)) {
952                 /* oob byte 7 is hamming code */
953                 uint8_t hamming = readb(docptr + DOC_HAMMINGPARITY);
954                 hamming = readb(docptr + DOC_HAMMINGPARITY); /* 2nd read */
955                 writew(hamming, docptr + DOCG4_OOB_6_7);
956                 write_nop(docptr);
957
958                 /* read the 7 bch bytes from ecc regs */
959                 read_hw_ecc(docptr, ecc_buf);
960                 ecc_buf[7] = 0;         /* clear the "page written" flag */
961         }
962
963         /* write user-supplied bytes to oob */
964         else {
965                 writew(nand->oob_poi[7], docptr + DOCG4_OOB_6_7);
966                 write_nop(docptr);
967                 memcpy(ecc_buf, &nand->oob_poi[8], 8);
968         }
969
970         docg4_write_buf16(mtd, ecc_buf, 8);
971         write_nop(docptr);
972         write_nop(docptr);
973         writew(0, docptr + DOC_DATAEND);
974         write_nop(docptr);
975
976         return 0;
977 }
978
979 static int docg4_write_page_raw(struct mtd_info *mtd, struct nand_chip *nand,
980                                  const uint8_t *buf, int oob_required)
981 {
982         return write_page(mtd, nand, buf, false);
983 }
984
985 static int docg4_write_page(struct mtd_info *mtd, struct nand_chip *nand,
986                              const uint8_t *buf, int oob_required)
987 {
988         return write_page(mtd, nand, buf, true);
989 }
990
991 static int docg4_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
992                            int page)
993 {
994         /*
995          * Writing oob-only is not really supported, because MLC nand must write
996          * oob bytes at the same time as page data.  Nonetheless, we save the
997          * oob buffer contents here, and then write it along with the page data
998          * if the same page is subsequently written.  This allows user space
999          * utilities that write the oob data prior to the page data to work
1000          * (e.g., nandwrite).  The disdvantage is that, if the intention was to
1001          * write oob only, the operation is quietly ignored.  Also, oob can get
1002          * corrupted if two concurrent processes are running nandwrite.
1003          */
1004
1005         /* note that bytes 7..14 are hw generated hamming/ecc and overwritten */
1006         struct docg4_priv *doc = nand->priv;
1007         doc->oob_page = page;
1008         memcpy(doc->oob_buf, nand->oob_poi, 16);
1009         return 0;
1010 }
1011
1012 static int __init read_factory_bbt(struct mtd_info *mtd)
1013 {
1014         /*
1015          * The device contains a read-only factory bad block table.  Read it and
1016          * update the memory-based bbt accordingly.
1017          */
1018
1019         struct nand_chip *nand = mtd->priv;
1020         struct docg4_priv *doc = nand->priv;
1021         uint32_t g4_addr = mtd_to_docg4_address(DOCG4_FACTORY_BBT_PAGE, 0);
1022         uint8_t *buf;
1023         int i, block;
1024         __u32 eccfailed_stats = mtd->ecc_stats.failed;
1025
1026         buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL);
1027         if (buf == NULL)
1028                 return -ENOMEM;
1029
1030         read_page_prologue(mtd, g4_addr);
1031         docg4_read_page(mtd, nand, buf, 0, DOCG4_FACTORY_BBT_PAGE);
1032
1033         /*
1034          * If no memory-based bbt was created, exit.  This will happen if module
1035          * parameter ignore_badblocks is set.  Then why even call this function?
1036          * For an unknown reason, block erase always fails if it's the first
1037          * operation after device power-up.  The above read ensures it never is.
1038          * Ugly, I know.
1039          */
1040         if (nand->bbt == NULL)  /* no memory-based bbt */
1041                 goto exit;
1042
1043         if (mtd->ecc_stats.failed > eccfailed_stats) {
1044                 /*
1045                  * Whoops, an ecc failure ocurred reading the factory bbt.
1046                  * It is stored redundantly, so we get another chance.
1047                  */
1048                 eccfailed_stats = mtd->ecc_stats.failed;
1049                 docg4_read_page(mtd, nand, buf, 0, DOCG4_REDUNDANT_BBT_PAGE);
1050                 if (mtd->ecc_stats.failed > eccfailed_stats) {
1051                         dev_warn(doc->dev,
1052                                  "The factory bbt could not be read!\n");
1053                         goto exit;
1054                 }
1055         }
1056
1057         /*
1058          * Parse factory bbt and update memory-based bbt.  Factory bbt format is
1059          * simple: one bit per block, block numbers increase left to right (msb
1060          * to lsb).  Bit clear means bad block.
1061          */
1062         for (i = block = 0; block < DOCG4_NUMBLOCKS; block += 8, i++) {
1063                 int bitnum;
1064                 unsigned long bits = ~buf[i];
1065                 for_each_set_bit(bitnum, &bits, 8) {
1066                         int badblock = block + 7 - bitnum;
1067                         nand->bbt[badblock / 4] |=
1068                                 0x03 << ((badblock % 4) * 2);
1069                         mtd->ecc_stats.badblocks++;
1070                         dev_notice(doc->dev, "factory-marked bad block: %d\n",
1071                                    badblock);
1072                 }
1073         }
1074  exit:
1075         kfree(buf);
1076         return 0;
1077 }
1078
1079 static int docg4_block_markbad(struct mtd_info *mtd, loff_t ofs)
1080 {
1081         /*
1082          * Mark a block as bad.  Bad blocks are marked in the oob area of the
1083          * first page of the block.  The default scan_bbt() in the nand
1084          * infrastructure code works fine for building the memory-based bbt
1085          * during initialization, as does the nand infrastructure function that
1086          * checks if a block is bad by reading the bbt.  This function replaces
1087          * the nand default because writes to oob-only are not supported.
1088          */
1089
1090         int ret, i;
1091         uint8_t *buf;
1092         struct nand_chip *nand = mtd->priv;
1093         struct docg4_priv *doc = nand->priv;
1094         struct nand_bbt_descr *bbtd = nand->badblock_pattern;
1095         int page = (int)(ofs >> nand->page_shift);
1096         uint32_t g4_addr = mtd_to_docg4_address(page, 0);
1097
1098         dev_dbg(doc->dev, "%s: %08llx\n", __func__, ofs);
1099
1100         if (unlikely(ofs & (DOCG4_BLOCK_SIZE - 1)))
1101                 dev_warn(doc->dev, "%s: ofs %llx not start of block!\n",
1102                          __func__, ofs);
1103
1104         /* allocate blank buffer for page data */
1105         buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL);
1106         if (buf == NULL)
1107                 return -ENOMEM;
1108
1109         /* write bit-wise negation of pattern to oob buffer */
1110         memset(nand->oob_poi, 0xff, mtd->oobsize);
1111         for (i = 0; i < bbtd->len; i++)
1112                 nand->oob_poi[bbtd->offs + i] = ~bbtd->pattern[i];
1113
1114         /* write first page of block */
1115         write_page_prologue(mtd, g4_addr);
1116         docg4_write_page(mtd, nand, buf, 1);
1117         ret = pageprog(mtd);
1118
1119         kfree(buf);
1120
1121         return ret;
1122 }
1123
1124 static int docg4_block_neverbad(struct mtd_info *mtd, loff_t ofs, int getchip)
1125 {
1126         /* only called when module_param ignore_badblocks is set */
1127         return 0;
1128 }
1129
1130 static int docg4_suspend(struct platform_device *pdev, pm_message_t state)
1131 {
1132         /*
1133          * Put the device into "deep power-down" mode.  Note that CE# must be
1134          * deasserted for this to take effect.  The xscale, e.g., can be
1135          * configured to float this signal when the processor enters power-down,
1136          * and a suitable pull-up ensures its deassertion.
1137          */
1138
1139         int i;
1140         uint8_t pwr_down;
1141         struct docg4_priv *doc = platform_get_drvdata(pdev);
1142         void __iomem *docptr = doc->virtadr;
1143
1144         dev_dbg(doc->dev, "%s...\n", __func__);
1145
1146         /* poll the register that tells us we're ready to go to sleep */
1147         for (i = 0; i < 10; i++) {
1148                 pwr_down = readb(docptr + DOC_POWERMODE);
1149                 if (pwr_down & DOC_POWERDOWN_READY)
1150                         break;
1151                 usleep_range(1000, 4000);
1152         }
1153
1154         if (pwr_down & DOC_POWERDOWN_READY) {
1155                 dev_err(doc->dev, "suspend failed; "
1156                         "timeout polling DOC_POWERDOWN_READY\n");
1157                 return -EIO;
1158         }
1159
1160         writew(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN,
1161                docptr + DOC_ASICMODE);
1162         writew(~(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN),
1163                docptr + DOC_ASICMODECONFIRM);
1164
1165         write_nop(docptr);
1166
1167         return 0;
1168 }
1169
1170 static int docg4_resume(struct platform_device *pdev)
1171 {
1172
1173         /*
1174          * Exit power-down.  Twelve consecutive reads of the address below
1175          * accomplishes this, assuming CE# has been asserted.
1176          */
1177
1178         struct docg4_priv *doc = platform_get_drvdata(pdev);
1179         void __iomem *docptr = doc->virtadr;
1180         int i;
1181
1182         dev_dbg(doc->dev, "%s...\n", __func__);
1183
1184         for (i = 0; i < 12; i++)
1185                 readb(docptr + 0x1fff);
1186
1187         return 0;
1188 }
1189
1190 static void __init init_mtd_structs(struct mtd_info *mtd)
1191 {
1192         /* initialize mtd and nand data structures */
1193
1194         /*
1195          * Note that some of the following initializations are not usually
1196          * required within a nand driver because they are performed by the nand
1197          * infrastructure code as part of nand_scan().  In this case they need
1198          * to be initialized here because we skip call to nand_scan_ident() (the
1199          * first half of nand_scan()).  The call to nand_scan_ident() is skipped
1200          * because for this device the chip id is not read in the manner of a
1201          * standard nand device.  Unfortunately, nand_scan_ident() does other
1202          * things as well, such as call nand_set_defaults().
1203          */
1204
1205         struct nand_chip *nand = mtd->priv;
1206         struct docg4_priv *doc = nand->priv;
1207
1208         mtd->size = DOCG4_CHIP_SIZE;
1209         mtd->name = "Msys_Diskonchip_G4";
1210         mtd->writesize = DOCG4_PAGE_SIZE;
1211         mtd->erasesize = DOCG4_BLOCK_SIZE;
1212         mtd->oobsize = DOCG4_OOB_SIZE;
1213         nand->chipsize = DOCG4_CHIP_SIZE;
1214         nand->chip_shift = DOCG4_CHIP_SHIFT;
1215         nand->bbt_erase_shift = nand->phys_erase_shift = DOCG4_ERASE_SHIFT;
1216         nand->chip_delay = 20;
1217         nand->page_shift = DOCG4_PAGE_SHIFT;
1218         nand->pagemask = 0x3ffff;
1219         nand->badblockpos = NAND_LARGE_BADBLOCK_POS;
1220         nand->badblockbits = 8;
1221         nand->ecc.layout = &docg4_oobinfo;
1222         nand->ecc.mode = NAND_ECC_HW_SYNDROME;
1223         nand->ecc.size = DOCG4_PAGE_SIZE;
1224         nand->ecc.prepad = 8;
1225         nand->ecc.bytes = 8;
1226         nand->ecc.strength = DOCG4_T;
1227         nand->options = NAND_BUSWIDTH_16 | NAND_NO_SUBPAGE_WRITE;
1228         nand->IO_ADDR_R = nand->IO_ADDR_W = doc->virtadr + DOC_IOSPACE_DATA;
1229         nand->controller = &nand->hwcontrol;
1230         spin_lock_init(&nand->controller->lock);
1231         init_waitqueue_head(&nand->controller->wq);
1232
1233         /* methods */
1234         nand->cmdfunc = docg4_command;
1235         nand->waitfunc = docg4_wait;
1236         nand->select_chip = docg4_select_chip;
1237         nand->read_byte = docg4_read_byte;
1238         nand->block_markbad = docg4_block_markbad;
1239         nand->read_buf = docg4_read_buf;
1240         nand->write_buf = docg4_write_buf16;
1241         nand->erase = docg4_erase_block;
1242         nand->ecc.read_page = docg4_read_page;
1243         nand->ecc.write_page = docg4_write_page;
1244         nand->ecc.read_page_raw = docg4_read_page_raw;
1245         nand->ecc.write_page_raw = docg4_write_page_raw;
1246         nand->ecc.read_oob = docg4_read_oob;
1247         nand->ecc.write_oob = docg4_write_oob;
1248
1249         /*
1250          * The way the nand infrastructure code is written, a memory-based bbt
1251          * is not created if NAND_SKIP_BBTSCAN is set.  With no memory bbt,
1252          * nand->block_bad() is used.  So when ignoring bad blocks, we skip the
1253          * scan and define a dummy block_bad() which always returns 0.
1254          */
1255         if (ignore_badblocks) {
1256                 nand->options |= NAND_SKIP_BBTSCAN;
1257                 nand->block_bad = docg4_block_neverbad;
1258         }
1259
1260 }
1261
1262 static int __init read_id_reg(struct mtd_info *mtd)
1263 {
1264         struct nand_chip *nand = mtd->priv;
1265         struct docg4_priv *doc = nand->priv;
1266         void __iomem *docptr = doc->virtadr;
1267         uint16_t id1, id2;
1268
1269         /* check for presence of g4 chip by reading id registers */
1270         id1 = readw(docptr + DOC_CHIPID);
1271         id1 = readw(docptr + DOCG4_MYSTERY_REG);
1272         id2 = readw(docptr + DOC_CHIPID_INV);
1273         id2 = readw(docptr + DOCG4_MYSTERY_REG);
1274
1275         if (id1 == DOCG4_IDREG1_VALUE && id2 == DOCG4_IDREG2_VALUE) {
1276                 dev_info(doc->dev,
1277                          "NAND device: 128MiB Diskonchip G4 detected\n");
1278                 return 0;
1279         }
1280
1281         return -ENODEV;
1282 }
1283
1284 static char const *part_probes[] = { "cmdlinepart", "saftlpart", NULL };
1285
1286 static int __init probe_docg4(struct platform_device *pdev)
1287 {
1288         struct mtd_info *mtd;
1289         struct nand_chip *nand;
1290         void __iomem *virtadr;
1291         struct docg4_priv *doc;
1292         int len, retval;
1293         struct resource *r;
1294         struct device *dev = &pdev->dev;
1295
1296         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1297         if (r == NULL) {
1298                 dev_err(dev, "no io memory resource defined!\n");
1299                 return -ENODEV;
1300         }
1301
1302         virtadr = ioremap(r->start, resource_size(r));
1303         if (!virtadr) {
1304                 dev_err(dev, "Diskonchip ioremap failed: %pR\n", r);
1305                 return -EIO;
1306         }
1307
1308         len = sizeof(struct mtd_info) + sizeof(struct nand_chip) +
1309                 sizeof(struct docg4_priv);
1310         mtd = kzalloc(len, GFP_KERNEL);
1311         if (mtd == NULL) {
1312                 retval = -ENOMEM;
1313                 goto fail;
1314         }
1315         nand = (struct nand_chip *) (mtd + 1);
1316         doc = (struct docg4_priv *) (nand + 1);
1317         mtd->priv = nand;
1318         nand->priv = doc;
1319         mtd->owner = THIS_MODULE;
1320         doc->virtadr = virtadr;
1321         doc->dev = dev;
1322
1323         init_mtd_structs(mtd);
1324
1325         /* initialize kernel bch algorithm */
1326         doc->bch = init_bch(DOCG4_M, DOCG4_T, DOCG4_PRIMITIVE_POLY);
1327         if (doc->bch == NULL) {
1328                 retval = -EINVAL;
1329                 goto fail;
1330         }
1331
1332         platform_set_drvdata(pdev, doc);
1333
1334         reset(mtd);
1335         retval = read_id_reg(mtd);
1336         if (retval == -ENODEV) {
1337                 dev_warn(dev, "No diskonchip G4 device found.\n");
1338                 goto fail;
1339         }
1340
1341         retval = nand_scan_tail(mtd);
1342         if (retval)
1343                 goto fail;
1344
1345         retval = read_factory_bbt(mtd);
1346         if (retval)
1347                 goto fail;
1348
1349         retval = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
1350         if (retval)
1351                 goto fail;
1352
1353         doc->mtd = mtd;
1354         return 0;
1355
1356  fail:
1357         iounmap(virtadr);
1358         if (mtd) {
1359                 /* re-declarations avoid compiler warning */
1360                 struct nand_chip *nand = mtd->priv;
1361                 struct docg4_priv *doc = nand->priv;
1362                 nand_release(mtd); /* deletes partitions and mtd devices */
1363                 free_bch(doc->bch);
1364                 kfree(mtd);
1365         }
1366
1367         return retval;
1368 }
1369
1370 static int __exit cleanup_docg4(struct platform_device *pdev)
1371 {
1372         struct docg4_priv *doc = platform_get_drvdata(pdev);
1373         nand_release(doc->mtd);
1374         free_bch(doc->bch);
1375         kfree(doc->mtd);
1376         iounmap(doc->virtadr);
1377         return 0;
1378 }
1379
1380 static struct platform_driver docg4_driver = {
1381         .driver         = {
1382                 .name   = "docg4",
1383         },
1384         .suspend        = docg4_suspend,
1385         .resume         = docg4_resume,
1386         .remove         = __exit_p(cleanup_docg4),
1387 };
1388
1389 module_platform_driver_probe(docg4_driver, probe_docg4);
1390
1391 MODULE_LICENSE("GPL");
1392 MODULE_AUTHOR("Mike Dunn");
1393 MODULE_DESCRIPTION("M-Systems DiskOnChip G4 device driver");